[CPUFREQ][1/2] ondemand: updated tune for hardware coordination
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
1da177e4
LT
21
22/*
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
25 */
26
27#define DEF_FREQUENCY_UP_THRESHOLD (80)
c29f1403 28#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
29#define MAX_FREQUENCY_UP_THRESHOLD (100)
30
32ee8c3e
DJ
31/*
32 * The polling frequency of this governor depends on the capability of
1da177e4 33 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
40 */
32ee8c3e 41static unsigned int def_sampling_rate;
df8b59be
DJ
42#define MIN_SAMPLING_RATE_RATIO (2)
43/* for correct statistics, we need at least 10 ticks between each measure */
44#define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
45#define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
1da177e4
LT
46#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
47#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
1da177e4 48#define TRANSITION_LATENCY_LIMIT (10 * 1000)
1da177e4
LT
49
50static void do_dbs_timer(void *data);
51
52struct cpu_dbs_info_s {
ccb2fe20
VP
53 cputime64_t prev_cpu_idle;
54 cputime64_t prev_cpu_wall;
32ee8c3e 55 struct cpufreq_policy *cur_policy;
2f8a835c 56 struct work_struct work;
32ee8c3e 57 unsigned int enable;
1da177e4
LT
58};
59static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
60
61static unsigned int dbs_enable; /* number of CPUs using this policy */
62
4ec223d0
VP
63/*
64 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
65 * lock and dbs_mutex. cpu_hotplug lock should always be held before
66 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
67 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
68 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
69 * is recursive for the same process. -Venki
70 */
ffac80e9 71static DEFINE_MUTEX(dbs_mutex);
1da177e4 72
2f8a835c 73static struct workqueue_struct *kondemand_wq;
6810b548 74
1da177e4 75struct dbs_tuners {
32ee8c3e 76 unsigned int sampling_rate;
32ee8c3e
DJ
77 unsigned int up_threshold;
78 unsigned int ignore_nice;
1da177e4
LT
79};
80
81static struct dbs_tuners dbs_tuners_ins = {
32ee8c3e 82 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
9cbad61b 83 .ignore_nice = 0,
1da177e4
LT
84};
85
ccb2fe20 86static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
dac1c1a5 87{
ccb2fe20
VP
88 cputime64_t retval;
89
90 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
91 kstat_cpu(cpu).cpustat.iowait);
92
93 if (dbs_tuners_ins.ignore_nice)
94 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
95
96 return retval;
dac1c1a5
DJ
97}
98
1da177e4
LT
99/************************** sysfs interface ************************/
100static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
101{
102 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
103}
104
105static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
106{
107 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
108}
109
32ee8c3e
DJ
110#define define_one_ro(_name) \
111static struct freq_attr _name = \
1da177e4
LT
112__ATTR(_name, 0444, show_##_name, NULL)
113
114define_one_ro(sampling_rate_max);
115define_one_ro(sampling_rate_min);
116
117/* cpufreq_ondemand Governor Tunables */
118#define show_one(file_name, object) \
119static ssize_t show_##file_name \
120(struct cpufreq_policy *unused, char *buf) \
121{ \
122 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
123}
124show_one(sampling_rate, sampling_rate);
1da177e4 125show_one(up_threshold, up_threshold);
001893cd 126show_one(ignore_nice_load, ignore_nice);
1da177e4 127
32ee8c3e 128static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
129 const char *buf, size_t count)
130{
131 unsigned int input;
132 int ret;
ffac80e9 133 ret = sscanf(buf, "%u", &input);
1da177e4 134
3fc54d37 135 mutex_lock(&dbs_mutex);
1da177e4 136 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
3fc54d37 137 mutex_unlock(&dbs_mutex);
1da177e4
LT
138 return -EINVAL;
139 }
140
141 dbs_tuners_ins.sampling_rate = input;
3fc54d37 142 mutex_unlock(&dbs_mutex);
1da177e4
LT
143
144 return count;
145}
146
32ee8c3e 147static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
148 const char *buf, size_t count)
149{
150 unsigned int input;
151 int ret;
ffac80e9 152 ret = sscanf(buf, "%u", &input);
1da177e4 153
3fc54d37 154 mutex_lock(&dbs_mutex);
32ee8c3e 155 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 156 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 157 mutex_unlock(&dbs_mutex);
1da177e4
LT
158 return -EINVAL;
159 }
160
161 dbs_tuners_ins.up_threshold = input;
3fc54d37 162 mutex_unlock(&dbs_mutex);
1da177e4
LT
163
164 return count;
165}
166
001893cd 167static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
168 const char *buf, size_t count)
169{
170 unsigned int input;
171 int ret;
172
173 unsigned int j;
32ee8c3e 174
ffac80e9 175 ret = sscanf(buf, "%u", &input);
3d5ee9e5
DJ
176 if ( ret != 1 )
177 return -EINVAL;
178
179 if ( input > 1 )
180 input = 1;
32ee8c3e 181
3fc54d37 182 mutex_lock(&dbs_mutex);
3d5ee9e5 183 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
3fc54d37 184 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
185 return count;
186 }
187 dbs_tuners_ins.ignore_nice = input;
188
ccb2fe20 189 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 190 for_each_online_cpu(j) {
ccb2fe20
VP
191 struct cpu_dbs_info_s *dbs_info;
192 dbs_info = &per_cpu(cpu_dbs_info, j);
193 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
194 dbs_info->prev_cpu_wall = get_jiffies_64();
3d5ee9e5 195 }
3fc54d37 196 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
197
198 return count;
199}
200
1da177e4
LT
201#define define_one_rw(_name) \
202static struct freq_attr _name = \
203__ATTR(_name, 0644, show_##_name, store_##_name)
204
205define_one_rw(sampling_rate);
1da177e4 206define_one_rw(up_threshold);
001893cd 207define_one_rw(ignore_nice_load);
1da177e4
LT
208
209static struct attribute * dbs_attributes[] = {
210 &sampling_rate_max.attr,
211 &sampling_rate_min.attr,
212 &sampling_rate.attr,
1da177e4 213 &up_threshold.attr,
001893cd 214 &ignore_nice_load.attr,
1da177e4
LT
215 NULL
216};
217
218static struct attribute_group dbs_attr_group = {
219 .attrs = dbs_attributes,
220 .name = "ondemand",
221};
222
223/************************** sysfs end ************************/
224
2f8a835c 225static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 226{
ccb2fe20
VP
227 unsigned int idle_ticks, total_ticks;
228 unsigned int load;
ccb2fe20 229 cputime64_t cur_jiffies;
1da177e4
LT
230
231 struct cpufreq_policy *policy;
232 unsigned int j;
233
1da177e4
LT
234 if (!this_dbs_info->enable)
235 return;
236
237 policy = this_dbs_info->cur_policy;
ccb2fe20
VP
238 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
239 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
240 this_dbs_info->prev_cpu_wall);
241 this_dbs_info->prev_cpu_wall = cur_jiffies;
2cd7cbdf
LT
242 if (!total_ticks)
243 return;
32ee8c3e 244 /*
c29f1403
DJ
245 * Every sampling_rate, we check, if current idle time is less
246 * than 20% (default), then we try to increase frequency
ccb2fe20 247 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
248 * frequency which can sustain the load while keeping idle time over
249 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 250 *
32ee8c3e
DJ
251 * Any frequency increase takes it to the maximum frequency.
252 * Frequency reduction happens at minimum steps of
253 * 5% (default) of current frequency
1da177e4
LT
254 */
255
ccb2fe20 256 /* Get Idle Time */
9c7d269b 257 idle_ticks = UINT_MAX;
1da177e4 258 for_each_cpu_mask(j, policy->cpus) {
ccb2fe20
VP
259 cputime64_t total_idle_ticks;
260 unsigned int tmp_idle_ticks;
1da177e4
LT
261 struct cpu_dbs_info_s *j_dbs_info;
262
1da177e4 263 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 264 total_idle_ticks = get_cpu_idle_time(j);
ccb2fe20
VP
265 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
266 j_dbs_info->prev_cpu_idle);
267 j_dbs_info->prev_cpu_idle = total_idle_ticks;
1da177e4
LT
268
269 if (tmp_idle_ticks < idle_ticks)
270 idle_ticks = tmp_idle_ticks;
271 }
ccb2fe20 272 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
1da177e4 273
ccb2fe20
VP
274 /* Check for frequency increase */
275 if (load > dbs_tuners_ins.up_threshold) {
c11420a6
DJ
276 /* if we are already at full speed then break out early */
277 if (policy->cur == policy->max)
278 return;
32ee8c3e
DJ
279
280 __cpufreq_driver_target(policy, policy->max,
1da177e4 281 CPUFREQ_RELATION_H);
1da177e4
LT
282 return;
283 }
284
285 /* Check for frequency decrease */
c29f1403
DJ
286 /* if we cannot reduce the frequency anymore, break out early */
287 if (policy->cur == policy->min)
288 return;
1da177e4 289
c29f1403
DJ
290 /*
291 * The optimal frequency is the frequency that is the lowest that
292 * can support the current CPU usage without triggering the up
293 * policy. To be safe, we focus 10 points under the threshold.
294 */
ccb2fe20
VP
295 if (load < (dbs_tuners_ins.up_threshold - 10)) {
296 unsigned int freq_next;
297 freq_next = (policy->cur * load) /
c29f1403 298 (dbs_tuners_ins.up_threshold - 10);
1da177e4 299
c29f1403 300 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
ccb2fe20 301 }
1da177e4
LT
302}
303
304static void do_dbs_timer(void *data)
32ee8c3e 305{
2f8a835c
VP
306 unsigned int cpu = smp_processor_id();
307 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
1ce28d6b
AS
308 /* We want all CPUs to do sampling nearly on same jiffy */
309 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
310 delay -= jiffies % delay;
2f8a835c 311
2cd7cbdf
LT
312 if (!dbs_info->enable)
313 return;
314
153d7f3f 315 lock_cpu_hotplug();
2f8a835c 316 dbs_check_cpu(dbs_info);
153d7f3f 317 unlock_cpu_hotplug();
1ce28d6b 318 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
32ee8c3e 319}
1da177e4 320
2f8a835c 321static inline void dbs_timer_init(unsigned int cpu)
1da177e4 322{
2f8a835c 323 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
1ce28d6b
AS
324 /* We want all CPUs to do sampling nearly on same jiffy */
325 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
326 delay -= jiffies % delay;
2f8a835c
VP
327
328 INIT_WORK(&dbs_info->work, do_dbs_timer, 0);
1ce28d6b 329 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
1da177e4
LT
330}
331
2cd7cbdf 332static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 333{
2cd7cbdf
LT
334 dbs_info->enable = 0;
335 cancel_delayed_work(&dbs_info->work);
336 flush_workqueue(kondemand_wq);
1da177e4
LT
337}
338
339static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
340 unsigned int event)
341{
342 unsigned int cpu = policy->cpu;
343 struct cpu_dbs_info_s *this_dbs_info;
344 unsigned int j;
345
346 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
347
348 switch (event) {
349 case CPUFREQ_GOV_START:
ffac80e9 350 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
351 return -EINVAL;
352
353 if (policy->cpuinfo.transition_latency >
ff8c288d
EP
354 (TRANSITION_LATENCY_LIMIT * 1000)) {
355 printk(KERN_WARNING "ondemand governor failed to load "
356 "due to too long transition latency\n");
1da177e4 357 return -EINVAL;
ff8c288d 358 }
1da177e4
LT
359 if (this_dbs_info->enable) /* Already enabled */
360 break;
32ee8c3e 361
3fc54d37 362 mutex_lock(&dbs_mutex);
2f8a835c
VP
363 dbs_enable++;
364 if (dbs_enable == 1) {
365 kondemand_wq = create_workqueue("kondemand");
366 if (!kondemand_wq) {
367 printk(KERN_ERR "Creation of kondemand failed\n");
368 dbs_enable--;
369 mutex_unlock(&dbs_mutex);
370 return -ENOSPC;
371 }
372 }
1da177e4
LT
373 for_each_cpu_mask(j, policy->cpus) {
374 struct cpu_dbs_info_s *j_dbs_info;
375 j_dbs_info = &per_cpu(cpu_dbs_info, j);
376 j_dbs_info->cur_policy = policy;
32ee8c3e 377
ccb2fe20
VP
378 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
379 j_dbs_info->prev_cpu_wall = get_jiffies_64();
1da177e4
LT
380 }
381 this_dbs_info->enable = 1;
382 sysfs_create_group(&policy->kobj, &dbs_attr_group);
1da177e4
LT
383 /*
384 * Start the timerschedule work, when this governor
385 * is used for first time
386 */
387 if (dbs_enable == 1) {
388 unsigned int latency;
389 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
390 latency = policy->cpuinfo.transition_latency / 1000;
391 if (latency == 0)
392 latency = 1;
1da177e4 393
df8b59be 394 def_sampling_rate = latency *
1da177e4 395 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
df8b59be
DJ
396
397 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
398 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
399
1da177e4 400 dbs_tuners_ins.sampling_rate = def_sampling_rate;
1da177e4 401 }
2f8a835c 402 dbs_timer_init(policy->cpu);
32ee8c3e 403
3fc54d37 404 mutex_unlock(&dbs_mutex);
1da177e4
LT
405 break;
406
407 case CPUFREQ_GOV_STOP:
3fc54d37 408 mutex_lock(&dbs_mutex);
2cd7cbdf 409 dbs_timer_exit(this_dbs_info);
1da177e4
LT
410 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
411 dbs_enable--;
32ee8c3e 412 if (dbs_enable == 0)
2f8a835c 413 destroy_workqueue(kondemand_wq);
32ee8c3e 414
3fc54d37 415 mutex_unlock(&dbs_mutex);
1da177e4
LT
416
417 break;
418
419 case CPUFREQ_GOV_LIMITS:
3fc54d37 420 mutex_lock(&dbs_mutex);
1da177e4 421 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9
VP
422 __cpufreq_driver_target(this_dbs_info->cur_policy,
423 policy->max,
424 CPUFREQ_RELATION_H);
1da177e4 425 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9
VP
426 __cpufreq_driver_target(this_dbs_info->cur_policy,
427 policy->min,
428 CPUFREQ_RELATION_L);
3fc54d37 429 mutex_unlock(&dbs_mutex);
1da177e4
LT
430 break;
431 }
432 return 0;
433}
434
7f335d4e 435static struct cpufreq_governor cpufreq_gov_dbs = {
ffac80e9
VP
436 .name = "ondemand",
437 .governor = cpufreq_governor_dbs,
438 .owner = THIS_MODULE,
1da177e4 439};
1da177e4
LT
440
441static int __init cpufreq_gov_dbs_init(void)
442{
443 return cpufreq_register_governor(&cpufreq_gov_dbs);
444}
445
446static void __exit cpufreq_gov_dbs_exit(void)
447{
1da177e4
LT
448 cpufreq_unregister_governor(&cpufreq_gov_dbs);
449}
450
451
ffac80e9
VP
452MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
453MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
454MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
455 "Low Latency Frequency Transition capable processors");
456MODULE_LICENSE("GPL");
1da177e4
LT
457
458module_init(cpufreq_gov_dbs_init);
459module_exit(cpufreq_gov_dbs_exit);
This page took 0.163968 seconds and 5 git commands to generate.