[media] media: exynos4-is: fix deadlock on driver probe
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
fbbcdc07 28#include <linux/acpi.h>
d6472302 29#include <linux/vmalloc.h>
93f0822d
DB
30#include <trace/events/power.h>
31
32#include <asm/div64.h>
33#include <asm/msr.h>
34#include <asm/cpu_device_id.h>
64df1fdf 35#include <asm/cpufeature.h>
93f0822d 36
938d21a2
PL
37#define ATOM_RATIOS 0x66a
38#define ATOM_VIDS 0x66b
39#define ATOM_TURBO_RATIOS 0x66c
40#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 41
f0fe3cd7 42#define FRAC_BITS 8
93f0822d
DB
43#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 45
93f0822d
DB
46static inline int32_t mul_fp(int32_t x, int32_t y)
47{
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49}
50
7180dddf 51static inline int32_t div_fp(s64 x, s64 y)
93f0822d 52{
7180dddf 53 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
54}
55
d022a65e
DB
56static inline int ceiling_fp(int32_t x)
57{
58 int mask, ret;
59
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
65}
66
93f0822d 67struct sample {
d253d2a5 68 int32_t core_pct_busy;
157386b6 69 int32_t busy_scaled;
93f0822d
DB
70 u64 aperf;
71 u64 mperf;
4055fad3 72 u64 tsc;
93f0822d 73 int freq;
a4675fbc 74 u64 time;
93f0822d
DB
75};
76
77struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
3bcc6fa9 81 int max_pstate_physical;
b27580b0 82 int scaling;
93f0822d
DB
83 int turbo_pstate;
84};
85
007bea09 86struct vid_data {
21855ff5
DB
87 int min;
88 int max;
89 int turbo;
007bea09
DB
90 int32_t ratio;
91};
92
93f0822d
DB
93struct _pid {
94 int setpoint;
95 int32_t integral;
96 int32_t p_gain;
97 int32_t i_gain;
98 int32_t d_gain;
99 int deadband;
d253d2a5 100 int32_t last_err;
93f0822d
DB
101};
102
103struct cpudata {
104 int cpu;
105
a4675fbc 106 struct update_util_data update_util;
93f0822d 107
93f0822d 108 struct pstate_data pstate;
007bea09 109 struct vid_data vid;
93f0822d 110 struct _pid pid;
93f0822d 111
a4675fbc 112 u64 last_sample_time;
93f0822d
DB
113 u64 prev_aperf;
114 u64 prev_mperf;
4055fad3 115 u64 prev_tsc;
63d1d656 116 u64 prev_cummulative_iowait;
d37e2b76 117 struct sample sample;
93f0822d
DB
118};
119
120static struct cpudata **all_cpu_data;
121struct pstate_adjust_policy {
122 int sample_rate_ms;
a4675fbc 123 s64 sample_rate_ns;
93f0822d
DB
124 int deadband;
125 int setpoint;
126 int p_gain_pct;
127 int d_gain_pct;
128 int i_gain_pct;
129};
130
016c8150
DB
131struct pstate_funcs {
132 int (*get_max)(void);
3bcc6fa9 133 int (*get_max_physical)(void);
016c8150
DB
134 int (*get_min)(void);
135 int (*get_turbo)(void);
b27580b0 136 int (*get_scaling)(void);
fdfdb2b1 137 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 138 void (*get_vid)(struct cpudata *);
157386b6 139 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
140};
141
016c8150
DB
142struct cpu_defaults {
143 struct pstate_adjust_policy pid_policy;
144 struct pstate_funcs funcs;
93f0822d
DB
145};
146
157386b6 147static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 148static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 149
016c8150
DB
150static struct pstate_adjust_policy pid_params;
151static struct pstate_funcs pstate_funcs;
2f86dc4c 152static int hwp_active;
016c8150 153
93f0822d
DB
154struct perf_limits {
155 int no_turbo;
dd5fbf70 156 int turbo_disabled;
93f0822d
DB
157 int max_perf_pct;
158 int min_perf_pct;
159 int32_t max_perf;
160 int32_t min_perf;
d8f469e9
DB
161 int max_policy_pct;
162 int max_sysfs_pct;
a0475992
KCA
163 int min_policy_pct;
164 int min_sysfs_pct;
93f0822d
DB
165};
166
51443fbf
PB
167static struct perf_limits performance_limits = {
168 .no_turbo = 0,
169 .turbo_disabled = 0,
170 .max_perf_pct = 100,
171 .max_perf = int_tofp(1),
172 .min_perf_pct = 100,
173 .min_perf = int_tofp(1),
174 .max_policy_pct = 100,
175 .max_sysfs_pct = 100,
176 .min_policy_pct = 0,
177 .min_sysfs_pct = 0,
178};
179
180static struct perf_limits powersave_limits = {
93f0822d 181 .no_turbo = 0,
4521e1a0 182 .turbo_disabled = 0,
93f0822d
DB
183 .max_perf_pct = 100,
184 .max_perf = int_tofp(1),
185 .min_perf_pct = 0,
186 .min_perf = 0,
d8f469e9
DB
187 .max_policy_pct = 100,
188 .max_sysfs_pct = 100,
a0475992
KCA
189 .min_policy_pct = 0,
190 .min_sysfs_pct = 0,
93f0822d
DB
191};
192
51443fbf
PB
193#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
194static struct perf_limits *limits = &performance_limits;
195#else
196static struct perf_limits *limits = &powersave_limits;
197#endif
198
93f0822d 199static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 200 int deadband, int integral) {
b54a0dfd
PL
201 pid->setpoint = int_tofp(setpoint);
202 pid->deadband = int_tofp(deadband);
93f0822d 203 pid->integral = int_tofp(integral);
d98d099b 204 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
205}
206
207static inline void pid_p_gain_set(struct _pid *pid, int percent)
208{
209 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
210}
211
212static inline void pid_i_gain_set(struct _pid *pid, int percent)
213{
214 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
215}
216
217static inline void pid_d_gain_set(struct _pid *pid, int percent)
218{
93f0822d
DB
219 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
220}
221
d253d2a5 222static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 223{
d253d2a5 224 signed int result;
93f0822d
DB
225 int32_t pterm, dterm, fp_error;
226 int32_t integral_limit;
227
b54a0dfd 228 fp_error = pid->setpoint - busy;
93f0822d 229
b54a0dfd 230 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
231 return 0;
232
233 pterm = mul_fp(pid->p_gain, fp_error);
234
235 pid->integral += fp_error;
236
e0d4c8f8
KCA
237 /*
238 * We limit the integral here so that it will never
239 * get higher than 30. This prevents it from becoming
240 * too large an input over long periods of time and allows
241 * it to get factored out sooner.
242 *
243 * The value of 30 was chosen through experimentation.
244 */
93f0822d
DB
245 integral_limit = int_tofp(30);
246 if (pid->integral > integral_limit)
247 pid->integral = integral_limit;
248 if (pid->integral < -integral_limit)
249 pid->integral = -integral_limit;
250
d253d2a5
BS
251 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
252 pid->last_err = fp_error;
93f0822d
DB
253
254 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 255 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
256 return (signed int)fp_toint(result);
257}
258
259static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
260{
016c8150
DB
261 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
262 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
263 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 264
2d8d1f18 265 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
266}
267
93f0822d
DB
268static inline void intel_pstate_reset_all_pid(void)
269{
270 unsigned int cpu;
845c1cbe 271
93f0822d
DB
272 for_each_online_cpu(cpu) {
273 if (all_cpu_data[cpu])
274 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
275 }
276}
277
4521e1a0
GM
278static inline void update_turbo_state(void)
279{
280 u64 misc_en;
281 struct cpudata *cpu;
282
283 cpu = all_cpu_data[0];
284 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 285 limits->turbo_disabled =
4521e1a0
GM
286 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
287 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
288}
289
41cfd64c 290static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 291{
74da56ce
KCA
292 int min, hw_min, max, hw_max, cpu, range, adj_range;
293 u64 value, cap;
294
295 rdmsrl(MSR_HWP_CAPABILITIES, cap);
296 hw_min = HWP_LOWEST_PERF(cap);
297 hw_max = HWP_HIGHEST_PERF(cap);
298 range = hw_max - hw_min;
2f86dc4c 299
41cfd64c 300 for_each_cpu(cpu, cpumask) {
2f86dc4c 301 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 302 adj_range = limits->min_perf_pct * range / 100;
74da56ce 303 min = hw_min + adj_range;
2f86dc4c
DB
304 value &= ~HWP_MIN_PERF(~0L);
305 value |= HWP_MIN_PERF(min);
306
51443fbf 307 adj_range = limits->max_perf_pct * range / 100;
74da56ce 308 max = hw_min + adj_range;
51443fbf 309 if (limits->no_turbo) {
74da56ce
KCA
310 hw_max = HWP_GUARANTEED_PERF(cap);
311 if (hw_max < max)
312 max = hw_max;
2f86dc4c
DB
313 }
314
315 value &= ~HWP_MAX_PERF(~0L);
316 value |= HWP_MAX_PERF(max);
317 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
318 }
41cfd64c 319}
2f86dc4c 320
41cfd64c
VK
321static void intel_pstate_hwp_set_online_cpus(void)
322{
323 get_online_cpus();
324 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
325 put_online_cpus();
326}
327
93f0822d
DB
328/************************** debugfs begin ************************/
329static int pid_param_set(void *data, u64 val)
330{
331 *(u32 *)data = val;
332 intel_pstate_reset_all_pid();
333 return 0;
334}
845c1cbe 335
93f0822d
DB
336static int pid_param_get(void *data, u64 *val)
337{
338 *val = *(u32 *)data;
339 return 0;
340}
2d8d1f18 341DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
342
343struct pid_param {
344 char *name;
345 void *value;
346};
347
348static struct pid_param pid_files[] = {
016c8150
DB
349 {"sample_rate_ms", &pid_params.sample_rate_ms},
350 {"d_gain_pct", &pid_params.d_gain_pct},
351 {"i_gain_pct", &pid_params.i_gain_pct},
352 {"deadband", &pid_params.deadband},
353 {"setpoint", &pid_params.setpoint},
354 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
355 {NULL, NULL}
356};
357
317dd50e 358static void __init intel_pstate_debug_expose_params(void)
93f0822d 359{
317dd50e 360 struct dentry *debugfs_parent;
93f0822d
DB
361 int i = 0;
362
2f86dc4c
DB
363 if (hwp_active)
364 return;
93f0822d
DB
365 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
366 if (IS_ERR_OR_NULL(debugfs_parent))
367 return;
368 while (pid_files[i].name) {
369 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
370 debugfs_parent, pid_files[i].value,
371 &fops_pid_param);
93f0822d
DB
372 i++;
373 }
374}
375
376/************************** debugfs end ************************/
377
378/************************** sysfs begin ************************/
379#define show_one(file_name, object) \
380 static ssize_t show_##file_name \
381 (struct kobject *kobj, struct attribute *attr, char *buf) \
382 { \
51443fbf 383 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
384 }
385
d01b1f48
KCA
386static ssize_t show_turbo_pct(struct kobject *kobj,
387 struct attribute *attr, char *buf)
388{
389 struct cpudata *cpu;
390 int total, no_turbo, turbo_pct;
391 uint32_t turbo_fp;
392
393 cpu = all_cpu_data[0];
394
395 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
396 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
397 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
398 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
399 return sprintf(buf, "%u\n", turbo_pct);
400}
401
0522424e
KCA
402static ssize_t show_num_pstates(struct kobject *kobj,
403 struct attribute *attr, char *buf)
404{
405 struct cpudata *cpu;
406 int total;
407
408 cpu = all_cpu_data[0];
409 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
410 return sprintf(buf, "%u\n", total);
411}
412
4521e1a0
GM
413static ssize_t show_no_turbo(struct kobject *kobj,
414 struct attribute *attr, char *buf)
415{
416 ssize_t ret;
417
418 update_turbo_state();
51443fbf
PB
419 if (limits->turbo_disabled)
420 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 421 else
51443fbf 422 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
423
424 return ret;
425}
426
93f0822d 427static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 428 const char *buf, size_t count)
93f0822d
DB
429{
430 unsigned int input;
431 int ret;
845c1cbe 432
93f0822d
DB
433 ret = sscanf(buf, "%u", &input);
434 if (ret != 1)
435 return -EINVAL;
4521e1a0
GM
436
437 update_turbo_state();
51443fbf 438 if (limits->turbo_disabled) {
f16255eb 439 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 440 return -EPERM;
dd5fbf70 441 }
2f86dc4c 442
51443fbf 443 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 444
2f86dc4c 445 if (hwp_active)
41cfd64c 446 intel_pstate_hwp_set_online_cpus();
2f86dc4c 447
93f0822d
DB
448 return count;
449}
450
451static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 452 const char *buf, size_t count)
93f0822d
DB
453{
454 unsigned int input;
455 int ret;
845c1cbe 456
93f0822d
DB
457 ret = sscanf(buf, "%u", &input);
458 if (ret != 1)
459 return -EINVAL;
460
51443fbf
PB
461 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
462 limits->max_perf_pct = min(limits->max_policy_pct,
463 limits->max_sysfs_pct);
464 limits->max_perf_pct = max(limits->min_policy_pct,
465 limits->max_perf_pct);
466 limits->max_perf_pct = max(limits->min_perf_pct,
467 limits->max_perf_pct);
468 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
469 int_tofp(100));
845c1cbe 470
2f86dc4c 471 if (hwp_active)
41cfd64c 472 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
473 return count;
474}
475
476static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 477 const char *buf, size_t count)
93f0822d
DB
478{
479 unsigned int input;
480 int ret;
845c1cbe 481
93f0822d
DB
482 ret = sscanf(buf, "%u", &input);
483 if (ret != 1)
484 return -EINVAL;
a0475992 485
51443fbf
PB
486 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
487 limits->min_perf_pct = max(limits->min_policy_pct,
488 limits->min_sysfs_pct);
489 limits->min_perf_pct = min(limits->max_policy_pct,
490 limits->min_perf_pct);
491 limits->min_perf_pct = min(limits->max_perf_pct,
492 limits->min_perf_pct);
493 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
494 int_tofp(100));
93f0822d 495
2f86dc4c 496 if (hwp_active)
41cfd64c 497 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
498 return count;
499}
500
93f0822d
DB
501show_one(max_perf_pct, max_perf_pct);
502show_one(min_perf_pct, min_perf_pct);
503
504define_one_global_rw(no_turbo);
505define_one_global_rw(max_perf_pct);
506define_one_global_rw(min_perf_pct);
d01b1f48 507define_one_global_ro(turbo_pct);
0522424e 508define_one_global_ro(num_pstates);
93f0822d
DB
509
510static struct attribute *intel_pstate_attributes[] = {
511 &no_turbo.attr,
512 &max_perf_pct.attr,
513 &min_perf_pct.attr,
d01b1f48 514 &turbo_pct.attr,
0522424e 515 &num_pstates.attr,
93f0822d
DB
516 NULL
517};
518
519static struct attribute_group intel_pstate_attr_group = {
520 .attrs = intel_pstate_attributes,
521};
93f0822d 522
317dd50e 523static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 524{
317dd50e 525 struct kobject *intel_pstate_kobject;
93f0822d
DB
526 int rc;
527
528 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
529 &cpu_subsys.dev_root->kobj);
530 BUG_ON(!intel_pstate_kobject);
2d8d1f18 531 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
532 BUG_ON(rc);
533}
93f0822d 534/************************** sysfs end ************************/
2f86dc4c 535
ba88d433 536static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 537{
f05c9665
SP
538 /* First disable HWP notification interrupt as we don't process them */
539 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
540
ba88d433 541 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
542}
543
938d21a2 544static int atom_get_min_pstate(void)
19e77c28
DB
545{
546 u64 value;
845c1cbe 547
938d21a2 548 rdmsrl(ATOM_RATIOS, value);
c16ed060 549 return (value >> 8) & 0x7F;
19e77c28
DB
550}
551
938d21a2 552static int atom_get_max_pstate(void)
19e77c28
DB
553{
554 u64 value;
845c1cbe 555
938d21a2 556 rdmsrl(ATOM_RATIOS, value);
c16ed060 557 return (value >> 16) & 0x7F;
19e77c28 558}
93f0822d 559
938d21a2 560static int atom_get_turbo_pstate(void)
61d8d2ab
DB
561{
562 u64 value;
845c1cbe 563
938d21a2 564 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 565 return value & 0x7F;
61d8d2ab
DB
566}
567
fdfdb2b1 568static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
569{
570 u64 val;
571 int32_t vid_fp;
572 u32 vid;
573
144c8e17 574 val = (u64)pstate << 8;
51443fbf 575 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
576 val |= (u64)1 << 32;
577
578 vid_fp = cpudata->vid.min + mul_fp(
579 int_tofp(pstate - cpudata->pstate.min_pstate),
580 cpudata->vid.ratio);
581
582 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 583 vid = ceiling_fp(vid_fp);
007bea09 584
21855ff5
DB
585 if (pstate > cpudata->pstate.max_pstate)
586 vid = cpudata->vid.turbo;
587
fdfdb2b1 588 return val | vid;
007bea09
DB
589}
590
1421df63 591static int silvermont_get_scaling(void)
b27580b0
DB
592{
593 u64 value;
594 int i;
1421df63
PL
595 /* Defined in Table 35-6 from SDM (Sept 2015) */
596 static int silvermont_freq_table[] = {
597 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
598
599 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
600 i = value & 0x7;
601 WARN_ON(i > 4);
b27580b0 602
1421df63
PL
603 return silvermont_freq_table[i];
604}
b27580b0 605
1421df63
PL
606static int airmont_get_scaling(void)
607{
608 u64 value;
609 int i;
610 /* Defined in Table 35-10 from SDM (Sept 2015) */
611 static int airmont_freq_table[] = {
612 83300, 100000, 133300, 116700, 80000,
613 93300, 90000, 88900, 87500};
614
615 rdmsrl(MSR_FSB_FREQ, value);
616 i = value & 0xF;
617 WARN_ON(i > 8);
618
619 return airmont_freq_table[i];
b27580b0
DB
620}
621
938d21a2 622static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
623{
624 u64 value;
625
938d21a2 626 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
627 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
628 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
629 cpudata->vid.ratio = div_fp(
630 cpudata->vid.max - cpudata->vid.min,
631 int_tofp(cpudata->pstate.max_pstate -
632 cpudata->pstate.min_pstate));
21855ff5 633
938d21a2 634 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 635 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
636}
637
016c8150 638static int core_get_min_pstate(void)
93f0822d
DB
639{
640 u64 value;
845c1cbe 641
05e99c8c 642 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
643 return (value >> 40) & 0xFF;
644}
645
3bcc6fa9 646static int core_get_max_pstate_physical(void)
93f0822d
DB
647{
648 u64 value;
845c1cbe 649
05e99c8c 650 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
651 return (value >> 8) & 0xFF;
652}
653
016c8150 654static int core_get_max_pstate(void)
93f0822d 655{
6a35fc2d
SP
656 u64 tar;
657 u64 plat_info;
658 int max_pstate;
659 int err;
660
661 rdmsrl(MSR_PLATFORM_INFO, plat_info);
662 max_pstate = (plat_info >> 8) & 0xFF;
663
664 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
665 if (!err) {
666 /* Do some sanity checking for safety */
667 if (plat_info & 0x600000000) {
668 u64 tdp_ctrl;
669 u64 tdp_ratio;
670 int tdp_msr;
671
672 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
673 if (err)
674 goto skip_tar;
675
676 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
677 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
678 if (err)
679 goto skip_tar;
680
681 if (tdp_ratio - 1 == tar) {
682 max_pstate = tar;
683 pr_debug("max_pstate=TAC %x\n", max_pstate);
684 } else {
685 goto skip_tar;
686 }
687 }
688 }
845c1cbe 689
6a35fc2d
SP
690skip_tar:
691 return max_pstate;
93f0822d
DB
692}
693
016c8150 694static int core_get_turbo_pstate(void)
93f0822d
DB
695{
696 u64 value;
697 int nont, ret;
845c1cbe 698
05e99c8c 699 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 700 nont = core_get_max_pstate();
285cb990 701 ret = (value) & 255;
93f0822d
DB
702 if (ret <= nont)
703 ret = nont;
704 return ret;
705}
706
b27580b0
DB
707static inline int core_get_scaling(void)
708{
709 return 100000;
710}
711
fdfdb2b1 712static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
713{
714 u64 val;
715
144c8e17 716 val = (u64)pstate << 8;
51443fbf 717 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
718 val |= (u64)1 << 32;
719
fdfdb2b1 720 return val;
016c8150
DB
721}
722
b34ef932
DC
723static int knl_get_turbo_pstate(void)
724{
725 u64 value;
726 int nont, ret;
727
728 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
729 nont = core_get_max_pstate();
730 ret = (((value) >> 8) & 0xFF);
731 if (ret <= nont)
732 ret = nont;
733 return ret;
734}
735
016c8150
DB
736static struct cpu_defaults core_params = {
737 .pid_policy = {
738 .sample_rate_ms = 10,
739 .deadband = 0,
740 .setpoint = 97,
741 .p_gain_pct = 20,
742 .d_gain_pct = 0,
743 .i_gain_pct = 0,
744 },
745 .funcs = {
746 .get_max = core_get_max_pstate,
3bcc6fa9 747 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
748 .get_min = core_get_min_pstate,
749 .get_turbo = core_get_turbo_pstate,
b27580b0 750 .get_scaling = core_get_scaling,
fdfdb2b1 751 .get_val = core_get_val,
157386b6 752 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
753 },
754};
755
1421df63
PL
756static struct cpu_defaults silvermont_params = {
757 .pid_policy = {
758 .sample_rate_ms = 10,
759 .deadband = 0,
760 .setpoint = 60,
761 .p_gain_pct = 14,
762 .d_gain_pct = 0,
763 .i_gain_pct = 4,
764 },
765 .funcs = {
766 .get_max = atom_get_max_pstate,
767 .get_max_physical = atom_get_max_pstate,
768 .get_min = atom_get_min_pstate,
769 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 770 .get_val = atom_get_val,
1421df63
PL
771 .get_scaling = silvermont_get_scaling,
772 .get_vid = atom_get_vid,
e70eed2b 773 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
774 },
775};
776
777static struct cpu_defaults airmont_params = {
19e77c28
DB
778 .pid_policy = {
779 .sample_rate_ms = 10,
780 .deadband = 0,
6a82ba6d 781 .setpoint = 60,
19e77c28
DB
782 .p_gain_pct = 14,
783 .d_gain_pct = 0,
784 .i_gain_pct = 4,
785 },
786 .funcs = {
938d21a2
PL
787 .get_max = atom_get_max_pstate,
788 .get_max_physical = atom_get_max_pstate,
789 .get_min = atom_get_min_pstate,
790 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 791 .get_val = atom_get_val,
1421df63 792 .get_scaling = airmont_get_scaling,
938d21a2 793 .get_vid = atom_get_vid,
e70eed2b 794 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
795 },
796};
797
b34ef932
DC
798static struct cpu_defaults knl_params = {
799 .pid_policy = {
800 .sample_rate_ms = 10,
801 .deadband = 0,
802 .setpoint = 97,
803 .p_gain_pct = 20,
804 .d_gain_pct = 0,
805 .i_gain_pct = 0,
806 },
807 .funcs = {
808 .get_max = core_get_max_pstate,
3bcc6fa9 809 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
810 .get_min = core_get_min_pstate,
811 .get_turbo = knl_get_turbo_pstate,
69cefc27 812 .get_scaling = core_get_scaling,
fdfdb2b1 813 .get_val = core_get_val,
157386b6 814 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
815 },
816};
817
93f0822d
DB
818static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
819{
820 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 821 int max_perf_adj;
93f0822d 822 int min_perf;
845c1cbe 823
51443fbf 824 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
825 max_perf = cpu->pstate.max_pstate;
826
e0d4c8f8
KCA
827 /*
828 * performance can be limited by user through sysfs, by cpufreq
829 * policy, or by cpu specific default values determined through
830 * experimentation.
831 */
a158bed5 832 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
833 *max = clamp_t(int, max_perf_adj,
834 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 835
a158bed5 836 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 837 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
838}
839
fdfdb2b1 840static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 841{
b27580b0 842 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 843 cpu->pstate.current_pstate = pstate;
fdfdb2b1 844}
93f0822d 845
fdfdb2b1
RW
846static void intel_pstate_set_min_pstate(struct cpudata *cpu)
847{
848 int pstate = cpu->pstate.min_pstate;
849
850 intel_pstate_record_pstate(cpu, pstate);
851 /*
852 * Generally, there is no guarantee that this code will always run on
853 * the CPU being updated, so force the register update to run on the
854 * right CPU.
855 */
856 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
857 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
858}
859
93f0822d
DB
860static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
861{
016c8150
DB
862 cpu->pstate.min_pstate = pstate_funcs.get_min();
863 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 864 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 865 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 866 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 867
007bea09
DB
868 if (pstate_funcs.get_vid)
869 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
870
871 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
872}
873
6b17ddb2 874static inline void intel_pstate_calc_busy(struct cpudata *cpu)
93f0822d 875{
6b17ddb2 876 struct sample *sample = &cpu->sample;
bf810222 877 int64_t core_pct;
93f0822d 878
bf810222 879 core_pct = int_tofp(sample->aperf) * int_tofp(100);
78e27086 880 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
e66c1768 881
bf810222 882 sample->core_pct_busy = (int32_t)core_pct;
93f0822d
DB
883}
884
4fec7ad5 885static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 886{
93f0822d 887 u64 aperf, mperf;
4ab60c3f 888 unsigned long flags;
4055fad3 889 u64 tsc;
93f0822d 890
4ab60c3f 891 local_irq_save(flags);
93f0822d
DB
892 rdmsrl(MSR_IA32_APERF, aperf);
893 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 894 tsc = rdtsc();
4fec7ad5 895 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 896 local_irq_restore(flags);
4fec7ad5 897 return false;
8e601a9f 898 }
4ab60c3f 899 local_irq_restore(flags);
b69880f9 900
c4ee841f 901 cpu->last_sample_time = cpu->sample.time;
a4675fbc 902 cpu->sample.time = time;
d37e2b76
DB
903 cpu->sample.aperf = aperf;
904 cpu->sample.mperf = mperf;
4055fad3 905 cpu->sample.tsc = tsc;
d37e2b76
DB
906 cpu->sample.aperf -= cpu->prev_aperf;
907 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 908 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 909
93f0822d
DB
910 cpu->prev_aperf = aperf;
911 cpu->prev_mperf = mperf;
4055fad3 912 cpu->prev_tsc = tsc;
4fec7ad5 913 return true;
93f0822d
DB
914}
915
8fa520af
PL
916static inline int32_t get_avg_frequency(struct cpudata *cpu)
917{
918 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
919 cpu->pstate.scaling, cpu->sample.mperf);
920}
921
e70eed2b
PL
922static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
923{
924 struct sample *sample = &cpu->sample;
63d1d656
PL
925 u64 cummulative_iowait, delta_iowait_us;
926 u64 delta_iowait_mperf;
927 u64 mperf, now;
e70eed2b
PL
928 int32_t cpu_load;
929
63d1d656
PL
930 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
931
932 /*
933 * Convert iowait time into number of IO cycles spent at max_freq.
934 * IO is considered as busy only for the cpu_load algorithm. For
935 * performance this is not needed since we always try to reach the
936 * maximum P-State, so we are already boosting the IOs.
937 */
938 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
939 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
940 cpu->pstate.max_pstate, MSEC_PER_SEC);
941
942 mperf = cpu->sample.mperf + delta_iowait_mperf;
943 cpu->prev_cummulative_iowait = cummulative_iowait;
944
e70eed2b
PL
945 /*
946 * The load can be estimated as the ratio of the mperf counter
947 * running at a constant frequency during active periods
948 * (C0) and the time stamp counter running at the same frequency
949 * also during C-states.
950 */
63d1d656 951 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
952 cpu->sample.busy_scaled = cpu_load;
953
954 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
955}
956
157386b6 957static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 958{
c4ee841f 959 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
a4675fbc 960 u64 duration_ns;
93f0822d 961
7349ec04
PL
962 intel_pstate_calc_busy(cpu);
963
e0d4c8f8
KCA
964 /*
965 * core_busy is the ratio of actual performance to max
966 * max_pstate is the max non turbo pstate available
967 * current_pstate was the pstate that was requested during
968 * the last sample period.
969 *
970 * We normalize core_busy, which was our actual percent
971 * performance to what we requested during the last sample
972 * period. The result will be a percentage of busy at a
973 * specified pstate.
974 */
d37e2b76 975 core_busy = cpu->sample.core_pct_busy;
3bcc6fa9 976 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
93f0822d 977 current_pstate = int_tofp(cpu->pstate.current_pstate);
e66c1768 978 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
c4ee841f 979
e0d4c8f8 980 /*
a4675fbc
RW
981 * Since our utilization update callback will not run unless we are
982 * in C0, check if the actual elapsed time is significantly greater (3x)
983 * than our sample interval. If it is, then we were idle for a long
984 * enough period of time to adjust our busyness.
e0d4c8f8 985 */
a4675fbc
RW
986 duration_ns = cpu->sample.time - cpu->last_sample_time;
987 if ((s64)duration_ns > pid_params.sample_rate_ns * 3
988 && cpu->last_sample_time > 0) {
989 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
990 int_tofp(duration_ns));
c4ee841f
DB
991 core_busy = mul_fp(core_busy, sample_ratio);
992 }
993
157386b6
PL
994 cpu->sample.busy_scaled = core_busy;
995 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
93f0822d
DB
996}
997
fdfdb2b1
RW
998static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
999{
1000 int max_perf, min_perf;
1001
1002 update_turbo_state();
1003
1004 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1005 pstate = clamp_t(int, pstate, min_perf, max_perf);
1006 if (pstate == cpu->pstate.current_pstate)
1007 return;
1008
1009 intel_pstate_record_pstate(cpu, pstate);
1010 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1011}
1012
93f0822d
DB
1013static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1014{
157386b6 1015 int from, target_pstate;
4055fad3
DS
1016 struct sample *sample;
1017
1018 from = cpu->pstate.current_pstate;
93f0822d 1019
157386b6 1020 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1021
fdfdb2b1 1022 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1023
1024 sample = &cpu->sample;
1025 trace_pstate_sample(fp_toint(sample->core_pct_busy),
157386b6 1026 fp_toint(sample->busy_scaled),
4055fad3
DS
1027 from,
1028 cpu->pstate.current_pstate,
1029 sample->mperf,
1030 sample->aperf,
1031 sample->tsc,
8fa520af 1032 get_avg_frequency(cpu));
93f0822d
DB
1033}
1034
a4675fbc
RW
1035static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1036 unsigned long util, unsigned long max)
93f0822d 1037{
a4675fbc
RW
1038 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1039 u64 delta_ns = time - cpu->sample.time;
b69880f9 1040
a4675fbc 1041 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1042 bool sample_taken = intel_pstate_sample(cpu, time);
1043
1044 if (sample_taken && !hwp_active)
a4675fbc
RW
1045 intel_pstate_adjust_busy_pstate(cpu);
1046 }
93f0822d
DB
1047}
1048
1049#define ICPU(model, policy) \
6cbd7ee1
DB
1050 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1051 (unsigned long)&policy }
93f0822d
DB
1052
1053static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
1054 ICPU(0x2a, core_params),
1055 ICPU(0x2d, core_params),
1421df63 1056 ICPU(0x37, silvermont_params),
016c8150
DB
1057 ICPU(0x3a, core_params),
1058 ICPU(0x3c, core_params),
c7e241df 1059 ICPU(0x3d, core_params),
016c8150
DB
1060 ICPU(0x3e, core_params),
1061 ICPU(0x3f, core_params),
1062 ICPU(0x45, core_params),
1063 ICPU(0x46, core_params),
43f8a966 1064 ICPU(0x47, core_params),
1421df63 1065 ICPU(0x4c, airmont_params),
7ab0256e 1066 ICPU(0x4e, core_params),
c7e241df 1067 ICPU(0x4f, core_params),
1c939123 1068 ICPU(0x5e, core_params),
c7e241df 1069 ICPU(0x56, core_params),
b34ef932 1070 ICPU(0x57, knl_params),
93f0822d
DB
1071 {}
1072};
1073MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1074
2f86dc4c
DB
1075static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1076 ICPU(0x56, core_params),
1077 {}
1078};
1079
93f0822d
DB
1080static int intel_pstate_init_cpu(unsigned int cpunum)
1081{
93f0822d
DB
1082 struct cpudata *cpu;
1083
c0348717
DB
1084 if (!all_cpu_data[cpunum])
1085 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1086 GFP_KERNEL);
93f0822d
DB
1087 if (!all_cpu_data[cpunum])
1088 return -ENOMEM;
1089
1090 cpu = all_cpu_data[cpunum];
1091
93f0822d 1092 cpu->cpu = cpunum;
ba88d433 1093
a4675fbc 1094 if (hwp_active) {
ba88d433 1095 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1096 pid_params.sample_rate_ms = 50;
1097 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1098 }
ba88d433 1099
179e8471 1100 intel_pstate_get_cpu_pstates(cpu);
016c8150 1101
93f0822d 1102 intel_pstate_busy_pid_reset(cpu);
a4675fbc 1103 intel_pstate_sample(cpu, 0);
93f0822d 1104
a4675fbc
RW
1105 cpu->update_util.func = intel_pstate_update_util;
1106 cpufreq_set_update_util_data(cpunum, &cpu->update_util);
93f0822d 1107
f16255eb 1108 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
93f0822d
DB
1109
1110 return 0;
1111}
1112
1113static unsigned int intel_pstate_get(unsigned int cpu_num)
1114{
1115 struct sample *sample;
1116 struct cpudata *cpu;
1117
1118 cpu = all_cpu_data[cpu_num];
1119 if (!cpu)
1120 return 0;
d37e2b76 1121 sample = &cpu->sample;
8fa520af 1122 return get_avg_frequency(cpu);
93f0822d
DB
1123}
1124
1125static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1126{
d3929b83
DB
1127 if (!policy->cpuinfo.max_freq)
1128 return -ENODEV;
1129
630ec286
SP
1130 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1131 policy->max >= policy->cpuinfo.max_freq) {
51443fbf
PB
1132 pr_debug("intel_pstate: set performance\n");
1133 limits = &performance_limits;
584ee3dc 1134 if (hwp_active)
41cfd64c 1135 intel_pstate_hwp_set(policy->cpus);
d1b68485 1136 return 0;
93f0822d 1137 }
2f86dc4c 1138
51443fbf
PB
1139 pr_debug("intel_pstate: set powersave\n");
1140 limits = &powersave_limits;
1141 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1142 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1143 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1144 policy->cpuinfo.max_freq);
51443fbf 1145 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1146
1147 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1148 limits->min_perf_pct = max(limits->min_policy_pct,
1149 limits->min_sysfs_pct);
1150 limits->min_perf_pct = min(limits->max_policy_pct,
1151 limits->min_perf_pct);
1152 limits->max_perf_pct = min(limits->max_policy_pct,
1153 limits->max_sysfs_pct);
1154 limits->max_perf_pct = max(limits->min_policy_pct,
1155 limits->max_perf_pct);
88b7b7c0 1156 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
43717aad
CY
1157
1158 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1159 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1160
51443fbf
PB
1161 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1162 int_tofp(100));
1163 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1164 int_tofp(100));
93f0822d 1165
2f86dc4c 1166 if (hwp_active)
41cfd64c 1167 intel_pstate_hwp_set(policy->cpus);
2f86dc4c 1168
93f0822d
DB
1169 return 0;
1170}
1171
1172static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1173{
be49e346 1174 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1175
285cb990 1176 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1177 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1178 return -EINVAL;
1179
1180 return 0;
1181}
1182
bb18008f 1183static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1184{
bb18008f
DB
1185 int cpu_num = policy->cpu;
1186 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1187
f16255eb 1188 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
bb18008f 1189
a4675fbc 1190 cpufreq_set_update_util_data(cpu_num, NULL);
08f511fd 1191 synchronize_sched();
a4675fbc 1192
2f86dc4c
DB
1193 if (hwp_active)
1194 return;
1195
fdfdb2b1 1196 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1197}
1198
2760984f 1199static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1200{
93f0822d 1201 struct cpudata *cpu;
52e0a509 1202 int rc;
93f0822d
DB
1203
1204 rc = intel_pstate_init_cpu(policy->cpu);
1205 if (rc)
1206 return rc;
1207
1208 cpu = all_cpu_data[policy->cpu];
1209
51443fbf 1210 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1211 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1212 else
1213 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1214
b27580b0
DB
1215 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1216 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1217
1218 /* cpuinfo and default policy values */
b27580b0
DB
1219 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1220 policy->cpuinfo.max_freq =
1221 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1222 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1223 cpumask_set_cpu(policy->cpu, policy->cpus);
1224
1225 return 0;
1226}
1227
1228static struct cpufreq_driver intel_pstate_driver = {
1229 .flags = CPUFREQ_CONST_LOOPS,
1230 .verify = intel_pstate_verify_policy,
1231 .setpolicy = intel_pstate_set_policy,
1232 .get = intel_pstate_get,
1233 .init = intel_pstate_cpu_init,
bb18008f 1234 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1235 .name = "intel_pstate",
93f0822d
DB
1236};
1237
6be26498 1238static int __initdata no_load;
2f86dc4c 1239static int __initdata no_hwp;
d64c3b0b 1240static int __initdata hwp_only;
aa4ea34d 1241static unsigned int force_load;
6be26498 1242
b563b4e3
DB
1243static int intel_pstate_msrs_not_valid(void)
1244{
016c8150 1245 if (!pstate_funcs.get_max() ||
c410833a
SK
1246 !pstate_funcs.get_min() ||
1247 !pstate_funcs.get_turbo())
b563b4e3
DB
1248 return -ENODEV;
1249
b563b4e3
DB
1250 return 0;
1251}
016c8150 1252
e0a261a2 1253static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1254{
1255 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1256 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1257 pid_params.p_gain_pct = policy->p_gain_pct;
1258 pid_params.i_gain_pct = policy->i_gain_pct;
1259 pid_params.d_gain_pct = policy->d_gain_pct;
1260 pid_params.deadband = policy->deadband;
1261 pid_params.setpoint = policy->setpoint;
1262}
1263
e0a261a2 1264static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1265{
1266 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1267 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1268 pstate_funcs.get_min = funcs->get_min;
1269 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1270 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1271 pstate_funcs.get_val = funcs->get_val;
007bea09 1272 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1273 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1274
016c8150
DB
1275}
1276
fbbcdc07 1277#if IS_ENABLED(CONFIG_ACPI)
6ee11e41 1278#include <acpi/processor.h>
fbbcdc07
AH
1279
1280static bool intel_pstate_no_acpi_pss(void)
1281{
1282 int i;
1283
1284 for_each_possible_cpu(i) {
1285 acpi_status status;
1286 union acpi_object *pss;
1287 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1288 struct acpi_processor *pr = per_cpu(processors, i);
1289
1290 if (!pr)
1291 continue;
1292
1293 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1294 if (ACPI_FAILURE(status))
1295 continue;
1296
1297 pss = buffer.pointer;
1298 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1299 kfree(pss);
1300 return false;
1301 }
1302
1303 kfree(pss);
1304 }
1305
1306 return true;
1307}
1308
966916ea 1309static bool intel_pstate_has_acpi_ppc(void)
1310{
1311 int i;
1312
1313 for_each_possible_cpu(i) {
1314 struct acpi_processor *pr = per_cpu(processors, i);
1315
1316 if (!pr)
1317 continue;
1318 if (acpi_has_method(pr->handle, "_PPC"))
1319 return true;
1320 }
1321 return false;
1322}
1323
1324enum {
1325 PSS,
1326 PPC,
1327};
1328
fbbcdc07
AH
1329struct hw_vendor_info {
1330 u16 valid;
1331 char oem_id[ACPI_OEM_ID_SIZE];
1332 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1333 int oem_pwr_table;
fbbcdc07
AH
1334};
1335
1336/* Hardware vendor-specific info that has its own power management modes */
1337static struct hw_vendor_info vendor_info[] = {
966916ea 1338 {1, "HP ", "ProLiant", PSS},
1339 {1, "ORACLE", "X4-2 ", PPC},
1340 {1, "ORACLE", "X4-2L ", PPC},
1341 {1, "ORACLE", "X4-2B ", PPC},
1342 {1, "ORACLE", "X3-2 ", PPC},
1343 {1, "ORACLE", "X3-2L ", PPC},
1344 {1, "ORACLE", "X3-2B ", PPC},
1345 {1, "ORACLE", "X4470M2 ", PPC},
1346 {1, "ORACLE", "X4270M3 ", PPC},
1347 {1, "ORACLE", "X4270M2 ", PPC},
1348 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1349 {1, "ORACLE", "X4170 M3", PPC},
1350 {1, "ORACLE", "X4275 M3", PPC},
1351 {1, "ORACLE", "X6-2 ", PPC},
1352 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1353 {0, "", ""},
1354};
1355
1356static bool intel_pstate_platform_pwr_mgmt_exists(void)
1357{
1358 struct acpi_table_header hdr;
1359 struct hw_vendor_info *v_info;
2f86dc4c
DB
1360 const struct x86_cpu_id *id;
1361 u64 misc_pwr;
1362
1363 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1364 if (id) {
1365 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1366 if ( misc_pwr & (1 << 8))
1367 return true;
1368 }
fbbcdc07 1369
c410833a
SK
1370 if (acpi_disabled ||
1371 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1372 return false;
1373
1374 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1375 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1376 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1377 ACPI_OEM_TABLE_ID_SIZE))
1378 switch (v_info->oem_pwr_table) {
1379 case PSS:
1380 return intel_pstate_no_acpi_pss();
1381 case PPC:
aa4ea34d
EZ
1382 return intel_pstate_has_acpi_ppc() &&
1383 (!force_load);
966916ea 1384 }
fbbcdc07
AH
1385 }
1386
1387 return false;
1388}
1389#else /* CONFIG_ACPI not enabled */
1390static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1391static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1392#endif /* CONFIG_ACPI */
1393
7791e4aa
SP
1394static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1395 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1396 {}
1397};
1398
93f0822d
DB
1399static int __init intel_pstate_init(void)
1400{
907cc908 1401 int cpu, rc = 0;
93f0822d 1402 const struct x86_cpu_id *id;
64df1fdf 1403 struct cpu_defaults *cpu_def;
93f0822d 1404
6be26498
DB
1405 if (no_load)
1406 return -ENODEV;
1407
7791e4aa
SP
1408 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1409 copy_cpu_funcs(&core_params.funcs);
1410 hwp_active++;
1411 goto hwp_cpu_matched;
1412 }
1413
93f0822d
DB
1414 id = x86_match_cpu(intel_pstate_cpu_ids);
1415 if (!id)
1416 return -ENODEV;
1417
64df1fdf 1418 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1419
64df1fdf
BP
1420 copy_pid_params(&cpu_def->pid_policy);
1421 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1422
b563b4e3
DB
1423 if (intel_pstate_msrs_not_valid())
1424 return -ENODEV;
1425
7791e4aa
SP
1426hwp_cpu_matched:
1427 /*
1428 * The Intel pstate driver will be ignored if the platform
1429 * firmware has its own power management modes.
1430 */
1431 if (intel_pstate_platform_pwr_mgmt_exists())
1432 return -ENODEV;
1433
93f0822d
DB
1434 pr_info("Intel P-state driver initializing.\n");
1435
b57ffac5 1436 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1437 if (!all_cpu_data)
1438 return -ENOMEM;
93f0822d 1439
d64c3b0b
KCA
1440 if (!hwp_active && hwp_only)
1441 goto out;
1442
93f0822d
DB
1443 rc = cpufreq_register_driver(&intel_pstate_driver);
1444 if (rc)
1445 goto out;
1446
1447 intel_pstate_debug_expose_params();
1448 intel_pstate_sysfs_expose_params();
b69880f9 1449
7791e4aa
SP
1450 if (hwp_active)
1451 pr_info("intel_pstate: HWP enabled\n");
1452
93f0822d
DB
1453 return rc;
1454out:
907cc908
DB
1455 get_online_cpus();
1456 for_each_online_cpu(cpu) {
1457 if (all_cpu_data[cpu]) {
a4675fbc 1458 cpufreq_set_update_util_data(cpu, NULL);
08f511fd 1459 synchronize_sched();
907cc908
DB
1460 kfree(all_cpu_data[cpu]);
1461 }
1462 }
1463
1464 put_online_cpus();
1465 vfree(all_cpu_data);
93f0822d
DB
1466 return -ENODEV;
1467}
1468device_initcall(intel_pstate_init);
1469
6be26498
DB
1470static int __init intel_pstate_setup(char *str)
1471{
1472 if (!str)
1473 return -EINVAL;
1474
1475 if (!strcmp(str, "disable"))
1476 no_load = 1;
539342f6
PB
1477 if (!strcmp(str, "no_hwp")) {
1478 pr_info("intel_pstate: HWP disabled\n");
2f86dc4c 1479 no_hwp = 1;
539342f6 1480 }
aa4ea34d
EZ
1481 if (!strcmp(str, "force"))
1482 force_load = 1;
d64c3b0b
KCA
1483 if (!strcmp(str, "hwp_only"))
1484 hwp_only = 1;
6be26498
DB
1485 return 0;
1486}
1487early_param("intel_pstate", intel_pstate_setup);
1488
93f0822d
DB
1489MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1490MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1491MODULE_LICENSE("GPL");
This page took 0.238552 seconds and 5 git commands to generate.