Linux 2.6.38-rc4
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
2bc65418
DT
110/*
111 * Memory scrubber control interface. For K8, memory scrubbing is handled by
112 * hardware and can involve L2 cache, dcache as well as the main memory. With
113 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
114 * functionality.
115 *
116 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
117 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
118 * bytes/sec for the setting.
119 *
120 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
121 * other archs, we might not have access to the caches directly.
122 */
123
124/*
125 * scan the scrub rate mapping table for a close or matching bandwidth value to
126 * issue. If requested is too big, then use last maximum value found.
127 */
395ae783 128static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
129{
130 u32 scrubval;
131 int i;
132
133 /*
134 * map the configured rate (new_bw) to a value specific to the AMD64
135 * memory controller and apply to register. Search for the first
136 * bandwidth entry that is greater or equal than the setting requested
137 * and program that. If at last entry, turn off DRAM scrubbing.
138 */
139 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
140 /*
141 * skip scrub rates which aren't recommended
142 * (see F10 BKDG, F3x58)
143 */
395ae783 144 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
145 continue;
146
147 if (scrubrates[i].bandwidth <= new_bw)
148 break;
149
150 /*
151 * if no suitable bandwidth found, turn off DRAM scrubbing
152 * entirely by falling back to the last element in the
153 * scrubrates array.
154 */
155 }
156
157 scrubval = scrubrates[i].scrubval;
2bc65418
DT
158
159 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
160
39094443
BP
161 if (scrubval)
162 return scrubrates[i].bandwidth;
163
2bc65418
DT
164 return 0;
165}
166
395ae783 167static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
168{
169 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 170
8d5b5d9c 171 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
172}
173
39094443 174static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
175{
176 struct amd64_pvt *pvt = mci->pvt_info;
177 u32 scrubval = 0;
39094443 178 int i, retval = -EINVAL;
2bc65418 179
8d5b5d9c 180 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
2bc65418
DT
181
182 scrubval = scrubval & 0x001F;
183
24f9a7fe 184 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 185
926311fd 186 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 187 if (scrubrates[i].scrubval == scrubval) {
39094443 188 retval = scrubrates[i].bandwidth;
2bc65418
DT
189 break;
190 }
191 }
39094443 192 return retval;
2bc65418
DT
193}
194
6775763a
DT
195/* Map from a CSROW entry to the mask entry that operates on it */
196static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
197{
1433eb99 198 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
199 return csrow;
200 else
201 return csrow >> 1;
6775763a
DT
202}
203
204/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
205static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
206{
207 if (dct == 0)
208 return pvt->dcsb0[csrow];
209 else
210 return pvt->dcsb1[csrow];
211}
212
213/*
214 * Return the 'mask' address the i'th CS entry. This function is needed because
215 * there number of DCSM registers on Rev E and prior vs Rev F and later is
216 * different.
217 */
218static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
219{
220 if (dct == 0)
221 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
222 else
223 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
224}
225
226
227/*
228 * In *base and *limit, pass back the full 40-bit base and limit physical
229 * addresses for the node given by node_id. This information is obtained from
230 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
231 * base and limit addresses are of type SysAddr, as defined at the start of
232 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
233 * in the address range they represent.
234 */
235static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
236 u64 *base, u64 *limit)
237{
238 *base = pvt->dram_base[node_id];
239 *limit = pvt->dram_limit[node_id];
240}
241
242/*
243 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
244 * with node_id
245 */
246static int amd64_base_limit_match(struct amd64_pvt *pvt,
247 u64 sys_addr, int node_id)
248{
249 u64 base, limit, addr;
250
251 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
252
253 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
254 * all ones if the most significant implemented address bit is 1.
255 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
256 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
257 * Application Programming.
258 */
259 addr = sys_addr & 0x000000ffffffffffull;
260
261 return (addr >= base) && (addr <= limit);
262}
263
264/*
265 * Attempt to map a SysAddr to a node. On success, return a pointer to the
266 * mem_ctl_info structure for the node that the SysAddr maps to.
267 *
268 * On failure, return NULL.
269 */
270static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
271 u64 sys_addr)
272{
273 struct amd64_pvt *pvt;
274 int node_id;
275 u32 intlv_en, bits;
276
277 /*
278 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
279 * 3.4.4.2) registers to map the SysAddr to a node ID.
280 */
281 pvt = mci->pvt_info;
282
283 /*
284 * The value of this field should be the same for all DRAM Base
285 * registers. Therefore we arbitrarily choose to read it from the
286 * register for node 0.
287 */
288 intlv_en = pvt->dram_IntlvEn[0];
289
290 if (intlv_en == 0) {
8edc5445 291 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 292 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 293 goto found;
6775763a 294 }
8edc5445 295 goto err_no_match;
6775763a
DT
296 }
297
72f158fe
BP
298 if (unlikely((intlv_en != 0x01) &&
299 (intlv_en != 0x03) &&
300 (intlv_en != 0x07))) {
24f9a7fe 301 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
302 return NULL;
303 }
304
305 bits = (((u32) sys_addr) >> 12) & intlv_en;
306
307 for (node_id = 0; ; ) {
8edc5445 308 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
309 break; /* intlv_sel field matches */
310
311 if (++node_id >= DRAM_REG_COUNT)
312 goto err_no_match;
313 }
314
315 /* sanity test for sys_addr */
316 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
317 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
318 "range for node %d with node interleaving enabled.\n",
319 __func__, sys_addr, node_id);
6775763a
DT
320 return NULL;
321 }
322
323found:
324 return edac_mc_find(node_id);
325
326err_no_match:
327 debugf2("sys_addr 0x%lx doesn't match any node\n",
328 (unsigned long)sys_addr);
329
330 return NULL;
331}
e2ce7255
DT
332
333/*
334 * Extract the DRAM CS base address from selected csrow register.
335 */
336static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
337{
338 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
339 pvt->dcs_shift;
340}
341
342/*
343 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
344 */
345static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
346{
347 u64 dcsm_bits, other_bits;
348 u64 mask;
349
350 /* Extract bits from DRAM CS Mask. */
351 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
352
353 other_bits = pvt->dcsm_mask;
354 other_bits = ~(other_bits << pvt->dcs_shift);
355
356 /*
357 * The extracted bits from DCSM belong in the spaces represented by
358 * the cleared bits in other_bits.
359 */
360 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
361
362 return mask;
363}
364
365/*
366 * @input_addr is an InputAddr associated with the node given by mci. Return the
367 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
368 */
369static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
370{
371 struct amd64_pvt *pvt;
372 int csrow;
373 u64 base, mask;
374
375 pvt = mci->pvt_info;
376
377 /*
378 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
379 * base/mask register pair, test the condition shown near the start of
380 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
381 */
9d858bb1 382 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
383
384 /* This DRAM chip select is disabled on this node */
385 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
386 continue;
387
388 base = base_from_dct_base(pvt, csrow);
389 mask = ~mask_from_dct_mask(pvt, csrow);
390
391 if ((input_addr & mask) == (base & mask)) {
392 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
393 (unsigned long)input_addr, csrow,
394 pvt->mc_node_id);
395
396 return csrow;
397 }
398 }
399
400 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
402
403 return -1;
404}
405
406/*
407 * Return the base value defined by the DRAM Base register for the node
408 * represented by mci. This function returns the full 40-bit value despite the
409 * fact that the register only stores bits 39-24 of the value. See section
410 * 3.4.4.1 (BKDG #26094, K8, revA-E)
411 */
412static inline u64 get_dram_base(struct mem_ctl_info *mci)
413{
414 struct amd64_pvt *pvt = mci->pvt_info;
415
416 return pvt->dram_base[pvt->mc_node_id];
417}
418
419/*
420 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
421 * for the node represented by mci. Info is passed back in *hole_base,
422 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
423 * info is invalid. Info may be invalid for either of the following reasons:
424 *
425 * - The revision of the node is not E or greater. In this case, the DRAM Hole
426 * Address Register does not exist.
427 *
428 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
429 * indicating that its contents are not valid.
430 *
431 * The values passed back in *hole_base, *hole_offset, and *hole_size are
432 * complete 32-bit values despite the fact that the bitfields in the DHAR
433 * only represent bits 31-24 of the base and offset values.
434 */
435int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
436 u64 *hole_offset, u64 *hole_size)
437{
438 struct amd64_pvt *pvt = mci->pvt_info;
439 u64 base;
440
441 /* only revE and later have the DRAM Hole Address Register */
1433eb99 442 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
443 debugf1(" revision %d for node %d does not support DHAR\n",
444 pvt->ext_model, pvt->mc_node_id);
445 return 1;
446 }
447
448 /* only valid for Fam10h */
449 if (boot_cpu_data.x86 == 0x10 &&
450 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
451 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
452 return 1;
453 }
454
455 if ((pvt->dhar & DHAR_VALID) == 0) {
456 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
457 pvt->mc_node_id);
458 return 1;
459 }
460
461 /* This node has Memory Hoisting */
462
463 /* +------------------+--------------------+--------------------+-----
464 * | memory | DRAM hole | relocated |
465 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
466 * | | | DRAM hole |
467 * | | | [0x100000000, |
468 * | | | (0x100000000+ |
469 * | | | (0xffffffff-x))] |
470 * +------------------+--------------------+--------------------+-----
471 *
472 * Above is a diagram of physical memory showing the DRAM hole and the
473 * relocated addresses from the DRAM hole. As shown, the DRAM hole
474 * starts at address x (the base address) and extends through address
475 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
476 * addresses in the hole so that they start at 0x100000000.
477 */
478
479 base = dhar_base(pvt->dhar);
480
481 *hole_base = base;
482 *hole_size = (0x1ull << 32) - base;
483
484 if (boot_cpu_data.x86 > 0xf)
485 *hole_offset = f10_dhar_offset(pvt->dhar);
486 else
487 *hole_offset = k8_dhar_offset(pvt->dhar);
488
489 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
490 pvt->mc_node_id, (unsigned long)*hole_base,
491 (unsigned long)*hole_offset, (unsigned long)*hole_size);
492
493 return 0;
494}
495EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
496
93c2df58
DT
497/*
498 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
499 * assumed that sys_addr maps to the node given by mci.
500 *
501 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
502 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
503 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
504 * then it is also involved in translating a SysAddr to a DramAddr. Sections
505 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
506 * These parts of the documentation are unclear. I interpret them as follows:
507 *
508 * When node n receives a SysAddr, it processes the SysAddr as follows:
509 *
510 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
511 * Limit registers for node n. If the SysAddr is not within the range
512 * specified by the base and limit values, then node n ignores the Sysaddr
513 * (since it does not map to node n). Otherwise continue to step 2 below.
514 *
515 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
516 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
517 * the range of relocated addresses (starting at 0x100000000) from the DRAM
518 * hole. If not, skip to step 3 below. Else get the value of the
519 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
520 * offset defined by this value from the SysAddr.
521 *
522 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
523 * Base register for node n. To obtain the DramAddr, subtract the base
524 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
525 */
526static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
527{
528 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
529 int ret = 0;
530
531 dram_base = get_dram_base(mci);
532
533 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
534 &hole_size);
535 if (!ret) {
536 if ((sys_addr >= (1ull << 32)) &&
537 (sys_addr < ((1ull << 32) + hole_size))) {
538 /* use DHAR to translate SysAddr to DramAddr */
539 dram_addr = sys_addr - hole_offset;
540
541 debugf2("using DHAR to translate SysAddr 0x%lx to "
542 "DramAddr 0x%lx\n",
543 (unsigned long)sys_addr,
544 (unsigned long)dram_addr);
545
546 return dram_addr;
547 }
548 }
549
550 /*
551 * Translate the SysAddr to a DramAddr as shown near the start of
552 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
553 * only deals with 40-bit values. Therefore we discard bits 63-40 of
554 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
555 * discard are all 1s. Otherwise the bits we discard are all 0s. See
556 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
557 * Programmer's Manual Volume 1 Application Programming.
558 */
559 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
560
561 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
563 (unsigned long)dram_addr);
564 return dram_addr;
565}
566
567/*
568 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
569 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
570 * for node interleaving.
571 */
572static int num_node_interleave_bits(unsigned intlv_en)
573{
574 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
575 int n;
576
577 BUG_ON(intlv_en > 7);
578 n = intlv_shift_table[intlv_en];
579 return n;
580}
581
582/* Translate the DramAddr given by @dram_addr to an InputAddr. */
583static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
584{
585 struct amd64_pvt *pvt;
586 int intlv_shift;
587 u64 input_addr;
588
589 pvt = mci->pvt_info;
590
591 /*
592 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
593 * concerning translating a DramAddr to an InputAddr.
594 */
595 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
596 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
597 (dram_addr & 0xfff);
598
599 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
600 intlv_shift, (unsigned long)dram_addr,
601 (unsigned long)input_addr);
602
603 return input_addr;
604}
605
606/*
607 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
608 * assumed that @sys_addr maps to the node given by mci.
609 */
610static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
611{
612 u64 input_addr;
613
614 input_addr =
615 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
616
617 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
618 (unsigned long)sys_addr, (unsigned long)input_addr);
619
620 return input_addr;
621}
622
623
624/*
625 * @input_addr is an InputAddr associated with the node represented by mci.
626 * Translate @input_addr to a DramAddr and return the result.
627 */
628static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
629{
630 struct amd64_pvt *pvt;
631 int node_id, intlv_shift;
632 u64 bits, dram_addr;
633 u32 intlv_sel;
634
635 /*
636 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
637 * shows how to translate a DramAddr to an InputAddr. Here we reverse
638 * this procedure. When translating from a DramAddr to an InputAddr, the
639 * bits used for node interleaving are discarded. Here we recover these
640 * bits from the IntlvSel field of the DRAM Limit register (section
641 * 3.4.4.2) for the node that input_addr is associated with.
642 */
643 pvt = mci->pvt_info;
644 node_id = pvt->mc_node_id;
645 BUG_ON((node_id < 0) || (node_id > 7));
646
647 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
648
649 if (intlv_shift == 0) {
650 debugf1(" InputAddr 0x%lx translates to DramAddr of "
651 "same value\n", (unsigned long)input_addr);
652
653 return input_addr;
654 }
655
656 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
657 (input_addr & 0xfff);
658
659 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
660 dram_addr = bits + (intlv_sel << 12);
661
662 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
663 "(%d node interleave bits)\n", (unsigned long)input_addr,
664 (unsigned long)dram_addr, intlv_shift);
665
666 return dram_addr;
667}
668
669/*
670 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
671 * @dram_addr to a SysAddr.
672 */
673static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
674{
675 struct amd64_pvt *pvt = mci->pvt_info;
676 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
677 int ret = 0;
678
679 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
680 &hole_size);
681 if (!ret) {
682 if ((dram_addr >= hole_base) &&
683 (dram_addr < (hole_base + hole_size))) {
684 sys_addr = dram_addr + hole_offset;
685
686 debugf1("using DHAR to translate DramAddr 0x%lx to "
687 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
688 (unsigned long)sys_addr);
689
690 return sys_addr;
691 }
692 }
693
694 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
695 sys_addr = dram_addr + base;
696
697 /*
698 * The sys_addr we have computed up to this point is a 40-bit value
699 * because the k8 deals with 40-bit values. However, the value we are
700 * supposed to return is a full 64-bit physical address. The AMD
701 * x86-64 architecture specifies that the most significant implemented
702 * address bit through bit 63 of a physical address must be either all
703 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
704 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
705 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
706 * Programming.
707 */
708 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
709
710 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
711 pvt->mc_node_id, (unsigned long)dram_addr,
712 (unsigned long)sys_addr);
713
714 return sys_addr;
715}
716
717/*
718 * @input_addr is an InputAddr associated with the node given by mci. Translate
719 * @input_addr to a SysAddr.
720 */
721static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
722 u64 input_addr)
723{
724 return dram_addr_to_sys_addr(mci,
725 input_addr_to_dram_addr(mci, input_addr));
726}
727
728/*
729 * Find the minimum and maximum InputAddr values that map to the given @csrow.
730 * Pass back these values in *input_addr_min and *input_addr_max.
731 */
732static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
733 u64 *input_addr_min, u64 *input_addr_max)
734{
735 struct amd64_pvt *pvt;
736 u64 base, mask;
737
738 pvt = mci->pvt_info;
9d858bb1 739 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
740
741 base = base_from_dct_base(pvt, csrow);
742 mask = mask_from_dct_mask(pvt, csrow);
743
744 *input_addr_min = base & ~mask;
745 *input_addr_max = base | mask | pvt->dcs_mask_notused;
746}
747
93c2df58
DT
748/* Map the Error address to a PAGE and PAGE OFFSET. */
749static inline void error_address_to_page_and_offset(u64 error_address,
750 u32 *page, u32 *offset)
751{
752 *page = (u32) (error_address >> PAGE_SHIFT);
753 *offset = ((u32) error_address) & ~PAGE_MASK;
754}
755
756/*
757 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
758 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
759 * of a node that detected an ECC memory error. mci represents the node that
760 * the error address maps to (possibly different from the node that detected
761 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
762 * error.
763 */
764static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
765{
766 int csrow;
767
768 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
769
770 if (csrow == -1)
24f9a7fe
BP
771 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
772 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
773 return csrow;
774}
e2ce7255 775
bfc04aec 776static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 777
ad6a32e9
BP
778static u16 extract_syndrome(struct err_regs *err)
779{
780 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
781}
782
2da11654
DT
783/*
784 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
785 * are ECC capable.
786 */
787static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
788{
789 int bit;
584fcff4 790 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 791
1433eb99 792 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
793 ? 19
794 : 17;
795
584fcff4 796 if (pvt->dclr0 & BIT(bit))
2da11654
DT
797 edac_cap = EDAC_FLAG_SECDED;
798
799 return edac_cap;
800}
801
802
8566c4df 803static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 804
68798e17
BP
805static void amd64_dump_dramcfg_low(u32 dclr, int chan)
806{
807 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
808
809 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
810 (dclr & BIT(16)) ? "un" : "",
811 (dclr & BIT(19)) ? "yes" : "no");
812
813 debugf1(" PAR/ERR parity: %s\n",
814 (dclr & BIT(8)) ? "enabled" : "disabled");
815
816 debugf1(" DCT 128bit mode width: %s\n",
817 (dclr & BIT(11)) ? "128b" : "64b");
818
819 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
820 (dclr & BIT(12)) ? "yes" : "no",
821 (dclr & BIT(13)) ? "yes" : "no",
822 (dclr & BIT(14)) ? "yes" : "no",
823 (dclr & BIT(15)) ? "yes" : "no");
824}
825
2da11654
DT
826/* Display and decode various NB registers for debug purposes. */
827static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
828{
829 int ganged;
830
68798e17
BP
831 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
832
833 debugf1(" NB two channel DRAM capable: %s\n",
834 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 835
68798e17
BP
836 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
837 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
838 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
839
840 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 841
8de1d91e 842 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 843
8de1d91e
BP
844 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
845 "offset: 0x%08x\n",
846 pvt->dhar,
847 dhar_base(pvt->dhar),
848 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
849 : f10_dhar_offset(pvt->dhar));
2da11654 850
8de1d91e
BP
851 debugf1(" DramHoleValid: %s\n",
852 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 853
8de1d91e 854 /* everything below this point is Fam10h and above */
8566c4df
BP
855 if (boot_cpu_data.x86 == 0xf) {
856 amd64_debug_display_dimm_sizes(0, pvt);
2da11654 857 return;
8566c4df 858 }
2da11654 859
24f9a7fe 860 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 861
8de1d91e 862 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
863 if (!dct_ganging_enabled(pvt))
864 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
865
866 /*
867 * Determine if ganged and then dump memory sizes for first controller,
868 * and if NOT ganged dump info for 2nd controller.
869 */
870 ganged = dct_ganging_enabled(pvt);
871
8566c4df 872 amd64_debug_display_dimm_sizes(0, pvt);
2da11654
DT
873
874 if (!ganged)
8566c4df 875 amd64_debug_display_dimm_sizes(1, pvt);
2da11654
DT
876}
877
878/* Read in both of DBAM registers */
879static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
880{
8d5b5d9c 881 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
2da11654 882
6ba5dcdc 883 if (boot_cpu_data.x86 >= 0x10)
8d5b5d9c 884 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
2da11654
DT
885}
886
94be4bff
DT
887/*
888 * NOTE: CPU Revision Dependent code: Rev E and Rev F
889 *
890 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
891 * set the shift factor for the DCSB and DCSM values.
892 *
893 * ->dcs_mask_notused, RevE:
894 *
895 * To find the max InputAddr for the csrow, start with the base address and set
896 * all bits that are "don't care" bits in the test at the start of section
897 * 3.5.4 (p. 84).
898 *
899 * The "don't care" bits are all set bits in the mask and all bits in the gaps
900 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
901 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
902 * gaps.
903 *
904 * ->dcs_mask_notused, RevF and later:
905 *
906 * To find the max InputAddr for the csrow, start with the base address and set
907 * all bits that are "don't care" bits in the test at the start of NPT section
908 * 4.5.4 (p. 87).
909 *
910 * The "don't care" bits are all set bits in the mask and all bits in the gaps
911 * between bit ranges [36:27] and [21:13].
912 *
913 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
914 * which are all bits in the above-mentioned gaps.
915 */
916static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
917{
9d858bb1 918
1433eb99 919 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
920 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
921 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
922 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
923 pvt->dcs_shift = REV_E_DCS_SHIFT;
924 pvt->cs_count = 8;
925 pvt->num_dcsm = 8;
926 } else {
94be4bff
DT
927 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
928 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
929 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
930 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
3ab0e7dc
BP
931 pvt->cs_count = 8;
932 pvt->num_dcsm = 4;
94be4bff
DT
933 }
934}
935
936/*
937 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
938 */
939static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
940{
6ba5dcdc 941 int cs, reg;
94be4bff
DT
942
943 amd64_set_dct_base_and_mask(pvt);
944
9d858bb1 945 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 946 reg = K8_DCSB0 + (cs * 4);
8d5b5d9c 947 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
94be4bff
DT
948 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
949 cs, pvt->dcsb0[cs], reg);
950
951 /* If DCT are NOT ganged, then read in DCT1's base */
952 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
953 reg = F10_DCSB1 + (cs * 4);
8d5b5d9c 954 if (!amd64_read_pci_cfg(pvt->F2, reg,
6ba5dcdc 955 &pvt->dcsb1[cs]))
94be4bff
DT
956 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
957 cs, pvt->dcsb1[cs], reg);
958 } else {
959 pvt->dcsb1[cs] = 0;
960 }
961 }
962
963 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 964 reg = K8_DCSM0 + (cs * 4);
8d5b5d9c 965 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
94be4bff
DT
966 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
967 cs, pvt->dcsm0[cs], reg);
968
969 /* If DCT are NOT ganged, then read in DCT1's mask */
970 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
971 reg = F10_DCSM1 + (cs * 4);
8d5b5d9c 972 if (!amd64_read_pci_cfg(pvt->F2, reg,
6ba5dcdc 973 &pvt->dcsm1[cs]))
94be4bff
DT
974 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
975 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 976 } else {
94be4bff 977 pvt->dcsm1[cs] = 0;
6ba5dcdc 978 }
94be4bff
DT
979 }
980}
981
24f9a7fe 982static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
983{
984 enum mem_type type;
985
1433eb99 986 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
987 if (pvt->dchr0 & DDR3_MODE)
988 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
989 else
990 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 991 } else {
94be4bff
DT
992 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
993 }
994
24f9a7fe 995 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
996
997 return type;
998}
999
ddff876d
DT
1000/*
1001 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1002 * and the later RevF memory controllers (DDR vs DDR2)
1003 *
1004 * Return:
1005 * number of memory channels in operation
1006 * Pass back:
1007 * contents of the DCL0_LOW register
1008 */
1009static int k8_early_channel_count(struct amd64_pvt *pvt)
1010{
1011 int flag, err = 0;
1012
8d5b5d9c 1013 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1014 if (err)
1015 return err;
1016
9f56da0e 1017 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
1018 /* RevF (NPT) and later */
1019 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 1020 else
ddff876d
DT
1021 /* RevE and earlier */
1022 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
1023
1024 /* not used */
1025 pvt->dclr1 = 0;
1026
1027 return (flag) ? 2 : 1;
1028}
1029
1030/* extract the ERROR ADDRESS for the K8 CPUs */
1031static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1032 struct err_regs *info)
ddff876d
DT
1033{
1034 return (((u64) (info->nbeah & 0xff)) << 32) +
1035 (info->nbeal & ~0x03);
1036}
1037
1038/*
1039 * Read the Base and Limit registers for K8 based Memory controllers; extract
1040 * fields from the 'raw' reg into separate data fields
1041 *
1042 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1043 */
1044static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1045{
1046 u32 low;
1047 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1048
8d5b5d9c 1049 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1050
1051 /* Extract parts into separate data entries */
4997811e 1052 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1053 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1054 pvt->dram_rw_en[dram] = (low & 0x3);
1055
8d5b5d9c 1056 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1057
1058 /*
1059 * Extract parts into separate data entries. Limit is the HIGHEST memory
1060 * location of the region, so lower 24 bits need to be all ones
1061 */
4997811e 1062 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1063 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1064 pvt->dram_DstNode[dram] = (low & 0x7);
1065}
1066
1067static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1068 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1069{
1070 struct mem_ctl_info *src_mci;
ddff876d
DT
1071 int channel, csrow;
1072 u32 page, offset;
ad6a32e9 1073 u16 syndrome;
ddff876d 1074
ad6a32e9 1075 syndrome = extract_syndrome(err_info);
ddff876d
DT
1076
1077 /* CHIPKILL enabled */
ad6a32e9 1078 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1079 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1080 if (channel < 0) {
1081 /*
1082 * Syndrome didn't map, so we don't know which of the
1083 * 2 DIMMs is in error. So we need to ID 'both' of them
1084 * as suspect.
1085 */
24f9a7fe
BP
1086 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1087 "error reporting race\n", syndrome);
ddff876d
DT
1088 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1089 return;
1090 }
1091 } else {
1092 /*
1093 * non-chipkill ecc mode
1094 *
1095 * The k8 documentation is unclear about how to determine the
1096 * channel number when using non-chipkill memory. This method
1097 * was obtained from email communication with someone at AMD.
1098 * (Wish the email was placed in this comment - norsk)
1099 */
44e9e2ee 1100 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1101 }
1102
1103 /*
1104 * Find out which node the error address belongs to. This may be
1105 * different from the node that detected the error.
1106 */
44e9e2ee 1107 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1108 if (!src_mci) {
24f9a7fe 1109 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1110 (unsigned long)sys_addr);
ddff876d
DT
1111 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1112 return;
1113 }
1114
44e9e2ee
BP
1115 /* Now map the sys_addr to a CSROW */
1116 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1117 if (csrow < 0) {
1118 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1119 } else {
44e9e2ee 1120 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1121
1122 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1123 channel, EDAC_MOD_STR);
1124 }
1125}
1126
1433eb99 1127static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1128{
1433eb99 1129 int *dbam_map;
ddff876d 1130
1433eb99
BP
1131 if (pvt->ext_model >= K8_REV_F)
1132 dbam_map = ddr2_dbam;
1133 else if (pvt->ext_model >= K8_REV_D)
1134 dbam_map = ddr2_dbam_revD;
1135 else
1136 dbam_map = ddr2_dbam_revCG;
ddff876d 1137
1433eb99 1138 return dbam_map[cs_mode];
ddff876d
DT
1139}
1140
1afd3c98
DT
1141/*
1142 * Get the number of DCT channels in use.
1143 *
1144 * Return:
1145 * number of Memory Channels in operation
1146 * Pass back:
1147 * contents of the DCL0_LOW register
1148 */
1149static int f10_early_channel_count(struct amd64_pvt *pvt)
1150{
57a30854 1151 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1152 int i, j, channels = 0;
1afd3c98
DT
1153 u32 dbam;
1154
1afd3c98
DT
1155 /* If we are in 128 bit mode, then we are using 2 channels */
1156 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1157 channels = 2;
1158 return channels;
1159 }
1160
1161 /*
d16149e8
BP
1162 * Need to check if in unganged mode: In such, there are 2 channels,
1163 * but they are not in 128 bit mode and thus the above 'dclr0' status
1164 * bit will be OFF.
1afd3c98
DT
1165 *
1166 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1167 * their CSEnable bit on. If so, then SINGLE DIMM case.
1168 */
d16149e8 1169 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1170
1afd3c98
DT
1171 /*
1172 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1173 * is more than just one DIMM present in unganged mode. Need to check
1174 * both controllers since DIMMs can be placed in either one.
1175 */
57a30854 1176 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
8d5b5d9c 1177 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1afd3c98
DT
1178 goto err_reg;
1179
57a30854
WW
1180 for (j = 0; j < 4; j++) {
1181 if (DBAM_DIMM(j, dbam) > 0) {
1182 channels++;
1183 break;
1184 }
1185 }
1afd3c98
DT
1186 }
1187
d16149e8
BP
1188 if (channels > 2)
1189 channels = 2;
1190
24f9a7fe 1191 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1192
1193 return channels;
1194
1195err_reg:
1196 return -1;
1197
1198}
1199
1433eb99 1200static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1201{
1433eb99
BP
1202 int *dbam_map;
1203
1204 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1205 dbam_map = ddr3_dbam;
1206 else
1207 dbam_map = ddr2_dbam;
1208
1209 return dbam_map[cs_mode];
1afd3c98
DT
1210}
1211
1afd3c98 1212static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1213 struct err_regs *info)
1afd3c98
DT
1214{
1215 return (((u64) (info->nbeah & 0xffff)) << 32) +
1216 (info->nbeal & ~0x01);
1217}
1218
1219/*
1220 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1221 * fields from the 'raw' reg into separate data fields.
1222 *
1223 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1224 */
1225static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1226{
1227 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1228
1229 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1230 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1231
1232 /* read the 'raw' DRAM BASE Address register */
8d5b5d9c 1233 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
8d5b5d9c 1234 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1afd3c98
DT
1235
1236 /* Extract parts into separate data entries */
1237 pvt->dram_rw_en[dram] = (low_base & 0x3);
1238
1239 if (pvt->dram_rw_en[dram] == 0)
1240 return;
1241
1242 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1243
66216a7a 1244 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1245 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1246
1247 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1248 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1249
1250 /* read the 'raw' LIMIT registers */
8d5b5d9c 1251 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
8d5b5d9c 1252 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1afd3c98 1253
1afd3c98
DT
1254 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1255 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1256
1257 /*
1258 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1259 * memory location of the region, so low 24 bits need to be all ones.
1260 */
66216a7a 1261 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1262 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1263 0x00FFFFFF;
1afd3c98 1264}
6163b5d4
DT
1265
1266static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1267{
6163b5d4 1268
8d5b5d9c 1269 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
6ba5dcdc 1270 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1271 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1272 "High range addresses at: 0x%x\n",
1273 pvt->dram_ctl_select_low,
1274 dct_sel_baseaddr(pvt));
1275
1276 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1277 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1278 (dct_dram_enabled(pvt) ? "yes" : "no"));
1279
1280 if (!dct_ganging_enabled(pvt))
1281 debugf0(" Address range split per DCT: %s\n",
1282 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1283
1284 debugf0(" DCT data interleave for ECC: %s, "
1285 "DRAM cleared since last warm reset: %s\n",
1286 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1287 (dct_memory_cleared(pvt) ? "yes" : "no"));
1288
1289 debugf0(" DCT channel interleave: %s, "
1290 "DCT interleave bits selector: 0x%x\n",
1291 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1292 dct_sel_interleave_addr(pvt));
1293 }
1294
8d5b5d9c 1295 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
6ba5dcdc 1296 &pvt->dram_ctl_select_high);
6163b5d4
DT
1297}
1298
f71d0a05
DT
1299/*
1300 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1301 * Interleaving Modes.
1302 */
6163b5d4
DT
1303static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1304 int hi_range_sel, u32 intlv_en)
1305{
1306 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1307
1308 if (dct_ganging_enabled(pvt))
1309 cs = 0;
1310 else if (hi_range_sel)
1311 cs = dct_sel_high;
1312 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1313 /*
1314 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1315 */
6163b5d4
DT
1316 if (dct_sel_interleave_addr(pvt) == 0)
1317 cs = sys_addr >> 6 & 1;
1318 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1319 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1320
1321 if (dct_sel_interleave_addr(pvt) & 1)
1322 cs = (sys_addr >> 9 & 1) ^ temp;
1323 else
1324 cs = (sys_addr >> 6 & 1) ^ temp;
1325 } else if (intlv_en & 4)
1326 cs = sys_addr >> 15 & 1;
1327 else if (intlv_en & 2)
1328 cs = sys_addr >> 14 & 1;
1329 else if (intlv_en & 1)
1330 cs = sys_addr >> 13 & 1;
1331 else
1332 cs = sys_addr >> 12 & 1;
1333 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1334 cs = ~dct_sel_high & 1;
1335 else
1336 cs = 0;
1337
1338 return cs;
1339}
1340
1341static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1342{
1343 if (intlv_en == 1)
1344 return 1;
1345 else if (intlv_en == 3)
1346 return 2;
1347 else if (intlv_en == 7)
1348 return 3;
1349
1350 return 0;
1351}
1352
f71d0a05
DT
1353/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1354static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1355 u32 dct_sel_base_addr,
1356 u64 dct_sel_base_off,
f71d0a05 1357 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1358 u64 dram_base)
1359{
1360 u64 chan_off;
1361
1362 if (hi_range_sel) {
9975a5f2 1363 if (!(dct_sel_base_addr & 0xFFFF0000) &&
f71d0a05 1364 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1365 chan_off = hole_off << 16;
1366 else
1367 chan_off = dct_sel_base_off;
1368 } else {
f71d0a05 1369 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1370 chan_off = hole_off << 16;
1371 else
1372 chan_off = dram_base & 0xFFFFF8000000ULL;
1373 }
1374
1375 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1376 (chan_off & 0x0000FFFFFF800000ULL);
1377}
1378
1379/* Hack for the time being - Can we get this from BIOS?? */
1380#define CH0SPARE_RANK 0
1381#define CH1SPARE_RANK 1
1382
1383/*
1384 * checks if the csrow passed in is marked as SPARED, if so returns the new
1385 * spare row
1386 */
1387static inline int f10_process_possible_spare(int csrow,
1388 u32 cs, struct amd64_pvt *pvt)
1389{
1390 u32 swap_done;
1391 u32 bad_dram_cs;
1392
1393 /* Depending on channel, isolate respective SPARING info */
1394 if (cs) {
1395 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1396 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1397 if (swap_done && (csrow == bad_dram_cs))
1398 csrow = CH1SPARE_RANK;
1399 } else {
1400 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1401 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1402 if (swap_done && (csrow == bad_dram_cs))
1403 csrow = CH0SPARE_RANK;
1404 }
1405 return csrow;
1406}
1407
1408/*
1409 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1410 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1411 *
1412 * Return:
1413 * -EINVAL: NOT FOUND
1414 * 0..csrow = Chip-Select Row
1415 */
1416static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1417{
1418 struct mem_ctl_info *mci;
1419 struct amd64_pvt *pvt;
1420 u32 cs_base, cs_mask;
1421 int cs_found = -EINVAL;
1422 int csrow;
1423
cc4d8860 1424 mci = mcis[nid];
6163b5d4
DT
1425 if (!mci)
1426 return cs_found;
1427
1428 pvt = mci->pvt_info;
1429
1430 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1431
9d858bb1 1432 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1433
1434 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1435 if (!(cs_base & K8_DCSB_CS_ENABLE))
1436 continue;
1437
1438 /*
1439 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1440 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1441 * of the actual address.
1442 */
1443 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1444
1445 /*
1446 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1447 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1448 */
1449 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1450
1451 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1452 csrow, cs_base, cs_mask);
1453
1454 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1455
1456 debugf1(" Final CSMask=0x%x\n", cs_mask);
1457 debugf1(" (InputAddr & ~CSMask)=0x%x "
1458 "(CSBase & ~CSMask)=0x%x\n",
1459 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1460
1461 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1462 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1463
1464 debugf1(" MATCH csrow=%d\n", cs_found);
1465 break;
1466 }
1467 }
1468 return cs_found;
1469}
1470
f71d0a05
DT
1471/* For a given @dram_range, check if @sys_addr falls within it. */
1472static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1473 u64 sys_addr, int *nid, int *chan_sel)
1474{
1475 int node_id, cs_found = -EINVAL, high_range = 0;
1476 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1477 u32 hole_valid, tmp, dct_sel_base, channel;
1478 u64 dram_base, chan_addr, dct_sel_base_off;
1479
1480 dram_base = pvt->dram_base[dram_range];
1481 intlv_en = pvt->dram_IntlvEn[dram_range];
1482
1483 node_id = pvt->dram_DstNode[dram_range];
1484 intlv_sel = pvt->dram_IntlvSel[dram_range];
1485
1486 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1487 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1488
1489 /*
1490 * This assumes that one node's DHAR is the same as all the other
1491 * nodes' DHAR.
1492 */
1493 hole_off = (pvt->dhar & 0x0000FF80);
1494 hole_valid = (pvt->dhar & 0x1);
1495 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1496
1497 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1498 hole_off, hole_valid, intlv_sel);
1499
e726f3c3 1500 if (intlv_en &&
f71d0a05
DT
1501 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1502 return -EINVAL;
1503
1504 dct_sel_base = dct_sel_baseaddr(pvt);
1505
1506 /*
1507 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1508 * select between DCT0 and DCT1.
1509 */
1510 if (dct_high_range_enabled(pvt) &&
1511 !dct_ganging_enabled(pvt) &&
1512 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1513 high_range = 1;
1514
1515 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1516
1517 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1518 dct_sel_base_off, hole_valid,
1519 hole_off, dram_base);
1520
1521 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1522
1523 /* remove Node ID (in case of memory interleaving) */
1524 tmp = chan_addr & 0xFC0;
1525
1526 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1527
1528 /* remove channel interleave and hash */
1529 if (dct_interleave_enabled(pvt) &&
1530 !dct_high_range_enabled(pvt) &&
1531 !dct_ganging_enabled(pvt)) {
1532 if (dct_sel_interleave_addr(pvt) != 1)
1533 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1534 else {
1535 tmp = chan_addr & 0xFC0;
1536 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1537 | tmp;
1538 }
1539 }
1540
1541 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1542 chan_addr, (u32)(chan_addr >> 8));
1543
1544 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1545
1546 if (cs_found >= 0) {
1547 *nid = node_id;
1548 *chan_sel = channel;
1549 }
1550 return cs_found;
1551}
1552
1553static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1554 int *node, int *chan_sel)
1555{
1556 int dram_range, cs_found = -EINVAL;
1557 u64 dram_base, dram_limit;
1558
1559 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1560
1561 if (!pvt->dram_rw_en[dram_range])
1562 continue;
1563
1564 dram_base = pvt->dram_base[dram_range];
1565 dram_limit = pvt->dram_limit[dram_range];
1566
1567 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1568
1569 cs_found = f10_match_to_this_node(pvt, dram_range,
1570 sys_addr, node,
1571 chan_sel);
1572 if (cs_found >= 0)
1573 break;
1574 }
1575 }
1576 return cs_found;
1577}
1578
1579/*
bdc30a0c
BP
1580 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1581 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1582 *
bdc30a0c
BP
1583 * The @sys_addr is usually an error address received from the hardware
1584 * (MCX_ADDR).
f71d0a05
DT
1585 */
1586static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1587 struct err_regs *err_info,
f71d0a05
DT
1588 u64 sys_addr)
1589{
1590 struct amd64_pvt *pvt = mci->pvt_info;
1591 u32 page, offset;
f71d0a05 1592 int nid, csrow, chan = 0;
ad6a32e9 1593 u16 syndrome;
f71d0a05
DT
1594
1595 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1596
bdc30a0c
BP
1597 if (csrow < 0) {
1598 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1599 return;
1600 }
1601
1602 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1603
ad6a32e9 1604 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1605
1606 /*
1607 * We need the syndromes for channel detection only when we're
1608 * ganged. Otherwise @chan should already contain the channel at
1609 * this point.
1610 */
962b70a1 1611 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1612 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1613
bdc30a0c
BP
1614 if (chan >= 0)
1615 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1616 EDAC_MOD_STR);
1617 else
f71d0a05 1618 /*
bdc30a0c 1619 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1620 */
bdc30a0c 1621 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1622 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1623 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1624}
1625
f71d0a05 1626/*
8566c4df 1627 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1628 * CSROWs as well
1629 */
8566c4df 1630static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1631{
603adaf6 1632 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1633 u32 dbam;
1634 u32 *dcsb;
1635
8566c4df 1636 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1637 if (pvt->dclr0 & F10_WIDTH_128)
1638 factor = 1;
1639
8566c4df 1640 /* K8 families < revF not supported yet */
1433eb99 1641 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1642 return;
1643 else
1644 WARN_ON(ctrl != 0);
1645 }
1646
1647 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1648 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
f71d0a05
DT
1649
1650 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1651 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1652
8566c4df
BP
1653 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1654
f71d0a05
DT
1655 /* Dump memory sizes for DIMM and its CSROWs */
1656 for (dimm = 0; dimm < 4; dimm++) {
1657
1658 size0 = 0;
1659 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1660 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1661
1662 size1 = 0;
1663 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1664 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1665
24f9a7fe
BP
1666 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1667 dimm * 2, size0 << factor,
1668 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1669 }
1670}
1671
4d37607a
DT
1672static struct amd64_family_type amd64_family_types[] = {
1673 [K8_CPUS] = {
0092b20d 1674 .ctl_name = "K8",
8d5b5d9c
BP
1675 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1676 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1677 .ops = {
1433eb99
BP
1678 .early_channel_count = k8_early_channel_count,
1679 .get_error_address = k8_get_error_address,
1680 .read_dram_base_limit = k8_read_dram_base_limit,
1681 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1682 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1683 }
1684 },
1685 [F10_CPUS] = {
0092b20d 1686 .ctl_name = "F10h",
8d5b5d9c
BP
1687 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1688 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1689 .ops = {
1433eb99
BP
1690 .early_channel_count = f10_early_channel_count,
1691 .get_error_address = f10_get_error_address,
1692 .read_dram_base_limit = f10_read_dram_base_limit,
1693 .read_dram_ctl_register = f10_read_dram_ctl_register,
1694 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1695 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1696 }
1697 },
4d37607a
DT
1698};
1699
1700static struct pci_dev *pci_get_related_function(unsigned int vendor,
1701 unsigned int device,
1702 struct pci_dev *related)
1703{
1704 struct pci_dev *dev = NULL;
1705
1706 dev = pci_get_device(vendor, device, dev);
1707 while (dev) {
1708 if ((dev->bus->number == related->bus->number) &&
1709 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1710 break;
1711 dev = pci_get_device(vendor, device, dev);
1712 }
1713
1714 return dev;
1715}
1716
b1289d6f 1717/*
bfc04aec
BP
1718 * These are tables of eigenvectors (one per line) which can be used for the
1719 * construction of the syndrome tables. The modified syndrome search algorithm
1720 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1721 *
bfc04aec 1722 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1723 */
bfc04aec
BP
1724static u16 x4_vectors[] = {
1725 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1726 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1727 0x0001, 0x0002, 0x0004, 0x0008,
1728 0x1013, 0x3032, 0x4044, 0x8088,
1729 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1730 0x4857, 0xc4fe, 0x13cc, 0x3288,
1731 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1732 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1733 0x15c1, 0x2a42, 0x89ac, 0x4758,
1734 0x2b03, 0x1602, 0x4f0c, 0xca08,
1735 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1736 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1737 0x2b87, 0x164e, 0x642c, 0xdc18,
1738 0x40b9, 0x80de, 0x1094, 0x20e8,
1739 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1740 0x11c1, 0x2242, 0x84ac, 0x4c58,
1741 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1742 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1743 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1744 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1745 0x16b3, 0x3d62, 0x4f34, 0x8518,
1746 0x1e2f, 0x391a, 0x5cac, 0xf858,
1747 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1748 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1749 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1750 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1751 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1752 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1753 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1754 0x185d, 0x2ca6, 0x7914, 0x9e28,
1755 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1756 0x4199, 0x82ee, 0x19f4, 0x2e58,
1757 0x4807, 0xc40e, 0x130c, 0x3208,
1758 0x1905, 0x2e0a, 0x5804, 0xac08,
1759 0x213f, 0x132a, 0xadfc, 0x5ba8,
1760 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1761};
1762
bfc04aec
BP
1763static u16 x8_vectors[] = {
1764 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1765 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1766 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1767 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1768 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1769 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1770 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1771 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1772 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1773 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1774 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1775 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1776 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1777 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1778 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1779 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1780 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1781 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1782 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1783};
1784
1785static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1786 int v_dim)
b1289d6f 1787{
bfc04aec
BP
1788 unsigned int i, err_sym;
1789
1790 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1791 u16 s = syndrome;
1792 int v_idx = err_sym * v_dim;
1793 int v_end = (err_sym + 1) * v_dim;
1794
1795 /* walk over all 16 bits of the syndrome */
1796 for (i = 1; i < (1U << 16); i <<= 1) {
1797
1798 /* if bit is set in that eigenvector... */
1799 if (v_idx < v_end && vectors[v_idx] & i) {
1800 u16 ev_comp = vectors[v_idx++];
1801
1802 /* ... and bit set in the modified syndrome, */
1803 if (s & i) {
1804 /* remove it. */
1805 s ^= ev_comp;
4d37607a 1806
bfc04aec
BP
1807 if (!s)
1808 return err_sym;
1809 }
b1289d6f 1810
bfc04aec
BP
1811 } else if (s & i)
1812 /* can't get to zero, move to next symbol */
1813 break;
1814 }
b1289d6f
DT
1815 }
1816
1817 debugf0("syndrome(%x) not found\n", syndrome);
1818 return -1;
1819}
d27bf6fa 1820
bfc04aec
BP
1821static int map_err_sym_to_channel(int err_sym, int sym_size)
1822{
1823 if (sym_size == 4)
1824 switch (err_sym) {
1825 case 0x20:
1826 case 0x21:
1827 return 0;
1828 break;
1829 case 0x22:
1830 case 0x23:
1831 return 1;
1832 break;
1833 default:
1834 return err_sym >> 4;
1835 break;
1836 }
1837 /* x8 symbols */
1838 else
1839 switch (err_sym) {
1840 /* imaginary bits not in a DIMM */
1841 case 0x10:
1842 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1843 err_sym);
1844 return -1;
1845 break;
1846
1847 case 0x11:
1848 return 0;
1849 break;
1850 case 0x12:
1851 return 1;
1852 break;
1853 default:
1854 return err_sym >> 3;
1855 break;
1856 }
1857 return -1;
1858}
1859
1860static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1861{
1862 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1863 int err_sym = -1;
1864
1865 if (pvt->syn_type == 8)
1866 err_sym = decode_syndrome(syndrome, x8_vectors,
1867 ARRAY_SIZE(x8_vectors),
1868 pvt->syn_type);
1869 else if (pvt->syn_type == 4)
1870 err_sym = decode_syndrome(syndrome, x4_vectors,
1871 ARRAY_SIZE(x4_vectors),
1872 pvt->syn_type);
1873 else {
24f9a7fe 1874 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1875 return err_sym;
bfc04aec 1876 }
ad6a32e9
BP
1877
1878 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1879}
1880
d27bf6fa
DT
1881/*
1882 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1883 * ADDRESS and process.
1884 */
1885static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1886 struct err_regs *info)
d27bf6fa
DT
1887{
1888 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1889 u64 sys_addr;
d27bf6fa
DT
1890
1891 /* Ensure that the Error Address is VALID */
24f9a7fe
BP
1892 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1893 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1894 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1895 return;
1896 }
1897
1f6bcee7 1898 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa 1899
24f9a7fe 1900 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1901
44e9e2ee 1902 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1903}
1904
1905/* Handle any Un-correctable Errors (UEs) */
1906static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1907 struct err_regs *info)
d27bf6fa 1908{
1f6bcee7
BP
1909 struct amd64_pvt *pvt = mci->pvt_info;
1910 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1911 int csrow;
44e9e2ee 1912 u64 sys_addr;
d27bf6fa 1913 u32 page, offset;
d27bf6fa
DT
1914
1915 log_mci = mci;
1916
24f9a7fe
BP
1917 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1918 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1919 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1920 return;
1921 }
1922
1f6bcee7 1923 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1924
1925 /*
1926 * Find out which node the error address belongs to. This may be
1927 * different from the node that detected the error.
1928 */
44e9e2ee 1929 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1930 if (!src_mci) {
24f9a7fe
BP
1931 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1932 (unsigned long)sys_addr);
d27bf6fa
DT
1933 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1934 return;
1935 }
1936
1937 log_mci = src_mci;
1938
44e9e2ee 1939 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1940 if (csrow < 0) {
24f9a7fe
BP
1941 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1942 (unsigned long)sys_addr);
d27bf6fa
DT
1943 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1944 } else {
44e9e2ee 1945 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1946 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1947 }
1948}
1949
549d042d 1950static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 1951 struct err_regs *info)
d27bf6fa 1952{
62452882
BP
1953 u16 ec = EC(info->nbsl);
1954 u8 xec = XEC(info->nbsl, 0x1f);
17adea01 1955 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 1956
b70ef010
BP
1957 /* Bail early out if this was an 'observed' error */
1958 if (PP(ec) == K8_NBSL_PP_OBS)
1959 return;
d27bf6fa 1960
ecaf5606
BP
1961 /* Do only ECC errors */
1962 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1963 return;
d27bf6fa 1964
ecaf5606 1965 if (ecc_type == 2)
d27bf6fa 1966 amd64_handle_ce(mci, info);
ecaf5606 1967 else if (ecc_type == 1)
d27bf6fa 1968 amd64_handle_ue(mci, info);
d27bf6fa
DT
1969}
1970
7cfd4a87 1971void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1972{
cc4d8860 1973 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1974 struct err_regs regs;
d27bf6fa 1975
7cfd4a87
BP
1976 regs.nbsl = (u32) m->status;
1977 regs.nbsh = (u32)(m->status >> 32);
1978 regs.nbeal = (u32) m->addr;
1979 regs.nbeah = (u32)(m->addr >> 32);
1980 regs.nbcfg = nbcfg;
1981
1982 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 1983
d27bf6fa
DT
1984 /*
1985 * Check the UE bit of the NB status high register, if set generate some
1986 * logs. If NOT a GART error, then process the event as a NO-INFO event.
1987 * If it was a GART error, skip that process.
549d042d
BP
1988 *
1989 * FIXME: this should go somewhere else, if at all.
d27bf6fa 1990 */
7cfd4a87 1991 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 1992 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 1993
d27bf6fa 1994}
d27bf6fa 1995
0ec449ee 1996/*
8d5b5d9c 1997 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1998 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1999 */
360b7f3c 2000static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2001{
0ec449ee 2002 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2003 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2004 if (!pvt->F1) {
24f9a7fe
BP
2005 amd64_err("error address map device not found: "
2006 "vendor %x device 0x%x (broken BIOS?)\n",
2007 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2008 return -ENODEV;
0ec449ee
DT
2009 }
2010
2011 /* Reserve the MISC Device */
8d5b5d9c
BP
2012 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2013 if (!pvt->F3) {
2014 pci_dev_put(pvt->F1);
2015 pvt->F1 = NULL;
0ec449ee 2016
24f9a7fe
BP
2017 amd64_err("error F3 device not found: "
2018 "vendor %x device 0x%x (broken BIOS?)\n",
2019 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2020
bbd0c1f6 2021 return -ENODEV;
0ec449ee 2022 }
8d5b5d9c
BP
2023 debugf1("F1: %s\n", pci_name(pvt->F1));
2024 debugf1("F2: %s\n", pci_name(pvt->F2));
2025 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2026
2027 return 0;
2028}
2029
360b7f3c 2030static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2031{
8d5b5d9c
BP
2032 pci_dev_put(pvt->F1);
2033 pci_dev_put(pvt->F3);
0ec449ee
DT
2034}
2035
2036/*
2037 * Retrieve the hardware registers of the memory controller (this includes the
2038 * 'Address Map' and 'Misc' device regs)
2039 */
360b7f3c 2040static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
2041{
2042 u64 msr_val;
ad6a32e9 2043 u32 tmp;
6ba5dcdc 2044 int dram;
0ec449ee
DT
2045
2046 /*
2047 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2048 * those are Read-As-Zero
2049 */
e97f8bb8
BP
2050 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2051 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2052
2053 /* check first whether TOP_MEM2 is enabled */
2054 rdmsrl(MSR_K8_SYSCFG, msr_val);
2055 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2056 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2057 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2058 } else
2059 debugf0(" TOP_MEM2 disabled.\n");
2060
8d5b5d9c 2061 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2062
2063 if (pvt->ops->read_dram_ctl_register)
2064 pvt->ops->read_dram_ctl_register(pvt);
2065
2066 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2067 /*
2068 * Call CPU specific READ function to get the DRAM Base and
2069 * Limit values from the DCT.
2070 */
2071 pvt->ops->read_dram_base_limit(pvt, dram);
2072
2073 /*
2074 * Only print out debug info on rows with both R and W Enabled.
2075 * Normal processing, compiler should optimize this whole 'if'
2076 * debug output block away.
2077 */
2078 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2079 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2080 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2081 dram,
e97f8bb8
BP
2082 pvt->dram_base[dram],
2083 pvt->dram_limit[dram]);
2084
0ec449ee
DT
2085 debugf1(" IntlvEn=%s %s %s "
2086 "IntlvSel=%d DstNode=%d\n",
2087 pvt->dram_IntlvEn[dram] ?
2088 "Enabled" : "Disabled",
2089 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2090 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2091 pvt->dram_IntlvSel[dram],
2092 pvt->dram_DstNode[dram]);
2093 }
2094 }
2095
2096 amd64_read_dct_base_mask(pvt);
2097
8d5b5d9c 2098 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2099 amd64_read_dbam_reg(pvt);
2100
8d5b5d9c 2101 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2102
8d5b5d9c
BP
2103 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2104 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
0ec449ee 2105
ad6a32e9
BP
2106 if (boot_cpu_data.x86 >= 0x10) {
2107 if (!dct_ganging_enabled(pvt)) {
8d5b5d9c
BP
2108 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2109 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
ad6a32e9 2110 }
8d5b5d9c 2111 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
0ec449ee 2112 }
ad6a32e9
BP
2113
2114 if (boot_cpu_data.x86 == 0x10 &&
2115 boot_cpu_data.x86_model > 7 &&
2116 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2117 tmp & BIT(25))
2118 pvt->syn_type = 8;
2119 else
2120 pvt->syn_type = 4;
2121
0ec449ee 2122 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2123}
2124
2125/*
2126 * NOTE: CPU Revision Dependent code
2127 *
2128 * Input:
9d858bb1 2129 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2130 * k8 private pointer to -->
2131 * DRAM Bank Address mapping register
2132 * node_id
2133 * DCL register where dual_channel_active is
2134 *
2135 * The DBAM register consists of 4 sets of 4 bits each definitions:
2136 *
2137 * Bits: CSROWs
2138 * 0-3 CSROWs 0 and 1
2139 * 4-7 CSROWs 2 and 3
2140 * 8-11 CSROWs 4 and 5
2141 * 12-15 CSROWs 6 and 7
2142 *
2143 * Values range from: 0 to 15
2144 * The meaning of the values depends on CPU revision and dual-channel state,
2145 * see relevant BKDG more info.
2146 *
2147 * The memory controller provides for total of only 8 CSROWs in its current
2148 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2149 * single channel or two (2) DIMMs in dual channel mode.
2150 *
2151 * The following code logic collapses the various tables for CSROW based on CPU
2152 * revision.
2153 *
2154 * Returns:
2155 * The number of PAGE_SIZE pages on the specified CSROW number it
2156 * encompasses
2157 *
2158 */
2159static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2160{
1433eb99 2161 u32 cs_mode, nr_pages;
0ec449ee
DT
2162
2163 /*
2164 * The math on this doesn't look right on the surface because x/2*4 can
2165 * be simplified to x*2 but this expression makes use of the fact that
2166 * it is integral math where 1/2=0. This intermediate value becomes the
2167 * number of bits to shift the DBAM register to extract the proper CSROW
2168 * field.
2169 */
1433eb99 2170 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2171
1433eb99 2172 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2173
2174 /*
2175 * If dual channel then double the memory size of single channel.
2176 * Channel count is 1 or 2
2177 */
2178 nr_pages <<= (pvt->channel_count - 1);
2179
1433eb99 2180 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2181 debugf0(" nr_pages= %u channel-count = %d\n",
2182 nr_pages, pvt->channel_count);
2183
2184 return nr_pages;
2185}
2186
2187/*
2188 * Initialize the array of csrow attribute instances, based on the values
2189 * from pci config hardware registers.
2190 */
360b7f3c 2191static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2192{
2193 struct csrow_info *csrow;
2299ef71 2194 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2195 u64 input_addr_min, input_addr_max, sys_addr;
2299ef71 2196 u32 val;
6ba5dcdc 2197 int i, empty = 1;
0ec449ee 2198
2299ef71 2199 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
0ec449ee 2200
2299ef71
BP
2201 pvt->nbcfg = val;
2202 pvt->ctl_error_info.nbcfg = val;
0ec449ee 2203
2299ef71
BP
2204 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2205 pvt->mc_node_id, val,
2206 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
0ec449ee 2207
9d858bb1 2208 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2209 csrow = &mci->csrows[i];
2210
2211 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2212 debugf1("----CSROW %d EMPTY for node %d\n", i,
2213 pvt->mc_node_id);
2214 continue;
2215 }
2216
2217 debugf1("----CSROW %d VALID for MC node %d\n",
2218 i, pvt->mc_node_id);
2219
2220 empty = 0;
2221 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2222 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2223 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2224 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2225 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2226 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2227 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2228 /* 8 bytes of resolution */
2229
24f9a7fe 2230 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2231
2232 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2233 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2234 (unsigned long)input_addr_min,
2235 (unsigned long)input_addr_max);
2236 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2237 (unsigned long)sys_addr, csrow->page_mask);
2238 debugf1(" nr_pages: %u first_page: 0x%lx "
2239 "last_page: 0x%lx\n",
2240 (unsigned)csrow->nr_pages,
2241 csrow->first_page, csrow->last_page);
2242
2243 /*
2244 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2245 */
2246 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2247 csrow->edac_mode =
2248 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2249 EDAC_S4ECD4ED : EDAC_SECDED;
2250 else
2251 csrow->edac_mode = EDAC_NONE;
2252 }
2253
2254 return empty;
2255}
d27bf6fa 2256
f6d6ae96
BP
2257/* get all cores on this DCT */
2258static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2259{
2260 int cpu;
2261
2262 for_each_online_cpu(cpu)
2263 if (amd_get_nb_id(cpu) == nid)
2264 cpumask_set_cpu(cpu, mask);
2265}
2266
2267/* check MCG_CTL on all the cpus on this node */
2268static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2269{
2270 cpumask_var_t mask;
50542251 2271 int cpu, nbe;
f6d6ae96
BP
2272 bool ret = false;
2273
2274 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2275 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2276 return false;
2277 }
2278
2279 get_cpus_on_this_dct_cpumask(mask, nid);
2280
f6d6ae96
BP
2281 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2282
2283 for_each_cpu(cpu, mask) {
50542251
BP
2284 struct msr *reg = per_cpu_ptr(msrs, cpu);
2285 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2286
2287 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2288 cpu, reg->q,
f6d6ae96
BP
2289 (nbe ? "enabled" : "disabled"));
2290
2291 if (!nbe)
2292 goto out;
f6d6ae96
BP
2293 }
2294 ret = true;
2295
2296out:
f6d6ae96
BP
2297 free_cpumask_var(mask);
2298 return ret;
2299}
2300
2299ef71 2301static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2302{
2303 cpumask_var_t cmask;
50542251 2304 int cpu;
f6d6ae96
BP
2305
2306 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2307 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2308 return false;
2309 }
2310
ae7bb7c6 2311 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2312
f6d6ae96
BP
2313 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2314
2315 for_each_cpu(cpu, cmask) {
2316
50542251
BP
2317 struct msr *reg = per_cpu_ptr(msrs, cpu);
2318
f6d6ae96 2319 if (on) {
50542251 2320 if (reg->l & K8_MSR_MCGCTL_NBE)
ae7bb7c6 2321 s->flags.nb_mce_enable = 1;
f6d6ae96 2322
50542251 2323 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2324 } else {
2325 /*
d95cf4de 2326 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2327 */
ae7bb7c6 2328 if (!s->flags.nb_mce_enable)
50542251 2329 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2330 }
f6d6ae96
BP
2331 }
2332 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2333
f6d6ae96
BP
2334 free_cpumask_var(cmask);
2335
2336 return 0;
2337}
2338
2299ef71
BP
2339static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2340 struct pci_dev *F3)
f9431992 2341{
2299ef71 2342 bool ret = true;
f6d6ae96 2343 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2344
2299ef71
BP
2345 if (toggle_ecc_err_reporting(s, nid, ON)) {
2346 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2347 return false;
2348 }
2349
2350 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
f9431992 2351
ae7bb7c6
BP
2352 /* turn on UECCEn and CECCEn bits */
2353 s->old_nbctl = value & mask;
2354 s->nbctl_valid = true;
f9431992
DT
2355
2356 value |= mask;
2299ef71 2357 pci_write_config_dword(F3, K8_NBCTL, value);
f9431992 2358
2299ef71 2359 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2360
2299ef71
BP
2361 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2362 nid, value,
2363 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992
DT
2364
2365 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe 2366 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2367
ae7bb7c6 2368 s->flags.nb_ecc_prev = 0;
d95cf4de 2369
f9431992
DT
2370 /* Attempt to turn on DRAM ECC Enable */
2371 value |= K8_NBCFG_ECC_ENABLE;
2299ef71 2372 pci_write_config_dword(F3, K8_NBCFG, value);
f9431992 2373
2299ef71 2374 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992
DT
2375
2376 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2377 amd64_warn("Hardware rejected DRAM ECC enable,"
2378 "check memory DIMM configuration.\n");
2299ef71 2379 ret = false;
f9431992 2380 } else {
24f9a7fe 2381 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2382 }
d95cf4de 2383 } else {
ae7bb7c6 2384 s->flags.nb_ecc_prev = 1;
f9431992 2385 }
d95cf4de 2386
2299ef71
BP
2387 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2388 nid, value,
2389 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992 2390
2299ef71 2391 return ret;
f9431992
DT
2392}
2393
360b7f3c
BP
2394static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2395 struct pci_dev *F3)
f9431992 2396{
f6d6ae96 2397 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2398
ae7bb7c6 2399 if (!s->nbctl_valid)
f9431992
DT
2400 return;
2401
360b7f3c 2402 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
f9431992 2403 value &= ~mask;
ae7bb7c6 2404 value |= s->old_nbctl;
f9431992 2405
360b7f3c 2406 pci_write_config_dword(F3, K8_NBCTL, value);
f9431992 2407
ae7bb7c6
BP
2408 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2409 if (!s->flags.nb_ecc_prev) {
360b7f3c 2410 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
d95cf4de 2411 value &= ~K8_NBCFG_ECC_ENABLE;
360b7f3c 2412 pci_write_config_dword(F3, K8_NBCFG, value);
d95cf4de
BP
2413 }
2414
2415 /* restore the NB Enable MCGCTL bit */
2299ef71 2416 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2417 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2418}
2419
2420/*
2299ef71
BP
2421 * EDAC requires that the BIOS have ECC enabled before
2422 * taking over the processing of ECC errors. A command line
2423 * option allows to force-enable hardware ECC later in
2424 * enable_ecc_error_reporting().
f9431992 2425 */
cab4d277
BP
2426static const char *ecc_msg =
2427 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2428 " Either enable ECC checking or force module loading by setting "
2429 "'ecc_enable_override'.\n"
2430 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2431
2299ef71 2432static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2433{
2434 u32 value;
2299ef71 2435 u8 ecc_en = 0;
06724535 2436 bool nb_mce_en = false;
f9431992 2437
2299ef71 2438 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2439
2299ef71
BP
2440 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2441 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2442
2299ef71 2443 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2444 if (!nb_mce_en)
2299ef71
BP
2445 amd64_notice("NB MCE bank disabled, set MSR "
2446 "0x%08x[4] on node %d to enable.\n",
2447 MSR_IA32_MCG_CTL, nid);
f9431992 2448
2299ef71
BP
2449 if (!ecc_en || !nb_mce_en) {
2450 amd64_notice("%s", ecc_msg);
2451 return false;
2452 }
2453 return true;
f9431992
DT
2454}
2455
7d6034d3
DT
2456struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2457 ARRAY_SIZE(amd64_inj_attrs) +
2458 1];
2459
2460struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2461
360b7f3c 2462static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2463{
2464 unsigned int i = 0, j = 0;
2465
2466 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2467 sysfs_attrs[i] = amd64_dbg_attrs[i];
2468
a135cef7
BP
2469 if (boot_cpu_data.x86 >= 0x10)
2470 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2471 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2472
2473 sysfs_attrs[i] = terminator;
2474
2475 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2476}
2477
360b7f3c 2478static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2479{
2480 struct amd64_pvt *pvt = mci->pvt_info;
2481
2482 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2483 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2484
2485 if (pvt->nbcap & K8_NBCAP_SECDED)
2486 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2487
2488 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2489 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2490
2491 mci->edac_cap = amd64_determine_edac_cap(pvt);
2492 mci->mod_name = EDAC_MOD_STR;
2493 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2494 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2495 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2496 mci->ctl_page_to_phys = NULL;
2497
7d6034d3
DT
2498 /* memory scrubber interface */
2499 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2500 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2501}
2502
0092b20d
BP
2503/*
2504 * returns a pointer to the family descriptor on success, NULL otherwise.
2505 */
2506static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2507{
0092b20d
BP
2508 u8 fam = boot_cpu_data.x86;
2509 struct amd64_family_type *fam_type = NULL;
2510
2511 switch (fam) {
395ae783 2512 case 0xf:
0092b20d 2513 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2514 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2515 pvt->ctl_name = fam_type->ctl_name;
2516 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2517 break;
2518 case 0x10:
0092b20d 2519 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2520 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2521 pvt->ctl_name = fam_type->ctl_name;
2522 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2523 break;
2524
2525 default:
24f9a7fe 2526 amd64_err("Unsupported family!\n");
0092b20d 2527 return NULL;
395ae783 2528 }
0092b20d 2529
b8cfa02f
BP
2530 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2531
24f9a7fe 2532 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2533 (fam == 0xf ?
24f9a7fe
BP
2534 (pvt->ext_model >= K8_REV_F ? "revF or later "
2535 : "revE or earlier ")
2536 : ""), pvt->mc_node_id);
0092b20d 2537 return fam_type;
395ae783
BP
2538}
2539
2299ef71 2540static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2541{
2542 struct amd64_pvt *pvt = NULL;
0092b20d 2543 struct amd64_family_type *fam_type = NULL;
360b7f3c 2544 struct mem_ctl_info *mci = NULL;
7d6034d3 2545 int err = 0, ret;
360b7f3c 2546 u8 nid = get_node_id(F2);
7d6034d3
DT
2547
2548 ret = -ENOMEM;
2549 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2550 if (!pvt)
360b7f3c 2551 goto err_ret;
7d6034d3 2552
360b7f3c 2553 pvt->mc_node_id = nid;
8d5b5d9c 2554 pvt->F2 = F2;
7d6034d3 2555
395ae783 2556 ret = -EINVAL;
0092b20d
BP
2557 fam_type = amd64_per_family_init(pvt);
2558 if (!fam_type)
395ae783
BP
2559 goto err_free;
2560
7d6034d3 2561 ret = -ENODEV;
360b7f3c 2562 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2563 if (err)
2564 goto err_free;
2565
360b7f3c 2566 read_mc_regs(pvt);
7d6034d3 2567
7d6034d3
DT
2568 /*
2569 * We need to determine how many memory channels there are. Then use
2570 * that information for calculating the size of the dynamic instance
360b7f3c 2571 * tables in the 'mci' structure.
7d6034d3 2572 */
360b7f3c 2573 ret = -EINVAL;
7d6034d3
DT
2574 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2575 if (pvt->channel_count < 0)
360b7f3c 2576 goto err_siblings;
7d6034d3
DT
2577
2578 ret = -ENOMEM;
360b7f3c 2579 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
7d6034d3 2580 if (!mci)
360b7f3c 2581 goto err_siblings;
7d6034d3
DT
2582
2583 mci->pvt_info = pvt;
8d5b5d9c 2584 mci->dev = &pvt->F2->dev;
7d6034d3 2585
360b7f3c
BP
2586 setup_mci_misc_attrs(mci);
2587
2588 if (init_csrows(mci))
7d6034d3
DT
2589 mci->edac_cap = EDAC_FLAG_NONE;
2590
360b7f3c 2591 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2592
2593 ret = -ENODEV;
2594 if (edac_mc_add_mc(mci)) {
2595 debugf1("failed edac_mc_add_mc()\n");
2596 goto err_add_mc;
2597 }
2598
549d042d
BP
2599 /* register stuff with EDAC MCE */
2600 if (report_gart_errors)
2601 amd_report_gart_errors(true);
2602
2603 amd_register_ecc_decoder(amd64_decode_bus_error);
2604
360b7f3c
BP
2605 mcis[nid] = mci;
2606
2607 atomic_inc(&drv_instances);
2608
7d6034d3
DT
2609 return 0;
2610
2611err_add_mc:
2612 edac_mc_free(mci);
2613
360b7f3c
BP
2614err_siblings:
2615 free_mc_sibling_devs(pvt);
7d6034d3 2616
360b7f3c
BP
2617err_free:
2618 kfree(pvt);
7d6034d3 2619
360b7f3c 2620err_ret:
7d6034d3
DT
2621 return ret;
2622}
2623
2299ef71 2624static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2625 const struct pci_device_id *mc_type)
7d6034d3 2626{
ae7bb7c6 2627 u8 nid = get_node_id(pdev);
2299ef71 2628 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2629 struct ecc_settings *s;
2299ef71 2630 int ret = 0;
7d6034d3 2631
7d6034d3 2632 ret = pci_enable_device(pdev);
b8cfa02f
BP
2633 if (ret < 0) {
2634 debugf0("ret=%d\n", ret);
2635 return -EIO;
2636 }
7d6034d3 2637
ae7bb7c6
BP
2638 ret = -ENOMEM;
2639 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2640 if (!s)
2299ef71 2641 goto err_out;
ae7bb7c6
BP
2642
2643 ecc_stngs[nid] = s;
2644
2299ef71
BP
2645 if (!ecc_enabled(F3, nid)) {
2646 ret = -ENODEV;
2647
2648 if (!ecc_enable_override)
2649 goto err_enable;
2650
2651 amd64_warn("Forcing ECC on!\n");
2652
2653 if (!enable_ecc_error_reporting(s, nid, F3))
2654 goto err_enable;
2655 }
2656
2657 ret = amd64_init_one_instance(pdev);
360b7f3c 2658 if (ret < 0) {
ae7bb7c6 2659 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2660 restore_ecc_error_reporting(s, nid, F3);
2661 }
7d6034d3
DT
2662
2663 return ret;
2299ef71
BP
2664
2665err_enable:
2666 kfree(s);
2667 ecc_stngs[nid] = NULL;
2668
2669err_out:
2670 return ret;
7d6034d3
DT
2671}
2672
2673static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2674{
2675 struct mem_ctl_info *mci;
2676 struct amd64_pvt *pvt;
360b7f3c
BP
2677 u8 nid = get_node_id(pdev);
2678 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2679 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2680
2681 /* Remove from EDAC CORE tracking list */
2682 mci = edac_mc_del_mc(&pdev->dev);
2683 if (!mci)
2684 return;
2685
2686 pvt = mci->pvt_info;
2687
360b7f3c 2688 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2689
360b7f3c 2690 free_mc_sibling_devs(pvt);
7d6034d3 2691
549d042d
BP
2692 /* unregister from EDAC MCE */
2693 amd_report_gart_errors(false);
2694 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2695
360b7f3c
BP
2696 kfree(ecc_stngs[nid]);
2697 ecc_stngs[nid] = NULL;
ae7bb7c6 2698
7d6034d3 2699 /* Free the EDAC CORE resources */
8f68ed97 2700 mci->pvt_info = NULL;
360b7f3c 2701 mcis[nid] = NULL;
8f68ed97
BP
2702
2703 kfree(pvt);
7d6034d3
DT
2704 edac_mc_free(mci);
2705}
2706
2707/*
2708 * This table is part of the interface for loading drivers for PCI devices. The
2709 * PCI core identifies what devices are on a system during boot, and then
2710 * inquiry this table to see if this driver is for a given device found.
2711 */
2712static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2713 {
2714 .vendor = PCI_VENDOR_ID_AMD,
2715 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2716 .subvendor = PCI_ANY_ID,
2717 .subdevice = PCI_ANY_ID,
2718 .class = 0,
2719 .class_mask = 0,
7d6034d3
DT
2720 },
2721 {
2722 .vendor = PCI_VENDOR_ID_AMD,
2723 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2724 .subvendor = PCI_ANY_ID,
2725 .subdevice = PCI_ANY_ID,
2726 .class = 0,
2727 .class_mask = 0,
7d6034d3 2728 },
7d6034d3
DT
2729 {0, }
2730};
2731MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2732
2733static struct pci_driver amd64_pci_driver = {
2734 .name = EDAC_MOD_STR,
2299ef71 2735 .probe = amd64_probe_one_instance,
7d6034d3
DT
2736 .remove = __devexit_p(amd64_remove_one_instance),
2737 .id_table = amd64_pci_table,
2738};
2739
360b7f3c 2740static void setup_pci_device(void)
7d6034d3
DT
2741{
2742 struct mem_ctl_info *mci;
2743 struct amd64_pvt *pvt;
2744
2745 if (amd64_ctl_pci)
2746 return;
2747
cc4d8860 2748 mci = mcis[0];
7d6034d3
DT
2749 if (mci) {
2750
2751 pvt = mci->pvt_info;
2752 amd64_ctl_pci =
8d5b5d9c 2753 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2754
2755 if (!amd64_ctl_pci) {
2756 pr_warning("%s(): Unable to create PCI control\n",
2757 __func__);
2758
2759 pr_warning("%s(): PCI error report via EDAC not set\n",
2760 __func__);
2761 }
2762 }
2763}
2764
2765static int __init amd64_edac_init(void)
2766{
360b7f3c 2767 int err = -ENODEV;
7d6034d3
DT
2768
2769 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2770
2771 opstate_init();
2772
9653a5c7 2773 if (amd_cache_northbridges() < 0)
56b34b91 2774 goto err_ret;
7d6034d3 2775
cc4d8860 2776 err = -ENOMEM;
ae7bb7c6
BP
2777 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2778 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2779 if (!(mcis && ecc_stngs))
cc4d8860
BP
2780 goto err_ret;
2781
50542251 2782 msrs = msrs_alloc();
56b34b91 2783 if (!msrs)
360b7f3c 2784 goto err_free;
50542251 2785
7d6034d3
DT
2786 err = pci_register_driver(&amd64_pci_driver);
2787 if (err)
56b34b91 2788 goto err_pci;
7d6034d3 2789
56b34b91 2790 err = -ENODEV;
360b7f3c
BP
2791 if (!atomic_read(&drv_instances))
2792 goto err_no_instances;
7d6034d3 2793
360b7f3c
BP
2794 setup_pci_device();
2795 return 0;
7d6034d3 2796
360b7f3c 2797err_no_instances:
7d6034d3 2798 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2799
56b34b91
BP
2800err_pci:
2801 msrs_free(msrs);
2802 msrs = NULL;
cc4d8860 2803
360b7f3c
BP
2804err_free:
2805 kfree(mcis);
2806 mcis = NULL;
2807
2808 kfree(ecc_stngs);
2809 ecc_stngs = NULL;
2810
56b34b91 2811err_ret:
7d6034d3
DT
2812 return err;
2813}
2814
2815static void __exit amd64_edac_exit(void)
2816{
2817 if (amd64_ctl_pci)
2818 edac_pci_release_generic_ctl(amd64_ctl_pci);
2819
2820 pci_unregister_driver(&amd64_pci_driver);
50542251 2821
ae7bb7c6
BP
2822 kfree(ecc_stngs);
2823 ecc_stngs = NULL;
2824
cc4d8860
BP
2825 kfree(mcis);
2826 mcis = NULL;
2827
50542251
BP
2828 msrs_free(msrs);
2829 msrs = NULL;
7d6034d3
DT
2830}
2831
2832module_init(amd64_edac_init);
2833module_exit(amd64_edac_exit);
2834
2835MODULE_LICENSE("GPL");
2836MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2837 "Dave Peterson, Thayne Harbaugh");
2838MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2839 EDAC_AMD64_VERSION);
2840
2841module_param(edac_op_state, int, 0444);
2842MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.294075 seconds and 5 git commands to generate.