ARM: PL08x: use min() to calculate target_len
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
CommitLineData
e8689e63
LW
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
e8b5e11d 22 * The full GNU General Public License is in this distribution in the
e8689e63
LW
23 * file called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
9dc2c200
RKAL
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
e8689e63
LW
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77#include <linux/device.h>
78#include <linux/init.h>
79#include <linux/module.h>
e8689e63
LW
80#include <linux/interrupt.h>
81#include <linux/slab.h>
82#include <linux/dmapool.h>
e8689e63 83#include <linux/dmaengine.h>
730404ac 84#include <linux/amba/bus.h>
e8689e63
LW
85#include <linux/amba/pl08x.h>
86#include <linux/debugfs.h>
87#include <linux/seq_file.h>
88
89#include <asm/hardware/pl080.h>
e8689e63
LW
90
91#define DRIVER_NAME "pl08xdmac"
92
93/**
94 * struct vendor_data - vendor-specific config parameters
e8b5e11d 95 * for PL08x derivatives
e8689e63
LW
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters
98 * or not.
99 */
100struct vendor_data {
e8689e63
LW
101 u8 channels;
102 bool dualmaster;
103};
104
105/*
106 * PL08X private data structures
e8b5e11d 107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
e25761d7
RKAL
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
e8689e63 110 */
7cb72ad9 111struct pl08x_lli {
e25761d7
RKAL
112 u32 src;
113 u32 dst;
bfddfb45 114 u32 lli;
e8689e63
LW
115 u32 cctl;
116};
117
118/**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
30749cb4
RKAL
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
e8689e63
LW
131 * @lock: a spinlock for this struct
132 */
133struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
f96ca9ec 138 const struct vendor_data *vd;
e8689e63
LW
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
30749cb4
RKAL
143 u8 lli_buses;
144 u8 mem_buses;
e8689e63
LW
145 spinlock_t lock;
146};
147
148/*
149 * PL08X specific defines
150 */
151
152/*
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
156 */
157#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159
160/* Minimum period between work queue runs */
161#define PL08X_WQ_PERIODMIN 20
162
163/* Size (bytes) of each LLI buffer allocated for one transfer */
164# define PL08X_LLI_TSFR_SIZE 0x2000
165
e8b5e11d 166/* Maximum times we call dma_pool_alloc on this pool without freeing */
e8689e63 167#define PL08X_MAX_ALLOCS 0x40
7cb72ad9 168#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
e8689e63
LW
169#define PL08X_ALIGN 8
170
171static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
172{
173 return container_of(chan, struct pl08x_dma_chan, chan);
174}
175
176/*
177 * Physical channel handling
178 */
179
180/* Whether a certain channel is busy or not */
181static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
182{
183 unsigned int val;
184
185 val = readl(ch->base + PL080_CH_CONFIG);
186 return val & PL080_CONFIG_ACTIVE;
187}
188
189/*
190 * Set the initial DMA register values i.e. those for the first LLI
e8b5e11d 191 * The next LLI pointer and the configuration interrupt bit have
c885bee4
RKAL
192 * been set when the LLIs were constructed. Poke them into the hardware
193 * and start the transfer.
e8689e63 194 */
c885bee4
RKAL
195static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
196 struct pl08x_txd *txd)
e8689e63 197{
c885bee4 198 struct pl08x_driver_data *pl08x = plchan->host;
e8689e63 199 struct pl08x_phy_chan *phychan = plchan->phychan;
19524d77 200 struct pl08x_lli *lli = &txd->llis_va[0];
09b3c323 201 u32 val;
c885bee4
RKAL
202
203 plchan->at = txd;
e8689e63 204
c885bee4
RKAL
205 /* Wait for channel inactive */
206 while (pl08x_phy_channel_busy(phychan))
207 cpu_relax();
e8689e63 208
c885bee4
RKAL
209 dev_vdbg(&pl08x->adev->dev,
210 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
19524d77
RKAL
211 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
212 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
09b3c323 213 txd->ccfg);
19524d77
RKAL
214
215 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
216 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
217 writel(lli->lli, phychan->base + PL080_CH_LLI);
218 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
09b3c323 219 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
c885bee4
RKAL
220
221 /* Enable the DMA channel */
222 /* Do not access config register until channel shows as disabled */
223 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
19386b32 224 cpu_relax();
e8689e63 225
c885bee4
RKAL
226 /* Do not access config register until channel shows as inactive */
227 val = readl(phychan->base + PL080_CH_CONFIG);
e8689e63 228 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
c885bee4 229 val = readl(phychan->base + PL080_CH_CONFIG);
e8689e63 230
c885bee4 231 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
e8689e63
LW
232}
233
234/*
235 * Overall DMAC remains enabled always.
236 *
237 * Disabling individual channels could lose data.
238 *
239 * Disable the peripheral DMA after disabling the DMAC
240 * in order to allow the DMAC FIFO to drain, and
241 * hence allow the channel to show inactive
242 *
243 */
244static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
245{
246 u32 val;
247
248 /* Set the HALT bit and wait for the FIFO to drain */
249 val = readl(ch->base + PL080_CH_CONFIG);
250 val |= PL080_CONFIG_HALT;
251 writel(val, ch->base + PL080_CH_CONFIG);
252
253 /* Wait for channel inactive */
254 while (pl08x_phy_channel_busy(ch))
19386b32 255 cpu_relax();
e8689e63
LW
256}
257
258static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
259{
260 u32 val;
261
262 /* Clear the HALT bit */
263 val = readl(ch->base + PL080_CH_CONFIG);
264 val &= ~PL080_CONFIG_HALT;
265 writel(val, ch->base + PL080_CH_CONFIG);
266}
267
268
269/* Stops the channel */
270static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
271{
272 u32 val;
273
274 pl08x_pause_phy_chan(ch);
275
276 /* Disable channel */
277 val = readl(ch->base + PL080_CH_CONFIG);
278 val &= ~PL080_CONFIG_ENABLE;
279 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
280 val &= ~PL080_CONFIG_TC_IRQ_MASK;
281 writel(val, ch->base + PL080_CH_CONFIG);
282}
283
284static inline u32 get_bytes_in_cctl(u32 cctl)
285{
286 /* The source width defines the number of bytes */
287 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
288
289 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
290 case PL080_WIDTH_8BIT:
291 break;
292 case PL080_WIDTH_16BIT:
293 bytes *= 2;
294 break;
295 case PL080_WIDTH_32BIT:
296 bytes *= 4;
297 break;
298 }
299 return bytes;
300}
301
302/* The channel should be paused when calling this */
303static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
304{
305 struct pl08x_phy_chan *ch;
e8689e63
LW
306 struct pl08x_txd *txd;
307 unsigned long flags;
cace6585 308 size_t bytes = 0;
e8689e63
LW
309
310 spin_lock_irqsave(&plchan->lock, flags);
e8689e63
LW
311 ch = plchan->phychan;
312 txd = plchan->at;
313
314 /*
db9f136a
RKAL
315 * Follow the LLIs to get the number of remaining
316 * bytes in the currently active transaction.
e8689e63
LW
317 */
318 if (ch && txd) {
4c0df6a3 319 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
e8689e63 320
db9f136a 321 /* First get the remaining bytes in the active transfer */
e8689e63
LW
322 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
323
324 if (clli) {
db9f136a
RKAL
325 struct pl08x_lli *llis_va = txd->llis_va;
326 dma_addr_t llis_bus = txd->llis_bus;
327 int index;
328
329 BUG_ON(clli < llis_bus || clli >= llis_bus +
330 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
e8689e63 331
db9f136a
RKAL
332 /*
333 * Locate the next LLI - as this is an array,
334 * it's simple maths to find.
335 */
336 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
337
338 for (; index < MAX_NUM_TSFR_LLIS; index++) {
339 bytes += get_bytes_in_cctl(llis_va[index].cctl);
e8689e63 340
e8689e63 341 /*
e8b5e11d 342 * A LLI pointer of 0 terminates the LLI list
e8689e63 343 */
db9f136a
RKAL
344 if (!llis_va[index].lli)
345 break;
e8689e63
LW
346 }
347 }
348 }
349
350 /* Sum up all queued transactions */
351 if (!list_empty(&plchan->desc_list)) {
db9f136a 352 struct pl08x_txd *txdi;
e8689e63
LW
353 list_for_each_entry(txdi, &plchan->desc_list, node) {
354 bytes += txdi->len;
355 }
e8689e63
LW
356 }
357
358 spin_unlock_irqrestore(&plchan->lock, flags);
359
360 return bytes;
361}
362
363/*
364 * Allocate a physical channel for a virtual channel
365 */
366static struct pl08x_phy_chan *
367pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
368 struct pl08x_dma_chan *virt_chan)
369{
370 struct pl08x_phy_chan *ch = NULL;
371 unsigned long flags;
372 int i;
373
374 /*
375 * Try to locate a physical channel to be used for
376 * this transfer. If all are taken return NULL and
377 * the requester will have to cope by using some fallback
378 * PIO mode or retrying later.
379 */
380 for (i = 0; i < pl08x->vd->channels; i++) {
381 ch = &pl08x->phy_chans[i];
382
383 spin_lock_irqsave(&ch->lock, flags);
384
385 if (!ch->serving) {
386 ch->serving = virt_chan;
387 ch->signal = -1;
388 spin_unlock_irqrestore(&ch->lock, flags);
389 break;
390 }
391
392 spin_unlock_irqrestore(&ch->lock, flags);
393 }
394
395 if (i == pl08x->vd->channels) {
396 /* No physical channel available, cope with it */
397 return NULL;
398 }
399
400 return ch;
401}
402
403static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
404 struct pl08x_phy_chan *ch)
405{
406 unsigned long flags;
407
408 /* Stop the channel and clear its interrupts */
409 pl08x_stop_phy_chan(ch);
410 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
411 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
412
413 /* Mark it as free */
414 spin_lock_irqsave(&ch->lock, flags);
415 ch->serving = NULL;
416 spin_unlock_irqrestore(&ch->lock, flags);
417}
418
419/*
420 * LLI handling
421 */
422
423static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
424{
425 switch (coded) {
426 case PL080_WIDTH_8BIT:
427 return 1;
428 case PL080_WIDTH_16BIT:
429 return 2;
430 case PL080_WIDTH_32BIT:
431 return 4;
432 default:
433 break;
434 }
435 BUG();
436 return 0;
437}
438
439static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
cace6585 440 size_t tsize)
e8689e63
LW
441{
442 u32 retbits = cctl;
443
e8b5e11d 444 /* Remove all src, dst and transfer size bits */
e8689e63
LW
445 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
446 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
447 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
448
449 /* Then set the bits according to the parameters */
450 switch (srcwidth) {
451 case 1:
452 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
453 break;
454 case 2:
455 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
456 break;
457 case 4:
458 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
459 break;
460 default:
461 BUG();
462 break;
463 }
464
465 switch (dstwidth) {
466 case 1:
467 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
468 break;
469 case 2:
470 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
471 break;
472 case 4:
473 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
474 break;
475 default:
476 BUG();
477 break;
478 }
479
480 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
481 return retbits;
482}
483
484/*
485 * Autoselect a master bus to use for the transfer
486 * this prefers the destination bus if both available
487 * if fixed address on one bus the other will be chosen
488 */
3e2a037c 489static void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
e8689e63
LW
490 struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
491 struct pl08x_bus_data **sbus, u32 cctl)
492{
493 if (!(cctl & PL080_CONTROL_DST_INCR)) {
494 *mbus = src_bus;
495 *sbus = dst_bus;
496 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
497 *mbus = dst_bus;
498 *sbus = src_bus;
499 } else {
500 if (dst_bus->buswidth == 4) {
501 *mbus = dst_bus;
502 *sbus = src_bus;
503 } else if (src_bus->buswidth == 4) {
504 *mbus = src_bus;
505 *sbus = dst_bus;
506 } else if (dst_bus->buswidth == 2) {
507 *mbus = dst_bus;
508 *sbus = src_bus;
509 } else if (src_bus->buswidth == 2) {
510 *mbus = src_bus;
511 *sbus = dst_bus;
512 } else {
513 /* src_bus->buswidth == 1 */
514 *mbus = dst_bus;
515 *sbus = src_bus;
516 }
517 }
518}
519
520/*
521 * Fills in one LLI for a certain transfer descriptor
522 * and advance the counter
523 */
0059005f
RKAL
524static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
525 struct pl08x_txd *txd, int num_llis, int len, u32 cctl, u32 *remainder)
e8689e63 526{
7cb72ad9 527 struct pl08x_lli *llis_va = txd->llis_va;
56b61882 528 dma_addr_t llis_bus = txd->llis_bus;
e8689e63
LW
529
530 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
531
30749cb4
RKAL
532 llis_va[num_llis].cctl = cctl;
533 llis_va[num_llis].src = txd->srcbus.addr;
534 llis_va[num_llis].dst = txd->dstbus.addr;
bfddfb45 535 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
30749cb4
RKAL
536 if (pl08x->lli_buses & PL08X_AHB2)
537 llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
e8689e63
LW
538
539 if (cctl & PL080_CONTROL_SRC_INCR)
540 txd->srcbus.addr += len;
541 if (cctl & PL080_CONTROL_DST_INCR)
542 txd->dstbus.addr += len;
543
cace6585
RKAL
544 BUG_ON(*remainder < len);
545
e8689e63 546 *remainder -= len;
e8689e63
LW
547}
548
549/*
b61be8d7
RKAL
550 * Return number of bytes to fill to boundary, or len.
551 * This calculation works for any value of addr.
e8689e63 552 */
cace6585 553static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
e8689e63 554{
b61be8d7
RKAL
555 size_t boundary_len = PL08X_BOUNDARY_SIZE -
556 (addr & (PL08X_BOUNDARY_SIZE - 1));
e8689e63 557
b61be8d7 558 return min(boundary_len, len);
e8689e63
LW
559}
560
561/*
562 * This fills in the table of LLIs for the transfer descriptor
563 * Note that we assume we never have to change the burst sizes
564 * Return 0 for error
565 */
566static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
567 struct pl08x_txd *txd)
568{
e8689e63 569 struct pl08x_bus_data *mbus, *sbus;
cace6585 570 size_t remainder;
e8689e63
LW
571 int num_llis = 0;
572 u32 cctl;
cace6585
RKAL
573 size_t max_bytes_per_lli;
574 size_t total_bytes = 0;
7cb72ad9 575 struct pl08x_lli *llis_va;
e8689e63 576
e8689e63
LW
577 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
578 &txd->llis_bus);
579 if (!txd->llis_va) {
580 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
581 return 0;
582 }
583
584 pl08x->pool_ctr++;
585
70b5ed6b
RKAL
586 /* Get the default CCTL */
587 cctl = txd->cctl;
e8689e63 588
e8689e63
LW
589 /* Find maximum width of the source bus */
590 txd->srcbus.maxwidth =
591 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
592 PL080_CONTROL_SWIDTH_SHIFT);
593
594 /* Find maximum width of the destination bus */
595 txd->dstbus.maxwidth =
596 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
597 PL080_CONTROL_DWIDTH_SHIFT);
598
599 /* Set up the bus widths to the maximum */
600 txd->srcbus.buswidth = txd->srcbus.maxwidth;
601 txd->dstbus.buswidth = txd->dstbus.maxwidth;
602 dev_vdbg(&pl08x->adev->dev,
603 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
604 __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
605
606
607 /*
608 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
609 */
610 max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
611 PL080_CONTROL_TRANSFER_SIZE_MASK;
612 dev_vdbg(&pl08x->adev->dev,
cace6585 613 "%s max bytes per lli = %zu\n",
e8689e63
LW
614 __func__, max_bytes_per_lli);
615
616 /* We need to count this down to zero */
617 remainder = txd->len;
618 dev_vdbg(&pl08x->adev->dev,
cace6585 619 "%s remainder = %zu\n",
e8689e63
LW
620 __func__, remainder);
621
622 /*
623 * Choose bus to align to
624 * - prefers destination bus if both available
625 * - if fixed address on one bus chooses other
e8b5e11d 626 * - modifies cctl to choose an appropriate master
e8689e63
LW
627 */
628 pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
629 &mbus, &sbus, cctl);
630
e8689e63
LW
631 if (txd->len < mbus->buswidth) {
632 /*
633 * Less than a bus width available
634 * - send as single bytes
635 */
636 while (remainder) {
637 dev_vdbg(&pl08x->adev->dev,
638 "%s single byte LLIs for a transfer of "
9c132992 639 "less than a bus width (remain 0x%08x)\n",
e8689e63
LW
640 __func__, remainder);
641 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
0059005f 642 pl08x_fill_lli_for_desc(pl08x, txd, num_llis++, 1,
e8689e63
LW
643 cctl, &remainder);
644 total_bytes++;
645 }
646 } else {
647 /*
648 * Make one byte LLIs until master bus is aligned
649 * - slave will then be aligned also
650 */
651 while ((mbus->addr) % (mbus->buswidth)) {
652 dev_vdbg(&pl08x->adev->dev,
653 "%s adjustment lli for less than bus width "
9c132992 654 "(remain 0x%08x)\n",
e8689e63
LW
655 __func__, remainder);
656 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
0059005f
RKAL
657 pl08x_fill_lli_for_desc(pl08x, txd, num_llis++, 1,
658 cctl, &remainder);
e8689e63
LW
659 total_bytes++;
660 }
661
662 /*
663 * Master now aligned
664 * - if slave is not then we must set its width down
665 */
666 if (sbus->addr % sbus->buswidth) {
667 dev_dbg(&pl08x->adev->dev,
668 "%s set down bus width to one byte\n",
669 __func__);
670
671 sbus->buswidth = 1;
672 }
673
674 /*
675 * Make largest possible LLIs until less than one bus
676 * width left
677 */
678 while (remainder > (mbus->buswidth - 1)) {
cace6585 679 size_t lli_len, target_len, tsize, odd_bytes;
e8689e63
LW
680
681 /*
682 * If enough left try to send max possible,
683 * otherwise try to send the remainder
684 */
d6cf7b59 685 target_len = min(remainder, max_bytes_per_lli);
e8689e63
LW
686
687 /*
e8b5e11d 688 * Set bus lengths for incrementing buses
e8689e63
LW
689 * to number of bytes which fill to next memory
690 * boundary
691 */
692 if (cctl & PL080_CONTROL_SRC_INCR)
693 txd->srcbus.fill_bytes =
694 pl08x_pre_boundary(
695 txd->srcbus.addr,
696 remainder);
697 else
698 txd->srcbus.fill_bytes =
699 max_bytes_per_lli;
700
701 if (cctl & PL080_CONTROL_DST_INCR)
702 txd->dstbus.fill_bytes =
703 pl08x_pre_boundary(
704 txd->dstbus.addr,
705 remainder);
706 else
707 txd->dstbus.fill_bytes =
708 max_bytes_per_lli;
709
710 /*
711 * Find the nearest
712 */
713 lli_len = min(txd->srcbus.fill_bytes,
714 txd->dstbus.fill_bytes);
715
716 BUG_ON(lli_len > remainder);
717
718 if (lli_len <= 0) {
719 dev_err(&pl08x->adev->dev,
cace6585 720 "%s lli_len is %zu, <= 0\n",
e8689e63
LW
721 __func__, lli_len);
722 return 0;
723 }
724
725 if (lli_len == target_len) {
726 /*
727 * Can send what we wanted
728 */
729 /*
730 * Maintain alignment
731 */
732 lli_len = (lli_len/mbus->buswidth) *
733 mbus->buswidth;
734 odd_bytes = 0;
735 } else {
736 /*
737 * So now we know how many bytes to transfer
738 * to get to the nearest boundary
e8b5e11d 739 * The next LLI will past the boundary
e8689e63
LW
740 * - however we may be working to a boundary
741 * on the slave bus
742 * We need to ensure the master stays aligned
743 */
744 odd_bytes = lli_len % mbus->buswidth;
745 /*
746 * - and that we are working in multiples
747 * of the bus widths
748 */
749 lli_len -= odd_bytes;
750
751 }
752
753 if (lli_len) {
754 /*
755 * Check against minimum bus alignment:
756 * Calculate actual transfer size in relation
757 * to bus width an get a maximum remainder of
758 * the smallest bus width - 1
759 */
760 /* FIXME: use round_down()? */
761 tsize = lli_len / min(mbus->buswidth,
762 sbus->buswidth);
763 lli_len = tsize * min(mbus->buswidth,
764 sbus->buswidth);
765
766 if (target_len != lli_len) {
767 dev_vdbg(&pl08x->adev->dev,
cace6585 768 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
e8689e63
LW
769 __func__, target_len, lli_len, txd->len);
770 }
771
772 cctl = pl08x_cctl_bits(cctl,
773 txd->srcbus.buswidth,
774 txd->dstbus.buswidth,
775 tsize);
776
777 dev_vdbg(&pl08x->adev->dev,
cace6585 778 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
e8689e63 779 __func__, lli_len, remainder);
0059005f
RKAL
780 pl08x_fill_lli_for_desc(pl08x, txd, num_llis++,
781 lli_len, cctl, &remainder);
e8689e63
LW
782 total_bytes += lli_len;
783 }
784
785
786 if (odd_bytes) {
787 /*
788 * Creep past the boundary,
789 * maintaining master alignment
790 */
791 int j;
792 for (j = 0; (j < mbus->buswidth)
793 && (remainder); j++) {
794 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
795 dev_vdbg(&pl08x->adev->dev,
cace6585 796 "%s align with boundary, single byte (remain 0x%08zx)\n",
e8689e63 797 __func__, remainder);
0059005f
RKAL
798 pl08x_fill_lli_for_desc(pl08x, txd,
799 num_llis++, 1, cctl,
800 &remainder);
e8689e63
LW
801 total_bytes++;
802 }
803 }
804 }
805
806 /*
807 * Send any odd bytes
808 */
e8689e63
LW
809 while (remainder) {
810 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
811 dev_vdbg(&pl08x->adev->dev,
cace6585 812 "%s align with boundary, single odd byte (remain %zu)\n",
e8689e63 813 __func__, remainder);
0059005f
RKAL
814 pl08x_fill_lli_for_desc(pl08x, txd, num_llis++, 1,
815 cctl, &remainder);
e8689e63
LW
816 total_bytes++;
817 }
818 }
819 if (total_bytes != txd->len) {
820 dev_err(&pl08x->adev->dev,
cace6585 821 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
e8689e63
LW
822 __func__, total_bytes, txd->len);
823 return 0;
824 }
825
826 if (num_llis >= MAX_NUM_TSFR_LLIS) {
827 dev_err(&pl08x->adev->dev,
828 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
829 __func__, (u32) MAX_NUM_TSFR_LLIS);
830 return 0;
831 }
b58b6b5b
RKAL
832
833 llis_va = txd->llis_va;
e8689e63 834 /*
b58b6b5b 835 * The final LLI terminates the LLI.
e8689e63 836 */
bfddfb45 837 llis_va[num_llis - 1].lli = 0;
b58b6b5b
RKAL
838 /*
839 * The final LLI element shall also fire an interrupt
840 */
841 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
e8689e63 842
e8689e63
LW
843#ifdef VERBOSE_DEBUG
844 {
845 int i;
846
847 for (i = 0; i < num_llis; i++) {
848 dev_vdbg(&pl08x->adev->dev,
9c132992 849 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
e8689e63
LW
850 i,
851 &llis_va[i],
852 llis_va[i].src,
853 llis_va[i].dst,
854 llis_va[i].cctl,
bfddfb45 855 llis_va[i].lli
e8689e63
LW
856 );
857 }
858 }
859#endif
860
861 return num_llis;
862}
863
864/* You should call this with the struct pl08x lock held */
865static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
866 struct pl08x_txd *txd)
867{
e8689e63 868 /* Free the LLI */
56b61882 869 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
e8689e63
LW
870
871 pl08x->pool_ctr--;
872
873 kfree(txd);
874}
875
876static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
877 struct pl08x_dma_chan *plchan)
878{
879 struct pl08x_txd *txdi = NULL;
880 struct pl08x_txd *next;
881
882 if (!list_empty(&plchan->desc_list)) {
883 list_for_each_entry_safe(txdi,
884 next, &plchan->desc_list, node) {
885 list_del(&txdi->node);
886 pl08x_free_txd(pl08x, txdi);
887 }
888
889 }
890}
891
892/*
893 * The DMA ENGINE API
894 */
895static int pl08x_alloc_chan_resources(struct dma_chan *chan)
896{
897 return 0;
898}
899
900static void pl08x_free_chan_resources(struct dma_chan *chan)
901{
902}
903
904/*
905 * This should be called with the channel plchan->lock held
906 */
907static int prep_phy_channel(struct pl08x_dma_chan *plchan,
908 struct pl08x_txd *txd)
909{
910 struct pl08x_driver_data *pl08x = plchan->host;
911 struct pl08x_phy_chan *ch;
912 int ret;
913
914 /* Check if we already have a channel */
915 if (plchan->phychan)
916 return 0;
917
918 ch = pl08x_get_phy_channel(pl08x, plchan);
919 if (!ch) {
920 /* No physical channel available, cope with it */
921 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
922 return -EBUSY;
923 }
924
925 /*
926 * OK we have a physical channel: for memcpy() this is all we
927 * need, but for slaves the physical signals may be muxed!
928 * Can the platform allow us to use this channel?
929 */
930 if (plchan->slave &&
931 ch->signal < 0 &&
932 pl08x->pd->get_signal) {
933 ret = pl08x->pd->get_signal(plchan);
934 if (ret < 0) {
935 dev_dbg(&pl08x->adev->dev,
936 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
937 ch->id, plchan->name);
938 /* Release physical channel & return */
939 pl08x_put_phy_channel(pl08x, ch);
940 return -EBUSY;
941 }
942 ch->signal = ret;
09b3c323
RKAL
943
944 /* Assign the flow control signal to this channel */
945 if (txd->direction == DMA_TO_DEVICE)
946 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
947 else if (txd->direction == DMA_FROM_DEVICE)
948 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
e8689e63
LW
949 }
950
951 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
952 ch->id,
953 ch->signal,
954 plchan->name);
955
956 plchan->phychan = ch;
957
958 return 0;
959}
960
8c8cc2b1
RKAL
961static void release_phy_channel(struct pl08x_dma_chan *plchan)
962{
963 struct pl08x_driver_data *pl08x = plchan->host;
964
965 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
966 pl08x->pd->put_signal(plchan);
967 plchan->phychan->signal = -1;
968 }
969 pl08x_put_phy_channel(pl08x, plchan->phychan);
970 plchan->phychan = NULL;
971}
972
e8689e63
LW
973static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
974{
975 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
976
91aa5fad
RKAL
977 plchan->chan.cookie += 1;
978 if (plchan->chan.cookie < 0)
979 plchan->chan.cookie = 1;
980 tx->cookie = plchan->chan.cookie;
e8689e63
LW
981 /* This unlock follows the lock in the prep() function */
982 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
983
984 return tx->cookie;
985}
986
987static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
988 struct dma_chan *chan, unsigned long flags)
989{
990 struct dma_async_tx_descriptor *retval = NULL;
991
992 return retval;
993}
994
995/*
996 * Code accessing dma_async_is_complete() in a tight loop
997 * may give problems - could schedule where indicated.
998 * If slaves are relying on interrupts to signal completion this
999 * function must not be called with interrupts disabled
1000 */
1001static enum dma_status
1002pl08x_dma_tx_status(struct dma_chan *chan,
1003 dma_cookie_t cookie,
1004 struct dma_tx_state *txstate)
1005{
1006 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1007 dma_cookie_t last_used;
1008 dma_cookie_t last_complete;
1009 enum dma_status ret;
1010 u32 bytesleft = 0;
1011
91aa5fad 1012 last_used = plchan->chan.cookie;
e8689e63
LW
1013 last_complete = plchan->lc;
1014
1015 ret = dma_async_is_complete(cookie, last_complete, last_used);
1016 if (ret == DMA_SUCCESS) {
1017 dma_set_tx_state(txstate, last_complete, last_used, 0);
1018 return ret;
1019 }
1020
1021 /*
1022 * schedule(); could be inserted here
1023 */
1024
1025 /*
1026 * This cookie not complete yet
1027 */
91aa5fad 1028 last_used = plchan->chan.cookie;
e8689e63
LW
1029 last_complete = plchan->lc;
1030
1031 /* Get number of bytes left in the active transactions and queue */
1032 bytesleft = pl08x_getbytes_chan(plchan);
1033
1034 dma_set_tx_state(txstate, last_complete, last_used,
1035 bytesleft);
1036
1037 if (plchan->state == PL08X_CHAN_PAUSED)
1038 return DMA_PAUSED;
1039
1040 /* Whether waiting or running, we're in progress */
1041 return DMA_IN_PROGRESS;
1042}
1043
1044/* PrimeCell DMA extension */
1045struct burst_table {
1046 int burstwords;
1047 u32 reg;
1048};
1049
1050static const struct burst_table burst_sizes[] = {
1051 {
1052 .burstwords = 256,
1053 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1054 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1055 },
1056 {
1057 .burstwords = 128,
1058 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1059 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1060 },
1061 {
1062 .burstwords = 64,
1063 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1064 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1065 },
1066 {
1067 .burstwords = 32,
1068 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1069 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1070 },
1071 {
1072 .burstwords = 16,
1073 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1074 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1075 },
1076 {
1077 .burstwords = 8,
1078 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1079 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1080 },
1081 {
1082 .burstwords = 4,
1083 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1084 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1085 },
1086 {
1087 .burstwords = 1,
1088 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1089 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1090 },
1091};
1092
1093static void dma_set_runtime_config(struct dma_chan *chan,
1094 struct dma_slave_config *config)
1095{
1096 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1097 struct pl08x_driver_data *pl08x = plchan->host;
1098 struct pl08x_channel_data *cd = plchan->cd;
1099 enum dma_slave_buswidth addr_width;
1100 u32 maxburst;
1101 u32 cctl = 0;
4440aacf 1102 int i;
e8689e63
LW
1103
1104 /* Transfer direction */
1105 plchan->runtime_direction = config->direction;
1106 if (config->direction == DMA_TO_DEVICE) {
1107 plchan->runtime_addr = config->dst_addr;
e8689e63
LW
1108 addr_width = config->dst_addr_width;
1109 maxburst = config->dst_maxburst;
1110 } else if (config->direction == DMA_FROM_DEVICE) {
1111 plchan->runtime_addr = config->src_addr;
e8689e63
LW
1112 addr_width = config->src_addr_width;
1113 maxburst = config->src_maxburst;
1114 } else {
1115 dev_err(&pl08x->adev->dev,
1116 "bad runtime_config: alien transfer direction\n");
1117 return;
1118 }
1119
1120 switch (addr_width) {
1121 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1123 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1124 break;
1125 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1126 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1127 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1128 break;
1129 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1130 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1131 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1132 break;
1133 default:
1134 dev_err(&pl08x->adev->dev,
1135 "bad runtime_config: alien address width\n");
1136 return;
1137 }
1138
1139 /*
1140 * Now decide on a maxburst:
4440aacf
RKAL
1141 * If this channel will only request single transfers, set this
1142 * down to ONE element. Also select one element if no maxburst
1143 * is specified.
e8689e63 1144 */
4440aacf 1145 if (plchan->cd->single || maxburst == 0) {
e8689e63
LW
1146 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1147 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1148 } else {
4440aacf 1149 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
e8689e63
LW
1150 if (burst_sizes[i].burstwords <= maxburst)
1151 break;
e8689e63
LW
1152 cctl |= burst_sizes[i].reg;
1153 }
1154
e8689e63
LW
1155 /* Modify the default channel data to fit PrimeCell request */
1156 cd->cctl = cctl;
e8689e63
LW
1157
1158 dev_dbg(&pl08x->adev->dev,
1159 "configured channel %s (%s) for %s, data width %d, "
4983a04f 1160 "maxburst %d words, LE, CCTL=0x%08x\n",
e8689e63
LW
1161 dma_chan_name(chan), plchan->name,
1162 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1163 addr_width,
1164 maxburst,
4983a04f 1165 cctl);
e8689e63
LW
1166}
1167
1168/*
1169 * Slave transactions callback to the slave device to allow
1170 * synchronization of slave DMA signals with the DMAC enable
1171 */
1172static void pl08x_issue_pending(struct dma_chan *chan)
1173{
1174 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
e8689e63
LW
1175 unsigned long flags;
1176
1177 spin_lock_irqsave(&plchan->lock, flags);
9c0bb43b
RKAL
1178 /* Something is already active, or we're waiting for a channel... */
1179 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1180 spin_unlock_irqrestore(&plchan->lock, flags);
e8689e63 1181 return;
9c0bb43b 1182 }
e8689e63
LW
1183
1184 /* Take the first element in the queue and execute it */
1185 if (!list_empty(&plchan->desc_list)) {
1186 struct pl08x_txd *next;
1187
1188 next = list_first_entry(&plchan->desc_list,
1189 struct pl08x_txd,
1190 node);
1191 list_del(&next->node);
e8689e63
LW
1192 plchan->state = PL08X_CHAN_RUNNING;
1193
c885bee4 1194 pl08x_start_txd(plchan, next);
e8689e63
LW
1195 }
1196
1197 spin_unlock_irqrestore(&plchan->lock, flags);
1198}
1199
1200static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1201 struct pl08x_txd *txd)
1202{
1203 int num_llis;
1204 struct pl08x_driver_data *pl08x = plchan->host;
1205 int ret;
1206
1207 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
dafa7317
RKAL
1208 if (!num_llis) {
1209 kfree(txd);
e8689e63 1210 return -EINVAL;
dafa7317 1211 }
e8689e63
LW
1212
1213 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1214
b58b6b5b 1215 list_add_tail(&txd->node, &plchan->desc_list);
e8689e63
LW
1216
1217 /*
1218 * See if we already have a physical channel allocated,
1219 * else this is the time to try to get one.
1220 */
1221 ret = prep_phy_channel(plchan, txd);
1222 if (ret) {
1223 /*
1224 * No physical channel available, we will
1225 * stack up the memcpy channels until there is a channel
1226 * available to handle it whereas slave transfers may
1227 * have been denied due to platform channel muxing restrictions
1228 * and since there is no guarantee that this will ever be
e8b5e11d
RKAL
1229 * resolved, and since the signal must be acquired AFTER
1230 * acquiring the physical channel, we will let them be NACK:ed
e8689e63
LW
1231 * with -EBUSY here. The drivers can alway retry the prep()
1232 * call if they are eager on doing this using DMA.
1233 */
1234 if (plchan->slave) {
1235 pl08x_free_txd_list(pl08x, plchan);
1236 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1237 return -EBUSY;
1238 }
1239 /* Do this memcpy whenever there is a channel ready */
1240 plchan->state = PL08X_CHAN_WAITING;
1241 plchan->waiting = txd;
1242 } else
1243 /*
1244 * Else we're all set, paused and ready to roll,
1245 * status will switch to PL08X_CHAN_RUNNING when
1246 * we call issue_pending(). If there is something
1247 * running on the channel already we don't change
1248 * its state.
1249 */
1250 if (plchan->state == PL08X_CHAN_IDLE)
1251 plchan->state = PL08X_CHAN_PAUSED;
1252
1253 /*
1254 * Notice that we leave plchan->lock locked on purpose:
1255 * it will be unlocked in the subsequent tx_submit()
1256 * call. This is a consequence of the current API.
1257 */
1258
1259 return 0;
1260}
1261
30749cb4
RKAL
1262/*
1263 * Given the source and destination available bus masks, select which
1264 * will be routed to each port. We try to have source and destination
1265 * on separate ports, but always respect the allowable settings.
1266 */
1267static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
1268{
1269 u32 cctl = 0;
1270
1271 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1272 cctl |= PL080_CONTROL_DST_AHB2;
1273 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1274 cctl |= PL080_CONTROL_SRC_AHB2;
1275
1276 return cctl;
1277}
1278
ac3cd20d
RKAL
1279static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1280{
1281 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1282
1283 if (txd) {
1284 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1285 txd->tx.tx_submit = pl08x_tx_submit;
1286 INIT_LIST_HEAD(&txd->node);
4983a04f
RKAL
1287
1288 /* Always enable error and terminal interrupts */
1289 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1290 PL080_CONFIG_TC_IRQ_MASK;
ac3cd20d
RKAL
1291 }
1292 return txd;
1293}
1294
e8689e63
LW
1295/*
1296 * Initialize a descriptor to be used by memcpy submit
1297 */
1298static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1299 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1300 size_t len, unsigned long flags)
1301{
1302 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1303 struct pl08x_driver_data *pl08x = plchan->host;
1304 struct pl08x_txd *txd;
1305 int ret;
1306
ac3cd20d 1307 txd = pl08x_get_txd(plchan);
e8689e63
LW
1308 if (!txd) {
1309 dev_err(&pl08x->adev->dev,
1310 "%s no memory for descriptor\n", __func__);
1311 return NULL;
1312 }
1313
e8689e63
LW
1314 txd->direction = DMA_NONE;
1315 txd->srcbus.addr = src;
1316 txd->dstbus.addr = dest;
c7da9a56 1317 txd->len = len;
e8689e63
LW
1318
1319 /* Set platform data for m2m */
4983a04f 1320 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
c7da9a56
RKAL
1321 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1322 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
4983a04f 1323
e8689e63 1324 /* Both to be incremented or the code will break */
70b5ed6b 1325 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
c7da9a56 1326
c7da9a56 1327 if (pl08x->vd->dualmaster)
30749cb4
RKAL
1328 txd->cctl |= pl08x_select_bus(pl08x,
1329 pl08x->mem_buses, pl08x->mem_buses);
e8689e63 1330
e8689e63
LW
1331 ret = pl08x_prep_channel_resources(plchan, txd);
1332 if (ret)
1333 return NULL;
1334 /*
1335 * NB: the channel lock is held at this point so tx_submit()
1336 * must be called in direct succession.
1337 */
1338
1339 return &txd->tx;
1340}
1341
3e2a037c 1342static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
e8689e63
LW
1343 struct dma_chan *chan, struct scatterlist *sgl,
1344 unsigned int sg_len, enum dma_data_direction direction,
1345 unsigned long flags)
1346{
1347 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1348 struct pl08x_driver_data *pl08x = plchan->host;
1349 struct pl08x_txd *txd;
30749cb4 1350 u8 src_buses, dst_buses;
e8689e63
LW
1351 int ret;
1352
1353 /*
1354 * Current implementation ASSUMES only one sg
1355 */
1356 if (sg_len != 1) {
1357 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1358 __func__);
1359 BUG();
1360 }
1361
1362 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1363 __func__, sgl->length, plchan->name);
1364
ac3cd20d 1365 txd = pl08x_get_txd(plchan);
e8689e63
LW
1366 if (!txd) {
1367 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1368 return NULL;
1369 }
1370
e8689e63
LW
1371 if (direction != plchan->runtime_direction)
1372 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1373 "the direction configured for the PrimeCell\n",
1374 __func__);
1375
1376 /*
1377 * Set up addresses, the PrimeCell configured address
1378 * will take precedence since this may configure the
1379 * channel target address dynamically at runtime.
1380 */
1381 txd->direction = direction;
c7da9a56
RKAL
1382 txd->len = sgl->length;
1383
1cae78f1 1384 txd->cctl = plchan->cd->cctl &
c7da9a56
RKAL
1385 ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1386 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1cae78f1
RKAL
1387 PL080_CONTROL_PROT_MASK);
1388
1389 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1390 txd->cctl |= PL080_CONTROL_PROT_SYS;
70b5ed6b 1391
e8689e63 1392 if (direction == DMA_TO_DEVICE) {
4983a04f 1393 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1cae78f1 1394 txd->cctl |= PL080_CONTROL_SRC_INCR;
e8689e63
LW
1395 txd->srcbus.addr = sgl->dma_address;
1396 if (plchan->runtime_addr)
1397 txd->dstbus.addr = plchan->runtime_addr;
1398 else
1399 txd->dstbus.addr = plchan->cd->addr;
30749cb4
RKAL
1400 src_buses = pl08x->mem_buses;
1401 dst_buses = plchan->cd->periph_buses;
e8689e63 1402 } else if (direction == DMA_FROM_DEVICE) {
4983a04f 1403 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1cae78f1 1404 txd->cctl |= PL080_CONTROL_DST_INCR;
e8689e63
LW
1405 if (plchan->runtime_addr)
1406 txd->srcbus.addr = plchan->runtime_addr;
1407 else
1408 txd->srcbus.addr = plchan->cd->addr;
1409 txd->dstbus.addr = sgl->dma_address;
30749cb4
RKAL
1410 src_buses = plchan->cd->periph_buses;
1411 dst_buses = pl08x->mem_buses;
e8689e63
LW
1412 } else {
1413 dev_err(&pl08x->adev->dev,
1414 "%s direction unsupported\n", __func__);
1415 return NULL;
1416 }
e8689e63 1417
30749cb4
RKAL
1418 txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
1419
e8689e63
LW
1420 ret = pl08x_prep_channel_resources(plchan, txd);
1421 if (ret)
1422 return NULL;
1423 /*
1424 * NB: the channel lock is held at this point so tx_submit()
1425 * must be called in direct succession.
1426 */
1427
1428 return &txd->tx;
1429}
1430
1431static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1432 unsigned long arg)
1433{
1434 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1435 struct pl08x_driver_data *pl08x = plchan->host;
1436 unsigned long flags;
1437 int ret = 0;
1438
1439 /* Controls applicable to inactive channels */
1440 if (cmd == DMA_SLAVE_CONFIG) {
1441 dma_set_runtime_config(chan,
1442 (struct dma_slave_config *)
1443 arg);
1444 return 0;
1445 }
1446
1447 /*
1448 * Anything succeeds on channels with no physical allocation and
1449 * no queued transfers.
1450 */
1451 spin_lock_irqsave(&plchan->lock, flags);
1452 if (!plchan->phychan && !plchan->at) {
1453 spin_unlock_irqrestore(&plchan->lock, flags);
1454 return 0;
1455 }
1456
1457 switch (cmd) {
1458 case DMA_TERMINATE_ALL:
1459 plchan->state = PL08X_CHAN_IDLE;
1460
1461 if (plchan->phychan) {
1462 pl08x_stop_phy_chan(plchan->phychan);
1463
1464 /*
1465 * Mark physical channel as free and free any slave
1466 * signal
1467 */
8c8cc2b1 1468 release_phy_channel(plchan);
e8689e63 1469 }
e8689e63
LW
1470 /* Dequeue jobs and free LLIs */
1471 if (plchan->at) {
1472 pl08x_free_txd(pl08x, plchan->at);
1473 plchan->at = NULL;
1474 }
1475 /* Dequeue jobs not yet fired as well */
1476 pl08x_free_txd_list(pl08x, plchan);
1477 break;
1478 case DMA_PAUSE:
1479 pl08x_pause_phy_chan(plchan->phychan);
1480 plchan->state = PL08X_CHAN_PAUSED;
1481 break;
1482 case DMA_RESUME:
1483 pl08x_resume_phy_chan(plchan->phychan);
1484 plchan->state = PL08X_CHAN_RUNNING;
1485 break;
1486 default:
1487 /* Unknown command */
1488 ret = -ENXIO;
1489 break;
1490 }
1491
1492 spin_unlock_irqrestore(&plchan->lock, flags);
1493
1494 return ret;
1495}
1496
1497bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1498{
1499 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1500 char *name = chan_id;
1501
1502 /* Check that the channel is not taken! */
1503 if (!strcmp(plchan->name, name))
1504 return true;
1505
1506 return false;
1507}
1508
1509/*
1510 * Just check that the device is there and active
1511 * TODO: turn this bit on/off depending on the number of
1512 * physical channels actually used, if it is zero... well
1513 * shut it off. That will save some power. Cut the clock
1514 * at the same time.
1515 */
1516static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1517{
1518 u32 val;
1519
1520 val = readl(pl08x->base + PL080_CONFIG);
1521 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
e8b5e11d 1522 /* We implicitly clear bit 1 and that means little-endian mode */
e8689e63
LW
1523 val |= PL080_CONFIG_ENABLE;
1524 writel(val, pl08x->base + PL080_CONFIG);
1525}
1526
1527static void pl08x_tasklet(unsigned long data)
1528{
1529 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
e8689e63 1530 struct pl08x_driver_data *pl08x = plchan->host;
858c21c0
RKAL
1531 struct pl08x_txd *txd;
1532 dma_async_tx_callback callback = NULL;
1533 void *callback_param = NULL;
bf072af4 1534 unsigned long flags;
e8689e63 1535
bf072af4 1536 spin_lock_irqsave(&plchan->lock, flags);
e8689e63 1537
858c21c0
RKAL
1538 txd = plchan->at;
1539 plchan->at = NULL;
e8689e63 1540
858c21c0
RKAL
1541 if (txd) {
1542 callback = txd->tx.callback;
1543 callback_param = txd->tx.callback_param;
e8689e63
LW
1544
1545 /*
858c21c0 1546 * Update last completed
e8689e63 1547 */
858c21c0 1548 plchan->lc = txd->tx.cookie;
e8689e63 1549
e8689e63 1550 /*
b58b6b5b 1551 * Free the descriptor
e8689e63 1552 */
858c21c0 1553 pl08x_free_txd(pl08x, txd);
e8689e63
LW
1554 }
1555 /*
1556 * If a new descriptor is queued, set it up
1557 * plchan->at is NULL here
1558 */
1559 if (!list_empty(&plchan->desc_list)) {
1560 struct pl08x_txd *next;
1561
1562 next = list_first_entry(&plchan->desc_list,
1563 struct pl08x_txd,
1564 node);
1565 list_del(&next->node);
c885bee4
RKAL
1566
1567 pl08x_start_txd(plchan, next);
e8689e63
LW
1568 } else {
1569 struct pl08x_dma_chan *waiting = NULL;
1570
1571 /*
1572 * No more jobs, so free up the physical channel
1573 * Free any allocated signal on slave transfers too
1574 */
8c8cc2b1 1575 release_phy_channel(plchan);
e8689e63
LW
1576 plchan->state = PL08X_CHAN_IDLE;
1577
1578 /*
1579 * And NOW before anyone else can grab that free:d
1580 * up physical channel, see if there is some memcpy
1581 * pending that seriously needs to start because of
1582 * being stacked up while we were choking the
1583 * physical channels with data.
1584 */
1585 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1586 chan.device_node) {
1587 if (waiting->state == PL08X_CHAN_WAITING &&
1588 waiting->waiting != NULL) {
1589 int ret;
1590
1591 /* This should REALLY not fail now */
1592 ret = prep_phy_channel(waiting,
1593 waiting->waiting);
1594 BUG_ON(ret);
1595 waiting->state = PL08X_CHAN_RUNNING;
1596 waiting->waiting = NULL;
1597 pl08x_issue_pending(&waiting->chan);
1598 break;
1599 }
1600 }
1601 }
1602
bf072af4 1603 spin_unlock_irqrestore(&plchan->lock, flags);
858c21c0
RKAL
1604
1605 /* Callback to signal completion */
1606 if (callback)
1607 callback(callback_param);
e8689e63
LW
1608}
1609
1610static irqreturn_t pl08x_irq(int irq, void *dev)
1611{
1612 struct pl08x_driver_data *pl08x = dev;
1613 u32 mask = 0;
1614 u32 val;
1615 int i;
1616
1617 val = readl(pl08x->base + PL080_ERR_STATUS);
1618 if (val) {
1619 /*
1620 * An error interrupt (on one or more channels)
1621 */
1622 dev_err(&pl08x->adev->dev,
1623 "%s error interrupt, register value 0x%08x\n",
1624 __func__, val);
1625 /*
1626 * Simply clear ALL PL08X error interrupts,
1627 * regardless of channel and cause
1628 * FIXME: should be 0x00000003 on PL081 really.
1629 */
1630 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1631 }
1632 val = readl(pl08x->base + PL080_INT_STATUS);
1633 for (i = 0; i < pl08x->vd->channels; i++) {
1634 if ((1 << i) & val) {
1635 /* Locate physical channel */
1636 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1637 struct pl08x_dma_chan *plchan = phychan->serving;
1638
1639 /* Schedule tasklet on this channel */
1640 tasklet_schedule(&plchan->tasklet);
1641
1642 mask |= (1 << i);
1643 }
1644 }
1645 /*
1646 * Clear only the terminal interrupts on channels we processed
1647 */
1648 writel(mask, pl08x->base + PL080_TC_CLEAR);
1649
1650 return mask ? IRQ_HANDLED : IRQ_NONE;
1651}
1652
1653/*
1654 * Initialise the DMAC memcpy/slave channels.
1655 * Make a local wrapper to hold required data
1656 */
1657static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1658 struct dma_device *dmadev,
1659 unsigned int channels,
1660 bool slave)
1661{
1662 struct pl08x_dma_chan *chan;
1663 int i;
1664
1665 INIT_LIST_HEAD(&dmadev->channels);
1666 /*
1667 * Register as many many memcpy as we have physical channels,
1668 * we won't always be able to use all but the code will have
1669 * to cope with that situation.
1670 */
1671 for (i = 0; i < channels; i++) {
1672 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1673 if (!chan) {
1674 dev_err(&pl08x->adev->dev,
1675 "%s no memory for channel\n", __func__);
1676 return -ENOMEM;
1677 }
1678
1679 chan->host = pl08x;
1680 chan->state = PL08X_CHAN_IDLE;
1681
1682 if (slave) {
1683 chan->slave = true;
1684 chan->name = pl08x->pd->slave_channels[i].bus_id;
1685 chan->cd = &pl08x->pd->slave_channels[i];
1686 } else {
1687 chan->cd = &pl08x->pd->memcpy_channel;
1688 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1689 if (!chan->name) {
1690 kfree(chan);
1691 return -ENOMEM;
1692 }
1693 }
b58b6b5b
RKAL
1694 if (chan->cd->circular_buffer) {
1695 dev_err(&pl08x->adev->dev,
1696 "channel %s: circular buffers not supported\n",
1697 chan->name);
1698 kfree(chan);
1699 continue;
1700 }
e8689e63
LW
1701 dev_info(&pl08x->adev->dev,
1702 "initialize virtual channel \"%s\"\n",
1703 chan->name);
1704
1705 chan->chan.device = dmadev;
91aa5fad
RKAL
1706 chan->chan.cookie = 0;
1707 chan->lc = 0;
e8689e63
LW
1708
1709 spin_lock_init(&chan->lock);
1710 INIT_LIST_HEAD(&chan->desc_list);
1711 tasklet_init(&chan->tasklet, pl08x_tasklet,
1712 (unsigned long) chan);
1713
1714 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1715 }
1716 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1717 i, slave ? "slave" : "memcpy");
1718 return i;
1719}
1720
1721static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1722{
1723 struct pl08x_dma_chan *chan = NULL;
1724 struct pl08x_dma_chan *next;
1725
1726 list_for_each_entry_safe(chan,
1727 next, &dmadev->channels, chan.device_node) {
1728 list_del(&chan->chan.device_node);
1729 kfree(chan);
1730 }
1731}
1732
1733#ifdef CONFIG_DEBUG_FS
1734static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1735{
1736 switch (state) {
1737 case PL08X_CHAN_IDLE:
1738 return "idle";
1739 case PL08X_CHAN_RUNNING:
1740 return "running";
1741 case PL08X_CHAN_PAUSED:
1742 return "paused";
1743 case PL08X_CHAN_WAITING:
1744 return "waiting";
1745 default:
1746 break;
1747 }
1748 return "UNKNOWN STATE";
1749}
1750
1751static int pl08x_debugfs_show(struct seq_file *s, void *data)
1752{
1753 struct pl08x_driver_data *pl08x = s->private;
1754 struct pl08x_dma_chan *chan;
1755 struct pl08x_phy_chan *ch;
1756 unsigned long flags;
1757 int i;
1758
1759 seq_printf(s, "PL08x physical channels:\n");
1760 seq_printf(s, "CHANNEL:\tUSER:\n");
1761 seq_printf(s, "--------\t-----\n");
1762 for (i = 0; i < pl08x->vd->channels; i++) {
1763 struct pl08x_dma_chan *virt_chan;
1764
1765 ch = &pl08x->phy_chans[i];
1766
1767 spin_lock_irqsave(&ch->lock, flags);
1768 virt_chan = ch->serving;
1769
1770 seq_printf(s, "%d\t\t%s\n",
1771 ch->id, virt_chan ? virt_chan->name : "(none)");
1772
1773 spin_unlock_irqrestore(&ch->lock, flags);
1774 }
1775
1776 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1777 seq_printf(s, "CHANNEL:\tSTATE:\n");
1778 seq_printf(s, "--------\t------\n");
1779 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
3e2a037c 1780 seq_printf(s, "%s\t\t%s\n", chan->name,
e8689e63
LW
1781 pl08x_state_str(chan->state));
1782 }
1783
1784 seq_printf(s, "\nPL08x virtual slave channels:\n");
1785 seq_printf(s, "CHANNEL:\tSTATE:\n");
1786 seq_printf(s, "--------\t------\n");
1787 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
3e2a037c 1788 seq_printf(s, "%s\t\t%s\n", chan->name,
e8689e63
LW
1789 pl08x_state_str(chan->state));
1790 }
1791
1792 return 0;
1793}
1794
1795static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1796{
1797 return single_open(file, pl08x_debugfs_show, inode->i_private);
1798}
1799
1800static const struct file_operations pl08x_debugfs_operations = {
1801 .open = pl08x_debugfs_open,
1802 .read = seq_read,
1803 .llseek = seq_lseek,
1804 .release = single_release,
1805};
1806
1807static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1808{
1809 /* Expose a simple debugfs interface to view all clocks */
1810 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1811 NULL, pl08x,
1812 &pl08x_debugfs_operations);
1813}
1814
1815#else
1816static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1817{
1818}
1819#endif
1820
1821static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1822{
1823 struct pl08x_driver_data *pl08x;
f96ca9ec 1824 const struct vendor_data *vd = id->data;
e8689e63
LW
1825 int ret = 0;
1826 int i;
1827
1828 ret = amba_request_regions(adev, NULL);
1829 if (ret)
1830 return ret;
1831
1832 /* Create the driver state holder */
1833 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1834 if (!pl08x) {
1835 ret = -ENOMEM;
1836 goto out_no_pl08x;
1837 }
1838
1839 /* Initialize memcpy engine */
1840 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1841 pl08x->memcpy.dev = &adev->dev;
1842 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1843 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1844 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1845 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1846 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1847 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1848 pl08x->memcpy.device_control = pl08x_control;
1849
1850 /* Initialize slave engine */
1851 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1852 pl08x->slave.dev = &adev->dev;
1853 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1854 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1855 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1856 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1857 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1858 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1859 pl08x->slave.device_control = pl08x_control;
1860
1861 /* Get the platform data */
1862 pl08x->pd = dev_get_platdata(&adev->dev);
1863 if (!pl08x->pd) {
1864 dev_err(&adev->dev, "no platform data supplied\n");
1865 goto out_no_platdata;
1866 }
1867
1868 /* Assign useful pointers to the driver state */
1869 pl08x->adev = adev;
1870 pl08x->vd = vd;
1871
30749cb4
RKAL
1872 /* By default, AHB1 only. If dualmaster, from platform */
1873 pl08x->lli_buses = PL08X_AHB1;
1874 pl08x->mem_buses = PL08X_AHB1;
1875 if (pl08x->vd->dualmaster) {
1876 pl08x->lli_buses = pl08x->pd->lli_buses;
1877 pl08x->mem_buses = pl08x->pd->mem_buses;
1878 }
1879
e8689e63
LW
1880 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1881 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1882 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1883 if (!pl08x->pool) {
1884 ret = -ENOMEM;
1885 goto out_no_lli_pool;
1886 }
1887
1888 spin_lock_init(&pl08x->lock);
1889
1890 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1891 if (!pl08x->base) {
1892 ret = -ENOMEM;
1893 goto out_no_ioremap;
1894 }
1895
1896 /* Turn on the PL08x */
1897 pl08x_ensure_on(pl08x);
1898
1899 /*
1900 * Attach the interrupt handler
1901 */
1902 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1903 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1904
1905 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
b05cd8f4 1906 DRIVER_NAME, pl08x);
e8689e63
LW
1907 if (ret) {
1908 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1909 __func__, adev->irq[0]);
1910 goto out_no_irq;
1911 }
1912
1913 /* Initialize physical channels */
1914 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1915 GFP_KERNEL);
1916 if (!pl08x->phy_chans) {
1917 dev_err(&adev->dev, "%s failed to allocate "
1918 "physical channel holders\n",
1919 __func__);
1920 goto out_no_phychans;
1921 }
1922
1923 for (i = 0; i < vd->channels; i++) {
1924 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1925
1926 ch->id = i;
1927 ch->base = pl08x->base + PL080_Cx_BASE(i);
1928 spin_lock_init(&ch->lock);
1929 ch->serving = NULL;
1930 ch->signal = -1;
1931 dev_info(&adev->dev,
1932 "physical channel %d is %s\n", i,
1933 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1934 }
1935
1936 /* Register as many memcpy channels as there are physical channels */
1937 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1938 pl08x->vd->channels, false);
1939 if (ret <= 0) {
1940 dev_warn(&pl08x->adev->dev,
1941 "%s failed to enumerate memcpy channels - %d\n",
1942 __func__, ret);
1943 goto out_no_memcpy;
1944 }
1945 pl08x->memcpy.chancnt = ret;
1946
1947 /* Register slave channels */
1948 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1949 pl08x->pd->num_slave_channels,
1950 true);
1951 if (ret <= 0) {
1952 dev_warn(&pl08x->adev->dev,
1953 "%s failed to enumerate slave channels - %d\n",
1954 __func__, ret);
1955 goto out_no_slave;
1956 }
1957 pl08x->slave.chancnt = ret;
1958
1959 ret = dma_async_device_register(&pl08x->memcpy);
1960 if (ret) {
1961 dev_warn(&pl08x->adev->dev,
1962 "%s failed to register memcpy as an async device - %d\n",
1963 __func__, ret);
1964 goto out_no_memcpy_reg;
1965 }
1966
1967 ret = dma_async_device_register(&pl08x->slave);
1968 if (ret) {
1969 dev_warn(&pl08x->adev->dev,
1970 "%s failed to register slave as an async device - %d\n",
1971 __func__, ret);
1972 goto out_no_slave_reg;
1973 }
1974
1975 amba_set_drvdata(adev, pl08x);
1976 init_pl08x_debugfs(pl08x);
b05cd8f4
RKAL
1977 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1978 amba_part(adev), amba_rev(adev),
1979 (unsigned long long)adev->res.start, adev->irq[0]);
e8689e63
LW
1980 return 0;
1981
1982out_no_slave_reg:
1983 dma_async_device_unregister(&pl08x->memcpy);
1984out_no_memcpy_reg:
1985 pl08x_free_virtual_channels(&pl08x->slave);
1986out_no_slave:
1987 pl08x_free_virtual_channels(&pl08x->memcpy);
1988out_no_memcpy:
1989 kfree(pl08x->phy_chans);
1990out_no_phychans:
1991 free_irq(adev->irq[0], pl08x);
1992out_no_irq:
1993 iounmap(pl08x->base);
1994out_no_ioremap:
1995 dma_pool_destroy(pl08x->pool);
1996out_no_lli_pool:
1997out_no_platdata:
1998 kfree(pl08x);
1999out_no_pl08x:
2000 amba_release_regions(adev);
2001 return ret;
2002}
2003
2004/* PL080 has 8 channels and the PL080 have just 2 */
2005static struct vendor_data vendor_pl080 = {
e8689e63
LW
2006 .channels = 8,
2007 .dualmaster = true,
2008};
2009
2010static struct vendor_data vendor_pl081 = {
e8689e63
LW
2011 .channels = 2,
2012 .dualmaster = false,
2013};
2014
2015static struct amba_id pl08x_ids[] = {
2016 /* PL080 */
2017 {
2018 .id = 0x00041080,
2019 .mask = 0x000fffff,
2020 .data = &vendor_pl080,
2021 },
2022 /* PL081 */
2023 {
2024 .id = 0x00041081,
2025 .mask = 0x000fffff,
2026 .data = &vendor_pl081,
2027 },
2028 /* Nomadik 8815 PL080 variant */
2029 {
2030 .id = 0x00280880,
2031 .mask = 0x00ffffff,
2032 .data = &vendor_pl080,
2033 },
2034 { 0, 0 },
2035};
2036
2037static struct amba_driver pl08x_amba_driver = {
2038 .drv.name = DRIVER_NAME,
2039 .id_table = pl08x_ids,
2040 .probe = pl08x_probe,
2041};
2042
2043static int __init pl08x_init(void)
2044{
2045 int retval;
2046 retval = amba_driver_register(&pl08x_amba_driver);
2047 if (retval)
2048 printk(KERN_WARNING DRIVER_NAME
e8b5e11d 2049 "failed to register as an AMBA device (%d)\n",
e8689e63
LW
2050 retval);
2051 return retval;
2052}
2053subsys_initcall(pl08x_init);
This page took 0.190248 seconds and 5 git commands to generate.