amd64_edac: Remove F11h support
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
2bc65418
DT
18/* Lookup table for all possible MC control instances */
19struct amd64_pvt;
3011b20d
BP
20static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
2bc65418 22
b70ef010 23/*
1433eb99
BP
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
b70ef010 26 */
1433eb99
BP
27static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
b70ef010
BP
66};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
2bc65418
DT
102/*
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
120static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 u32 min_scrubrate)
122{
123 u32 scrubval;
124 int i;
125
126 /*
127 * map the configured rate (new_bw) to a value specific to the AMD64
128 * memory controller and apply to register. Search for the first
129 * bandwidth entry that is greater or equal than the setting requested
130 * and program that. If at last entry, turn off DRAM scrubbing.
131 */
132 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 /*
134 * skip scrub rates which aren't recommended
135 * (see F10 BKDG, F3x58)
136 */
137 if (scrubrates[i].scrubval < min_scrubrate)
138 continue;
139
140 if (scrubrates[i].bandwidth <= new_bw)
141 break;
142
143 /*
144 * if no suitable bandwidth found, turn off DRAM scrubbing
145 * entirely by falling back to the last element in the
146 * scrubrates array.
147 */
148 }
149
150 scrubval = scrubrates[i].scrubval;
151 if (scrubval)
152 edac_printk(KERN_DEBUG, EDAC_MC,
153 "Setting scrub rate bandwidth: %u\n",
154 scrubrates[i].bandwidth);
155 else
156 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
157
158 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
159
160 return 0;
161}
162
eba042a8 163static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bandwidth)
2bc65418
DT
164{
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 min_scrubrate = 0x0;
167
168 switch (boot_cpu_data.x86) {
169 case 0xf:
170 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 break;
172 case 0x10:
173 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 break;
2bc65418
DT
175
176 default:
177 amd64_printk(KERN_ERR, "Unsupported family!\n");
bc571178 178 return -EINVAL;
2bc65418 179 }
eba042a8
BP
180 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, bandwidth,
181 min_scrubrate);
2bc65418
DT
182}
183
184static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
185{
186 struct amd64_pvt *pvt = mci->pvt_info;
187 u32 scrubval = 0;
6ba5dcdc 188 int status = -1, i;
2bc65418 189
6ba5dcdc 190 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
2bc65418
DT
191
192 scrubval = scrubval & 0x001F;
193
194 edac_printk(KERN_DEBUG, EDAC_MC,
195 "pci-read, sdram scrub control value: %d \n", scrubval);
196
926311fd 197 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418
DT
198 if (scrubrates[i].scrubval == scrubval) {
199 *bw = scrubrates[i].bandwidth;
200 status = 0;
201 break;
202 }
203 }
204
205 return status;
206}
207
6775763a
DT
208/* Map from a CSROW entry to the mask entry that operates on it */
209static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
210{
1433eb99 211 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
212 return csrow;
213 else
214 return csrow >> 1;
6775763a
DT
215}
216
217/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
218static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
219{
220 if (dct == 0)
221 return pvt->dcsb0[csrow];
222 else
223 return pvt->dcsb1[csrow];
224}
225
226/*
227 * Return the 'mask' address the i'th CS entry. This function is needed because
228 * there number of DCSM registers on Rev E and prior vs Rev F and later is
229 * different.
230 */
231static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
232{
233 if (dct == 0)
234 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
235 else
236 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
237}
238
239
240/*
241 * In *base and *limit, pass back the full 40-bit base and limit physical
242 * addresses for the node given by node_id. This information is obtained from
243 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
244 * base and limit addresses are of type SysAddr, as defined at the start of
245 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
246 * in the address range they represent.
247 */
248static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
249 u64 *base, u64 *limit)
250{
251 *base = pvt->dram_base[node_id];
252 *limit = pvt->dram_limit[node_id];
253}
254
255/*
256 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
257 * with node_id
258 */
259static int amd64_base_limit_match(struct amd64_pvt *pvt,
260 u64 sys_addr, int node_id)
261{
262 u64 base, limit, addr;
263
264 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
265
266 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
267 * all ones if the most significant implemented address bit is 1.
268 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
269 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
270 * Application Programming.
271 */
272 addr = sys_addr & 0x000000ffffffffffull;
273
274 return (addr >= base) && (addr <= limit);
275}
276
277/*
278 * Attempt to map a SysAddr to a node. On success, return a pointer to the
279 * mem_ctl_info structure for the node that the SysAddr maps to.
280 *
281 * On failure, return NULL.
282 */
283static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
284 u64 sys_addr)
285{
286 struct amd64_pvt *pvt;
287 int node_id;
288 u32 intlv_en, bits;
289
290 /*
291 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
292 * 3.4.4.2) registers to map the SysAddr to a node ID.
293 */
294 pvt = mci->pvt_info;
295
296 /*
297 * The value of this field should be the same for all DRAM Base
298 * registers. Therefore we arbitrarily choose to read it from the
299 * register for node 0.
300 */
301 intlv_en = pvt->dram_IntlvEn[0];
302
303 if (intlv_en == 0) {
8edc5445 304 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 305 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 306 goto found;
6775763a 307 }
8edc5445 308 goto err_no_match;
6775763a
DT
309 }
310
72f158fe
BP
311 if (unlikely((intlv_en != 0x01) &&
312 (intlv_en != 0x03) &&
313 (intlv_en != 0x07))) {
6775763a
DT
314 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
315 "IntlvEn field of DRAM Base Register for node 0: "
72f158fe 316 "this probably indicates a BIOS bug.\n", intlv_en);
6775763a
DT
317 return NULL;
318 }
319
320 bits = (((u32) sys_addr) >> 12) & intlv_en;
321
322 for (node_id = 0; ; ) {
8edc5445 323 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
324 break; /* intlv_sel field matches */
325
326 if (++node_id >= DRAM_REG_COUNT)
327 goto err_no_match;
328 }
329
330 /* sanity test for sys_addr */
331 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
332 amd64_printk(KERN_WARNING,
8edc5445
BP
333 "%s(): sys_addr 0x%llx falls outside base/limit "
334 "address range for node %d with node interleaving "
335 "enabled.\n",
336 __func__, sys_addr, node_id);
6775763a
DT
337 return NULL;
338 }
339
340found:
341 return edac_mc_find(node_id);
342
343err_no_match:
344 debugf2("sys_addr 0x%lx doesn't match any node\n",
345 (unsigned long)sys_addr);
346
347 return NULL;
348}
e2ce7255
DT
349
350/*
351 * Extract the DRAM CS base address from selected csrow register.
352 */
353static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
354{
355 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
356 pvt->dcs_shift;
357}
358
359/*
360 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
361 */
362static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
363{
364 u64 dcsm_bits, other_bits;
365 u64 mask;
366
367 /* Extract bits from DRAM CS Mask. */
368 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
369
370 other_bits = pvt->dcsm_mask;
371 other_bits = ~(other_bits << pvt->dcs_shift);
372
373 /*
374 * The extracted bits from DCSM belong in the spaces represented by
375 * the cleared bits in other_bits.
376 */
377 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
378
379 return mask;
380}
381
382/*
383 * @input_addr is an InputAddr associated with the node given by mci. Return the
384 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
385 */
386static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
387{
388 struct amd64_pvt *pvt;
389 int csrow;
390 u64 base, mask;
391
392 pvt = mci->pvt_info;
393
394 /*
395 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
396 * base/mask register pair, test the condition shown near the start of
397 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
398 */
9d858bb1 399 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
400
401 /* This DRAM chip select is disabled on this node */
402 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
403 continue;
404
405 base = base_from_dct_base(pvt, csrow);
406 mask = ~mask_from_dct_mask(pvt, csrow);
407
408 if ((input_addr & mask) == (base & mask)) {
409 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
410 (unsigned long)input_addr, csrow,
411 pvt->mc_node_id);
412
413 return csrow;
414 }
415 }
416
417 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
418 (unsigned long)input_addr, pvt->mc_node_id);
419
420 return -1;
421}
422
423/*
424 * Return the base value defined by the DRAM Base register for the node
425 * represented by mci. This function returns the full 40-bit value despite the
426 * fact that the register only stores bits 39-24 of the value. See section
427 * 3.4.4.1 (BKDG #26094, K8, revA-E)
428 */
429static inline u64 get_dram_base(struct mem_ctl_info *mci)
430{
431 struct amd64_pvt *pvt = mci->pvt_info;
432
433 return pvt->dram_base[pvt->mc_node_id];
434}
435
436/*
437 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
438 * for the node represented by mci. Info is passed back in *hole_base,
439 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
440 * info is invalid. Info may be invalid for either of the following reasons:
441 *
442 * - The revision of the node is not E or greater. In this case, the DRAM Hole
443 * Address Register does not exist.
444 *
445 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
446 * indicating that its contents are not valid.
447 *
448 * The values passed back in *hole_base, *hole_offset, and *hole_size are
449 * complete 32-bit values despite the fact that the bitfields in the DHAR
450 * only represent bits 31-24 of the base and offset values.
451 */
452int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
453 u64 *hole_offset, u64 *hole_size)
454{
455 struct amd64_pvt *pvt = mci->pvt_info;
456 u64 base;
457
458 /* only revE and later have the DRAM Hole Address Register */
1433eb99 459 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
460 debugf1(" revision %d for node %d does not support DHAR\n",
461 pvt->ext_model, pvt->mc_node_id);
462 return 1;
463 }
464
465 /* only valid for Fam10h */
466 if (boot_cpu_data.x86 == 0x10 &&
467 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
468 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
469 return 1;
470 }
471
472 if ((pvt->dhar & DHAR_VALID) == 0) {
473 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
474 pvt->mc_node_id);
475 return 1;
476 }
477
478 /* This node has Memory Hoisting */
479
480 /* +------------------+--------------------+--------------------+-----
481 * | memory | DRAM hole | relocated |
482 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
483 * | | | DRAM hole |
484 * | | | [0x100000000, |
485 * | | | (0x100000000+ |
486 * | | | (0xffffffff-x))] |
487 * +------------------+--------------------+--------------------+-----
488 *
489 * Above is a diagram of physical memory showing the DRAM hole and the
490 * relocated addresses from the DRAM hole. As shown, the DRAM hole
491 * starts at address x (the base address) and extends through address
492 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
493 * addresses in the hole so that they start at 0x100000000.
494 */
495
496 base = dhar_base(pvt->dhar);
497
498 *hole_base = base;
499 *hole_size = (0x1ull << 32) - base;
500
501 if (boot_cpu_data.x86 > 0xf)
502 *hole_offset = f10_dhar_offset(pvt->dhar);
503 else
504 *hole_offset = k8_dhar_offset(pvt->dhar);
505
506 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
507 pvt->mc_node_id, (unsigned long)*hole_base,
508 (unsigned long)*hole_offset, (unsigned long)*hole_size);
509
510 return 0;
511}
512EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
513
93c2df58
DT
514/*
515 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
516 * assumed that sys_addr maps to the node given by mci.
517 *
518 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
519 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
520 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
521 * then it is also involved in translating a SysAddr to a DramAddr. Sections
522 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
523 * These parts of the documentation are unclear. I interpret them as follows:
524 *
525 * When node n receives a SysAddr, it processes the SysAddr as follows:
526 *
527 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
528 * Limit registers for node n. If the SysAddr is not within the range
529 * specified by the base and limit values, then node n ignores the Sysaddr
530 * (since it does not map to node n). Otherwise continue to step 2 below.
531 *
532 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
533 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
534 * the range of relocated addresses (starting at 0x100000000) from the DRAM
535 * hole. If not, skip to step 3 below. Else get the value of the
536 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
537 * offset defined by this value from the SysAddr.
538 *
539 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
540 * Base register for node n. To obtain the DramAddr, subtract the base
541 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
542 */
543static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
544{
545 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
546 int ret = 0;
547
548 dram_base = get_dram_base(mci);
549
550 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
551 &hole_size);
552 if (!ret) {
553 if ((sys_addr >= (1ull << 32)) &&
554 (sys_addr < ((1ull << 32) + hole_size))) {
555 /* use DHAR to translate SysAddr to DramAddr */
556 dram_addr = sys_addr - hole_offset;
557
558 debugf2("using DHAR to translate SysAddr 0x%lx to "
559 "DramAddr 0x%lx\n",
560 (unsigned long)sys_addr,
561 (unsigned long)dram_addr);
562
563 return dram_addr;
564 }
565 }
566
567 /*
568 * Translate the SysAddr to a DramAddr as shown near the start of
569 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
570 * only deals with 40-bit values. Therefore we discard bits 63-40 of
571 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
572 * discard are all 1s. Otherwise the bits we discard are all 0s. See
573 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
574 * Programmer's Manual Volume 1 Application Programming.
575 */
576 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
577
578 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
579 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
580 (unsigned long)dram_addr);
581 return dram_addr;
582}
583
584/*
585 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
586 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
587 * for node interleaving.
588 */
589static int num_node_interleave_bits(unsigned intlv_en)
590{
591 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
592 int n;
593
594 BUG_ON(intlv_en > 7);
595 n = intlv_shift_table[intlv_en];
596 return n;
597}
598
599/* Translate the DramAddr given by @dram_addr to an InputAddr. */
600static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
601{
602 struct amd64_pvt *pvt;
603 int intlv_shift;
604 u64 input_addr;
605
606 pvt = mci->pvt_info;
607
608 /*
609 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * concerning translating a DramAddr to an InputAddr.
611 */
612 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
613 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
614 (dram_addr & 0xfff);
615
616 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
617 intlv_shift, (unsigned long)dram_addr,
618 (unsigned long)input_addr);
619
620 return input_addr;
621}
622
623/*
624 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
625 * assumed that @sys_addr maps to the node given by mci.
626 */
627static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
628{
629 u64 input_addr;
630
631 input_addr =
632 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
633
634 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
635 (unsigned long)sys_addr, (unsigned long)input_addr);
636
637 return input_addr;
638}
639
640
641/*
642 * @input_addr is an InputAddr associated with the node represented by mci.
643 * Translate @input_addr to a DramAddr and return the result.
644 */
645static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
646{
647 struct amd64_pvt *pvt;
648 int node_id, intlv_shift;
649 u64 bits, dram_addr;
650 u32 intlv_sel;
651
652 /*
653 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
654 * shows how to translate a DramAddr to an InputAddr. Here we reverse
655 * this procedure. When translating from a DramAddr to an InputAddr, the
656 * bits used for node interleaving are discarded. Here we recover these
657 * bits from the IntlvSel field of the DRAM Limit register (section
658 * 3.4.4.2) for the node that input_addr is associated with.
659 */
660 pvt = mci->pvt_info;
661 node_id = pvt->mc_node_id;
662 BUG_ON((node_id < 0) || (node_id > 7));
663
664 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
665
666 if (intlv_shift == 0) {
667 debugf1(" InputAddr 0x%lx translates to DramAddr of "
668 "same value\n", (unsigned long)input_addr);
669
670 return input_addr;
671 }
672
673 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
674 (input_addr & 0xfff);
675
676 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
677 dram_addr = bits + (intlv_sel << 12);
678
679 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
680 "(%d node interleave bits)\n", (unsigned long)input_addr,
681 (unsigned long)dram_addr, intlv_shift);
682
683 return dram_addr;
684}
685
686/*
687 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
688 * @dram_addr to a SysAddr.
689 */
690static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
691{
692 struct amd64_pvt *pvt = mci->pvt_info;
693 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
694 int ret = 0;
695
696 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
697 &hole_size);
698 if (!ret) {
699 if ((dram_addr >= hole_base) &&
700 (dram_addr < (hole_base + hole_size))) {
701 sys_addr = dram_addr + hole_offset;
702
703 debugf1("using DHAR to translate DramAddr 0x%lx to "
704 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
705 (unsigned long)sys_addr);
706
707 return sys_addr;
708 }
709 }
710
711 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
712 sys_addr = dram_addr + base;
713
714 /*
715 * The sys_addr we have computed up to this point is a 40-bit value
716 * because the k8 deals with 40-bit values. However, the value we are
717 * supposed to return is a full 64-bit physical address. The AMD
718 * x86-64 architecture specifies that the most significant implemented
719 * address bit through bit 63 of a physical address must be either all
720 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
721 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
722 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
723 * Programming.
724 */
725 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
726
727 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
728 pvt->mc_node_id, (unsigned long)dram_addr,
729 (unsigned long)sys_addr);
730
731 return sys_addr;
732}
733
734/*
735 * @input_addr is an InputAddr associated with the node given by mci. Translate
736 * @input_addr to a SysAddr.
737 */
738static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
739 u64 input_addr)
740{
741 return dram_addr_to_sys_addr(mci,
742 input_addr_to_dram_addr(mci, input_addr));
743}
744
745/*
746 * Find the minimum and maximum InputAddr values that map to the given @csrow.
747 * Pass back these values in *input_addr_min and *input_addr_max.
748 */
749static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
750 u64 *input_addr_min, u64 *input_addr_max)
751{
752 struct amd64_pvt *pvt;
753 u64 base, mask;
754
755 pvt = mci->pvt_info;
9d858bb1 756 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
757
758 base = base_from_dct_base(pvt, csrow);
759 mask = mask_from_dct_mask(pvt, csrow);
760
761 *input_addr_min = base & ~mask;
762 *input_addr_max = base | mask | pvt->dcs_mask_notused;
763}
764
93c2df58
DT
765/* Map the Error address to a PAGE and PAGE OFFSET. */
766static inline void error_address_to_page_and_offset(u64 error_address,
767 u32 *page, u32 *offset)
768{
769 *page = (u32) (error_address >> PAGE_SHIFT);
770 *offset = ((u32) error_address) & ~PAGE_MASK;
771}
772
773/*
774 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
775 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
776 * of a node that detected an ECC memory error. mci represents the node that
777 * the error address maps to (possibly different from the node that detected
778 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
779 * error.
780 */
781static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
782{
783 int csrow;
784
785 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
786
787 if (csrow == -1)
788 amd64_mc_printk(mci, KERN_ERR,
789 "Failed to translate InputAddr to csrow for "
790 "address 0x%lx\n", (unsigned long)sys_addr);
791 return csrow;
792}
e2ce7255 793
bfc04aec 794static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 795
ad6a32e9
BP
796static u16 extract_syndrome(struct err_regs *err)
797{
798 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
799}
800
2da11654
DT
801static void amd64_cpu_display_info(struct amd64_pvt *pvt)
802{
3ab0e7dc 803 if (boot_cpu_data.x86 == 0x10)
2da11654
DT
804 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
805 else if (boot_cpu_data.x86 == 0xf)
806 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
1433eb99 807 (pvt->ext_model >= K8_REV_F) ?
2da11654
DT
808 "Rev F or later" : "Rev E or earlier");
809 else
810 /* we'll hardly ever ever get here */
811 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
812}
813
814/*
815 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
816 * are ECC capable.
817 */
818static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
819{
820 int bit;
584fcff4 821 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 822
1433eb99 823 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
824 ? 19
825 : 17;
826
584fcff4 827 if (pvt->dclr0 & BIT(bit))
2da11654
DT
828 edac_cap = EDAC_FLAG_SECDED;
829
830 return edac_cap;
831}
832
833
8566c4df 834static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 835
68798e17
BP
836static void amd64_dump_dramcfg_low(u32 dclr, int chan)
837{
838 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
839
840 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
841 (dclr & BIT(16)) ? "un" : "",
842 (dclr & BIT(19)) ? "yes" : "no");
843
844 debugf1(" PAR/ERR parity: %s\n",
845 (dclr & BIT(8)) ? "enabled" : "disabled");
846
847 debugf1(" DCT 128bit mode width: %s\n",
848 (dclr & BIT(11)) ? "128b" : "64b");
849
850 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
851 (dclr & BIT(12)) ? "yes" : "no",
852 (dclr & BIT(13)) ? "yes" : "no",
853 (dclr & BIT(14)) ? "yes" : "no",
854 (dclr & BIT(15)) ? "yes" : "no");
855}
856
2da11654
DT
857/* Display and decode various NB registers for debug purposes. */
858static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
859{
860 int ganged;
861
68798e17
BP
862 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
863
864 debugf1(" NB two channel DRAM capable: %s\n",
865 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 866
68798e17
BP
867 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
868 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
869 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
870
871 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 872
8de1d91e 873 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 874
8de1d91e
BP
875 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
876 "offset: 0x%08x\n",
877 pvt->dhar,
878 dhar_base(pvt->dhar),
879 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
880 : f10_dhar_offset(pvt->dhar));
2da11654 881
8de1d91e
BP
882 debugf1(" DramHoleValid: %s\n",
883 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 884
8de1d91e 885 /* everything below this point is Fam10h and above */
8566c4df
BP
886 if (boot_cpu_data.x86 == 0xf) {
887 amd64_debug_display_dimm_sizes(0, pvt);
2da11654 888 return;
8566c4df 889 }
2da11654 890
ad6a32e9
BP
891 amd64_printk(KERN_INFO, "using %s syndromes.\n",
892 ((pvt->syn_type == 8) ? "x8" : "x4"));
893
8de1d91e 894 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
895 if (!dct_ganging_enabled(pvt))
896 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
897
898 /*
899 * Determine if ganged and then dump memory sizes for first controller,
900 * and if NOT ganged dump info for 2nd controller.
901 */
902 ganged = dct_ganging_enabled(pvt);
903
8566c4df 904 amd64_debug_display_dimm_sizes(0, pvt);
2da11654
DT
905
906 if (!ganged)
8566c4df 907 amd64_debug_display_dimm_sizes(1, pvt);
2da11654
DT
908}
909
910/* Read in both of DBAM registers */
911static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
912{
6ba5dcdc 913 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
2da11654 914
6ba5dcdc
BP
915 if (boot_cpu_data.x86 >= 0x10)
916 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
2da11654
DT
917}
918
94be4bff
DT
919/*
920 * NOTE: CPU Revision Dependent code: Rev E and Rev F
921 *
922 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
923 * set the shift factor for the DCSB and DCSM values.
924 *
925 * ->dcs_mask_notused, RevE:
926 *
927 * To find the max InputAddr for the csrow, start with the base address and set
928 * all bits that are "don't care" bits in the test at the start of section
929 * 3.5.4 (p. 84).
930 *
931 * The "don't care" bits are all set bits in the mask and all bits in the gaps
932 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
933 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
934 * gaps.
935 *
936 * ->dcs_mask_notused, RevF and later:
937 *
938 * To find the max InputAddr for the csrow, start with the base address and set
939 * all bits that are "don't care" bits in the test at the start of NPT section
940 * 4.5.4 (p. 87).
941 *
942 * The "don't care" bits are all set bits in the mask and all bits in the gaps
943 * between bit ranges [36:27] and [21:13].
944 *
945 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
946 * which are all bits in the above-mentioned gaps.
947 */
948static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
949{
9d858bb1 950
1433eb99 951 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
952 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
953 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
954 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
955 pvt->dcs_shift = REV_E_DCS_SHIFT;
956 pvt->cs_count = 8;
957 pvt->num_dcsm = 8;
958 } else {
94be4bff
DT
959 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
960 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
961 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
962 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
3ab0e7dc
BP
963 pvt->cs_count = 8;
964 pvt->num_dcsm = 4;
94be4bff
DT
965 }
966}
967
968/*
969 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
970 */
971static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
972{
6ba5dcdc 973 int cs, reg;
94be4bff
DT
974
975 amd64_set_dct_base_and_mask(pvt);
976
9d858bb1 977 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 978 reg = K8_DCSB0 + (cs * 4);
6ba5dcdc 979 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
94be4bff
DT
980 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
981 cs, pvt->dcsb0[cs], reg);
982
983 /* If DCT are NOT ganged, then read in DCT1's base */
984 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
985 reg = F10_DCSB1 + (cs * 4);
6ba5dcdc
BP
986 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
987 &pvt->dcsb1[cs]))
94be4bff
DT
988 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
989 cs, pvt->dcsb1[cs], reg);
990 } else {
991 pvt->dcsb1[cs] = 0;
992 }
993 }
994
995 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 996 reg = K8_DCSM0 + (cs * 4);
6ba5dcdc 997 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
94be4bff
DT
998 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
999 cs, pvt->dcsm0[cs], reg);
1000
1001 /* If DCT are NOT ganged, then read in DCT1's mask */
1002 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1003 reg = F10_DCSM1 + (cs * 4);
6ba5dcdc
BP
1004 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1005 &pvt->dcsm1[cs]))
94be4bff
DT
1006 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1007 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 1008 } else {
94be4bff 1009 pvt->dcsm1[cs] = 0;
6ba5dcdc 1010 }
94be4bff
DT
1011 }
1012}
1013
1014static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1015{
1016 enum mem_type type;
1017
1433eb99 1018 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
1019 if (pvt->dchr0 & DDR3_MODE)
1020 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1021 else
1022 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 1023 } else {
94be4bff
DT
1024 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1025 }
1026
239642fe 1027 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
94be4bff
DT
1028
1029 return type;
1030}
1031
ddff876d
DT
1032/*
1033 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1034 * and the later RevF memory controllers (DDR vs DDR2)
1035 *
1036 * Return:
1037 * number of memory channels in operation
1038 * Pass back:
1039 * contents of the DCL0_LOW register
1040 */
1041static int k8_early_channel_count(struct amd64_pvt *pvt)
1042{
1043 int flag, err = 0;
1044
6ba5dcdc 1045 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1046 if (err)
1047 return err;
1048
1433eb99 1049 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
ddff876d
DT
1050 /* RevF (NPT) and later */
1051 flag = pvt->dclr0 & F10_WIDTH_128;
1052 } else {
1053 /* RevE and earlier */
1054 flag = pvt->dclr0 & REVE_WIDTH_128;
1055 }
1056
1057 /* not used */
1058 pvt->dclr1 = 0;
1059
1060 return (flag) ? 2 : 1;
1061}
1062
1063/* extract the ERROR ADDRESS for the K8 CPUs */
1064static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1065 struct err_regs *info)
ddff876d
DT
1066{
1067 return (((u64) (info->nbeah & 0xff)) << 32) +
1068 (info->nbeal & ~0x03);
1069}
1070
1071/*
1072 * Read the Base and Limit registers for K8 based Memory controllers; extract
1073 * fields from the 'raw' reg into separate data fields
1074 *
1075 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1076 */
1077static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1078{
1079 u32 low;
1080 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1081
6ba5dcdc 1082 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1083
1084 /* Extract parts into separate data entries */
4997811e 1085 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1086 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1087 pvt->dram_rw_en[dram] = (low & 0x3);
1088
6ba5dcdc 1089 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1090
1091 /*
1092 * Extract parts into separate data entries. Limit is the HIGHEST memory
1093 * location of the region, so lower 24 bits need to be all ones
1094 */
4997811e 1095 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1096 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1097 pvt->dram_DstNode[dram] = (low & 0x7);
1098}
1099
1100static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1101 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1102{
1103 struct mem_ctl_info *src_mci;
ddff876d
DT
1104 int channel, csrow;
1105 u32 page, offset;
ad6a32e9 1106 u16 syndrome;
ddff876d 1107
ad6a32e9 1108 syndrome = extract_syndrome(err_info);
ddff876d
DT
1109
1110 /* CHIPKILL enabled */
ad6a32e9 1111 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1112 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1113 if (channel < 0) {
1114 /*
1115 * Syndrome didn't map, so we don't know which of the
1116 * 2 DIMMs is in error. So we need to ID 'both' of them
1117 * as suspect.
1118 */
1119 amd64_mc_printk(mci, KERN_WARNING,
ad6a32e9
BP
1120 "unknown syndrome 0x%04x - possible "
1121 "error reporting race\n", syndrome);
ddff876d
DT
1122 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1123 return;
1124 }
1125 } else {
1126 /*
1127 * non-chipkill ecc mode
1128 *
1129 * The k8 documentation is unclear about how to determine the
1130 * channel number when using non-chipkill memory. This method
1131 * was obtained from email communication with someone at AMD.
1132 * (Wish the email was placed in this comment - norsk)
1133 */
44e9e2ee 1134 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1135 }
1136
1137 /*
1138 * Find out which node the error address belongs to. This may be
1139 * different from the node that detected the error.
1140 */
44e9e2ee 1141 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1142 if (!src_mci) {
ddff876d
DT
1143 amd64_mc_printk(mci, KERN_ERR,
1144 "failed to map error address 0x%lx to a node\n",
44e9e2ee 1145 (unsigned long)sys_addr);
ddff876d
DT
1146 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1147 return;
1148 }
1149
44e9e2ee
BP
1150 /* Now map the sys_addr to a CSROW */
1151 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1152 if (csrow < 0) {
1153 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1154 } else {
44e9e2ee 1155 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1156
1157 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1158 channel, EDAC_MOD_STR);
1159 }
1160}
1161
1433eb99 1162static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1163{
1433eb99 1164 int *dbam_map;
ddff876d 1165
1433eb99
BP
1166 if (pvt->ext_model >= K8_REV_F)
1167 dbam_map = ddr2_dbam;
1168 else if (pvt->ext_model >= K8_REV_D)
1169 dbam_map = ddr2_dbam_revD;
1170 else
1171 dbam_map = ddr2_dbam_revCG;
ddff876d 1172
1433eb99 1173 return dbam_map[cs_mode];
ddff876d
DT
1174}
1175
1afd3c98
DT
1176/*
1177 * Get the number of DCT channels in use.
1178 *
1179 * Return:
1180 * number of Memory Channels in operation
1181 * Pass back:
1182 * contents of the DCL0_LOW register
1183 */
1184static int f10_early_channel_count(struct amd64_pvt *pvt)
1185{
57a30854 1186 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1187 int i, j, channels = 0;
1afd3c98
DT
1188 u32 dbam;
1189
1afd3c98
DT
1190 /* If we are in 128 bit mode, then we are using 2 channels */
1191 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1192 channels = 2;
1193 return channels;
1194 }
1195
1196 /*
d16149e8
BP
1197 * Need to check if in unganged mode: In such, there are 2 channels,
1198 * but they are not in 128 bit mode and thus the above 'dclr0' status
1199 * bit will be OFF.
1afd3c98
DT
1200 *
1201 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1202 * their CSEnable bit on. If so, then SINGLE DIMM case.
1203 */
d16149e8 1204 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1205
1afd3c98
DT
1206 /*
1207 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1208 * is more than just one DIMM present in unganged mode. Need to check
1209 * both controllers since DIMMs can be placed in either one.
1210 */
57a30854 1211 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
6ba5dcdc 1212 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1afd3c98
DT
1213 goto err_reg;
1214
57a30854
WW
1215 for (j = 0; j < 4; j++) {
1216 if (DBAM_DIMM(j, dbam) > 0) {
1217 channels++;
1218 break;
1219 }
1220 }
1afd3c98
DT
1221 }
1222
d16149e8
BP
1223 if (channels > 2)
1224 channels = 2;
1225
37da0450 1226 debugf0("MCT channel count: %d\n", channels);
1afd3c98
DT
1227
1228 return channels;
1229
1230err_reg:
1231 return -1;
1232
1233}
1234
1433eb99 1235static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1236{
1433eb99
BP
1237 int *dbam_map;
1238
1239 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1240 dbam_map = ddr3_dbam;
1241 else
1242 dbam_map = ddr2_dbam;
1243
1244 return dbam_map[cs_mode];
1afd3c98
DT
1245}
1246
1247/* Enable extended configuration access via 0xCF8 feature */
1248static void amd64_setup(struct amd64_pvt *pvt)
1249{
1250 u32 reg;
1251
6ba5dcdc 1252 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1253
1254 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1255 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1256 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1257}
1258
1259/* Restore the extended configuration access via 0xCF8 feature */
1260static void amd64_teardown(struct amd64_pvt *pvt)
1261{
1262 u32 reg;
1263
6ba5dcdc 1264 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1265
1266 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1267 if (pvt->flags.cf8_extcfg)
1268 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1269 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1270}
1271
1272static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1273 struct err_regs *info)
1afd3c98
DT
1274{
1275 return (((u64) (info->nbeah & 0xffff)) << 32) +
1276 (info->nbeal & ~0x01);
1277}
1278
1279/*
1280 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1281 * fields from the 'raw' reg into separate data fields.
1282 *
1283 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1284 */
1285static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1286{
1287 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1288
1289 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1290 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1291
1292 /* read the 'raw' DRAM BASE Address register */
6ba5dcdc 1293 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1afd3c98
DT
1294
1295 /* Read from the ECS data register */
6ba5dcdc 1296 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1afd3c98
DT
1297
1298 /* Extract parts into separate data entries */
1299 pvt->dram_rw_en[dram] = (low_base & 0x3);
1300
1301 if (pvt->dram_rw_en[dram] == 0)
1302 return;
1303
1304 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1305
66216a7a 1306 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1307 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1308
1309 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1310 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1311
1312 /* read the 'raw' LIMIT registers */
6ba5dcdc 1313 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1afd3c98
DT
1314
1315 /* Read from the ECS data register for the HIGH portion */
6ba5dcdc 1316 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1afd3c98 1317
1afd3c98
DT
1318 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1319 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1320
1321 /*
1322 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1323 * memory location of the region, so low 24 bits need to be all ones.
1324 */
66216a7a 1325 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1326 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1327 0x00FFFFFF;
1afd3c98 1328}
6163b5d4
DT
1329
1330static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1331{
6163b5d4 1332
6ba5dcdc
BP
1333 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1334 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1335 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1336 "High range addresses at: 0x%x\n",
1337 pvt->dram_ctl_select_low,
1338 dct_sel_baseaddr(pvt));
1339
1340 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1341 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1342 (dct_dram_enabled(pvt) ? "yes" : "no"));
1343
1344 if (!dct_ganging_enabled(pvt))
1345 debugf0(" Address range split per DCT: %s\n",
1346 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1347
1348 debugf0(" DCT data interleave for ECC: %s, "
1349 "DRAM cleared since last warm reset: %s\n",
1350 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1351 (dct_memory_cleared(pvt) ? "yes" : "no"));
1352
1353 debugf0(" DCT channel interleave: %s, "
1354 "DCT interleave bits selector: 0x%x\n",
1355 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1356 dct_sel_interleave_addr(pvt));
1357 }
1358
6ba5dcdc
BP
1359 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1360 &pvt->dram_ctl_select_high);
6163b5d4
DT
1361}
1362
f71d0a05
DT
1363/*
1364 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1365 * Interleaving Modes.
1366 */
6163b5d4
DT
1367static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1368 int hi_range_sel, u32 intlv_en)
1369{
1370 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1371
1372 if (dct_ganging_enabled(pvt))
1373 cs = 0;
1374 else if (hi_range_sel)
1375 cs = dct_sel_high;
1376 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1377 /*
1378 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1379 */
6163b5d4
DT
1380 if (dct_sel_interleave_addr(pvt) == 0)
1381 cs = sys_addr >> 6 & 1;
1382 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1383 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1384
1385 if (dct_sel_interleave_addr(pvt) & 1)
1386 cs = (sys_addr >> 9 & 1) ^ temp;
1387 else
1388 cs = (sys_addr >> 6 & 1) ^ temp;
1389 } else if (intlv_en & 4)
1390 cs = sys_addr >> 15 & 1;
1391 else if (intlv_en & 2)
1392 cs = sys_addr >> 14 & 1;
1393 else if (intlv_en & 1)
1394 cs = sys_addr >> 13 & 1;
1395 else
1396 cs = sys_addr >> 12 & 1;
1397 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1398 cs = ~dct_sel_high & 1;
1399 else
1400 cs = 0;
1401
1402 return cs;
1403}
1404
1405static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1406{
1407 if (intlv_en == 1)
1408 return 1;
1409 else if (intlv_en == 3)
1410 return 2;
1411 else if (intlv_en == 7)
1412 return 3;
1413
1414 return 0;
1415}
1416
f71d0a05
DT
1417/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1418static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1419 u32 dct_sel_base_addr,
1420 u64 dct_sel_base_off,
f71d0a05 1421 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1422 u64 dram_base)
1423{
1424 u64 chan_off;
1425
1426 if (hi_range_sel) {
9975a5f2 1427 if (!(dct_sel_base_addr & 0xFFFF0000) &&
f71d0a05 1428 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1429 chan_off = hole_off << 16;
1430 else
1431 chan_off = dct_sel_base_off;
1432 } else {
f71d0a05 1433 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1434 chan_off = hole_off << 16;
1435 else
1436 chan_off = dram_base & 0xFFFFF8000000ULL;
1437 }
1438
1439 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1440 (chan_off & 0x0000FFFFFF800000ULL);
1441}
1442
1443/* Hack for the time being - Can we get this from BIOS?? */
1444#define CH0SPARE_RANK 0
1445#define CH1SPARE_RANK 1
1446
1447/*
1448 * checks if the csrow passed in is marked as SPARED, if so returns the new
1449 * spare row
1450 */
1451static inline int f10_process_possible_spare(int csrow,
1452 u32 cs, struct amd64_pvt *pvt)
1453{
1454 u32 swap_done;
1455 u32 bad_dram_cs;
1456
1457 /* Depending on channel, isolate respective SPARING info */
1458 if (cs) {
1459 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1460 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1461 if (swap_done && (csrow == bad_dram_cs))
1462 csrow = CH1SPARE_RANK;
1463 } else {
1464 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1465 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1466 if (swap_done && (csrow == bad_dram_cs))
1467 csrow = CH0SPARE_RANK;
1468 }
1469 return csrow;
1470}
1471
1472/*
1473 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1474 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1475 *
1476 * Return:
1477 * -EINVAL: NOT FOUND
1478 * 0..csrow = Chip-Select Row
1479 */
1480static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1481{
1482 struct mem_ctl_info *mci;
1483 struct amd64_pvt *pvt;
1484 u32 cs_base, cs_mask;
1485 int cs_found = -EINVAL;
1486 int csrow;
1487
1488 mci = mci_lookup[nid];
1489 if (!mci)
1490 return cs_found;
1491
1492 pvt = mci->pvt_info;
1493
1494 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1495
9d858bb1 1496 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1497
1498 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1499 if (!(cs_base & K8_DCSB_CS_ENABLE))
1500 continue;
1501
1502 /*
1503 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1504 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1505 * of the actual address.
1506 */
1507 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1508
1509 /*
1510 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1511 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1512 */
1513 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1514
1515 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1516 csrow, cs_base, cs_mask);
1517
1518 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1519
1520 debugf1(" Final CSMask=0x%x\n", cs_mask);
1521 debugf1(" (InputAddr & ~CSMask)=0x%x "
1522 "(CSBase & ~CSMask)=0x%x\n",
1523 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1524
1525 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1526 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1527
1528 debugf1(" MATCH csrow=%d\n", cs_found);
1529 break;
1530 }
1531 }
1532 return cs_found;
1533}
1534
f71d0a05
DT
1535/* For a given @dram_range, check if @sys_addr falls within it. */
1536static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1537 u64 sys_addr, int *nid, int *chan_sel)
1538{
1539 int node_id, cs_found = -EINVAL, high_range = 0;
1540 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1541 u32 hole_valid, tmp, dct_sel_base, channel;
1542 u64 dram_base, chan_addr, dct_sel_base_off;
1543
1544 dram_base = pvt->dram_base[dram_range];
1545 intlv_en = pvt->dram_IntlvEn[dram_range];
1546
1547 node_id = pvt->dram_DstNode[dram_range];
1548 intlv_sel = pvt->dram_IntlvSel[dram_range];
1549
1550 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1551 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1552
1553 /*
1554 * This assumes that one node's DHAR is the same as all the other
1555 * nodes' DHAR.
1556 */
1557 hole_off = (pvt->dhar & 0x0000FF80);
1558 hole_valid = (pvt->dhar & 0x1);
1559 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1560
1561 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1562 hole_off, hole_valid, intlv_sel);
1563
e726f3c3 1564 if (intlv_en &&
f71d0a05
DT
1565 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1566 return -EINVAL;
1567
1568 dct_sel_base = dct_sel_baseaddr(pvt);
1569
1570 /*
1571 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1572 * select between DCT0 and DCT1.
1573 */
1574 if (dct_high_range_enabled(pvt) &&
1575 !dct_ganging_enabled(pvt) &&
1576 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1577 high_range = 1;
1578
1579 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1580
1581 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1582 dct_sel_base_off, hole_valid,
1583 hole_off, dram_base);
1584
1585 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1586
1587 /* remove Node ID (in case of memory interleaving) */
1588 tmp = chan_addr & 0xFC0;
1589
1590 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1591
1592 /* remove channel interleave and hash */
1593 if (dct_interleave_enabled(pvt) &&
1594 !dct_high_range_enabled(pvt) &&
1595 !dct_ganging_enabled(pvt)) {
1596 if (dct_sel_interleave_addr(pvt) != 1)
1597 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1598 else {
1599 tmp = chan_addr & 0xFC0;
1600 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1601 | tmp;
1602 }
1603 }
1604
1605 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1606 chan_addr, (u32)(chan_addr >> 8));
1607
1608 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1609
1610 if (cs_found >= 0) {
1611 *nid = node_id;
1612 *chan_sel = channel;
1613 }
1614 return cs_found;
1615}
1616
1617static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1618 int *node, int *chan_sel)
1619{
1620 int dram_range, cs_found = -EINVAL;
1621 u64 dram_base, dram_limit;
1622
1623 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1624
1625 if (!pvt->dram_rw_en[dram_range])
1626 continue;
1627
1628 dram_base = pvt->dram_base[dram_range];
1629 dram_limit = pvt->dram_limit[dram_range];
1630
1631 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1632
1633 cs_found = f10_match_to_this_node(pvt, dram_range,
1634 sys_addr, node,
1635 chan_sel);
1636 if (cs_found >= 0)
1637 break;
1638 }
1639 }
1640 return cs_found;
1641}
1642
1643/*
bdc30a0c
BP
1644 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1645 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1646 *
bdc30a0c
BP
1647 * The @sys_addr is usually an error address received from the hardware
1648 * (MCX_ADDR).
f71d0a05
DT
1649 */
1650static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1651 struct err_regs *err_info,
f71d0a05
DT
1652 u64 sys_addr)
1653{
1654 struct amd64_pvt *pvt = mci->pvt_info;
1655 u32 page, offset;
f71d0a05 1656 int nid, csrow, chan = 0;
ad6a32e9 1657 u16 syndrome;
f71d0a05
DT
1658
1659 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1660
bdc30a0c
BP
1661 if (csrow < 0) {
1662 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1663 return;
1664 }
1665
1666 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1667
ad6a32e9 1668 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1669
1670 /*
1671 * We need the syndromes for channel detection only when we're
1672 * ganged. Otherwise @chan should already contain the channel at
1673 * this point.
1674 */
962b70a1 1675 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1676 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1677
bdc30a0c
BP
1678 if (chan >= 0)
1679 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1680 EDAC_MOD_STR);
1681 else
f71d0a05 1682 /*
bdc30a0c 1683 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1684 */
bdc30a0c 1685 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1686 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1687 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1688}
1689
f71d0a05 1690/*
8566c4df 1691 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1692 * CSROWs as well
1693 */
8566c4df 1694static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1695{
603adaf6 1696 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1697 u32 dbam;
1698 u32 *dcsb;
1699
8566c4df 1700 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1701 if (pvt->dclr0 & F10_WIDTH_128)
1702 factor = 1;
1703
8566c4df 1704 /* K8 families < revF not supported yet */
1433eb99 1705 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1706 return;
1707 else
1708 WARN_ON(ctrl != 0);
1709 }
1710
1711 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1712 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
f71d0a05
DT
1713
1714 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1715 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1716
8566c4df
BP
1717 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1718
f71d0a05
DT
1719 /* Dump memory sizes for DIMM and its CSROWs */
1720 for (dimm = 0; dimm < 4; dimm++) {
1721
1722 size0 = 0;
1723 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1724 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1725
1726 size1 = 0;
1727 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1728 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1729
8566c4df 1730 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
603adaf6
BP
1731 dimm * 2, size0 << factor,
1732 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1733 }
1734}
1735
4d37607a
DT
1736static struct amd64_family_type amd64_family_types[] = {
1737 [K8_CPUS] = {
1738 .ctl_name = "RevF",
1739 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1740 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1741 .ops = {
1433eb99
BP
1742 .early_channel_count = k8_early_channel_count,
1743 .get_error_address = k8_get_error_address,
1744 .read_dram_base_limit = k8_read_dram_base_limit,
1745 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1746 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1747 }
1748 },
1749 [F10_CPUS] = {
1750 .ctl_name = "Family 10h",
1751 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1752 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1753 .ops = {
1433eb99
BP
1754 .early_channel_count = f10_early_channel_count,
1755 .get_error_address = f10_get_error_address,
1756 .read_dram_base_limit = f10_read_dram_base_limit,
1757 .read_dram_ctl_register = f10_read_dram_ctl_register,
1758 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1759 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1760 }
1761 },
4d37607a
DT
1762};
1763
1764static struct pci_dev *pci_get_related_function(unsigned int vendor,
1765 unsigned int device,
1766 struct pci_dev *related)
1767{
1768 struct pci_dev *dev = NULL;
1769
1770 dev = pci_get_device(vendor, device, dev);
1771 while (dev) {
1772 if ((dev->bus->number == related->bus->number) &&
1773 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1774 break;
1775 dev = pci_get_device(vendor, device, dev);
1776 }
1777
1778 return dev;
1779}
1780
b1289d6f 1781/*
bfc04aec
BP
1782 * These are tables of eigenvectors (one per line) which can be used for the
1783 * construction of the syndrome tables. The modified syndrome search algorithm
1784 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1785 *
bfc04aec 1786 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1787 */
bfc04aec
BP
1788static u16 x4_vectors[] = {
1789 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1790 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1791 0x0001, 0x0002, 0x0004, 0x0008,
1792 0x1013, 0x3032, 0x4044, 0x8088,
1793 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1794 0x4857, 0xc4fe, 0x13cc, 0x3288,
1795 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1796 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1797 0x15c1, 0x2a42, 0x89ac, 0x4758,
1798 0x2b03, 0x1602, 0x4f0c, 0xca08,
1799 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1800 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1801 0x2b87, 0x164e, 0x642c, 0xdc18,
1802 0x40b9, 0x80de, 0x1094, 0x20e8,
1803 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1804 0x11c1, 0x2242, 0x84ac, 0x4c58,
1805 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1806 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1807 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1808 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1809 0x16b3, 0x3d62, 0x4f34, 0x8518,
1810 0x1e2f, 0x391a, 0x5cac, 0xf858,
1811 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1812 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1813 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1814 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1815 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1816 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1817 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1818 0x185d, 0x2ca6, 0x7914, 0x9e28,
1819 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1820 0x4199, 0x82ee, 0x19f4, 0x2e58,
1821 0x4807, 0xc40e, 0x130c, 0x3208,
1822 0x1905, 0x2e0a, 0x5804, 0xac08,
1823 0x213f, 0x132a, 0xadfc, 0x5ba8,
1824 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1825};
1826
bfc04aec
BP
1827static u16 x8_vectors[] = {
1828 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1829 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1830 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1831 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1832 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1833 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1834 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1835 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1836 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1837 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1838 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1839 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1840 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1841 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1842 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1843 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1844 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1845 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1846 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1847};
1848
1849static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1850 int v_dim)
b1289d6f 1851{
bfc04aec
BP
1852 unsigned int i, err_sym;
1853
1854 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1855 u16 s = syndrome;
1856 int v_idx = err_sym * v_dim;
1857 int v_end = (err_sym + 1) * v_dim;
1858
1859 /* walk over all 16 bits of the syndrome */
1860 for (i = 1; i < (1U << 16); i <<= 1) {
1861
1862 /* if bit is set in that eigenvector... */
1863 if (v_idx < v_end && vectors[v_idx] & i) {
1864 u16 ev_comp = vectors[v_idx++];
1865
1866 /* ... and bit set in the modified syndrome, */
1867 if (s & i) {
1868 /* remove it. */
1869 s ^= ev_comp;
4d37607a 1870
bfc04aec
BP
1871 if (!s)
1872 return err_sym;
1873 }
b1289d6f 1874
bfc04aec
BP
1875 } else if (s & i)
1876 /* can't get to zero, move to next symbol */
1877 break;
1878 }
b1289d6f
DT
1879 }
1880
1881 debugf0("syndrome(%x) not found\n", syndrome);
1882 return -1;
1883}
d27bf6fa 1884
bfc04aec
BP
1885static int map_err_sym_to_channel(int err_sym, int sym_size)
1886{
1887 if (sym_size == 4)
1888 switch (err_sym) {
1889 case 0x20:
1890 case 0x21:
1891 return 0;
1892 break;
1893 case 0x22:
1894 case 0x23:
1895 return 1;
1896 break;
1897 default:
1898 return err_sym >> 4;
1899 break;
1900 }
1901 /* x8 symbols */
1902 else
1903 switch (err_sym) {
1904 /* imaginary bits not in a DIMM */
1905 case 0x10:
1906 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1907 err_sym);
1908 return -1;
1909 break;
1910
1911 case 0x11:
1912 return 0;
1913 break;
1914 case 0x12:
1915 return 1;
1916 break;
1917 default:
1918 return err_sym >> 3;
1919 break;
1920 }
1921 return -1;
1922}
1923
1924static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1925{
1926 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1927 int err_sym = -1;
1928
1929 if (pvt->syn_type == 8)
1930 err_sym = decode_syndrome(syndrome, x8_vectors,
1931 ARRAY_SIZE(x8_vectors),
1932 pvt->syn_type);
1933 else if (pvt->syn_type == 4)
1934 err_sym = decode_syndrome(syndrome, x4_vectors,
1935 ARRAY_SIZE(x4_vectors),
1936 pvt->syn_type);
1937 else {
1938 amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
1939 __func__, pvt->syn_type);
1940 return err_sym;
bfc04aec 1941 }
ad6a32e9
BP
1942
1943 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1944}
1945
d27bf6fa
DT
1946/*
1947 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1948 * ADDRESS and process.
1949 */
1950static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1951 struct err_regs *info)
d27bf6fa
DT
1952{
1953 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1954 u64 sys_addr;
d27bf6fa
DT
1955
1956 /* Ensure that the Error Address is VALID */
1957 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1958 amd64_mc_printk(mci, KERN_ERR,
1959 "HW has no ERROR_ADDRESS available\n");
1960 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1961 return;
1962 }
1963
1f6bcee7 1964 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1965
1966 amd64_mc_printk(mci, KERN_ERR,
44e9e2ee 1967 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1968
44e9e2ee 1969 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1970}
1971
1972/* Handle any Un-correctable Errors (UEs) */
1973static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1974 struct err_regs *info)
d27bf6fa 1975{
1f6bcee7
BP
1976 struct amd64_pvt *pvt = mci->pvt_info;
1977 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1978 int csrow;
44e9e2ee 1979 u64 sys_addr;
d27bf6fa 1980 u32 page, offset;
d27bf6fa
DT
1981
1982 log_mci = mci;
1983
1984 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1985 amd64_mc_printk(mci, KERN_CRIT,
1986 "HW has no ERROR_ADDRESS available\n");
1987 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1988 return;
1989 }
1990
1f6bcee7 1991 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1992
1993 /*
1994 * Find out which node the error address belongs to. This may be
1995 * different from the node that detected the error.
1996 */
44e9e2ee 1997 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa
DT
1998 if (!src_mci) {
1999 amd64_mc_printk(mci, KERN_CRIT,
2000 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
44e9e2ee 2001 (unsigned long)sys_addr);
d27bf6fa
DT
2002 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2003 return;
2004 }
2005
2006 log_mci = src_mci;
2007
44e9e2ee 2008 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa
DT
2009 if (csrow < 0) {
2010 amd64_mc_printk(mci, KERN_CRIT,
2011 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
44e9e2ee 2012 (unsigned long)sys_addr);
d27bf6fa
DT
2013 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2014 } else {
44e9e2ee 2015 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
2016 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2017 }
2018}
2019
549d042d 2020static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 2021 struct err_regs *info)
d27bf6fa 2022{
b70ef010
BP
2023 u32 ec = ERROR_CODE(info->nbsl);
2024 u32 xec = EXT_ERROR_CODE(info->nbsl);
17adea01 2025 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 2026
b70ef010
BP
2027 /* Bail early out if this was an 'observed' error */
2028 if (PP(ec) == K8_NBSL_PP_OBS)
2029 return;
d27bf6fa 2030
ecaf5606
BP
2031 /* Do only ECC errors */
2032 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2033 return;
d27bf6fa 2034
ecaf5606 2035 if (ecc_type == 2)
d27bf6fa 2036 amd64_handle_ce(mci, info);
ecaf5606 2037 else if (ecc_type == 1)
d27bf6fa 2038 amd64_handle_ue(mci, info);
d27bf6fa
DT
2039}
2040
7cfd4a87 2041void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 2042{
549d042d 2043 struct mem_ctl_info *mci = mci_lookup[node_id];
7cfd4a87 2044 struct err_regs regs;
d27bf6fa 2045
7cfd4a87
BP
2046 regs.nbsl = (u32) m->status;
2047 regs.nbsh = (u32)(m->status >> 32);
2048 regs.nbeal = (u32) m->addr;
2049 regs.nbeah = (u32)(m->addr >> 32);
2050 regs.nbcfg = nbcfg;
2051
2052 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 2053
d27bf6fa
DT
2054 /*
2055 * Check the UE bit of the NB status high register, if set generate some
2056 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2057 * If it was a GART error, skip that process.
549d042d
BP
2058 *
2059 * FIXME: this should go somewhere else, if at all.
d27bf6fa 2060 */
7cfd4a87 2061 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 2062 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 2063
d27bf6fa 2064}
d27bf6fa 2065
0ec449ee
DT
2066/*
2067 * Input:
2068 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2069 * 2) AMD Family index value
2070 *
2071 * Ouput:
2072 * Upon return of 0, the following filled in:
2073 *
2074 * struct pvt->addr_f1_ctl
2075 * struct pvt->misc_f3_ctl
2076 *
2077 * Filled in with related device funcitions of 'dram_f2_ctl'
2078 * These devices are "reserved" via the pci_get_device()
2079 *
2080 * Upon return of 1 (error status):
2081 *
2082 * Nothing reserved
2083 */
2084static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2085{
2086 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2087
2088 /* Reserve the ADDRESS MAP Device */
2089 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2090 amd64_dev->addr_f1_ctl,
2091 pvt->dram_f2_ctl);
2092
2093 if (!pvt->addr_f1_ctl) {
2094 amd64_printk(KERN_ERR, "error address map device not found: "
2095 "vendor %x device 0x%x (broken BIOS?)\n",
2096 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2097 return 1;
2098 }
2099
2100 /* Reserve the MISC Device */
2101 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2102 amd64_dev->misc_f3_ctl,
2103 pvt->dram_f2_ctl);
2104
2105 if (!pvt->misc_f3_ctl) {
2106 pci_dev_put(pvt->addr_f1_ctl);
2107 pvt->addr_f1_ctl = NULL;
2108
2109 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2110 "vendor %x device 0x%x (broken BIOS?)\n",
2111 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2112 return 1;
2113 }
2114
2115 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2116 pci_name(pvt->addr_f1_ctl));
2117 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2118 pci_name(pvt->dram_f2_ctl));
2119 debugf1(" Misc device PCI Bus ID:\t%s\n",
2120 pci_name(pvt->misc_f3_ctl));
2121
2122 return 0;
2123}
2124
2125static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2126{
2127 pci_dev_put(pvt->addr_f1_ctl);
2128 pci_dev_put(pvt->misc_f3_ctl);
2129}
2130
2131/*
2132 * Retrieve the hardware registers of the memory controller (this includes the
2133 * 'Address Map' and 'Misc' device regs)
2134 */
2135static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2136{
2137 u64 msr_val;
ad6a32e9 2138 u32 tmp;
6ba5dcdc 2139 int dram;
0ec449ee
DT
2140
2141 /*
2142 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2143 * those are Read-As-Zero
2144 */
e97f8bb8
BP
2145 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2146 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2147
2148 /* check first whether TOP_MEM2 is enabled */
2149 rdmsrl(MSR_K8_SYSCFG, msr_val);
2150 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2151 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2152 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2153 } else
2154 debugf0(" TOP_MEM2 disabled.\n");
2155
2156 amd64_cpu_display_info(pvt);
2157
6ba5dcdc 2158 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2159
2160 if (pvt->ops->read_dram_ctl_register)
2161 pvt->ops->read_dram_ctl_register(pvt);
2162
2163 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2164 /*
2165 * Call CPU specific READ function to get the DRAM Base and
2166 * Limit values from the DCT.
2167 */
2168 pvt->ops->read_dram_base_limit(pvt, dram);
2169
2170 /*
2171 * Only print out debug info on rows with both R and W Enabled.
2172 * Normal processing, compiler should optimize this whole 'if'
2173 * debug output block away.
2174 */
2175 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2176 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2177 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2178 dram,
e97f8bb8
BP
2179 pvt->dram_base[dram],
2180 pvt->dram_limit[dram]);
2181
0ec449ee
DT
2182 debugf1(" IntlvEn=%s %s %s "
2183 "IntlvSel=%d DstNode=%d\n",
2184 pvt->dram_IntlvEn[dram] ?
2185 "Enabled" : "Disabled",
2186 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2187 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2188 pvt->dram_IntlvSel[dram],
2189 pvt->dram_DstNode[dram]);
2190 }
2191 }
2192
2193 amd64_read_dct_base_mask(pvt);
2194
6ba5dcdc 2195 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2196 amd64_read_dbam_reg(pvt);
2197
6ba5dcdc
BP
2198 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2199 F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2200
6ba5dcdc
BP
2201 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2202 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
0ec449ee 2203
ad6a32e9
BP
2204 if (boot_cpu_data.x86 >= 0x10) {
2205 if (!dct_ganging_enabled(pvt)) {
2206 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2207 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2208 }
2209 amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
0ec449ee 2210 }
ad6a32e9
BP
2211
2212 if (boot_cpu_data.x86 == 0x10 &&
2213 boot_cpu_data.x86_model > 7 &&
2214 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2215 tmp & BIT(25))
2216 pvt->syn_type = 8;
2217 else
2218 pvt->syn_type = 4;
2219
0ec449ee 2220 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2221}
2222
2223/*
2224 * NOTE: CPU Revision Dependent code
2225 *
2226 * Input:
9d858bb1 2227 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2228 * k8 private pointer to -->
2229 * DRAM Bank Address mapping register
2230 * node_id
2231 * DCL register where dual_channel_active is
2232 *
2233 * The DBAM register consists of 4 sets of 4 bits each definitions:
2234 *
2235 * Bits: CSROWs
2236 * 0-3 CSROWs 0 and 1
2237 * 4-7 CSROWs 2 and 3
2238 * 8-11 CSROWs 4 and 5
2239 * 12-15 CSROWs 6 and 7
2240 *
2241 * Values range from: 0 to 15
2242 * The meaning of the values depends on CPU revision and dual-channel state,
2243 * see relevant BKDG more info.
2244 *
2245 * The memory controller provides for total of only 8 CSROWs in its current
2246 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2247 * single channel or two (2) DIMMs in dual channel mode.
2248 *
2249 * The following code logic collapses the various tables for CSROW based on CPU
2250 * revision.
2251 *
2252 * Returns:
2253 * The number of PAGE_SIZE pages on the specified CSROW number it
2254 * encompasses
2255 *
2256 */
2257static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2258{
1433eb99 2259 u32 cs_mode, nr_pages;
0ec449ee
DT
2260
2261 /*
2262 * The math on this doesn't look right on the surface because x/2*4 can
2263 * be simplified to x*2 but this expression makes use of the fact that
2264 * it is integral math where 1/2=0. This intermediate value becomes the
2265 * number of bits to shift the DBAM register to extract the proper CSROW
2266 * field.
2267 */
1433eb99 2268 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2269
1433eb99 2270 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2271
2272 /*
2273 * If dual channel then double the memory size of single channel.
2274 * Channel count is 1 or 2
2275 */
2276 nr_pages <<= (pvt->channel_count - 1);
2277
1433eb99 2278 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2279 debugf0(" nr_pages= %u channel-count = %d\n",
2280 nr_pages, pvt->channel_count);
2281
2282 return nr_pages;
2283}
2284
2285/*
2286 * Initialize the array of csrow attribute instances, based on the values
2287 * from pci config hardware registers.
2288 */
2289static int amd64_init_csrows(struct mem_ctl_info *mci)
2290{
2291 struct csrow_info *csrow;
2292 struct amd64_pvt *pvt;
2293 u64 input_addr_min, input_addr_max, sys_addr;
6ba5dcdc 2294 int i, empty = 1;
0ec449ee
DT
2295
2296 pvt = mci->pvt_info;
2297
6ba5dcdc 2298 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
0ec449ee
DT
2299
2300 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2301 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2302 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2303 );
2304
9d858bb1 2305 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2306 csrow = &mci->csrows[i];
2307
2308 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2309 debugf1("----CSROW %d EMPTY for node %d\n", i,
2310 pvt->mc_node_id);
2311 continue;
2312 }
2313
2314 debugf1("----CSROW %d VALID for MC node %d\n",
2315 i, pvt->mc_node_id);
2316
2317 empty = 0;
2318 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2319 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2320 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2321 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2322 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2323 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2324 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2325 /* 8 bytes of resolution */
2326
2327 csrow->mtype = amd64_determine_memory_type(pvt);
2328
2329 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2330 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2331 (unsigned long)input_addr_min,
2332 (unsigned long)input_addr_max);
2333 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2334 (unsigned long)sys_addr, csrow->page_mask);
2335 debugf1(" nr_pages: %u first_page: 0x%lx "
2336 "last_page: 0x%lx\n",
2337 (unsigned)csrow->nr_pages,
2338 csrow->first_page, csrow->last_page);
2339
2340 /*
2341 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2342 */
2343 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2344 csrow->edac_mode =
2345 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2346 EDAC_S4ECD4ED : EDAC_SECDED;
2347 else
2348 csrow->edac_mode = EDAC_NONE;
2349 }
2350
2351 return empty;
2352}
d27bf6fa 2353
f6d6ae96
BP
2354/* get all cores on this DCT */
2355static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2356{
2357 int cpu;
2358
2359 for_each_online_cpu(cpu)
2360 if (amd_get_nb_id(cpu) == nid)
2361 cpumask_set_cpu(cpu, mask);
2362}
2363
2364/* check MCG_CTL on all the cpus on this node */
2365static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2366{
2367 cpumask_var_t mask;
50542251 2368 int cpu, nbe;
f6d6ae96
BP
2369 bool ret = false;
2370
2371 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2372 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2373 __func__);
2374 return false;
2375 }
2376
2377 get_cpus_on_this_dct_cpumask(mask, nid);
2378
f6d6ae96
BP
2379 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2380
2381 for_each_cpu(cpu, mask) {
50542251
BP
2382 struct msr *reg = per_cpu_ptr(msrs, cpu);
2383 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2384
2385 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2386 cpu, reg->q,
f6d6ae96
BP
2387 (nbe ? "enabled" : "disabled"));
2388
2389 if (!nbe)
2390 goto out;
f6d6ae96
BP
2391 }
2392 ret = true;
2393
2394out:
f6d6ae96
BP
2395 free_cpumask_var(mask);
2396 return ret;
2397}
2398
2399static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2400{
2401 cpumask_var_t cmask;
50542251 2402 int cpu;
f6d6ae96
BP
2403
2404 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2405 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2406 __func__);
2407 return false;
2408 }
2409
2410 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2411
f6d6ae96
BP
2412 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2413
2414 for_each_cpu(cpu, cmask) {
2415
50542251
BP
2416 struct msr *reg = per_cpu_ptr(msrs, cpu);
2417
f6d6ae96 2418 if (on) {
50542251 2419 if (reg->l & K8_MSR_MCGCTL_NBE)
d95cf4de 2420 pvt->flags.nb_mce_enable = 1;
f6d6ae96 2421
50542251 2422 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2423 } else {
2424 /*
d95cf4de 2425 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2426 */
d95cf4de 2427 if (!pvt->flags.nb_mce_enable)
50542251 2428 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2429 }
f6d6ae96
BP
2430 }
2431 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2432
f6d6ae96
BP
2433 free_cpumask_var(cmask);
2434
2435 return 0;
2436}
2437
f9431992
DT
2438static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2439{
2440 struct amd64_pvt *pvt = mci->pvt_info;
f6d6ae96 2441 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2442
6ba5dcdc 2443 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2444
2445 /* turn on UECCn and CECCEn bits */
2446 pvt->old_nbctl = value & mask;
2447 pvt->nbctl_mcgctl_saved = 1;
2448
2449 value |= mask;
2450 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2451
f6d6ae96
BP
2452 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2453 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2454 "MCGCTL!\n");
f9431992 2455
6ba5dcdc 2456 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2457
2458 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2459 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2460 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2461
2462 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2463 amd64_printk(KERN_WARNING,
2464 "This node reports that DRAM ECC is "
2465 "currently Disabled; ENABLING now\n");
2466
d95cf4de
BP
2467 pvt->flags.nb_ecc_prev = 0;
2468
f9431992
DT
2469 /* Attempt to turn on DRAM ECC Enable */
2470 value |= K8_NBCFG_ECC_ENABLE;
2471 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2472
6ba5dcdc 2473 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2474
2475 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2476 amd64_printk(KERN_WARNING,
2477 "Hardware rejects Enabling DRAM ECC checking\n"
2478 "Check memory DIMM configuration\n");
2479 } else {
2480 amd64_printk(KERN_DEBUG,
2481 "Hardware accepted DRAM ECC Enable\n");
2482 }
d95cf4de
BP
2483 } else {
2484 pvt->flags.nb_ecc_prev = 1;
f9431992 2485 }
d95cf4de 2486
f9431992
DT
2487 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2488 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2489 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2490
2491 pvt->ctl_error_info.nbcfg = value;
2492}
2493
2494static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2495{
f6d6ae96 2496 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992
DT
2497
2498 if (!pvt->nbctl_mcgctl_saved)
2499 return;
2500
6ba5dcdc 2501 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2502 value &= ~mask;
2503 value |= pvt->old_nbctl;
2504
f9431992
DT
2505 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2506
d95cf4de
BP
2507 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2508 if (!pvt->flags.nb_ecc_prev) {
2509 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2510 value &= ~K8_NBCFG_ECC_ENABLE;
2511 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2512 }
2513
2514 /* restore the NB Enable MCGCTL bit */
f6d6ae96 2515 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
d95cf4de 2516 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
f9431992
DT
2517}
2518
2519/*
2520 * EDAC requires that the BIOS have ECC enabled before taking over the
2521 * processing of ECC errors. This is because the BIOS can properly initialize
2522 * the memory system completely. A command line option allows to force-enable
2523 * hardware ECC later in amd64_enable_ecc_error_reporting().
2524 */
cab4d277
BP
2525static const char *ecc_msg =
2526 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2527 " Either enable ECC checking or force module loading by setting "
2528 "'ecc_enable_override'.\n"
2529 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2530
f9431992
DT
2531static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2532{
2533 u32 value;
06724535
BP
2534 u8 ecc_enabled = 0;
2535 bool nb_mce_en = false;
f9431992 2536
6ba5dcdc 2537 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2538
2539 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
be3468e8 2540 if (!ecc_enabled)
cab4d277 2541 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
be3468e8
BP
2542 "is currently disabled, set F3x%x[22] (%s).\n",
2543 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2544 else
2545 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
f9431992 2546
06724535
BP
2547 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2548 if (!nb_mce_en)
cab4d277 2549 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
be3468e8
BP
2550 "0x%08x[4] on node %d to enable.\n",
2551 MSR_IA32_MCG_CTL, pvt->mc_node_id);
f9431992 2552
06724535 2553 if (!ecc_enabled || !nb_mce_en) {
f9431992 2554 if (!ecc_enable_override) {
cab4d277 2555 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
be3468e8 2556 return -ENODEV;
d95cf4de
BP
2557 } else {
2558 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
be3468e8 2559 }
43f5e687 2560 }
f9431992 2561
be3468e8 2562 return 0;
f9431992
DT
2563}
2564
7d6034d3
DT
2565struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2566 ARRAY_SIZE(amd64_inj_attrs) +
2567 1];
2568
2569struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2570
2571static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2572{
2573 unsigned int i = 0, j = 0;
2574
2575 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2576 sysfs_attrs[i] = amd64_dbg_attrs[i];
2577
2578 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2579 sysfs_attrs[i] = amd64_inj_attrs[j];
2580
2581 sysfs_attrs[i] = terminator;
2582
2583 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2584}
2585
2586static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2587{
2588 struct amd64_pvt *pvt = mci->pvt_info;
2589
2590 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2591 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2592
2593 if (pvt->nbcap & K8_NBCAP_SECDED)
2594 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2595
2596 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2597 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2598
2599 mci->edac_cap = amd64_determine_edac_cap(pvt);
2600 mci->mod_name = EDAC_MOD_STR;
2601 mci->mod_ver = EDAC_AMD64_VERSION;
2602 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2603 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2604 mci->ctl_page_to_phys = NULL;
2605
7d6034d3
DT
2606 /* memory scrubber interface */
2607 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2608 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2609}
2610
2611/*
2612 * Init stuff for this DRAM Controller device.
2613 *
2614 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2615 * Space feature MUST be enabled on ALL Processors prior to actually reading
2616 * from the ECS registers. Since the loading of the module can occur on any
2617 * 'core', and cores don't 'see' all the other processors ECS data when the
2618 * others are NOT enabled. Our solution is to first enable ECS access in this
2619 * routine on all processors, gather some data in a amd64_pvt structure and
2620 * later come back in a finish-setup function to perform that final
2621 * initialization. See also amd64_init_2nd_stage() for that.
2622 */
2623static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2624 int mc_type_index)
2625{
2626 struct amd64_pvt *pvt = NULL;
2627 int err = 0, ret;
2628
2629 ret = -ENOMEM;
2630 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2631 if (!pvt)
2632 goto err_exit;
2633
37da0450 2634 pvt->mc_node_id = get_node_id(dram_f2_ctl);
7d6034d3
DT
2635
2636 pvt->dram_f2_ctl = dram_f2_ctl;
2637 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2638 pvt->mc_type_index = mc_type_index;
2639 pvt->ops = family_ops(mc_type_index);
7d6034d3
DT
2640
2641 /*
2642 * We have the dram_f2_ctl device as an argument, now go reserve its
2643 * sibling devices from the PCI system.
2644 */
2645 ret = -ENODEV;
2646 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2647 if (err)
2648 goto err_free;
2649
2650 ret = -EINVAL;
2651 err = amd64_check_ecc_enabled(pvt);
2652 if (err)
2653 goto err_put;
2654
2655 /*
2656 * Key operation here: setup of HW prior to performing ops on it. Some
2657 * setup is required to access ECS data. After this is performed, the
2658 * 'teardown' function must be called upon error and normal exit paths.
2659 */
2660 if (boot_cpu_data.x86 >= 0x10)
2661 amd64_setup(pvt);
2662
2663 /*
2664 * Save the pointer to the private data for use in 2nd initialization
2665 * stage
2666 */
2667 pvt_lookup[pvt->mc_node_id] = pvt;
2668
2669 return 0;
2670
2671err_put:
2672 amd64_free_mc_sibling_devices(pvt);
2673
2674err_free:
2675 kfree(pvt);
2676
2677err_exit:
2678 return ret;
2679}
2680
2681/*
2682 * This is the finishing stage of the init code. Needs to be performed after all
2683 * MCs' hardware have been prepped for accessing extended config space.
2684 */
2685static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2686{
2687 int node_id = pvt->mc_node_id;
2688 struct mem_ctl_info *mci;
18ba54ac 2689 int ret = -ENODEV;
7d6034d3
DT
2690
2691 amd64_read_mc_registers(pvt);
2692
7d6034d3
DT
2693 /*
2694 * We need to determine how many memory channels there are. Then use
2695 * that information for calculating the size of the dynamic instance
2696 * tables in the 'mci' structure
2697 */
2698 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2699 if (pvt->channel_count < 0)
2700 goto err_exit;
2701
2702 ret = -ENOMEM;
9d858bb1 2703 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
7d6034d3
DT
2704 if (!mci)
2705 goto err_exit;
2706
2707 mci->pvt_info = pvt;
2708
2709 mci->dev = &pvt->dram_f2_ctl->dev;
2710 amd64_setup_mci_misc_attributes(mci);
2711
2712 if (amd64_init_csrows(mci))
2713 mci->edac_cap = EDAC_FLAG_NONE;
2714
2715 amd64_enable_ecc_error_reporting(mci);
2716 amd64_set_mc_sysfs_attributes(mci);
2717
2718 ret = -ENODEV;
2719 if (edac_mc_add_mc(mci)) {
2720 debugf1("failed edac_mc_add_mc()\n");
2721 goto err_add_mc;
2722 }
2723
2724 mci_lookup[node_id] = mci;
2725 pvt_lookup[node_id] = NULL;
549d042d
BP
2726
2727 /* register stuff with EDAC MCE */
2728 if (report_gart_errors)
2729 amd_report_gart_errors(true);
2730
2731 amd_register_ecc_decoder(amd64_decode_bus_error);
2732
7d6034d3
DT
2733 return 0;
2734
2735err_add_mc:
2736 edac_mc_free(mci);
2737
2738err_exit:
2739 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2740
2741 amd64_restore_ecc_error_reporting(pvt);
2742
2743 if (boot_cpu_data.x86 > 0xf)
2744 amd64_teardown(pvt);
2745
2746 amd64_free_mc_sibling_devices(pvt);
2747
2748 kfree(pvt_lookup[pvt->mc_node_id]);
2749 pvt_lookup[node_id] = NULL;
2750
2751 return ret;
2752}
2753
2754
2755static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2756 const struct pci_device_id *mc_type)
2757{
2758 int ret = 0;
2759
37da0450 2760 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
7d6034d3
DT
2761 get_amd_family_name(mc_type->driver_data));
2762
2763 ret = pci_enable_device(pdev);
2764 if (ret < 0)
2765 ret = -EIO;
2766 else
2767 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2768
2769 if (ret < 0)
2770 debugf0("ret=%d\n", ret);
2771
2772 return ret;
2773}
2774
2775static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2776{
2777 struct mem_ctl_info *mci;
2778 struct amd64_pvt *pvt;
2779
2780 /* Remove from EDAC CORE tracking list */
2781 mci = edac_mc_del_mc(&pdev->dev);
2782 if (!mci)
2783 return;
2784
2785 pvt = mci->pvt_info;
2786
2787 amd64_restore_ecc_error_reporting(pvt);
2788
2789 if (boot_cpu_data.x86 > 0xf)
2790 amd64_teardown(pvt);
2791
2792 amd64_free_mc_sibling_devices(pvt);
2793
549d042d
BP
2794 /* unregister from EDAC MCE */
2795 amd_report_gart_errors(false);
2796 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2797
7d6034d3 2798 /* Free the EDAC CORE resources */
8f68ed97
BP
2799 mci->pvt_info = NULL;
2800 mci_lookup[pvt->mc_node_id] = NULL;
2801
2802 kfree(pvt);
7d6034d3
DT
2803 edac_mc_free(mci);
2804}
2805
2806/*
2807 * This table is part of the interface for loading drivers for PCI devices. The
2808 * PCI core identifies what devices are on a system during boot, and then
2809 * inquiry this table to see if this driver is for a given device found.
2810 */
2811static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2812 {
2813 .vendor = PCI_VENDOR_ID_AMD,
2814 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2815 .subvendor = PCI_ANY_ID,
2816 .subdevice = PCI_ANY_ID,
2817 .class = 0,
2818 .class_mask = 0,
2819 .driver_data = K8_CPUS
2820 },
2821 {
2822 .vendor = PCI_VENDOR_ID_AMD,
2823 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2824 .subvendor = PCI_ANY_ID,
2825 .subdevice = PCI_ANY_ID,
2826 .class = 0,
2827 .class_mask = 0,
2828 .driver_data = F10_CPUS
2829 },
7d6034d3
DT
2830 {0, }
2831};
2832MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2833
2834static struct pci_driver amd64_pci_driver = {
2835 .name = EDAC_MOD_STR,
2836 .probe = amd64_init_one_instance,
2837 .remove = __devexit_p(amd64_remove_one_instance),
2838 .id_table = amd64_pci_table,
2839};
2840
2841static void amd64_setup_pci_device(void)
2842{
2843 struct mem_ctl_info *mci;
2844 struct amd64_pvt *pvt;
2845
2846 if (amd64_ctl_pci)
2847 return;
2848
2849 mci = mci_lookup[0];
2850 if (mci) {
2851
2852 pvt = mci->pvt_info;
2853 amd64_ctl_pci =
2854 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2855 EDAC_MOD_STR);
2856
2857 if (!amd64_ctl_pci) {
2858 pr_warning("%s(): Unable to create PCI control\n",
2859 __func__);
2860
2861 pr_warning("%s(): PCI error report via EDAC not set\n",
2862 __func__);
2863 }
2864 }
2865}
2866
2867static int __init amd64_edac_init(void)
2868{
2869 int nb, err = -ENODEV;
56b34b91 2870 bool load_ok = false;
7d6034d3
DT
2871
2872 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2873
2874 opstate_init();
2875
9653a5c7 2876 if (amd_cache_northbridges() < 0)
56b34b91 2877 goto err_ret;
7d6034d3 2878
50542251 2879 msrs = msrs_alloc();
56b34b91
BP
2880 if (!msrs)
2881 goto err_ret;
50542251 2882
7d6034d3
DT
2883 err = pci_register_driver(&amd64_pci_driver);
2884 if (err)
56b34b91 2885 goto err_pci;
7d6034d3
DT
2886
2887 /*
2888 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2889 * amd64_pvt structs. These will be used in the 2nd stage init function
2890 * to finish initialization of the MC instances.
2891 */
56b34b91 2892 err = -ENODEV;
9653a5c7 2893 for (nb = 0; nb < amd_nb_num(); nb++) {
7d6034d3
DT
2894 if (!pvt_lookup[nb])
2895 continue;
2896
2897 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2898 if (err)
37da0450 2899 goto err_2nd_stage;
7d6034d3 2900
56b34b91
BP
2901 load_ok = true;
2902 }
7d6034d3 2903
56b34b91
BP
2904 if (load_ok) {
2905 amd64_setup_pci_device();
2906 return 0;
2907 }
7d6034d3 2908
37da0450 2909err_2nd_stage:
7d6034d3 2910 pci_unregister_driver(&amd64_pci_driver);
56b34b91
BP
2911err_pci:
2912 msrs_free(msrs);
2913 msrs = NULL;
2914err_ret:
7d6034d3
DT
2915 return err;
2916}
2917
2918static void __exit amd64_edac_exit(void)
2919{
2920 if (amd64_ctl_pci)
2921 edac_pci_release_generic_ctl(amd64_ctl_pci);
2922
2923 pci_unregister_driver(&amd64_pci_driver);
50542251
BP
2924
2925 msrs_free(msrs);
2926 msrs = NULL;
7d6034d3
DT
2927}
2928
2929module_init(amd64_edac_init);
2930module_exit(amd64_edac_exit);
2931
2932MODULE_LICENSE("GPL");
2933MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2934 "Dave Peterson, Thayne Harbaugh");
2935MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2936 EDAC_AMD64_VERSION);
2937
2938module_param(edac_op_state, int, 0444);
2939MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.331216 seconds and 5 git commands to generate.