Merge tag 'timer' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / crypto / ux500 / hash / hash_core.c
CommitLineData
8a63b199
AW
1/*
2 * Cryptographic API.
3 * Support for Nomadik hardware crypto engine.
4
5 * Copyright (C) ST-Ericsson SA 2010
6 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11 * License terms: GNU General Public License (GPL) version 2
12 */
13
14#include <linux/clk.h>
15#include <linux/device.h>
16#include <linux/err.h>
17#include <linux/init.h>
18#include <linux/io.h>
19#include <linux/klist.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/platform_device.h>
23#include <linux/crypto.h>
24
25#include <linux/regulator/consumer.h>
26#include <linux/dmaengine.h>
27#include <linux/bitops.h>
28
29#include <crypto/internal/hash.h>
30#include <crypto/sha.h>
31#include <crypto/scatterwalk.h>
32#include <crypto/algapi.h>
33
34#include <mach/crypto-ux500.h>
35#include <mach/hardware.h>
36
37#include "hash_alg.h"
38
39#define DEV_DBG_NAME "hashX hashX:"
40
41static int hash_mode;
42module_param(hash_mode, int, 0);
43MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44
45/**
46 * Pre-calculated empty message digests.
47 */
48static u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = {
49 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
50 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
51 0xaf, 0xd8, 0x07, 0x09
52};
53
54static u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = {
55 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
56 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
57 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
58 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
59};
60
61/* HMAC-SHA1, no key */
62static u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
63 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
64 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
65 0x70, 0x69, 0x0e, 0x1d
66};
67
68/* HMAC-SHA256, no key */
69static u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
70 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
71 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
72 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
73 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
74};
75
76/**
77 * struct hash_driver_data - data specific to the driver.
78 *
79 * @device_list: A list of registered devices to choose from.
80 * @device_allocation: A semaphore initialized with number of devices.
81 */
82struct hash_driver_data {
83 struct klist device_list;
84 struct semaphore device_allocation;
85};
86
87static struct hash_driver_data driver_data;
88
89/* Declaration of functions */
90/**
91 * hash_messagepad - Pads a message and write the nblw bits.
92 * @device_data: Structure for the hash device.
93 * @message: Last word of a message
94 * @index_bytes: The number of bytes in the last message
95 *
96 * This function manages the final part of the digest calculation, when less
97 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
98 *
99 */
100static void hash_messagepad(struct hash_device_data *device_data,
101 const u32 *message, u8 index_bytes);
102
103/**
104 * release_hash_device - Releases a previously allocated hash device.
105 * @device_data: Structure for the hash device.
106 *
107 */
108static void release_hash_device(struct hash_device_data *device_data)
109{
110 spin_lock(&device_data->ctx_lock);
111 device_data->current_ctx->device = NULL;
112 device_data->current_ctx = NULL;
113 spin_unlock(&device_data->ctx_lock);
114
115 /*
116 * The down_interruptible part for this semaphore is called in
117 * cryp_get_device_data.
118 */
119 up(&driver_data.device_allocation);
120}
121
122static void hash_dma_setup_channel(struct hash_device_data *device_data,
123 struct device *dev)
124{
125 struct hash_platform_data *platform_data = dev->platform_data;
126 dma_cap_zero(device_data->dma.mask);
127 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
128
129 device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
130 device_data->dma.chan_mem2hash =
131 dma_request_channel(device_data->dma.mask,
132 platform_data->dma_filter,
133 device_data->dma.cfg_mem2hash);
134
135 init_completion(&device_data->dma.complete);
136}
137
138static void hash_dma_callback(void *data)
139{
140 struct hash_ctx *ctx = (struct hash_ctx *) data;
141
142 complete(&ctx->device->dma.complete);
143}
144
145static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
146 int len, enum dma_data_direction direction)
147{
148 struct dma_async_tx_descriptor *desc = NULL;
149 struct dma_chan *channel = NULL;
150 dma_cookie_t cookie;
151
152 if (direction != DMA_TO_DEVICE) {
153 dev_err(ctx->device->dev, "[%s] Invalid DMA direction",
154 __func__);
155 return -EFAULT;
156 }
157
158 sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
159
160 channel = ctx->device->dma.chan_mem2hash;
161 ctx->device->dma.sg = sg;
162 ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
163 ctx->device->dma.sg, ctx->device->dma.nents,
164 direction);
165
166 if (!ctx->device->dma.sg_len) {
167 dev_err(ctx->device->dev,
168 "[%s]: Could not map the sg list (TO_DEVICE)",
169 __func__);
170 return -EFAULT;
171 }
172
173 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
174 "(TO_DEVICE)", __func__);
175 desc = channel->device->device_prep_slave_sg(channel,
176 ctx->device->dma.sg, ctx->device->dma.sg_len,
f7329e71 177 direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
8a63b199
AW
178 if (!desc) {
179 dev_err(ctx->device->dev,
180 "[%s]: device_prep_slave_sg() failed!", __func__);
181 return -EFAULT;
182 }
183
184 desc->callback = hash_dma_callback;
185 desc->callback_param = ctx;
186
187 cookie = desc->tx_submit(desc);
188 dma_async_issue_pending(channel);
189
190 return 0;
191}
192
193static void hash_dma_done(struct hash_ctx *ctx)
194{
195 struct dma_chan *chan;
196
197 chan = ctx->device->dma.chan_mem2hash;
198 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
199 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
200 ctx->device->dma.sg_len, DMA_TO_DEVICE);
201
202}
203
204static int hash_dma_write(struct hash_ctx *ctx,
205 struct scatterlist *sg, int len)
206{
207 int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
208 if (error) {
209 dev_dbg(ctx->device->dev, "[%s]: hash_set_dma_transfer() "
210 "failed", __func__);
211 return error;
212 }
213
214 return len;
215}
216
217/**
218 * get_empty_message_digest - Returns a pre-calculated digest for
219 * the empty message.
220 * @device_data: Structure for the hash device.
221 * @zero_hash: Buffer to return the empty message digest.
222 * @zero_hash_size: Hash size of the empty message digest.
223 * @zero_digest: True if zero_digest returned.
224 */
225static int get_empty_message_digest(
226 struct hash_device_data *device_data,
227 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
228{
229 int ret = 0;
230 struct hash_ctx *ctx = device_data->current_ctx;
231 *zero_digest = false;
232
233 /**
234 * Caller responsible for ctx != NULL.
235 */
236
237 if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
238 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
239 memcpy(zero_hash, &zero_message_hash_sha1[0],
240 SHA1_DIGEST_SIZE);
241 *zero_hash_size = SHA1_DIGEST_SIZE;
242 *zero_digest = true;
243 } else if (HASH_ALGO_SHA256 ==
244 ctx->config.algorithm) {
245 memcpy(zero_hash, &zero_message_hash_sha256[0],
246 SHA256_DIGEST_SIZE);
247 *zero_hash_size = SHA256_DIGEST_SIZE;
248 *zero_digest = true;
249 } else {
250 dev_err(device_data->dev, "[%s] "
251 "Incorrect algorithm!"
252 , __func__);
253 ret = -EINVAL;
254 goto out;
255 }
256 } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
257 if (!ctx->keylen) {
258 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
259 memcpy(zero_hash, &zero_message_hmac_sha1[0],
260 SHA1_DIGEST_SIZE);
261 *zero_hash_size = SHA1_DIGEST_SIZE;
262 *zero_digest = true;
263 } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
264 memcpy(zero_hash, &zero_message_hmac_sha256[0],
265 SHA256_DIGEST_SIZE);
266 *zero_hash_size = SHA256_DIGEST_SIZE;
267 *zero_digest = true;
268 } else {
269 dev_err(device_data->dev, "[%s] "
270 "Incorrect algorithm!"
271 , __func__);
272 ret = -EINVAL;
273 goto out;
274 }
275 } else {
276 dev_dbg(device_data->dev, "[%s] Continue hash "
277 "calculation, since hmac key avalable",
278 __func__);
279 }
280 }
281out:
282
283 return ret;
284}
285
286/**
287 * hash_disable_power - Request to disable power and clock.
288 * @device_data: Structure for the hash device.
289 * @save_device_state: If true, saves the current hw state.
290 *
291 * This function request for disabling power (regulator) and clock,
292 * and could also save current hw state.
293 */
294static int hash_disable_power(
295 struct hash_device_data *device_data,
296 bool save_device_state)
297{
298 int ret = 0;
299 struct device *dev = device_data->dev;
300
301 spin_lock(&device_data->power_state_lock);
302 if (!device_data->power_state)
303 goto out;
304
305 if (save_device_state) {
306 hash_save_state(device_data,
307 &device_data->state);
308 device_data->restore_dev_state = true;
309 }
310
311 clk_disable(device_data->clk);
312 ret = regulator_disable(device_data->regulator);
313 if (ret)
314 dev_err(dev, "[%s] regulator_disable() failed!", __func__);
315
316 device_data->power_state = false;
317
318out:
319 spin_unlock(&device_data->power_state_lock);
320
321 return ret;
322}
323
324/**
325 * hash_enable_power - Request to enable power and clock.
326 * @device_data: Structure for the hash device.
327 * @restore_device_state: If true, restores a previous saved hw state.
328 *
329 * This function request for enabling power (regulator) and clock,
330 * and could also restore a previously saved hw state.
331 */
332static int hash_enable_power(
333 struct hash_device_data *device_data,
334 bool restore_device_state)
335{
336 int ret = 0;
337 struct device *dev = device_data->dev;
338
339 spin_lock(&device_data->power_state_lock);
340 if (!device_data->power_state) {
341 ret = regulator_enable(device_data->regulator);
342 if (ret) {
343 dev_err(dev, "[%s]: regulator_enable() failed!",
344 __func__);
345 goto out;
346 }
347 ret = clk_enable(device_data->clk);
348 if (ret) {
349 dev_err(dev, "[%s]: clk_enable() failed!",
350 __func__);
351 ret = regulator_disable(
352 device_data->regulator);
353 goto out;
354 }
355 device_data->power_state = true;
356 }
357
358 if (device_data->restore_dev_state) {
359 if (restore_device_state) {
360 device_data->restore_dev_state = false;
361 hash_resume_state(device_data,
362 &device_data->state);
363 }
364 }
365out:
366 spin_unlock(&device_data->power_state_lock);
367
368 return ret;
369}
370
371/**
372 * hash_get_device_data - Checks for an available hash device and return it.
373 * @hash_ctx: Structure for the hash context.
374 * @device_data: Structure for the hash device.
375 *
376 * This function check for an available hash device and return it to
377 * the caller.
378 * Note! Caller need to release the device, calling up().
379 */
380static int hash_get_device_data(struct hash_ctx *ctx,
381 struct hash_device_data **device_data)
382{
383 int ret;
384 struct klist_iter device_iterator;
385 struct klist_node *device_node;
386 struct hash_device_data *local_device_data = NULL;
387
388 /* Wait until a device is available */
389 ret = down_interruptible(&driver_data.device_allocation);
390 if (ret)
391 return ret; /* Interrupted */
392
393 /* Select a device */
394 klist_iter_init(&driver_data.device_list, &device_iterator);
395 device_node = klist_next(&device_iterator);
396 while (device_node) {
397 local_device_data = container_of(device_node,
398 struct hash_device_data, list_node);
399 spin_lock(&local_device_data->ctx_lock);
400 /* current_ctx allocates a device, NULL = unallocated */
401 if (local_device_data->current_ctx) {
402 device_node = klist_next(&device_iterator);
403 } else {
404 local_device_data->current_ctx = ctx;
405 ctx->device = local_device_data;
406 spin_unlock(&local_device_data->ctx_lock);
407 break;
408 }
409 spin_unlock(&local_device_data->ctx_lock);
410 }
411 klist_iter_exit(&device_iterator);
412
413 if (!device_node) {
414 /**
415 * No free device found.
416 * Since we allocated a device with down_interruptible, this
417 * should not be able to happen.
418 * Number of available devices, which are contained in
419 * device_allocation, is therefore decremented by not doing
420 * an up(device_allocation).
421 */
422 return -EBUSY;
423 }
424
425 *device_data = local_device_data;
426
427 return 0;
428}
429
430/**
431 * hash_hw_write_key - Writes the key to the hardware registries.
432 *
433 * @device_data: Structure for the hash device.
434 * @key: Key to be written.
435 * @keylen: The lengt of the key.
436 *
437 * Note! This function DOES NOT write to the NBLW registry, even though
438 * specified in the the hw design spec. Either due to incorrect info in the
439 * spec or due to a bug in the hw.
440 */
441static void hash_hw_write_key(struct hash_device_data *device_data,
442 const u8 *key, unsigned int keylen)
443{
444 u32 word = 0;
445 int nwords = 1;
446
447 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
448
449 while (keylen >= 4) {
450 u32 *key_word = (u32 *)key;
451
452 HASH_SET_DIN(key_word, nwords);
453 keylen -= 4;
454 key += 4;
455 }
456
457 /* Take care of the remaining bytes in the last word */
458 if (keylen) {
459 word = 0;
460 while (keylen) {
461 word |= (key[keylen - 1] << (8 * (keylen - 1)));
462 keylen--;
463 }
464
465 HASH_SET_DIN(&word, nwords);
466 }
467
468 while (device_data->base->str & HASH_STR_DCAL_MASK)
469 cpu_relax();
470
471 HASH_SET_DCAL;
472
473 while (device_data->base->str & HASH_STR_DCAL_MASK)
474 cpu_relax();
475}
476
477/**
478 * init_hash_hw - Initialise the hash hardware for a new calculation.
479 * @device_data: Structure for the hash device.
480 * @ctx: The hash context.
481 *
482 * This function will enable the bits needed to clear and start a new
483 * calculation.
484 */
485static int init_hash_hw(struct hash_device_data *device_data,
486 struct hash_ctx *ctx)
487{
488 int ret = 0;
489
490 ret = hash_setconfiguration(device_data, &ctx->config);
491 if (ret) {
492 dev_err(device_data->dev, "[%s] hash_setconfiguration() "
493 "failed!", __func__);
494 return ret;
495 }
496
497 hash_begin(device_data, ctx);
498
499 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
500 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
501
502 return ret;
503}
504
505/**
506 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
507 *
508 * @sg: Scatterlist.
509 * @size: Size in bytes.
510 * @aligned: True if sg data aligned to work in DMA mode.
511 *
512 */
513static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
514{
515 int nents = 0;
516 bool aligned_data = true;
517
518 while (size > 0 && sg) {
519 nents++;
520 size -= sg->length;
521
522 /* hash_set_dma_transfer will align last nent */
523 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE))
524 || (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) &&
525 size > 0))
526 aligned_data = false;
527
528 sg = sg_next(sg);
529 }
530
531 if (aligned)
532 *aligned = aligned_data;
533
534 if (size != 0)
535 return -EFAULT;
536
537 return nents;
538}
539
540/**
541 * hash_dma_valid_data - checks for dma valid sg data.
542 * @sg: Scatterlist.
543 * @datasize: Datasize in bytes.
544 *
545 * NOTE! This function checks for dma valid sg data, since dma
546 * only accept datasizes of even wordsize.
547 */
548static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
549{
550 bool aligned;
551
552 /* Need to include at least one nent, else error */
553 if (hash_get_nents(sg, datasize, &aligned) < 1)
554 return false;
555
556 return aligned;
557}
558
559/**
560 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
561 * @req: The hash request for the job.
562 *
563 * Initialize structures.
564 */
565static int hash_init(struct ahash_request *req)
566{
567 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
568 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
569 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
570
571 if (!ctx->key)
572 ctx->keylen = 0;
573
574 memset(&req_ctx->state, 0, sizeof(struct hash_state));
575 req_ctx->updated = 0;
576 if (hash_mode == HASH_MODE_DMA) {
8a63b199
AW
577 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
578 req_ctx->dma_mode = false; /* Don't use DMA */
579
580 pr_debug(DEV_DBG_NAME " [%s] DMA mode, but direct "
581 "to CPU mode for data size < %d",
582 __func__, HASH_DMA_ALIGN_SIZE);
583 } else {
584 if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
585 hash_dma_valid_data(req->src,
586 req->nbytes)) {
587 req_ctx->dma_mode = true;
588 } else {
589 req_ctx->dma_mode = false;
590 pr_debug(DEV_DBG_NAME " [%s] DMA mode, but use"
591 " CPU mode for datalength < %d"
592 " or non-aligned data, except "
593 "in last nent", __func__,
594 HASH_DMA_PERFORMANCE_MIN_SIZE);
595 }
596 }
597 }
8a63b199
AW
598 return 0;
599}
600
601/**
602 * hash_processblock - This function processes a single block of 512 bits (64
603 * bytes), word aligned, starting at message.
604 * @device_data: Structure for the hash device.
605 * @message: Block (512 bits) of message to be written to
606 * the HASH hardware.
607 *
608 */
609static void hash_processblock(
610 struct hash_device_data *device_data,
611 const u32 *message, int length)
612{
613 int len = length / HASH_BYTES_PER_WORD;
614 /*
615 * NBLW bits. Reset the number of bits in last word (NBLW).
616 */
617 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
618
619 /*
620 * Write message data to the HASH_DIN register.
621 */
622 HASH_SET_DIN(message, len);
623}
624
625/**
626 * hash_messagepad - Pads a message and write the nblw bits.
627 * @device_data: Structure for the hash device.
628 * @message: Last word of a message.
629 * @index_bytes: The number of bytes in the last message.
630 *
631 * This function manages the final part of the digest calculation, when less
632 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
633 *
634 */
635static void hash_messagepad(struct hash_device_data *device_data,
636 const u32 *message, u8 index_bytes)
637{
638 int nwords = 1;
639
640 /*
641 * Clear hash str register, only clear NBLW
642 * since DCAL will be reset by hardware.
643 */
644 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
645
646 /* Main loop */
647 while (index_bytes >= 4) {
648 HASH_SET_DIN(message, nwords);
649 index_bytes -= 4;
650 message++;
651 }
652
653 if (index_bytes)
654 HASH_SET_DIN(message, nwords);
655
656 while (device_data->base->str & HASH_STR_DCAL_MASK)
657 cpu_relax();
658
659 /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
660 HASH_SET_NBLW(index_bytes * 8);
661 dev_dbg(device_data->dev, "[%s] DIN=0x%08x NBLW=%d", __func__,
662 readl_relaxed(&device_data->base->din),
663 (int)(readl_relaxed(&device_data->base->str) &
664 HASH_STR_NBLW_MASK));
665 HASH_SET_DCAL;
666 dev_dbg(device_data->dev, "[%s] after dcal -> DIN=0x%08x NBLW=%d",
667 __func__, readl_relaxed(&device_data->base->din),
668 (int)(readl_relaxed(&device_data->base->str) &
669 HASH_STR_NBLW_MASK));
670
671 while (device_data->base->str & HASH_STR_DCAL_MASK)
672 cpu_relax();
673}
674
675/**
676 * hash_incrementlength - Increments the length of the current message.
677 * @ctx: Hash context
678 * @incr: Length of message processed already
679 *
680 * Overflow cannot occur, because conditions for overflow are checked in
681 * hash_hw_update.
682 */
683static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
684{
685 ctx->state.length.low_word += incr;
686
687 /* Check for wrap-around */
688 if (ctx->state.length.low_word < incr)
689 ctx->state.length.high_word++;
690}
691
692/**
693 * hash_setconfiguration - Sets the required configuration for the hash
694 * hardware.
695 * @device_data: Structure for the hash device.
696 * @config: Pointer to a configuration structure.
697 */
698int hash_setconfiguration(struct hash_device_data *device_data,
699 struct hash_config *config)
700{
701 int ret = 0;
702
703 if (config->algorithm != HASH_ALGO_SHA1 &&
704 config->algorithm != HASH_ALGO_SHA256)
705 return -EPERM;
706
707 /*
708 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
709 * to be written to HASH_DIN is considered as 32 bits.
710 */
711 HASH_SET_DATA_FORMAT(config->data_format);
712
713 /*
714 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
715 */
716 switch (config->algorithm) {
717 case HASH_ALGO_SHA1:
718 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
719 break;
720
721 case HASH_ALGO_SHA256:
722 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
723 break;
724
725 default:
726 dev_err(device_data->dev, "[%s] Incorrect algorithm.",
727 __func__);
728 return -EPERM;
729 }
730
731 /*
732 * MODE bit. This bit selects between HASH or HMAC mode for the
733 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
734 */
735 if (HASH_OPER_MODE_HASH == config->oper_mode)
736 HASH_CLEAR_BITS(&device_data->base->cr,
737 HASH_CR_MODE_MASK);
738 else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
739 HASH_SET_BITS(&device_data->base->cr,
740 HASH_CR_MODE_MASK);
741 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
742 /* Truncate key to blocksize */
743 dev_dbg(device_data->dev, "[%s] LKEY set", __func__);
744 HASH_SET_BITS(&device_data->base->cr,
745 HASH_CR_LKEY_MASK);
746 } else {
747 dev_dbg(device_data->dev, "[%s] LKEY cleared",
748 __func__);
749 HASH_CLEAR_BITS(&device_data->base->cr,
750 HASH_CR_LKEY_MASK);
751 }
752 } else { /* Wrong hash mode */
753 ret = -EPERM;
754 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
755 __func__);
756 }
757 return ret;
758}
759
760/**
761 * hash_begin - This routine resets some globals and initializes the hash
762 * hardware.
763 * @device_data: Structure for the hash device.
764 * @ctx: Hash context.
765 */
766void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
767{
768 /* HW and SW initializations */
769 /* Note: there is no need to initialize buffer and digest members */
770
771 while (device_data->base->str & HASH_STR_DCAL_MASK)
772 cpu_relax();
773
774 /*
775 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
776 * prepare the initialize the HASH accelerator to compute the message
777 * digest of a new message.
778 */
779 HASH_INITIALIZE;
780
781 /*
782 * NBLW bits. Reset the number of bits in last word (NBLW).
783 */
784 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
785}
786
787int hash_process_data(
788 struct hash_device_data *device_data,
789 struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
790 int msg_length, u8 *data_buffer, u8 *buffer, u8 *index)
791{
792 int ret = 0;
793 u32 count;
794
795 do {
796 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
797 for (count = 0; count < msg_length; count++) {
798 buffer[*index + count] =
799 *(data_buffer + count);
800 }
801 *index += msg_length;
802 msg_length = 0;
803 } else {
804 if (req_ctx->updated) {
805
806 ret = hash_resume_state(device_data,
807 &device_data->state);
808 memmove(req_ctx->state.buffer,
809 device_data->state.buffer,
810 HASH_BLOCK_SIZE / sizeof(u32));
811 if (ret) {
812 dev_err(device_data->dev, "[%s] "
813 "hash_resume_state()"
814 " failed!", __func__);
815 goto out;
816 }
817 } else {
818 ret = init_hash_hw(device_data, ctx);
819 if (ret) {
820 dev_err(device_data->dev, "[%s] "
821 "init_hash_hw()"
822 " failed!", __func__);
823 goto out;
824 }
825 req_ctx->updated = 1;
826 }
827 /*
828 * If 'data_buffer' is four byte aligned and
829 * local buffer does not have any data, we can
830 * write data directly from 'data_buffer' to
831 * HW peripheral, otherwise we first copy data
832 * to a local buffer
833 */
834 if ((0 == (((u32)data_buffer) % 4))
835 && (0 == *index))
836 hash_processblock(device_data,
837 (const u32 *)
838 data_buffer, HASH_BLOCK_SIZE);
839 else {
840 for (count = 0; count <
841 (u32)(HASH_BLOCK_SIZE -
842 *index);
843 count++) {
844 buffer[*index + count] =
845 *(data_buffer + count);
846 }
847 hash_processblock(device_data,
848 (const u32 *)buffer,
849 HASH_BLOCK_SIZE);
850 }
851 hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
852 data_buffer += (HASH_BLOCK_SIZE - *index);
853
854 msg_length -= (HASH_BLOCK_SIZE - *index);
855 *index = 0;
856
857 ret = hash_save_state(device_data,
858 &device_data->state);
859
860 memmove(device_data->state.buffer,
861 req_ctx->state.buffer,
862 HASH_BLOCK_SIZE / sizeof(u32));
863 if (ret) {
864 dev_err(device_data->dev, "[%s] "
865 "hash_save_state()"
866 " failed!", __func__);
867 goto out;
868 }
869 }
870 } while (msg_length != 0);
871out:
872
873 return ret;
874}
875
876/**
877 * hash_dma_final - The hash dma final function for SHA1/SHA256.
878 * @req: The hash request for the job.
879 */
880static int hash_dma_final(struct ahash_request *req)
881{
882 int ret = 0;
883 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
884 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
885 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
886 struct hash_device_data *device_data;
887 u8 digest[SHA256_DIGEST_SIZE];
888 int bytes_written = 0;
889
890 ret = hash_get_device_data(ctx, &device_data);
891 if (ret)
892 return ret;
893
894 dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
895
896 if (req_ctx->updated) {
897 ret = hash_resume_state(device_data, &device_data->state);
898
899 if (ret) {
900 dev_err(device_data->dev, "[%s] hash_resume_state() "
901 "failed!", __func__);
902 goto out;
903 }
904
905 }
906
907 if (!req_ctx->updated) {
908 ret = hash_setconfiguration(device_data, &ctx->config);
909 if (ret) {
910 dev_err(device_data->dev, "[%s] "
911 "hash_setconfiguration() failed!",
912 __func__);
913 goto out;
914 }
915
916 /* Enable DMA input */
917 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
918 HASH_CLEAR_BITS(&device_data->base->cr,
919 HASH_CR_DMAE_MASK);
920 } else {
921 HASH_SET_BITS(&device_data->base->cr,
922 HASH_CR_DMAE_MASK);
923 HASH_SET_BITS(&device_data->base->cr,
924 HASH_CR_PRIVN_MASK);
925 }
926
927 HASH_INITIALIZE;
928
929 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
930 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
931
932 /* Number of bits in last word = (nbytes * 8) % 32 */
933 HASH_SET_NBLW((req->nbytes * 8) % 32);
934 req_ctx->updated = 1;
935 }
936
937 /* Store the nents in the dma struct. */
938 ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
939 if (!ctx->device->dma.nents) {
940 dev_err(device_data->dev, "[%s] "
941 "ctx->device->dma.nents = 0", __func__);
942 goto out;
943 }
944
945 bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
946 if (bytes_written != req->nbytes) {
947 dev_err(device_data->dev, "[%s] "
948 "hash_dma_write() failed!", __func__);
949 goto out;
950 }
951
952 wait_for_completion(&ctx->device->dma.complete);
953 hash_dma_done(ctx);
954
955 while (device_data->base->str & HASH_STR_DCAL_MASK)
956 cpu_relax();
957
958 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
959 unsigned int keylen = ctx->keylen;
960 u8 *key = ctx->key;
961
962 dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
963 ctx->keylen);
964 hash_hw_write_key(device_data, key, keylen);
965 }
966
967 hash_get_digest(device_data, digest, ctx->config.algorithm);
968 memcpy(req->result, digest, ctx->digestsize);
969
970out:
971 release_hash_device(device_data);
972
973 /**
974 * Allocated in setkey, and only used in HMAC.
975 */
976 kfree(ctx->key);
977
978 return ret;
979}
980
981/**
982 * hash_hw_final - The final hash calculation function
983 * @req: The hash request for the job.
984 */
985int hash_hw_final(struct ahash_request *req)
986{
987 int ret = 0;
988 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
989 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
990 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
991 struct hash_device_data *device_data;
992 u8 digest[SHA256_DIGEST_SIZE];
993
994 ret = hash_get_device_data(ctx, &device_data);
995 if (ret)
996 return ret;
997
998 dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
999
1000 if (req_ctx->updated) {
1001 ret = hash_resume_state(device_data, &device_data->state);
1002
1003 if (ret) {
1004 dev_err(device_data->dev, "[%s] hash_resume_state() "
1005 "failed!", __func__);
1006 goto out;
1007 }
1008 } else if (req->nbytes == 0 && ctx->keylen == 0) {
1009 u8 zero_hash[SHA256_DIGEST_SIZE];
1010 u32 zero_hash_size = 0;
1011 bool zero_digest = false;
1012 /**
1013 * Use a pre-calculated empty message digest
1014 * (workaround since hw return zeroes, hw bug!?)
1015 */
1016 ret = get_empty_message_digest(device_data, &zero_hash[0],
1017 &zero_hash_size, &zero_digest);
1018 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
1019 zero_digest) {
1020 memcpy(req->result, &zero_hash[0], ctx->digestsize);
1021 goto out;
1022 } else if (!ret && !zero_digest) {
1023 dev_dbg(device_data->dev, "[%s] HMAC zero msg with "
1024 "key, continue...", __func__);
1025 } else {
1026 dev_err(device_data->dev, "[%s] ret=%d, or wrong "
1027 "digest size? %s", __func__, ret,
1028 (zero_hash_size == ctx->digestsize) ?
1029 "true" : "false");
1030 /* Return error */
1031 goto out;
1032 }
1033 } else if (req->nbytes == 0 && ctx->keylen > 0) {
1034 dev_err(device_data->dev, "[%s] Empty message with "
1035 "keylength > 0, NOT supported.", __func__);
1036 goto out;
1037 }
1038
1039 if (!req_ctx->updated) {
1040 ret = init_hash_hw(device_data, ctx);
1041 if (ret) {
1042 dev_err(device_data->dev, "[%s] init_hash_hw() "
1043 "failed!", __func__);
1044 goto out;
1045 }
1046 }
1047
1048 if (req_ctx->state.index) {
1049 hash_messagepad(device_data, req_ctx->state.buffer,
1050 req_ctx->state.index);
1051 } else {
1052 HASH_SET_DCAL;
1053 while (device_data->base->str & HASH_STR_DCAL_MASK)
1054 cpu_relax();
1055 }
1056
1057 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1058 unsigned int keylen = ctx->keylen;
1059 u8 *key = ctx->key;
1060
1061 dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
1062 ctx->keylen);
1063 hash_hw_write_key(device_data, key, keylen);
1064 }
1065
1066 hash_get_digest(device_data, digest, ctx->config.algorithm);
1067 memcpy(req->result, digest, ctx->digestsize);
1068
1069out:
1070 release_hash_device(device_data);
1071
1072 /**
1073 * Allocated in setkey, and only used in HMAC.
1074 */
1075 kfree(ctx->key);
1076
1077 return ret;
1078}
1079
1080/**
1081 * hash_hw_update - Updates current HASH computation hashing another part of
1082 * the message.
1083 * @req: Byte array containing the message to be hashed (caller
1084 * allocated).
1085 */
1086int hash_hw_update(struct ahash_request *req)
1087{
1088 int ret = 0;
1089 u8 index = 0;
1090 u8 *buffer;
1091 struct hash_device_data *device_data;
1092 u8 *data_buffer;
1093 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1094 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1095 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1096 struct crypto_hash_walk walk;
1097 int msg_length = crypto_hash_walk_first(req, &walk);
1098
1099 /* Empty message ("") is correct indata */
1100 if (msg_length == 0)
1101 return ret;
1102
1103 index = req_ctx->state.index;
1104 buffer = (u8 *)req_ctx->state.buffer;
1105
1106 /* Check if ctx->state.length + msg_length
1107 overflows */
1108 if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1109 HASH_HIGH_WORD_MAX_VAL ==
1110 req_ctx->state.length.high_word) {
1111 pr_err(DEV_DBG_NAME " [%s] HASH_MSG_LENGTH_OVERFLOW!",
1112 __func__);
1113 return -EPERM;
1114 }
1115
1116 ret = hash_get_device_data(ctx, &device_data);
1117 if (ret)
1118 return ret;
1119
1120 /* Main loop */
1121 while (0 != msg_length) {
1122 data_buffer = walk.data;
1123 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1124 data_buffer, buffer, &index);
1125
1126 if (ret) {
1127 dev_err(device_data->dev, "[%s] hash_internal_hw_"
1128 "update() failed!", __func__);
1129 goto out;
1130 }
1131
1132 msg_length = crypto_hash_walk_done(&walk, 0);
1133 }
1134
1135 req_ctx->state.index = index;
1136 dev_dbg(device_data->dev, "[%s] indata length=%d, bin=%d))",
1137 __func__, req_ctx->state.index,
1138 req_ctx->state.bit_index);
1139
1140out:
1141 release_hash_device(device_data);
1142
1143 return ret;
1144}
1145
1146/**
1147 * hash_resume_state - Function that resumes the state of an calculation.
1148 * @device_data: Pointer to the device structure.
1149 * @device_state: The state to be restored in the hash hardware
1150 */
1151int hash_resume_state(struct hash_device_data *device_data,
1152 const struct hash_state *device_state)
1153{
1154 u32 temp_cr;
1155 s32 count;
1156 int hash_mode = HASH_OPER_MODE_HASH;
1157
1158 if (NULL == device_state) {
1159 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1160 __func__);
1161 return -EPERM;
1162 }
1163
1164 /* Check correctness of index and length members */
1165 if (device_state->index > HASH_BLOCK_SIZE
1166 || (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1167 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1168 __func__);
1169 return -EPERM;
1170 }
1171
1172 /*
1173 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1174 * prepare the initialize the HASH accelerator to compute the message
1175 * digest of a new message.
1176 */
1177 HASH_INITIALIZE;
1178
1179 temp_cr = device_state->temp_cr;
1180 writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1181
1182 if (device_data->base->cr & HASH_CR_MODE_MASK)
1183 hash_mode = HASH_OPER_MODE_HMAC;
1184 else
1185 hash_mode = HASH_OPER_MODE_HASH;
1186
1187 for (count = 0; count < HASH_CSR_COUNT; count++) {
1188 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1189 break;
1190
1191 writel_relaxed(device_state->csr[count],
1192 &device_data->base->csrx[count]);
1193 }
1194
1195 writel_relaxed(device_state->csfull, &device_data->base->csfull);
1196 writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1197
1198 writel_relaxed(device_state->str_reg, &device_data->base->str);
1199 writel_relaxed(temp_cr, &device_data->base->cr);
1200
1201 return 0;
1202}
1203
1204/**
1205 * hash_save_state - Function that saves the state of hardware.
1206 * @device_data: Pointer to the device structure.
1207 * @device_state: The strucure where the hardware state should be saved.
1208 */
1209int hash_save_state(struct hash_device_data *device_data,
1210 struct hash_state *device_state)
1211{
1212 u32 temp_cr;
1213 u32 count;
1214 int hash_mode = HASH_OPER_MODE_HASH;
1215
1216 if (NULL == device_state) {
1217 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1218 __func__);
1219 return -ENOTSUPP;
1220 }
1221
1222 /* Write dummy value to force digest intermediate calculation. This
1223 * actually makes sure that there isn't any ongoing calculation in the
1224 * hardware.
1225 */
1226 while (device_data->base->str & HASH_STR_DCAL_MASK)
1227 cpu_relax();
1228
1229 temp_cr = readl_relaxed(&device_data->base->cr);
1230
1231 device_state->str_reg = readl_relaxed(&device_data->base->str);
1232
1233 device_state->din_reg = readl_relaxed(&device_data->base->din);
1234
1235 if (device_data->base->cr & HASH_CR_MODE_MASK)
1236 hash_mode = HASH_OPER_MODE_HMAC;
1237 else
1238 hash_mode = HASH_OPER_MODE_HASH;
1239
1240 for (count = 0; count < HASH_CSR_COUNT; count++) {
1241 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1242 break;
1243
1244 device_state->csr[count] =
1245 readl_relaxed(&device_data->base->csrx[count]);
1246 }
1247
1248 device_state->csfull = readl_relaxed(&device_data->base->csfull);
1249 device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1250
1251 device_state->temp_cr = temp_cr;
1252
1253 return 0;
1254}
1255
1256/**
1257 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1258 * @device_data:
1259 *
1260 */
1261int hash_check_hw(struct hash_device_data *device_data)
1262{
1263 /* Checking Peripheral Ids */
1264 if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0)
1265 && HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1)
1266 && HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2)
1267 && HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3)
1268 && HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0)
1269 && HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1)
1270 && HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2)
1271 && HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)
1272 ) {
1273 return 0;
1274 }
1275
1276 dev_err(device_data->dev, "[%s] HASH_UNSUPPORTED_HW!",
1277 __func__);
1278 return -ENOTSUPP;
1279}
1280
1281/**
1282 * hash_get_digest - Gets the digest.
1283 * @device_data: Pointer to the device structure.
1284 * @digest: User allocated byte array for the calculated digest.
1285 * @algorithm: The algorithm in use.
1286 */
1287void hash_get_digest(struct hash_device_data *device_data,
1288 u8 *digest, int algorithm)
1289{
1290 u32 temp_hx_val, count;
1291 int loop_ctr;
1292
1293 if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1294 dev_err(device_data->dev, "[%s] Incorrect algorithm %d",
1295 __func__, algorithm);
1296 return;
1297 }
1298
1299 if (algorithm == HASH_ALGO_SHA1)
1300 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1301 else
1302 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1303
1304 dev_dbg(device_data->dev, "[%s] digest array:(0x%x)",
1305 __func__, (u32) digest);
1306
1307 /* Copy result into digest array */
1308 for (count = 0; count < loop_ctr; count++) {
1309 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1310 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1311 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1312 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1313 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1314 }
1315}
1316
1317/**
1318 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1319 * @req: The hash request for the job.
1320 */
1321static int ahash_update(struct ahash_request *req)
1322{
1323 int ret = 0;
1324 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1325
1326 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1327 ret = hash_hw_update(req);
1328 /* Skip update for DMA, all data will be passed to DMA in final */
1329
1330 if (ret) {
1331 pr_err(DEV_DBG_NAME " [%s] hash_hw_update() failed!",
1332 __func__);
1333 }
1334
1335 return ret;
1336}
1337
1338/**
1339 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1340 * @req: The hash request for the job.
1341 */
1342static int ahash_final(struct ahash_request *req)
1343{
1344 int ret = 0;
1345 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1346
1347 pr_debug(DEV_DBG_NAME " [%s] data size: %d", __func__, req->nbytes);
1348
1349 if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1350 ret = hash_dma_final(req);
1351 else
1352 ret = hash_hw_final(req);
1353
1354 if (ret) {
1355 pr_err(DEV_DBG_NAME " [%s] hash_hw/dma_final() failed",
1356 __func__);
1357 }
1358
1359 return ret;
1360}
1361
1362static int hash_setkey(struct crypto_ahash *tfm,
1363 const u8 *key, unsigned int keylen, int alg)
1364{
1365 int ret = 0;
1366 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1367
1368 /**
1369 * Freed in final.
1370 */
1371 ctx->key = kmalloc(keylen, GFP_KERNEL);
1372 if (!ctx->key) {
1373 pr_err(DEV_DBG_NAME " [%s] Failed to allocate ctx->key "
1374 "for %d\n", __func__, alg);
1375 return -ENOMEM;
1376 }
1377
1378 memcpy(ctx->key, key, keylen);
1379 ctx->keylen = keylen;
1380
1381 return ret;
1382}
1383
1384static int ahash_sha1_init(struct ahash_request *req)
1385{
1386 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1387 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1388
1389 ctx->config.data_format = HASH_DATA_8_BITS;
1390 ctx->config.algorithm = HASH_ALGO_SHA1;
1391 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1392 ctx->digestsize = SHA1_DIGEST_SIZE;
1393
1394 return hash_init(req);
1395}
1396
1397static int ahash_sha256_init(struct ahash_request *req)
1398{
1399 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1400 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1401
1402 ctx->config.data_format = HASH_DATA_8_BITS;
1403 ctx->config.algorithm = HASH_ALGO_SHA256;
1404 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1405 ctx->digestsize = SHA256_DIGEST_SIZE;
1406
1407 return hash_init(req);
1408}
1409
1410static int ahash_sha1_digest(struct ahash_request *req)
1411{
1412 int ret2, ret1;
1413
1414 ret1 = ahash_sha1_init(req);
1415 if (ret1)
1416 goto out;
1417
1418 ret1 = ahash_update(req);
1419 ret2 = ahash_final(req);
1420
1421out:
1422 return ret1 ? ret1 : ret2;
1423}
1424
1425static int ahash_sha256_digest(struct ahash_request *req)
1426{
1427 int ret2, ret1;
1428
1429 ret1 = ahash_sha256_init(req);
1430 if (ret1)
1431 goto out;
1432
1433 ret1 = ahash_update(req);
1434 ret2 = ahash_final(req);
1435
1436out:
1437 return ret1 ? ret1 : ret2;
1438}
1439
1440static int hmac_sha1_init(struct ahash_request *req)
1441{
1442 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1443 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1444
1445 ctx->config.data_format = HASH_DATA_8_BITS;
1446 ctx->config.algorithm = HASH_ALGO_SHA1;
1447 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1448 ctx->digestsize = SHA1_DIGEST_SIZE;
1449
1450 return hash_init(req);
1451}
1452
1453static int hmac_sha256_init(struct ahash_request *req)
1454{
1455 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1456 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1457
1458 ctx->config.data_format = HASH_DATA_8_BITS;
1459 ctx->config.algorithm = HASH_ALGO_SHA256;
1460 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1461 ctx->digestsize = SHA256_DIGEST_SIZE;
1462
1463 return hash_init(req);
1464}
1465
1466static int hmac_sha1_digest(struct ahash_request *req)
1467{
1468 int ret2, ret1;
1469
1470 ret1 = hmac_sha1_init(req);
1471 if (ret1)
1472 goto out;
1473
1474 ret1 = ahash_update(req);
1475 ret2 = ahash_final(req);
1476
1477out:
1478 return ret1 ? ret1 : ret2;
1479}
1480
1481static int hmac_sha256_digest(struct ahash_request *req)
1482{
1483 int ret2, ret1;
1484
1485 ret1 = hmac_sha256_init(req);
1486 if (ret1)
1487 goto out;
1488
1489 ret1 = ahash_update(req);
1490 ret2 = ahash_final(req);
1491
1492out:
1493 return ret1 ? ret1 : ret2;
1494}
1495
1496static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1497 const u8 *key, unsigned int keylen)
1498{
1499 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1500}
1501
1502static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1503 const u8 *key, unsigned int keylen)
1504{
1505 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1506}
1507
1508struct hash_algo_template {
1509 struct hash_config conf;
1510 struct ahash_alg hash;
1511};
1512
1513static int hash_cra_init(struct crypto_tfm *tfm)
1514{
1515 struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1516 struct crypto_alg *alg = tfm->__crt_alg;
1517 struct hash_algo_template *hash_alg;
1518
1519 hash_alg = container_of(__crypto_ahash_alg(alg),
1520 struct hash_algo_template,
1521 hash);
1522
1523 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1524 sizeof(struct hash_req_ctx));
1525
1526 ctx->config.data_format = HASH_DATA_8_BITS;
1527 ctx->config.algorithm = hash_alg->conf.algorithm;
1528 ctx->config.oper_mode = hash_alg->conf.oper_mode;
1529
1530 ctx->digestsize = hash_alg->hash.halg.digestsize;
1531
1532 return 0;
1533}
1534
1535static struct hash_algo_template hash_algs[] = {
1536 {
1537 .conf.algorithm = HASH_ALGO_SHA1,
1538 .conf.oper_mode = HASH_OPER_MODE_HASH,
1539 .hash = {
1540 .init = hash_init,
1541 .update = ahash_update,
1542 .final = ahash_final,
1543 .digest = ahash_sha1_digest,
1544 .halg.digestsize = SHA1_DIGEST_SIZE,
1545 .halg.statesize = sizeof(struct hash_ctx),
1546 .halg.base = {
1547 .cra_name = "sha1",
1548 .cra_driver_name = "sha1-ux500",
1549 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1550 CRYPTO_ALG_ASYNC,
1551 .cra_blocksize = SHA1_BLOCK_SIZE,
1552 .cra_ctxsize = sizeof(struct hash_ctx),
1553 .cra_init = hash_cra_init,
1554 .cra_module = THIS_MODULE,
1555 }
1556 }
1557 },
1558 {
1559 .conf.algorithm = HASH_ALGO_SHA256,
1560 .conf.oper_mode = HASH_OPER_MODE_HASH,
1561 .hash = {
1562 .init = hash_init,
1563 .update = ahash_update,
1564 .final = ahash_final,
1565 .digest = ahash_sha256_digest,
1566 .halg.digestsize = SHA256_DIGEST_SIZE,
1567 .halg.statesize = sizeof(struct hash_ctx),
1568 .halg.base = {
1569 .cra_name = "sha256",
1570 .cra_driver_name = "sha256-ux500",
1571 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1572 CRYPTO_ALG_ASYNC,
1573 .cra_blocksize = SHA256_BLOCK_SIZE,
1574 .cra_ctxsize = sizeof(struct hash_ctx),
1575 .cra_type = &crypto_ahash_type,
1576 .cra_init = hash_cra_init,
1577 .cra_module = THIS_MODULE,
1578 }
1579 }
1580
1581 },
1582 {
1583 .conf.algorithm = HASH_ALGO_SHA1,
1584 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1585 .hash = {
1586 .init = hash_init,
1587 .update = ahash_update,
1588 .final = ahash_final,
1589 .digest = hmac_sha1_digest,
1590 .setkey = hmac_sha1_setkey,
1591 .halg.digestsize = SHA1_DIGEST_SIZE,
1592 .halg.statesize = sizeof(struct hash_ctx),
1593 .halg.base = {
1594 .cra_name = "hmac(sha1)",
1595 .cra_driver_name = "hmac-sha1-ux500",
1596 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1597 CRYPTO_ALG_ASYNC,
1598 .cra_blocksize = SHA1_BLOCK_SIZE,
1599 .cra_ctxsize = sizeof(struct hash_ctx),
1600 .cra_type = &crypto_ahash_type,
1601 .cra_init = hash_cra_init,
1602 .cra_module = THIS_MODULE,
1603 }
1604 }
1605 },
1606 {
1607 .conf.algorithm = HASH_ALGO_SHA256,
1608 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1609 .hash = {
1610 .init = hash_init,
1611 .update = ahash_update,
1612 .final = ahash_final,
1613 .digest = hmac_sha256_digest,
1614 .setkey = hmac_sha256_setkey,
1615 .halg.digestsize = SHA256_DIGEST_SIZE,
1616 .halg.statesize = sizeof(struct hash_ctx),
1617 .halg.base = {
1618 .cra_name = "hmac(sha256)",
1619 .cra_driver_name = "hmac-sha256-ux500",
1620 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1621 CRYPTO_ALG_ASYNC,
1622 .cra_blocksize = SHA256_BLOCK_SIZE,
1623 .cra_ctxsize = sizeof(struct hash_ctx),
1624 .cra_type = &crypto_ahash_type,
1625 .cra_init = hash_cra_init,
1626 .cra_module = THIS_MODULE,
1627 }
1628 }
1629 }
1630};
1631
1632/**
1633 * hash_algs_register_all -
1634 */
1635static int ahash_algs_register_all(struct hash_device_data *device_data)
1636{
1637 int ret;
1638 int i;
1639 int count;
1640
1641 for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1642 ret = crypto_register_ahash(&hash_algs[i].hash);
1643 if (ret) {
1644 count = i;
1645 dev_err(device_data->dev, "[%s] alg registration failed",
1646 hash_algs[i].hash.halg.base.cra_driver_name);
1647 goto unreg;
1648 }
1649 }
1650 return 0;
1651unreg:
1652 for (i = 0; i < count; i++)
1653 crypto_unregister_ahash(&hash_algs[i].hash);
1654 return ret;
1655}
1656
1657/**
1658 * hash_algs_unregister_all -
1659 */
1660static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1661{
1662 int i;
1663
1664 for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1665 crypto_unregister_ahash(&hash_algs[i].hash);
1666}
1667
1668/**
1669 * ux500_hash_probe - Function that probes the hash hardware.
1670 * @pdev: The platform device.
1671 */
1672static int ux500_hash_probe(struct platform_device *pdev)
1673{
1674 int ret = 0;
1675 struct resource *res = NULL;
1676 struct hash_device_data *device_data;
1677 struct device *dev = &pdev->dev;
1678
1679 device_data = kzalloc(sizeof(struct hash_device_data), GFP_ATOMIC);
1680 if (!device_data) {
1681 dev_dbg(dev, "[%s] kzalloc() failed!", __func__);
1682 ret = -ENOMEM;
1683 goto out;
1684 }
1685
1686 device_data->dev = dev;
1687 device_data->current_ctx = NULL;
1688
1689 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1690 if (!res) {
1691 dev_dbg(dev, "[%s] platform_get_resource() failed!", __func__);
1692 ret = -ENODEV;
1693 goto out_kfree;
1694 }
1695
1696 res = request_mem_region(res->start, resource_size(res), pdev->name);
1697 if (res == NULL) {
1698 dev_dbg(dev, "[%s] request_mem_region() failed!", __func__);
1699 ret = -EBUSY;
1700 goto out_kfree;
1701 }
1702
1703 device_data->base = ioremap(res->start, resource_size(res));
1704 if (!device_data->base) {
1705 dev_err(dev, "[%s] ioremap() failed!",
1706 __func__);
1707 ret = -ENOMEM;
1708 goto out_free_mem;
1709 }
1710 spin_lock_init(&device_data->ctx_lock);
1711 spin_lock_init(&device_data->power_state_lock);
1712
1713 /* Enable power for HASH1 hardware block */
1714 device_data->regulator = regulator_get(dev, "v-ape");
1715 if (IS_ERR(device_data->regulator)) {
1716 dev_err(dev, "[%s] regulator_get() failed!", __func__);
1717 ret = PTR_ERR(device_data->regulator);
1718 device_data->regulator = NULL;
1719 goto out_unmap;
1720 }
1721
1722 /* Enable the clock for HASH1 hardware block */
1723 device_data->clk = clk_get(dev, NULL);
1724 if (IS_ERR(device_data->clk)) {
1725 dev_err(dev, "[%s] clk_get() failed!", __func__);
1726 ret = PTR_ERR(device_data->clk);
1727 goto out_regulator;
1728 }
1729
1730 /* Enable device power (and clock) */
1731 ret = hash_enable_power(device_data, false);
1732 if (ret) {
1733 dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
1734 goto out_clk;
1735 }
1736
1737 ret = hash_check_hw(device_data);
1738 if (ret) {
1739 dev_err(dev, "[%s] hash_check_hw() failed!", __func__);
1740 goto out_power;
1741 }
1742
1743 if (hash_mode == HASH_MODE_DMA)
1744 hash_dma_setup_channel(device_data, dev);
1745
1746 platform_set_drvdata(pdev, device_data);
1747
1748 /* Put the new device into the device list... */
1749 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1750 /* ... and signal that a new device is available. */
1751 up(&driver_data.device_allocation);
1752
1753 ret = ahash_algs_register_all(device_data);
1754 if (ret) {
1755 dev_err(dev, "[%s] ahash_algs_register_all() "
1756 "failed!", __func__);
1757 goto out_power;
1758 }
1759
1760 dev_info(dev, "[%s] successfully probed\n", __func__);
1761 return 0;
1762
1763out_power:
1764 hash_disable_power(device_data, false);
1765
1766out_clk:
1767 clk_put(device_data->clk);
1768
1769out_regulator:
1770 regulator_put(device_data->regulator);
1771
1772out_unmap:
1773 iounmap(device_data->base);
1774
1775out_free_mem:
1776 release_mem_region(res->start, resource_size(res));
1777
1778out_kfree:
1779 kfree(device_data);
1780out:
1781 return ret;
1782}
1783
1784/**
1785 * ux500_hash_remove - Function that removes the hash device from the platform.
1786 * @pdev: The platform device.
1787 */
1788static int ux500_hash_remove(struct platform_device *pdev)
1789{
1790 struct resource *res;
1791 struct hash_device_data *device_data;
1792 struct device *dev = &pdev->dev;
1793
1794 device_data = platform_get_drvdata(pdev);
1795 if (!device_data) {
1796 dev_err(dev, "[%s]: platform_get_drvdata() failed!",
1797 __func__);
1798 return -ENOMEM;
1799 }
1800
1801 /* Try to decrease the number of available devices. */
1802 if (down_trylock(&driver_data.device_allocation))
1803 return -EBUSY;
1804
1805 /* Check that the device is free */
1806 spin_lock(&device_data->ctx_lock);
1807 /* current_ctx allocates a device, NULL = unallocated */
1808 if (device_data->current_ctx) {
1809 /* The device is busy */
1810 spin_unlock(&device_data->ctx_lock);
1811 /* Return the device to the pool. */
1812 up(&driver_data.device_allocation);
1813 return -EBUSY;
1814 }
1815
1816 spin_unlock(&device_data->ctx_lock);
1817
1818 /* Remove the device from the list */
1819 if (klist_node_attached(&device_data->list_node))
1820 klist_remove(&device_data->list_node);
1821
1822 /* If this was the last device, remove the services */
1823 if (list_empty(&driver_data.device_list.k_list))
1824 ahash_algs_unregister_all(device_data);
1825
1826 if (hash_disable_power(device_data, false))
1827 dev_err(dev, "[%s]: hash_disable_power() failed",
1828 __func__);
1829
1830 clk_put(device_data->clk);
1831 regulator_put(device_data->regulator);
1832
1833 iounmap(device_data->base);
1834
1835 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1836 if (res)
1837 release_mem_region(res->start, resource_size(res));
1838
1839 kfree(device_data);
1840
1841 return 0;
1842}
1843
1844/**
1845 * ux500_hash_shutdown - Function that shutdown the hash device.
1846 * @pdev: The platform device
1847 */
1848static void ux500_hash_shutdown(struct platform_device *pdev)
1849{
1850 struct resource *res = NULL;
1851 struct hash_device_data *device_data;
1852
1853 device_data = platform_get_drvdata(pdev);
1854 if (!device_data) {
1855 dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
1856 __func__);
1857 return;
1858 }
1859
1860 /* Check that the device is free */
1861 spin_lock(&device_data->ctx_lock);
1862 /* current_ctx allocates a device, NULL = unallocated */
1863 if (!device_data->current_ctx) {
1864 if (down_trylock(&driver_data.device_allocation))
1865 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1866 "Shutting down anyway...", __func__);
1867 /**
1868 * (Allocate the device)
1869 * Need to set this to non-null (dummy) value,
1870 * to avoid usage if context switching.
1871 */
1872 device_data->current_ctx++;
1873 }
1874 spin_unlock(&device_data->ctx_lock);
1875
1876 /* Remove the device from the list */
1877 if (klist_node_attached(&device_data->list_node))
1878 klist_remove(&device_data->list_node);
1879
1880 /* If this was the last device, remove the services */
1881 if (list_empty(&driver_data.device_list.k_list))
1882 ahash_algs_unregister_all(device_data);
1883
1884 iounmap(device_data->base);
1885
1886 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1887 if (res)
1888 release_mem_region(res->start, resource_size(res));
1889
1890 if (hash_disable_power(device_data, false))
1891 dev_err(&pdev->dev, "[%s] hash_disable_power() failed",
1892 __func__);
1893}
1894
1895/**
1896 * ux500_hash_suspend - Function that suspends the hash device.
4f31f5b1 1897 * @dev: Device to suspend.
8a63b199 1898 */
4f31f5b1 1899static int ux500_hash_suspend(struct device *dev)
8a63b199
AW
1900{
1901 int ret;
1902 struct hash_device_data *device_data;
1903 struct hash_ctx *temp_ctx = NULL;
1904
4f31f5b1 1905 device_data = dev_get_drvdata(dev);
8a63b199 1906 if (!device_data) {
4f31f5b1 1907 dev_err(dev, "[%s] platform_get_drvdata() failed!", __func__);
8a63b199
AW
1908 return -ENOMEM;
1909 }
1910
1911 spin_lock(&device_data->ctx_lock);
1912 if (!device_data->current_ctx)
1913 device_data->current_ctx++;
1914 spin_unlock(&device_data->ctx_lock);
1915
1916 if (device_data->current_ctx == ++temp_ctx) {
1917 if (down_interruptible(&driver_data.device_allocation))
4f31f5b1
RW
1918 dev_dbg(dev, "[%s]: down_interruptible() failed",
1919 __func__);
8a63b199
AW
1920 ret = hash_disable_power(device_data, false);
1921
1922 } else
1923 ret = hash_disable_power(device_data, true);
1924
1925 if (ret)
4f31f5b1 1926 dev_err(dev, "[%s]: hash_disable_power()", __func__);
8a63b199
AW
1927
1928 return ret;
1929}
1930
1931/**
1932 * ux500_hash_resume - Function that resume the hash device.
4f31f5b1 1933 * @dev: Device to resume.
8a63b199 1934 */
4f31f5b1 1935static int ux500_hash_resume(struct device *dev)
8a63b199
AW
1936{
1937 int ret = 0;
1938 struct hash_device_data *device_data;
1939 struct hash_ctx *temp_ctx = NULL;
1940
4f31f5b1 1941 device_data = dev_get_drvdata(dev);
8a63b199 1942 if (!device_data) {
4f31f5b1 1943 dev_err(dev, "[%s] platform_get_drvdata() failed!", __func__);
8a63b199
AW
1944 return -ENOMEM;
1945 }
1946
1947 spin_lock(&device_data->ctx_lock);
1948 if (device_data->current_ctx == ++temp_ctx)
1949 device_data->current_ctx = NULL;
1950 spin_unlock(&device_data->ctx_lock);
1951
1952 if (!device_data->current_ctx)
1953 up(&driver_data.device_allocation);
1954 else
1955 ret = hash_enable_power(device_data, true);
1956
1957 if (ret)
4f31f5b1 1958 dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
8a63b199
AW
1959
1960 return ret;
1961}
1962
4f31f5b1
RW
1963static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1964
8a63b199
AW
1965static struct platform_driver hash_driver = {
1966 .probe = ux500_hash_probe,
1967 .remove = ux500_hash_remove,
1968 .shutdown = ux500_hash_shutdown,
8a63b199
AW
1969 .driver = {
1970 .owner = THIS_MODULE,
1971 .name = "hash1",
4f31f5b1 1972 .pm = &ux500_hash_pm,
8a63b199
AW
1973 }
1974};
1975
1976/**
1977 * ux500_hash_mod_init - The kernel module init function.
1978 */
1979static int __init ux500_hash_mod_init(void)
1980{
1981 klist_init(&driver_data.device_list, NULL, NULL);
1982 /* Initialize the semaphore to 0 devices (locked state) */
1983 sema_init(&driver_data.device_allocation, 0);
1984
1985 return platform_driver_register(&hash_driver);
1986}
1987
1988/**
1989 * ux500_hash_mod_fini - The kernel module exit function.
1990 */
1991static void __exit ux500_hash_mod_fini(void)
1992{
1993 platform_driver_unregister(&hash_driver);
1994 return;
1995}
1996
1997module_init(ux500_hash_mod_init);
1998module_exit(ux500_hash_mod_fini);
1999
2000MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
2001MODULE_LICENSE("GPL");
2002
2003MODULE_ALIAS("sha1-all");
2004MODULE_ALIAS("sha256-all");
2005MODULE_ALIAS("hmac-sha1-all");
2006MODULE_ALIAS("hmac-sha256-all");
This page took 0.109915 seconds and 5 git commands to generate.