Merge back cpufreq changes for v4.7.
[deliverable/linux.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
e8db0be1 15#include <linux/pm_qos.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
5787536e 21#include <linux/math64.h>
884b17e1 22#include <linux/module.h>
4f86d3a8 23
decd51bb
TT
24/*
25 * Please note when changing the tuning values:
26 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27 * a scaling operation multiplication may overflow on 32 bit platforms.
28 * In that case, #define RESOLUTION as ULL to get 64 bit result:
29 * #define RESOLUTION 1024ULL
30 *
31 * The default values do not overflow.
32 */
69d25870 33#define BUCKETS 12
ae779300
MG
34#define INTERVAL_SHIFT 3
35#define INTERVALS (1UL << INTERVAL_SHIFT)
69d25870 36#define RESOLUTION 1024
1f85f87d 37#define DECAY 8
69d25870 38#define MAX_INTERESTING 50000
1f85f87d 39
69d25870
AV
40
41/*
42 * Concepts and ideas behind the menu governor
43 *
44 * For the menu governor, there are 3 decision factors for picking a C
45 * state:
46 * 1) Energy break even point
47 * 2) Performance impact
48 * 3) Latency tolerance (from pmqos infrastructure)
49 * These these three factors are treated independently.
50 *
51 * Energy break even point
52 * -----------------------
53 * C state entry and exit have an energy cost, and a certain amount of time in
54 * the C state is required to actually break even on this cost. CPUIDLE
55 * provides us this duration in the "target_residency" field. So all that we
56 * need is a good prediction of how long we'll be idle. Like the traditional
57 * menu governor, we start with the actual known "next timer event" time.
58 *
59 * Since there are other source of wakeups (interrupts for example) than
60 * the next timer event, this estimation is rather optimistic. To get a
61 * more realistic estimate, a correction factor is applied to the estimate,
62 * that is based on historic behavior. For example, if in the past the actual
63 * duration always was 50% of the next timer tick, the correction factor will
64 * be 0.5.
65 *
66 * menu uses a running average for this correction factor, however it uses a
67 * set of factors, not just a single factor. This stems from the realization
68 * that the ratio is dependent on the order of magnitude of the expected
69 * duration; if we expect 500 milliseconds of idle time the likelihood of
70 * getting an interrupt very early is much higher than if we expect 50 micro
71 * seconds of idle time. A second independent factor that has big impact on
72 * the actual factor is if there is (disk) IO outstanding or not.
73 * (as a special twist, we consider every sleep longer than 50 milliseconds
74 * as perfect; there are no power gains for sleeping longer than this)
75 *
76 * For these two reasons we keep an array of 12 independent factors, that gets
77 * indexed based on the magnitude of the expected duration as well as the
78 * "is IO outstanding" property.
79 *
1f85f87d
AV
80 * Repeatable-interval-detector
81 * ----------------------------
82 * There are some cases where "next timer" is a completely unusable predictor:
83 * Those cases where the interval is fixed, for example due to hardware
84 * interrupt mitigation, but also due to fixed transfer rate devices such as
85 * mice.
86 * For this, we use a different predictor: We track the duration of the last 8
87 * intervals and if the stand deviation of these 8 intervals is below a
88 * threshold value, we use the average of these intervals as prediction.
89 *
69d25870
AV
90 * Limiting Performance Impact
91 * ---------------------------
92 * C states, especially those with large exit latencies, can have a real
20e3341b 93 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
94 * and in addition, less performance has a power price of its own.
95 *
96 * As a general rule of thumb, menu assumes that the following heuristic
97 * holds:
98 * The busier the system, the less impact of C states is acceptable
99 *
100 * This rule-of-thumb is implemented using a performance-multiplier:
101 * If the exit latency times the performance multiplier is longer than
102 * the predicted duration, the C state is not considered a candidate
103 * for selection due to a too high performance impact. So the higher
104 * this multiplier is, the longer we need to be idle to pick a deep C
105 * state, and thus the less likely a busy CPU will hit such a deep
106 * C state.
107 *
108 * Two factors are used in determing this multiplier:
109 * a value of 10 is added for each point of "per cpu load average" we have.
110 * a value of 5 points is added for each process that is waiting for
111 * IO on this CPU.
112 * (these values are experimentally determined)
113 *
114 * The load average factor gives a longer term (few seconds) input to the
115 * decision, while the iowait value gives a cpu local instantanious input.
116 * The iowait factor may look low, but realize that this is also already
117 * represented in the system load average.
118 *
119 */
4f86d3a8
LB
120
121struct menu_device {
122 int last_state_idx;
672917dc 123 int needs_update;
4f86d3a8 124
5dc2f5a3 125 unsigned int next_timer_us;
51f245b8 126 unsigned int predicted_us;
69d25870 127 unsigned int bucket;
51f245b8 128 unsigned int correction_factor[BUCKETS];
939e33b7 129 unsigned int intervals[INTERVALS];
1f85f87d 130 int interval_ptr;
4f86d3a8
LB
131};
132
69d25870
AV
133
134#define LOAD_INT(x) ((x) >> FSHIFT)
135#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
136
372ba8cb 137static inline int get_loadavg(unsigned long load)
69d25870 138{
372ba8cb 139 return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
69d25870
AV
140}
141
64b4ca5c 142static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
69d25870
AV
143{
144 int bucket = 0;
145
146 /*
147 * We keep two groups of stats; one with no
148 * IO pending, one without.
149 * This allows us to calculate
150 * E(duration)|iowait
151 */
64b4ca5c 152 if (nr_iowaiters)
69d25870
AV
153 bucket = BUCKETS/2;
154
155 if (duration < 10)
156 return bucket;
157 if (duration < 100)
158 return bucket + 1;
159 if (duration < 1000)
160 return bucket + 2;
161 if (duration < 10000)
162 return bucket + 3;
163 if (duration < 100000)
164 return bucket + 4;
165 return bucket + 5;
166}
167
168/*
169 * Return a multiplier for the exit latency that is intended
170 * to take performance requirements into account.
171 * The more performance critical we estimate the system
172 * to be, the higher this multiplier, and thus the higher
173 * the barrier to go to an expensive C state.
174 */
372ba8cb 175static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
69d25870
AV
176{
177 int mult = 1;
178
179 /* for higher loadavg, we are more reluctant */
180
372ba8cb 181 mult += 2 * get_loadavg(load);
69d25870
AV
182
183 /* for IO wait tasks (per cpu!) we add 5x each */
64b4ca5c 184 mult += 10 * nr_iowaiters;
69d25870
AV
185
186 return mult;
187}
188
4f86d3a8
LB
189static DEFINE_PER_CPU(struct menu_device, menu_devices);
190
46bcfad7 191static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 192
1f85f87d
AV
193/*
194 * Try detecting repeating patterns by keeping track of the last 8
195 * intervals, and checking if the standard deviation of that set
196 * of points is below a threshold. If it is... then use the
197 * average of these 8 points as the estimated value.
198 */
e132b9b3 199static unsigned int get_typical_interval(struct menu_device *data)
1f85f87d 200{
4cd46bca 201 int i, divisor;
3b99669b
RV
202 unsigned int max, thresh, avg;
203 uint64_t sum, variance;
0e96d5ad
TT
204
205 thresh = UINT_MAX; /* Discard outliers above this value */
1f85f87d 206
c96ca4fb 207again:
1f85f87d 208
0e96d5ad 209 /* First calculate the average of past intervals */
4cd46bca 210 max = 0;
3b99669b 211 sum = 0;
4cd46bca 212 divisor = 0;
c96ca4fb 213 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 214 unsigned int value = data->intervals[i];
c96ca4fb 215 if (value <= thresh) {
3b99669b 216 sum += value;
c96ca4fb
YS
217 divisor++;
218 if (value > max)
219 max = value;
220 }
221 }
ae779300 222 if (divisor == INTERVALS)
3b99669b 223 avg = sum >> INTERVAL_SHIFT;
ae779300 224 else
3b99669b 225 avg = div_u64(sum, divisor);
c96ca4fb 226
7024b18c
RV
227 /* Then try to determine variance */
228 variance = 0;
c96ca4fb 229 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 230 unsigned int value = data->intervals[i];
c96ca4fb 231 if (value <= thresh) {
3b99669b 232 int64_t diff = (int64_t)value - avg;
7024b18c 233 variance += diff * diff;
c96ca4fb
YS
234 }
235 }
ae779300 236 if (divisor == INTERVALS)
7024b18c 237 variance >>= INTERVAL_SHIFT;
ae779300 238 else
7024b18c 239 do_div(variance, divisor);
ae779300 240
1f85f87d 241 /*
7024b18c
RV
242 * The typical interval is obtained when standard deviation is
243 * small (stddev <= 20 us, variance <= 400 us^2) or standard
244 * deviation is small compared to the average interval (avg >
245 * 6*stddev, avg^2 > 36*variance). The average is smaller than
246 * UINT_MAX aka U32_MAX, so computing its square does not
247 * overflow a u64. We simply reject this candidate average if
248 * the standard deviation is greater than 715 s (which is
249 * rather unlikely).
0d6a7ffa 250 *
330647a9 251 * Use this result only if there is no timer to wake us up sooner.
1f85f87d 252 */
7024b18c 253 if (likely(variance <= U64_MAX/36)) {
3b99669b 254 if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
7024b18c 255 || variance <= 400) {
e132b9b3 256 return avg;
0d6a7ffa 257 }
69a37bea 258 }
017099e2
TT
259
260 /*
261 * If we have outliers to the upside in our distribution, discard
262 * those by setting the threshold to exclude these outliers, then
263 * calculate the average and standard deviation again. Once we get
264 * down to the bottom 3/4 of our samples, stop excluding samples.
265 *
266 * This can deal with workloads that have long pauses interspersed
267 * with sporadic activity with a bunch of short pauses.
268 */
269 if ((divisor * 4) <= INTERVALS * 3)
e132b9b3 270 return UINT_MAX;
017099e2
TT
271
272 thresh = max - 1;
273 goto again;
1f85f87d
AV
274}
275
4f86d3a8
LB
276/**
277 * menu_select - selects the next idle state to enter
46bcfad7 278 * @drv: cpuidle driver containing state data
4f86d3a8
LB
279 * @dev: the CPU
280 */
46bcfad7 281static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 282{
229b6863 283 struct menu_device *data = this_cpu_ptr(&menu_devices);
ed77134b 284 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 285 int i;
96e95182 286 unsigned int interactivity_req;
e132b9b3 287 unsigned int expected_interval;
372ba8cb 288 unsigned long nr_iowaiters, cpu_load;
69d25870 289
672917dc 290 if (data->needs_update) {
46bcfad7 291 menu_update(drv, dev);
672917dc
CZ
292 data->needs_update = 0;
293 }
294
a2bd9202 295 /* Special case when user has set very strict latency requirement */
69d25870 296 if (unlikely(latency_req == 0))
a2bd9202 297 return 0;
a2bd9202 298
69d25870 299 /* determine the expected residency time, round up */
107d4f46 300 data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
69d25870 301
372ba8cb 302 get_iowait_load(&nr_iowaiters, &cpu_load);
64b4ca5c 303 data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
69d25870 304
51f245b8
TT
305 /*
306 * Force the result of multiplication to be 64 bits even if both
307 * operands are 32 bits.
308 * Make sure to round up for half microseconds.
309 */
ee3c86f3 310 data->predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
51f245b8 311 data->correction_factor[data->bucket],
5787536e 312 RESOLUTION * DECAY);
69d25870 313
e132b9b3
RR
314 expected_interval = get_typical_interval(data);
315 expected_interval = min(expected_interval, data->next_timer_us);
96e95182 316
9c4b2867 317 if (CPUIDLE_DRIVER_STATE_START > 0) {
0c313cb2
RW
318 struct cpuidle_state *s = &drv->states[CPUIDLE_DRIVER_STATE_START];
319 unsigned int polling_threshold;
320
9c4b2867
RW
321 /*
322 * We want to default to C1 (hlt), not to busy polling
e132b9b3
RR
323 * unless the timer is happening really really soon, or
324 * C1's exit latency exceeds the user configured limit.
9c4b2867 325 */
0c313cb2
RW
326 polling_threshold = max_t(unsigned int, 20, s->target_residency);
327 if (data->next_timer_us > polling_threshold &&
328 latency_req > s->exit_latency && !s->disabled &&
e132b9b3 329 !dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable)
9c4b2867 330 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
0c313cb2
RW
331 else
332 data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
9c4b2867 333 } else {
69d25870 334 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
9c4b2867 335 }
4f86d3a8 336
e132b9b3
RR
337 /*
338 * Use the lowest expected idle interval to pick the idle state.
339 */
340 data->predicted_us = min(data->predicted_us, expected_interval);
341
342 /*
343 * Use the performance multiplier and the user-configurable
344 * latency_req to determine the maximum exit latency.
345 */
346 interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
347 if (latency_req > interactivity_req)
348 latency_req = interactivity_req;
349
71abbbf8
AL
350 /*
351 * Find the idle state with the lowest power while satisfying
352 * our constraints.
353 */
5bb1729c 354 for (i = data->last_state_idx + 1; i < drv->state_count; i++) {
46bcfad7 355 struct cpuidle_state *s = &drv->states[i];
dc7fd275 356 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 357
cbc9ef02 358 if (s->disabled || su->disable)
3a53396b 359 continue;
14851912 360 if (s->target_residency > data->predicted_us)
71abbbf8 361 continue;
a2bd9202 362 if (s->exit_latency > latency_req)
71abbbf8 363 continue;
71abbbf8 364
8aef33a7 365 data->last_state_idx = i;
4f86d3a8
LB
366 }
367
69d25870 368 return data->last_state_idx;
4f86d3a8
LB
369}
370
371/**
672917dc 372 * menu_reflect - records that data structures need update
4f86d3a8 373 * @dev: the CPU
e978aa7d 374 * @index: the index of actual entered state
4f86d3a8
LB
375 *
376 * NOTE: it's important to be fast here because this operation will add to
377 * the overall exit latency.
378 */
e978aa7d 379static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc 380{
229b6863 381 struct menu_device *data = this_cpu_ptr(&menu_devices);
a802ea96 382
e978aa7d 383 data->last_state_idx = index;
a802ea96 384 data->needs_update = 1;
672917dc
CZ
385}
386
387/**
388 * menu_update - attempts to guess what happened after entry
46bcfad7 389 * @drv: cpuidle driver containing state data
672917dc
CZ
390 * @dev: the CPU
391 */
46bcfad7 392static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 393{
229b6863 394 struct menu_device *data = this_cpu_ptr(&menu_devices);
4f86d3a8 395 int last_idx = data->last_state_idx;
46bcfad7 396 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 397 unsigned int measured_us;
51f245b8 398 unsigned int new_factor;
4f86d3a8
LB
399
400 /*
61c66d6e 401 * Try to figure out how much time passed between entry to low
402 * power state and occurrence of the wakeup event.
403 *
404 * If the entered idle state didn't support residency measurements,
4108b3d9
LB
405 * we use them anyway if they are short, and if long,
406 * truncate to the whole expected time.
61c66d6e 407 *
408 * Any measured amount of time will include the exit latency.
409 * Since we are interested in when the wakeup begun, not when it
2fba5376 410 * was completed, we must subtract the exit latency. However, if
61c66d6e 411 * the measured amount of time is less than the exit latency,
412 * assume the state was never reached and the exit latency is 0.
4f86d3a8 413 */
69d25870 414
4108b3d9
LB
415 /* measured value */
416 measured_us = cpuidle_get_last_residency(dev);
4f86d3a8 417
4108b3d9 418 /* Deduct exit latency */
efddfd90 419 if (measured_us > 2 * target->exit_latency)
4108b3d9 420 measured_us -= target->exit_latency;
efddfd90
RR
421 else
422 measured_us /= 2;
69d25870 423
4108b3d9
LB
424 /* Make sure our coefficients do not exceed unity */
425 if (measured_us > data->next_timer_us)
426 measured_us = data->next_timer_us;
69d25870 427
51f245b8
TT
428 /* Update our correction ratio */
429 new_factor = data->correction_factor[data->bucket];
430 new_factor -= new_factor / DECAY;
69d25870 431
5dc2f5a3 432 if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
433 new_factor += RESOLUTION * measured_us / data->next_timer_us;
320eee77 434 else
69d25870
AV
435 /*
436 * we were idle so long that we count it as a perfect
437 * prediction
438 */
439 new_factor += RESOLUTION;
320eee77 440
69d25870
AV
441 /*
442 * We don't want 0 as factor; we always want at least
51f245b8
TT
443 * a tiny bit of estimated time. Fortunately, due to rounding,
444 * new_factor will stay nonzero regardless of measured_us values
445 * and the compiler can eliminate this test as long as DECAY > 1.
69d25870 446 */
51f245b8 447 if (DECAY == 1 && unlikely(new_factor == 0))
69d25870 448 new_factor = 1;
320eee77 449
69d25870 450 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
451
452 /* update the repeating-pattern data */
61c66d6e 453 data->intervals[data->interval_ptr++] = measured_us;
1f85f87d
AV
454 if (data->interval_ptr >= INTERVALS)
455 data->interval_ptr = 0;
4f86d3a8
LB
456}
457
458/**
459 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 460 * @drv: cpuidle driver
4f86d3a8
LB
461 * @dev: the CPU
462 */
46bcfad7
DD
463static int menu_enable_device(struct cpuidle_driver *drv,
464 struct cpuidle_device *dev)
4f86d3a8
LB
465{
466 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
bed4d597 467 int i;
4f86d3a8
LB
468
469 memset(data, 0, sizeof(struct menu_device));
470
bed4d597
CK
471 /*
472 * if the correction factor is 0 (eg first time init or cpu hotplug
473 * etc), we actually want to start out with a unity factor.
474 */
475 for(i = 0; i < BUCKETS; i++)
476 data->correction_factor[i] = RESOLUTION * DECAY;
477
4f86d3a8
LB
478 return 0;
479}
480
481static struct cpuidle_governor menu_governor = {
482 .name = "menu",
483 .rating = 20,
484 .enable = menu_enable_device,
485 .select = menu_select,
486 .reflect = menu_reflect,
487 .owner = THIS_MODULE,
488};
489
490/**
491 * init_menu - initializes the governor
492 */
493static int __init init_menu(void)
494{
495 return cpuidle_register_governor(&menu_governor);
496}
497
137b944e 498postcore_initcall(init_menu);
This page took 0.540895 seconds and 5 git commands to generate.