cpufreq: intel_pstate: Ignore _PPC processing under HWP
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
93f0822d 38
938d21a2
PL
39#define ATOM_RATIOS 0x66a
40#define ATOM_VIDS 0x66b
41#define ATOM_TURBO_RATIOS 0x66c
42#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 43
9522a2ff
SP
44#ifdef CONFIG_ACPI
45#include <acpi/processor.h>
46#endif
47
f0fe3cd7 48#define FRAC_BITS 8
93f0822d
DB
49#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 51
93f0822d
DB
52static inline int32_t mul_fp(int32_t x, int32_t y)
53{
54 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
55}
56
7180dddf 57static inline int32_t div_fp(s64 x, s64 y)
93f0822d 58{
7180dddf 59 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
60}
61
d022a65e
DB
62static inline int ceiling_fp(int32_t x)
63{
64 int mask, ret;
65
66 ret = fp_toint(x);
67 mask = (1 << FRAC_BITS) - 1;
68 if (x & mask)
69 ret += 1;
70 return ret;
71}
72
13ad7701
SP
73/**
74 * struct sample - Store performance sample
75 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
76 * performance during last sample period
77 * @busy_scaled: Scaled busy value which is used to calculate next
78 * P state. This can be different than core_pct_busy
79 * to account for cpu idle period
80 * @aperf: Difference of actual performance frequency clock count
81 * read from APERF MSR between last and current sample
82 * @mperf: Difference of maximum performance frequency clock count
83 * read from MPERF MSR between last and current sample
84 * @tsc: Difference of time stamp counter between last and
85 * current sample
86 * @freq: Effective frequency calculated from APERF/MPERF
87 * @time: Current time from scheduler
88 *
89 * This structure is used in the cpudata structure to store performance sample
90 * data for choosing next P State.
91 */
93f0822d 92struct sample {
d253d2a5 93 int32_t core_pct_busy;
157386b6 94 int32_t busy_scaled;
93f0822d
DB
95 u64 aperf;
96 u64 mperf;
4055fad3 97 u64 tsc;
93f0822d 98 int freq;
a4675fbc 99 u64 time;
93f0822d
DB
100};
101
13ad7701
SP
102/**
103 * struct pstate_data - Store P state data
104 * @current_pstate: Current requested P state
105 * @min_pstate: Min P state possible for this platform
106 * @max_pstate: Max P state possible for this platform
107 * @max_pstate_physical:This is physical Max P state for a processor
108 * This can be higher than the max_pstate which can
109 * be limited by platform thermal design power limits
110 * @scaling: Scaling factor to convert frequency to cpufreq
111 * frequency units
112 * @turbo_pstate: Max Turbo P state possible for this platform
113 *
114 * Stores the per cpu model P state limits and current P state.
115 */
93f0822d
DB
116struct pstate_data {
117 int current_pstate;
118 int min_pstate;
119 int max_pstate;
3bcc6fa9 120 int max_pstate_physical;
b27580b0 121 int scaling;
93f0822d
DB
122 int turbo_pstate;
123};
124
13ad7701
SP
125/**
126 * struct vid_data - Stores voltage information data
127 * @min: VID data for this platform corresponding to
128 * the lowest P state
129 * @max: VID data corresponding to the highest P State.
130 * @turbo: VID data for turbo P state
131 * @ratio: Ratio of (vid max - vid min) /
132 * (max P state - Min P State)
133 *
134 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
135 * This data is used in Atom platforms, where in addition to target P state,
136 * the voltage data needs to be specified to select next P State.
137 */
007bea09 138struct vid_data {
21855ff5
DB
139 int min;
140 int max;
141 int turbo;
007bea09
DB
142 int32_t ratio;
143};
144
13ad7701
SP
145/**
146 * struct _pid - Stores PID data
147 * @setpoint: Target set point for busyness or performance
148 * @integral: Storage for accumulated error values
149 * @p_gain: PID proportional gain
150 * @i_gain: PID integral gain
151 * @d_gain: PID derivative gain
152 * @deadband: PID deadband
153 * @last_err: Last error storage for integral part of PID calculation
154 *
155 * Stores PID coefficients and last error for PID controller.
156 */
93f0822d
DB
157struct _pid {
158 int setpoint;
159 int32_t integral;
160 int32_t p_gain;
161 int32_t i_gain;
162 int32_t d_gain;
163 int deadband;
d253d2a5 164 int32_t last_err;
93f0822d
DB
165};
166
13ad7701
SP
167/**
168 * struct cpudata - Per CPU instance data storage
169 * @cpu: CPU number for this instance data
170 * @update_util: CPUFreq utility callback information
171 * @pstate: Stores P state limits for this CPU
172 * @vid: Stores VID limits for this CPU
173 * @pid: Stores PID parameters for this CPU
174 * @last_sample_time: Last Sample time
175 * @prev_aperf: Last APERF value read from APERF MSR
176 * @prev_mperf: Last MPERF value read from MPERF MSR
177 * @prev_tsc: Last timestamp counter (TSC) value
178 * @prev_cummulative_iowait: IO Wait time difference from last and
179 * current sample
180 * @sample: Storage for storing last Sample data
9522a2ff
SP
181 * @acpi_perf_data: Stores ACPI perf information read from _PSS
182 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
183 *
184 * This structure stores per CPU instance data for all CPUs.
185 */
93f0822d
DB
186struct cpudata {
187 int cpu;
188
a4675fbc 189 struct update_util_data update_util;
93f0822d 190
93f0822d 191 struct pstate_data pstate;
007bea09 192 struct vid_data vid;
93f0822d 193 struct _pid pid;
93f0822d 194
a4675fbc 195 u64 last_sample_time;
93f0822d
DB
196 u64 prev_aperf;
197 u64 prev_mperf;
4055fad3 198 u64 prev_tsc;
63d1d656 199 u64 prev_cummulative_iowait;
d37e2b76 200 struct sample sample;
9522a2ff
SP
201#ifdef CONFIG_ACPI
202 struct acpi_processor_performance acpi_perf_data;
203 bool valid_pss_table;
204#endif
93f0822d
DB
205};
206
207static struct cpudata **all_cpu_data;
13ad7701
SP
208
209/**
210 * struct pid_adjust_policy - Stores static PID configuration data
211 * @sample_rate_ms: PID calculation sample rate in ms
212 * @sample_rate_ns: Sample rate calculation in ns
213 * @deadband: PID deadband
214 * @setpoint: PID Setpoint
215 * @p_gain_pct: PID proportional gain
216 * @i_gain_pct: PID integral gain
217 * @d_gain_pct: PID derivative gain
218 *
219 * Stores per CPU model static PID configuration data.
220 */
93f0822d
DB
221struct pstate_adjust_policy {
222 int sample_rate_ms;
a4675fbc 223 s64 sample_rate_ns;
93f0822d
DB
224 int deadband;
225 int setpoint;
226 int p_gain_pct;
227 int d_gain_pct;
228 int i_gain_pct;
229};
230
13ad7701
SP
231/**
232 * struct pstate_funcs - Per CPU model specific callbacks
233 * @get_max: Callback to get maximum non turbo effective P state
234 * @get_max_physical: Callback to get maximum non turbo physical P state
235 * @get_min: Callback to get minimum P state
236 * @get_turbo: Callback to get turbo P state
237 * @get_scaling: Callback to get frequency scaling factor
238 * @get_val: Callback to convert P state to actual MSR write value
239 * @get_vid: Callback to get VID data for Atom platforms
240 * @get_target_pstate: Callback to a function to calculate next P state to use
241 *
242 * Core and Atom CPU models have different way to get P State limits. This
243 * structure is used to store those callbacks.
244 */
016c8150
DB
245struct pstate_funcs {
246 int (*get_max)(void);
3bcc6fa9 247 int (*get_max_physical)(void);
016c8150
DB
248 int (*get_min)(void);
249 int (*get_turbo)(void);
b27580b0 250 int (*get_scaling)(void);
fdfdb2b1 251 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 252 void (*get_vid)(struct cpudata *);
157386b6 253 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
254};
255
13ad7701
SP
256/**
257 * struct cpu_defaults- Per CPU model default config data
258 * @pid_policy: PID config data
259 * @funcs: Callback function data
260 */
016c8150
DB
261struct cpu_defaults {
262 struct pstate_adjust_policy pid_policy;
263 struct pstate_funcs funcs;
93f0822d
DB
264};
265
157386b6 266static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 267static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 268
016c8150
DB
269static struct pstate_adjust_policy pid_params;
270static struct pstate_funcs pstate_funcs;
2f86dc4c 271static int hwp_active;
016c8150 272
9522a2ff
SP
273#ifdef CONFIG_ACPI
274static bool acpi_ppc;
275#endif
13ad7701
SP
276
277/**
278 * struct perf_limits - Store user and policy limits
279 * @no_turbo: User requested turbo state from intel_pstate sysfs
280 * @turbo_disabled: Platform turbo status either from msr
281 * MSR_IA32_MISC_ENABLE or when maximum available pstate
282 * matches the maximum turbo pstate
283 * @max_perf_pct: Effective maximum performance limit in percentage, this
284 * is minimum of either limits enforced by cpufreq policy
285 * or limits from user set limits via intel_pstate sysfs
286 * @min_perf_pct: Effective minimum performance limit in percentage, this
287 * is maximum of either limits enforced by cpufreq policy
288 * or limits from user set limits via intel_pstate sysfs
289 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
290 * This value is used to limit max pstate
291 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
292 * This value is used to limit min pstate
293 * @max_policy_pct: The maximum performance in percentage enforced by
294 * cpufreq setpolicy interface
295 * @max_sysfs_pct: The maximum performance in percentage enforced by
296 * intel pstate sysfs interface
297 * @min_policy_pct: The minimum performance in percentage enforced by
298 * cpufreq setpolicy interface
299 * @min_sysfs_pct: The minimum performance in percentage enforced by
300 * intel pstate sysfs interface
301 *
302 * Storage for user and policy defined limits.
303 */
93f0822d
DB
304struct perf_limits {
305 int no_turbo;
dd5fbf70 306 int turbo_disabled;
93f0822d
DB
307 int max_perf_pct;
308 int min_perf_pct;
309 int32_t max_perf;
310 int32_t min_perf;
d8f469e9
DB
311 int max_policy_pct;
312 int max_sysfs_pct;
a0475992
KCA
313 int min_policy_pct;
314 int min_sysfs_pct;
93f0822d
DB
315};
316
51443fbf
PB
317static struct perf_limits performance_limits = {
318 .no_turbo = 0,
319 .turbo_disabled = 0,
320 .max_perf_pct = 100,
321 .max_perf = int_tofp(1),
322 .min_perf_pct = 100,
323 .min_perf = int_tofp(1),
324 .max_policy_pct = 100,
325 .max_sysfs_pct = 100,
326 .min_policy_pct = 0,
327 .min_sysfs_pct = 0,
328};
329
330static struct perf_limits powersave_limits = {
93f0822d 331 .no_turbo = 0,
4521e1a0 332 .turbo_disabled = 0,
93f0822d
DB
333 .max_perf_pct = 100,
334 .max_perf = int_tofp(1),
335 .min_perf_pct = 0,
336 .min_perf = 0,
d8f469e9
DB
337 .max_policy_pct = 100,
338 .max_sysfs_pct = 100,
a0475992
KCA
339 .min_policy_pct = 0,
340 .min_sysfs_pct = 0,
93f0822d
DB
341};
342
51443fbf
PB
343#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
344static struct perf_limits *limits = &performance_limits;
345#else
346static struct perf_limits *limits = &powersave_limits;
347#endif
348
9522a2ff 349#ifdef CONFIG_ACPI
2b3ec765
SP
350
351static bool intel_pstate_get_ppc_enable_status(void)
352{
353 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
354 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
355 return true;
356
357 return acpi_ppc;
358}
359
9522a2ff
SP
360/*
361 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
362 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
363 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
364 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
365 * target ratio 0x17. The _PSS control value stores in a format which can be
366 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
367 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
368 * This function converts the _PSS control value to intel pstate driver format
369 * for comparison and assignment.
370 */
371static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
372{
373 return cpu->acpi_perf_data.states[index].control >> 8;
374}
375
376static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377{
378 struct cpudata *cpu;
379 int turbo_pss_ctl;
380 int ret;
381 int i;
382
e59a8f7f
SP
383 if (hwp_active)
384 return;
385
2b3ec765 386 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
387 return;
388
389 cpu = all_cpu_data[policy->cpu];
390
391 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
392 policy->cpu);
393 if (ret)
394 return;
395
396 /*
397 * Check if the control value in _PSS is for PERF_CTL MSR, which should
398 * guarantee that the states returned by it map to the states in our
399 * list directly.
400 */
401 if (cpu->acpi_perf_data.control_register.space_id !=
402 ACPI_ADR_SPACE_FIXED_HARDWARE)
403 goto err;
404
405 /*
406 * If there is only one entry _PSS, simply ignore _PSS and continue as
407 * usual without taking _PSS into account
408 */
409 if (cpu->acpi_perf_data.state_count < 2)
410 goto err;
411
412 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
413 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
414 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
415 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
416 (u32) cpu->acpi_perf_data.states[i].core_frequency,
417 (u32) cpu->acpi_perf_data.states[i].power,
418 (u32) cpu->acpi_perf_data.states[i].control);
419 }
420
421 /*
422 * The _PSS table doesn't contain whole turbo frequency range.
423 * This just contains +1 MHZ above the max non turbo frequency,
424 * with control value corresponding to max turbo ratio. But
425 * when cpufreq set policy is called, it will call with this
426 * max frequency, which will cause a reduced performance as
427 * this driver uses real max turbo frequency as the max
428 * frequency. So correct this frequency in _PSS table to
429 * correct max turbo frequency based on the turbo ratio.
430 * Also need to convert to MHz as _PSS freq is in MHz.
431 */
432 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
433 if (turbo_pss_ctl > cpu->pstate.max_pstate)
434 cpu->acpi_perf_data.states[0].core_frequency =
435 policy->cpuinfo.max_freq / 1000;
436 cpu->valid_pss_table = true;
437 pr_info("_PPC limits will be enforced\n");
438
439 return;
440
441 err:
442 cpu->valid_pss_table = false;
443 acpi_processor_unregister_performance(policy->cpu);
444}
445
446static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
447{
448 struct cpudata *cpu;
449
450 cpu = all_cpu_data[policy->cpu];
451 if (!cpu->valid_pss_table)
452 return;
453
454 acpi_processor_unregister_performance(policy->cpu);
455}
456
457#else
458static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
459{
460}
461
462static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463{
464}
465#endif
466
93f0822d 467static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 468 int deadband, int integral) {
b54a0dfd
PL
469 pid->setpoint = int_tofp(setpoint);
470 pid->deadband = int_tofp(deadband);
93f0822d 471 pid->integral = int_tofp(integral);
d98d099b 472 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
473}
474
475static inline void pid_p_gain_set(struct _pid *pid, int percent)
476{
22590efb 477 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
478}
479
480static inline void pid_i_gain_set(struct _pid *pid, int percent)
481{
22590efb 482 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
483}
484
485static inline void pid_d_gain_set(struct _pid *pid, int percent)
486{
22590efb 487 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
488}
489
d253d2a5 490static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 491{
d253d2a5 492 signed int result;
93f0822d
DB
493 int32_t pterm, dterm, fp_error;
494 int32_t integral_limit;
495
b54a0dfd 496 fp_error = pid->setpoint - busy;
93f0822d 497
b54a0dfd 498 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
499 return 0;
500
501 pterm = mul_fp(pid->p_gain, fp_error);
502
503 pid->integral += fp_error;
504
e0d4c8f8
KCA
505 /*
506 * We limit the integral here so that it will never
507 * get higher than 30. This prevents it from becoming
508 * too large an input over long periods of time and allows
509 * it to get factored out sooner.
510 *
511 * The value of 30 was chosen through experimentation.
512 */
93f0822d
DB
513 integral_limit = int_tofp(30);
514 if (pid->integral > integral_limit)
515 pid->integral = integral_limit;
516 if (pid->integral < -integral_limit)
517 pid->integral = -integral_limit;
518
d253d2a5
BS
519 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
520 pid->last_err = fp_error;
93f0822d
DB
521
522 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 523 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
524 return (signed int)fp_toint(result);
525}
526
527static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
528{
016c8150
DB
529 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
530 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
531 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 532
2d8d1f18 533 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
534}
535
93f0822d
DB
536static inline void intel_pstate_reset_all_pid(void)
537{
538 unsigned int cpu;
845c1cbe 539
93f0822d
DB
540 for_each_online_cpu(cpu) {
541 if (all_cpu_data[cpu])
542 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
543 }
544}
545
4521e1a0
GM
546static inline void update_turbo_state(void)
547{
548 u64 misc_en;
549 struct cpudata *cpu;
550
551 cpu = all_cpu_data[0];
552 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 553 limits->turbo_disabled =
4521e1a0
GM
554 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
555 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
556}
557
41cfd64c 558static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 559{
74da56ce
KCA
560 int min, hw_min, max, hw_max, cpu, range, adj_range;
561 u64 value, cap;
562
563 rdmsrl(MSR_HWP_CAPABILITIES, cap);
564 hw_min = HWP_LOWEST_PERF(cap);
565 hw_max = HWP_HIGHEST_PERF(cap);
566 range = hw_max - hw_min;
2f86dc4c 567
41cfd64c 568 for_each_cpu(cpu, cpumask) {
2f86dc4c 569 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 570 adj_range = limits->min_perf_pct * range / 100;
74da56ce 571 min = hw_min + adj_range;
2f86dc4c
DB
572 value &= ~HWP_MIN_PERF(~0L);
573 value |= HWP_MIN_PERF(min);
574
51443fbf 575 adj_range = limits->max_perf_pct * range / 100;
74da56ce 576 max = hw_min + adj_range;
51443fbf 577 if (limits->no_turbo) {
74da56ce
KCA
578 hw_max = HWP_GUARANTEED_PERF(cap);
579 if (hw_max < max)
580 max = hw_max;
2f86dc4c
DB
581 }
582
583 value &= ~HWP_MAX_PERF(~0L);
584 value |= HWP_MAX_PERF(max);
585 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
586 }
41cfd64c 587}
2f86dc4c 588
41cfd64c
VK
589static void intel_pstate_hwp_set_online_cpus(void)
590{
591 get_online_cpus();
592 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
593 put_online_cpus();
594}
595
93f0822d
DB
596/************************** debugfs begin ************************/
597static int pid_param_set(void *data, u64 val)
598{
599 *(u32 *)data = val;
600 intel_pstate_reset_all_pid();
601 return 0;
602}
845c1cbe 603
93f0822d
DB
604static int pid_param_get(void *data, u64 *val)
605{
606 *val = *(u32 *)data;
607 return 0;
608}
2d8d1f18 609DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
610
611struct pid_param {
612 char *name;
613 void *value;
614};
615
616static struct pid_param pid_files[] = {
016c8150
DB
617 {"sample_rate_ms", &pid_params.sample_rate_ms},
618 {"d_gain_pct", &pid_params.d_gain_pct},
619 {"i_gain_pct", &pid_params.i_gain_pct},
620 {"deadband", &pid_params.deadband},
621 {"setpoint", &pid_params.setpoint},
622 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
623 {NULL, NULL}
624};
625
317dd50e 626static void __init intel_pstate_debug_expose_params(void)
93f0822d 627{
317dd50e 628 struct dentry *debugfs_parent;
93f0822d
DB
629 int i = 0;
630
2f86dc4c
DB
631 if (hwp_active)
632 return;
93f0822d
DB
633 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
634 if (IS_ERR_OR_NULL(debugfs_parent))
635 return;
636 while (pid_files[i].name) {
637 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
638 debugfs_parent, pid_files[i].value,
639 &fops_pid_param);
93f0822d
DB
640 i++;
641 }
642}
643
644/************************** debugfs end ************************/
645
646/************************** sysfs begin ************************/
647#define show_one(file_name, object) \
648 static ssize_t show_##file_name \
649 (struct kobject *kobj, struct attribute *attr, char *buf) \
650 { \
51443fbf 651 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
652 }
653
d01b1f48
KCA
654static ssize_t show_turbo_pct(struct kobject *kobj,
655 struct attribute *attr, char *buf)
656{
657 struct cpudata *cpu;
658 int total, no_turbo, turbo_pct;
659 uint32_t turbo_fp;
660
661 cpu = all_cpu_data[0];
662
663 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
664 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 665 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
666 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
667 return sprintf(buf, "%u\n", turbo_pct);
668}
669
0522424e
KCA
670static ssize_t show_num_pstates(struct kobject *kobj,
671 struct attribute *attr, char *buf)
672{
673 struct cpudata *cpu;
674 int total;
675
676 cpu = all_cpu_data[0];
677 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
678 return sprintf(buf, "%u\n", total);
679}
680
4521e1a0
GM
681static ssize_t show_no_turbo(struct kobject *kobj,
682 struct attribute *attr, char *buf)
683{
684 ssize_t ret;
685
686 update_turbo_state();
51443fbf
PB
687 if (limits->turbo_disabled)
688 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 689 else
51443fbf 690 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
691
692 return ret;
693}
694
93f0822d 695static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 696 const char *buf, size_t count)
93f0822d
DB
697{
698 unsigned int input;
699 int ret;
845c1cbe 700
93f0822d
DB
701 ret = sscanf(buf, "%u", &input);
702 if (ret != 1)
703 return -EINVAL;
4521e1a0
GM
704
705 update_turbo_state();
51443fbf 706 if (limits->turbo_disabled) {
4836df17 707 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 708 return -EPERM;
dd5fbf70 709 }
2f86dc4c 710
51443fbf 711 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 712
2f86dc4c 713 if (hwp_active)
41cfd64c 714 intel_pstate_hwp_set_online_cpus();
2f86dc4c 715
93f0822d
DB
716 return count;
717}
718
719static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 720 const char *buf, size_t count)
93f0822d
DB
721{
722 unsigned int input;
723 int ret;
845c1cbe 724
93f0822d
DB
725 ret = sscanf(buf, "%u", &input);
726 if (ret != 1)
727 return -EINVAL;
728
51443fbf
PB
729 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
730 limits->max_perf_pct = min(limits->max_policy_pct,
731 limits->max_sysfs_pct);
732 limits->max_perf_pct = max(limits->min_policy_pct,
733 limits->max_perf_pct);
734 limits->max_perf_pct = max(limits->min_perf_pct,
735 limits->max_perf_pct);
22590efb 736 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 737
2f86dc4c 738 if (hwp_active)
41cfd64c 739 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
740 return count;
741}
742
743static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 744 const char *buf, size_t count)
93f0822d
DB
745{
746 unsigned int input;
747 int ret;
845c1cbe 748
93f0822d
DB
749 ret = sscanf(buf, "%u", &input);
750 if (ret != 1)
751 return -EINVAL;
a0475992 752
51443fbf
PB
753 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
754 limits->min_perf_pct = max(limits->min_policy_pct,
755 limits->min_sysfs_pct);
756 limits->min_perf_pct = min(limits->max_policy_pct,
757 limits->min_perf_pct);
758 limits->min_perf_pct = min(limits->max_perf_pct,
759 limits->min_perf_pct);
22590efb 760 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 761
2f86dc4c 762 if (hwp_active)
41cfd64c 763 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
764 return count;
765}
766
93f0822d
DB
767show_one(max_perf_pct, max_perf_pct);
768show_one(min_perf_pct, min_perf_pct);
769
770define_one_global_rw(no_turbo);
771define_one_global_rw(max_perf_pct);
772define_one_global_rw(min_perf_pct);
d01b1f48 773define_one_global_ro(turbo_pct);
0522424e 774define_one_global_ro(num_pstates);
93f0822d
DB
775
776static struct attribute *intel_pstate_attributes[] = {
777 &no_turbo.attr,
778 &max_perf_pct.attr,
779 &min_perf_pct.attr,
d01b1f48 780 &turbo_pct.attr,
0522424e 781 &num_pstates.attr,
93f0822d
DB
782 NULL
783};
784
785static struct attribute_group intel_pstate_attr_group = {
786 .attrs = intel_pstate_attributes,
787};
93f0822d 788
317dd50e 789static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 790{
317dd50e 791 struct kobject *intel_pstate_kobject;
93f0822d
DB
792 int rc;
793
794 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
795 &cpu_subsys.dev_root->kobj);
796 BUG_ON(!intel_pstate_kobject);
2d8d1f18 797 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
798 BUG_ON(rc);
799}
93f0822d 800/************************** sysfs end ************************/
2f86dc4c 801
ba88d433 802static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 803{
f05c9665
SP
804 /* First disable HWP notification interrupt as we don't process them */
805 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
806
ba88d433 807 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
808}
809
938d21a2 810static int atom_get_min_pstate(void)
19e77c28
DB
811{
812 u64 value;
845c1cbe 813
938d21a2 814 rdmsrl(ATOM_RATIOS, value);
c16ed060 815 return (value >> 8) & 0x7F;
19e77c28
DB
816}
817
938d21a2 818static int atom_get_max_pstate(void)
19e77c28
DB
819{
820 u64 value;
845c1cbe 821
938d21a2 822 rdmsrl(ATOM_RATIOS, value);
c16ed060 823 return (value >> 16) & 0x7F;
19e77c28 824}
93f0822d 825
938d21a2 826static int atom_get_turbo_pstate(void)
61d8d2ab
DB
827{
828 u64 value;
845c1cbe 829
938d21a2 830 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 831 return value & 0x7F;
61d8d2ab
DB
832}
833
fdfdb2b1 834static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
835{
836 u64 val;
837 int32_t vid_fp;
838 u32 vid;
839
144c8e17 840 val = (u64)pstate << 8;
51443fbf 841 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
842 val |= (u64)1 << 32;
843
844 vid_fp = cpudata->vid.min + mul_fp(
845 int_tofp(pstate - cpudata->pstate.min_pstate),
846 cpudata->vid.ratio);
847
848 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 849 vid = ceiling_fp(vid_fp);
007bea09 850
21855ff5
DB
851 if (pstate > cpudata->pstate.max_pstate)
852 vid = cpudata->vid.turbo;
853
fdfdb2b1 854 return val | vid;
007bea09
DB
855}
856
1421df63 857static int silvermont_get_scaling(void)
b27580b0
DB
858{
859 u64 value;
860 int i;
1421df63
PL
861 /* Defined in Table 35-6 from SDM (Sept 2015) */
862 static int silvermont_freq_table[] = {
863 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
864
865 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
866 i = value & 0x7;
867 WARN_ON(i > 4);
b27580b0 868
1421df63
PL
869 return silvermont_freq_table[i];
870}
b27580b0 871
1421df63
PL
872static int airmont_get_scaling(void)
873{
874 u64 value;
875 int i;
876 /* Defined in Table 35-10 from SDM (Sept 2015) */
877 static int airmont_freq_table[] = {
878 83300, 100000, 133300, 116700, 80000,
879 93300, 90000, 88900, 87500};
880
881 rdmsrl(MSR_FSB_FREQ, value);
882 i = value & 0xF;
883 WARN_ON(i > 8);
884
885 return airmont_freq_table[i];
b27580b0
DB
886}
887
938d21a2 888static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
889{
890 u64 value;
891
938d21a2 892 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
893 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
894 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
895 cpudata->vid.ratio = div_fp(
896 cpudata->vid.max - cpudata->vid.min,
897 int_tofp(cpudata->pstate.max_pstate -
898 cpudata->pstate.min_pstate));
21855ff5 899
938d21a2 900 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 901 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
902}
903
016c8150 904static int core_get_min_pstate(void)
93f0822d
DB
905{
906 u64 value;
845c1cbe 907
05e99c8c 908 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
909 return (value >> 40) & 0xFF;
910}
911
3bcc6fa9 912static int core_get_max_pstate_physical(void)
93f0822d
DB
913{
914 u64 value;
845c1cbe 915
05e99c8c 916 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
917 return (value >> 8) & 0xFF;
918}
919
016c8150 920static int core_get_max_pstate(void)
93f0822d 921{
6a35fc2d
SP
922 u64 tar;
923 u64 plat_info;
924 int max_pstate;
925 int err;
926
927 rdmsrl(MSR_PLATFORM_INFO, plat_info);
928 max_pstate = (plat_info >> 8) & 0xFF;
929
930 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
931 if (!err) {
932 /* Do some sanity checking for safety */
933 if (plat_info & 0x600000000) {
934 u64 tdp_ctrl;
935 u64 tdp_ratio;
936 int tdp_msr;
937
938 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
939 if (err)
940 goto skip_tar;
941
942 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
943 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
944 if (err)
945 goto skip_tar;
946
947 if (tdp_ratio - 1 == tar) {
948 max_pstate = tar;
949 pr_debug("max_pstate=TAC %x\n", max_pstate);
950 } else {
951 goto skip_tar;
952 }
953 }
954 }
845c1cbe 955
6a35fc2d
SP
956skip_tar:
957 return max_pstate;
93f0822d
DB
958}
959
016c8150 960static int core_get_turbo_pstate(void)
93f0822d
DB
961{
962 u64 value;
963 int nont, ret;
845c1cbe 964
05e99c8c 965 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 966 nont = core_get_max_pstate();
285cb990 967 ret = (value) & 255;
93f0822d
DB
968 if (ret <= nont)
969 ret = nont;
970 return ret;
971}
972
b27580b0
DB
973static inline int core_get_scaling(void)
974{
975 return 100000;
976}
977
fdfdb2b1 978static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
979{
980 u64 val;
981
144c8e17 982 val = (u64)pstate << 8;
51443fbf 983 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
984 val |= (u64)1 << 32;
985
fdfdb2b1 986 return val;
016c8150
DB
987}
988
b34ef932
DC
989static int knl_get_turbo_pstate(void)
990{
991 u64 value;
992 int nont, ret;
993
994 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
995 nont = core_get_max_pstate();
996 ret = (((value) >> 8) & 0xFF);
997 if (ret <= nont)
998 ret = nont;
999 return ret;
1000}
1001
016c8150
DB
1002static struct cpu_defaults core_params = {
1003 .pid_policy = {
1004 .sample_rate_ms = 10,
1005 .deadband = 0,
1006 .setpoint = 97,
1007 .p_gain_pct = 20,
1008 .d_gain_pct = 0,
1009 .i_gain_pct = 0,
1010 },
1011 .funcs = {
1012 .get_max = core_get_max_pstate,
3bcc6fa9 1013 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1014 .get_min = core_get_min_pstate,
1015 .get_turbo = core_get_turbo_pstate,
b27580b0 1016 .get_scaling = core_get_scaling,
fdfdb2b1 1017 .get_val = core_get_val,
157386b6 1018 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1019 },
1020};
1021
1421df63
PL
1022static struct cpu_defaults silvermont_params = {
1023 .pid_policy = {
1024 .sample_rate_ms = 10,
1025 .deadband = 0,
1026 .setpoint = 60,
1027 .p_gain_pct = 14,
1028 .d_gain_pct = 0,
1029 .i_gain_pct = 4,
1030 },
1031 .funcs = {
1032 .get_max = atom_get_max_pstate,
1033 .get_max_physical = atom_get_max_pstate,
1034 .get_min = atom_get_min_pstate,
1035 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1036 .get_val = atom_get_val,
1421df63
PL
1037 .get_scaling = silvermont_get_scaling,
1038 .get_vid = atom_get_vid,
e70eed2b 1039 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1040 },
1041};
1042
1043static struct cpu_defaults airmont_params = {
19e77c28
DB
1044 .pid_policy = {
1045 .sample_rate_ms = 10,
1046 .deadband = 0,
6a82ba6d 1047 .setpoint = 60,
19e77c28
DB
1048 .p_gain_pct = 14,
1049 .d_gain_pct = 0,
1050 .i_gain_pct = 4,
1051 },
1052 .funcs = {
938d21a2
PL
1053 .get_max = atom_get_max_pstate,
1054 .get_max_physical = atom_get_max_pstate,
1055 .get_min = atom_get_min_pstate,
1056 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1057 .get_val = atom_get_val,
1421df63 1058 .get_scaling = airmont_get_scaling,
938d21a2 1059 .get_vid = atom_get_vid,
e70eed2b 1060 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1061 },
1062};
1063
b34ef932
DC
1064static struct cpu_defaults knl_params = {
1065 .pid_policy = {
1066 .sample_rate_ms = 10,
1067 .deadband = 0,
1068 .setpoint = 97,
1069 .p_gain_pct = 20,
1070 .d_gain_pct = 0,
1071 .i_gain_pct = 0,
1072 },
1073 .funcs = {
1074 .get_max = core_get_max_pstate,
3bcc6fa9 1075 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1076 .get_min = core_get_min_pstate,
1077 .get_turbo = knl_get_turbo_pstate,
69cefc27 1078 .get_scaling = core_get_scaling,
fdfdb2b1 1079 .get_val = core_get_val,
157386b6 1080 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1081 },
1082};
1083
93f0822d
DB
1084static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1085{
1086 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1087 int max_perf_adj;
93f0822d 1088 int min_perf;
845c1cbe 1089
51443fbf 1090 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1091 max_perf = cpu->pstate.max_pstate;
1092
e0d4c8f8
KCA
1093 /*
1094 * performance can be limited by user through sysfs, by cpufreq
1095 * policy, or by cpu specific default values determined through
1096 * experimentation.
1097 */
a158bed5 1098 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1099 *max = clamp_t(int, max_perf_adj,
1100 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1101
a158bed5 1102 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1103 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1104}
1105
fdfdb2b1 1106static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 1107{
b27580b0 1108 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 1109 cpu->pstate.current_pstate = pstate;
fdfdb2b1 1110}
93f0822d 1111
fdfdb2b1
RW
1112static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1113{
1114 int pstate = cpu->pstate.min_pstate;
1115
1116 intel_pstate_record_pstate(cpu, pstate);
1117 /*
1118 * Generally, there is no guarantee that this code will always run on
1119 * the CPU being updated, so force the register update to run on the
1120 * right CPU.
1121 */
1122 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1123 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1124}
1125
93f0822d
DB
1126static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1127{
016c8150
DB
1128 cpu->pstate.min_pstate = pstate_funcs.get_min();
1129 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1130 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1131 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1132 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1133
007bea09
DB
1134 if (pstate_funcs.get_vid)
1135 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1136
1137 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1138}
1139
6b17ddb2 1140static inline void intel_pstate_calc_busy(struct cpudata *cpu)
93f0822d 1141{
6b17ddb2 1142 struct sample *sample = &cpu->sample;
bf810222 1143 int64_t core_pct;
93f0822d 1144
22590efb
RW
1145 core_pct = sample->aperf * int_tofp(100);
1146 core_pct = div64_u64(core_pct, sample->mperf);
e66c1768 1147
bf810222 1148 sample->core_pct_busy = (int32_t)core_pct;
93f0822d
DB
1149}
1150
4fec7ad5 1151static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1152{
93f0822d 1153 u64 aperf, mperf;
4ab60c3f 1154 unsigned long flags;
4055fad3 1155 u64 tsc;
93f0822d 1156
4ab60c3f 1157 local_irq_save(flags);
93f0822d
DB
1158 rdmsrl(MSR_IA32_APERF, aperf);
1159 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1160 tsc = rdtsc();
4fec7ad5 1161 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1162 local_irq_restore(flags);
4fec7ad5 1163 return false;
8e601a9f 1164 }
4ab60c3f 1165 local_irq_restore(flags);
b69880f9 1166
c4ee841f 1167 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1168 cpu->sample.time = time;
d37e2b76
DB
1169 cpu->sample.aperf = aperf;
1170 cpu->sample.mperf = mperf;
4055fad3 1171 cpu->sample.tsc = tsc;
d37e2b76
DB
1172 cpu->sample.aperf -= cpu->prev_aperf;
1173 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1174 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1175
93f0822d
DB
1176 cpu->prev_aperf = aperf;
1177 cpu->prev_mperf = mperf;
4055fad3 1178 cpu->prev_tsc = tsc;
febce40f
RW
1179 /*
1180 * First time this function is invoked in a given cycle, all of the
1181 * previous sample data fields are equal to zero or stale and they must
1182 * be populated with meaningful numbers for things to work, so assume
1183 * that sample.time will always be reset before setting the utilization
1184 * update hook and make the caller skip the sample then.
1185 */
1186 return !!cpu->last_sample_time;
93f0822d
DB
1187}
1188
8fa520af
PL
1189static inline int32_t get_avg_frequency(struct cpudata *cpu)
1190{
1191 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1192 cpu->pstate.scaling, cpu->sample.mperf);
1193}
1194
bdcaa23f
PL
1195static inline int32_t get_avg_pstate(struct cpudata *cpu)
1196{
1197 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
1198 cpu->sample.mperf);
1199}
1200
e70eed2b
PL
1201static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1202{
1203 struct sample *sample = &cpu->sample;
63d1d656
PL
1204 u64 cummulative_iowait, delta_iowait_us;
1205 u64 delta_iowait_mperf;
1206 u64 mperf, now;
e70eed2b
PL
1207 int32_t cpu_load;
1208
63d1d656
PL
1209 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1210
1211 /*
1212 * Convert iowait time into number of IO cycles spent at max_freq.
1213 * IO is considered as busy only for the cpu_load algorithm. For
1214 * performance this is not needed since we always try to reach the
1215 * maximum P-State, so we are already boosting the IOs.
1216 */
1217 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1218 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1219 cpu->pstate.max_pstate, MSEC_PER_SEC);
1220
1221 mperf = cpu->sample.mperf + delta_iowait_mperf;
1222 cpu->prev_cummulative_iowait = cummulative_iowait;
1223
e70eed2b
PL
1224 /*
1225 * The load can be estimated as the ratio of the mperf counter
1226 * running at a constant frequency during active periods
1227 * (C0) and the time stamp counter running at the same frequency
1228 * also during C-states.
1229 */
63d1d656 1230 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1231 cpu->sample.busy_scaled = cpu_load;
1232
bdcaa23f 1233 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1234}
1235
157386b6 1236static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1237{
c4ee841f 1238 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
a4675fbc 1239 u64 duration_ns;
93f0822d 1240
7349ec04
PL
1241 intel_pstate_calc_busy(cpu);
1242
e0d4c8f8
KCA
1243 /*
1244 * core_busy is the ratio of actual performance to max
1245 * max_pstate is the max non turbo pstate available
1246 * current_pstate was the pstate that was requested during
1247 * the last sample period.
1248 *
1249 * We normalize core_busy, which was our actual percent
1250 * performance to what we requested during the last sample
1251 * period. The result will be a percentage of busy at a
1252 * specified pstate.
1253 */
d37e2b76 1254 core_busy = cpu->sample.core_pct_busy;
22590efb
RW
1255 max_pstate = cpu->pstate.max_pstate_physical;
1256 current_pstate = cpu->pstate.current_pstate;
e66c1768 1257 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
c4ee841f 1258
e0d4c8f8 1259 /*
a4675fbc
RW
1260 * Since our utilization update callback will not run unless we are
1261 * in C0, check if the actual elapsed time is significantly greater (3x)
1262 * than our sample interval. If it is, then we were idle for a long
1263 * enough period of time to adjust our busyness.
e0d4c8f8 1264 */
a4675fbc 1265 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1266 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1267 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
c4ee841f 1268 core_busy = mul_fp(core_busy, sample_ratio);
ffb81056
RW
1269 } else {
1270 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1271 if (sample_ratio < int_tofp(1))
1272 core_busy = 0;
c4ee841f
DB
1273 }
1274
157386b6
PL
1275 cpu->sample.busy_scaled = core_busy;
1276 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
93f0822d
DB
1277}
1278
fdfdb2b1
RW
1279static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1280{
1281 int max_perf, min_perf;
1282
1283 update_turbo_state();
1284
1285 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1286 pstate = clamp_t(int, pstate, min_perf, max_perf);
1287 if (pstate == cpu->pstate.current_pstate)
1288 return;
1289
1290 intel_pstate_record_pstate(cpu, pstate);
1291 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1292}
1293
93f0822d
DB
1294static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1295{
157386b6 1296 int from, target_pstate;
4055fad3
DS
1297 struct sample *sample;
1298
1299 from = cpu->pstate.current_pstate;
93f0822d 1300
157386b6 1301 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1302
fdfdb2b1 1303 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1304
1305 sample = &cpu->sample;
1306 trace_pstate_sample(fp_toint(sample->core_pct_busy),
157386b6 1307 fp_toint(sample->busy_scaled),
4055fad3
DS
1308 from,
1309 cpu->pstate.current_pstate,
1310 sample->mperf,
1311 sample->aperf,
1312 sample->tsc,
8fa520af 1313 get_avg_frequency(cpu));
93f0822d
DB
1314}
1315
a4675fbc
RW
1316static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1317 unsigned long util, unsigned long max)
93f0822d 1318{
a4675fbc
RW
1319 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1320 u64 delta_ns = time - cpu->sample.time;
b69880f9 1321
a4675fbc 1322 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1323 bool sample_taken = intel_pstate_sample(cpu, time);
1324
1325 if (sample_taken && !hwp_active)
a4675fbc
RW
1326 intel_pstate_adjust_busy_pstate(cpu);
1327 }
93f0822d
DB
1328}
1329
1330#define ICPU(model, policy) \
6cbd7ee1
DB
1331 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1332 (unsigned long)&policy }
93f0822d
DB
1333
1334static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
1335 ICPU(0x2a, core_params),
1336 ICPU(0x2d, core_params),
1421df63 1337 ICPU(0x37, silvermont_params),
016c8150
DB
1338 ICPU(0x3a, core_params),
1339 ICPU(0x3c, core_params),
c7e241df 1340 ICPU(0x3d, core_params),
016c8150
DB
1341 ICPU(0x3e, core_params),
1342 ICPU(0x3f, core_params),
1343 ICPU(0x45, core_params),
1344 ICPU(0x46, core_params),
43f8a966 1345 ICPU(0x47, core_params),
1421df63 1346 ICPU(0x4c, airmont_params),
7ab0256e 1347 ICPU(0x4e, core_params),
c7e241df 1348 ICPU(0x4f, core_params),
1c939123 1349 ICPU(0x5e, core_params),
c7e241df 1350 ICPU(0x56, core_params),
b34ef932 1351 ICPU(0x57, knl_params),
93f0822d
DB
1352 {}
1353};
1354MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1355
2f86dc4c
DB
1356static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1357 ICPU(0x56, core_params),
1358 {}
1359};
1360
93f0822d
DB
1361static int intel_pstate_init_cpu(unsigned int cpunum)
1362{
93f0822d
DB
1363 struct cpudata *cpu;
1364
c0348717
DB
1365 if (!all_cpu_data[cpunum])
1366 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1367 GFP_KERNEL);
93f0822d
DB
1368 if (!all_cpu_data[cpunum])
1369 return -ENOMEM;
1370
1371 cpu = all_cpu_data[cpunum];
1372
93f0822d 1373 cpu->cpu = cpunum;
ba88d433 1374
a4675fbc 1375 if (hwp_active) {
ba88d433 1376 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1377 pid_params.sample_rate_ms = 50;
1378 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1379 }
ba88d433 1380
179e8471 1381 intel_pstate_get_cpu_pstates(cpu);
016c8150 1382
93f0822d 1383 intel_pstate_busy_pid_reset(cpu);
93f0822d 1384
4836df17 1385 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1386
1387 return 0;
1388}
1389
1390static unsigned int intel_pstate_get(unsigned int cpu_num)
1391{
1392 struct sample *sample;
1393 struct cpudata *cpu;
1394
1395 cpu = all_cpu_data[cpu_num];
1396 if (!cpu)
1397 return 0;
d37e2b76 1398 sample = &cpu->sample;
8fa520af 1399 return get_avg_frequency(cpu);
93f0822d
DB
1400}
1401
febce40f 1402static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1403{
febce40f
RW
1404 struct cpudata *cpu = all_cpu_data[cpu_num];
1405
1406 /* Prevent intel_pstate_update_util() from using stale data. */
1407 cpu->sample.time = 0;
0bed612b
RW
1408 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1409 intel_pstate_update_util);
bb6ab52f
RW
1410}
1411
1412static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1413{
0bed612b 1414 cpufreq_remove_update_util_hook(cpu);
bb6ab52f
RW
1415 synchronize_sched();
1416}
1417
30a39153
SP
1418static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1419{
1420 limits->no_turbo = 0;
1421 limits->turbo_disabled = 0;
1422 limits->max_perf_pct = 100;
1423 limits->max_perf = int_tofp(1);
1424 limits->min_perf_pct = 100;
1425 limits->min_perf = int_tofp(1);
1426 limits->max_policy_pct = 100;
1427 limits->max_sysfs_pct = 100;
1428 limits->min_policy_pct = 0;
1429 limits->min_sysfs_pct = 0;
1430}
1431
93f0822d
DB
1432static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1433{
3be9200d
SP
1434 struct cpudata *cpu;
1435
d3929b83
DB
1436 if (!policy->cpuinfo.max_freq)
1437 return -ENODEV;
1438
bb6ab52f
RW
1439 intel_pstate_clear_update_util_hook(policy->cpu);
1440
3be9200d
SP
1441 cpu = all_cpu_data[0];
1442 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
1443 if (policy->max < policy->cpuinfo.max_freq &&
1444 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1445 pr_debug("policy->max > max non turbo frequency\n");
1446 policy->max = policy->cpuinfo.max_freq;
1447 }
1448 }
1449
30a39153 1450 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1451 limits = &performance_limits;
30a39153 1452 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1453 pr_debug("set performance\n");
30a39153
SP
1454 intel_pstate_set_performance_limits(limits);
1455 goto out;
1456 }
1457 } else {
4836df17 1458 pr_debug("set powersave\n");
30a39153 1459 limits = &powersave_limits;
93f0822d 1460 }
2f86dc4c 1461
51443fbf
PB
1462 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1463 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1464 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1465 policy->cpuinfo.max_freq);
51443fbf 1466 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1467
1468 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1469 limits->min_perf_pct = max(limits->min_policy_pct,
1470 limits->min_sysfs_pct);
1471 limits->min_perf_pct = min(limits->max_policy_pct,
1472 limits->min_perf_pct);
1473 limits->max_perf_pct = min(limits->max_policy_pct,
1474 limits->max_sysfs_pct);
1475 limits->max_perf_pct = max(limits->min_policy_pct,
1476 limits->max_perf_pct);
88b7b7c0 1477 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
43717aad
CY
1478
1479 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1480 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1481
22590efb
RW
1482 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1483 limits->max_perf = div_fp(limits->max_perf_pct, 100);
93f0822d 1484
bb6ab52f
RW
1485 out:
1486 intel_pstate_set_update_util_hook(policy->cpu);
1487
2f86dc4c 1488 if (hwp_active)
41cfd64c 1489 intel_pstate_hwp_set(policy->cpus);
2f86dc4c 1490
93f0822d
DB
1491 return 0;
1492}
1493
1494static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1495{
be49e346 1496 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1497
285cb990 1498 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1499 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1500 return -EINVAL;
1501
1502 return 0;
1503}
1504
bb18008f 1505static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1506{
bb18008f
DB
1507 int cpu_num = policy->cpu;
1508 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1509
4836df17 1510 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1511
bb6ab52f 1512 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1513
2f86dc4c
DB
1514 if (hwp_active)
1515 return;
1516
fdfdb2b1 1517 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1518}
1519
2760984f 1520static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1521{
93f0822d 1522 struct cpudata *cpu;
52e0a509 1523 int rc;
93f0822d
DB
1524
1525 rc = intel_pstate_init_cpu(policy->cpu);
1526 if (rc)
1527 return rc;
1528
1529 cpu = all_cpu_data[policy->cpu];
1530
51443fbf 1531 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1532 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1533 else
1534 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1535
b27580b0
DB
1536 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1537 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1538
1539 /* cpuinfo and default policy values */
b27580b0
DB
1540 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1541 policy->cpuinfo.max_freq =
1542 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
9522a2ff 1543 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1544 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1545 cpumask_set_cpu(policy->cpu, policy->cpus);
1546
1547 return 0;
1548}
1549
9522a2ff
SP
1550static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1551{
1552 intel_pstate_exit_perf_limits(policy);
1553
1554 return 0;
1555}
1556
93f0822d
DB
1557static struct cpufreq_driver intel_pstate_driver = {
1558 .flags = CPUFREQ_CONST_LOOPS,
1559 .verify = intel_pstate_verify_policy,
1560 .setpolicy = intel_pstate_set_policy,
1561 .get = intel_pstate_get,
1562 .init = intel_pstate_cpu_init,
9522a2ff 1563 .exit = intel_pstate_cpu_exit,
bb18008f 1564 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1565 .name = "intel_pstate",
93f0822d
DB
1566};
1567
6be26498 1568static int __initdata no_load;
2f86dc4c 1569static int __initdata no_hwp;
d64c3b0b 1570static int __initdata hwp_only;
aa4ea34d 1571static unsigned int force_load;
6be26498 1572
b563b4e3
DB
1573static int intel_pstate_msrs_not_valid(void)
1574{
016c8150 1575 if (!pstate_funcs.get_max() ||
c410833a
SK
1576 !pstate_funcs.get_min() ||
1577 !pstate_funcs.get_turbo())
b563b4e3
DB
1578 return -ENODEV;
1579
b563b4e3
DB
1580 return 0;
1581}
016c8150 1582
e0a261a2 1583static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1584{
1585 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1586 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1587 pid_params.p_gain_pct = policy->p_gain_pct;
1588 pid_params.i_gain_pct = policy->i_gain_pct;
1589 pid_params.d_gain_pct = policy->d_gain_pct;
1590 pid_params.deadband = policy->deadband;
1591 pid_params.setpoint = policy->setpoint;
1592}
1593
e0a261a2 1594static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1595{
1596 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1597 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1598 pstate_funcs.get_min = funcs->get_min;
1599 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1600 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1601 pstate_funcs.get_val = funcs->get_val;
007bea09 1602 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1603 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1604
016c8150
DB
1605}
1606
9522a2ff 1607#ifdef CONFIG_ACPI
fbbcdc07
AH
1608
1609static bool intel_pstate_no_acpi_pss(void)
1610{
1611 int i;
1612
1613 for_each_possible_cpu(i) {
1614 acpi_status status;
1615 union acpi_object *pss;
1616 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1617 struct acpi_processor *pr = per_cpu(processors, i);
1618
1619 if (!pr)
1620 continue;
1621
1622 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1623 if (ACPI_FAILURE(status))
1624 continue;
1625
1626 pss = buffer.pointer;
1627 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1628 kfree(pss);
1629 return false;
1630 }
1631
1632 kfree(pss);
1633 }
1634
1635 return true;
1636}
1637
966916ea 1638static bool intel_pstate_has_acpi_ppc(void)
1639{
1640 int i;
1641
1642 for_each_possible_cpu(i) {
1643 struct acpi_processor *pr = per_cpu(processors, i);
1644
1645 if (!pr)
1646 continue;
1647 if (acpi_has_method(pr->handle, "_PPC"))
1648 return true;
1649 }
1650 return false;
1651}
1652
1653enum {
1654 PSS,
1655 PPC,
1656};
1657
fbbcdc07
AH
1658struct hw_vendor_info {
1659 u16 valid;
1660 char oem_id[ACPI_OEM_ID_SIZE];
1661 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1662 int oem_pwr_table;
fbbcdc07
AH
1663};
1664
1665/* Hardware vendor-specific info that has its own power management modes */
1666static struct hw_vendor_info vendor_info[] = {
966916ea 1667 {1, "HP ", "ProLiant", PSS},
1668 {1, "ORACLE", "X4-2 ", PPC},
1669 {1, "ORACLE", "X4-2L ", PPC},
1670 {1, "ORACLE", "X4-2B ", PPC},
1671 {1, "ORACLE", "X3-2 ", PPC},
1672 {1, "ORACLE", "X3-2L ", PPC},
1673 {1, "ORACLE", "X3-2B ", PPC},
1674 {1, "ORACLE", "X4470M2 ", PPC},
1675 {1, "ORACLE", "X4270M3 ", PPC},
1676 {1, "ORACLE", "X4270M2 ", PPC},
1677 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1678 {1, "ORACLE", "X4170 M3", PPC},
1679 {1, "ORACLE", "X4275 M3", PPC},
1680 {1, "ORACLE", "X6-2 ", PPC},
1681 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1682 {0, "", ""},
1683};
1684
1685static bool intel_pstate_platform_pwr_mgmt_exists(void)
1686{
1687 struct acpi_table_header hdr;
1688 struct hw_vendor_info *v_info;
2f86dc4c
DB
1689 const struct x86_cpu_id *id;
1690 u64 misc_pwr;
1691
1692 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1693 if (id) {
1694 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1695 if ( misc_pwr & (1 << 8))
1696 return true;
1697 }
fbbcdc07 1698
c410833a
SK
1699 if (acpi_disabled ||
1700 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1701 return false;
1702
1703 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1704 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1705 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1706 ACPI_OEM_TABLE_ID_SIZE))
1707 switch (v_info->oem_pwr_table) {
1708 case PSS:
1709 return intel_pstate_no_acpi_pss();
1710 case PPC:
aa4ea34d
EZ
1711 return intel_pstate_has_acpi_ppc() &&
1712 (!force_load);
966916ea 1713 }
fbbcdc07
AH
1714 }
1715
1716 return false;
1717}
1718#else /* CONFIG_ACPI not enabled */
1719static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1720static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1721#endif /* CONFIG_ACPI */
1722
7791e4aa
SP
1723static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1724 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1725 {}
1726};
1727
93f0822d
DB
1728static int __init intel_pstate_init(void)
1729{
907cc908 1730 int cpu, rc = 0;
93f0822d 1731 const struct x86_cpu_id *id;
64df1fdf 1732 struct cpu_defaults *cpu_def;
93f0822d 1733
6be26498
DB
1734 if (no_load)
1735 return -ENODEV;
1736
7791e4aa
SP
1737 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1738 copy_cpu_funcs(&core_params.funcs);
1739 hwp_active++;
1740 goto hwp_cpu_matched;
1741 }
1742
93f0822d
DB
1743 id = x86_match_cpu(intel_pstate_cpu_ids);
1744 if (!id)
1745 return -ENODEV;
1746
64df1fdf 1747 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1748
64df1fdf
BP
1749 copy_pid_params(&cpu_def->pid_policy);
1750 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1751
b563b4e3
DB
1752 if (intel_pstate_msrs_not_valid())
1753 return -ENODEV;
1754
7791e4aa
SP
1755hwp_cpu_matched:
1756 /*
1757 * The Intel pstate driver will be ignored if the platform
1758 * firmware has its own power management modes.
1759 */
1760 if (intel_pstate_platform_pwr_mgmt_exists())
1761 return -ENODEV;
1762
4836df17 1763 pr_info("Intel P-state driver initializing\n");
93f0822d 1764
b57ffac5 1765 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1766 if (!all_cpu_data)
1767 return -ENOMEM;
93f0822d 1768
d64c3b0b
KCA
1769 if (!hwp_active && hwp_only)
1770 goto out;
1771
93f0822d
DB
1772 rc = cpufreq_register_driver(&intel_pstate_driver);
1773 if (rc)
1774 goto out;
1775
1776 intel_pstate_debug_expose_params();
1777 intel_pstate_sysfs_expose_params();
b69880f9 1778
7791e4aa 1779 if (hwp_active)
4836df17 1780 pr_info("HWP enabled\n");
7791e4aa 1781
93f0822d
DB
1782 return rc;
1783out:
907cc908
DB
1784 get_online_cpus();
1785 for_each_online_cpu(cpu) {
1786 if (all_cpu_data[cpu]) {
bb6ab52f 1787 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1788 kfree(all_cpu_data[cpu]);
1789 }
1790 }
1791
1792 put_online_cpus();
1793 vfree(all_cpu_data);
93f0822d
DB
1794 return -ENODEV;
1795}
1796device_initcall(intel_pstate_init);
1797
6be26498
DB
1798static int __init intel_pstate_setup(char *str)
1799{
1800 if (!str)
1801 return -EINVAL;
1802
1803 if (!strcmp(str, "disable"))
1804 no_load = 1;
539342f6 1805 if (!strcmp(str, "no_hwp")) {
4836df17 1806 pr_info("HWP disabled\n");
2f86dc4c 1807 no_hwp = 1;
539342f6 1808 }
aa4ea34d
EZ
1809 if (!strcmp(str, "force"))
1810 force_load = 1;
d64c3b0b
KCA
1811 if (!strcmp(str, "hwp_only"))
1812 hwp_only = 1;
9522a2ff
SP
1813
1814#ifdef CONFIG_ACPI
1815 if (!strcmp(str, "support_acpi_ppc"))
1816 acpi_ppc = true;
1817#endif
1818
6be26498
DB
1819 return 0;
1820}
1821early_param("intel_pstate", intel_pstate_setup);
1822
93f0822d
DB
1823MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1824MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1825MODULE_LICENSE("GPL");
This page took 0.251355 seconds and 5 git commands to generate.