amd64_edac: Small fixlets and cleanups
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
173 *
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
2bc65418 176 */
168bfeef 177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
178 /*
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
181 */
395ae783 182 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
183 continue;
184
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
2bc65418
DT
187 }
188
189 scrubval = scrubrates[i].scrubval;
2bc65418 190
5980bb9c 191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 192
39094443
BP
193 if (scrubval)
194 return scrubrates[i].bandwidth;
195
2bc65418
DT
196 return 0;
197}
198
395ae783 199static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
200{
201 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 202 u32 min_scrubrate = 0x5;
2bc65418 203
87b3e0e6
BP
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
206
73ba8593
BP
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
210
87b3e0e6 211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
212}
213
39094443 214static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
215{
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
39094443 218 int i, retval = -EINVAL;
2bc65418 219
73ba8593
BP
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
223
5980bb9c 224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
225
226 scrubval = scrubval & 0x001F;
227
926311fd 228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 229 if (scrubrates[i].scrubval == scrubval) {
39094443 230 retval = scrubrates[i].bandwidth;
2bc65418
DT
231 break;
232 }
233 }
39094443 234 return retval;
2bc65418
DT
235}
236
6775763a 237/*
7f19bf75
BP
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
6775763a 240 */
b487c33e
BP
241static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 unsigned nid)
6775763a 243{
7f19bf75 244 u64 addr;
6775763a
DT
245
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
251 */
252 addr = sys_addr & 0x000000ffffffffffull;
253
7f19bf75
BP
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
256}
257
258/*
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
261 *
262 * On failure, return NULL.
263 */
264static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
266{
267 struct amd64_pvt *pvt;
b487c33e 268 unsigned node_id;
6775763a
DT
269 u32 intlv_en, bits;
270
271 /*
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 */
275 pvt = mci->pvt_info;
276
277 /*
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
281 */
7f19bf75 282 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
283
284 if (intlv_en == 0) {
7f19bf75 285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 287 goto found;
6775763a 288 }
8edc5445 289 goto err_no_match;
6775763a
DT
290 }
291
72f158fe
BP
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
24f9a7fe 295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
7f19bf75 302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
303 break; /* intlv_sel field matches */
304
7f19bf75 305 if (++node_id >= DRAM_RANGES)
6775763a
DT
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
6775763a
DT
314 return NULL;
315 }
316
317found:
b487c33e 318 return edac_mc_find((int)node_id);
6775763a
DT
319
320err_no_match:
956b9ba1
JP
321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
6775763a
DT
323
324 return NULL;
325}
e2ce7255
DT
326
327/*
11c75ead
BP
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 330 */
11c75ead
BP
331static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
e2ce7255 333{
11c75ead
BP
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
e2ce7255 336
11c75ead
BP
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
e2ce7255 347
11c75ead
BP
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 }
e2ce7255 353
11c75ead 354 *base = (csbase & base_bits) << addr_shift;
e2ce7255 355
11c75ead
BP
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
361}
362
11c75ead
BP
363#define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365
614ec9d8
BP
366#define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
368
11c75ead
BP
369#define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371
e2ce7255
DT
372/*
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375 */
376static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377{
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
381
382 pvt = mci->pvt_info;
383
11c75ead
BP
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
386 continue;
387
11c75ead
BP
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389
390 mask = ~mask;
e2ce7255
DT
391
392 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
e2ce7255
DT
396
397 return csrow;
398 }
399 }
956b9ba1
JP
400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
402
403 return -1;
404}
405
e2ce7255
DT
406/*
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
411 *
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
414 *
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
417 *
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
421 */
422int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
424{
425 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
426
427 /* only revE and later have the DRAM Hole Address Register */
1433eb99 428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
429 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
430 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
431 return 1;
432 }
433
bc21fa57 434 /* valid for Fam10h and above */
c8e518d5 435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
437 return 1;
438 }
439
c8e518d5 440 if (!dhar_valid(pvt)) {
956b9ba1
JP
441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
442 pvt->mc_node_id);
e2ce7255
DT
443 return 1;
444 }
445
446 /* This node has Memory Hoisting */
447
448 /* +------------------+--------------------+--------------------+-----
449 * | memory | DRAM hole | relocated |
450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
451 * | | | DRAM hole |
452 * | | | [0x100000000, |
453 * | | | (0x100000000+ |
454 * | | | (0xffffffff-x))] |
455 * +------------------+--------------------+--------------------+-----
456 *
457 * Above is a diagram of physical memory showing the DRAM hole and the
458 * relocated addresses from the DRAM hole. As shown, the DRAM hole
459 * starts at address x (the base address) and extends through address
460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
461 * addresses in the hole so that they start at 0x100000000.
462 */
463
1f31677e
BP
464 *hole_base = dhar_base(pvt);
465 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255
DT
466
467 if (boot_cpu_data.x86 > 0xf)
bc21fa57 468 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 469 else
bc21fa57 470 *hole_offset = k8_dhar_offset(pvt);
e2ce7255 471
956b9ba1
JP
472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
473 pvt->mc_node_id, (unsigned long)*hole_base,
474 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
475
476 return 0;
477}
478EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
479
93c2df58
DT
480/*
481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
482 * assumed that sys_addr maps to the node given by mci.
483 *
484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
487 * then it is also involved in translating a SysAddr to a DramAddr. Sections
488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
489 * These parts of the documentation are unclear. I interpret them as follows:
490 *
491 * When node n receives a SysAddr, it processes the SysAddr as follows:
492 *
493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
494 * Limit registers for node n. If the SysAddr is not within the range
495 * specified by the base and limit values, then node n ignores the Sysaddr
496 * (since it does not map to node n). Otherwise continue to step 2 below.
497 *
498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
500 * the range of relocated addresses (starting at 0x100000000) from the DRAM
501 * hole. If not, skip to step 3 below. Else get the value of the
502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
503 * offset defined by this value from the SysAddr.
504 *
505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
506 * Base register for node n. To obtain the DramAddr, subtract the base
507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
508 */
509static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
510{
7f19bf75 511 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 513 int ret;
93c2df58 514
7f19bf75 515 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
516
517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
518 &hole_size);
519 if (!ret) {
1f31677e
BP
520 if ((sys_addr >= (1ULL << 32)) &&
521 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
522 /* use DHAR to translate SysAddr to DramAddr */
523 dram_addr = sys_addr - hole_offset;
524
956b9ba1
JP
525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
526 (unsigned long)sys_addr,
527 (unsigned long)dram_addr);
93c2df58
DT
528
529 return dram_addr;
530 }
531 }
532
533 /*
534 * Translate the SysAddr to a DramAddr as shown near the start of
535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
536 * only deals with 40-bit values. Therefore we discard bits 63-40 of
537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
538 * discard are all 1s. Otherwise the bits we discard are all 0s. See
539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
540 * Programmer's Manual Volume 1 Application Programming.
541 */
f678b8cc 542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58 543
956b9ba1
JP
544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
545 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
546 return dram_addr;
547}
548
549/*
550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
552 * for node interleaving.
553 */
554static int num_node_interleave_bits(unsigned intlv_en)
555{
556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
557 int n;
558
559 BUG_ON(intlv_en > 7);
560 n = intlv_shift_table[intlv_en];
561 return n;
562}
563
564/* Translate the DramAddr given by @dram_addr to an InputAddr. */
565static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
566{
567 struct amd64_pvt *pvt;
568 int intlv_shift;
569 u64 input_addr;
570
571 pvt = mci->pvt_info;
572
573 /*
574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
575 * concerning translating a DramAddr to an InputAddr.
576 */
7f19bf75 577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
579 (dram_addr & 0xfff);
93c2df58 580
956b9ba1
JP
581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
582 intlv_shift, (unsigned long)dram_addr,
583 (unsigned long)input_addr);
93c2df58
DT
584
585 return input_addr;
586}
587
588/*
589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
590 * assumed that @sys_addr maps to the node given by mci.
591 */
592static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
593{
594 u64 input_addr;
595
596 input_addr =
597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
598
956b9ba1
JP
599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
600 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
601
602 return input_addr;
603}
604
605
606/*
607 * @input_addr is an InputAddr associated with the node represented by mci.
608 * Translate @input_addr to a DramAddr and return the result.
609 */
610static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
611{
612 struct amd64_pvt *pvt;
b487c33e 613 unsigned node_id, intlv_shift;
93c2df58
DT
614 u64 bits, dram_addr;
615 u32 intlv_sel;
616
617 /*
618 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
619 * shows how to translate a DramAddr to an InputAddr. Here we reverse
620 * this procedure. When translating from a DramAddr to an InputAddr, the
621 * bits used for node interleaving are discarded. Here we recover these
622 * bits from the IntlvSel field of the DRAM Limit register (section
623 * 3.4.4.2) for the node that input_addr is associated with.
624 */
625 pvt = mci->pvt_info;
626 node_id = pvt->mc_node_id;
b487c33e
BP
627
628 BUG_ON(node_id > 7);
93c2df58 629
7f19bf75 630 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58 631 if (intlv_shift == 0) {
956b9ba1
JP
632 edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n",
633 (unsigned long)input_addr);
93c2df58
DT
634
635 return input_addr;
636 }
637
f678b8cc
BP
638 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
639 (input_addr & 0xfff);
93c2df58 640
7f19bf75 641 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
642 dram_addr = bits + (intlv_sel << 12);
643
956b9ba1
JP
644 edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
645 (unsigned long)input_addr,
646 (unsigned long)dram_addr, intlv_shift);
93c2df58
DT
647
648 return dram_addr;
649}
650
651/*
652 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
653 * @dram_addr to a SysAddr.
654 */
655static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
656{
657 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 658 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
659 int ret = 0;
660
661 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
662 &hole_size);
663 if (!ret) {
664 if ((dram_addr >= hole_base) &&
665 (dram_addr < (hole_base + hole_size))) {
666 sys_addr = dram_addr + hole_offset;
667
956b9ba1
JP
668 edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
669 (unsigned long)dram_addr,
670 (unsigned long)sys_addr);
93c2df58
DT
671
672 return sys_addr;
673 }
674 }
675
7f19bf75 676 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
677 sys_addr = dram_addr + base;
678
679 /*
680 * The sys_addr we have computed up to this point is a 40-bit value
681 * because the k8 deals with 40-bit values. However, the value we are
682 * supposed to return is a full 64-bit physical address. The AMD
683 * x86-64 architecture specifies that the most significant implemented
684 * address bit through bit 63 of a physical address must be either all
685 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
686 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
687 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
688 * Programming.
689 */
690 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
691
956b9ba1
JP
692 edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
693 pvt->mc_node_id, (unsigned long)dram_addr,
694 (unsigned long)sys_addr);
93c2df58
DT
695
696 return sys_addr;
697}
698
699/*
700 * @input_addr is an InputAddr associated with the node given by mci. Translate
701 * @input_addr to a SysAddr.
702 */
703static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
704 u64 input_addr)
705{
706 return dram_addr_to_sys_addr(mci,
707 input_addr_to_dram_addr(mci, input_addr));
708}
709
93c2df58
DT
710/* Map the Error address to a PAGE and PAGE OFFSET. */
711static inline void error_address_to_page_and_offset(u64 error_address,
712 u32 *page, u32 *offset)
713{
714 *page = (u32) (error_address >> PAGE_SHIFT);
715 *offset = ((u32) error_address) & ~PAGE_MASK;
716}
717
718/*
719 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
720 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
721 * of a node that detected an ECC memory error. mci represents the node that
722 * the error address maps to (possibly different from the node that detected
723 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
724 * error.
725 */
726static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
727{
728 int csrow;
729
730 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
731
732 if (csrow == -1)
24f9a7fe
BP
733 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
734 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
735 return csrow;
736}
e2ce7255 737
bfc04aec 738static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 739
2da11654
DT
740/*
741 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
742 * are ECC capable.
743 */
1f6189ed 744static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 745{
cb328507 746 u8 bit;
1f6189ed 747 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 748
1433eb99 749 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
750 ? 19
751 : 17;
752
584fcff4 753 if (pvt->dclr0 & BIT(bit))
2da11654
DT
754 edac_cap = EDAC_FLAG_SECDED;
755
756 return edac_cap;
757}
758
8c671751 759static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 760
68798e17
BP
761static void amd64_dump_dramcfg_low(u32 dclr, int chan)
762{
956b9ba1 763 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 764
956b9ba1
JP
765 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
766 (dclr & BIT(16)) ? "un" : "",
767 (dclr & BIT(19)) ? "yes" : "no");
68798e17 768
956b9ba1
JP
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 771
cb328507 772 if (boot_cpu_data.x86 == 0x10)
956b9ba1
JP
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 775
956b9ba1
JP
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
781}
782
2da11654 783/* Display and decode various NB registers for debug purposes. */
b2b0c605 784static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 785{
956b9ba1 786 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 787
956b9ba1
JP
788 edac_dbg(1, " NB two channel DRAM capable: %s\n",
789 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 790
956b9ba1
JP
791 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
792 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
793 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
794
795 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 796
956b9ba1 797 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 798
956b9ba1
JP
799 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
800 pvt->dhar, dhar_base(pvt),
801 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
802 : f10_dhar_offset(pvt));
2da11654 803
956b9ba1 804 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 805
8c671751 806 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 807
8de1d91e 808 /* everything below this point is Fam10h and above */
4d796364 809 if (boot_cpu_data.x86 == 0xf)
2da11654 810 return;
4d796364 811
8c671751 812 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 813
a3b7db09 814 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 815
8de1d91e 816 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
817 if (!dct_ganging_enabled(pvt))
818 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
819}
820
94be4bff 821/*
11c75ead 822 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 823 */
11c75ead 824static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 825{
1433eb99 826 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
827 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
828 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 829 } else {
11c75ead
BP
830 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
831 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
832 }
833}
834
835/*
11c75ead 836 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 837 */
b2b0c605 838static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 839{
11c75ead 840 int cs;
94be4bff 841
11c75ead 842 prep_chip_selects(pvt);
94be4bff 843
11c75ead 844 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
845 int reg0 = DCSB0 + (cs * 4);
846 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
847 u32 *base0 = &pvt->csels[0].csbases[cs];
848 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 849
11c75ead 850 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
851 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
852 cs, *base0, reg0);
94be4bff 853
11c75ead
BP
854 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
855 continue;
b2b0c605 856
11c75ead 857 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
858 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
859 cs, *base1, reg1);
94be4bff
DT
860 }
861
11c75ead 862 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
863 int reg0 = DCSM0 + (cs * 4);
864 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
865 u32 *mask0 = &pvt->csels[0].csmasks[cs];
866 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 867
11c75ead 868 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
869 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
870 cs, *mask0, reg0);
94be4bff 871
11c75ead
BP
872 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
873 continue;
b2b0c605 874
11c75ead 875 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
876 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
877 cs, *mask1, reg1);
94be4bff
DT
878 }
879}
880
24f9a7fe 881static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
882{
883 enum mem_type type;
884
cb328507
BP
885 /* F15h supports only DDR3 */
886 if (boot_cpu_data.x86 >= 0x15)
887 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
888 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
889 if (pvt->dchr0 & DDR3_MODE)
890 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
891 else
892 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 893 } else {
94be4bff
DT
894 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
895 }
896
24f9a7fe 897 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
898
899 return type;
900}
901
cb328507 902/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
903static int k8_early_channel_count(struct amd64_pvt *pvt)
904{
cb328507 905 int flag;
ddff876d 906
9f56da0e 907 if (pvt->ext_model >= K8_REV_F)
ddff876d 908 /* RevF (NPT) and later */
41d8bfab 909 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 910 else
ddff876d
DT
911 /* RevE and earlier */
912 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
913
914 /* not used */
915 pvt->dclr1 = 0;
916
917 return (flag) ? 2 : 1;
918}
919
70046624
BP
920/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
921static u64 get_error_address(struct mce *m)
ddff876d 922{
c1ae6830
BP
923 struct cpuinfo_x86 *c = &boot_cpu_data;
924 u64 addr;
70046624
BP
925 u8 start_bit = 1;
926 u8 end_bit = 47;
927
c1ae6830 928 if (c->x86 == 0xf) {
70046624
BP
929 start_bit = 3;
930 end_bit = 39;
931 }
932
c1ae6830
BP
933 addr = m->addr & GENMASK(start_bit, end_bit);
934
935 /*
936 * Erratum 637 workaround
937 */
938 if (c->x86 == 0x15) {
939 struct amd64_pvt *pvt;
940 u64 cc6_base, tmp_addr;
941 u32 tmp;
942 u8 mce_nid, intlv_en;
943
944 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
945 return addr;
946
947 mce_nid = amd_get_nb_id(m->extcpu);
948 pvt = mcis[mce_nid]->pvt_info;
949
950 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
951 intlv_en = tmp >> 21 & 0x7;
952
953 /* add [47:27] + 3 trailing bits */
954 cc6_base = (tmp & GENMASK(0, 20)) << 3;
955
956 /* reverse and add DramIntlvEn */
957 cc6_base |= intlv_en ^ 0x7;
958
959 /* pin at [47:24] */
960 cc6_base <<= 24;
961
962 if (!intlv_en)
963 return cc6_base | (addr & GENMASK(0, 23));
964
965 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
966
967 /* faster log2 */
968 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
969
970 /* OR DramIntlvSel into bits [14:12] */
971 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
972
973 /* add remaining [11:0] bits from original MC4_ADDR */
974 tmp_addr |= addr & GENMASK(0, 11);
975
976 return cc6_base | tmp_addr;
977 }
978
979 return addr;
ddff876d
DT
980}
981
7f19bf75 982static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 983{
f08e457c 984 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 985 int off = range << 3;
ddff876d 986
7f19bf75
BP
987 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
988 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 989
f08e457c 990 if (c->x86 == 0xf)
7f19bf75 991 return;
ddff876d 992
7f19bf75
BP
993 if (!dram_rw(pvt, range))
994 return;
ddff876d 995
7f19bf75
BP
996 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
997 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
998
999 /* Factor in CC6 save area by reading dst node's limit reg */
1000 if (c->x86 == 0x15) {
1001 struct pci_dev *f1 = NULL;
1002 u8 nid = dram_dst_node(pvt, range);
1003 u32 llim;
1004
1005 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1006 if (WARN_ON(!f1))
1007 return;
1008
1009 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1010
1011 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1012
1013 /* {[39:27],111b} */
1014 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1015
1016 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1017
1018 /* [47:40] */
1019 pvt->ranges[range].lim.hi |= llim >> 13;
1020
1021 pci_dev_put(f1);
1022 }
ddff876d
DT
1023}
1024
f192c7b1
BP
1025static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1026 u16 syndrome)
ddff876d
DT
1027{
1028 struct mem_ctl_info *src_mci;
f192c7b1 1029 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1030 int channel, csrow;
1031 u32 page, offset;
ddff876d 1032
ab5a503c
MCC
1033 error_address_to_page_and_offset(sys_addr, &page, &offset);
1034
1035 /*
1036 * Find out which node the error address belongs to. This may be
1037 * different from the node that detected the error.
1038 */
1039 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1040 if (!src_mci) {
1041 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1042 (unsigned long)sys_addr);
9eb07a7f 1043 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1044 page, offset, syndrome,
1045 -1, -1, -1,
ab5a503c 1046 "failed to map error addr to a node",
03f7eae8 1047 "");
ab5a503c
MCC
1048 return;
1049 }
1050
1051 /* Now map the sys_addr to a CSROW */
1052 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1053 if (csrow < 0) {
9eb07a7f 1054 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1055 page, offset, syndrome,
1056 -1, -1, -1,
ab5a503c 1057 "failed to map error addr to a csrow",
03f7eae8 1058 "");
ab5a503c
MCC
1059 return;
1060 }
1061
ddff876d 1062 /* CHIPKILL enabled */
f192c7b1 1063 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1064 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1065 if (channel < 0) {
1066 /*
1067 * Syndrome didn't map, so we don't know which of the
1068 * 2 DIMMs is in error. So we need to ID 'both' of them
1069 * as suspect.
1070 */
ab5a503c
MCC
1071 amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
1072 "possible error reporting race\n",
1073 syndrome);
9eb07a7f 1074 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1075 page, offset, syndrome,
1076 csrow, -1, -1,
ab5a503c 1077 "unknown syndrome - possible error reporting race",
03f7eae8 1078 "");
ddff876d
DT
1079 return;
1080 }
1081 } else {
1082 /*
1083 * non-chipkill ecc mode
1084 *
1085 * The k8 documentation is unclear about how to determine the
1086 * channel number when using non-chipkill memory. This method
1087 * was obtained from email communication with someone at AMD.
1088 * (Wish the email was placed in this comment - norsk)
1089 */
44e9e2ee 1090 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1091 }
1092
9eb07a7f 1093 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci, 1,
ab5a503c
MCC
1094 page, offset, syndrome,
1095 csrow, channel, -1,
03f7eae8 1096 "", "");
ddff876d
DT
1097}
1098
41d8bfab 1099static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1100{
41d8bfab 1101 unsigned shift = 0;
ddff876d 1102
41d8bfab
BP
1103 if (i <= 2)
1104 shift = i;
1105 else if (!(i & 0x1))
1106 shift = i >> 1;
1433eb99 1107 else
41d8bfab 1108 shift = (i + 1) >> 1;
ddff876d 1109
41d8bfab
BP
1110 return 128 << (shift + !!dct_width);
1111}
1112
1113static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1114 unsigned cs_mode)
1115{
1116 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1117
1118 if (pvt->ext_model >= K8_REV_F) {
1119 WARN_ON(cs_mode > 11);
1120 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1121 }
1122 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1123 unsigned diff;
41d8bfab
BP
1124 WARN_ON(cs_mode > 10);
1125
11b0a314
BP
1126 /*
1127 * the below calculation, besides trying to win an obfuscated C
1128 * contest, maps cs_mode values to DIMM chip select sizes. The
1129 * mappings are:
1130 *
1131 * cs_mode CS size (mb)
1132 * ======= ============
1133 * 0 32
1134 * 1 64
1135 * 2 128
1136 * 3 128
1137 * 4 256
1138 * 5 512
1139 * 6 256
1140 * 7 512
1141 * 8 1024
1142 * 9 1024
1143 * 10 2048
1144 *
1145 * Basically, it calculates a value with which to shift the
1146 * smallest CS size of 32MB.
1147 *
1148 * ddr[23]_cs_size have a similar purpose.
1149 */
1150 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1151
1152 return 32 << (cs_mode - diff);
41d8bfab
BP
1153 }
1154 else {
1155 WARN_ON(cs_mode > 6);
1156 return 32 << cs_mode;
1157 }
ddff876d
DT
1158}
1159
1afd3c98
DT
1160/*
1161 * Get the number of DCT channels in use.
1162 *
1163 * Return:
1164 * number of Memory Channels in operation
1165 * Pass back:
1166 * contents of the DCL0_LOW register
1167 */
7d20d14d 1168static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1169{
6ba5dcdc 1170 int i, j, channels = 0;
1afd3c98 1171
7d20d14d 1172 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1173 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1174 return 2;
1afd3c98
DT
1175
1176 /*
d16149e8
BP
1177 * Need to check if in unganged mode: In such, there are 2 channels,
1178 * but they are not in 128 bit mode and thus the above 'dclr0' status
1179 * bit will be OFF.
1afd3c98
DT
1180 *
1181 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1182 * their CSEnable bit on. If so, then SINGLE DIMM case.
1183 */
956b9ba1 1184 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1185
1afd3c98
DT
1186 /*
1187 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1188 * is more than just one DIMM present in unganged mode. Need to check
1189 * both controllers since DIMMs can be placed in either one.
1190 */
525a1b20
BP
1191 for (i = 0; i < 2; i++) {
1192 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1193
57a30854
WW
1194 for (j = 0; j < 4; j++) {
1195 if (DBAM_DIMM(j, dbam) > 0) {
1196 channels++;
1197 break;
1198 }
1199 }
1afd3c98
DT
1200 }
1201
d16149e8
BP
1202 if (channels > 2)
1203 channels = 2;
1204
24f9a7fe 1205 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1206
1207 return channels;
1afd3c98
DT
1208}
1209
41d8bfab 1210static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1211{
41d8bfab
BP
1212 unsigned shift = 0;
1213 int cs_size = 0;
1214
1215 if (i == 0 || i == 3 || i == 4)
1216 cs_size = -1;
1217 else if (i <= 2)
1218 shift = i;
1219 else if (i == 12)
1220 shift = 7;
1221 else if (!(i & 0x1))
1222 shift = i >> 1;
1223 else
1224 shift = (i + 1) >> 1;
1225
1226 if (cs_size != -1)
1227 cs_size = (128 * (1 << !!dct_width)) << shift;
1228
1229 return cs_size;
1230}
1231
1232static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1233 unsigned cs_mode)
1234{
1235 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1236
1237 WARN_ON(cs_mode > 11);
1433eb99
BP
1238
1239 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1240 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1241 else
41d8bfab
BP
1242 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1243}
1244
1245/*
1246 * F15h supports only 64bit DCT interfaces
1247 */
1248static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1249 unsigned cs_mode)
1250{
1251 WARN_ON(cs_mode > 12);
1433eb99 1252
41d8bfab 1253 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1254}
1255
5a5d2371 1256static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1257{
6163b5d4 1258
5a5d2371
BP
1259 if (boot_cpu_data.x86 == 0xf)
1260 return;
1261
78da121e 1262 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1263 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1264 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1265
956b9ba1
JP
1266 edac_dbg(0, " DCTs operate in %s mode\n",
1267 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1268
1269 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1270 edac_dbg(0, " Address range split per DCT: %s\n",
1271 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1272
956b9ba1
JP
1273 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1274 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1275 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1276
956b9ba1
JP
1277 edac_dbg(0, " channel interleave: %s, "
1278 "interleave bits selector: 0x%x\n",
1279 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1280 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1281 }
1282
78da121e 1283 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1284}
1285
f71d0a05 1286/*
229a7a11 1287 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1288 * Interleaving Modes.
1289 */
b15f0fca 1290static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1291 bool hi_range_sel, u8 intlv_en)
6163b5d4 1292{
151fa71c 1293 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1294
1295 if (dct_ganging_enabled(pvt))
229a7a11 1296 return 0;
6163b5d4 1297
229a7a11
BP
1298 if (hi_range_sel)
1299 return dct_sel_high;
6163b5d4 1300
229a7a11
BP
1301 /*
1302 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1303 */
1304 if (dct_interleave_enabled(pvt)) {
1305 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1306
1307 /* return DCT select function: 0=DCT0, 1=DCT1 */
1308 if (!intlv_addr)
1309 return sys_addr >> 6 & 1;
1310
1311 if (intlv_addr & 0x2) {
1312 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1313 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1314
1315 return ((sys_addr >> shift) & 1) ^ temp;
1316 }
1317
1318 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1319 }
1320
1321 if (dct_high_range_enabled(pvt))
1322 return ~dct_sel_high & 1;
6163b5d4
DT
1323
1324 return 0;
1325}
1326
c8e518d5 1327/* Convert the sys_addr to the normalized DCT address */
e761359a 1328static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1329 u64 sys_addr, bool hi_rng,
1330 u32 dct_sel_base_addr)
6163b5d4
DT
1331{
1332 u64 chan_off;
c8e518d5
BP
1333 u64 dram_base = get_dram_base(pvt, range);
1334 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1335 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1336
c8e518d5
BP
1337 if (hi_rng) {
1338 /*
1339 * if
1340 * base address of high range is below 4Gb
1341 * (bits [47:27] at [31:11])
1342 * DRAM address space on this DCT is hoisted above 4Gb &&
1343 * sys_addr > 4Gb
1344 *
1345 * remove hole offset from sys_addr
1346 * else
1347 * remove high range offset from sys_addr
1348 */
1349 if ((!(dct_sel_base_addr >> 16) ||
1350 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1351 dhar_valid(pvt) &&
c8e518d5 1352 (sys_addr >= BIT_64(32)))
bc21fa57 1353 chan_off = hole_off;
6163b5d4
DT
1354 else
1355 chan_off = dct_sel_base_off;
1356 } else {
c8e518d5
BP
1357 /*
1358 * if
1359 * we have a valid hole &&
1360 * sys_addr > 4Gb
1361 *
1362 * remove hole
1363 * else
1364 * remove dram base to normalize to DCT address
1365 */
972ea17a 1366 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1367 chan_off = hole_off;
6163b5d4 1368 else
c8e518d5 1369 chan_off = dram_base;
6163b5d4
DT
1370 }
1371
c8e518d5 1372 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1373}
1374
6163b5d4
DT
1375/*
1376 * checks if the csrow passed in is marked as SPARED, if so returns the new
1377 * spare row
1378 */
11c75ead 1379static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1380{
614ec9d8
BP
1381 int tmp_cs;
1382
1383 if (online_spare_swap_done(pvt, dct) &&
1384 csrow == online_spare_bad_dramcs(pvt, dct)) {
1385
1386 for_each_chip_select(tmp_cs, dct, pvt) {
1387 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1388 csrow = tmp_cs;
1389 break;
1390 }
1391 }
6163b5d4
DT
1392 }
1393 return csrow;
1394}
1395
1396/*
1397 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1398 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1399 *
1400 * Return:
1401 * -EINVAL: NOT FOUND
1402 * 0..csrow = Chip-Select Row
1403 */
b15f0fca 1404static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1405{
1406 struct mem_ctl_info *mci;
1407 struct amd64_pvt *pvt;
11c75ead 1408 u64 cs_base, cs_mask;
6163b5d4
DT
1409 int cs_found = -EINVAL;
1410 int csrow;
1411
cc4d8860 1412 mci = mcis[nid];
6163b5d4
DT
1413 if (!mci)
1414 return cs_found;
1415
1416 pvt = mci->pvt_info;
1417
956b9ba1 1418 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1419
11c75ead
BP
1420 for_each_chip_select(csrow, dct, pvt) {
1421 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1422 continue;
1423
11c75ead 1424 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1425
956b9ba1
JP
1426 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1427 csrow, cs_base, cs_mask);
6163b5d4 1428
11c75ead 1429 cs_mask = ~cs_mask;
6163b5d4 1430
956b9ba1
JP
1431 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1432 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1433
11c75ead
BP
1434 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1435 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1436
956b9ba1 1437 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1438 break;
1439 }
1440 }
1441 return cs_found;
1442}
1443
95b0ef55
BP
1444/*
1445 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1446 * swapped with a region located at the bottom of memory so that the GPU can use
1447 * the interleaved region and thus two channels.
1448 */
b15f0fca 1449static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1450{
1451 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1452
1453 if (boot_cpu_data.x86 == 0x10) {
1454 /* only revC3 and revE have that feature */
1455 if (boot_cpu_data.x86_model < 4 ||
1456 (boot_cpu_data.x86_model < 0xa &&
1457 boot_cpu_data.x86_mask < 3))
1458 return sys_addr;
1459 }
1460
1461 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1462
1463 if (!(swap_reg & 0x1))
1464 return sys_addr;
1465
1466 swap_base = (swap_reg >> 3) & 0x7f;
1467 swap_limit = (swap_reg >> 11) & 0x7f;
1468 rgn_size = (swap_reg >> 20) & 0x7f;
1469 tmp_addr = sys_addr >> 27;
1470
1471 if (!(sys_addr >> 34) &&
1472 (((tmp_addr >= swap_base) &&
1473 (tmp_addr <= swap_limit)) ||
1474 (tmp_addr < rgn_size)))
1475 return sys_addr ^ (u64)swap_base << 27;
1476
1477 return sys_addr;
1478}
1479
f71d0a05 1480/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1481static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1482 u64 sys_addr, int *nid, int *chan_sel)
1483{
229a7a11 1484 int cs_found = -EINVAL;
c8e518d5 1485 u64 chan_addr;
5d4b58e8 1486 u32 dct_sel_base;
11c75ead 1487 u8 channel;
229a7a11 1488 bool high_range = false;
f71d0a05 1489
7f19bf75 1490 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1491 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1492 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1493
956b9ba1
JP
1494 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1495 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1496
355fba60
BP
1497 if (dhar_valid(pvt) &&
1498 dhar_base(pvt) <= sys_addr &&
1499 sys_addr < BIT_64(32)) {
1500 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1501 sys_addr);
1502 return -EINVAL;
1503 }
1504
f030ddfb 1505 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1506 return -EINVAL;
1507
b15f0fca 1508 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1509
f71d0a05
DT
1510 dct_sel_base = dct_sel_baseaddr(pvt);
1511
1512 /*
1513 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1514 * select between DCT0 and DCT1.
1515 */
1516 if (dct_high_range_enabled(pvt) &&
1517 !dct_ganging_enabled(pvt) &&
1518 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1519 high_range = true;
f71d0a05 1520
b15f0fca 1521 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1522
b15f0fca 1523 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1524 high_range, dct_sel_base);
f71d0a05 1525
e2f79dbd
BP
1526 /* Remove node interleaving, see F1x120 */
1527 if (intlv_en)
1528 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1529 (chan_addr & 0xfff);
f71d0a05 1530
5d4b58e8 1531 /* remove channel interleave */
f71d0a05
DT
1532 if (dct_interleave_enabled(pvt) &&
1533 !dct_high_range_enabled(pvt) &&
1534 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1535
1536 if (dct_sel_interleave_addr(pvt) != 1) {
1537 if (dct_sel_interleave_addr(pvt) == 0x3)
1538 /* hash 9 */
1539 chan_addr = ((chan_addr >> 10) << 9) |
1540 (chan_addr & 0x1ff);
1541 else
1542 /* A[6] or hash 6 */
1543 chan_addr = ((chan_addr >> 7) << 6) |
1544 (chan_addr & 0x3f);
1545 } else
1546 /* A[12] */
1547 chan_addr = ((chan_addr >> 13) << 12) |
1548 (chan_addr & 0xfff);
f71d0a05
DT
1549 }
1550
956b9ba1 1551 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1552
b15f0fca 1553 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1554
1555 if (cs_found >= 0) {
1556 *nid = node_id;
1557 *chan_sel = channel;
1558 }
1559 return cs_found;
1560}
1561
b15f0fca 1562static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1563 int *node, int *chan_sel)
1564{
e761359a
BP
1565 int cs_found = -EINVAL;
1566 unsigned range;
f71d0a05 1567
7f19bf75 1568 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1569
7f19bf75 1570 if (!dram_rw(pvt, range))
f71d0a05
DT
1571 continue;
1572
7f19bf75
BP
1573 if ((get_dram_base(pvt, range) <= sys_addr) &&
1574 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1575
b15f0fca 1576 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1577 sys_addr, node,
1578 chan_sel);
1579 if (cs_found >= 0)
1580 break;
1581 }
1582 }
1583 return cs_found;
1584}
1585
1586/*
bdc30a0c
BP
1587 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1588 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1589 *
bdc30a0c
BP
1590 * The @sys_addr is usually an error address received from the hardware
1591 * (MCX_ADDR).
f71d0a05 1592 */
b15f0fca 1593static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1594 u16 syndrome)
f71d0a05
DT
1595{
1596 struct amd64_pvt *pvt = mci->pvt_info;
1597 u32 page, offset;
f71d0a05
DT
1598 int nid, csrow, chan = 0;
1599
ab5a503c
MCC
1600 error_address_to_page_and_offset(sys_addr, &page, &offset);
1601
b15f0fca 1602 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1603
bdc30a0c 1604 if (csrow < 0) {
9eb07a7f 1605 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1606 page, offset, syndrome,
1607 -1, -1, -1,
ab5a503c 1608 "failed to map error addr to a csrow",
03f7eae8 1609 "");
bdc30a0c
BP
1610 return;
1611 }
1612
bdc30a0c
BP
1613 /*
1614 * We need the syndromes for channel detection only when we're
1615 * ganged. Otherwise @chan should already contain the channel at
1616 * this point.
1617 */
a97fa68e 1618 if (dct_ganging_enabled(pvt))
bdc30a0c 1619 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1620
9eb07a7f 1621 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1622 page, offset, syndrome,
1623 csrow, chan, -1,
03f7eae8 1624 "", "");
f71d0a05
DT
1625}
1626
f71d0a05 1627/*
8566c4df 1628 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1629 * CSROWs
f71d0a05 1630 */
8c671751 1631static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1632{
603adaf6 1633 int dimm, size0, size1, factor = 0;
525a1b20
BP
1634 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1635 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1636
8566c4df 1637 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1638 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1639 factor = 1;
1640
8566c4df 1641 /* K8 families < revF not supported yet */
1433eb99 1642 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1643 return;
1644 else
1645 WARN_ON(ctrl != 0);
1646 }
1647
4d796364 1648 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1649 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1650 : pvt->csels[0].csbases;
f71d0a05 1651
956b9ba1
JP
1652 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1653 ctrl, dbam);
f71d0a05 1654
8566c4df
BP
1655 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1656
f71d0a05
DT
1657 /* Dump memory sizes for DIMM and its CSROWs */
1658 for (dimm = 0; dimm < 4; dimm++) {
1659
1660 size0 = 0;
11c75ead 1661 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1662 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1663 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1664
1665 size1 = 0;
11c75ead 1666 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1667 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1668 DBAM_DIMM(dimm, dbam));
f71d0a05 1669
24f9a7fe
BP
1670 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1671 dimm * 2, size0 << factor,
1672 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1673 }
1674}
1675
4d37607a
DT
1676static struct amd64_family_type amd64_family_types[] = {
1677 [K8_CPUS] = {
0092b20d 1678 .ctl_name = "K8",
8d5b5d9c
BP
1679 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1680 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1681 .ops = {
1433eb99 1682 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1683 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1684 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1685 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1686 }
1687 },
1688 [F10_CPUS] = {
0092b20d 1689 .ctl_name = "F10h",
8d5b5d9c
BP
1690 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1691 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1692 .ops = {
7d20d14d 1693 .early_channel_count = f1x_early_channel_count,
b15f0fca 1694 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1695 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1696 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1697 }
1698 },
1699 [F15_CPUS] = {
1700 .ctl_name = "F15h",
df71a053
BP
1701 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1702 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1703 .ops = {
7d20d14d 1704 .early_channel_count = f1x_early_channel_count,
b15f0fca 1705 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1706 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1707 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1708 }
1709 },
4d37607a
DT
1710};
1711
1712static struct pci_dev *pci_get_related_function(unsigned int vendor,
1713 unsigned int device,
1714 struct pci_dev *related)
1715{
1716 struct pci_dev *dev = NULL;
1717
1718 dev = pci_get_device(vendor, device, dev);
1719 while (dev) {
1720 if ((dev->bus->number == related->bus->number) &&
1721 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1722 break;
1723 dev = pci_get_device(vendor, device, dev);
1724 }
1725
1726 return dev;
1727}
1728
b1289d6f 1729/*
bfc04aec
BP
1730 * These are tables of eigenvectors (one per line) which can be used for the
1731 * construction of the syndrome tables. The modified syndrome search algorithm
1732 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1733 *
bfc04aec 1734 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1735 */
bfc04aec
BP
1736static u16 x4_vectors[] = {
1737 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1738 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1739 0x0001, 0x0002, 0x0004, 0x0008,
1740 0x1013, 0x3032, 0x4044, 0x8088,
1741 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1742 0x4857, 0xc4fe, 0x13cc, 0x3288,
1743 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1744 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1745 0x15c1, 0x2a42, 0x89ac, 0x4758,
1746 0x2b03, 0x1602, 0x4f0c, 0xca08,
1747 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1748 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1749 0x2b87, 0x164e, 0x642c, 0xdc18,
1750 0x40b9, 0x80de, 0x1094, 0x20e8,
1751 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1752 0x11c1, 0x2242, 0x84ac, 0x4c58,
1753 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1754 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1755 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1756 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1757 0x16b3, 0x3d62, 0x4f34, 0x8518,
1758 0x1e2f, 0x391a, 0x5cac, 0xf858,
1759 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1760 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1761 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1762 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1763 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1764 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1765 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1766 0x185d, 0x2ca6, 0x7914, 0x9e28,
1767 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1768 0x4199, 0x82ee, 0x19f4, 0x2e58,
1769 0x4807, 0xc40e, 0x130c, 0x3208,
1770 0x1905, 0x2e0a, 0x5804, 0xac08,
1771 0x213f, 0x132a, 0xadfc, 0x5ba8,
1772 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1773};
1774
bfc04aec
BP
1775static u16 x8_vectors[] = {
1776 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1777 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1778 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1779 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1780 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1781 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1782 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1783 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1784 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1785 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1786 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1787 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1788 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1789 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1790 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1791 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1792 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1793 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1794 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1795};
1796
d34a6ecd
BP
1797static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1798 unsigned v_dim)
b1289d6f 1799{
bfc04aec
BP
1800 unsigned int i, err_sym;
1801
1802 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1803 u16 s = syndrome;
d34a6ecd
BP
1804 unsigned v_idx = err_sym * v_dim;
1805 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1806
1807 /* walk over all 16 bits of the syndrome */
1808 for (i = 1; i < (1U << 16); i <<= 1) {
1809
1810 /* if bit is set in that eigenvector... */
1811 if (v_idx < v_end && vectors[v_idx] & i) {
1812 u16 ev_comp = vectors[v_idx++];
1813
1814 /* ... and bit set in the modified syndrome, */
1815 if (s & i) {
1816 /* remove it. */
1817 s ^= ev_comp;
4d37607a 1818
bfc04aec
BP
1819 if (!s)
1820 return err_sym;
1821 }
b1289d6f 1822
bfc04aec
BP
1823 } else if (s & i)
1824 /* can't get to zero, move to next symbol */
1825 break;
1826 }
b1289d6f
DT
1827 }
1828
956b9ba1 1829 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1830 return -1;
1831}
d27bf6fa 1832
bfc04aec
BP
1833static int map_err_sym_to_channel(int err_sym, int sym_size)
1834{
1835 if (sym_size == 4)
1836 switch (err_sym) {
1837 case 0x20:
1838 case 0x21:
1839 return 0;
1840 break;
1841 case 0x22:
1842 case 0x23:
1843 return 1;
1844 break;
1845 default:
1846 return err_sym >> 4;
1847 break;
1848 }
1849 /* x8 symbols */
1850 else
1851 switch (err_sym) {
1852 /* imaginary bits not in a DIMM */
1853 case 0x10:
1854 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1855 err_sym);
1856 return -1;
1857 break;
1858
1859 case 0x11:
1860 return 0;
1861 break;
1862 case 0x12:
1863 return 1;
1864 break;
1865 default:
1866 return err_sym >> 3;
1867 break;
1868 }
1869 return -1;
1870}
1871
1872static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1873{
1874 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1875 int err_sym = -1;
1876
a3b7db09 1877 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1878 err_sym = decode_syndrome(syndrome, x8_vectors,
1879 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1880 pvt->ecc_sym_sz);
1881 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1882 err_sym = decode_syndrome(syndrome, x4_vectors,
1883 ARRAY_SIZE(x4_vectors),
a3b7db09 1884 pvt->ecc_sym_sz);
ad6a32e9 1885 else {
a3b7db09 1886 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1887 return err_sym;
bfc04aec 1888 }
ad6a32e9 1889
a3b7db09 1890 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1891}
1892
d27bf6fa
DT
1893/*
1894 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1895 * ADDRESS and process.
1896 */
f192c7b1 1897static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1898{
1899 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1900 u64 sys_addr;
f192c7b1 1901 u16 syndrome;
d27bf6fa
DT
1902
1903 /* Ensure that the Error Address is VALID */
f192c7b1 1904 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1905 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
9eb07a7f 1906 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1907 0, 0, 0,
1908 -1, -1, -1,
ab5a503c 1909 "HW has no ERROR_ADDRESS available",
03f7eae8 1910 "");
d27bf6fa
DT
1911 return;
1912 }
1913
70046624 1914 sys_addr = get_error_address(m);
f192c7b1 1915 syndrome = extract_syndrome(m->status);
d27bf6fa 1916
24f9a7fe 1917 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1918
f192c7b1 1919 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1920}
1921
1922/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1923static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1924{
1f6bcee7 1925 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1926 int csrow;
44e9e2ee 1927 u64 sys_addr;
d27bf6fa 1928 u32 page, offset;
d27bf6fa
DT
1929
1930 log_mci = mci;
1931
f192c7b1 1932 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1933 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
9eb07a7f 1934 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
ab5a503c
MCC
1935 0, 0, 0,
1936 -1, -1, -1,
ab5a503c 1937 "HW has no ERROR_ADDRESS available",
03f7eae8 1938 "");
d27bf6fa
DT
1939 return;
1940 }
1941
70046624 1942 sys_addr = get_error_address(m);
ab5a503c 1943 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1944
1945 /*
1946 * Find out which node the error address belongs to. This may be
1947 * different from the node that detected the error.
1948 */
44e9e2ee 1949 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1950 if (!src_mci) {
24f9a7fe
BP
1951 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1952 (unsigned long)sys_addr);
9eb07a7f 1953 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
ab5a503c
MCC
1954 page, offset, 0,
1955 -1, -1, -1,
075f3090 1956 "ERROR ADDRESS NOT mapped to a MC",
03f7eae8 1957 "");
d27bf6fa
DT
1958 return;
1959 }
1960
1961 log_mci = src_mci;
1962
44e9e2ee 1963 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1964 if (csrow < 0) {
24f9a7fe
BP
1965 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1966 (unsigned long)sys_addr);
9eb07a7f 1967 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
ab5a503c
MCC
1968 page, offset, 0,
1969 -1, -1, -1,
ab5a503c 1970 "ERROR ADDRESS NOT mapped to CS",
03f7eae8 1971 "");
d27bf6fa 1972 } else {
9eb07a7f 1973 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
ab5a503c
MCC
1974 page, offset, 0,
1975 csrow, -1, -1,
03f7eae8 1976 "", "");
d27bf6fa
DT
1977 }
1978}
1979
549d042d 1980static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1981 struct mce *m)
d27bf6fa 1982{
f192c7b1
BP
1983 u16 ec = EC(m->status);
1984 u8 xec = XEC(m->status, 0x1f);
1985 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1986
b70ef010 1987 /* Bail early out if this was an 'observed' error */
5980bb9c 1988 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1989 return;
d27bf6fa 1990
ecaf5606
BP
1991 /* Do only ECC errors */
1992 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1993 return;
d27bf6fa 1994
ecaf5606 1995 if (ecc_type == 2)
f192c7b1 1996 amd64_handle_ce(mci, m);
ecaf5606 1997 else if (ecc_type == 1)
f192c7b1 1998 amd64_handle_ue(mci, m);
d27bf6fa
DT
1999}
2000
b0b07a2b 2001void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2002{
b0b07a2b 2003 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 2004}
d27bf6fa 2005
0ec449ee 2006/*
8d5b5d9c 2007 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2008 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2009 */
360b7f3c 2010static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2011{
0ec449ee 2012 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2013 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2014 if (!pvt->F1) {
24f9a7fe
BP
2015 amd64_err("error address map device not found: "
2016 "vendor %x device 0x%x (broken BIOS?)\n",
2017 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2018 return -ENODEV;
0ec449ee
DT
2019 }
2020
2021 /* Reserve the MISC Device */
8d5b5d9c
BP
2022 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2023 if (!pvt->F3) {
2024 pci_dev_put(pvt->F1);
2025 pvt->F1 = NULL;
0ec449ee 2026
24f9a7fe
BP
2027 amd64_err("error F3 device not found: "
2028 "vendor %x device 0x%x (broken BIOS?)\n",
2029 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2030
bbd0c1f6 2031 return -ENODEV;
0ec449ee 2032 }
956b9ba1
JP
2033 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2034 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2035 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2036
2037 return 0;
2038}
2039
360b7f3c 2040static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2041{
8d5b5d9c
BP
2042 pci_dev_put(pvt->F1);
2043 pci_dev_put(pvt->F3);
0ec449ee
DT
2044}
2045
2046/*
2047 * Retrieve the hardware registers of the memory controller (this includes the
2048 * 'Address Map' and 'Misc' device regs)
2049 */
360b7f3c 2050static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2051{
a3b7db09 2052 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 2053 u64 msr_val;
ad6a32e9 2054 u32 tmp;
e761359a 2055 unsigned range;
0ec449ee
DT
2056
2057 /*
2058 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2059 * those are Read-As-Zero
2060 */
e97f8bb8 2061 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2062 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2063
2064 /* check first whether TOP_MEM2 is enabled */
2065 rdmsrl(MSR_K8_SYSCFG, msr_val);
2066 if (msr_val & (1U << 21)) {
e97f8bb8 2067 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2068 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 2069 } else
956b9ba1 2070 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2071
5980bb9c 2072 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2073
5a5d2371 2074 read_dram_ctl_register(pvt);
0ec449ee 2075
7f19bf75
BP
2076 for (range = 0; range < DRAM_RANGES; range++) {
2077 u8 rw;
0ec449ee 2078
7f19bf75
BP
2079 /* read settings for this DRAM range */
2080 read_dram_base_limit_regs(pvt, range);
2081
2082 rw = dram_rw(pvt, range);
2083 if (!rw)
2084 continue;
2085
956b9ba1
JP
2086 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2087 range,
2088 get_dram_base(pvt, range),
2089 get_dram_limit(pvt, range));
7f19bf75 2090
956b9ba1
JP
2091 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2092 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2093 (rw & 0x1) ? "R" : "-",
2094 (rw & 0x2) ? "W" : "-",
2095 dram_intlv_sel(pvt, range),
2096 dram_dst_node(pvt, range));
0ec449ee
DT
2097 }
2098
b2b0c605 2099 read_dct_base_mask(pvt);
0ec449ee 2100
bc21fa57 2101 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2102 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2103
8d5b5d9c 2104 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2105
cb328507
BP
2106 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2107 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2108
78da121e 2109 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2110 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2111 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2112 }
ad6a32e9 2113
a3b7db09
BP
2114 pvt->ecc_sym_sz = 4;
2115
2116 if (c->x86 >= 0x10) {
b2b0c605 2117 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2118 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2119
a3b7db09
BP
2120 /* F10h, revD and later can do x8 ECC too */
2121 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2122 pvt->ecc_sym_sz = 8;
2123 }
b2b0c605 2124 dump_misc_regs(pvt);
0ec449ee
DT
2125}
2126
2127/*
2128 * NOTE: CPU Revision Dependent code
2129 *
2130 * Input:
11c75ead 2131 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2132 * k8 private pointer to -->
2133 * DRAM Bank Address mapping register
2134 * node_id
2135 * DCL register where dual_channel_active is
2136 *
2137 * The DBAM register consists of 4 sets of 4 bits each definitions:
2138 *
2139 * Bits: CSROWs
2140 * 0-3 CSROWs 0 and 1
2141 * 4-7 CSROWs 2 and 3
2142 * 8-11 CSROWs 4 and 5
2143 * 12-15 CSROWs 6 and 7
2144 *
2145 * Values range from: 0 to 15
2146 * The meaning of the values depends on CPU revision and dual-channel state,
2147 * see relevant BKDG more info.
2148 *
2149 * The memory controller provides for total of only 8 CSROWs in its current
2150 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2151 * single channel or two (2) DIMMs in dual channel mode.
2152 *
2153 * The following code logic collapses the various tables for CSROW based on CPU
2154 * revision.
2155 *
2156 * Returns:
2157 * The number of PAGE_SIZE pages on the specified CSROW number it
2158 * encompasses
2159 *
2160 */
41d8bfab 2161static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2162{
1433eb99 2163 u32 cs_mode, nr_pages;
f92cae45 2164 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee
DT
2165
2166 /*
2167 * The math on this doesn't look right on the surface because x/2*4 can
2168 * be simplified to x*2 but this expression makes use of the fact that
2169 * it is integral math where 1/2=0. This intermediate value becomes the
2170 * number of bits to shift the DBAM register to extract the proper CSROW
2171 * field.
2172 */
f92cae45 2173 cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2174
41d8bfab 2175 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2176
956b9ba1
JP
2177 edac_dbg(0, " (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2178 edac_dbg(0, " nr_pages/channel= %u channel-count = %d\n",
2179 nr_pages, pvt->channel_count);
0ec449ee
DT
2180
2181 return nr_pages;
2182}
2183
2184/*
2185 * Initialize the array of csrow attribute instances, based on the values
2186 * from pci config hardware registers.
2187 */
360b7f3c 2188static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2189{
2190 struct csrow_info *csrow;
de3910eb 2191 struct dimm_info *dimm;
2299ef71 2192 struct amd64_pvt *pvt = mci->pvt_info;
5e2af0c0 2193 u64 base, mask;
2299ef71 2194 u32 val;
084a4fcc
MCC
2195 int i, j, empty = 1;
2196 enum mem_type mtype;
2197 enum edac_type edac_mode;
a895bf8b 2198 int nr_pages = 0;
0ec449ee 2199
a97fa68e 2200 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2201
2299ef71 2202 pvt->nbcfg = val;
0ec449ee 2203
956b9ba1
JP
2204 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2205 pvt->mc_node_id, val,
2206 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2207
11c75ead 2208 for_each_chip_select(i, 0, pvt) {
de3910eb 2209 csrow = mci->csrows[i];
0ec449ee 2210
f92cae45 2211 if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
956b9ba1
JP
2212 edac_dbg(1, "----CSROW %d VALID for MC node %d\n",
2213 i, pvt->mc_node_id);
0ec449ee
DT
2214 continue;
2215 }
2216
0ec449ee 2217 empty = 0;
f92cae45 2218 if (csrow_enabled(i, 0, pvt))
a895bf8b 2219 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
f92cae45 2220 if (csrow_enabled(i, 1, pvt))
a895bf8b 2221 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
11c75ead
BP
2222
2223 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
0ec449ee
DT
2224 /* 8 bytes of resolution */
2225
084a4fcc 2226 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee 2227
956b9ba1
JP
2228 edac_dbg(1, " for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2229 edac_dbg(1, " nr_pages: %u\n",
2230 nr_pages * pvt->channel_count);
0ec449ee
DT
2231
2232 /*
2233 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2234 */
a97fa68e 2235 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2236 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2237 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2238 else
084a4fcc
MCC
2239 edac_mode = EDAC_NONE;
2240
2241 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2242 dimm = csrow->channels[j]->dimm;
2243 dimm->mtype = mtype;
2244 dimm->edac_mode = edac_mode;
2245 dimm->nr_pages = nr_pages;
084a4fcc 2246 }
0ec449ee
DT
2247 }
2248
2249 return empty;
2250}
d27bf6fa 2251
f6d6ae96 2252/* get all cores on this DCT */
b487c33e 2253static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2254{
2255 int cpu;
2256
2257 for_each_online_cpu(cpu)
2258 if (amd_get_nb_id(cpu) == nid)
2259 cpumask_set_cpu(cpu, mask);
2260}
2261
2262/* check MCG_CTL on all the cpus on this node */
b487c33e 2263static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2264{
2265 cpumask_var_t mask;
50542251 2266 int cpu, nbe;
f6d6ae96
BP
2267 bool ret = false;
2268
2269 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2270 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2271 return false;
2272 }
2273
2274 get_cpus_on_this_dct_cpumask(mask, nid);
2275
f6d6ae96
BP
2276 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2277
2278 for_each_cpu(cpu, mask) {
50542251 2279 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2280 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2281
956b9ba1
JP
2282 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2283 cpu, reg->q,
2284 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2285
2286 if (!nbe)
2287 goto out;
f6d6ae96
BP
2288 }
2289 ret = true;
2290
2291out:
f6d6ae96
BP
2292 free_cpumask_var(mask);
2293 return ret;
2294}
2295
2299ef71 2296static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2297{
2298 cpumask_var_t cmask;
50542251 2299 int cpu;
f6d6ae96
BP
2300
2301 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2302 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2303 return false;
2304 }
2305
ae7bb7c6 2306 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2307
f6d6ae96
BP
2308 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2309
2310 for_each_cpu(cpu, cmask) {
2311
50542251
BP
2312 struct msr *reg = per_cpu_ptr(msrs, cpu);
2313
f6d6ae96 2314 if (on) {
5980bb9c 2315 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2316 s->flags.nb_mce_enable = 1;
f6d6ae96 2317
5980bb9c 2318 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2319 } else {
2320 /*
d95cf4de 2321 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2322 */
ae7bb7c6 2323 if (!s->flags.nb_mce_enable)
5980bb9c 2324 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2325 }
f6d6ae96
BP
2326 }
2327 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2328
f6d6ae96
BP
2329 free_cpumask_var(cmask);
2330
2331 return 0;
2332}
2333
2299ef71
BP
2334static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2335 struct pci_dev *F3)
f9431992 2336{
2299ef71 2337 bool ret = true;
c9f4f26e 2338 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2339
2299ef71
BP
2340 if (toggle_ecc_err_reporting(s, nid, ON)) {
2341 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2342 return false;
2343 }
2344
c9f4f26e 2345 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2346
ae7bb7c6
BP
2347 s->old_nbctl = value & mask;
2348 s->nbctl_valid = true;
f9431992
DT
2349
2350 value |= mask;
c9f4f26e 2351 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2352
a97fa68e 2353 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2354
956b9ba1
JP
2355 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2356 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2357
a97fa68e 2358 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2359 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2360
ae7bb7c6 2361 s->flags.nb_ecc_prev = 0;
d95cf4de 2362
f9431992 2363 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2364 value |= NBCFG_ECC_ENABLE;
2365 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2366
a97fa68e 2367 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2368
a97fa68e 2369 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2370 amd64_warn("Hardware rejected DRAM ECC enable,"
2371 "check memory DIMM configuration.\n");
2299ef71 2372 ret = false;
f9431992 2373 } else {
24f9a7fe 2374 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2375 }
d95cf4de 2376 } else {
ae7bb7c6 2377 s->flags.nb_ecc_prev = 1;
f9431992 2378 }
d95cf4de 2379
956b9ba1
JP
2380 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2381 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2382
2299ef71 2383 return ret;
f9431992
DT
2384}
2385
360b7f3c
BP
2386static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2387 struct pci_dev *F3)
f9431992 2388{
c9f4f26e
BP
2389 u32 value, mask = 0x3; /* UECC/CECC enable */
2390
f9431992 2391
ae7bb7c6 2392 if (!s->nbctl_valid)
f9431992
DT
2393 return;
2394
c9f4f26e 2395 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2396 value &= ~mask;
ae7bb7c6 2397 value |= s->old_nbctl;
f9431992 2398
c9f4f26e 2399 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2400
ae7bb7c6
BP
2401 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2402 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2403 amd64_read_pci_cfg(F3, NBCFG, &value);
2404 value &= ~NBCFG_ECC_ENABLE;
2405 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2406 }
2407
2408 /* restore the NB Enable MCGCTL bit */
2299ef71 2409 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2410 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2411}
2412
2413/*
2299ef71
BP
2414 * EDAC requires that the BIOS have ECC enabled before
2415 * taking over the processing of ECC errors. A command line
2416 * option allows to force-enable hardware ECC later in
2417 * enable_ecc_error_reporting().
f9431992 2418 */
cab4d277
BP
2419static const char *ecc_msg =
2420 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2421 " Either enable ECC checking or force module loading by setting "
2422 "'ecc_enable_override'.\n"
2423 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2424
2299ef71 2425static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2426{
2427 u32 value;
2299ef71 2428 u8 ecc_en = 0;
06724535 2429 bool nb_mce_en = false;
f9431992 2430
a97fa68e 2431 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2432
a97fa68e 2433 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2434 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2435
2299ef71 2436 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2437 if (!nb_mce_en)
2299ef71
BP
2438 amd64_notice("NB MCE bank disabled, set MSR "
2439 "0x%08x[4] on node %d to enable.\n",
2440 MSR_IA32_MCG_CTL, nid);
f9431992 2441
2299ef71
BP
2442 if (!ecc_en || !nb_mce_en) {
2443 amd64_notice("%s", ecc_msg);
2444 return false;
2445 }
2446 return true;
f9431992
DT
2447}
2448
c5608759 2449static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2450{
c5608759 2451 int rc;
7d6034d3 2452
c5608759
MCC
2453 rc = amd64_create_sysfs_dbg_files(mci);
2454 if (rc < 0)
2455 return rc;
7d6034d3 2456
c5608759
MCC
2457 if (boot_cpu_data.x86 >= 0x10) {
2458 rc = amd64_create_sysfs_inject_files(mci);
2459 if (rc < 0)
2460 return rc;
2461 }
2462
2463 return 0;
2464}
7d6034d3 2465
c5608759
MCC
2466static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2467{
2468 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2469
c5608759
MCC
2470 if (boot_cpu_data.x86 >= 0x10)
2471 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2472}
2473
df71a053
BP
2474static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2475 struct amd64_family_type *fam)
7d6034d3
DT
2476{
2477 struct amd64_pvt *pvt = mci->pvt_info;
2478
2479 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2480 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2481
5980bb9c 2482 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2483 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2484
5980bb9c 2485 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2486 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2487
2488 mci->edac_cap = amd64_determine_edac_cap(pvt);
2489 mci->mod_name = EDAC_MOD_STR;
2490 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2491 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2492 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2493 mci->ctl_page_to_phys = NULL;
2494
7d6034d3
DT
2495 /* memory scrubber interface */
2496 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2497 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2498}
2499
0092b20d
BP
2500/*
2501 * returns a pointer to the family descriptor on success, NULL otherwise.
2502 */
2503static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2504{
0092b20d
BP
2505 u8 fam = boot_cpu_data.x86;
2506 struct amd64_family_type *fam_type = NULL;
2507
2508 switch (fam) {
395ae783 2509 case 0xf:
0092b20d 2510 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2511 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2512 break;
df71a053 2513
395ae783 2514 case 0x10:
0092b20d 2515 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2516 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2517 break;
2518
2519 case 0x15:
2520 fam_type = &amd64_family_types[F15_CPUS];
2521 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2522 break;
2523
2524 default:
24f9a7fe 2525 amd64_err("Unsupported family!\n");
0092b20d 2526 return NULL;
395ae783 2527 }
0092b20d 2528
b8cfa02f
BP
2529 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2530
df71a053 2531 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2532 (fam == 0xf ?
24f9a7fe
BP
2533 (pvt->ext_model >= K8_REV_F ? "revF or later "
2534 : "revE or earlier ")
2535 : ""), pvt->mc_node_id);
0092b20d 2536 return fam_type;
395ae783
BP
2537}
2538
2299ef71 2539static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2540{
2541 struct amd64_pvt *pvt = NULL;
0092b20d 2542 struct amd64_family_type *fam_type = NULL;
360b7f3c 2543 struct mem_ctl_info *mci = NULL;
ab5a503c 2544 struct edac_mc_layer layers[2];
7d6034d3 2545 int err = 0, ret;
360b7f3c 2546 u8 nid = get_node_id(F2);
7d6034d3
DT
2547
2548 ret = -ENOMEM;
2549 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2550 if (!pvt)
360b7f3c 2551 goto err_ret;
7d6034d3 2552
360b7f3c 2553 pvt->mc_node_id = nid;
8d5b5d9c 2554 pvt->F2 = F2;
7d6034d3 2555
395ae783 2556 ret = -EINVAL;
0092b20d
BP
2557 fam_type = amd64_per_family_init(pvt);
2558 if (!fam_type)
395ae783
BP
2559 goto err_free;
2560
7d6034d3 2561 ret = -ENODEV;
360b7f3c 2562 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2563 if (err)
2564 goto err_free;
2565
360b7f3c 2566 read_mc_regs(pvt);
7d6034d3 2567
7d6034d3
DT
2568 /*
2569 * We need to determine how many memory channels there are. Then use
2570 * that information for calculating the size of the dynamic instance
360b7f3c 2571 * tables in the 'mci' structure.
7d6034d3 2572 */
360b7f3c 2573 ret = -EINVAL;
7d6034d3
DT
2574 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2575 if (pvt->channel_count < 0)
360b7f3c 2576 goto err_siblings;
7d6034d3
DT
2577
2578 ret = -ENOMEM;
ab5a503c
MCC
2579 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2580 layers[0].size = pvt->csels[0].b_cnt;
2581 layers[0].is_virt_csrow = true;
2582 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2583 layers[1].size = pvt->channel_count;
2584 layers[1].is_virt_csrow = false;
ca0907b9 2585 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2586 if (!mci)
360b7f3c 2587 goto err_siblings;
7d6034d3
DT
2588
2589 mci->pvt_info = pvt;
fd687502 2590 mci->pdev = &pvt->F2->dev;
7d6034d3 2591
df71a053 2592 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2593
2594 if (init_csrows(mci))
7d6034d3
DT
2595 mci->edac_cap = EDAC_FLAG_NONE;
2596
7d6034d3
DT
2597 ret = -ENODEV;
2598 if (edac_mc_add_mc(mci)) {
956b9ba1 2599 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2600 goto err_add_mc;
2601 }
c5608759 2602 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2603 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2604 goto err_add_sysfs;
2605 }
7d6034d3 2606
549d042d
BP
2607 /* register stuff with EDAC MCE */
2608 if (report_gart_errors)
2609 amd_report_gart_errors(true);
2610
2611 amd_register_ecc_decoder(amd64_decode_bus_error);
2612
360b7f3c
BP
2613 mcis[nid] = mci;
2614
2615 atomic_inc(&drv_instances);
2616
7d6034d3
DT
2617 return 0;
2618
c5608759
MCC
2619err_add_sysfs:
2620 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2621err_add_mc:
2622 edac_mc_free(mci);
2623
360b7f3c
BP
2624err_siblings:
2625 free_mc_sibling_devs(pvt);
7d6034d3 2626
360b7f3c
BP
2627err_free:
2628 kfree(pvt);
7d6034d3 2629
360b7f3c 2630err_ret:
7d6034d3
DT
2631 return ret;
2632}
2633
2299ef71 2634static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2635 const struct pci_device_id *mc_type)
7d6034d3 2636{
ae7bb7c6 2637 u8 nid = get_node_id(pdev);
2299ef71 2638 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2639 struct ecc_settings *s;
2299ef71 2640 int ret = 0;
7d6034d3 2641
7d6034d3 2642 ret = pci_enable_device(pdev);
b8cfa02f 2643 if (ret < 0) {
956b9ba1 2644 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2645 return -EIO;
2646 }
7d6034d3 2647
ae7bb7c6
BP
2648 ret = -ENOMEM;
2649 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2650 if (!s)
2299ef71 2651 goto err_out;
ae7bb7c6
BP
2652
2653 ecc_stngs[nid] = s;
2654
2299ef71
BP
2655 if (!ecc_enabled(F3, nid)) {
2656 ret = -ENODEV;
2657
2658 if (!ecc_enable_override)
2659 goto err_enable;
2660
2661 amd64_warn("Forcing ECC on!\n");
2662
2663 if (!enable_ecc_error_reporting(s, nid, F3))
2664 goto err_enable;
2665 }
2666
2667 ret = amd64_init_one_instance(pdev);
360b7f3c 2668 if (ret < 0) {
ae7bb7c6 2669 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2670 restore_ecc_error_reporting(s, nid, F3);
2671 }
7d6034d3
DT
2672
2673 return ret;
2299ef71
BP
2674
2675err_enable:
2676 kfree(s);
2677 ecc_stngs[nid] = NULL;
2678
2679err_out:
2680 return ret;
7d6034d3
DT
2681}
2682
2683static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2684{
2685 struct mem_ctl_info *mci;
2686 struct amd64_pvt *pvt;
360b7f3c
BP
2687 u8 nid = get_node_id(pdev);
2688 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2689 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2690
c5608759
MCC
2691 mci = find_mci_by_dev(&pdev->dev);
2692 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2693 /* Remove from EDAC CORE tracking list */
2694 mci = edac_mc_del_mc(&pdev->dev);
2695 if (!mci)
2696 return;
2697
2698 pvt = mci->pvt_info;
2699
360b7f3c 2700 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2701
360b7f3c 2702 free_mc_sibling_devs(pvt);
7d6034d3 2703
549d042d
BP
2704 /* unregister from EDAC MCE */
2705 amd_report_gart_errors(false);
2706 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2707
360b7f3c
BP
2708 kfree(ecc_stngs[nid]);
2709 ecc_stngs[nid] = NULL;
ae7bb7c6 2710
7d6034d3 2711 /* Free the EDAC CORE resources */
8f68ed97 2712 mci->pvt_info = NULL;
360b7f3c 2713 mcis[nid] = NULL;
8f68ed97
BP
2714
2715 kfree(pvt);
7d6034d3
DT
2716 edac_mc_free(mci);
2717}
2718
2719/*
2720 * This table is part of the interface for loading drivers for PCI devices. The
2721 * PCI core identifies what devices are on a system during boot, and then
2722 * inquiry this table to see if this driver is for a given device found.
2723 */
36c46f31 2724static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2725 {
2726 .vendor = PCI_VENDOR_ID_AMD,
2727 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2728 .subvendor = PCI_ANY_ID,
2729 .subdevice = PCI_ANY_ID,
2730 .class = 0,
2731 .class_mask = 0,
7d6034d3
DT
2732 },
2733 {
2734 .vendor = PCI_VENDOR_ID_AMD,
2735 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2736 .subvendor = PCI_ANY_ID,
2737 .subdevice = PCI_ANY_ID,
2738 .class = 0,
2739 .class_mask = 0,
7d6034d3 2740 },
df71a053
BP
2741 {
2742 .vendor = PCI_VENDOR_ID_AMD,
2743 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2744 .subvendor = PCI_ANY_ID,
2745 .subdevice = PCI_ANY_ID,
2746 .class = 0,
2747 .class_mask = 0,
2748 },
2749
7d6034d3
DT
2750 {0, }
2751};
2752MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2753
2754static struct pci_driver amd64_pci_driver = {
2755 .name = EDAC_MOD_STR,
2299ef71 2756 .probe = amd64_probe_one_instance,
7d6034d3
DT
2757 .remove = __devexit_p(amd64_remove_one_instance),
2758 .id_table = amd64_pci_table,
2759};
2760
360b7f3c 2761static void setup_pci_device(void)
7d6034d3
DT
2762{
2763 struct mem_ctl_info *mci;
2764 struct amd64_pvt *pvt;
2765
2766 if (amd64_ctl_pci)
2767 return;
2768
cc4d8860 2769 mci = mcis[0];
7d6034d3
DT
2770 if (mci) {
2771
2772 pvt = mci->pvt_info;
2773 amd64_ctl_pci =
8d5b5d9c 2774 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2775
2776 if (!amd64_ctl_pci) {
2777 pr_warning("%s(): Unable to create PCI control\n",
2778 __func__);
2779
2780 pr_warning("%s(): PCI error report via EDAC not set\n",
2781 __func__);
2782 }
2783 }
2784}
2785
2786static int __init amd64_edac_init(void)
2787{
360b7f3c 2788 int err = -ENODEV;
7d6034d3 2789
df71a053 2790 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2791
2792 opstate_init();
2793
9653a5c7 2794 if (amd_cache_northbridges() < 0)
56b34b91 2795 goto err_ret;
7d6034d3 2796
cc4d8860 2797 err = -ENOMEM;
ae7bb7c6
BP
2798 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2799 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2800 if (!(mcis && ecc_stngs))
a9f0fbe2 2801 goto err_free;
cc4d8860 2802
50542251 2803 msrs = msrs_alloc();
56b34b91 2804 if (!msrs)
360b7f3c 2805 goto err_free;
50542251 2806
7d6034d3
DT
2807 err = pci_register_driver(&amd64_pci_driver);
2808 if (err)
56b34b91 2809 goto err_pci;
7d6034d3 2810
56b34b91 2811 err = -ENODEV;
360b7f3c
BP
2812 if (!atomic_read(&drv_instances))
2813 goto err_no_instances;
7d6034d3 2814
360b7f3c
BP
2815 setup_pci_device();
2816 return 0;
7d6034d3 2817
360b7f3c 2818err_no_instances:
7d6034d3 2819 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2820
56b34b91
BP
2821err_pci:
2822 msrs_free(msrs);
2823 msrs = NULL;
cc4d8860 2824
360b7f3c
BP
2825err_free:
2826 kfree(mcis);
2827 mcis = NULL;
2828
2829 kfree(ecc_stngs);
2830 ecc_stngs = NULL;
2831
56b34b91 2832err_ret:
7d6034d3
DT
2833 return err;
2834}
2835
2836static void __exit amd64_edac_exit(void)
2837{
2838 if (amd64_ctl_pci)
2839 edac_pci_release_generic_ctl(amd64_ctl_pci);
2840
2841 pci_unregister_driver(&amd64_pci_driver);
50542251 2842
ae7bb7c6
BP
2843 kfree(ecc_stngs);
2844 ecc_stngs = NULL;
2845
cc4d8860
BP
2846 kfree(mcis);
2847 mcis = NULL;
2848
50542251
BP
2849 msrs_free(msrs);
2850 msrs = NULL;
7d6034d3
DT
2851}
2852
2853module_init(amd64_edac_init);
2854module_exit(amd64_edac_exit);
2855
2856MODULE_LICENSE("GPL");
2857MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2858 "Dave Peterson, Thayne Harbaugh");
2859MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2860 EDAC_AMD64_VERSION);
2861
2862module_param(edac_op_state, int, 0444);
2863MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.406989 seconds and 5 git commands to generate.