[PATCH] cpufreq_ondemand: Warn if it cannot run due to too long transition latency
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/smp.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ctype.h>
19#include <linux/cpufreq.h>
20#include <linux/sysctl.h>
21#include <linux/types.h>
22#include <linux/fs.h>
23#include <linux/sysfs.h>
24#include <linux/sched.h>
25#include <linux/kmod.h>
26#include <linux/workqueue.h>
27#include <linux/jiffies.h>
28#include <linux/kernel_stat.h>
29#include <linux/percpu.h>
3fc54d37 30#include <linux/mutex.h>
1da177e4
LT
31
32/*
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
35 */
36
37#define DEF_FREQUENCY_UP_THRESHOLD (80)
c29f1403 38#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
39#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
32ee8c3e
DJ
41/*
42 * The polling frequency of this governor depends on the capability of
1da177e4 43 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
32ee8c3e 51static unsigned int def_sampling_rate;
df8b59be
DJ
52#define MIN_SAMPLING_RATE_RATIO (2)
53/* for correct statistics, we need at least 10 ticks between each measure */
54#define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55#define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
1da177e4
LT
56#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
57#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
e131832c
DJ
58#define DEF_SAMPLING_DOWN_FACTOR (1)
59#define MAX_SAMPLING_DOWN_FACTOR (10)
1da177e4 60#define TRANSITION_LATENCY_LIMIT (10 * 1000)
1da177e4
LT
61
62static void do_dbs_timer(void *data);
63
64struct cpu_dbs_info_s {
32ee8c3e
DJ
65 struct cpufreq_policy *cur_policy;
66 unsigned int prev_cpu_idle_up;
67 unsigned int prev_cpu_idle_down;
68 unsigned int enable;
1da177e4
LT
69};
70static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71
72static unsigned int dbs_enable; /* number of CPUs using this policy */
73
32ee8c3e 74static DEFINE_MUTEX (dbs_mutex);
1da177e4
LT
75static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
76
77struct dbs_tuners {
32ee8c3e
DJ
78 unsigned int sampling_rate;
79 unsigned int sampling_down_factor;
80 unsigned int up_threshold;
81 unsigned int ignore_nice;
1da177e4
LT
82};
83
84static struct dbs_tuners dbs_tuners_ins = {
32ee8c3e
DJ
85 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
86 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
1da177e4
LT
87};
88
dac1c1a5
DJ
89static inline unsigned int get_cpu_idle_time(unsigned int cpu)
90{
91 return kstat_cpu(cpu).cpustat.idle +
92 kstat_cpu(cpu).cpustat.iowait +
001893cd 93 ( dbs_tuners_ins.ignore_nice ?
dac1c1a5
DJ
94 kstat_cpu(cpu).cpustat.nice :
95 0);
96}
97
1da177e4
LT
98/************************** sysfs interface ************************/
99static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
100{
101 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
102}
103
104static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
105{
106 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
107}
108
32ee8c3e
DJ
109#define define_one_ro(_name) \
110static struct freq_attr _name = \
1da177e4
LT
111__ATTR(_name, 0444, show_##_name, NULL)
112
113define_one_ro(sampling_rate_max);
114define_one_ro(sampling_rate_min);
115
116/* cpufreq_ondemand Governor Tunables */
117#define show_one(file_name, object) \
118static ssize_t show_##file_name \
119(struct cpufreq_policy *unused, char *buf) \
120{ \
121 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
122}
123show_one(sampling_rate, sampling_rate);
124show_one(sampling_down_factor, sampling_down_factor);
125show_one(up_threshold, up_threshold);
001893cd 126show_one(ignore_nice_load, ignore_nice);
1da177e4 127
32ee8c3e 128static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
1da177e4
LT
129 const char *buf, size_t count)
130{
131 unsigned int input;
132 int ret;
133 ret = sscanf (buf, "%u", &input);
134 if (ret != 1 )
135 return -EINVAL;
136
e131832c
DJ
137 if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
138 return -EINVAL;
139
3fc54d37 140 mutex_lock(&dbs_mutex);
1da177e4 141 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 142 mutex_unlock(&dbs_mutex);
1da177e4
LT
143
144 return count;
145}
146
32ee8c3e 147static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
148 const char *buf, size_t count)
149{
150 unsigned int input;
151 int ret;
152 ret = sscanf (buf, "%u", &input);
153
3fc54d37 154 mutex_lock(&dbs_mutex);
1da177e4 155 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
3fc54d37 156 mutex_unlock(&dbs_mutex);
1da177e4
LT
157 return -EINVAL;
158 }
159
160 dbs_tuners_ins.sampling_rate = input;
3fc54d37 161 mutex_unlock(&dbs_mutex);
1da177e4
LT
162
163 return count;
164}
165
32ee8c3e 166static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
167 const char *buf, size_t count)
168{
169 unsigned int input;
170 int ret;
171 ret = sscanf (buf, "%u", &input);
172
3fc54d37 173 mutex_lock(&dbs_mutex);
32ee8c3e 174 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 175 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 176 mutex_unlock(&dbs_mutex);
1da177e4
LT
177 return -EINVAL;
178 }
179
180 dbs_tuners_ins.up_threshold = input;
3fc54d37 181 mutex_unlock(&dbs_mutex);
1da177e4
LT
182
183 return count;
184}
185
001893cd 186static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
187 const char *buf, size_t count)
188{
189 unsigned int input;
190 int ret;
191
192 unsigned int j;
32ee8c3e 193
3d5ee9e5
DJ
194 ret = sscanf (buf, "%u", &input);
195 if ( ret != 1 )
196 return -EINVAL;
197
198 if ( input > 1 )
199 input = 1;
32ee8c3e 200
3fc54d37 201 mutex_lock(&dbs_mutex);
3d5ee9e5 202 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
3fc54d37 203 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
204 return count;
205 }
206 dbs_tuners_ins.ignore_nice = input;
207
208 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
dac1c1a5 209 for_each_online_cpu(j) {
3d5ee9e5
DJ
210 struct cpu_dbs_info_s *j_dbs_info;
211 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 212 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
3d5ee9e5
DJ
213 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
214 }
3fc54d37 215 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
216
217 return count;
218}
219
1da177e4
LT
220#define define_one_rw(_name) \
221static struct freq_attr _name = \
222__ATTR(_name, 0644, show_##_name, store_##_name)
223
224define_one_rw(sampling_rate);
225define_one_rw(sampling_down_factor);
226define_one_rw(up_threshold);
001893cd 227define_one_rw(ignore_nice_load);
1da177e4
LT
228
229static struct attribute * dbs_attributes[] = {
230 &sampling_rate_max.attr,
231 &sampling_rate_min.attr,
232 &sampling_rate.attr,
233 &sampling_down_factor.attr,
234 &up_threshold.attr,
001893cd 235 &ignore_nice_load.attr,
1da177e4
LT
236 NULL
237};
238
239static struct attribute_group dbs_attr_group = {
240 .attrs = dbs_attributes,
241 .name = "ondemand",
242};
243
244/************************** sysfs end ************************/
245
246static void dbs_check_cpu(int cpu)
247{
c29f1403
DJ
248 unsigned int idle_ticks, up_idle_ticks, total_ticks;
249 unsigned int freq_next;
1da177e4
LT
250 unsigned int freq_down_sampling_rate;
251 static int down_skip[NR_CPUS];
252 struct cpu_dbs_info_s *this_dbs_info;
253
254 struct cpufreq_policy *policy;
255 unsigned int j;
256
257 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
258 if (!this_dbs_info->enable)
259 return;
260
261 policy = this_dbs_info->cur_policy;
32ee8c3e 262 /*
c29f1403
DJ
263 * Every sampling_rate, we check, if current idle time is less
264 * than 20% (default), then we try to increase frequency
265 * Every sampling_rate*sampling_down_factor, we look for a the lowest
266 * frequency which can sustain the load while keeping idle time over
267 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 268 *
32ee8c3e
DJ
269 * Any frequency increase takes it to the maximum frequency.
270 * Frequency reduction happens at minimum steps of
271 * 5% (default) of current frequency
1da177e4
LT
272 */
273
274 /* Check for frequency increase */
9c7d269b 275 idle_ticks = UINT_MAX;
1da177e4 276 for_each_cpu_mask(j, policy->cpus) {
9c7d269b 277 unsigned int tmp_idle_ticks, total_idle_ticks;
1da177e4
LT
278 struct cpu_dbs_info_s *j_dbs_info;
279
1da177e4 280 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 281 total_idle_ticks = get_cpu_idle_time(j);
1da177e4
LT
282 tmp_idle_ticks = total_idle_ticks -
283 j_dbs_info->prev_cpu_idle_up;
284 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
285
286 if (tmp_idle_ticks < idle_ticks)
287 idle_ticks = tmp_idle_ticks;
288 }
289
290 /* Scale idle ticks by 100 and compare with up and down ticks */
291 idle_ticks *= 100;
292 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
6fe71165 293 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
1da177e4
LT
294
295 if (idle_ticks < up_idle_ticks) {
dac1c1a5 296 down_skip[cpu] = 0;
790d76fa
DJ
297 for_each_cpu_mask(j, policy->cpus) {
298 struct cpu_dbs_info_s *j_dbs_info;
299
300 j_dbs_info = &per_cpu(cpu_dbs_info, j);
32ee8c3e 301 j_dbs_info->prev_cpu_idle_down =
790d76fa
DJ
302 j_dbs_info->prev_cpu_idle_up;
303 }
c11420a6
DJ
304 /* if we are already at full speed then break out early */
305 if (policy->cur == policy->max)
306 return;
32ee8c3e
DJ
307
308 __cpufreq_driver_target(policy, policy->max,
1da177e4 309 CPUFREQ_RELATION_H);
1da177e4
LT
310 return;
311 }
312
313 /* Check for frequency decrease */
314 down_skip[cpu]++;
315 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
316 return;
317
9c7d269b 318 idle_ticks = UINT_MAX;
1da177e4 319 for_each_cpu_mask(j, policy->cpus) {
9c7d269b 320 unsigned int tmp_idle_ticks, total_idle_ticks;
1da177e4
LT
321 struct cpu_dbs_info_s *j_dbs_info;
322
1da177e4 323 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5
DJ
324 /* Check for frequency decrease */
325 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
1da177e4
LT
326 tmp_idle_ticks = total_idle_ticks -
327 j_dbs_info->prev_cpu_idle_down;
328 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
329
330 if (tmp_idle_ticks < idle_ticks)
331 idle_ticks = tmp_idle_ticks;
332 }
333
1da177e4 334 down_skip[cpu] = 0;
c29f1403
DJ
335 /* if we cannot reduce the frequency anymore, break out early */
336 if (policy->cur == policy->min)
337 return;
1da177e4 338
c29f1403 339 /* Compute how many ticks there are between two measurements */
1da177e4
LT
340 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
341 dbs_tuners_ins.sampling_down_factor;
c29f1403 342 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
1206aaac 343
c29f1403
DJ
344 /*
345 * The optimal frequency is the frequency that is the lowest that
346 * can support the current CPU usage without triggering the up
347 * policy. To be safe, we focus 10 points under the threshold.
348 */
349 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
32ee8c3e 350 freq_next = (freq_next * policy->cur) /
c29f1403 351 (dbs_tuners_ins.up_threshold - 10);
1da177e4 352
c29f1403
DJ
353 if (freq_next <= ((policy->cur * 95) / 100))
354 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
1da177e4
LT
355}
356
357static void do_dbs_timer(void *data)
32ee8c3e 358{
1da177e4 359 int i;
3fc54d37 360 mutex_lock(&dbs_mutex);
6fe71165
DJ
361 for_each_online_cpu(i)
362 dbs_check_cpu(i);
32ee8c3e 363 schedule_delayed_work(&dbs_work,
6fe71165 364 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
3fc54d37 365 mutex_unlock(&dbs_mutex);
32ee8c3e 366}
1da177e4
LT
367
368static inline void dbs_timer_init(void)
369{
370 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
371 schedule_delayed_work(&dbs_work,
6fe71165 372 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
1da177e4
LT
373 return;
374}
375
376static inline void dbs_timer_exit(void)
377{
378 cancel_delayed_work(&dbs_work);
379 return;
380}
381
382static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
383 unsigned int event)
384{
385 unsigned int cpu = policy->cpu;
386 struct cpu_dbs_info_s *this_dbs_info;
387 unsigned int j;
388
389 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
390
391 switch (event) {
392 case CPUFREQ_GOV_START:
32ee8c3e 393 if ((!cpu_online(cpu)) ||
1da177e4
LT
394 (!policy->cur))
395 return -EINVAL;
396
397 if (policy->cpuinfo.transition_latency >
ff8c288d
EP
398 (TRANSITION_LATENCY_LIMIT * 1000)) {
399 printk(KERN_WARNING "ondemand governor failed to load "
400 "due to too long transition latency\n");
1da177e4 401 return -EINVAL;
ff8c288d 402 }
1da177e4
LT
403 if (this_dbs_info->enable) /* Already enabled */
404 break;
32ee8c3e 405
3fc54d37 406 mutex_lock(&dbs_mutex);
1da177e4
LT
407 for_each_cpu_mask(j, policy->cpus) {
408 struct cpu_dbs_info_s *j_dbs_info;
409 j_dbs_info = &per_cpu(cpu_dbs_info, j);
410 j_dbs_info->cur_policy = policy;
32ee8c3e 411
dac1c1a5 412 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
3d5ee9e5
DJ
413 j_dbs_info->prev_cpu_idle_down
414 = j_dbs_info->prev_cpu_idle_up;
1da177e4
LT
415 }
416 this_dbs_info->enable = 1;
417 sysfs_create_group(&policy->kobj, &dbs_attr_group);
418 dbs_enable++;
419 /*
420 * Start the timerschedule work, when this governor
421 * is used for first time
422 */
423 if (dbs_enable == 1) {
424 unsigned int latency;
425 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
426 latency = policy->cpuinfo.transition_latency / 1000;
427 if (latency == 0)
428 latency = 1;
1da177e4 429
df8b59be 430 def_sampling_rate = latency *
1da177e4 431 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
df8b59be
DJ
432
433 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
434 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
435
1da177e4 436 dbs_tuners_ins.sampling_rate = def_sampling_rate;
3d5ee9e5 437 dbs_tuners_ins.ignore_nice = 0;
1da177e4
LT
438
439 dbs_timer_init();
440 }
32ee8c3e 441
3fc54d37 442 mutex_unlock(&dbs_mutex);
1da177e4
LT
443 break;
444
445 case CPUFREQ_GOV_STOP:
3fc54d37 446 mutex_lock(&dbs_mutex);
1da177e4
LT
447 this_dbs_info->enable = 0;
448 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
449 dbs_enable--;
450 /*
451 * Stop the timerschedule work, when this governor
452 * is used for first time
453 */
32ee8c3e 454 if (dbs_enable == 0)
1da177e4 455 dbs_timer_exit();
32ee8c3e 456
3fc54d37 457 mutex_unlock(&dbs_mutex);
1da177e4
LT
458
459 break;
460
461 case CPUFREQ_GOV_LIMITS:
3fc54d37 462 mutex_lock(&dbs_mutex);
1da177e4
LT
463 if (policy->max < this_dbs_info->cur_policy->cur)
464 __cpufreq_driver_target(
465 this_dbs_info->cur_policy,
32ee8c3e 466 policy->max, CPUFREQ_RELATION_H);
1da177e4
LT
467 else if (policy->min > this_dbs_info->cur_policy->cur)
468 __cpufreq_driver_target(
469 this_dbs_info->cur_policy,
32ee8c3e 470 policy->min, CPUFREQ_RELATION_L);
3fc54d37 471 mutex_unlock(&dbs_mutex);
1da177e4
LT
472 break;
473 }
474 return 0;
475}
476
7f335d4e 477static struct cpufreq_governor cpufreq_gov_dbs = {
1da177e4
LT
478 .name = "ondemand",
479 .governor = cpufreq_governor_dbs,
480 .owner = THIS_MODULE,
481};
1da177e4
LT
482
483static int __init cpufreq_gov_dbs_init(void)
484{
485 return cpufreq_register_governor(&cpufreq_gov_dbs);
486}
487
488static void __exit cpufreq_gov_dbs_exit(void)
489{
490 /* Make sure that the scheduled work is indeed not running */
491 flush_scheduled_work();
492
493 cpufreq_unregister_governor(&cpufreq_gov_dbs);
494}
495
496
497MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
498MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
499 "Low Latency Frequency Transition capable processors");
500MODULE_LICENSE ("GPL");
501
502module_init(cpufreq_gov_dbs_init);
503module_exit(cpufreq_gov_dbs_exit);
This page took 0.290486 seconds and 5 git commands to generate.