Merge branch 'acpi-lpss'
[deliverable/linux.git] / drivers / crypto / ux500 / cryp / cryp_core.c
CommitLineData
2789c08f
AW
1/**
2 * Copyright (C) ST-Ericsson SA 2010
3 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
4 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
5 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
6 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
7 * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
8 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
9 * License terms: GNU General Public License (GPL) version 2
10 */
11
12#include <linux/clk.h>
13#include <linux/completion.h>
14#include <linux/crypto.h>
15#include <linux/dmaengine.h>
16#include <linux/err.h>
17#include <linux/errno.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/irqreturn.h>
21#include <linux/klist.h>
22#include <linux/module.h>
23#include <linux/platform_device.h>
24#include <linux/regulator/consumer.h>
25#include <linux/semaphore.h>
865fab60 26#include <linux/platform_data/dma-ste-dma40.h>
2789c08f
AW
27
28#include <crypto/aes.h>
29#include <crypto/algapi.h>
30#include <crypto/ctr.h>
31#include <crypto/des.h>
32#include <crypto/scatterwalk.h>
33
db298da2 34#include <linux/platform_data/crypto-ux500.h>
2789c08f
AW
35#include <mach/hardware.h>
36
37#include "cryp_p.h"
38#include "cryp.h"
39
40#define CRYP_MAX_KEY_SIZE 32
41#define BYTES_PER_WORD 4
42
43static int cryp_mode;
44static atomic_t session_id;
45
46static struct stedma40_chan_cfg *mem_to_engine;
47static struct stedma40_chan_cfg *engine_to_mem;
48
49/**
50 * struct cryp_driver_data - data specific to the driver.
51 *
52 * @device_list: A list of registered devices to choose from.
53 * @device_allocation: A semaphore initialized with number of devices.
54 */
55struct cryp_driver_data {
56 struct klist device_list;
57 struct semaphore device_allocation;
58};
59
60/**
61 * struct cryp_ctx - Crypto context
62 * @config: Crypto mode.
63 * @key[CRYP_MAX_KEY_SIZE]: Key.
64 * @keylen: Length of key.
65 * @iv: Pointer to initialization vector.
66 * @indata: Pointer to indata.
67 * @outdata: Pointer to outdata.
68 * @datalen: Length of indata.
69 * @outlen: Length of outdata.
70 * @blocksize: Size of blocks.
71 * @updated: Updated flag.
72 * @dev_ctx: Device dependent context.
73 * @device: Pointer to the device.
74 */
75struct cryp_ctx {
76 struct cryp_config config;
77 u8 key[CRYP_MAX_KEY_SIZE];
78 u32 keylen;
79 u8 *iv;
80 const u8 *indata;
81 u8 *outdata;
82 u32 datalen;
83 u32 outlen;
84 u32 blocksize;
85 u8 updated;
86 struct cryp_device_context dev_ctx;
87 struct cryp_device_data *device;
88 u32 session_id;
89};
90
91static struct cryp_driver_data driver_data;
92
93/**
94 * uint8p_to_uint32_be - 4*uint8 to uint32 big endian
95 * @in: Data to convert.
96 */
97static inline u32 uint8p_to_uint32_be(u8 *in)
98{
99 u32 *data = (u32 *)in;
100
101 return cpu_to_be32p(data);
102}
103
104/**
105 * swap_bits_in_byte - mirror the bits in a byte
106 * @b: the byte to be mirrored
107 *
108 * The bits are swapped the following way:
109 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
110 * nibble 2 (n2) bits 4-7.
111 *
112 * Nibble 1 (n1):
113 * (The "old" (moved) bit is replaced with a zero)
114 * 1. Move bit 6 and 7, 4 positions to the left.
115 * 2. Move bit 3 and 5, 2 positions to the left.
116 * 3. Move bit 1-4, 1 position to the left.
117 *
118 * Nibble 2 (n2):
119 * 1. Move bit 0 and 1, 4 positions to the right.
120 * 2. Move bit 2 and 4, 2 positions to the right.
121 * 3. Move bit 3-6, 1 position to the right.
122 *
123 * Combine the two nibbles to a complete and swapped byte.
124 */
125
126static inline u8 swap_bits_in_byte(u8 b)
127{
128#define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
129#define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
130 right shift 2 */
131#define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
132 right shift 1 */
133#define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
134#define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
135 left shift 2 */
136#define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
137 left shift 1 */
138
139 u8 n1;
140 u8 n2;
141
142 /* Swap most significant nibble */
143 /* Right shift 4, bits 6 and 7 */
144 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
145 /* Right shift 2, bits 3 and 5 */
146 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
147 /* Right shift 1, bits 1-4 */
148 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
149
150 /* Swap least significant nibble */
151 /* Left shift 4, bits 0 and 1 */
152 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
153 /* Left shift 2, bits 2 and 4 */
154 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
155 /* Left shift 1, bits 3-6 */
156 n2 = (n2 & L_SHIFT_1_MASK) << 1;
157
158 return n1 | n2;
159}
160
161static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
162 u8 *out, u32 len)
163{
164 unsigned int i = 0;
165 int j;
166 int index = 0;
167
168 j = len - BYTES_PER_WORD;
169 while (j >= 0) {
170 for (i = 0; i < BYTES_PER_WORD; i++) {
171 index = len - j - BYTES_PER_WORD + i;
172 out[j + i] =
173 swap_bits_in_byte(in[index]);
174 }
175 j -= BYTES_PER_WORD;
176 }
177}
178
179static void add_session_id(struct cryp_ctx *ctx)
180{
181 /*
182 * We never want 0 to be a valid value, since this is the default value
183 * for the software context.
184 */
185 if (unlikely(atomic_inc_and_test(&session_id)))
186 atomic_inc(&session_id);
187
188 ctx->session_id = atomic_read(&session_id);
189}
190
191static irqreturn_t cryp_interrupt_handler(int irq, void *param)
192{
193 struct cryp_ctx *ctx;
194 int i;
195 struct cryp_device_data *device_data;
196
197 if (param == NULL) {
198 BUG_ON(!param);
199 return IRQ_HANDLED;
200 }
201
202 /* The device is coming from the one found in hw_crypt_noxts. */
203 device_data = (struct cryp_device_data *)param;
204
205 ctx = device_data->current_ctx;
206
207 if (ctx == NULL) {
208 BUG_ON(!ctx);
209 return IRQ_HANDLED;
210 }
211
212 dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
213 cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
214 "out" : "in");
215
216 if (cryp_pending_irq_src(device_data,
217 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
218 if (ctx->outlen / ctx->blocksize > 0) {
219 for (i = 0; i < ctx->blocksize / 4; i++) {
220 *(ctx->outdata) = readl_relaxed(
221 &device_data->base->dout);
222 ctx->outdata += 4;
223 ctx->outlen -= 4;
224 }
225
226 if (ctx->outlen == 0) {
227 cryp_disable_irq_src(device_data,
228 CRYP_IRQ_SRC_OUTPUT_FIFO);
229 }
230 }
231 } else if (cryp_pending_irq_src(device_data,
232 CRYP_IRQ_SRC_INPUT_FIFO)) {
233 if (ctx->datalen / ctx->blocksize > 0) {
234 for (i = 0 ; i < ctx->blocksize / 4; i++) {
235 writel_relaxed(ctx->indata,
236 &device_data->base->din);
237 ctx->indata += 4;
238 ctx->datalen -= 4;
239 }
240
241 if (ctx->datalen == 0)
242 cryp_disable_irq_src(device_data,
243 CRYP_IRQ_SRC_INPUT_FIFO);
244
245 if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
246 CRYP_PUT_BITS(&device_data->base->cr,
247 CRYP_START_ENABLE,
248 CRYP_CR_START_POS,
249 CRYP_CR_START_MASK);
250
251 cryp_wait_until_done(device_data);
252 }
253 }
254 }
255
256 return IRQ_HANDLED;
257}
258
259static int mode_is_aes(enum cryp_algo_mode mode)
260{
261 return CRYP_ALGO_AES_ECB == mode ||
262 CRYP_ALGO_AES_CBC == mode ||
263 CRYP_ALGO_AES_CTR == mode ||
264 CRYP_ALGO_AES_XTS == mode;
265}
266
267static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
268 enum cryp_init_vector_index index)
269{
270 struct cryp_init_vector_value vector_value;
271
272 dev_dbg(device_data->dev, "[%s]", __func__);
273
274 vector_value.init_value_left = left;
275 vector_value.init_value_right = right;
276
277 return cryp_configure_init_vector(device_data,
278 index,
279 vector_value);
280}
281
282static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
283{
284 int i;
285 int status = 0;
286 int num_of_regs = ctx->blocksize / 8;
287 u32 iv[AES_BLOCK_SIZE / 4];
288
289 dev_dbg(device_data->dev, "[%s]", __func__);
290
291 /*
292 * Since we loop on num_of_regs we need to have a check in case
293 * someone provides an incorrect blocksize which would force calling
294 * cfg_iv with i greater than 2 which is an error.
295 */
296 if (num_of_regs > 2) {
297 dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
298 __func__, ctx->blocksize);
299 return -EINVAL;
300 }
301
302 for (i = 0; i < ctx->blocksize / 4; i++)
303 iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
304
305 for (i = 0; i < num_of_regs; i++) {
306 status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
307 (enum cryp_init_vector_index) i);
308 if (status != 0)
309 return status;
310 }
311 return status;
312}
313
314static int set_key(struct cryp_device_data *device_data,
315 u32 left_key,
316 u32 right_key,
317 enum cryp_key_reg_index index)
318{
319 struct cryp_key_value key_value;
320 int cryp_error;
321
322 dev_dbg(device_data->dev, "[%s]", __func__);
323
324 key_value.key_value_left = left_key;
325 key_value.key_value_right = right_key;
326
327 cryp_error = cryp_configure_key_values(device_data,
328 index,
329 key_value);
330 if (cryp_error != 0)
331 dev_err(device_data->dev, "[%s]: "
332 "cryp_configure_key_values() failed!", __func__);
333
334 return cryp_error;
335}
336
337static int cfg_keys(struct cryp_ctx *ctx)
338{
339 int i;
340 int num_of_regs = ctx->keylen / 8;
341 u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
342 int cryp_error = 0;
343
344 dev_dbg(ctx->device->dev, "[%s]", __func__);
345
346 if (mode_is_aes(ctx->config.algomode)) {
347 swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
348 (u8 *)swapped_key,
349 ctx->keylen);
350 } else {
351 for (i = 0; i < ctx->keylen / 4; i++)
352 swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
353 }
354
355 for (i = 0; i < num_of_regs; i++) {
356 cryp_error = set_key(ctx->device,
357 *(((u32 *)swapped_key)+i*2),
358 *(((u32 *)swapped_key)+i*2+1),
359 (enum cryp_key_reg_index) i);
360
361 if (cryp_error != 0) {
362 dev_err(ctx->device->dev, "[%s]: set_key() failed!",
363 __func__);
364 return cryp_error;
365 }
366 }
367 return cryp_error;
368}
369
370static int cryp_setup_context(struct cryp_ctx *ctx,
371 struct cryp_device_data *device_data)
372{
373 u32 control_register = CRYP_CR_DEFAULT;
374
375 switch (cryp_mode) {
376 case CRYP_MODE_INTERRUPT:
377 writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
378 break;
379
380 case CRYP_MODE_DMA:
381 writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
382 break;
383
384 default:
385 break;
386 }
387
388 if (ctx->updated == 0) {
389 cryp_flush_inoutfifo(device_data);
390 if (cfg_keys(ctx) != 0) {
391 dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
392 __func__);
393 return -EINVAL;
394 }
395
396 if (ctx->iv &&
397 CRYP_ALGO_AES_ECB != ctx->config.algomode &&
398 CRYP_ALGO_DES_ECB != ctx->config.algomode &&
399 CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
400 if (cfg_ivs(device_data, ctx) != 0)
401 return -EPERM;
402 }
403
404 cryp_set_configuration(device_data, &ctx->config,
405 &control_register);
406 add_session_id(ctx);
407 } else if (ctx->updated == 1 &&
408 ctx->session_id != atomic_read(&session_id)) {
409 cryp_flush_inoutfifo(device_data);
410 cryp_restore_device_context(device_data, &ctx->dev_ctx);
411
412 add_session_id(ctx);
413 control_register = ctx->dev_ctx.cr;
414 } else
415 control_register = ctx->dev_ctx.cr;
416
417 writel(control_register |
418 (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
419 &device_data->base->cr);
420
421 return 0;
422}
423
424static int cryp_get_device_data(struct cryp_ctx *ctx,
425 struct cryp_device_data **device_data)
426{
427 int ret;
428 struct klist_iter device_iterator;
429 struct klist_node *device_node;
430 struct cryp_device_data *local_device_data = NULL;
431 pr_debug(DEV_DBG_NAME " [%s]", __func__);
432
433 /* Wait until a device is available */
434 ret = down_interruptible(&driver_data.device_allocation);
435 if (ret)
436 return ret; /* Interrupted */
437
438 /* Select a device */
439 klist_iter_init(&driver_data.device_list, &device_iterator);
440
441 device_node = klist_next(&device_iterator);
442 while (device_node) {
443 local_device_data = container_of(device_node,
444 struct cryp_device_data, list_node);
445 spin_lock(&local_device_data->ctx_lock);
446 /* current_ctx allocates a device, NULL = unallocated */
447 if (local_device_data->current_ctx) {
448 device_node = klist_next(&device_iterator);
449 } else {
450 local_device_data->current_ctx = ctx;
451 ctx->device = local_device_data;
452 spin_unlock(&local_device_data->ctx_lock);
453 break;
454 }
455 spin_unlock(&local_device_data->ctx_lock);
456 }
457 klist_iter_exit(&device_iterator);
458
459 if (!device_node) {
460 /**
461 * No free device found.
462 * Since we allocated a device with down_interruptible, this
463 * should not be able to happen.
464 * Number of available devices, which are contained in
465 * device_allocation, is therefore decremented by not doing
466 * an up(device_allocation).
467 */
468 return -EBUSY;
469 }
470
471 *device_data = local_device_data;
472
473 return 0;
474}
475
476static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
477 struct device *dev)
478{
479 dma_cap_zero(device_data->dma.mask);
480 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
481
482 device_data->dma.cfg_mem2cryp = mem_to_engine;
483 device_data->dma.chan_mem2cryp =
484 dma_request_channel(device_data->dma.mask,
485 stedma40_filter,
486 device_data->dma.cfg_mem2cryp);
487
488 device_data->dma.cfg_cryp2mem = engine_to_mem;
489 device_data->dma.chan_cryp2mem =
490 dma_request_channel(device_data->dma.mask,
491 stedma40_filter,
492 device_data->dma.cfg_cryp2mem);
493
494 init_completion(&device_data->dma.cryp_dma_complete);
495}
496
497static void cryp_dma_out_callback(void *data)
498{
499 struct cryp_ctx *ctx = (struct cryp_ctx *) data;
500 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
501
502 complete(&ctx->device->dma.cryp_dma_complete);
503}
504
505static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
506 struct scatterlist *sg,
507 int len,
508 enum dma_data_direction direction)
509{
510 struct dma_async_tx_descriptor *desc;
511 struct dma_chan *channel = NULL;
512 dma_cookie_t cookie;
513
514 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
515
516 if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
517 dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
518 "aligned! Addr: 0x%08x", __func__, (u32)sg);
519 return -EFAULT;
520 }
521
522 switch (direction) {
523 case DMA_TO_DEVICE:
524 channel = ctx->device->dma.chan_mem2cryp;
525 ctx->device->dma.sg_src = sg;
526 ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
527 ctx->device->dma.sg_src,
528 ctx->device->dma.nents_src,
529 direction);
530
531 if (!ctx->device->dma.sg_src_len) {
532 dev_dbg(ctx->device->dev,
533 "[%s]: Could not map the sg list (TO_DEVICE)",
534 __func__);
535 return -EFAULT;
536 }
537
538 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
539 "(TO_DEVICE)", __func__);
540
541 desc = channel->device->device_prep_slave_sg(channel,
542 ctx->device->dma.sg_src,
543 ctx->device->dma.sg_src_len,
f7329e71 544 direction, DMA_CTRL_ACK, NULL);
2789c08f
AW
545 break;
546
547 case DMA_FROM_DEVICE:
548 channel = ctx->device->dma.chan_cryp2mem;
549 ctx->device->dma.sg_dst = sg;
550 ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
551 ctx->device->dma.sg_dst,
552 ctx->device->dma.nents_dst,
553 direction);
554
555 if (!ctx->device->dma.sg_dst_len) {
556 dev_dbg(ctx->device->dev,
557 "[%s]: Could not map the sg list (FROM_DEVICE)",
558 __func__);
559 return -EFAULT;
560 }
561
562 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
563 "(FROM_DEVICE)", __func__);
564
565 desc = channel->device->device_prep_slave_sg(channel,
566 ctx->device->dma.sg_dst,
567 ctx->device->dma.sg_dst_len,
568 direction,
569 DMA_CTRL_ACK |
f7329e71 570 DMA_PREP_INTERRUPT, NULL);
2789c08f
AW
571
572 desc->callback = cryp_dma_out_callback;
573 desc->callback_param = ctx;
574 break;
575
576 default:
577 dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
578 __func__);
579 return -EFAULT;
580 }
581
582 cookie = desc->tx_submit(desc);
583 dma_async_issue_pending(channel);
584
585 return 0;
586}
587
588static void cryp_dma_done(struct cryp_ctx *ctx)
589{
590 struct dma_chan *chan;
591
592 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
593
594 chan = ctx->device->dma.chan_mem2cryp;
595 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
596 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
597 ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
598
599 chan = ctx->device->dma.chan_cryp2mem;
600 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
601 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
602 ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
603}
604
605static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
606 int len)
607{
608 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
609 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
610
611 if (error) {
612 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
613 "failed", __func__);
614 return error;
615 }
616
617 return len;
618}
619
620static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
621{
622 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
623 if (error) {
624 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
625 "failed", __func__);
626 return error;
627 }
628
629 return len;
630}
631
632static void cryp_polling_mode(struct cryp_ctx *ctx,
633 struct cryp_device_data *device_data)
634{
635 int len = ctx->blocksize / BYTES_PER_WORD;
636 int remaining_length = ctx->datalen;
637 u32 *indata = (u32 *)ctx->indata;
638 u32 *outdata = (u32 *)ctx->outdata;
639
640 while (remaining_length > 0) {
641 writesl(&device_data->base->din, indata, len);
642 indata += len;
643 remaining_length -= (len * BYTES_PER_WORD);
644 cryp_wait_until_done(device_data);
645
646 readsl(&device_data->base->dout, outdata, len);
647 outdata += len;
648 cryp_wait_until_done(device_data);
649 }
650}
651
652static int cryp_disable_power(struct device *dev,
653 struct cryp_device_data *device_data,
654 bool save_device_context)
655{
656 int ret = 0;
657
658 dev_dbg(dev, "[%s]", __func__);
659
660 spin_lock(&device_data->power_state_spinlock);
661 if (!device_data->power_state)
662 goto out;
663
664 spin_lock(&device_data->ctx_lock);
665 if (save_device_context && device_data->current_ctx) {
666 cryp_save_device_context(device_data,
667 &device_data->current_ctx->dev_ctx,
668 cryp_mode);
669 device_data->restore_dev_ctx = true;
670 }
671 spin_unlock(&device_data->ctx_lock);
672
673 clk_disable(device_data->clk);
674 ret = regulator_disable(device_data->pwr_regulator);
675 if (ret)
676 dev_err(dev, "[%s]: "
677 "regulator_disable() failed!",
678 __func__);
679
680 device_data->power_state = false;
681
682out:
683 spin_unlock(&device_data->power_state_spinlock);
684
685 return ret;
686}
687
688static int cryp_enable_power(
689 struct device *dev,
690 struct cryp_device_data *device_data,
691 bool restore_device_context)
692{
693 int ret = 0;
694
695 dev_dbg(dev, "[%s]", __func__);
696
697 spin_lock(&device_data->power_state_spinlock);
698 if (!device_data->power_state) {
699 ret = regulator_enable(device_data->pwr_regulator);
700 if (ret) {
701 dev_err(dev, "[%s]: regulator_enable() failed!",
702 __func__);
703 goto out;
704 }
705
706 ret = clk_enable(device_data->clk);
707 if (ret) {
708 dev_err(dev, "[%s]: clk_enable() failed!",
709 __func__);
710 regulator_disable(device_data->pwr_regulator);
711 goto out;
712 }
713 device_data->power_state = true;
714 }
715
716 if (device_data->restore_dev_ctx) {
717 spin_lock(&device_data->ctx_lock);
718 if (restore_device_context && device_data->current_ctx) {
719 device_data->restore_dev_ctx = false;
720 cryp_restore_device_context(device_data,
721 &device_data->current_ctx->dev_ctx);
722 }
723 spin_unlock(&device_data->ctx_lock);
724 }
725out:
726 spin_unlock(&device_data->power_state_spinlock);
727
728 return ret;
729}
730
731static int hw_crypt_noxts(struct cryp_ctx *ctx,
732 struct cryp_device_data *device_data)
733{
734 int ret = 0;
735
736 const u8 *indata = ctx->indata;
737 u8 *outdata = ctx->outdata;
738 u32 datalen = ctx->datalen;
739 u32 outlen = datalen;
740
741 pr_debug(DEV_DBG_NAME " [%s]", __func__);
742
743 ctx->outlen = ctx->datalen;
744
745 if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
746 pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
747 "0x%08x", __func__, (u32)indata);
748 return -EINVAL;
749 }
750
751 ret = cryp_setup_context(ctx, device_data);
752
753 if (ret)
754 goto out;
755
756 if (cryp_mode == CRYP_MODE_INTERRUPT) {
757 cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
758 CRYP_IRQ_SRC_OUTPUT_FIFO);
759
760 /*
761 * ctx->outlen is decremented in the cryp_interrupt_handler
762 * function. We had to add cpu_relax() (barrier) to make sure
763 * that gcc didn't optimze away this variable.
764 */
765 while (ctx->outlen > 0)
766 cpu_relax();
767 } else if (cryp_mode == CRYP_MODE_POLLING ||
768 cryp_mode == CRYP_MODE_DMA) {
769 /*
770 * The reason for having DMA in this if case is that if we are
771 * running cryp_mode = 2, then we separate DMA routines for
772 * handling cipher/plaintext > blocksize, except when
773 * running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
774 * the polling mode. Overhead of doing DMA setup eats up the
775 * benefits using it.
776 */
777 cryp_polling_mode(ctx, device_data);
778 } else {
779 dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
780 __func__);
781 ret = -EPERM;
782 goto out;
783 }
784
785 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
786 ctx->updated = 1;
787
788out:
789 ctx->indata = indata;
790 ctx->outdata = outdata;
791 ctx->datalen = datalen;
792 ctx->outlen = outlen;
793
794 return ret;
795}
796
797static int get_nents(struct scatterlist *sg, int nbytes)
798{
799 int nents = 0;
800
801 while (nbytes > 0) {
802 nbytes -= sg->length;
803 sg = scatterwalk_sg_next(sg);
804 nents++;
805 }
806
807 return nents;
808}
809
810static int ablk_dma_crypt(struct ablkcipher_request *areq)
811{
812 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
813 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
814 struct cryp_device_data *device_data;
815
816 int bytes_written = 0;
817 int bytes_read = 0;
818 int ret;
819
820 pr_debug(DEV_DBG_NAME " [%s]", __func__);
821
822 ctx->datalen = areq->nbytes;
823 ctx->outlen = areq->nbytes;
824
825 ret = cryp_get_device_data(ctx, &device_data);
826 if (ret)
827 return ret;
828
829 ret = cryp_setup_context(ctx, device_data);
830 if (ret)
831 goto out;
832
833 /* We have the device now, so store the nents in the dma struct. */
834 ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
835 ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
836
837 /* Enable DMA in- and output. */
838 cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
839
840 bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
841 bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
842
843 wait_for_completion(&ctx->device->dma.cryp_dma_complete);
844 cryp_dma_done(ctx);
845
846 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
847 ctx->updated = 1;
848
849out:
850 spin_lock(&device_data->ctx_lock);
851 device_data->current_ctx = NULL;
852 ctx->device = NULL;
853 spin_unlock(&device_data->ctx_lock);
854
855 /*
856 * The down_interruptible part for this semaphore is called in
857 * cryp_get_device_data.
858 */
859 up(&driver_data.device_allocation);
860
861 if (unlikely(bytes_written != bytes_read))
862 return -EPERM;
863
864 return 0;
865}
866
867static int ablk_crypt(struct ablkcipher_request *areq)
868{
869 struct ablkcipher_walk walk;
870 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
871 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
872 struct cryp_device_data *device_data;
873 unsigned long src_paddr;
874 unsigned long dst_paddr;
875 int ret;
876 int nbytes;
877
878 pr_debug(DEV_DBG_NAME " [%s]", __func__);
879
880 ret = cryp_get_device_data(ctx, &device_data);
881 if (ret)
882 goto out;
883
884 ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
885 ret = ablkcipher_walk_phys(areq, &walk);
886
887 if (ret) {
888 pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
889 __func__);
890 goto out;
891 }
892
893 while ((nbytes = walk.nbytes) > 0) {
894 ctx->iv = walk.iv;
895 src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
896 ctx->indata = phys_to_virt(src_paddr);
897
898 dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
899 ctx->outdata = phys_to_virt(dst_paddr);
900
901 ctx->datalen = nbytes - (nbytes % ctx->blocksize);
902
903 ret = hw_crypt_noxts(ctx, device_data);
904 if (ret)
905 goto out;
906
907 nbytes -= ctx->datalen;
908 ret = ablkcipher_walk_done(areq, &walk, nbytes);
909 if (ret)
910 goto out;
911 }
912 ablkcipher_walk_complete(&walk);
913
914out:
915 /* Release the device */
916 spin_lock(&device_data->ctx_lock);
917 device_data->current_ctx = NULL;
918 ctx->device = NULL;
919 spin_unlock(&device_data->ctx_lock);
920
921 /*
922 * The down_interruptible part for this semaphore is called in
923 * cryp_get_device_data.
924 */
925 up(&driver_data.device_allocation);
926
927 return ret;
928}
929
930static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
931 const u8 *key, unsigned int keylen)
932{
933 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
934 u32 *flags = &cipher->base.crt_flags;
935
936 pr_debug(DEV_DBG_NAME " [%s]", __func__);
937
938 switch (keylen) {
939 case AES_KEYSIZE_128:
940 ctx->config.keysize = CRYP_KEY_SIZE_128;
941 break;
942
943 case AES_KEYSIZE_192:
944 ctx->config.keysize = CRYP_KEY_SIZE_192;
945 break;
946
947 case AES_KEYSIZE_256:
948 ctx->config.keysize = CRYP_KEY_SIZE_256;
949 break;
950
951 default:
952 pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
953 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
954 return -EINVAL;
955 }
956
957 memcpy(ctx->key, key, keylen);
958 ctx->keylen = keylen;
959
960 ctx->updated = 0;
961
962 return 0;
963}
964
965static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
966 const u8 *key, unsigned int keylen)
967{
968 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
969 u32 *flags = &cipher->base.crt_flags;
970 u32 tmp[DES_EXPKEY_WORDS];
971 int ret;
972
973 pr_debug(DEV_DBG_NAME " [%s]", __func__);
974 if (keylen != DES_KEY_SIZE) {
975 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
976 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
977 __func__);
978 return -EINVAL;
979 }
980
981 ret = des_ekey(tmp, key);
982 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
983 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
984 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
985 __func__);
986 return -EINVAL;
987 }
988
989 memcpy(ctx->key, key, keylen);
990 ctx->keylen = keylen;
991
992 ctx->updated = 0;
993 return 0;
994}
995
996static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
997 const u8 *key, unsigned int keylen)
998{
999 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1000 u32 *flags = &cipher->base.crt_flags;
1001 const u32 *K = (const u32 *)key;
1002 u32 tmp[DES3_EDE_EXPKEY_WORDS];
1003 int i, ret;
1004
1005 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1006 if (keylen != DES3_EDE_KEY_SIZE) {
1007 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
1008 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
1009 __func__);
1010 return -EINVAL;
1011 }
1012
1013 /* Checking key interdependency for weak key detection. */
1014 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1015 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) &&
1016 (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1017 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1018 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
1019 __func__);
1020 return -EINVAL;
1021 }
1022 for (i = 0; i < 3; i++) {
1023 ret = des_ekey(tmp, key + i*DES_KEY_SIZE);
1024 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1025 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1026 pr_debug(DEV_DBG_NAME " [%s]: "
1027 "CRYPTO_TFM_REQ_WEAK_KEY", __func__);
1028 return -EINVAL;
1029 }
1030 }
1031
1032 memcpy(ctx->key, key, keylen);
1033 ctx->keylen = keylen;
1034
1035 ctx->updated = 0;
1036 return 0;
1037}
1038
1039static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1040{
1041 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1042 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1043
1044 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1045
1046 ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1047
1048 /*
1049 * DMA does not work for DES due to a hw bug */
1050 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1051 return ablk_dma_crypt(areq);
1052
1053 /* For everything except DMA, we run the non DMA version. */
1054 return ablk_crypt(areq);
1055}
1056
1057static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1058{
1059 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1060 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1061
1062 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1063
1064 ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1065
1066 /* DMA does not work for DES due to a hw bug */
1067 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1068 return ablk_dma_crypt(areq);
1069
1070 /* For everything except DMA, we run the non DMA version. */
1071 return ablk_crypt(areq);
1072}
1073
1074struct cryp_algo_template {
1075 enum cryp_algo_mode algomode;
1076 struct crypto_alg crypto;
1077};
1078
1079static int cryp_cra_init(struct crypto_tfm *tfm)
1080{
1081 struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1082 struct crypto_alg *alg = tfm->__crt_alg;
1083 struct cryp_algo_template *cryp_alg = container_of(alg,
1084 struct cryp_algo_template,
1085 crypto);
1086
1087 ctx->config.algomode = cryp_alg->algomode;
1088 ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1089
1090 return 0;
1091}
1092
1093static struct cryp_algo_template cryp_algs[] = {
1094 {
1095 .algomode = CRYP_ALGO_AES_ECB,
1096 .crypto = {
1097 .cra_name = "aes",
1098 .cra_driver_name = "aes-ux500",
1099 .cra_priority = 300,
1100 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1101 CRYPTO_ALG_ASYNC,
1102 .cra_blocksize = AES_BLOCK_SIZE,
1103 .cra_ctxsize = sizeof(struct cryp_ctx),
1104 .cra_alignmask = 3,
1105 .cra_type = &crypto_ablkcipher_type,
1106 .cra_init = cryp_cra_init,
1107 .cra_module = THIS_MODULE,
1108 .cra_u = {
1109 .ablkcipher = {
1110 .min_keysize = AES_MIN_KEY_SIZE,
1111 .max_keysize = AES_MAX_KEY_SIZE,
1112 .setkey = aes_ablkcipher_setkey,
1113 .encrypt = cryp_blk_encrypt,
1114 .decrypt = cryp_blk_decrypt
1115 }
1116 }
1117 }
1118 },
1119 {
1120 .algomode = CRYP_ALGO_AES_ECB,
1121 .crypto = {
1122 .cra_name = "ecb(aes)",
1123 .cra_driver_name = "ecb-aes-ux500",
1124 .cra_priority = 300,
1125 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1126 CRYPTO_ALG_ASYNC,
1127 .cra_blocksize = AES_BLOCK_SIZE,
1128 .cra_ctxsize = sizeof(struct cryp_ctx),
1129 .cra_alignmask = 3,
1130 .cra_type = &crypto_ablkcipher_type,
1131 .cra_init = cryp_cra_init,
1132 .cra_module = THIS_MODULE,
1133 .cra_u = {
1134 .ablkcipher = {
1135 .min_keysize = AES_MIN_KEY_SIZE,
1136 .max_keysize = AES_MAX_KEY_SIZE,
1137 .setkey = aes_ablkcipher_setkey,
1138 .encrypt = cryp_blk_encrypt,
1139 .decrypt = cryp_blk_decrypt,
1140 }
1141 }
1142 }
1143 },
1144 {
1145 .algomode = CRYP_ALGO_AES_CBC,
1146 .crypto = {
1147 .cra_name = "cbc(aes)",
1148 .cra_driver_name = "cbc-aes-ux500",
1149 .cra_priority = 300,
1150 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1151 CRYPTO_ALG_ASYNC,
1152 .cra_blocksize = AES_BLOCK_SIZE,
1153 .cra_ctxsize = sizeof(struct cryp_ctx),
1154 .cra_alignmask = 3,
1155 .cra_type = &crypto_ablkcipher_type,
1156 .cra_init = cryp_cra_init,
1157 .cra_module = THIS_MODULE,
1158 .cra_u = {
1159 .ablkcipher = {
1160 .min_keysize = AES_MIN_KEY_SIZE,
1161 .max_keysize = AES_MAX_KEY_SIZE,
1162 .setkey = aes_ablkcipher_setkey,
1163 .encrypt = cryp_blk_encrypt,
1164 .decrypt = cryp_blk_decrypt,
1165 .ivsize = AES_BLOCK_SIZE,
1166 }
1167 }
1168 }
1169 },
1170 {
1171 .algomode = CRYP_ALGO_AES_CTR,
1172 .crypto = {
1173 .cra_name = "ctr(aes)",
1174 .cra_driver_name = "ctr-aes-ux500",
1175 .cra_priority = 300,
1176 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1177 CRYPTO_ALG_ASYNC,
1178 .cra_blocksize = AES_BLOCK_SIZE,
1179 .cra_ctxsize = sizeof(struct cryp_ctx),
1180 .cra_alignmask = 3,
1181 .cra_type = &crypto_ablkcipher_type,
1182 .cra_init = cryp_cra_init,
1183 .cra_module = THIS_MODULE,
1184 .cra_u = {
1185 .ablkcipher = {
1186 .min_keysize = AES_MIN_KEY_SIZE,
1187 .max_keysize = AES_MAX_KEY_SIZE,
1188 .setkey = aes_ablkcipher_setkey,
1189 .encrypt = cryp_blk_encrypt,
1190 .decrypt = cryp_blk_decrypt,
1191 .ivsize = AES_BLOCK_SIZE,
1192 }
1193 }
1194 }
1195 },
1196 {
1197 .algomode = CRYP_ALGO_DES_ECB,
1198 .crypto = {
1199 .cra_name = "des",
1200 .cra_driver_name = "des-ux500",
1201 .cra_priority = 300,
1202 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1203 CRYPTO_ALG_ASYNC,
1204 .cra_blocksize = DES_BLOCK_SIZE,
1205 .cra_ctxsize = sizeof(struct cryp_ctx),
1206 .cra_alignmask = 3,
1207 .cra_type = &crypto_ablkcipher_type,
1208 .cra_init = cryp_cra_init,
1209 .cra_module = THIS_MODULE,
1210 .cra_u = {
1211 .ablkcipher = {
1212 .min_keysize = DES_KEY_SIZE,
1213 .max_keysize = DES_KEY_SIZE,
1214 .setkey = des_ablkcipher_setkey,
1215 .encrypt = cryp_blk_encrypt,
1216 .decrypt = cryp_blk_decrypt
1217 }
1218 }
1219 }
1220
1221 },
1222 {
1223 .algomode = CRYP_ALGO_TDES_ECB,
1224 .crypto = {
1225 .cra_name = "des3_ede",
1226 .cra_driver_name = "des3_ede-ux500",
1227 .cra_priority = 300,
1228 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1229 CRYPTO_ALG_ASYNC,
1230 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1231 .cra_ctxsize = sizeof(struct cryp_ctx),
1232 .cra_alignmask = 3,
1233 .cra_type = &crypto_ablkcipher_type,
1234 .cra_init = cryp_cra_init,
1235 .cra_module = THIS_MODULE,
1236 .cra_u = {
1237 .ablkcipher = {
1238 .min_keysize = DES3_EDE_KEY_SIZE,
1239 .max_keysize = DES3_EDE_KEY_SIZE,
1240 .setkey = des_ablkcipher_setkey,
1241 .encrypt = cryp_blk_encrypt,
1242 .decrypt = cryp_blk_decrypt
1243 }
1244 }
1245 }
1246 },
1247 {
1248 .algomode = CRYP_ALGO_DES_ECB,
1249 .crypto = {
1250 .cra_name = "ecb(des)",
1251 .cra_driver_name = "ecb-des-ux500",
1252 .cra_priority = 300,
1253 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1254 CRYPTO_ALG_ASYNC,
1255 .cra_blocksize = DES_BLOCK_SIZE,
1256 .cra_ctxsize = sizeof(struct cryp_ctx),
1257 .cra_alignmask = 3,
1258 .cra_type = &crypto_ablkcipher_type,
1259 .cra_init = cryp_cra_init,
1260 .cra_module = THIS_MODULE,
1261 .cra_u = {
1262 .ablkcipher = {
1263 .min_keysize = DES_KEY_SIZE,
1264 .max_keysize = DES_KEY_SIZE,
1265 .setkey = des_ablkcipher_setkey,
1266 .encrypt = cryp_blk_encrypt,
1267 .decrypt = cryp_blk_decrypt,
1268 }
1269 }
1270 }
1271 },
1272 {
1273 .algomode = CRYP_ALGO_TDES_ECB,
1274 .crypto = {
1275 .cra_name = "ecb(des3_ede)",
1276 .cra_driver_name = "ecb-des3_ede-ux500",
1277 .cra_priority = 300,
1278 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1279 CRYPTO_ALG_ASYNC,
1280 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1281 .cra_ctxsize = sizeof(struct cryp_ctx),
1282 .cra_alignmask = 3,
1283 .cra_type = &crypto_ablkcipher_type,
1284 .cra_init = cryp_cra_init,
1285 .cra_module = THIS_MODULE,
1286 .cra_u = {
1287 .ablkcipher = {
1288 .min_keysize = DES3_EDE_KEY_SIZE,
1289 .max_keysize = DES3_EDE_KEY_SIZE,
1290 .setkey = des3_ablkcipher_setkey,
1291 .encrypt = cryp_blk_encrypt,
1292 .decrypt = cryp_blk_decrypt,
1293 }
1294 }
1295 }
1296 },
1297 {
1298 .algomode = CRYP_ALGO_DES_CBC,
1299 .crypto = {
1300 .cra_name = "cbc(des)",
1301 .cra_driver_name = "cbc-des-ux500",
1302 .cra_priority = 300,
1303 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1304 CRYPTO_ALG_ASYNC,
1305 .cra_blocksize = DES_BLOCK_SIZE,
1306 .cra_ctxsize = sizeof(struct cryp_ctx),
1307 .cra_alignmask = 3,
1308 .cra_type = &crypto_ablkcipher_type,
1309 .cra_init = cryp_cra_init,
1310 .cra_module = THIS_MODULE,
1311 .cra_u = {
1312 .ablkcipher = {
1313 .min_keysize = DES_KEY_SIZE,
1314 .max_keysize = DES_KEY_SIZE,
1315 .setkey = des_ablkcipher_setkey,
1316 .encrypt = cryp_blk_encrypt,
1317 .decrypt = cryp_blk_decrypt,
1318 }
1319 }
1320 }
1321 },
1322 {
1323 .algomode = CRYP_ALGO_TDES_CBC,
1324 .crypto = {
1325 .cra_name = "cbc(des3_ede)",
1326 .cra_driver_name = "cbc-des3_ede-ux500",
1327 .cra_priority = 300,
1328 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1329 CRYPTO_ALG_ASYNC,
1330 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1331 .cra_ctxsize = sizeof(struct cryp_ctx),
1332 .cra_alignmask = 3,
1333 .cra_type = &crypto_ablkcipher_type,
1334 .cra_init = cryp_cra_init,
1335 .cra_module = THIS_MODULE,
1336 .cra_u = {
1337 .ablkcipher = {
1338 .min_keysize = DES3_EDE_KEY_SIZE,
1339 .max_keysize = DES3_EDE_KEY_SIZE,
1340 .setkey = des3_ablkcipher_setkey,
1341 .encrypt = cryp_blk_encrypt,
1342 .decrypt = cryp_blk_decrypt,
1343 .ivsize = DES3_EDE_BLOCK_SIZE,
1344 }
1345 }
1346 }
1347 }
1348};
1349
1350/**
1351 * cryp_algs_register_all -
1352 */
1353static int cryp_algs_register_all(void)
1354{
1355 int ret;
1356 int i;
1357 int count;
1358
1359 pr_debug("[%s]", __func__);
1360
1361 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1362 ret = crypto_register_alg(&cryp_algs[i].crypto);
1363 if (ret) {
1364 count = i;
1365 pr_err("[%s] alg registration failed",
1366 cryp_algs[i].crypto.cra_driver_name);
1367 goto unreg;
1368 }
1369 }
1370 return 0;
1371unreg:
1372 for (i = 0; i < count; i++)
1373 crypto_unregister_alg(&cryp_algs[i].crypto);
1374 return ret;
1375}
1376
1377/**
1378 * cryp_algs_unregister_all -
1379 */
1380static void cryp_algs_unregister_all(void)
1381{
1382 int i;
1383
1384 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1385
1386 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1387 crypto_unregister_alg(&cryp_algs[i].crypto);
1388}
1389
1390static int ux500_cryp_probe(struct platform_device *pdev)
1391{
1392 int ret;
1393 int cryp_error = 0;
1394 struct resource *res = NULL;
1395 struct resource *res_irq = NULL;
1396 struct cryp_device_data *device_data;
1397 struct cryp_protection_config prot = {
1398 .privilege_access = CRYP_STATE_ENABLE
1399 };
1400 struct device *dev = &pdev->dev;
1401
1402 dev_dbg(dev, "[%s]", __func__);
1403 device_data = kzalloc(sizeof(struct cryp_device_data), GFP_ATOMIC);
1404 if (!device_data) {
1405 dev_err(dev, "[%s]: kzalloc() failed!", __func__);
1406 ret = -ENOMEM;
1407 goto out;
1408 }
1409
1410 device_data->dev = dev;
1411 device_data->current_ctx = NULL;
1412
1413 /* Grab the DMA configuration from platform data. */
1414 mem_to_engine = &((struct cryp_platform_data *)
1415 dev->platform_data)->mem_to_engine;
1416 engine_to_mem = &((struct cryp_platform_data *)
1417 dev->platform_data)->engine_to_mem;
1418
1419 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1420 if (!res) {
1421 dev_err(dev, "[%s]: platform_get_resource() failed",
1422 __func__);
1423 ret = -ENODEV;
1424 goto out_kfree;
1425 }
1426
1427 res = request_mem_region(res->start, resource_size(res), pdev->name);
1428 if (res == NULL) {
1429 dev_err(dev, "[%s]: request_mem_region() failed",
1430 __func__);
1431 ret = -EBUSY;
1432 goto out_kfree;
1433 }
1434
1435 device_data->base = ioremap(res->start, resource_size(res));
1436 if (!device_data->base) {
1437 dev_err(dev, "[%s]: ioremap failed!", __func__);
1438 ret = -ENOMEM;
1439 goto out_free_mem;
1440 }
1441
1442 spin_lock_init(&device_data->ctx_lock);
1443 spin_lock_init(&device_data->power_state_spinlock);
1444
1445 /* Enable power for CRYP hardware block */
1446 device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1447 if (IS_ERR(device_data->pwr_regulator)) {
1448 dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1449 ret = PTR_ERR(device_data->pwr_regulator);
1450 device_data->pwr_regulator = NULL;
1451 goto out_unmap;
1452 }
1453
1454 /* Enable the clk for CRYP hardware block */
1455 device_data->clk = clk_get(&pdev->dev, NULL);
1456 if (IS_ERR(device_data->clk)) {
1457 dev_err(dev, "[%s]: clk_get() failed!", __func__);
1458 ret = PTR_ERR(device_data->clk);
1459 goto out_regulator;
1460 }
1461
1462 /* Enable device power (and clock) */
1463 ret = cryp_enable_power(device_data->dev, device_data, false);
1464 if (ret) {
1465 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1466 goto out_clk;
1467 }
1468
1469 cryp_error = cryp_check(device_data);
1470 if (cryp_error != 0) {
1471 dev_err(dev, "[%s]: cryp_init() failed!", __func__);
1472 ret = -EINVAL;
1473 goto out_power;
1474 }
1475
1476 cryp_error = cryp_configure_protection(device_data, &prot);
1477 if (cryp_error != 0) {
1478 dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1479 __func__);
1480 ret = -EINVAL;
1481 goto out_power;
1482 }
1483
1484 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1485 if (!res_irq) {
1486 dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1487 __func__);
79c09c12 1488 ret = -ENODEV;
2789c08f
AW
1489 goto out_power;
1490 }
1491
1492 ret = request_irq(res_irq->start,
1493 cryp_interrupt_handler,
1494 0,
1495 "cryp1",
1496 device_data);
1497 if (ret) {
1498 dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1499 goto out_power;
1500 }
1501
1502 if (cryp_mode == CRYP_MODE_DMA)
1503 cryp_dma_setup_channel(device_data, dev);
1504
1505 platform_set_drvdata(pdev, device_data);
1506
1507 /* Put the new device into the device list... */
1508 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1509
1510 /* ... and signal that a new device is available. */
1511 up(&driver_data.device_allocation);
1512
1513 atomic_set(&session_id, 1);
1514
1515 ret = cryp_algs_register_all();
1516 if (ret) {
1517 dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1518 __func__);
1519 goto out_power;
1520 }
1521
1522 return 0;
1523
1524out_power:
1525 cryp_disable_power(device_data->dev, device_data, false);
1526
1527out_clk:
1528 clk_put(device_data->clk);
1529
1530out_regulator:
1531 regulator_put(device_data->pwr_regulator);
1532
1533out_unmap:
1534 iounmap(device_data->base);
1535
1536out_free_mem:
1537 release_mem_region(res->start, resource_size(res));
1538
1539out_kfree:
1540 kfree(device_data);
1541out:
1542 return ret;
1543}
1544
1545static int ux500_cryp_remove(struct platform_device *pdev)
1546{
1547 struct resource *res = NULL;
1548 struct resource *res_irq = NULL;
1549 struct cryp_device_data *device_data;
1550
1551 dev_dbg(&pdev->dev, "[%s]", __func__);
1552 device_data = platform_get_drvdata(pdev);
1553 if (!device_data) {
1554 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1555 __func__);
1556 return -ENOMEM;
1557 }
1558
1559 /* Try to decrease the number of available devices. */
1560 if (down_trylock(&driver_data.device_allocation))
1561 return -EBUSY;
1562
1563 /* Check that the device is free */
1564 spin_lock(&device_data->ctx_lock);
1565 /* current_ctx allocates a device, NULL = unallocated */
1566 if (device_data->current_ctx) {
1567 /* The device is busy */
1568 spin_unlock(&device_data->ctx_lock);
1569 /* Return the device to the pool. */
1570 up(&driver_data.device_allocation);
1571 return -EBUSY;
1572 }
1573
1574 spin_unlock(&device_data->ctx_lock);
1575
1576 /* Remove the device from the list */
1577 if (klist_node_attached(&device_data->list_node))
1578 klist_remove(&device_data->list_node);
1579
1580 /* If this was the last device, remove the services */
1581 if (list_empty(&driver_data.device_list.k_list))
1582 cryp_algs_unregister_all();
1583
1584 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1585 if (!res_irq)
1586 dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
1587 __func__);
1588 else {
1589 disable_irq(res_irq->start);
1590 free_irq(res_irq->start, device_data);
1591 }
1592
1593 if (cryp_disable_power(&pdev->dev, device_data, false))
1594 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1595 __func__);
1596
1597 clk_put(device_data->clk);
1598 regulator_put(device_data->pwr_regulator);
1599
1600 iounmap(device_data->base);
1601
1602 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1603 if (res)
1604 release_mem_region(res->start, res->end - res->start + 1);
1605
1606 kfree(device_data);
1607
1608 return 0;
1609}
1610
1611static void ux500_cryp_shutdown(struct platform_device *pdev)
1612{
1613 struct resource *res_irq = NULL;
1614 struct cryp_device_data *device_data;
1615
1616 dev_dbg(&pdev->dev, "[%s]", __func__);
1617
1618 device_data = platform_get_drvdata(pdev);
1619 if (!device_data) {
1620 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1621 __func__);
1622 return;
1623 }
1624
1625 /* Check that the device is free */
1626 spin_lock(&device_data->ctx_lock);
1627 /* current_ctx allocates a device, NULL = unallocated */
1628 if (!device_data->current_ctx) {
1629 if (down_trylock(&driver_data.device_allocation))
1630 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1631 "Shutting down anyway...", __func__);
1632 /**
1633 * (Allocate the device)
1634 * Need to set this to non-null (dummy) value,
1635 * to avoid usage if context switching.
1636 */
1637 device_data->current_ctx++;
1638 }
1639 spin_unlock(&device_data->ctx_lock);
1640
1641 /* Remove the device from the list */
1642 if (klist_node_attached(&device_data->list_node))
1643 klist_remove(&device_data->list_node);
1644
1645 /* If this was the last device, remove the services */
1646 if (list_empty(&driver_data.device_list.k_list))
1647 cryp_algs_unregister_all();
1648
1649 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1650 if (!res_irq)
1651 dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
1652 __func__);
1653 else {
1654 disable_irq(res_irq->start);
1655 free_irq(res_irq->start, device_data);
1656 }
1657
1658 if (cryp_disable_power(&pdev->dev, device_data, false))
1659 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1660 __func__);
1661
1662}
1663
4f31f5b1 1664static int ux500_cryp_suspend(struct device *dev)
2789c08f
AW
1665{
1666 int ret;
4f31f5b1 1667 struct platform_device *pdev = to_platform_device(dev);
2789c08f
AW
1668 struct cryp_device_data *device_data;
1669 struct resource *res_irq;
1670 struct cryp_ctx *temp_ctx = NULL;
1671
4f31f5b1 1672 dev_dbg(dev, "[%s]", __func__);
2789c08f
AW
1673
1674 /* Handle state? */
1675 device_data = platform_get_drvdata(pdev);
1676 if (!device_data) {
4f31f5b1 1677 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
2789c08f
AW
1678 return -ENOMEM;
1679 }
1680
1681 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1682 if (!res_irq)
4f31f5b1 1683 dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
2789c08f
AW
1684 else
1685 disable_irq(res_irq->start);
1686
1687 spin_lock(&device_data->ctx_lock);
1688 if (!device_data->current_ctx)
1689 device_data->current_ctx++;
1690 spin_unlock(&device_data->ctx_lock);
1691
1692 if (device_data->current_ctx == ++temp_ctx) {
1693 if (down_interruptible(&driver_data.device_allocation))
4f31f5b1
RW
1694 dev_dbg(dev, "[%s]: down_interruptible() failed",
1695 __func__);
1696 ret = cryp_disable_power(dev, device_data, false);
2789c08f
AW
1697
1698 } else
4f31f5b1 1699 ret = cryp_disable_power(dev, device_data, true);
2789c08f
AW
1700
1701 if (ret)
4f31f5b1 1702 dev_err(dev, "[%s]: cryp_disable_power()", __func__);
2789c08f
AW
1703
1704 return ret;
1705}
1706
4f31f5b1 1707static int ux500_cryp_resume(struct device *dev)
2789c08f
AW
1708{
1709 int ret = 0;
4f31f5b1 1710 struct platform_device *pdev = to_platform_device(dev);
2789c08f
AW
1711 struct cryp_device_data *device_data;
1712 struct resource *res_irq;
1713 struct cryp_ctx *temp_ctx = NULL;
1714
4f31f5b1 1715 dev_dbg(dev, "[%s]", __func__);
2789c08f
AW
1716
1717 device_data = platform_get_drvdata(pdev);
1718 if (!device_data) {
4f31f5b1 1719 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
2789c08f
AW
1720 return -ENOMEM;
1721 }
1722
1723 spin_lock(&device_data->ctx_lock);
1724 if (device_data->current_ctx == ++temp_ctx)
1725 device_data->current_ctx = NULL;
1726 spin_unlock(&device_data->ctx_lock);
1727
1728
1729 if (!device_data->current_ctx)
1730 up(&driver_data.device_allocation);
1731 else
4f31f5b1 1732 ret = cryp_enable_power(dev, device_data, true);
2789c08f
AW
1733
1734 if (ret)
4f31f5b1 1735 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
2789c08f
AW
1736 else {
1737 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1738 if (res_irq)
1739 enable_irq(res_irq->start);
1740 }
1741
1742 return ret;
1743}
1744
4f31f5b1
RW
1745static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1746
2789c08f
AW
1747static struct platform_driver cryp_driver = {
1748 .probe = ux500_cryp_probe,
1749 .remove = ux500_cryp_remove,
1750 .shutdown = ux500_cryp_shutdown,
2789c08f
AW
1751 .driver = {
1752 .owner = THIS_MODULE,
d47cbd5b 1753 .name = "cryp1",
4f31f5b1 1754 .pm = &ux500_cryp_pm,
2789c08f
AW
1755 }
1756};
1757
1758static int __init ux500_cryp_mod_init(void)
1759{
1760 pr_debug("[%s] is called!", __func__);
1761 klist_init(&driver_data.device_list, NULL, NULL);
1762 /* Initialize the semaphore to 0 devices (locked state) */
1763 sema_init(&driver_data.device_allocation, 0);
1764 return platform_driver_register(&cryp_driver);
1765}
1766
1767static void __exit ux500_cryp_mod_fini(void)
1768{
1769 pr_debug("[%s] is called!", __func__);
1770 platform_driver_unregister(&cryp_driver);
1771 return;
1772}
1773
1774module_init(ux500_cryp_mod_init);
1775module_exit(ux500_cryp_mod_fini);
1776
1777module_param(cryp_mode, int, 0);
1778
1779MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1780MODULE_ALIAS("aes-all");
1781MODULE_ALIAS("des-all");
1782
1783MODULE_LICENSE("GPL");
This page took 0.149874 seconds and 5 git commands to generate.