Merge tag 'xfs-for-linus-4.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
e8db0be1 15#include <linux/pm_qos.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
5787536e 21#include <linux/math64.h>
884b17e1 22#include <linux/module.h>
4f86d3a8 23
decd51bb
TT
24/*
25 * Please note when changing the tuning values:
26 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27 * a scaling operation multiplication may overflow on 32 bit platforms.
28 * In that case, #define RESOLUTION as ULL to get 64 bit result:
29 * #define RESOLUTION 1024ULL
30 *
31 * The default values do not overflow.
32 */
69d25870 33#define BUCKETS 12
ae779300
MG
34#define INTERVAL_SHIFT 3
35#define INTERVALS (1UL << INTERVAL_SHIFT)
69d25870 36#define RESOLUTION 1024
1f85f87d 37#define DECAY 8
69d25870 38#define MAX_INTERESTING 50000
1f85f87d 39
69d25870
AV
40
41/*
42 * Concepts and ideas behind the menu governor
43 *
44 * For the menu governor, there are 3 decision factors for picking a C
45 * state:
46 * 1) Energy break even point
47 * 2) Performance impact
48 * 3) Latency tolerance (from pmqos infrastructure)
49 * These these three factors are treated independently.
50 *
51 * Energy break even point
52 * -----------------------
53 * C state entry and exit have an energy cost, and a certain amount of time in
54 * the C state is required to actually break even on this cost. CPUIDLE
55 * provides us this duration in the "target_residency" field. So all that we
56 * need is a good prediction of how long we'll be idle. Like the traditional
57 * menu governor, we start with the actual known "next timer event" time.
58 *
59 * Since there are other source of wakeups (interrupts for example) than
60 * the next timer event, this estimation is rather optimistic. To get a
61 * more realistic estimate, a correction factor is applied to the estimate,
62 * that is based on historic behavior. For example, if in the past the actual
63 * duration always was 50% of the next timer tick, the correction factor will
64 * be 0.5.
65 *
66 * menu uses a running average for this correction factor, however it uses a
67 * set of factors, not just a single factor. This stems from the realization
68 * that the ratio is dependent on the order of magnitude of the expected
69 * duration; if we expect 500 milliseconds of idle time the likelihood of
70 * getting an interrupt very early is much higher than if we expect 50 micro
71 * seconds of idle time. A second independent factor that has big impact on
72 * the actual factor is if there is (disk) IO outstanding or not.
73 * (as a special twist, we consider every sleep longer than 50 milliseconds
74 * as perfect; there are no power gains for sleeping longer than this)
75 *
76 * For these two reasons we keep an array of 12 independent factors, that gets
77 * indexed based on the magnitude of the expected duration as well as the
78 * "is IO outstanding" property.
79 *
1f85f87d
AV
80 * Repeatable-interval-detector
81 * ----------------------------
82 * There are some cases where "next timer" is a completely unusable predictor:
83 * Those cases where the interval is fixed, for example due to hardware
84 * interrupt mitigation, but also due to fixed transfer rate devices such as
85 * mice.
86 * For this, we use a different predictor: We track the duration of the last 8
87 * intervals and if the stand deviation of these 8 intervals is below a
88 * threshold value, we use the average of these intervals as prediction.
89 *
69d25870
AV
90 * Limiting Performance Impact
91 * ---------------------------
92 * C states, especially those with large exit latencies, can have a real
20e3341b 93 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
94 * and in addition, less performance has a power price of its own.
95 *
96 * As a general rule of thumb, menu assumes that the following heuristic
97 * holds:
98 * The busier the system, the less impact of C states is acceptable
99 *
100 * This rule-of-thumb is implemented using a performance-multiplier:
101 * If the exit latency times the performance multiplier is longer than
102 * the predicted duration, the C state is not considered a candidate
103 * for selection due to a too high performance impact. So the higher
104 * this multiplier is, the longer we need to be idle to pick a deep C
105 * state, and thus the less likely a busy CPU will hit such a deep
106 * C state.
107 *
108 * Two factors are used in determing this multiplier:
109 * a value of 10 is added for each point of "per cpu load average" we have.
110 * a value of 5 points is added for each process that is waiting for
111 * IO on this CPU.
112 * (these values are experimentally determined)
113 *
114 * The load average factor gives a longer term (few seconds) input to the
115 * decision, while the iowait value gives a cpu local instantanious input.
116 * The iowait factor may look low, but realize that this is also already
117 * represented in the system load average.
118 *
119 */
4f86d3a8
LB
120
121struct menu_device {
122 int last_state_idx;
672917dc 123 int needs_update;
4f86d3a8 124
5dc2f5a3 125 unsigned int next_timer_us;
51f245b8 126 unsigned int predicted_us;
69d25870 127 unsigned int bucket;
51f245b8 128 unsigned int correction_factor[BUCKETS];
939e33b7 129 unsigned int intervals[INTERVALS];
1f85f87d 130 int interval_ptr;
4f86d3a8
LB
131};
132
69d25870
AV
133
134#define LOAD_INT(x) ((x) >> FSHIFT)
135#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
136
372ba8cb 137static inline int get_loadavg(unsigned long load)
69d25870 138{
372ba8cb 139 return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
69d25870
AV
140}
141
64b4ca5c 142static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
69d25870
AV
143{
144 int bucket = 0;
145
146 /*
147 * We keep two groups of stats; one with no
148 * IO pending, one without.
149 * This allows us to calculate
150 * E(duration)|iowait
151 */
64b4ca5c 152 if (nr_iowaiters)
69d25870
AV
153 bucket = BUCKETS/2;
154
155 if (duration < 10)
156 return bucket;
157 if (duration < 100)
158 return bucket + 1;
159 if (duration < 1000)
160 return bucket + 2;
161 if (duration < 10000)
162 return bucket + 3;
163 if (duration < 100000)
164 return bucket + 4;
165 return bucket + 5;
166}
167
168/*
169 * Return a multiplier for the exit latency that is intended
170 * to take performance requirements into account.
171 * The more performance critical we estimate the system
172 * to be, the higher this multiplier, and thus the higher
173 * the barrier to go to an expensive C state.
174 */
372ba8cb 175static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
69d25870
AV
176{
177 int mult = 1;
178
179 /* for higher loadavg, we are more reluctant */
180
372ba8cb 181 mult += 2 * get_loadavg(load);
69d25870
AV
182
183 /* for IO wait tasks (per cpu!) we add 5x each */
64b4ca5c 184 mult += 10 * nr_iowaiters;
69d25870
AV
185
186 return mult;
187}
188
4f86d3a8
LB
189static DEFINE_PER_CPU(struct menu_device, menu_devices);
190
46bcfad7 191static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 192
1f85f87d
AV
193/*
194 * Try detecting repeating patterns by keeping track of the last 8
195 * intervals, and checking if the standard deviation of that set
196 * of points is below a threshold. If it is... then use the
197 * average of these 8 points as the estimated value.
198 */
14851912 199static void get_typical_interval(struct menu_device *data)
1f85f87d 200{
4cd46bca 201 int i, divisor;
0e96d5ad
TT
202 unsigned int max, thresh;
203 uint64_t avg, stddev;
204
205 thresh = UINT_MAX; /* Discard outliers above this value */
1f85f87d 206
c96ca4fb 207again:
1f85f87d 208
0e96d5ad 209 /* First calculate the average of past intervals */
4cd46bca
TT
210 max = 0;
211 avg = 0;
212 divisor = 0;
c96ca4fb 213 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 214 unsigned int value = data->intervals[i];
c96ca4fb
YS
215 if (value <= thresh) {
216 avg += value;
217 divisor++;
218 if (value > max)
219 max = value;
220 }
221 }
ae779300
MG
222 if (divisor == INTERVALS)
223 avg >>= INTERVAL_SHIFT;
224 else
225 do_div(avg, divisor);
c96ca4fb 226
0e96d5ad
TT
227 /* Then try to determine standard deviation */
228 stddev = 0;
c96ca4fb 229 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 230 unsigned int value = data->intervals[i];
c96ca4fb
YS
231 if (value <= thresh) {
232 int64_t diff = value - avg;
233 stddev += diff * diff;
234 }
235 }
ae779300
MG
236 if (divisor == INTERVALS)
237 stddev >>= INTERVAL_SHIFT;
238 else
239 do_div(stddev, divisor);
240
1f85f87d 241 /*
c96ca4fb
YS
242 * The typical interval is obtained when standard deviation is small
243 * or standard deviation is small compared to the average interval.
330647a9 244 *
0d6a7ffa
TT
245 * int_sqrt() formal parameter type is unsigned long. When the
246 * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
247 * the resulting squared standard deviation exceeds the input domain
248 * of int_sqrt on platforms where unsigned long is 32 bits in size.
249 * In such case reject the candidate average.
250 *
330647a9 251 * Use this result only if there is no timer to wake us up sooner.
1f85f87d 252 */
0d6a7ffa
TT
253 if (likely(stddev <= ULONG_MAX)) {
254 stddev = int_sqrt(stddev);
255 if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
c96ca4fb 256 || stddev <= 20) {
5dc2f5a3 257 if (data->next_timer_us > avg)
0d6a7ffa
TT
258 data->predicted_us = avg;
259 return;
260 }
69a37bea 261 }
017099e2
TT
262
263 /*
264 * If we have outliers to the upside in our distribution, discard
265 * those by setting the threshold to exclude these outliers, then
266 * calculate the average and standard deviation again. Once we get
267 * down to the bottom 3/4 of our samples, stop excluding samples.
268 *
269 * This can deal with workloads that have long pauses interspersed
270 * with sporadic activity with a bunch of short pauses.
271 */
272 if ((divisor * 4) <= INTERVALS * 3)
273 return;
274
275 thresh = max - 1;
276 goto again;
1f85f87d
AV
277}
278
4f86d3a8
LB
279/**
280 * menu_select - selects the next idle state to enter
46bcfad7 281 * @drv: cpuidle driver containing state data
4f86d3a8
LB
282 * @dev: the CPU
283 */
46bcfad7 284static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 285{
229b6863 286 struct menu_device *data = this_cpu_ptr(&menu_devices);
ed77134b 287 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 288 int i;
96e95182 289 unsigned int interactivity_req;
372ba8cb 290 unsigned long nr_iowaiters, cpu_load;
69d25870 291
672917dc 292 if (data->needs_update) {
46bcfad7 293 menu_update(drv, dev);
672917dc
CZ
294 data->needs_update = 0;
295 }
296
3836785a 297 data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
1c6fe036 298
a2bd9202 299 /* Special case when user has set very strict latency requirement */
69d25870 300 if (unlikely(latency_req == 0))
a2bd9202 301 return 0;
a2bd9202 302
69d25870 303 /* determine the expected residency time, round up */
107d4f46 304 data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
69d25870 305
372ba8cb 306 get_iowait_load(&nr_iowaiters, &cpu_load);
64b4ca5c 307 data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
69d25870 308
51f245b8
TT
309 /*
310 * Force the result of multiplication to be 64 bits even if both
311 * operands are 32 bits.
312 * Make sure to round up for half microseconds.
313 */
ee3c86f3 314 data->predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
51f245b8 315 data->correction_factor[data->bucket],
5787536e 316 RESOLUTION * DECAY);
69d25870 317
14851912 318 get_typical_interval(data);
1f85f87d 319
96e95182 320 /*
321 * Performance multiplier defines a minimum predicted idle
322 * duration / latency ratio. Adjust the latency limit if
323 * necessary.
324 */
372ba8cb 325 interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
96e95182 326 if (latency_req > interactivity_req)
327 latency_req = interactivity_req;
328
69d25870
AV
329 /*
330 * We want to default to C1 (hlt), not to busy polling
331 * unless the timer is happening really really soon.
332 */
5dc2f5a3 333 if (data->next_timer_us > 5 &&
cbc9ef02 334 !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
dc7fd275 335 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
69d25870 336 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
4f86d3a8 337
71abbbf8
AL
338 /*
339 * Find the idle state with the lowest power while satisfying
340 * our constraints.
341 */
46bcfad7
DD
342 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
343 struct cpuidle_state *s = &drv->states[i];
dc7fd275 344 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 345
cbc9ef02 346 if (s->disabled || su->disable)
3a53396b 347 continue;
14851912 348 if (s->target_residency > data->predicted_us)
71abbbf8 349 continue;
a2bd9202 350 if (s->exit_latency > latency_req)
71abbbf8 351 continue;
71abbbf8 352
8aef33a7 353 data->last_state_idx = i;
4f86d3a8
LB
354 }
355
69d25870 356 return data->last_state_idx;
4f86d3a8
LB
357}
358
359/**
672917dc 360 * menu_reflect - records that data structures need update
4f86d3a8 361 * @dev: the CPU
e978aa7d 362 * @index: the index of actual entered state
4f86d3a8
LB
363 *
364 * NOTE: it's important to be fast here because this operation will add to
365 * the overall exit latency.
366 */
e978aa7d 367static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc 368{
229b6863 369 struct menu_device *data = this_cpu_ptr(&menu_devices);
a802ea96 370
e978aa7d 371 data->last_state_idx = index;
a802ea96 372 data->needs_update = 1;
672917dc
CZ
373}
374
375/**
376 * menu_update - attempts to guess what happened after entry
46bcfad7 377 * @drv: cpuidle driver containing state data
672917dc
CZ
378 * @dev: the CPU
379 */
46bcfad7 380static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 381{
229b6863 382 struct menu_device *data = this_cpu_ptr(&menu_devices);
4f86d3a8 383 int last_idx = data->last_state_idx;
46bcfad7 384 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 385 unsigned int measured_us;
51f245b8 386 unsigned int new_factor;
4f86d3a8
LB
387
388 /*
61c66d6e 389 * Try to figure out how much time passed between entry to low
390 * power state and occurrence of the wakeup event.
391 *
392 * If the entered idle state didn't support residency measurements,
4108b3d9
LB
393 * we use them anyway if they are short, and if long,
394 * truncate to the whole expected time.
61c66d6e 395 *
396 * Any measured amount of time will include the exit latency.
397 * Since we are interested in when the wakeup begun, not when it
2fba5376 398 * was completed, we must subtract the exit latency. However, if
61c66d6e 399 * the measured amount of time is less than the exit latency,
400 * assume the state was never reached and the exit latency is 0.
4f86d3a8 401 */
69d25870 402
4108b3d9
LB
403 /* measured value */
404 measured_us = cpuidle_get_last_residency(dev);
4f86d3a8 405
4108b3d9
LB
406 /* Deduct exit latency */
407 if (measured_us > target->exit_latency)
408 measured_us -= target->exit_latency;
69d25870 409
4108b3d9
LB
410 /* Make sure our coefficients do not exceed unity */
411 if (measured_us > data->next_timer_us)
412 measured_us = data->next_timer_us;
69d25870 413
51f245b8
TT
414 /* Update our correction ratio */
415 new_factor = data->correction_factor[data->bucket];
416 new_factor -= new_factor / DECAY;
69d25870 417
5dc2f5a3 418 if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
419 new_factor += RESOLUTION * measured_us / data->next_timer_us;
320eee77 420 else
69d25870
AV
421 /*
422 * we were idle so long that we count it as a perfect
423 * prediction
424 */
425 new_factor += RESOLUTION;
320eee77 426
69d25870
AV
427 /*
428 * We don't want 0 as factor; we always want at least
51f245b8
TT
429 * a tiny bit of estimated time. Fortunately, due to rounding,
430 * new_factor will stay nonzero regardless of measured_us values
431 * and the compiler can eliminate this test as long as DECAY > 1.
69d25870 432 */
51f245b8 433 if (DECAY == 1 && unlikely(new_factor == 0))
69d25870 434 new_factor = 1;
320eee77 435
69d25870 436 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
437
438 /* update the repeating-pattern data */
61c66d6e 439 data->intervals[data->interval_ptr++] = measured_us;
1f85f87d
AV
440 if (data->interval_ptr >= INTERVALS)
441 data->interval_ptr = 0;
4f86d3a8
LB
442}
443
444/**
445 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 446 * @drv: cpuidle driver
4f86d3a8
LB
447 * @dev: the CPU
448 */
46bcfad7
DD
449static int menu_enable_device(struct cpuidle_driver *drv,
450 struct cpuidle_device *dev)
4f86d3a8
LB
451{
452 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
bed4d597 453 int i;
4f86d3a8
LB
454
455 memset(data, 0, sizeof(struct menu_device));
456
bed4d597
CK
457 /*
458 * if the correction factor is 0 (eg first time init or cpu hotplug
459 * etc), we actually want to start out with a unity factor.
460 */
461 for(i = 0; i < BUCKETS; i++)
462 data->correction_factor[i] = RESOLUTION * DECAY;
463
4f86d3a8
LB
464 return 0;
465}
466
467static struct cpuidle_governor menu_governor = {
468 .name = "menu",
469 .rating = 20,
470 .enable = menu_enable_device,
471 .select = menu_select,
472 .reflect = menu_reflect,
473 .owner = THIS_MODULE,
474};
475
476/**
477 * init_menu - initializes the governor
478 */
479static int __init init_menu(void)
480{
481 return cpuidle_register_governor(&menu_governor);
482}
483
137b944e 484postcore_initcall(init_menu);
This page took 0.622892 seconds and 5 git commands to generate.