Merge git://git.infradead.org/jffs2-devel-2.6
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/smp.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ctype.h>
19#include <linux/cpufreq.h>
20#include <linux/sysctl.h>
21#include <linux/types.h>
22#include <linux/fs.h>
23#include <linux/sysfs.h>
24#include <linux/sched.h>
25#include <linux/kmod.h>
26#include <linux/workqueue.h>
27#include <linux/jiffies.h>
28#include <linux/kernel_stat.h>
29#include <linux/percpu.h>
3fc54d37 30#include <linux/mutex.h>
1da177e4
LT
31
32/*
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
35 */
36
37#define DEF_FREQUENCY_UP_THRESHOLD (80)
c29f1403 38#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
39#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
32ee8c3e
DJ
41/*
42 * The polling frequency of this governor depends on the capability of
1da177e4 43 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
32ee8c3e 51static unsigned int def_sampling_rate;
df8b59be
DJ
52#define MIN_SAMPLING_RATE_RATIO (2)
53/* for correct statistics, we need at least 10 ticks between each measure */
54#define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55#define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
1da177e4
LT
56#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
57#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
e131832c
DJ
58#define DEF_SAMPLING_DOWN_FACTOR (1)
59#define MAX_SAMPLING_DOWN_FACTOR (10)
1da177e4 60#define TRANSITION_LATENCY_LIMIT (10 * 1000)
1da177e4
LT
61
62static void do_dbs_timer(void *data);
63
64struct cpu_dbs_info_s {
32ee8c3e
DJ
65 struct cpufreq_policy *cur_policy;
66 unsigned int prev_cpu_idle_up;
67 unsigned int prev_cpu_idle_down;
68 unsigned int enable;
1da177e4
LT
69};
70static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71
72static unsigned int dbs_enable; /* number of CPUs using this policy */
73
32ee8c3e 74static DEFINE_MUTEX (dbs_mutex);
1da177e4
LT
75static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
76
6810b548
AK
77static struct workqueue_struct *dbs_workq;
78
1da177e4 79struct dbs_tuners {
32ee8c3e
DJ
80 unsigned int sampling_rate;
81 unsigned int sampling_down_factor;
82 unsigned int up_threshold;
83 unsigned int ignore_nice;
1da177e4
LT
84};
85
86static struct dbs_tuners dbs_tuners_ins = {
32ee8c3e
DJ
87 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
88 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
9cbad61b 89 .ignore_nice = 0,
1da177e4
LT
90};
91
dac1c1a5
DJ
92static inline unsigned int get_cpu_idle_time(unsigned int cpu)
93{
94 return kstat_cpu(cpu).cpustat.idle +
95 kstat_cpu(cpu).cpustat.iowait +
001893cd 96 ( dbs_tuners_ins.ignore_nice ?
dac1c1a5
DJ
97 kstat_cpu(cpu).cpustat.nice :
98 0);
99}
100
1da177e4
LT
101/************************** sysfs interface ************************/
102static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
103{
104 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
105}
106
107static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
108{
109 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
110}
111
32ee8c3e
DJ
112#define define_one_ro(_name) \
113static struct freq_attr _name = \
1da177e4
LT
114__ATTR(_name, 0444, show_##_name, NULL)
115
116define_one_ro(sampling_rate_max);
117define_one_ro(sampling_rate_min);
118
119/* cpufreq_ondemand Governor Tunables */
120#define show_one(file_name, object) \
121static ssize_t show_##file_name \
122(struct cpufreq_policy *unused, char *buf) \
123{ \
124 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
125}
126show_one(sampling_rate, sampling_rate);
127show_one(sampling_down_factor, sampling_down_factor);
128show_one(up_threshold, up_threshold);
001893cd 129show_one(ignore_nice_load, ignore_nice);
1da177e4 130
32ee8c3e 131static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
1da177e4
LT
132 const char *buf, size_t count)
133{
134 unsigned int input;
135 int ret;
136 ret = sscanf (buf, "%u", &input);
137 if (ret != 1 )
138 return -EINVAL;
139
e131832c
DJ
140 if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
141 return -EINVAL;
142
3fc54d37 143 mutex_lock(&dbs_mutex);
1da177e4 144 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 145 mutex_unlock(&dbs_mutex);
1da177e4
LT
146
147 return count;
148}
149
32ee8c3e 150static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
151 const char *buf, size_t count)
152{
153 unsigned int input;
154 int ret;
155 ret = sscanf (buf, "%u", &input);
156
3fc54d37 157 mutex_lock(&dbs_mutex);
1da177e4 158 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
3fc54d37 159 mutex_unlock(&dbs_mutex);
1da177e4
LT
160 return -EINVAL;
161 }
162
163 dbs_tuners_ins.sampling_rate = input;
3fc54d37 164 mutex_unlock(&dbs_mutex);
1da177e4
LT
165
166 return count;
167}
168
32ee8c3e 169static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
170 const char *buf, size_t count)
171{
172 unsigned int input;
173 int ret;
174 ret = sscanf (buf, "%u", &input);
175
3fc54d37 176 mutex_lock(&dbs_mutex);
32ee8c3e 177 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 178 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 179 mutex_unlock(&dbs_mutex);
1da177e4
LT
180 return -EINVAL;
181 }
182
183 dbs_tuners_ins.up_threshold = input;
3fc54d37 184 mutex_unlock(&dbs_mutex);
1da177e4
LT
185
186 return count;
187}
188
001893cd 189static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
190 const char *buf, size_t count)
191{
192 unsigned int input;
193 int ret;
194
195 unsigned int j;
32ee8c3e 196
3d5ee9e5
DJ
197 ret = sscanf (buf, "%u", &input);
198 if ( ret != 1 )
199 return -EINVAL;
200
201 if ( input > 1 )
202 input = 1;
32ee8c3e 203
3fc54d37 204 mutex_lock(&dbs_mutex);
3d5ee9e5 205 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
3fc54d37 206 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
207 return count;
208 }
209 dbs_tuners_ins.ignore_nice = input;
210
211 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
dac1c1a5 212 for_each_online_cpu(j) {
3d5ee9e5
DJ
213 struct cpu_dbs_info_s *j_dbs_info;
214 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 215 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
3d5ee9e5
DJ
216 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
217 }
3fc54d37 218 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
219
220 return count;
221}
222
1da177e4
LT
223#define define_one_rw(_name) \
224static struct freq_attr _name = \
225__ATTR(_name, 0644, show_##_name, store_##_name)
226
227define_one_rw(sampling_rate);
228define_one_rw(sampling_down_factor);
229define_one_rw(up_threshold);
001893cd 230define_one_rw(ignore_nice_load);
1da177e4
LT
231
232static struct attribute * dbs_attributes[] = {
233 &sampling_rate_max.attr,
234 &sampling_rate_min.attr,
235 &sampling_rate.attr,
236 &sampling_down_factor.attr,
237 &up_threshold.attr,
001893cd 238 &ignore_nice_load.attr,
1da177e4
LT
239 NULL
240};
241
242static struct attribute_group dbs_attr_group = {
243 .attrs = dbs_attributes,
244 .name = "ondemand",
245};
246
247/************************** sysfs end ************************/
248
249static void dbs_check_cpu(int cpu)
250{
c29f1403
DJ
251 unsigned int idle_ticks, up_idle_ticks, total_ticks;
252 unsigned int freq_next;
1da177e4
LT
253 unsigned int freq_down_sampling_rate;
254 static int down_skip[NR_CPUS];
255 struct cpu_dbs_info_s *this_dbs_info;
256
257 struct cpufreq_policy *policy;
258 unsigned int j;
259
260 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
261 if (!this_dbs_info->enable)
262 return;
263
264 policy = this_dbs_info->cur_policy;
32ee8c3e 265 /*
c29f1403
DJ
266 * Every sampling_rate, we check, if current idle time is less
267 * than 20% (default), then we try to increase frequency
268 * Every sampling_rate*sampling_down_factor, we look for a the lowest
269 * frequency which can sustain the load while keeping idle time over
270 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 271 *
32ee8c3e
DJ
272 * Any frequency increase takes it to the maximum frequency.
273 * Frequency reduction happens at minimum steps of
274 * 5% (default) of current frequency
1da177e4
LT
275 */
276
277 /* Check for frequency increase */
9c7d269b 278 idle_ticks = UINT_MAX;
1da177e4 279 for_each_cpu_mask(j, policy->cpus) {
9c7d269b 280 unsigned int tmp_idle_ticks, total_idle_ticks;
1da177e4
LT
281 struct cpu_dbs_info_s *j_dbs_info;
282
1da177e4 283 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 284 total_idle_ticks = get_cpu_idle_time(j);
1da177e4
LT
285 tmp_idle_ticks = total_idle_ticks -
286 j_dbs_info->prev_cpu_idle_up;
287 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
288
289 if (tmp_idle_ticks < idle_ticks)
290 idle_ticks = tmp_idle_ticks;
291 }
292
293 /* Scale idle ticks by 100 and compare with up and down ticks */
294 idle_ticks *= 100;
295 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
6fe71165 296 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
1da177e4
LT
297
298 if (idle_ticks < up_idle_ticks) {
dac1c1a5 299 down_skip[cpu] = 0;
790d76fa
DJ
300 for_each_cpu_mask(j, policy->cpus) {
301 struct cpu_dbs_info_s *j_dbs_info;
302
303 j_dbs_info = &per_cpu(cpu_dbs_info, j);
32ee8c3e 304 j_dbs_info->prev_cpu_idle_down =
790d76fa
DJ
305 j_dbs_info->prev_cpu_idle_up;
306 }
c11420a6
DJ
307 /* if we are already at full speed then break out early */
308 if (policy->cur == policy->max)
309 return;
32ee8c3e
DJ
310
311 __cpufreq_driver_target(policy, policy->max,
1da177e4 312 CPUFREQ_RELATION_H);
1da177e4
LT
313 return;
314 }
315
316 /* Check for frequency decrease */
317 down_skip[cpu]++;
318 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
319 return;
320
9c7d269b 321 idle_ticks = UINT_MAX;
1da177e4 322 for_each_cpu_mask(j, policy->cpus) {
9c7d269b 323 unsigned int tmp_idle_ticks, total_idle_ticks;
1da177e4
LT
324 struct cpu_dbs_info_s *j_dbs_info;
325
1da177e4 326 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5
DJ
327 /* Check for frequency decrease */
328 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
1da177e4
LT
329 tmp_idle_ticks = total_idle_ticks -
330 j_dbs_info->prev_cpu_idle_down;
331 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
332
333 if (tmp_idle_ticks < idle_ticks)
334 idle_ticks = tmp_idle_ticks;
335 }
336
1da177e4 337 down_skip[cpu] = 0;
c29f1403
DJ
338 /* if we cannot reduce the frequency anymore, break out early */
339 if (policy->cur == policy->min)
340 return;
1da177e4 341
c29f1403 342 /* Compute how many ticks there are between two measurements */
1da177e4
LT
343 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
344 dbs_tuners_ins.sampling_down_factor;
c29f1403 345 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
1206aaac 346
c29f1403
DJ
347 /*
348 * The optimal frequency is the frequency that is the lowest that
349 * can support the current CPU usage without triggering the up
350 * policy. To be safe, we focus 10 points under the threshold.
351 */
352 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
32ee8c3e 353 freq_next = (freq_next * policy->cur) /
c29f1403 354 (dbs_tuners_ins.up_threshold - 10);
1da177e4 355
7c9d8c0e
DB
356 if (freq_next < policy->min)
357 freq_next = policy->min;
358
c29f1403
DJ
359 if (freq_next <= ((policy->cur * 95) / 100))
360 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
1da177e4
LT
361}
362
363static void do_dbs_timer(void *data)
32ee8c3e 364{
1da177e4 365 int i;
3fc54d37 366 mutex_lock(&dbs_mutex);
6fe71165
DJ
367 for_each_online_cpu(i)
368 dbs_check_cpu(i);
6810b548
AK
369 queue_delayed_work(dbs_workq, &dbs_work,
370 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
3fc54d37 371 mutex_unlock(&dbs_mutex);
32ee8c3e 372}
1da177e4
LT
373
374static inline void dbs_timer_init(void)
375{
376 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
6810b548
AK
377 if (!dbs_workq)
378 dbs_workq = create_singlethread_workqueue("ondemand");
379 if (!dbs_workq) {
380 printk(KERN_ERR "ondemand: Cannot initialize kernel thread\n");
381 return;
382 }
383 queue_delayed_work(dbs_workq, &dbs_work,
384 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
1da177e4
LT
385 return;
386}
387
388static inline void dbs_timer_exit(void)
389{
6810b548
AK
390 if (dbs_workq)
391 cancel_rearming_delayed_workqueue(dbs_workq, &dbs_work);
1da177e4
LT
392}
393
394static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
395 unsigned int event)
396{
397 unsigned int cpu = policy->cpu;
398 struct cpu_dbs_info_s *this_dbs_info;
399 unsigned int j;
400
401 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
402
403 switch (event) {
404 case CPUFREQ_GOV_START:
32ee8c3e 405 if ((!cpu_online(cpu)) ||
1da177e4
LT
406 (!policy->cur))
407 return -EINVAL;
408
409 if (policy->cpuinfo.transition_latency >
ff8c288d
EP
410 (TRANSITION_LATENCY_LIMIT * 1000)) {
411 printk(KERN_WARNING "ondemand governor failed to load "
412 "due to too long transition latency\n");
1da177e4 413 return -EINVAL;
ff8c288d 414 }
1da177e4
LT
415 if (this_dbs_info->enable) /* Already enabled */
416 break;
32ee8c3e 417
3fc54d37 418 mutex_lock(&dbs_mutex);
1da177e4
LT
419 for_each_cpu_mask(j, policy->cpus) {
420 struct cpu_dbs_info_s *j_dbs_info;
421 j_dbs_info = &per_cpu(cpu_dbs_info, j);
422 j_dbs_info->cur_policy = policy;
32ee8c3e 423
dac1c1a5 424 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
3d5ee9e5
DJ
425 j_dbs_info->prev_cpu_idle_down
426 = j_dbs_info->prev_cpu_idle_up;
1da177e4
LT
427 }
428 this_dbs_info->enable = 1;
429 sysfs_create_group(&policy->kobj, &dbs_attr_group);
430 dbs_enable++;
431 /*
432 * Start the timerschedule work, when this governor
433 * is used for first time
434 */
435 if (dbs_enable == 1) {
436 unsigned int latency;
437 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
438 latency = policy->cpuinfo.transition_latency / 1000;
439 if (latency == 0)
440 latency = 1;
1da177e4 441
df8b59be 442 def_sampling_rate = latency *
1da177e4 443 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
df8b59be
DJ
444
445 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
446 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
447
1da177e4 448 dbs_tuners_ins.sampling_rate = def_sampling_rate;
1da177e4
LT
449 dbs_timer_init();
450 }
32ee8c3e 451
3fc54d37 452 mutex_unlock(&dbs_mutex);
1da177e4
LT
453 break;
454
455 case CPUFREQ_GOV_STOP:
3fc54d37 456 mutex_lock(&dbs_mutex);
1da177e4
LT
457 this_dbs_info->enable = 0;
458 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
459 dbs_enable--;
460 /*
461 * Stop the timerschedule work, when this governor
462 * is used for first time
463 */
32ee8c3e 464 if (dbs_enable == 0)
1da177e4 465 dbs_timer_exit();
32ee8c3e 466
3fc54d37 467 mutex_unlock(&dbs_mutex);
1da177e4
LT
468
469 break;
470
471 case CPUFREQ_GOV_LIMITS:
3fc54d37 472 mutex_lock(&dbs_mutex);
1da177e4
LT
473 if (policy->max < this_dbs_info->cur_policy->cur)
474 __cpufreq_driver_target(
475 this_dbs_info->cur_policy,
32ee8c3e 476 policy->max, CPUFREQ_RELATION_H);
1da177e4
LT
477 else if (policy->min > this_dbs_info->cur_policy->cur)
478 __cpufreq_driver_target(
479 this_dbs_info->cur_policy,
32ee8c3e 480 policy->min, CPUFREQ_RELATION_L);
3fc54d37 481 mutex_unlock(&dbs_mutex);
1da177e4
LT
482 break;
483 }
484 return 0;
485}
486
7f335d4e 487static struct cpufreq_governor cpufreq_gov_dbs = {
1da177e4
LT
488 .name = "ondemand",
489 .governor = cpufreq_governor_dbs,
490 .owner = THIS_MODULE,
491};
1da177e4
LT
492
493static int __init cpufreq_gov_dbs_init(void)
494{
495 return cpufreq_register_governor(&cpufreq_gov_dbs);
496}
497
498static void __exit cpufreq_gov_dbs_exit(void)
499{
6810b548
AK
500 /* Make sure that the scheduled work is indeed not running.
501 Assumes the timer has been cancelled first. */
502 if (dbs_workq) {
503 flush_workqueue(dbs_workq);
504 destroy_workqueue(dbs_workq);
505 }
1da177e4
LT
506
507 cpufreq_unregister_governor(&cpufreq_gov_dbs);
508}
509
510
511MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
512MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
513 "Low Latency Frequency Transition capable processors");
514MODULE_LICENSE ("GPL");
515
516module_init(cpufreq_gov_dbs_init);
517module_exit(cpufreq_gov_dbs_exit);
This page took 0.154718 seconds and 5 git commands to generate.