amd64_edac: Rework printk macros
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
2bc65418
DT
18/* Lookup table for all possible MC control instances */
19struct amd64_pvt;
3011b20d
BP
20static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
2bc65418 22
b70ef010 23/*
1433eb99
BP
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
b70ef010 26 */
1433eb99
BP
27static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
24f9a7fe 65 [11] = 8192,
b70ef010
BP
66};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
2bc65418
DT
102/*
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
395ae783 120static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
121{
122 u32 scrubval;
123 int i;
124
125 /*
126 * map the configured rate (new_bw) to a value specific to the AMD64
127 * memory controller and apply to register. Search for the first
128 * bandwidth entry that is greater or equal than the setting requested
129 * and program that. If at last entry, turn off DRAM scrubbing.
130 */
131 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
132 /*
133 * skip scrub rates which aren't recommended
134 * (see F10 BKDG, F3x58)
135 */
395ae783 136 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
137 continue;
138
139 if (scrubrates[i].bandwidth <= new_bw)
140 break;
141
142 /*
143 * if no suitable bandwidth found, turn off DRAM scrubbing
144 * entirely by falling back to the last element in the
145 * scrubrates array.
146 */
147 }
148
149 scrubval = scrubrates[i].scrubval;
150 if (scrubval)
24f9a7fe
BP
151 amd64_info("Setting scrub rate bandwidth: %u\n",
152 scrubrates[i].bandwidth);
2bc65418 153 else
24f9a7fe 154 amd64_info("Turning scrubbing off.\n");
2bc65418
DT
155
156 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
157
158 return 0;
159}
160
395ae783 161static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
162{
163 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 164
8d5b5d9c 165 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
166}
167
168static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
169{
170 struct amd64_pvt *pvt = mci->pvt_info;
171 u32 scrubval = 0;
6ba5dcdc 172 int status = -1, i;
2bc65418 173
8d5b5d9c 174 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
2bc65418
DT
175
176 scrubval = scrubval & 0x001F;
177
24f9a7fe 178 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 179
926311fd 180 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418
DT
181 if (scrubrates[i].scrubval == scrubval) {
182 *bw = scrubrates[i].bandwidth;
183 status = 0;
184 break;
185 }
186 }
187
188 return status;
189}
190
6775763a
DT
191/* Map from a CSROW entry to the mask entry that operates on it */
192static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
193{
1433eb99 194 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
195 return csrow;
196 else
197 return csrow >> 1;
6775763a
DT
198}
199
200/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
201static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
202{
203 if (dct == 0)
204 return pvt->dcsb0[csrow];
205 else
206 return pvt->dcsb1[csrow];
207}
208
209/*
210 * Return the 'mask' address the i'th CS entry. This function is needed because
211 * there number of DCSM registers on Rev E and prior vs Rev F and later is
212 * different.
213 */
214static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
215{
216 if (dct == 0)
217 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
218 else
219 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
220}
221
222
223/*
224 * In *base and *limit, pass back the full 40-bit base and limit physical
225 * addresses for the node given by node_id. This information is obtained from
226 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
227 * base and limit addresses are of type SysAddr, as defined at the start of
228 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
229 * in the address range they represent.
230 */
231static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
232 u64 *base, u64 *limit)
233{
234 *base = pvt->dram_base[node_id];
235 *limit = pvt->dram_limit[node_id];
236}
237
238/*
239 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
240 * with node_id
241 */
242static int amd64_base_limit_match(struct amd64_pvt *pvt,
243 u64 sys_addr, int node_id)
244{
245 u64 base, limit, addr;
246
247 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
257 return (addr >= base) && (addr <= limit);
258}
259
260/*
261 * Attempt to map a SysAddr to a node. On success, return a pointer to the
262 * mem_ctl_info structure for the node that the SysAddr maps to.
263 *
264 * On failure, return NULL.
265 */
266static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
267 u64 sys_addr)
268{
269 struct amd64_pvt *pvt;
270 int node_id;
271 u32 intlv_en, bits;
272
273 /*
274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
275 * 3.4.4.2) registers to map the SysAddr to a node ID.
276 */
277 pvt = mci->pvt_info;
278
279 /*
280 * The value of this field should be the same for all DRAM Base
281 * registers. Therefore we arbitrarily choose to read it from the
282 * register for node 0.
283 */
284 intlv_en = pvt->dram_IntlvEn[0];
285
286 if (intlv_en == 0) {
8edc5445 287 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 288 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 289 goto found;
6775763a 290 }
8edc5445 291 goto err_no_match;
6775763a
DT
292 }
293
72f158fe
BP
294 if (unlikely((intlv_en != 0x01) &&
295 (intlv_en != 0x03) &&
296 (intlv_en != 0x07))) {
24f9a7fe 297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
298 return NULL;
299 }
300
301 bits = (((u32) sys_addr) >> 12) & intlv_en;
302
303 for (node_id = 0; ; ) {
8edc5445 304 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
305 break; /* intlv_sel field matches */
306
307 if (++node_id >= DRAM_REG_COUNT)
308 goto err_no_match;
309 }
310
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
314 "range for node %d with node interleaving enabled.\n",
315 __func__, sys_addr, node_id);
6775763a
DT
316 return NULL;
317 }
318
319found:
320 return edac_mc_find(node_id);
321
322err_no_match:
323 debugf2("sys_addr 0x%lx doesn't match any node\n",
324 (unsigned long)sys_addr);
325
326 return NULL;
327}
e2ce7255
DT
328
329/*
330 * Extract the DRAM CS base address from selected csrow register.
331 */
332static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
333{
334 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
335 pvt->dcs_shift;
336}
337
338/*
339 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
340 */
341static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
342{
343 u64 dcsm_bits, other_bits;
344 u64 mask;
345
346 /* Extract bits from DRAM CS Mask. */
347 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
348
349 other_bits = pvt->dcsm_mask;
350 other_bits = ~(other_bits << pvt->dcs_shift);
351
352 /*
353 * The extracted bits from DCSM belong in the spaces represented by
354 * the cleared bits in other_bits.
355 */
356 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
357
358 return mask;
359}
360
361/*
362 * @input_addr is an InputAddr associated with the node given by mci. Return the
363 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
364 */
365static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
366{
367 struct amd64_pvt *pvt;
368 int csrow;
369 u64 base, mask;
370
371 pvt = mci->pvt_info;
372
373 /*
374 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
375 * base/mask register pair, test the condition shown near the start of
376 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
377 */
9d858bb1 378 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
379
380 /* This DRAM chip select is disabled on this node */
381 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
382 continue;
383
384 base = base_from_dct_base(pvt, csrow);
385 mask = ~mask_from_dct_mask(pvt, csrow);
386
387 if ((input_addr & mask) == (base & mask)) {
388 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
389 (unsigned long)input_addr, csrow,
390 pvt->mc_node_id);
391
392 return csrow;
393 }
394 }
395
396 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
397 (unsigned long)input_addr, pvt->mc_node_id);
398
399 return -1;
400}
401
402/*
403 * Return the base value defined by the DRAM Base register for the node
404 * represented by mci. This function returns the full 40-bit value despite the
405 * fact that the register only stores bits 39-24 of the value. See section
406 * 3.4.4.1 (BKDG #26094, K8, revA-E)
407 */
408static inline u64 get_dram_base(struct mem_ctl_info *mci)
409{
410 struct amd64_pvt *pvt = mci->pvt_info;
411
412 return pvt->dram_base[pvt->mc_node_id];
413}
414
415/*
416 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
417 * for the node represented by mci. Info is passed back in *hole_base,
418 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
419 * info is invalid. Info may be invalid for either of the following reasons:
420 *
421 * - The revision of the node is not E or greater. In this case, the DRAM Hole
422 * Address Register does not exist.
423 *
424 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
425 * indicating that its contents are not valid.
426 *
427 * The values passed back in *hole_base, *hole_offset, and *hole_size are
428 * complete 32-bit values despite the fact that the bitfields in the DHAR
429 * only represent bits 31-24 of the base and offset values.
430 */
431int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
432 u64 *hole_offset, u64 *hole_size)
433{
434 struct amd64_pvt *pvt = mci->pvt_info;
435 u64 base;
436
437 /* only revE and later have the DRAM Hole Address Register */
1433eb99 438 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
439 debugf1(" revision %d for node %d does not support DHAR\n",
440 pvt->ext_model, pvt->mc_node_id);
441 return 1;
442 }
443
444 /* only valid for Fam10h */
445 if (boot_cpu_data.x86 == 0x10 &&
446 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
447 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
448 return 1;
449 }
450
451 if ((pvt->dhar & DHAR_VALID) == 0) {
452 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
453 pvt->mc_node_id);
454 return 1;
455 }
456
457 /* This node has Memory Hoisting */
458
459 /* +------------------+--------------------+--------------------+-----
460 * | memory | DRAM hole | relocated |
461 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
462 * | | | DRAM hole |
463 * | | | [0x100000000, |
464 * | | | (0x100000000+ |
465 * | | | (0xffffffff-x))] |
466 * +------------------+--------------------+--------------------+-----
467 *
468 * Above is a diagram of physical memory showing the DRAM hole and the
469 * relocated addresses from the DRAM hole. As shown, the DRAM hole
470 * starts at address x (the base address) and extends through address
471 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
472 * addresses in the hole so that they start at 0x100000000.
473 */
474
475 base = dhar_base(pvt->dhar);
476
477 *hole_base = base;
478 *hole_size = (0x1ull << 32) - base;
479
480 if (boot_cpu_data.x86 > 0xf)
481 *hole_offset = f10_dhar_offset(pvt->dhar);
482 else
483 *hole_offset = k8_dhar_offset(pvt->dhar);
484
485 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
486 pvt->mc_node_id, (unsigned long)*hole_base,
487 (unsigned long)*hole_offset, (unsigned long)*hole_size);
488
489 return 0;
490}
491EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
492
93c2df58
DT
493/*
494 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
495 * assumed that sys_addr maps to the node given by mci.
496 *
497 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
498 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
499 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
500 * then it is also involved in translating a SysAddr to a DramAddr. Sections
501 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
502 * These parts of the documentation are unclear. I interpret them as follows:
503 *
504 * When node n receives a SysAddr, it processes the SysAddr as follows:
505 *
506 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
507 * Limit registers for node n. If the SysAddr is not within the range
508 * specified by the base and limit values, then node n ignores the Sysaddr
509 * (since it does not map to node n). Otherwise continue to step 2 below.
510 *
511 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
512 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
513 * the range of relocated addresses (starting at 0x100000000) from the DRAM
514 * hole. If not, skip to step 3 below. Else get the value of the
515 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
516 * offset defined by this value from the SysAddr.
517 *
518 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
519 * Base register for node n. To obtain the DramAddr, subtract the base
520 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
521 */
522static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
523{
524 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
525 int ret = 0;
526
527 dram_base = get_dram_base(mci);
528
529 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
530 &hole_size);
531 if (!ret) {
532 if ((sys_addr >= (1ull << 32)) &&
533 (sys_addr < ((1ull << 32) + hole_size))) {
534 /* use DHAR to translate SysAddr to DramAddr */
535 dram_addr = sys_addr - hole_offset;
536
537 debugf2("using DHAR to translate SysAddr 0x%lx to "
538 "DramAddr 0x%lx\n",
539 (unsigned long)sys_addr,
540 (unsigned long)dram_addr);
541
542 return dram_addr;
543 }
544 }
545
546 /*
547 * Translate the SysAddr to a DramAddr as shown near the start of
548 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
549 * only deals with 40-bit values. Therefore we discard bits 63-40 of
550 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
551 * discard are all 1s. Otherwise the bits we discard are all 0s. See
552 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
553 * Programmer's Manual Volume 1 Application Programming.
554 */
555 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
556
557 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
558 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
559 (unsigned long)dram_addr);
560 return dram_addr;
561}
562
563/*
564 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
565 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
566 * for node interleaving.
567 */
568static int num_node_interleave_bits(unsigned intlv_en)
569{
570 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
571 int n;
572
573 BUG_ON(intlv_en > 7);
574 n = intlv_shift_table[intlv_en];
575 return n;
576}
577
578/* Translate the DramAddr given by @dram_addr to an InputAddr. */
579static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
580{
581 struct amd64_pvt *pvt;
582 int intlv_shift;
583 u64 input_addr;
584
585 pvt = mci->pvt_info;
586
587 /*
588 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
589 * concerning translating a DramAddr to an InputAddr.
590 */
591 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
592 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
593 (dram_addr & 0xfff);
594
595 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
596 intlv_shift, (unsigned long)dram_addr,
597 (unsigned long)input_addr);
598
599 return input_addr;
600}
601
602/*
603 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
604 * assumed that @sys_addr maps to the node given by mci.
605 */
606static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
607{
608 u64 input_addr;
609
610 input_addr =
611 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
612
613 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
614 (unsigned long)sys_addr, (unsigned long)input_addr);
615
616 return input_addr;
617}
618
619
620/*
621 * @input_addr is an InputAddr associated with the node represented by mci.
622 * Translate @input_addr to a DramAddr and return the result.
623 */
624static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
625{
626 struct amd64_pvt *pvt;
627 int node_id, intlv_shift;
628 u64 bits, dram_addr;
629 u32 intlv_sel;
630
631 /*
632 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
633 * shows how to translate a DramAddr to an InputAddr. Here we reverse
634 * this procedure. When translating from a DramAddr to an InputAddr, the
635 * bits used for node interleaving are discarded. Here we recover these
636 * bits from the IntlvSel field of the DRAM Limit register (section
637 * 3.4.4.2) for the node that input_addr is associated with.
638 */
639 pvt = mci->pvt_info;
640 node_id = pvt->mc_node_id;
641 BUG_ON((node_id < 0) || (node_id > 7));
642
643 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
644
645 if (intlv_shift == 0) {
646 debugf1(" InputAddr 0x%lx translates to DramAddr of "
647 "same value\n", (unsigned long)input_addr);
648
649 return input_addr;
650 }
651
652 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
653 (input_addr & 0xfff);
654
655 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
656 dram_addr = bits + (intlv_sel << 12);
657
658 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
659 "(%d node interleave bits)\n", (unsigned long)input_addr,
660 (unsigned long)dram_addr, intlv_shift);
661
662 return dram_addr;
663}
664
665/*
666 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
667 * @dram_addr to a SysAddr.
668 */
669static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
670{
671 struct amd64_pvt *pvt = mci->pvt_info;
672 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
673 int ret = 0;
674
675 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
676 &hole_size);
677 if (!ret) {
678 if ((dram_addr >= hole_base) &&
679 (dram_addr < (hole_base + hole_size))) {
680 sys_addr = dram_addr + hole_offset;
681
682 debugf1("using DHAR to translate DramAddr 0x%lx to "
683 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
684 (unsigned long)sys_addr);
685
686 return sys_addr;
687 }
688 }
689
690 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
691 sys_addr = dram_addr + base;
692
693 /*
694 * The sys_addr we have computed up to this point is a 40-bit value
695 * because the k8 deals with 40-bit values. However, the value we are
696 * supposed to return is a full 64-bit physical address. The AMD
697 * x86-64 architecture specifies that the most significant implemented
698 * address bit through bit 63 of a physical address must be either all
699 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
700 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
701 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
702 * Programming.
703 */
704 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
705
706 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
707 pvt->mc_node_id, (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
709
710 return sys_addr;
711}
712
713/*
714 * @input_addr is an InputAddr associated with the node given by mci. Translate
715 * @input_addr to a SysAddr.
716 */
717static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
718 u64 input_addr)
719{
720 return dram_addr_to_sys_addr(mci,
721 input_addr_to_dram_addr(mci, input_addr));
722}
723
724/*
725 * Find the minimum and maximum InputAddr values that map to the given @csrow.
726 * Pass back these values in *input_addr_min and *input_addr_max.
727 */
728static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
729 u64 *input_addr_min, u64 *input_addr_max)
730{
731 struct amd64_pvt *pvt;
732 u64 base, mask;
733
734 pvt = mci->pvt_info;
9d858bb1 735 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
736
737 base = base_from_dct_base(pvt, csrow);
738 mask = mask_from_dct_mask(pvt, csrow);
739
740 *input_addr_min = base & ~mask;
741 *input_addr_max = base | mask | pvt->dcs_mask_notused;
742}
743
93c2df58
DT
744/* Map the Error address to a PAGE and PAGE OFFSET. */
745static inline void error_address_to_page_and_offset(u64 error_address,
746 u32 *page, u32 *offset)
747{
748 *page = (u32) (error_address >> PAGE_SHIFT);
749 *offset = ((u32) error_address) & ~PAGE_MASK;
750}
751
752/*
753 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
754 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
755 * of a node that detected an ECC memory error. mci represents the node that
756 * the error address maps to (possibly different from the node that detected
757 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
758 * error.
759 */
760static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
761{
762 int csrow;
763
764 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
765
766 if (csrow == -1)
24f9a7fe
BP
767 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
768 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
769 return csrow;
770}
e2ce7255 771
bfc04aec 772static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 773
ad6a32e9
BP
774static u16 extract_syndrome(struct err_regs *err)
775{
776 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
777}
778
2da11654
DT
779/*
780 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
781 * are ECC capable.
782 */
783static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
784{
785 int bit;
584fcff4 786 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 787
1433eb99 788 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
789 ? 19
790 : 17;
791
584fcff4 792 if (pvt->dclr0 & BIT(bit))
2da11654
DT
793 edac_cap = EDAC_FLAG_SECDED;
794
795 return edac_cap;
796}
797
798
8566c4df 799static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 800
68798e17
BP
801static void amd64_dump_dramcfg_low(u32 dclr, int chan)
802{
803 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
804
805 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
806 (dclr & BIT(16)) ? "un" : "",
807 (dclr & BIT(19)) ? "yes" : "no");
808
809 debugf1(" PAR/ERR parity: %s\n",
810 (dclr & BIT(8)) ? "enabled" : "disabled");
811
812 debugf1(" DCT 128bit mode width: %s\n",
813 (dclr & BIT(11)) ? "128b" : "64b");
814
815 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
816 (dclr & BIT(12)) ? "yes" : "no",
817 (dclr & BIT(13)) ? "yes" : "no",
818 (dclr & BIT(14)) ? "yes" : "no",
819 (dclr & BIT(15)) ? "yes" : "no");
820}
821
2da11654
DT
822/* Display and decode various NB registers for debug purposes. */
823static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
824{
825 int ganged;
826
68798e17
BP
827 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
828
829 debugf1(" NB two channel DRAM capable: %s\n",
830 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 831
68798e17
BP
832 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
833 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
834 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
835
836 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 837
8de1d91e 838 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 839
8de1d91e
BP
840 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
841 "offset: 0x%08x\n",
842 pvt->dhar,
843 dhar_base(pvt->dhar),
844 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
845 : f10_dhar_offset(pvt->dhar));
2da11654 846
8de1d91e
BP
847 debugf1(" DramHoleValid: %s\n",
848 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 849
8de1d91e 850 /* everything below this point is Fam10h and above */
8566c4df
BP
851 if (boot_cpu_data.x86 == 0xf) {
852 amd64_debug_display_dimm_sizes(0, pvt);
2da11654 853 return;
8566c4df 854 }
2da11654 855
24f9a7fe 856 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 857
8de1d91e 858 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
859 if (!dct_ganging_enabled(pvt))
860 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
861
862 /*
863 * Determine if ganged and then dump memory sizes for first controller,
864 * and if NOT ganged dump info for 2nd controller.
865 */
866 ganged = dct_ganging_enabled(pvt);
867
8566c4df 868 amd64_debug_display_dimm_sizes(0, pvt);
2da11654
DT
869
870 if (!ganged)
8566c4df 871 amd64_debug_display_dimm_sizes(1, pvt);
2da11654
DT
872}
873
874/* Read in both of DBAM registers */
875static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
876{
8d5b5d9c 877 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
2da11654 878
6ba5dcdc 879 if (boot_cpu_data.x86 >= 0x10)
8d5b5d9c 880 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
2da11654
DT
881}
882
94be4bff
DT
883/*
884 * NOTE: CPU Revision Dependent code: Rev E and Rev F
885 *
886 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
887 * set the shift factor for the DCSB and DCSM values.
888 *
889 * ->dcs_mask_notused, RevE:
890 *
891 * To find the max InputAddr for the csrow, start with the base address and set
892 * all bits that are "don't care" bits in the test at the start of section
893 * 3.5.4 (p. 84).
894 *
895 * The "don't care" bits are all set bits in the mask and all bits in the gaps
896 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
897 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
898 * gaps.
899 *
900 * ->dcs_mask_notused, RevF and later:
901 *
902 * To find the max InputAddr for the csrow, start with the base address and set
903 * all bits that are "don't care" bits in the test at the start of NPT section
904 * 4.5.4 (p. 87).
905 *
906 * The "don't care" bits are all set bits in the mask and all bits in the gaps
907 * between bit ranges [36:27] and [21:13].
908 *
909 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
910 * which are all bits in the above-mentioned gaps.
911 */
912static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
913{
9d858bb1 914
1433eb99 915 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
916 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
917 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
918 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
919 pvt->dcs_shift = REV_E_DCS_SHIFT;
920 pvt->cs_count = 8;
921 pvt->num_dcsm = 8;
922 } else {
94be4bff
DT
923 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
924 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
925 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
926 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
3ab0e7dc
BP
927 pvt->cs_count = 8;
928 pvt->num_dcsm = 4;
94be4bff
DT
929 }
930}
931
932/*
933 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
934 */
935static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
936{
6ba5dcdc 937 int cs, reg;
94be4bff
DT
938
939 amd64_set_dct_base_and_mask(pvt);
940
9d858bb1 941 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 942 reg = K8_DCSB0 + (cs * 4);
8d5b5d9c 943 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
94be4bff
DT
944 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
945 cs, pvt->dcsb0[cs], reg);
946
947 /* If DCT are NOT ganged, then read in DCT1's base */
948 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
949 reg = F10_DCSB1 + (cs * 4);
8d5b5d9c 950 if (!amd64_read_pci_cfg(pvt->F2, reg,
6ba5dcdc 951 &pvt->dcsb1[cs]))
94be4bff
DT
952 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
953 cs, pvt->dcsb1[cs], reg);
954 } else {
955 pvt->dcsb1[cs] = 0;
956 }
957 }
958
959 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 960 reg = K8_DCSM0 + (cs * 4);
8d5b5d9c 961 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
94be4bff
DT
962 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
963 cs, pvt->dcsm0[cs], reg);
964
965 /* If DCT are NOT ganged, then read in DCT1's mask */
966 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
967 reg = F10_DCSM1 + (cs * 4);
8d5b5d9c 968 if (!amd64_read_pci_cfg(pvt->F2, reg,
6ba5dcdc 969 &pvt->dcsm1[cs]))
94be4bff
DT
970 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
971 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 972 } else {
94be4bff 973 pvt->dcsm1[cs] = 0;
6ba5dcdc 974 }
94be4bff
DT
975 }
976}
977
24f9a7fe 978static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
979{
980 enum mem_type type;
981
1433eb99 982 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
983 if (pvt->dchr0 & DDR3_MODE)
984 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
985 else
986 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 987 } else {
94be4bff
DT
988 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
989 }
990
24f9a7fe 991 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
992
993 return type;
994}
995
ddff876d
DT
996/*
997 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
998 * and the later RevF memory controllers (DDR vs DDR2)
999 *
1000 * Return:
1001 * number of memory channels in operation
1002 * Pass back:
1003 * contents of the DCL0_LOW register
1004 */
1005static int k8_early_channel_count(struct amd64_pvt *pvt)
1006{
1007 int flag, err = 0;
1008
8d5b5d9c 1009 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1010 if (err)
1011 return err;
1012
9f56da0e 1013 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
1014 /* RevF (NPT) and later */
1015 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 1016 else
ddff876d
DT
1017 /* RevE and earlier */
1018 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
1019
1020 /* not used */
1021 pvt->dclr1 = 0;
1022
1023 return (flag) ? 2 : 1;
1024}
1025
1026/* extract the ERROR ADDRESS for the K8 CPUs */
1027static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1028 struct err_regs *info)
ddff876d
DT
1029{
1030 return (((u64) (info->nbeah & 0xff)) << 32) +
1031 (info->nbeal & ~0x03);
1032}
1033
1034/*
1035 * Read the Base and Limit registers for K8 based Memory controllers; extract
1036 * fields from the 'raw' reg into separate data fields
1037 *
1038 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1039 */
1040static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1041{
1042 u32 low;
1043 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1044
8d5b5d9c 1045 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1046
1047 /* Extract parts into separate data entries */
4997811e 1048 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1049 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1050 pvt->dram_rw_en[dram] = (low & 0x3);
1051
8d5b5d9c 1052 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1053
1054 /*
1055 * Extract parts into separate data entries. Limit is the HIGHEST memory
1056 * location of the region, so lower 24 bits need to be all ones
1057 */
4997811e 1058 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1059 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1060 pvt->dram_DstNode[dram] = (low & 0x7);
1061}
1062
1063static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1064 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1065{
1066 struct mem_ctl_info *src_mci;
ddff876d
DT
1067 int channel, csrow;
1068 u32 page, offset;
ad6a32e9 1069 u16 syndrome;
ddff876d 1070
ad6a32e9 1071 syndrome = extract_syndrome(err_info);
ddff876d
DT
1072
1073 /* CHIPKILL enabled */
ad6a32e9 1074 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1075 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1076 if (channel < 0) {
1077 /*
1078 * Syndrome didn't map, so we don't know which of the
1079 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 * as suspect.
1081 */
24f9a7fe
BP
1082 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1083 "error reporting race\n", syndrome);
ddff876d
DT
1084 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1085 return;
1086 }
1087 } else {
1088 /*
1089 * non-chipkill ecc mode
1090 *
1091 * The k8 documentation is unclear about how to determine the
1092 * channel number when using non-chipkill memory. This method
1093 * was obtained from email communication with someone at AMD.
1094 * (Wish the email was placed in this comment - norsk)
1095 */
44e9e2ee 1096 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1097 }
1098
1099 /*
1100 * Find out which node the error address belongs to. This may be
1101 * different from the node that detected the error.
1102 */
44e9e2ee 1103 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1104 if (!src_mci) {
24f9a7fe 1105 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1106 (unsigned long)sys_addr);
ddff876d
DT
1107 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1108 return;
1109 }
1110
44e9e2ee
BP
1111 /* Now map the sys_addr to a CSROW */
1112 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1113 if (csrow < 0) {
1114 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1115 } else {
44e9e2ee 1116 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1117
1118 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1119 channel, EDAC_MOD_STR);
1120 }
1121}
1122
1433eb99 1123static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1124{
1433eb99 1125 int *dbam_map;
ddff876d 1126
1433eb99
BP
1127 if (pvt->ext_model >= K8_REV_F)
1128 dbam_map = ddr2_dbam;
1129 else if (pvt->ext_model >= K8_REV_D)
1130 dbam_map = ddr2_dbam_revD;
1131 else
1132 dbam_map = ddr2_dbam_revCG;
ddff876d 1133
1433eb99 1134 return dbam_map[cs_mode];
ddff876d
DT
1135}
1136
1afd3c98
DT
1137/*
1138 * Get the number of DCT channels in use.
1139 *
1140 * Return:
1141 * number of Memory Channels in operation
1142 * Pass back:
1143 * contents of the DCL0_LOW register
1144 */
1145static int f10_early_channel_count(struct amd64_pvt *pvt)
1146{
57a30854 1147 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1148 int i, j, channels = 0;
1afd3c98
DT
1149 u32 dbam;
1150
1afd3c98
DT
1151 /* If we are in 128 bit mode, then we are using 2 channels */
1152 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1153 channels = 2;
1154 return channels;
1155 }
1156
1157 /*
d16149e8
BP
1158 * Need to check if in unganged mode: In such, there are 2 channels,
1159 * but they are not in 128 bit mode and thus the above 'dclr0' status
1160 * bit will be OFF.
1afd3c98
DT
1161 *
1162 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1163 * their CSEnable bit on. If so, then SINGLE DIMM case.
1164 */
d16149e8 1165 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1166
1afd3c98
DT
1167 /*
1168 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1169 * is more than just one DIMM present in unganged mode. Need to check
1170 * both controllers since DIMMs can be placed in either one.
1171 */
57a30854 1172 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
8d5b5d9c 1173 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1afd3c98
DT
1174 goto err_reg;
1175
57a30854
WW
1176 for (j = 0; j < 4; j++) {
1177 if (DBAM_DIMM(j, dbam) > 0) {
1178 channels++;
1179 break;
1180 }
1181 }
1afd3c98
DT
1182 }
1183
d16149e8
BP
1184 if (channels > 2)
1185 channels = 2;
1186
24f9a7fe 1187 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1188
1189 return channels;
1190
1191err_reg:
1192 return -1;
1193
1194}
1195
1433eb99 1196static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1197{
1433eb99
BP
1198 int *dbam_map;
1199
1200 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1201 dbam_map = ddr3_dbam;
1202 else
1203 dbam_map = ddr2_dbam;
1204
1205 return dbam_map[cs_mode];
1afd3c98
DT
1206}
1207
1208/* Enable extended configuration access via 0xCF8 feature */
1209static void amd64_setup(struct amd64_pvt *pvt)
1210{
1211 u32 reg;
1212
8d5b5d9c 1213 amd64_read_pci_cfg(pvt->F3, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1214
1215 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1216 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
8d5b5d9c 1217 pci_write_config_dword(pvt->F3, F10_NB_CFG_HIGH, reg);
1afd3c98
DT
1218}
1219
1220/* Restore the extended configuration access via 0xCF8 feature */
1221static void amd64_teardown(struct amd64_pvt *pvt)
1222{
1223 u32 reg;
1224
8d5b5d9c 1225 amd64_read_pci_cfg(pvt->F3, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1226
1227 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1228 if (pvt->flags.cf8_extcfg)
1229 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
8d5b5d9c 1230 pci_write_config_dword(pvt->F3, F10_NB_CFG_HIGH, reg);
1afd3c98
DT
1231}
1232
1233static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1234 struct err_regs *info)
1afd3c98
DT
1235{
1236 return (((u64) (info->nbeah & 0xffff)) << 32) +
1237 (info->nbeal & ~0x01);
1238}
1239
1240/*
1241 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1242 * fields from the 'raw' reg into separate data fields.
1243 *
1244 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1245 */
1246static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1247{
1248 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1249
1250 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1251 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1252
1253 /* read the 'raw' DRAM BASE Address register */
8d5b5d9c 1254 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
1afd3c98
DT
1255
1256 /* Read from the ECS data register */
8d5b5d9c 1257 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1afd3c98
DT
1258
1259 /* Extract parts into separate data entries */
1260 pvt->dram_rw_en[dram] = (low_base & 0x3);
1261
1262 if (pvt->dram_rw_en[dram] == 0)
1263 return;
1264
1265 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1266
66216a7a 1267 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1268 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1269
1270 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1271 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1272
1273 /* read the 'raw' LIMIT registers */
8d5b5d9c 1274 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
1afd3c98
DT
1275
1276 /* Read from the ECS data register for the HIGH portion */
8d5b5d9c 1277 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1afd3c98 1278
1afd3c98
DT
1279 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1280 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1281
1282 /*
1283 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1284 * memory location of the region, so low 24 bits need to be all ones.
1285 */
66216a7a 1286 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1287 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1288 0x00FFFFFF;
1afd3c98 1289}
6163b5d4
DT
1290
1291static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1292{
6163b5d4 1293
8d5b5d9c 1294 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
6ba5dcdc 1295 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1296 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1297 "High range addresses at: 0x%x\n",
1298 pvt->dram_ctl_select_low,
1299 dct_sel_baseaddr(pvt));
1300
1301 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1302 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1303 (dct_dram_enabled(pvt) ? "yes" : "no"));
1304
1305 if (!dct_ganging_enabled(pvt))
1306 debugf0(" Address range split per DCT: %s\n",
1307 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1308
1309 debugf0(" DCT data interleave for ECC: %s, "
1310 "DRAM cleared since last warm reset: %s\n",
1311 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1312 (dct_memory_cleared(pvt) ? "yes" : "no"));
1313
1314 debugf0(" DCT channel interleave: %s, "
1315 "DCT interleave bits selector: 0x%x\n",
1316 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1317 dct_sel_interleave_addr(pvt));
1318 }
1319
8d5b5d9c 1320 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
6ba5dcdc 1321 &pvt->dram_ctl_select_high);
6163b5d4
DT
1322}
1323
f71d0a05
DT
1324/*
1325 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1326 * Interleaving Modes.
1327 */
6163b5d4
DT
1328static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1329 int hi_range_sel, u32 intlv_en)
1330{
1331 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1332
1333 if (dct_ganging_enabled(pvt))
1334 cs = 0;
1335 else if (hi_range_sel)
1336 cs = dct_sel_high;
1337 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1338 /*
1339 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1340 */
6163b5d4
DT
1341 if (dct_sel_interleave_addr(pvt) == 0)
1342 cs = sys_addr >> 6 & 1;
1343 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1344 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1345
1346 if (dct_sel_interleave_addr(pvt) & 1)
1347 cs = (sys_addr >> 9 & 1) ^ temp;
1348 else
1349 cs = (sys_addr >> 6 & 1) ^ temp;
1350 } else if (intlv_en & 4)
1351 cs = sys_addr >> 15 & 1;
1352 else if (intlv_en & 2)
1353 cs = sys_addr >> 14 & 1;
1354 else if (intlv_en & 1)
1355 cs = sys_addr >> 13 & 1;
1356 else
1357 cs = sys_addr >> 12 & 1;
1358 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1359 cs = ~dct_sel_high & 1;
1360 else
1361 cs = 0;
1362
1363 return cs;
1364}
1365
1366static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1367{
1368 if (intlv_en == 1)
1369 return 1;
1370 else if (intlv_en == 3)
1371 return 2;
1372 else if (intlv_en == 7)
1373 return 3;
1374
1375 return 0;
1376}
1377
f71d0a05
DT
1378/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1379static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1380 u32 dct_sel_base_addr,
1381 u64 dct_sel_base_off,
f71d0a05 1382 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1383 u64 dram_base)
1384{
1385 u64 chan_off;
1386
1387 if (hi_range_sel) {
9975a5f2 1388 if (!(dct_sel_base_addr & 0xFFFF0000) &&
f71d0a05 1389 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1390 chan_off = hole_off << 16;
1391 else
1392 chan_off = dct_sel_base_off;
1393 } else {
f71d0a05 1394 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1395 chan_off = hole_off << 16;
1396 else
1397 chan_off = dram_base & 0xFFFFF8000000ULL;
1398 }
1399
1400 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1401 (chan_off & 0x0000FFFFFF800000ULL);
1402}
1403
1404/* Hack for the time being - Can we get this from BIOS?? */
1405#define CH0SPARE_RANK 0
1406#define CH1SPARE_RANK 1
1407
1408/*
1409 * checks if the csrow passed in is marked as SPARED, if so returns the new
1410 * spare row
1411 */
1412static inline int f10_process_possible_spare(int csrow,
1413 u32 cs, struct amd64_pvt *pvt)
1414{
1415 u32 swap_done;
1416 u32 bad_dram_cs;
1417
1418 /* Depending on channel, isolate respective SPARING info */
1419 if (cs) {
1420 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1421 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1422 if (swap_done && (csrow == bad_dram_cs))
1423 csrow = CH1SPARE_RANK;
1424 } else {
1425 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1426 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1427 if (swap_done && (csrow == bad_dram_cs))
1428 csrow = CH0SPARE_RANK;
1429 }
1430 return csrow;
1431}
1432
1433/*
1434 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1435 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1436 *
1437 * Return:
1438 * -EINVAL: NOT FOUND
1439 * 0..csrow = Chip-Select Row
1440 */
1441static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1442{
1443 struct mem_ctl_info *mci;
1444 struct amd64_pvt *pvt;
1445 u32 cs_base, cs_mask;
1446 int cs_found = -EINVAL;
1447 int csrow;
1448
1449 mci = mci_lookup[nid];
1450 if (!mci)
1451 return cs_found;
1452
1453 pvt = mci->pvt_info;
1454
1455 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1456
9d858bb1 1457 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1458
1459 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1460 if (!(cs_base & K8_DCSB_CS_ENABLE))
1461 continue;
1462
1463 /*
1464 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1465 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1466 * of the actual address.
1467 */
1468 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1469
1470 /*
1471 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1472 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1473 */
1474 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1475
1476 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1477 csrow, cs_base, cs_mask);
1478
1479 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1480
1481 debugf1(" Final CSMask=0x%x\n", cs_mask);
1482 debugf1(" (InputAddr & ~CSMask)=0x%x "
1483 "(CSBase & ~CSMask)=0x%x\n",
1484 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1485
1486 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1487 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1488
1489 debugf1(" MATCH csrow=%d\n", cs_found);
1490 break;
1491 }
1492 }
1493 return cs_found;
1494}
1495
f71d0a05
DT
1496/* For a given @dram_range, check if @sys_addr falls within it. */
1497static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1498 u64 sys_addr, int *nid, int *chan_sel)
1499{
1500 int node_id, cs_found = -EINVAL, high_range = 0;
1501 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1502 u32 hole_valid, tmp, dct_sel_base, channel;
1503 u64 dram_base, chan_addr, dct_sel_base_off;
1504
1505 dram_base = pvt->dram_base[dram_range];
1506 intlv_en = pvt->dram_IntlvEn[dram_range];
1507
1508 node_id = pvt->dram_DstNode[dram_range];
1509 intlv_sel = pvt->dram_IntlvSel[dram_range];
1510
1511 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1512 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1513
1514 /*
1515 * This assumes that one node's DHAR is the same as all the other
1516 * nodes' DHAR.
1517 */
1518 hole_off = (pvt->dhar & 0x0000FF80);
1519 hole_valid = (pvt->dhar & 0x1);
1520 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1521
1522 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1523 hole_off, hole_valid, intlv_sel);
1524
e726f3c3 1525 if (intlv_en &&
f71d0a05
DT
1526 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1527 return -EINVAL;
1528
1529 dct_sel_base = dct_sel_baseaddr(pvt);
1530
1531 /*
1532 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1533 * select between DCT0 and DCT1.
1534 */
1535 if (dct_high_range_enabled(pvt) &&
1536 !dct_ganging_enabled(pvt) &&
1537 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1538 high_range = 1;
1539
1540 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1541
1542 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1543 dct_sel_base_off, hole_valid,
1544 hole_off, dram_base);
1545
1546 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1547
1548 /* remove Node ID (in case of memory interleaving) */
1549 tmp = chan_addr & 0xFC0;
1550
1551 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1552
1553 /* remove channel interleave and hash */
1554 if (dct_interleave_enabled(pvt) &&
1555 !dct_high_range_enabled(pvt) &&
1556 !dct_ganging_enabled(pvt)) {
1557 if (dct_sel_interleave_addr(pvt) != 1)
1558 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1559 else {
1560 tmp = chan_addr & 0xFC0;
1561 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1562 | tmp;
1563 }
1564 }
1565
1566 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1567 chan_addr, (u32)(chan_addr >> 8));
1568
1569 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1570
1571 if (cs_found >= 0) {
1572 *nid = node_id;
1573 *chan_sel = channel;
1574 }
1575 return cs_found;
1576}
1577
1578static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1579 int *node, int *chan_sel)
1580{
1581 int dram_range, cs_found = -EINVAL;
1582 u64 dram_base, dram_limit;
1583
1584 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1585
1586 if (!pvt->dram_rw_en[dram_range])
1587 continue;
1588
1589 dram_base = pvt->dram_base[dram_range];
1590 dram_limit = pvt->dram_limit[dram_range];
1591
1592 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1593
1594 cs_found = f10_match_to_this_node(pvt, dram_range,
1595 sys_addr, node,
1596 chan_sel);
1597 if (cs_found >= 0)
1598 break;
1599 }
1600 }
1601 return cs_found;
1602}
1603
1604/*
bdc30a0c
BP
1605 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1606 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1607 *
bdc30a0c
BP
1608 * The @sys_addr is usually an error address received from the hardware
1609 * (MCX_ADDR).
f71d0a05
DT
1610 */
1611static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1612 struct err_regs *err_info,
f71d0a05
DT
1613 u64 sys_addr)
1614{
1615 struct amd64_pvt *pvt = mci->pvt_info;
1616 u32 page, offset;
f71d0a05 1617 int nid, csrow, chan = 0;
ad6a32e9 1618 u16 syndrome;
f71d0a05
DT
1619
1620 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1621
bdc30a0c
BP
1622 if (csrow < 0) {
1623 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1624 return;
1625 }
1626
1627 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1628
ad6a32e9 1629 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1630
1631 /*
1632 * We need the syndromes for channel detection only when we're
1633 * ganged. Otherwise @chan should already contain the channel at
1634 * this point.
1635 */
962b70a1 1636 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1637 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1638
bdc30a0c
BP
1639 if (chan >= 0)
1640 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1641 EDAC_MOD_STR);
1642 else
f71d0a05 1643 /*
bdc30a0c 1644 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1645 */
bdc30a0c 1646 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1647 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1648 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1649}
1650
f71d0a05 1651/*
8566c4df 1652 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1653 * CSROWs as well
1654 */
8566c4df 1655static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1656{
603adaf6 1657 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1658 u32 dbam;
1659 u32 *dcsb;
1660
8566c4df 1661 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1662 if (pvt->dclr0 & F10_WIDTH_128)
1663 factor = 1;
1664
8566c4df 1665 /* K8 families < revF not supported yet */
1433eb99 1666 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1667 return;
1668 else
1669 WARN_ON(ctrl != 0);
1670 }
1671
1672 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1673 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
f71d0a05
DT
1674
1675 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1676 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1677
8566c4df
BP
1678 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1679
f71d0a05
DT
1680 /* Dump memory sizes for DIMM and its CSROWs */
1681 for (dimm = 0; dimm < 4; dimm++) {
1682
1683 size0 = 0;
1684 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1685 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1686
1687 size1 = 0;
1688 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1689 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1690
24f9a7fe
BP
1691 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1692 dimm * 2, size0 << factor,
1693 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1694 }
1695}
1696
4d37607a
DT
1697static struct amd64_family_type amd64_family_types[] = {
1698 [K8_CPUS] = {
0092b20d 1699 .ctl_name = "K8",
8d5b5d9c
BP
1700 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1701 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1702 .ops = {
1433eb99
BP
1703 .early_channel_count = k8_early_channel_count,
1704 .get_error_address = k8_get_error_address,
1705 .read_dram_base_limit = k8_read_dram_base_limit,
1706 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1707 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1708 }
1709 },
1710 [F10_CPUS] = {
0092b20d 1711 .ctl_name = "F10h",
8d5b5d9c
BP
1712 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1713 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1714 .ops = {
1433eb99
BP
1715 .early_channel_count = f10_early_channel_count,
1716 .get_error_address = f10_get_error_address,
1717 .read_dram_base_limit = f10_read_dram_base_limit,
1718 .read_dram_ctl_register = f10_read_dram_ctl_register,
1719 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1720 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1721 }
1722 },
4d37607a
DT
1723};
1724
1725static struct pci_dev *pci_get_related_function(unsigned int vendor,
1726 unsigned int device,
1727 struct pci_dev *related)
1728{
1729 struct pci_dev *dev = NULL;
1730
1731 dev = pci_get_device(vendor, device, dev);
1732 while (dev) {
1733 if ((dev->bus->number == related->bus->number) &&
1734 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1735 break;
1736 dev = pci_get_device(vendor, device, dev);
1737 }
1738
1739 return dev;
1740}
1741
b1289d6f 1742/*
bfc04aec
BP
1743 * These are tables of eigenvectors (one per line) which can be used for the
1744 * construction of the syndrome tables. The modified syndrome search algorithm
1745 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1746 *
bfc04aec 1747 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1748 */
bfc04aec
BP
1749static u16 x4_vectors[] = {
1750 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1751 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1752 0x0001, 0x0002, 0x0004, 0x0008,
1753 0x1013, 0x3032, 0x4044, 0x8088,
1754 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1755 0x4857, 0xc4fe, 0x13cc, 0x3288,
1756 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1757 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1758 0x15c1, 0x2a42, 0x89ac, 0x4758,
1759 0x2b03, 0x1602, 0x4f0c, 0xca08,
1760 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1761 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1762 0x2b87, 0x164e, 0x642c, 0xdc18,
1763 0x40b9, 0x80de, 0x1094, 0x20e8,
1764 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1765 0x11c1, 0x2242, 0x84ac, 0x4c58,
1766 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1767 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1768 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1769 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1770 0x16b3, 0x3d62, 0x4f34, 0x8518,
1771 0x1e2f, 0x391a, 0x5cac, 0xf858,
1772 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1773 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1774 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1775 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1776 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1777 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1778 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1779 0x185d, 0x2ca6, 0x7914, 0x9e28,
1780 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1781 0x4199, 0x82ee, 0x19f4, 0x2e58,
1782 0x4807, 0xc40e, 0x130c, 0x3208,
1783 0x1905, 0x2e0a, 0x5804, 0xac08,
1784 0x213f, 0x132a, 0xadfc, 0x5ba8,
1785 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1786};
1787
bfc04aec
BP
1788static u16 x8_vectors[] = {
1789 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1790 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1791 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1792 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1793 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1794 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1795 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1796 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1797 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1798 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1799 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1800 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1801 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1802 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1803 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1804 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1805 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1806 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1807 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1808};
1809
1810static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1811 int v_dim)
b1289d6f 1812{
bfc04aec
BP
1813 unsigned int i, err_sym;
1814
1815 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1816 u16 s = syndrome;
1817 int v_idx = err_sym * v_dim;
1818 int v_end = (err_sym + 1) * v_dim;
1819
1820 /* walk over all 16 bits of the syndrome */
1821 for (i = 1; i < (1U << 16); i <<= 1) {
1822
1823 /* if bit is set in that eigenvector... */
1824 if (v_idx < v_end && vectors[v_idx] & i) {
1825 u16 ev_comp = vectors[v_idx++];
1826
1827 /* ... and bit set in the modified syndrome, */
1828 if (s & i) {
1829 /* remove it. */
1830 s ^= ev_comp;
4d37607a 1831
bfc04aec
BP
1832 if (!s)
1833 return err_sym;
1834 }
b1289d6f 1835
bfc04aec
BP
1836 } else if (s & i)
1837 /* can't get to zero, move to next symbol */
1838 break;
1839 }
b1289d6f
DT
1840 }
1841
1842 debugf0("syndrome(%x) not found\n", syndrome);
1843 return -1;
1844}
d27bf6fa 1845
bfc04aec
BP
1846static int map_err_sym_to_channel(int err_sym, int sym_size)
1847{
1848 if (sym_size == 4)
1849 switch (err_sym) {
1850 case 0x20:
1851 case 0x21:
1852 return 0;
1853 break;
1854 case 0x22:
1855 case 0x23:
1856 return 1;
1857 break;
1858 default:
1859 return err_sym >> 4;
1860 break;
1861 }
1862 /* x8 symbols */
1863 else
1864 switch (err_sym) {
1865 /* imaginary bits not in a DIMM */
1866 case 0x10:
1867 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1868 err_sym);
1869 return -1;
1870 break;
1871
1872 case 0x11:
1873 return 0;
1874 break;
1875 case 0x12:
1876 return 1;
1877 break;
1878 default:
1879 return err_sym >> 3;
1880 break;
1881 }
1882 return -1;
1883}
1884
1885static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1886{
1887 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1888 int err_sym = -1;
1889
1890 if (pvt->syn_type == 8)
1891 err_sym = decode_syndrome(syndrome, x8_vectors,
1892 ARRAY_SIZE(x8_vectors),
1893 pvt->syn_type);
1894 else if (pvt->syn_type == 4)
1895 err_sym = decode_syndrome(syndrome, x4_vectors,
1896 ARRAY_SIZE(x4_vectors),
1897 pvt->syn_type);
1898 else {
24f9a7fe 1899 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1900 return err_sym;
bfc04aec 1901 }
ad6a32e9
BP
1902
1903 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1904}
1905
d27bf6fa
DT
1906/*
1907 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1908 * ADDRESS and process.
1909 */
1910static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1911 struct err_regs *info)
d27bf6fa
DT
1912{
1913 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1914 u64 sys_addr;
d27bf6fa
DT
1915
1916 /* Ensure that the Error Address is VALID */
24f9a7fe
BP
1917 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1918 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1919 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1920 return;
1921 }
1922
1f6bcee7 1923 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa 1924
24f9a7fe 1925 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1926
44e9e2ee 1927 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1928}
1929
1930/* Handle any Un-correctable Errors (UEs) */
1931static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1932 struct err_regs *info)
d27bf6fa 1933{
1f6bcee7
BP
1934 struct amd64_pvt *pvt = mci->pvt_info;
1935 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1936 int csrow;
44e9e2ee 1937 u64 sys_addr;
d27bf6fa 1938 u32 page, offset;
d27bf6fa
DT
1939
1940 log_mci = mci;
1941
24f9a7fe
BP
1942 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1943 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1944 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1945 return;
1946 }
1947
1f6bcee7 1948 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1949
1950 /*
1951 * Find out which node the error address belongs to. This may be
1952 * different from the node that detected the error.
1953 */
44e9e2ee 1954 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1955 if (!src_mci) {
24f9a7fe
BP
1956 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1957 (unsigned long)sys_addr);
d27bf6fa
DT
1958 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1959 return;
1960 }
1961
1962 log_mci = src_mci;
1963
44e9e2ee 1964 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1965 if (csrow < 0) {
24f9a7fe
BP
1966 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1967 (unsigned long)sys_addr);
d27bf6fa
DT
1968 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1969 } else {
44e9e2ee 1970 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1971 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1972 }
1973}
1974
549d042d 1975static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 1976 struct err_regs *info)
d27bf6fa 1977{
b70ef010
BP
1978 u32 ec = ERROR_CODE(info->nbsl);
1979 u32 xec = EXT_ERROR_CODE(info->nbsl);
17adea01 1980 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 1981
b70ef010
BP
1982 /* Bail early out if this was an 'observed' error */
1983 if (PP(ec) == K8_NBSL_PP_OBS)
1984 return;
d27bf6fa 1985
ecaf5606
BP
1986 /* Do only ECC errors */
1987 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1988 return;
d27bf6fa 1989
ecaf5606 1990 if (ecc_type == 2)
d27bf6fa 1991 amd64_handle_ce(mci, info);
ecaf5606 1992 else if (ecc_type == 1)
d27bf6fa 1993 amd64_handle_ue(mci, info);
d27bf6fa
DT
1994}
1995
7cfd4a87 1996void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1997{
549d042d 1998 struct mem_ctl_info *mci = mci_lookup[node_id];
7cfd4a87 1999 struct err_regs regs;
d27bf6fa 2000
7cfd4a87
BP
2001 regs.nbsl = (u32) m->status;
2002 regs.nbsh = (u32)(m->status >> 32);
2003 regs.nbeal = (u32) m->addr;
2004 regs.nbeah = (u32)(m->addr >> 32);
2005 regs.nbcfg = nbcfg;
2006
2007 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 2008
d27bf6fa
DT
2009 /*
2010 * Check the UE bit of the NB status high register, if set generate some
2011 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2012 * If it was a GART error, skip that process.
549d042d
BP
2013 *
2014 * FIXME: this should go somewhere else, if at all.
d27bf6fa 2015 */
7cfd4a87 2016 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 2017 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 2018
d27bf6fa 2019}
d27bf6fa 2020
0ec449ee 2021/*
8d5b5d9c 2022 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2023 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2024 */
bbd0c1f6
BP
2025static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
2026 u16 f3_id)
0ec449ee 2027{
0ec449ee 2028 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2029 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2030 if (!pvt->F1) {
24f9a7fe
BP
2031 amd64_err("error address map device not found: "
2032 "vendor %x device 0x%x (broken BIOS?)\n",
2033 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2034 return -ENODEV;
0ec449ee
DT
2035 }
2036
2037 /* Reserve the MISC Device */
8d5b5d9c
BP
2038 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2039 if (!pvt->F3) {
2040 pci_dev_put(pvt->F1);
2041 pvt->F1 = NULL;
0ec449ee 2042
24f9a7fe
BP
2043 amd64_err("error F3 device not found: "
2044 "vendor %x device 0x%x (broken BIOS?)\n",
2045 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2046
bbd0c1f6 2047 return -ENODEV;
0ec449ee 2048 }
8d5b5d9c
BP
2049 debugf1("F1: %s\n", pci_name(pvt->F1));
2050 debugf1("F2: %s\n", pci_name(pvt->F2));
2051 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2052
2053 return 0;
2054}
2055
2056static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2057{
8d5b5d9c
BP
2058 pci_dev_put(pvt->F1);
2059 pci_dev_put(pvt->F3);
0ec449ee
DT
2060}
2061
2062/*
2063 * Retrieve the hardware registers of the memory controller (this includes the
2064 * 'Address Map' and 'Misc' device regs)
2065 */
2066static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2067{
2068 u64 msr_val;
ad6a32e9 2069 u32 tmp;
6ba5dcdc 2070 int dram;
0ec449ee
DT
2071
2072 /*
2073 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2074 * those are Read-As-Zero
2075 */
e97f8bb8
BP
2076 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2077 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2078
2079 /* check first whether TOP_MEM2 is enabled */
2080 rdmsrl(MSR_K8_SYSCFG, msr_val);
2081 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2082 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2083 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2084 } else
2085 debugf0(" TOP_MEM2 disabled.\n");
2086
8d5b5d9c 2087 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2088
2089 if (pvt->ops->read_dram_ctl_register)
2090 pvt->ops->read_dram_ctl_register(pvt);
2091
2092 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2093 /*
2094 * Call CPU specific READ function to get the DRAM Base and
2095 * Limit values from the DCT.
2096 */
2097 pvt->ops->read_dram_base_limit(pvt, dram);
2098
2099 /*
2100 * Only print out debug info on rows with both R and W Enabled.
2101 * Normal processing, compiler should optimize this whole 'if'
2102 * debug output block away.
2103 */
2104 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2105 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2106 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2107 dram,
e97f8bb8
BP
2108 pvt->dram_base[dram],
2109 pvt->dram_limit[dram]);
2110
0ec449ee
DT
2111 debugf1(" IntlvEn=%s %s %s "
2112 "IntlvSel=%d DstNode=%d\n",
2113 pvt->dram_IntlvEn[dram] ?
2114 "Enabled" : "Disabled",
2115 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2116 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2117 pvt->dram_IntlvSel[dram],
2118 pvt->dram_DstNode[dram]);
2119 }
2120 }
2121
2122 amd64_read_dct_base_mask(pvt);
2123
8d5b5d9c 2124 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2125 amd64_read_dbam_reg(pvt);
2126
8d5b5d9c 2127 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2128
8d5b5d9c
BP
2129 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2130 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
0ec449ee 2131
ad6a32e9
BP
2132 if (boot_cpu_data.x86 >= 0x10) {
2133 if (!dct_ganging_enabled(pvt)) {
8d5b5d9c
BP
2134 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2135 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
ad6a32e9 2136 }
8d5b5d9c 2137 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
0ec449ee 2138 }
ad6a32e9
BP
2139
2140 if (boot_cpu_data.x86 == 0x10 &&
2141 boot_cpu_data.x86_model > 7 &&
2142 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2143 tmp & BIT(25))
2144 pvt->syn_type = 8;
2145 else
2146 pvt->syn_type = 4;
2147
0ec449ee 2148 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2149}
2150
2151/*
2152 * NOTE: CPU Revision Dependent code
2153 *
2154 * Input:
9d858bb1 2155 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2156 * k8 private pointer to -->
2157 * DRAM Bank Address mapping register
2158 * node_id
2159 * DCL register where dual_channel_active is
2160 *
2161 * The DBAM register consists of 4 sets of 4 bits each definitions:
2162 *
2163 * Bits: CSROWs
2164 * 0-3 CSROWs 0 and 1
2165 * 4-7 CSROWs 2 and 3
2166 * 8-11 CSROWs 4 and 5
2167 * 12-15 CSROWs 6 and 7
2168 *
2169 * Values range from: 0 to 15
2170 * The meaning of the values depends on CPU revision and dual-channel state,
2171 * see relevant BKDG more info.
2172 *
2173 * The memory controller provides for total of only 8 CSROWs in its current
2174 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2175 * single channel or two (2) DIMMs in dual channel mode.
2176 *
2177 * The following code logic collapses the various tables for CSROW based on CPU
2178 * revision.
2179 *
2180 * Returns:
2181 * The number of PAGE_SIZE pages on the specified CSROW number it
2182 * encompasses
2183 *
2184 */
2185static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2186{
1433eb99 2187 u32 cs_mode, nr_pages;
0ec449ee
DT
2188
2189 /*
2190 * The math on this doesn't look right on the surface because x/2*4 can
2191 * be simplified to x*2 but this expression makes use of the fact that
2192 * it is integral math where 1/2=0. This intermediate value becomes the
2193 * number of bits to shift the DBAM register to extract the proper CSROW
2194 * field.
2195 */
1433eb99 2196 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2197
1433eb99 2198 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2199
2200 /*
2201 * If dual channel then double the memory size of single channel.
2202 * Channel count is 1 or 2
2203 */
2204 nr_pages <<= (pvt->channel_count - 1);
2205
1433eb99 2206 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2207 debugf0(" nr_pages= %u channel-count = %d\n",
2208 nr_pages, pvt->channel_count);
2209
2210 return nr_pages;
2211}
2212
2213/*
2214 * Initialize the array of csrow attribute instances, based on the values
2215 * from pci config hardware registers.
2216 */
2217static int amd64_init_csrows(struct mem_ctl_info *mci)
2218{
2219 struct csrow_info *csrow;
2220 struct amd64_pvt *pvt;
2221 u64 input_addr_min, input_addr_max, sys_addr;
6ba5dcdc 2222 int i, empty = 1;
0ec449ee
DT
2223
2224 pvt = mci->pvt_info;
2225
8d5b5d9c 2226 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &pvt->nbcfg);
0ec449ee
DT
2227
2228 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2229 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2230 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2231 );
2232
9d858bb1 2233 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2234 csrow = &mci->csrows[i];
2235
2236 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2237 debugf1("----CSROW %d EMPTY for node %d\n", i,
2238 pvt->mc_node_id);
2239 continue;
2240 }
2241
2242 debugf1("----CSROW %d VALID for MC node %d\n",
2243 i, pvt->mc_node_id);
2244
2245 empty = 0;
2246 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2247 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2248 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2249 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2250 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2251 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2252 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2253 /* 8 bytes of resolution */
2254
24f9a7fe 2255 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2256
2257 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2258 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2259 (unsigned long)input_addr_min,
2260 (unsigned long)input_addr_max);
2261 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2262 (unsigned long)sys_addr, csrow->page_mask);
2263 debugf1(" nr_pages: %u first_page: 0x%lx "
2264 "last_page: 0x%lx\n",
2265 (unsigned)csrow->nr_pages,
2266 csrow->first_page, csrow->last_page);
2267
2268 /*
2269 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2270 */
2271 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2272 csrow->edac_mode =
2273 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2274 EDAC_S4ECD4ED : EDAC_SECDED;
2275 else
2276 csrow->edac_mode = EDAC_NONE;
2277 }
2278
2279 return empty;
2280}
d27bf6fa 2281
f6d6ae96
BP
2282/* get all cores on this DCT */
2283static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2284{
2285 int cpu;
2286
2287 for_each_online_cpu(cpu)
2288 if (amd_get_nb_id(cpu) == nid)
2289 cpumask_set_cpu(cpu, mask);
2290}
2291
2292/* check MCG_CTL on all the cpus on this node */
2293static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2294{
2295 cpumask_var_t mask;
50542251 2296 int cpu, nbe;
f6d6ae96
BP
2297 bool ret = false;
2298
2299 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2300 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2301 return false;
2302 }
2303
2304 get_cpus_on_this_dct_cpumask(mask, nid);
2305
f6d6ae96
BP
2306 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2307
2308 for_each_cpu(cpu, mask) {
50542251
BP
2309 struct msr *reg = per_cpu_ptr(msrs, cpu);
2310 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2311
2312 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2313 cpu, reg->q,
f6d6ae96
BP
2314 (nbe ? "enabled" : "disabled"));
2315
2316 if (!nbe)
2317 goto out;
f6d6ae96
BP
2318 }
2319 ret = true;
2320
2321out:
f6d6ae96
BP
2322 free_cpumask_var(mask);
2323 return ret;
2324}
2325
2326static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2327{
2328 cpumask_var_t cmask;
50542251 2329 int cpu;
f6d6ae96
BP
2330
2331 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2332 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2333 return false;
2334 }
2335
2336 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2337
f6d6ae96
BP
2338 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2339
2340 for_each_cpu(cpu, cmask) {
2341
50542251
BP
2342 struct msr *reg = per_cpu_ptr(msrs, cpu);
2343
f6d6ae96 2344 if (on) {
50542251 2345 if (reg->l & K8_MSR_MCGCTL_NBE)
d95cf4de 2346 pvt->flags.nb_mce_enable = 1;
f6d6ae96 2347
50542251 2348 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2349 } else {
2350 /*
d95cf4de 2351 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2352 */
d95cf4de 2353 if (!pvt->flags.nb_mce_enable)
50542251 2354 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2355 }
f6d6ae96
BP
2356 }
2357 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2358
f6d6ae96
BP
2359 free_cpumask_var(cmask);
2360
2361 return 0;
2362}
2363
f9431992
DT
2364static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2365{
2366 struct amd64_pvt *pvt = mci->pvt_info;
f6d6ae96 2367 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2368
8d5b5d9c 2369 amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
f9431992
DT
2370
2371 /* turn on UECCn and CECCEn bits */
2372 pvt->old_nbctl = value & mask;
2373 pvt->nbctl_mcgctl_saved = 1;
2374
2375 value |= mask;
8d5b5d9c 2376 pci_write_config_dword(pvt->F3, K8_NBCTL, value);
f9431992 2377
f6d6ae96 2378 if (amd64_toggle_ecc_err_reporting(pvt, ON))
24f9a7fe 2379 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
f9431992 2380
8d5b5d9c 2381 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
f9431992
DT
2382
2383 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2384 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2385 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2386
2387 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe 2388 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2389
d95cf4de
BP
2390 pvt->flags.nb_ecc_prev = 0;
2391
f9431992
DT
2392 /* Attempt to turn on DRAM ECC Enable */
2393 value |= K8_NBCFG_ECC_ENABLE;
8d5b5d9c 2394 pci_write_config_dword(pvt->F3, K8_NBCFG, value);
f9431992 2395
8d5b5d9c 2396 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
f9431992
DT
2397
2398 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2399 amd64_warn("Hardware rejected DRAM ECC enable,"
2400 "check memory DIMM configuration.\n");
f9431992 2401 } else {
24f9a7fe 2402 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2403 }
d95cf4de
BP
2404 } else {
2405 pvt->flags.nb_ecc_prev = 1;
f9431992 2406 }
d95cf4de 2407
f9431992
DT
2408 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2409 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2410 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2411
2412 pvt->ctl_error_info.nbcfg = value;
2413}
2414
2415static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2416{
f6d6ae96 2417 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992
DT
2418
2419 if (!pvt->nbctl_mcgctl_saved)
2420 return;
2421
8d5b5d9c 2422 amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
f9431992
DT
2423 value &= ~mask;
2424 value |= pvt->old_nbctl;
2425
8d5b5d9c 2426 pci_write_config_dword(pvt->F3, K8_NBCTL, value);
f9431992 2427
d95cf4de
BP
2428 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2429 if (!pvt->flags.nb_ecc_prev) {
8d5b5d9c 2430 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
d95cf4de 2431 value &= ~K8_NBCFG_ECC_ENABLE;
8d5b5d9c 2432 pci_write_config_dword(pvt->F3, K8_NBCFG, value);
d95cf4de
BP
2433 }
2434
2435 /* restore the NB Enable MCGCTL bit */
f6d6ae96 2436 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
24f9a7fe 2437 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2438}
2439
2440/*
2441 * EDAC requires that the BIOS have ECC enabled before taking over the
2442 * processing of ECC errors. This is because the BIOS can properly initialize
2443 * the memory system completely. A command line option allows to force-enable
2444 * hardware ECC later in amd64_enable_ecc_error_reporting().
2445 */
cab4d277
BP
2446static const char *ecc_msg =
2447 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2448 " Either enable ECC checking or force module loading by setting "
2449 "'ecc_enable_override'.\n"
2450 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2451
f9431992
DT
2452static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2453{
2454 u32 value;
06724535
BP
2455 u8 ecc_enabled = 0;
2456 bool nb_mce_en = false;
f9431992 2457
8d5b5d9c 2458 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
f9431992
DT
2459
2460 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
24f9a7fe 2461 amd64_info("DRAM ECC %s.\n", (ecc_enabled ? "enabled" : "disabled"));
f9431992 2462
06724535
BP
2463 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2464 if (!nb_mce_en)
24f9a7fe
BP
2465 amd64_notice("NB MCE bank disabled, "
2466 "set MSR 0x%08x[4] on node %d to enable.\n",
be3468e8 2467 MSR_IA32_MCG_CTL, pvt->mc_node_id);
f9431992 2468
06724535 2469 if (!ecc_enabled || !nb_mce_en) {
f9431992 2470 if (!ecc_enable_override) {
24f9a7fe 2471 amd64_notice("%s", ecc_msg);
be3468e8 2472 return -ENODEV;
d95cf4de 2473 } else {
24f9a7fe 2474 amd64_warn("Forcing ECC on!\n");
be3468e8 2475 }
43f5e687 2476 }
f9431992 2477
be3468e8 2478 return 0;
f9431992
DT
2479}
2480
7d6034d3
DT
2481struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2482 ARRAY_SIZE(amd64_inj_attrs) +
2483 1];
2484
2485struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2486
2487static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2488{
2489 unsigned int i = 0, j = 0;
2490
2491 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2492 sysfs_attrs[i] = amd64_dbg_attrs[i];
2493
2494 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2495 sysfs_attrs[i] = amd64_inj_attrs[j];
2496
2497 sysfs_attrs[i] = terminator;
2498
2499 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2500}
2501
2502static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2503{
2504 struct amd64_pvt *pvt = mci->pvt_info;
2505
2506 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2507 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2508
2509 if (pvt->nbcap & K8_NBCAP_SECDED)
2510 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2511
2512 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2513 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2514
2515 mci->edac_cap = amd64_determine_edac_cap(pvt);
2516 mci->mod_name = EDAC_MOD_STR;
2517 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2518 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2519 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2520 mci->ctl_page_to_phys = NULL;
2521
7d6034d3
DT
2522 /* memory scrubber interface */
2523 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2524 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2525}
2526
0092b20d
BP
2527/*
2528 * returns a pointer to the family descriptor on success, NULL otherwise.
2529 */
2530static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2531{
0092b20d
BP
2532 u8 fam = boot_cpu_data.x86;
2533 struct amd64_family_type *fam_type = NULL;
2534
2535 switch (fam) {
395ae783 2536 case 0xf:
0092b20d 2537 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2538 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2539 pvt->ctl_name = fam_type->ctl_name;
2540 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2541 break;
2542 case 0x10:
0092b20d 2543 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2544 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2545 pvt->ctl_name = fam_type->ctl_name;
2546 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2547 break;
2548
2549 default:
24f9a7fe 2550 amd64_err("Unsupported family!\n");
0092b20d 2551 return NULL;
395ae783 2552 }
0092b20d 2553
b8cfa02f
BP
2554 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2555
24f9a7fe 2556 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2557 (fam == 0xf ?
24f9a7fe
BP
2558 (pvt->ext_model >= K8_REV_F ? "revF or later "
2559 : "revE or earlier ")
2560 : ""), pvt->mc_node_id);
0092b20d 2561 return fam_type;
395ae783
BP
2562}
2563
7d6034d3
DT
2564/*
2565 * Init stuff for this DRAM Controller device.
2566 *
2567 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2568 * Space feature MUST be enabled on ALL Processors prior to actually reading
2569 * from the ECS registers. Since the loading of the module can occur on any
2570 * 'core', and cores don't 'see' all the other processors ECS data when the
2571 * others are NOT enabled. Our solution is to first enable ECS access in this
2572 * routine on all processors, gather some data in a amd64_pvt structure and
2573 * later come back in a finish-setup function to perform that final
2574 * initialization. See also amd64_init_2nd_stage() for that.
2575 */
8d5b5d9c 2576static int amd64_probe_one_instance(struct pci_dev *F2)
7d6034d3
DT
2577{
2578 struct amd64_pvt *pvt = NULL;
0092b20d 2579 struct amd64_family_type *fam_type = NULL;
7d6034d3
DT
2580 int err = 0, ret;
2581
2582 ret = -ENOMEM;
2583 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2584 if (!pvt)
2585 goto err_exit;
2586
8d5b5d9c
BP
2587 pvt->mc_node_id = get_node_id(F2);
2588 pvt->F2 = F2;
7d6034d3 2589
395ae783 2590 ret = -EINVAL;
0092b20d
BP
2591 fam_type = amd64_per_family_init(pvt);
2592 if (!fam_type)
395ae783
BP
2593 goto err_free;
2594
7d6034d3 2595 ret = -ENODEV;
8d5b5d9c
BP
2596 err = amd64_reserve_mc_sibling_devices(pvt, fam_type->f1_id,
2597 fam_type->f3_id);
7d6034d3
DT
2598 if (err)
2599 goto err_free;
2600
2601 ret = -EINVAL;
2602 err = amd64_check_ecc_enabled(pvt);
2603 if (err)
2604 goto err_put;
2605
2606 /*
2607 * Key operation here: setup of HW prior to performing ops on it. Some
2608 * setup is required to access ECS data. After this is performed, the
2609 * 'teardown' function must be called upon error and normal exit paths.
2610 */
2611 if (boot_cpu_data.x86 >= 0x10)
2612 amd64_setup(pvt);
2613
2614 /*
2615 * Save the pointer to the private data for use in 2nd initialization
2616 * stage
2617 */
2618 pvt_lookup[pvt->mc_node_id] = pvt;
2619
2620 return 0;
2621
2622err_put:
2623 amd64_free_mc_sibling_devices(pvt);
2624
2625err_free:
2626 kfree(pvt);
2627
2628err_exit:
2629 return ret;
2630}
2631
2632/*
2633 * This is the finishing stage of the init code. Needs to be performed after all
2634 * MCs' hardware have been prepped for accessing extended config space.
2635 */
2636static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2637{
2638 int node_id = pvt->mc_node_id;
2639 struct mem_ctl_info *mci;
18ba54ac 2640 int ret = -ENODEV;
7d6034d3
DT
2641
2642 amd64_read_mc_registers(pvt);
2643
7d6034d3
DT
2644 /*
2645 * We need to determine how many memory channels there are. Then use
2646 * that information for calculating the size of the dynamic instance
2647 * tables in the 'mci' structure
2648 */
2649 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2650 if (pvt->channel_count < 0)
2651 goto err_exit;
2652
2653 ret = -ENOMEM;
9d858bb1 2654 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
7d6034d3
DT
2655 if (!mci)
2656 goto err_exit;
2657
2658 mci->pvt_info = pvt;
2659
8d5b5d9c 2660 mci->dev = &pvt->F2->dev;
7d6034d3
DT
2661 amd64_setup_mci_misc_attributes(mci);
2662
2663 if (amd64_init_csrows(mci))
2664 mci->edac_cap = EDAC_FLAG_NONE;
2665
2666 amd64_enable_ecc_error_reporting(mci);
2667 amd64_set_mc_sysfs_attributes(mci);
2668
2669 ret = -ENODEV;
2670 if (edac_mc_add_mc(mci)) {
2671 debugf1("failed edac_mc_add_mc()\n");
2672 goto err_add_mc;
2673 }
2674
2675 mci_lookup[node_id] = mci;
2676 pvt_lookup[node_id] = NULL;
549d042d
BP
2677
2678 /* register stuff with EDAC MCE */
2679 if (report_gart_errors)
2680 amd_report_gart_errors(true);
2681
2682 amd_register_ecc_decoder(amd64_decode_bus_error);
2683
7d6034d3
DT
2684 return 0;
2685
2686err_add_mc:
2687 edac_mc_free(mci);
2688
2689err_exit:
2690 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2691
2692 amd64_restore_ecc_error_reporting(pvt);
2693
2694 if (boot_cpu_data.x86 > 0xf)
2695 amd64_teardown(pvt);
2696
2697 amd64_free_mc_sibling_devices(pvt);
2698
2699 kfree(pvt_lookup[pvt->mc_node_id]);
2700 pvt_lookup[node_id] = NULL;
2701
2702 return ret;
2703}
2704
2705
2706static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
b8cfa02f 2707 const struct pci_device_id *mc_type)
7d6034d3
DT
2708{
2709 int ret = 0;
2710
7d6034d3 2711 ret = pci_enable_device(pdev);
b8cfa02f
BP
2712 if (ret < 0) {
2713 debugf0("ret=%d\n", ret);
2714 return -EIO;
2715 }
7d6034d3 2716
b8cfa02f 2717 ret = amd64_probe_one_instance(pdev);
7d6034d3 2718 if (ret < 0)
24f9a7fe 2719 amd64_err("Error probing instance: %d\n", get_node_id(pdev));
7d6034d3
DT
2720
2721 return ret;
2722}
2723
2724static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2725{
2726 struct mem_ctl_info *mci;
2727 struct amd64_pvt *pvt;
2728
2729 /* Remove from EDAC CORE tracking list */
2730 mci = edac_mc_del_mc(&pdev->dev);
2731 if (!mci)
2732 return;
2733
2734 pvt = mci->pvt_info;
2735
2736 amd64_restore_ecc_error_reporting(pvt);
2737
2738 if (boot_cpu_data.x86 > 0xf)
2739 amd64_teardown(pvt);
2740
2741 amd64_free_mc_sibling_devices(pvt);
2742
549d042d
BP
2743 /* unregister from EDAC MCE */
2744 amd_report_gart_errors(false);
2745 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2746
7d6034d3 2747 /* Free the EDAC CORE resources */
8f68ed97
BP
2748 mci->pvt_info = NULL;
2749 mci_lookup[pvt->mc_node_id] = NULL;
2750
2751 kfree(pvt);
7d6034d3
DT
2752 edac_mc_free(mci);
2753}
2754
2755/*
2756 * This table is part of the interface for loading drivers for PCI devices. The
2757 * PCI core identifies what devices are on a system during boot, and then
2758 * inquiry this table to see if this driver is for a given device found.
2759 */
2760static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2761 {
2762 .vendor = PCI_VENDOR_ID_AMD,
2763 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2764 .subvendor = PCI_ANY_ID,
2765 .subdevice = PCI_ANY_ID,
2766 .class = 0,
2767 .class_mask = 0,
7d6034d3
DT
2768 },
2769 {
2770 .vendor = PCI_VENDOR_ID_AMD,
2771 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2772 .subvendor = PCI_ANY_ID,
2773 .subdevice = PCI_ANY_ID,
2774 .class = 0,
2775 .class_mask = 0,
7d6034d3 2776 },
7d6034d3
DT
2777 {0, }
2778};
2779MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2780
2781static struct pci_driver amd64_pci_driver = {
2782 .name = EDAC_MOD_STR,
2783 .probe = amd64_init_one_instance,
2784 .remove = __devexit_p(amd64_remove_one_instance),
2785 .id_table = amd64_pci_table,
2786};
2787
2788static void amd64_setup_pci_device(void)
2789{
2790 struct mem_ctl_info *mci;
2791 struct amd64_pvt *pvt;
2792
2793 if (amd64_ctl_pci)
2794 return;
2795
2796 mci = mci_lookup[0];
2797 if (mci) {
2798
2799 pvt = mci->pvt_info;
2800 amd64_ctl_pci =
8d5b5d9c 2801 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2802
2803 if (!amd64_ctl_pci) {
2804 pr_warning("%s(): Unable to create PCI control\n",
2805 __func__);
2806
2807 pr_warning("%s(): PCI error report via EDAC not set\n",
2808 __func__);
2809 }
2810 }
2811}
2812
2813static int __init amd64_edac_init(void)
2814{
2815 int nb, err = -ENODEV;
56b34b91 2816 bool load_ok = false;
7d6034d3
DT
2817
2818 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2819
2820 opstate_init();
2821
9653a5c7 2822 if (amd_cache_northbridges() < 0)
56b34b91 2823 goto err_ret;
7d6034d3 2824
50542251 2825 msrs = msrs_alloc();
56b34b91
BP
2826 if (!msrs)
2827 goto err_ret;
50542251 2828
7d6034d3
DT
2829 err = pci_register_driver(&amd64_pci_driver);
2830 if (err)
56b34b91 2831 goto err_pci;
7d6034d3
DT
2832
2833 /*
2834 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2835 * amd64_pvt structs. These will be used in the 2nd stage init function
2836 * to finish initialization of the MC instances.
2837 */
56b34b91 2838 err = -ENODEV;
9653a5c7 2839 for (nb = 0; nb < amd_nb_num(); nb++) {
7d6034d3
DT
2840 if (!pvt_lookup[nb])
2841 continue;
2842
2843 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2844 if (err)
37da0450 2845 goto err_2nd_stage;
7d6034d3 2846
56b34b91
BP
2847 load_ok = true;
2848 }
7d6034d3 2849
56b34b91
BP
2850 if (load_ok) {
2851 amd64_setup_pci_device();
2852 return 0;
2853 }
7d6034d3 2854
37da0450 2855err_2nd_stage:
7d6034d3 2856 pci_unregister_driver(&amd64_pci_driver);
56b34b91
BP
2857err_pci:
2858 msrs_free(msrs);
2859 msrs = NULL;
2860err_ret:
7d6034d3
DT
2861 return err;
2862}
2863
2864static void __exit amd64_edac_exit(void)
2865{
2866 if (amd64_ctl_pci)
2867 edac_pci_release_generic_ctl(amd64_ctl_pci);
2868
2869 pci_unregister_driver(&amd64_pci_driver);
50542251
BP
2870
2871 msrs_free(msrs);
2872 msrs = NULL;
7d6034d3
DT
2873}
2874
2875module_init(amd64_edac_init);
2876module_exit(amd64_edac_exit);
2877
2878MODULE_LICENSE("GPL");
2879MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2880 "Dave Peterson, Thayne Harbaugh");
2881MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2882 EDAC_AMD64_VERSION);
2883
2884module_param(edac_op_state, int, 0444);
2885MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.290019 seconds and 5 git commands to generate.