edac: Don't initialize csrow's first_page & friends when not needed
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 */
174 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 /*
176 * skip scrub rates which aren't recommended
177 * (see F10 BKDG, F3x58)
178 */
395ae783 179 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
180 continue;
181
182 if (scrubrates[i].bandwidth <= new_bw)
183 break;
184
185 /*
186 * if no suitable bandwidth found, turn off DRAM scrubbing
187 * entirely by falling back to the last element in the
188 * scrubrates array.
189 */
190 }
191
192 scrubval = scrubrates[i].scrubval;
2bc65418 193
5980bb9c 194 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 195
39094443
BP
196 if (scrubval)
197 return scrubrates[i].bandwidth;
198
2bc65418
DT
199 return 0;
200}
201
395ae783 202static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
203{
204 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 205 u32 min_scrubrate = 0x5;
2bc65418 206
87b3e0e6
BP
207 if (boot_cpu_data.x86 == 0xf)
208 min_scrubrate = 0x0;
209
73ba8593
BP
210 /* F15h Erratum #505 */
211 if (boot_cpu_data.x86 == 0x15)
212 f15h_select_dct(pvt, 0);
213
87b3e0e6 214 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
215}
216
39094443 217static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
218{
219 struct amd64_pvt *pvt = mci->pvt_info;
220 u32 scrubval = 0;
39094443 221 int i, retval = -EINVAL;
2bc65418 222
73ba8593
BP
223 /* F15h Erratum #505 */
224 if (boot_cpu_data.x86 == 0x15)
225 f15h_select_dct(pvt, 0);
226
5980bb9c 227 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
228
229 scrubval = scrubval & 0x001F;
230
926311fd 231 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 232 if (scrubrates[i].scrubval == scrubval) {
39094443 233 retval = scrubrates[i].bandwidth;
2bc65418
DT
234 break;
235 }
236 }
39094443 237 return retval;
2bc65418
DT
238}
239
6775763a 240/*
7f19bf75
BP
241 * returns true if the SysAddr given by sys_addr matches the
242 * DRAM base/limit associated with node_id
6775763a 243 */
b487c33e
BP
244static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 unsigned nid)
6775763a 246{
7f19bf75 247 u64 addr;
6775763a
DT
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
7f19bf75
BP
257 return ((addr >= get_dram_base(pvt, nid)) &&
258 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
259}
260
261/*
262 * Attempt to map a SysAddr to a node. On success, return a pointer to the
263 * mem_ctl_info structure for the node that the SysAddr maps to.
264 *
265 * On failure, return NULL.
266 */
267static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 u64 sys_addr)
269{
270 struct amd64_pvt *pvt;
b487c33e 271 unsigned node_id;
6775763a
DT
272 u32 intlv_en, bits;
273
274 /*
275 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 */
278 pvt = mci->pvt_info;
279
280 /*
281 * The value of this field should be the same for all DRAM Base
282 * registers. Therefore we arbitrarily choose to read it from the
283 * register for node 0.
284 */
7f19bf75 285 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
286
287 if (intlv_en == 0) {
7f19bf75 288 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 289 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 290 goto found;
6775763a 291 }
8edc5445 292 goto err_no_match;
6775763a
DT
293 }
294
72f158fe
BP
295 if (unlikely((intlv_en != 0x01) &&
296 (intlv_en != 0x03) &&
297 (intlv_en != 0x07))) {
24f9a7fe 298 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
299 return NULL;
300 }
301
302 bits = (((u32) sys_addr) >> 12) & intlv_en;
303
304 for (node_id = 0; ; ) {
7f19bf75 305 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
306 break; /* intlv_sel field matches */
307
7f19bf75 308 if (++node_id >= DRAM_RANGES)
6775763a
DT
309 goto err_no_match;
310 }
311
312 /* sanity test for sys_addr */
313 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
314 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 "range for node %d with node interleaving enabled.\n",
316 __func__, sys_addr, node_id);
6775763a
DT
317 return NULL;
318 }
319
320found:
b487c33e 321 return edac_mc_find((int)node_id);
6775763a
DT
322
323err_no_match:
324 debugf2("sys_addr 0x%lx doesn't match any node\n",
325 (unsigned long)sys_addr);
326
327 return NULL;
328}
e2ce7255
DT
329
330/*
11c75ead
BP
331 * compute the CS base address of the @csrow on the DRAM controller @dct.
332 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 333 */
11c75ead
BP
334static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 u64 *base, u64 *mask)
e2ce7255 336{
11c75ead
BP
337 u64 csbase, csmask, base_bits, mask_bits;
338 u8 addr_shift;
e2ce7255 339
11c75ead
BP
340 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 csbase = pvt->csels[dct].csbases[csrow];
342 csmask = pvt->csels[dct].csmasks[csrow];
343 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
344 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
345 addr_shift = 4;
346 } else {
347 csbase = pvt->csels[dct].csbases[csrow];
348 csmask = pvt->csels[dct].csmasks[csrow >> 1];
349 addr_shift = 8;
e2ce7255 350
11c75ead
BP
351 if (boot_cpu_data.x86 == 0x15)
352 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 else
354 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 }
e2ce7255 356
11c75ead 357 *base = (csbase & base_bits) << addr_shift;
e2ce7255 358
11c75ead
BP
359 *mask = ~0ULL;
360 /* poke holes for the csmask */
361 *mask &= ~(mask_bits << addr_shift);
362 /* OR them in */
363 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
364}
365
11c75ead
BP
366#define for_each_chip_select(i, dct, pvt) \
367 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368
614ec9d8
BP
369#define chip_select_base(i, dct, pvt) \
370 pvt->csels[dct].csbases[i]
371
11c75ead
BP
372#define for_each_chip_select_mask(i, dct, pvt) \
373 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374
e2ce7255
DT
375/*
376 * @input_addr is an InputAddr associated with the node given by mci. Return the
377 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378 */
379static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380{
381 struct amd64_pvt *pvt;
382 int csrow;
383 u64 base, mask;
384
385 pvt = mci->pvt_info;
386
11c75ead
BP
387 for_each_chip_select(csrow, 0, pvt) {
388 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
389 continue;
390
11c75ead
BP
391 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392
393 mask = ~mask;
e2ce7255
DT
394
395 if ((input_addr & mask) == (base & mask)) {
396 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
397 (unsigned long)input_addr, csrow,
398 pvt->mc_node_id);
399
400 return csrow;
401 }
402 }
e2ce7255
DT
403 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 (unsigned long)input_addr, pvt->mc_node_id);
405
406 return -1;
407}
408
e2ce7255
DT
409/*
410 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411 * for the node represented by mci. Info is passed back in *hole_base,
412 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
413 * info is invalid. Info may be invalid for either of the following reasons:
414 *
415 * - The revision of the node is not E or greater. In this case, the DRAM Hole
416 * Address Register does not exist.
417 *
418 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419 * indicating that its contents are not valid.
420 *
421 * The values passed back in *hole_base, *hole_offset, and *hole_size are
422 * complete 32-bit values despite the fact that the bitfields in the DHAR
423 * only represent bits 31-24 of the base and offset values.
424 */
425int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 u64 *hole_offset, u64 *hole_size)
427{
428 struct amd64_pvt *pvt = mci->pvt_info;
429 u64 base;
430
431 /* only revE and later have the DRAM Hole Address Register */
1433eb99 432 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
433 debugf1(" revision %d for node %d does not support DHAR\n",
434 pvt->ext_model, pvt->mc_node_id);
435 return 1;
436 }
437
bc21fa57 438 /* valid for Fam10h and above */
c8e518d5 439 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
440 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
441 return 1;
442 }
443
c8e518d5 444 if (!dhar_valid(pvt)) {
e2ce7255
DT
445 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
446 pvt->mc_node_id);
447 return 1;
448 }
449
450 /* This node has Memory Hoisting */
451
452 /* +------------------+--------------------+--------------------+-----
453 * | memory | DRAM hole | relocated |
454 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
455 * | | | DRAM hole |
456 * | | | [0x100000000, |
457 * | | | (0x100000000+ |
458 * | | | (0xffffffff-x))] |
459 * +------------------+--------------------+--------------------+-----
460 *
461 * Above is a diagram of physical memory showing the DRAM hole and the
462 * relocated addresses from the DRAM hole. As shown, the DRAM hole
463 * starts at address x (the base address) and extends through address
464 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
465 * addresses in the hole so that they start at 0x100000000.
466 */
467
bc21fa57 468 base = dhar_base(pvt);
e2ce7255
DT
469
470 *hole_base = base;
471 *hole_size = (0x1ull << 32) - base;
472
473 if (boot_cpu_data.x86 > 0xf)
bc21fa57 474 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 475 else
bc21fa57 476 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
477
478 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 pvt->mc_node_id, (unsigned long)*hole_base,
480 (unsigned long)*hole_offset, (unsigned long)*hole_size);
481
482 return 0;
483}
484EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485
93c2df58
DT
486/*
487 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
488 * assumed that sys_addr maps to the node given by mci.
489 *
490 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493 * then it is also involved in translating a SysAddr to a DramAddr. Sections
494 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495 * These parts of the documentation are unclear. I interpret them as follows:
496 *
497 * When node n receives a SysAddr, it processes the SysAddr as follows:
498 *
499 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500 * Limit registers for node n. If the SysAddr is not within the range
501 * specified by the base and limit values, then node n ignores the Sysaddr
502 * (since it does not map to node n). Otherwise continue to step 2 below.
503 *
504 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506 * the range of relocated addresses (starting at 0x100000000) from the DRAM
507 * hole. If not, skip to step 3 below. Else get the value of the
508 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509 * offset defined by this value from the SysAddr.
510 *
511 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512 * Base register for node n. To obtain the DramAddr, subtract the base
513 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514 */
515static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516{
7f19bf75 517 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
518 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 int ret = 0;
520
7f19bf75 521 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
522
523 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 &hole_size);
525 if (!ret) {
526 if ((sys_addr >= (1ull << 32)) &&
527 (sys_addr < ((1ull << 32) + hole_size))) {
528 /* use DHAR to translate SysAddr to DramAddr */
529 dram_addr = sys_addr - hole_offset;
530
531 debugf2("using DHAR to translate SysAddr 0x%lx to "
532 "DramAddr 0x%lx\n",
533 (unsigned long)sys_addr,
534 (unsigned long)dram_addr);
535
536 return dram_addr;
537 }
538 }
539
540 /*
541 * Translate the SysAddr to a DramAddr as shown near the start of
542 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
543 * only deals with 40-bit values. Therefore we discard bits 63-40 of
544 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
545 * discard are all 1s. Otherwise the bits we discard are all 0s. See
546 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
547 * Programmer's Manual Volume 1 Application Programming.
548 */
f678b8cc 549 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
550
551 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
552 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
553 (unsigned long)dram_addr);
554 return dram_addr;
555}
556
557/*
558 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
559 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
560 * for node interleaving.
561 */
562static int num_node_interleave_bits(unsigned intlv_en)
563{
564 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
565 int n;
566
567 BUG_ON(intlv_en > 7);
568 n = intlv_shift_table[intlv_en];
569 return n;
570}
571
572/* Translate the DramAddr given by @dram_addr to an InputAddr. */
573static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
574{
575 struct amd64_pvt *pvt;
576 int intlv_shift;
577 u64 input_addr;
578
579 pvt = mci->pvt_info;
580
581 /*
582 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
583 * concerning translating a DramAddr to an InputAddr.
584 */
7f19bf75 585 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
586 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
587 (dram_addr & 0xfff);
93c2df58
DT
588
589 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
590 intlv_shift, (unsigned long)dram_addr,
591 (unsigned long)input_addr);
592
593 return input_addr;
594}
595
596/*
597 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
598 * assumed that @sys_addr maps to the node given by mci.
599 */
600static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
601{
602 u64 input_addr;
603
604 input_addr =
605 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
606
607 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
608 (unsigned long)sys_addr, (unsigned long)input_addr);
609
610 return input_addr;
611}
612
613
614/*
615 * @input_addr is an InputAddr associated with the node represented by mci.
616 * Translate @input_addr to a DramAddr and return the result.
617 */
618static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
619{
620 struct amd64_pvt *pvt;
b487c33e 621 unsigned node_id, intlv_shift;
93c2df58
DT
622 u64 bits, dram_addr;
623 u32 intlv_sel;
624
625 /*
626 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
627 * shows how to translate a DramAddr to an InputAddr. Here we reverse
628 * this procedure. When translating from a DramAddr to an InputAddr, the
629 * bits used for node interleaving are discarded. Here we recover these
630 * bits from the IntlvSel field of the DRAM Limit register (section
631 * 3.4.4.2) for the node that input_addr is associated with.
632 */
633 pvt = mci->pvt_info;
634 node_id = pvt->mc_node_id;
b487c33e
BP
635
636 BUG_ON(node_id > 7);
93c2df58 637
7f19bf75 638 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
639 if (intlv_shift == 0) {
640 debugf1(" InputAddr 0x%lx translates to DramAddr of "
641 "same value\n", (unsigned long)input_addr);
642
643 return input_addr;
644 }
645
f678b8cc
BP
646 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
647 (input_addr & 0xfff);
93c2df58 648
7f19bf75 649 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
650 dram_addr = bits + (intlv_sel << 12);
651
652 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
653 "(%d node interleave bits)\n", (unsigned long)input_addr,
654 (unsigned long)dram_addr, intlv_shift);
655
656 return dram_addr;
657}
658
659/*
660 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
661 * @dram_addr to a SysAddr.
662 */
663static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
664{
665 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 666 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
667 int ret = 0;
668
669 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
670 &hole_size);
671 if (!ret) {
672 if ((dram_addr >= hole_base) &&
673 (dram_addr < (hole_base + hole_size))) {
674 sys_addr = dram_addr + hole_offset;
675
676 debugf1("using DHAR to translate DramAddr 0x%lx to "
677 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
678 (unsigned long)sys_addr);
679
680 return sys_addr;
681 }
682 }
683
7f19bf75 684 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
685 sys_addr = dram_addr + base;
686
687 /*
688 * The sys_addr we have computed up to this point is a 40-bit value
689 * because the k8 deals with 40-bit values. However, the value we are
690 * supposed to return is a full 64-bit physical address. The AMD
691 * x86-64 architecture specifies that the most significant implemented
692 * address bit through bit 63 of a physical address must be either all
693 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
694 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
695 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
696 * Programming.
697 */
698 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
699
700 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
701 pvt->mc_node_id, (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705}
706
707/*
708 * @input_addr is an InputAddr associated with the node given by mci. Translate
709 * @input_addr to a SysAddr.
710 */
711static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
712 u64 input_addr)
713{
714 return dram_addr_to_sys_addr(mci,
715 input_addr_to_dram_addr(mci, input_addr));
716}
717
93c2df58
DT
718/* Map the Error address to a PAGE and PAGE OFFSET. */
719static inline void error_address_to_page_and_offset(u64 error_address,
720 u32 *page, u32 *offset)
721{
722 *page = (u32) (error_address >> PAGE_SHIFT);
723 *offset = ((u32) error_address) & ~PAGE_MASK;
724}
725
726/*
727 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
728 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
729 * of a node that detected an ECC memory error. mci represents the node that
730 * the error address maps to (possibly different from the node that detected
731 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
732 * error.
733 */
734static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
735{
736 int csrow;
737
738 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
739
740 if (csrow == -1)
24f9a7fe
BP
741 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
742 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
743 return csrow;
744}
e2ce7255 745
bfc04aec 746static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 747
2da11654
DT
748/*
749 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
750 * are ECC capable.
751 */
1f6189ed 752static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 753{
cb328507 754 u8 bit;
1f6189ed 755 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 756
1433eb99 757 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
758 ? 19
759 : 17;
760
584fcff4 761 if (pvt->dclr0 & BIT(bit))
2da11654
DT
762 edac_cap = EDAC_FLAG_SECDED;
763
764 return edac_cap;
765}
766
8c671751 767static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 768
68798e17
BP
769static void amd64_dump_dramcfg_low(u32 dclr, int chan)
770{
771 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
772
773 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
774 (dclr & BIT(16)) ? "un" : "",
775 (dclr & BIT(19)) ? "yes" : "no");
776
777 debugf1(" PAR/ERR parity: %s\n",
778 (dclr & BIT(8)) ? "enabled" : "disabled");
779
cb328507
BP
780 if (boot_cpu_data.x86 == 0x10)
781 debugf1(" DCT 128bit mode width: %s\n",
782 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
783
784 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
785 (dclr & BIT(12)) ? "yes" : "no",
786 (dclr & BIT(13)) ? "yes" : "no",
787 (dclr & BIT(14)) ? "yes" : "no",
788 (dclr & BIT(15)) ? "yes" : "no");
789}
790
2da11654 791/* Display and decode various NB registers for debug purposes. */
b2b0c605 792static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 793{
68798e17
BP
794 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
795
796 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 797 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 798
68798e17 799 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
800 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
801 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
802
803 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 804
8de1d91e 805 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 806
8de1d91e
BP
807 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
808 "offset: 0x%08x\n",
bc21fa57
BP
809 pvt->dhar, dhar_base(pvt),
810 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
811 : f10_dhar_offset(pvt));
2da11654 812
c8e518d5 813 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 814
8c671751 815 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 816
8de1d91e 817 /* everything below this point is Fam10h and above */
4d796364 818 if (boot_cpu_data.x86 == 0xf)
2da11654 819 return;
4d796364 820
8c671751 821 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 822
a3b7db09 823 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 824
8de1d91e 825 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
826 if (!dct_ganging_enabled(pvt))
827 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
828}
829
94be4bff 830/*
11c75ead 831 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 832 */
11c75ead 833static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 834{
1433eb99 835 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
836 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
837 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 838 } else {
11c75ead
BP
839 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
840 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
841 }
842}
843
844/*
11c75ead 845 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 846 */
b2b0c605 847static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 848{
11c75ead 849 int cs;
94be4bff 850
11c75ead 851 prep_chip_selects(pvt);
94be4bff 852
11c75ead 853 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
854 int reg0 = DCSB0 + (cs * 4);
855 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
856 u32 *base0 = &pvt->csels[0].csbases[cs];
857 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 858
11c75ead 859 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 860 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 861 cs, *base0, reg0);
94be4bff 862
11c75ead
BP
863 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
864 continue;
b2b0c605 865
11c75ead
BP
866 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
867 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
868 cs, *base1, reg1);
94be4bff
DT
869 }
870
11c75ead 871 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
872 int reg0 = DCSM0 + (cs * 4);
873 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
874 u32 *mask0 = &pvt->csels[0].csmasks[cs];
875 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 876
11c75ead 877 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 878 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 879 cs, *mask0, reg0);
94be4bff 880
11c75ead
BP
881 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
882 continue;
b2b0c605 883
11c75ead
BP
884 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
885 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
886 cs, *mask1, reg1);
94be4bff
DT
887 }
888}
889
24f9a7fe 890static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
891{
892 enum mem_type type;
893
cb328507
BP
894 /* F15h supports only DDR3 */
895 if (boot_cpu_data.x86 >= 0x15)
896 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
897 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
898 if (pvt->dchr0 & DDR3_MODE)
899 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
900 else
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 902 } else {
94be4bff
DT
903 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
904 }
905
24f9a7fe 906 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
907
908 return type;
909}
910
cb328507 911/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
912static int k8_early_channel_count(struct amd64_pvt *pvt)
913{
cb328507 914 int flag;
ddff876d 915
9f56da0e 916 if (pvt->ext_model >= K8_REV_F)
ddff876d 917 /* RevF (NPT) and later */
41d8bfab 918 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 919 else
ddff876d
DT
920 /* RevE and earlier */
921 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
922
923 /* not used */
924 pvt->dclr1 = 0;
925
926 return (flag) ? 2 : 1;
927}
928
70046624
BP
929/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
930static u64 get_error_address(struct mce *m)
ddff876d 931{
c1ae6830
BP
932 struct cpuinfo_x86 *c = &boot_cpu_data;
933 u64 addr;
70046624
BP
934 u8 start_bit = 1;
935 u8 end_bit = 47;
936
c1ae6830 937 if (c->x86 == 0xf) {
70046624
BP
938 start_bit = 3;
939 end_bit = 39;
940 }
941
c1ae6830
BP
942 addr = m->addr & GENMASK(start_bit, end_bit);
943
944 /*
945 * Erratum 637 workaround
946 */
947 if (c->x86 == 0x15) {
948 struct amd64_pvt *pvt;
949 u64 cc6_base, tmp_addr;
950 u32 tmp;
951 u8 mce_nid, intlv_en;
952
953 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
954 return addr;
955
956 mce_nid = amd_get_nb_id(m->extcpu);
957 pvt = mcis[mce_nid]->pvt_info;
958
959 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
960 intlv_en = tmp >> 21 & 0x7;
961
962 /* add [47:27] + 3 trailing bits */
963 cc6_base = (tmp & GENMASK(0, 20)) << 3;
964
965 /* reverse and add DramIntlvEn */
966 cc6_base |= intlv_en ^ 0x7;
967
968 /* pin at [47:24] */
969 cc6_base <<= 24;
970
971 if (!intlv_en)
972 return cc6_base | (addr & GENMASK(0, 23));
973
974 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
975
976 /* faster log2 */
977 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
978
979 /* OR DramIntlvSel into bits [14:12] */
980 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
981
982 /* add remaining [11:0] bits from original MC4_ADDR */
983 tmp_addr |= addr & GENMASK(0, 11);
984
985 return cc6_base | tmp_addr;
986 }
987
988 return addr;
ddff876d
DT
989}
990
7f19bf75 991static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 992{
f08e457c 993 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 994 int off = range << 3;
ddff876d 995
7f19bf75
BP
996 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
997 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 998
f08e457c 999 if (c->x86 == 0xf)
7f19bf75 1000 return;
ddff876d 1001
7f19bf75
BP
1002 if (!dram_rw(pvt, range))
1003 return;
ddff876d 1004
7f19bf75
BP
1005 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1006 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
1007
1008 /* Factor in CC6 save area by reading dst node's limit reg */
1009 if (c->x86 == 0x15) {
1010 struct pci_dev *f1 = NULL;
1011 u8 nid = dram_dst_node(pvt, range);
1012 u32 llim;
1013
1014 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1015 if (WARN_ON(!f1))
1016 return;
1017
1018 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1019
1020 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1021
1022 /* {[39:27],111b} */
1023 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1024
1025 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1026
1027 /* [47:40] */
1028 pvt->ranges[range].lim.hi |= llim >> 13;
1029
1030 pci_dev_put(f1);
1031 }
ddff876d
DT
1032}
1033
f192c7b1
BP
1034static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1035 u16 syndrome)
ddff876d
DT
1036{
1037 struct mem_ctl_info *src_mci;
f192c7b1 1038 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1039 int channel, csrow;
1040 u32 page, offset;
ddff876d
DT
1041
1042 /* CHIPKILL enabled */
f192c7b1 1043 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1044 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1045 if (channel < 0) {
1046 /*
1047 * Syndrome didn't map, so we don't know which of the
1048 * 2 DIMMs is in error. So we need to ID 'both' of them
1049 * as suspect.
1050 */
24f9a7fe
BP
1051 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1052 "error reporting race\n", syndrome);
ddff876d
DT
1053 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1054 return;
1055 }
1056 } else {
1057 /*
1058 * non-chipkill ecc mode
1059 *
1060 * The k8 documentation is unclear about how to determine the
1061 * channel number when using non-chipkill memory. This method
1062 * was obtained from email communication with someone at AMD.
1063 * (Wish the email was placed in this comment - norsk)
1064 */
44e9e2ee 1065 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1066 }
1067
1068 /*
1069 * Find out which node the error address belongs to. This may be
1070 * different from the node that detected the error.
1071 */
44e9e2ee 1072 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1073 if (!src_mci) {
24f9a7fe 1074 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1075 (unsigned long)sys_addr);
ddff876d
DT
1076 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1077 return;
1078 }
1079
44e9e2ee
BP
1080 /* Now map the sys_addr to a CSROW */
1081 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1082 if (csrow < 0) {
1083 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1084 } else {
44e9e2ee 1085 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1086
1087 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1088 channel, EDAC_MOD_STR);
1089 }
1090}
1091
41d8bfab 1092static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1093{
41d8bfab 1094 unsigned shift = 0;
ddff876d 1095
41d8bfab
BP
1096 if (i <= 2)
1097 shift = i;
1098 else if (!(i & 0x1))
1099 shift = i >> 1;
1433eb99 1100 else
41d8bfab 1101 shift = (i + 1) >> 1;
ddff876d 1102
41d8bfab
BP
1103 return 128 << (shift + !!dct_width);
1104}
1105
1106static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1107 unsigned cs_mode)
1108{
1109 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1110
1111 if (pvt->ext_model >= K8_REV_F) {
1112 WARN_ON(cs_mode > 11);
1113 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1114 }
1115 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1116 unsigned diff;
41d8bfab
BP
1117 WARN_ON(cs_mode > 10);
1118
11b0a314
BP
1119 /*
1120 * the below calculation, besides trying to win an obfuscated C
1121 * contest, maps cs_mode values to DIMM chip select sizes. The
1122 * mappings are:
1123 *
1124 * cs_mode CS size (mb)
1125 * ======= ============
1126 * 0 32
1127 * 1 64
1128 * 2 128
1129 * 3 128
1130 * 4 256
1131 * 5 512
1132 * 6 256
1133 * 7 512
1134 * 8 1024
1135 * 9 1024
1136 * 10 2048
1137 *
1138 * Basically, it calculates a value with which to shift the
1139 * smallest CS size of 32MB.
1140 *
1141 * ddr[23]_cs_size have a similar purpose.
1142 */
1143 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1144
1145 return 32 << (cs_mode - diff);
41d8bfab
BP
1146 }
1147 else {
1148 WARN_ON(cs_mode > 6);
1149 return 32 << cs_mode;
1150 }
ddff876d
DT
1151}
1152
1afd3c98
DT
1153/*
1154 * Get the number of DCT channels in use.
1155 *
1156 * Return:
1157 * number of Memory Channels in operation
1158 * Pass back:
1159 * contents of the DCL0_LOW register
1160 */
7d20d14d 1161static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1162{
6ba5dcdc 1163 int i, j, channels = 0;
1afd3c98 1164
7d20d14d 1165 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1166 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1167 return 2;
1afd3c98
DT
1168
1169 /*
d16149e8
BP
1170 * Need to check if in unganged mode: In such, there are 2 channels,
1171 * but they are not in 128 bit mode and thus the above 'dclr0' status
1172 * bit will be OFF.
1afd3c98
DT
1173 *
1174 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1175 * their CSEnable bit on. If so, then SINGLE DIMM case.
1176 */
d16149e8 1177 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1178
1afd3c98
DT
1179 /*
1180 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1181 * is more than just one DIMM present in unganged mode. Need to check
1182 * both controllers since DIMMs can be placed in either one.
1183 */
525a1b20
BP
1184 for (i = 0; i < 2; i++) {
1185 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1186
57a30854
WW
1187 for (j = 0; j < 4; j++) {
1188 if (DBAM_DIMM(j, dbam) > 0) {
1189 channels++;
1190 break;
1191 }
1192 }
1afd3c98
DT
1193 }
1194
d16149e8
BP
1195 if (channels > 2)
1196 channels = 2;
1197
24f9a7fe 1198 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1199
1200 return channels;
1afd3c98
DT
1201}
1202
41d8bfab 1203static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1204{
41d8bfab
BP
1205 unsigned shift = 0;
1206 int cs_size = 0;
1207
1208 if (i == 0 || i == 3 || i == 4)
1209 cs_size = -1;
1210 else if (i <= 2)
1211 shift = i;
1212 else if (i == 12)
1213 shift = 7;
1214 else if (!(i & 0x1))
1215 shift = i >> 1;
1216 else
1217 shift = (i + 1) >> 1;
1218
1219 if (cs_size != -1)
1220 cs_size = (128 * (1 << !!dct_width)) << shift;
1221
1222 return cs_size;
1223}
1224
1225static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1226 unsigned cs_mode)
1227{
1228 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1229
1230 WARN_ON(cs_mode > 11);
1433eb99
BP
1231
1232 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1233 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1234 else
41d8bfab
BP
1235 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1236}
1237
1238/*
1239 * F15h supports only 64bit DCT interfaces
1240 */
1241static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1242 unsigned cs_mode)
1243{
1244 WARN_ON(cs_mode > 12);
1433eb99 1245
41d8bfab 1246 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1247}
1248
5a5d2371 1249static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1250{
6163b5d4 1251
5a5d2371
BP
1252 if (boot_cpu_data.x86 == 0xf)
1253 return;
1254
78da121e
BP
1255 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1256 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1257 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1258
5a5d2371
BP
1259 debugf0(" DCTs operate in %s mode.\n",
1260 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1261
1262 if (!dct_ganging_enabled(pvt))
1263 debugf0(" Address range split per DCT: %s\n",
1264 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1265
78da121e 1266 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1267 "DRAM cleared since last warm reset: %s\n",
1268 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1269 (dct_memory_cleared(pvt) ? "yes" : "no"));
1270
78da121e
BP
1271 debugf0(" channel interleave: %s, "
1272 "interleave bits selector: 0x%x\n",
72381bd5 1273 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1274 dct_sel_interleave_addr(pvt));
1275 }
1276
78da121e 1277 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1278}
1279
f71d0a05 1280/*
229a7a11 1281 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1282 * Interleaving Modes.
1283 */
b15f0fca 1284static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1285 bool hi_range_sel, u8 intlv_en)
6163b5d4 1286{
151fa71c 1287 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1288
1289 if (dct_ganging_enabled(pvt))
229a7a11 1290 return 0;
6163b5d4 1291
229a7a11
BP
1292 if (hi_range_sel)
1293 return dct_sel_high;
6163b5d4 1294
229a7a11
BP
1295 /*
1296 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1297 */
1298 if (dct_interleave_enabled(pvt)) {
1299 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1300
1301 /* return DCT select function: 0=DCT0, 1=DCT1 */
1302 if (!intlv_addr)
1303 return sys_addr >> 6 & 1;
1304
1305 if (intlv_addr & 0x2) {
1306 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1307 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1308
1309 return ((sys_addr >> shift) & 1) ^ temp;
1310 }
1311
1312 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1313 }
1314
1315 if (dct_high_range_enabled(pvt))
1316 return ~dct_sel_high & 1;
6163b5d4
DT
1317
1318 return 0;
1319}
1320
c8e518d5 1321/* Convert the sys_addr to the normalized DCT address */
e761359a 1322static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1323 u64 sys_addr, bool hi_rng,
1324 u32 dct_sel_base_addr)
6163b5d4
DT
1325{
1326 u64 chan_off;
c8e518d5
BP
1327 u64 dram_base = get_dram_base(pvt, range);
1328 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1329 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1330
c8e518d5
BP
1331 if (hi_rng) {
1332 /*
1333 * if
1334 * base address of high range is below 4Gb
1335 * (bits [47:27] at [31:11])
1336 * DRAM address space on this DCT is hoisted above 4Gb &&
1337 * sys_addr > 4Gb
1338 *
1339 * remove hole offset from sys_addr
1340 * else
1341 * remove high range offset from sys_addr
1342 */
1343 if ((!(dct_sel_base_addr >> 16) ||
1344 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1345 dhar_valid(pvt) &&
c8e518d5 1346 (sys_addr >= BIT_64(32)))
bc21fa57 1347 chan_off = hole_off;
6163b5d4
DT
1348 else
1349 chan_off = dct_sel_base_off;
1350 } else {
c8e518d5
BP
1351 /*
1352 * if
1353 * we have a valid hole &&
1354 * sys_addr > 4Gb
1355 *
1356 * remove hole
1357 * else
1358 * remove dram base to normalize to DCT address
1359 */
972ea17a 1360 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1361 chan_off = hole_off;
6163b5d4 1362 else
c8e518d5 1363 chan_off = dram_base;
6163b5d4
DT
1364 }
1365
c8e518d5 1366 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1367}
1368
6163b5d4
DT
1369/*
1370 * checks if the csrow passed in is marked as SPARED, if so returns the new
1371 * spare row
1372 */
11c75ead 1373static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1374{
614ec9d8
BP
1375 int tmp_cs;
1376
1377 if (online_spare_swap_done(pvt, dct) &&
1378 csrow == online_spare_bad_dramcs(pvt, dct)) {
1379
1380 for_each_chip_select(tmp_cs, dct, pvt) {
1381 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1382 csrow = tmp_cs;
1383 break;
1384 }
1385 }
6163b5d4
DT
1386 }
1387 return csrow;
1388}
1389
1390/*
1391 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1392 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1393 *
1394 * Return:
1395 * -EINVAL: NOT FOUND
1396 * 0..csrow = Chip-Select Row
1397 */
b15f0fca 1398static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1399{
1400 struct mem_ctl_info *mci;
1401 struct amd64_pvt *pvt;
11c75ead 1402 u64 cs_base, cs_mask;
6163b5d4
DT
1403 int cs_found = -EINVAL;
1404 int csrow;
1405
cc4d8860 1406 mci = mcis[nid];
6163b5d4
DT
1407 if (!mci)
1408 return cs_found;
1409
1410 pvt = mci->pvt_info;
1411
11c75ead 1412 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1413
11c75ead
BP
1414 for_each_chip_select(csrow, dct, pvt) {
1415 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1416 continue;
1417
11c75ead 1418 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1419
11c75ead
BP
1420 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1421 csrow, cs_base, cs_mask);
6163b5d4 1422
11c75ead 1423 cs_mask = ~cs_mask;
6163b5d4 1424
11c75ead
BP
1425 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1426 "(CSBase & ~CSMask)=0x%llx\n",
1427 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1428
11c75ead
BP
1429 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1430 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1431
1432 debugf1(" MATCH csrow=%d\n", cs_found);
1433 break;
1434 }
1435 }
1436 return cs_found;
1437}
1438
95b0ef55
BP
1439/*
1440 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1441 * swapped with a region located at the bottom of memory so that the GPU can use
1442 * the interleaved region and thus two channels.
1443 */
b15f0fca 1444static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1445{
1446 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1447
1448 if (boot_cpu_data.x86 == 0x10) {
1449 /* only revC3 and revE have that feature */
1450 if (boot_cpu_data.x86_model < 4 ||
1451 (boot_cpu_data.x86_model < 0xa &&
1452 boot_cpu_data.x86_mask < 3))
1453 return sys_addr;
1454 }
1455
1456 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1457
1458 if (!(swap_reg & 0x1))
1459 return sys_addr;
1460
1461 swap_base = (swap_reg >> 3) & 0x7f;
1462 swap_limit = (swap_reg >> 11) & 0x7f;
1463 rgn_size = (swap_reg >> 20) & 0x7f;
1464 tmp_addr = sys_addr >> 27;
1465
1466 if (!(sys_addr >> 34) &&
1467 (((tmp_addr >= swap_base) &&
1468 (tmp_addr <= swap_limit)) ||
1469 (tmp_addr < rgn_size)))
1470 return sys_addr ^ (u64)swap_base << 27;
1471
1472 return sys_addr;
1473}
1474
f71d0a05 1475/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1476static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1477 u64 sys_addr, int *nid, int *chan_sel)
1478{
229a7a11 1479 int cs_found = -EINVAL;
c8e518d5 1480 u64 chan_addr;
5d4b58e8 1481 u32 dct_sel_base;
11c75ead 1482 u8 channel;
229a7a11 1483 bool high_range = false;
f71d0a05 1484
7f19bf75 1485 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1486 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1487 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1488
c8e518d5
BP
1489 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1490 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1491
355fba60
BP
1492 if (dhar_valid(pvt) &&
1493 dhar_base(pvt) <= sys_addr &&
1494 sys_addr < BIT_64(32)) {
1495 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1496 sys_addr);
1497 return -EINVAL;
1498 }
1499
f030ddfb 1500 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1501 return -EINVAL;
1502
b15f0fca 1503 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1504
f71d0a05
DT
1505 dct_sel_base = dct_sel_baseaddr(pvt);
1506
1507 /*
1508 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1509 * select between DCT0 and DCT1.
1510 */
1511 if (dct_high_range_enabled(pvt) &&
1512 !dct_ganging_enabled(pvt) &&
1513 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1514 high_range = true;
f71d0a05 1515
b15f0fca 1516 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1517
b15f0fca 1518 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1519 high_range, dct_sel_base);
f71d0a05 1520
e2f79dbd
BP
1521 /* Remove node interleaving, see F1x120 */
1522 if (intlv_en)
1523 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1524 (chan_addr & 0xfff);
f71d0a05 1525
5d4b58e8 1526 /* remove channel interleave */
f71d0a05
DT
1527 if (dct_interleave_enabled(pvt) &&
1528 !dct_high_range_enabled(pvt) &&
1529 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1530
1531 if (dct_sel_interleave_addr(pvt) != 1) {
1532 if (dct_sel_interleave_addr(pvt) == 0x3)
1533 /* hash 9 */
1534 chan_addr = ((chan_addr >> 10) << 9) |
1535 (chan_addr & 0x1ff);
1536 else
1537 /* A[6] or hash 6 */
1538 chan_addr = ((chan_addr >> 7) << 6) |
1539 (chan_addr & 0x3f);
1540 } else
1541 /* A[12] */
1542 chan_addr = ((chan_addr >> 13) << 12) |
1543 (chan_addr & 0xfff);
f71d0a05
DT
1544 }
1545
5d4b58e8 1546 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1547
b15f0fca 1548 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1549
1550 if (cs_found >= 0) {
1551 *nid = node_id;
1552 *chan_sel = channel;
1553 }
1554 return cs_found;
1555}
1556
b15f0fca 1557static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1558 int *node, int *chan_sel)
1559{
e761359a
BP
1560 int cs_found = -EINVAL;
1561 unsigned range;
f71d0a05 1562
7f19bf75 1563 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1564
7f19bf75 1565 if (!dram_rw(pvt, range))
f71d0a05
DT
1566 continue;
1567
7f19bf75
BP
1568 if ((get_dram_base(pvt, range) <= sys_addr) &&
1569 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1570
b15f0fca 1571 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1572 sys_addr, node,
1573 chan_sel);
1574 if (cs_found >= 0)
1575 break;
1576 }
1577 }
1578 return cs_found;
1579}
1580
1581/*
bdc30a0c
BP
1582 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1583 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1584 *
bdc30a0c
BP
1585 * The @sys_addr is usually an error address received from the hardware
1586 * (MCX_ADDR).
f71d0a05 1587 */
b15f0fca 1588static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1589 u16 syndrome)
f71d0a05
DT
1590{
1591 struct amd64_pvt *pvt = mci->pvt_info;
1592 u32 page, offset;
f71d0a05
DT
1593 int nid, csrow, chan = 0;
1594
b15f0fca 1595 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1596
bdc30a0c
BP
1597 if (csrow < 0) {
1598 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1599 return;
1600 }
1601
1602 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1603
bdc30a0c
BP
1604 /*
1605 * We need the syndromes for channel detection only when we're
1606 * ganged. Otherwise @chan should already contain the channel at
1607 * this point.
1608 */
a97fa68e 1609 if (dct_ganging_enabled(pvt))
bdc30a0c 1610 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1611
bdc30a0c
BP
1612 if (chan >= 0)
1613 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1614 EDAC_MOD_STR);
1615 else
f71d0a05 1616 /*
bdc30a0c 1617 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1618 */
bdc30a0c 1619 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1620 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1621 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1622}
1623
f71d0a05 1624/*
8566c4df 1625 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1626 * CSROWs
f71d0a05 1627 */
8c671751 1628static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1629{
603adaf6 1630 int dimm, size0, size1, factor = 0;
525a1b20
BP
1631 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1632 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1633
8566c4df 1634 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1635 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1636 factor = 1;
1637
8566c4df 1638 /* K8 families < revF not supported yet */
1433eb99 1639 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1640 return;
1641 else
1642 WARN_ON(ctrl != 0);
1643 }
1644
4d796364 1645 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1646 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1647 : pvt->csels[0].csbases;
f71d0a05 1648
4d796364 1649 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1650
8566c4df
BP
1651 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1652
f71d0a05
DT
1653 /* Dump memory sizes for DIMM and its CSROWs */
1654 for (dimm = 0; dimm < 4; dimm++) {
1655
1656 size0 = 0;
11c75ead 1657 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1658 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1659 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1660
1661 size1 = 0;
11c75ead 1662 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1663 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1664 DBAM_DIMM(dimm, dbam));
f71d0a05 1665
24f9a7fe
BP
1666 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1667 dimm * 2, size0 << factor,
1668 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1669 }
1670}
1671
4d37607a
DT
1672static struct amd64_family_type amd64_family_types[] = {
1673 [K8_CPUS] = {
0092b20d 1674 .ctl_name = "K8",
8d5b5d9c
BP
1675 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1676 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1677 .ops = {
1433eb99 1678 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1679 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1680 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1681 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1682 }
1683 },
1684 [F10_CPUS] = {
0092b20d 1685 .ctl_name = "F10h",
8d5b5d9c
BP
1686 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1687 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1688 .ops = {
7d20d14d 1689 .early_channel_count = f1x_early_channel_count,
b15f0fca 1690 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1691 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1692 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1693 }
1694 },
1695 [F15_CPUS] = {
1696 .ctl_name = "F15h",
df71a053
BP
1697 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1698 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1699 .ops = {
7d20d14d 1700 .early_channel_count = f1x_early_channel_count,
b15f0fca 1701 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1702 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1703 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1704 }
1705 },
4d37607a
DT
1706};
1707
1708static struct pci_dev *pci_get_related_function(unsigned int vendor,
1709 unsigned int device,
1710 struct pci_dev *related)
1711{
1712 struct pci_dev *dev = NULL;
1713
1714 dev = pci_get_device(vendor, device, dev);
1715 while (dev) {
1716 if ((dev->bus->number == related->bus->number) &&
1717 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1718 break;
1719 dev = pci_get_device(vendor, device, dev);
1720 }
1721
1722 return dev;
1723}
1724
b1289d6f 1725/*
bfc04aec
BP
1726 * These are tables of eigenvectors (one per line) which can be used for the
1727 * construction of the syndrome tables. The modified syndrome search algorithm
1728 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1729 *
bfc04aec 1730 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1731 */
bfc04aec
BP
1732static u16 x4_vectors[] = {
1733 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1734 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1735 0x0001, 0x0002, 0x0004, 0x0008,
1736 0x1013, 0x3032, 0x4044, 0x8088,
1737 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1738 0x4857, 0xc4fe, 0x13cc, 0x3288,
1739 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1740 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1741 0x15c1, 0x2a42, 0x89ac, 0x4758,
1742 0x2b03, 0x1602, 0x4f0c, 0xca08,
1743 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1744 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1745 0x2b87, 0x164e, 0x642c, 0xdc18,
1746 0x40b9, 0x80de, 0x1094, 0x20e8,
1747 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1748 0x11c1, 0x2242, 0x84ac, 0x4c58,
1749 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1750 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1751 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1752 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1753 0x16b3, 0x3d62, 0x4f34, 0x8518,
1754 0x1e2f, 0x391a, 0x5cac, 0xf858,
1755 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1756 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1757 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1758 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1759 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1760 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1761 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1762 0x185d, 0x2ca6, 0x7914, 0x9e28,
1763 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1764 0x4199, 0x82ee, 0x19f4, 0x2e58,
1765 0x4807, 0xc40e, 0x130c, 0x3208,
1766 0x1905, 0x2e0a, 0x5804, 0xac08,
1767 0x213f, 0x132a, 0xadfc, 0x5ba8,
1768 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1769};
1770
bfc04aec
BP
1771static u16 x8_vectors[] = {
1772 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1773 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1774 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1775 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1776 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1777 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1778 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1779 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1780 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1781 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1782 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1783 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1784 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1785 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1786 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1787 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1788 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1789 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1790 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1791};
1792
d34a6ecd
BP
1793static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1794 unsigned v_dim)
b1289d6f 1795{
bfc04aec
BP
1796 unsigned int i, err_sym;
1797
1798 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1799 u16 s = syndrome;
d34a6ecd
BP
1800 unsigned v_idx = err_sym * v_dim;
1801 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1802
1803 /* walk over all 16 bits of the syndrome */
1804 for (i = 1; i < (1U << 16); i <<= 1) {
1805
1806 /* if bit is set in that eigenvector... */
1807 if (v_idx < v_end && vectors[v_idx] & i) {
1808 u16 ev_comp = vectors[v_idx++];
1809
1810 /* ... and bit set in the modified syndrome, */
1811 if (s & i) {
1812 /* remove it. */
1813 s ^= ev_comp;
4d37607a 1814
bfc04aec
BP
1815 if (!s)
1816 return err_sym;
1817 }
b1289d6f 1818
bfc04aec
BP
1819 } else if (s & i)
1820 /* can't get to zero, move to next symbol */
1821 break;
1822 }
b1289d6f
DT
1823 }
1824
1825 debugf0("syndrome(%x) not found\n", syndrome);
1826 return -1;
1827}
d27bf6fa 1828
bfc04aec
BP
1829static int map_err_sym_to_channel(int err_sym, int sym_size)
1830{
1831 if (sym_size == 4)
1832 switch (err_sym) {
1833 case 0x20:
1834 case 0x21:
1835 return 0;
1836 break;
1837 case 0x22:
1838 case 0x23:
1839 return 1;
1840 break;
1841 default:
1842 return err_sym >> 4;
1843 break;
1844 }
1845 /* x8 symbols */
1846 else
1847 switch (err_sym) {
1848 /* imaginary bits not in a DIMM */
1849 case 0x10:
1850 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1851 err_sym);
1852 return -1;
1853 break;
1854
1855 case 0x11:
1856 return 0;
1857 break;
1858 case 0x12:
1859 return 1;
1860 break;
1861 default:
1862 return err_sym >> 3;
1863 break;
1864 }
1865 return -1;
1866}
1867
1868static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1869{
1870 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1871 int err_sym = -1;
1872
a3b7db09 1873 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1874 err_sym = decode_syndrome(syndrome, x8_vectors,
1875 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1876 pvt->ecc_sym_sz);
1877 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1878 err_sym = decode_syndrome(syndrome, x4_vectors,
1879 ARRAY_SIZE(x4_vectors),
a3b7db09 1880 pvt->ecc_sym_sz);
ad6a32e9 1881 else {
a3b7db09 1882 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1883 return err_sym;
bfc04aec 1884 }
ad6a32e9 1885
a3b7db09 1886 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1887}
1888
d27bf6fa
DT
1889/*
1890 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1891 * ADDRESS and process.
1892 */
f192c7b1 1893static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1894{
1895 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1896 u64 sys_addr;
f192c7b1 1897 u16 syndrome;
d27bf6fa
DT
1898
1899 /* Ensure that the Error Address is VALID */
f192c7b1 1900 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1901 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1902 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1903 return;
1904 }
1905
70046624 1906 sys_addr = get_error_address(m);
f192c7b1 1907 syndrome = extract_syndrome(m->status);
d27bf6fa 1908
24f9a7fe 1909 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1910
f192c7b1 1911 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1912}
1913
1914/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1915static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1916{
1f6bcee7 1917 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1918 int csrow;
44e9e2ee 1919 u64 sys_addr;
d27bf6fa 1920 u32 page, offset;
d27bf6fa
DT
1921
1922 log_mci = mci;
1923
f192c7b1 1924 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1925 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1926 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1927 return;
1928 }
1929
70046624 1930 sys_addr = get_error_address(m);
d27bf6fa
DT
1931
1932 /*
1933 * Find out which node the error address belongs to. This may be
1934 * different from the node that detected the error.
1935 */
44e9e2ee 1936 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1937 if (!src_mci) {
24f9a7fe
BP
1938 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1939 (unsigned long)sys_addr);
d27bf6fa
DT
1940 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1941 return;
1942 }
1943
1944 log_mci = src_mci;
1945
44e9e2ee 1946 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1947 if (csrow < 0) {
24f9a7fe
BP
1948 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1949 (unsigned long)sys_addr);
d27bf6fa
DT
1950 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1951 } else {
44e9e2ee 1952 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1953 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1954 }
1955}
1956
549d042d 1957static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1958 struct mce *m)
d27bf6fa 1959{
f192c7b1
BP
1960 u16 ec = EC(m->status);
1961 u8 xec = XEC(m->status, 0x1f);
1962 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1963
b70ef010 1964 /* Bail early out if this was an 'observed' error */
5980bb9c 1965 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1966 return;
d27bf6fa 1967
ecaf5606
BP
1968 /* Do only ECC errors */
1969 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1970 return;
d27bf6fa 1971
ecaf5606 1972 if (ecc_type == 2)
f192c7b1 1973 amd64_handle_ce(mci, m);
ecaf5606 1974 else if (ecc_type == 1)
f192c7b1 1975 amd64_handle_ue(mci, m);
d27bf6fa
DT
1976}
1977
b0b07a2b 1978void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 1979{
b0b07a2b 1980 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 1981}
d27bf6fa 1982
0ec449ee 1983/*
8d5b5d9c 1984 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1985 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1986 */
360b7f3c 1987static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1988{
0ec449ee 1989 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1990 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1991 if (!pvt->F1) {
24f9a7fe
BP
1992 amd64_err("error address map device not found: "
1993 "vendor %x device 0x%x (broken BIOS?)\n",
1994 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1995 return -ENODEV;
0ec449ee
DT
1996 }
1997
1998 /* Reserve the MISC Device */
8d5b5d9c
BP
1999 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2000 if (!pvt->F3) {
2001 pci_dev_put(pvt->F1);
2002 pvt->F1 = NULL;
0ec449ee 2003
24f9a7fe
BP
2004 amd64_err("error F3 device not found: "
2005 "vendor %x device 0x%x (broken BIOS?)\n",
2006 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2007
bbd0c1f6 2008 return -ENODEV;
0ec449ee 2009 }
8d5b5d9c
BP
2010 debugf1("F1: %s\n", pci_name(pvt->F1));
2011 debugf1("F2: %s\n", pci_name(pvt->F2));
2012 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2013
2014 return 0;
2015}
2016
360b7f3c 2017static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2018{
8d5b5d9c
BP
2019 pci_dev_put(pvt->F1);
2020 pci_dev_put(pvt->F3);
0ec449ee
DT
2021}
2022
2023/*
2024 * Retrieve the hardware registers of the memory controller (this includes the
2025 * 'Address Map' and 'Misc' device regs)
2026 */
360b7f3c 2027static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2028{
a3b7db09 2029 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 2030 u64 msr_val;
ad6a32e9 2031 u32 tmp;
e761359a 2032 unsigned range;
0ec449ee
DT
2033
2034 /*
2035 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2036 * those are Read-As-Zero
2037 */
e97f8bb8
BP
2038 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2039 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2040
2041 /* check first whether TOP_MEM2 is enabled */
2042 rdmsrl(MSR_K8_SYSCFG, msr_val);
2043 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2044 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2045 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2046 } else
2047 debugf0(" TOP_MEM2 disabled.\n");
2048
5980bb9c 2049 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2050
5a5d2371 2051 read_dram_ctl_register(pvt);
0ec449ee 2052
7f19bf75
BP
2053 for (range = 0; range < DRAM_RANGES; range++) {
2054 u8 rw;
0ec449ee 2055
7f19bf75
BP
2056 /* read settings for this DRAM range */
2057 read_dram_base_limit_regs(pvt, range);
2058
2059 rw = dram_rw(pvt, range);
2060 if (!rw)
2061 continue;
2062
2063 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2064 range,
2065 get_dram_base(pvt, range),
2066 get_dram_limit(pvt, range));
2067
2068 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2069 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2070 (rw & 0x1) ? "R" : "-",
2071 (rw & 0x2) ? "W" : "-",
2072 dram_intlv_sel(pvt, range),
2073 dram_dst_node(pvt, range));
0ec449ee
DT
2074 }
2075
b2b0c605 2076 read_dct_base_mask(pvt);
0ec449ee 2077
bc21fa57 2078 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2079 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2080
8d5b5d9c 2081 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2082
cb328507
BP
2083 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2084 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2085
78da121e 2086 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2087 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2088 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2089 }
ad6a32e9 2090
a3b7db09
BP
2091 pvt->ecc_sym_sz = 4;
2092
2093 if (c->x86 >= 0x10) {
b2b0c605 2094 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2095 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2096
a3b7db09
BP
2097 /* F10h, revD and later can do x8 ECC too */
2098 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2099 pvt->ecc_sym_sz = 8;
2100 }
b2b0c605 2101 dump_misc_regs(pvt);
0ec449ee
DT
2102}
2103
2104/*
2105 * NOTE: CPU Revision Dependent code
2106 *
2107 * Input:
11c75ead 2108 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2109 * k8 private pointer to -->
2110 * DRAM Bank Address mapping register
2111 * node_id
2112 * DCL register where dual_channel_active is
2113 *
2114 * The DBAM register consists of 4 sets of 4 bits each definitions:
2115 *
2116 * Bits: CSROWs
2117 * 0-3 CSROWs 0 and 1
2118 * 4-7 CSROWs 2 and 3
2119 * 8-11 CSROWs 4 and 5
2120 * 12-15 CSROWs 6 and 7
2121 *
2122 * Values range from: 0 to 15
2123 * The meaning of the values depends on CPU revision and dual-channel state,
2124 * see relevant BKDG more info.
2125 *
2126 * The memory controller provides for total of only 8 CSROWs in its current
2127 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2128 * single channel or two (2) DIMMs in dual channel mode.
2129 *
2130 * The following code logic collapses the various tables for CSROW based on CPU
2131 * revision.
2132 *
2133 * Returns:
2134 * The number of PAGE_SIZE pages on the specified CSROW number it
2135 * encompasses
2136 *
2137 */
41d8bfab 2138static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2139{
1433eb99 2140 u32 cs_mode, nr_pages;
f92cae45 2141 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee
DT
2142
2143 /*
2144 * The math on this doesn't look right on the surface because x/2*4 can
2145 * be simplified to x*2 but this expression makes use of the fact that
2146 * it is integral math where 1/2=0. This intermediate value becomes the
2147 * number of bits to shift the DBAM register to extract the proper CSROW
2148 * field.
2149 */
f92cae45 2150 cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2151
41d8bfab 2152 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2153
1433eb99 2154 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2155 debugf0(" nr_pages= %u channel-count = %d\n",
2156 nr_pages, pvt->channel_count);
2157
2158 return nr_pages;
2159}
2160
2161/*
2162 * Initialize the array of csrow attribute instances, based on the values
2163 * from pci config hardware registers.
2164 */
360b7f3c 2165static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2166{
2167 struct csrow_info *csrow;
2299ef71 2168 struct amd64_pvt *pvt = mci->pvt_info;
5e2af0c0 2169 u64 base, mask;
2299ef71 2170 u32 val;
084a4fcc
MCC
2171 int i, j, empty = 1;
2172 enum mem_type mtype;
2173 enum edac_type edac_mode;
0ec449ee 2174
a97fa68e 2175 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2176
2299ef71 2177 pvt->nbcfg = val;
0ec449ee 2178
2299ef71
BP
2179 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2180 pvt->mc_node_id, val,
a97fa68e 2181 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2182
11c75ead 2183 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2184 csrow = &mci->csrows[i];
2185
f92cae45 2186 if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
0ec449ee
DT
2187 debugf1("----CSROW %d EMPTY for node %d\n", i,
2188 pvt->mc_node_id);
2189 continue;
2190 }
2191
2192 debugf1("----CSROW %d VALID for MC node %d\n",
2193 i, pvt->mc_node_id);
2194
2195 empty = 0;
f92cae45
AS
2196 if (csrow_enabled(i, 0, pvt))
2197 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2198 if (csrow_enabled(i, 1, pvt))
2199 csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
11c75ead
BP
2200
2201 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
0ec449ee
DT
2202 /* 8 bytes of resolution */
2203
084a4fcc 2204 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2205
2206 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
5e2af0c0 2207 debugf1(" nr_pages: %u\n", csrow->nr_pages);
0ec449ee
DT
2208
2209 /*
2210 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2211 */
a97fa68e 2212 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2213 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2214 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2215 else
084a4fcc
MCC
2216 edac_mode = EDAC_NONE;
2217
2218 for (j = 0; j < pvt->channel_count; j++) {
2219 csrow->channels[j].dimm->mtype = mtype;
2220 csrow->channels[j].dimm->edac_mode = edac_mode;
2221 }
0ec449ee
DT
2222 }
2223
2224 return empty;
2225}
d27bf6fa 2226
f6d6ae96 2227/* get all cores on this DCT */
b487c33e 2228static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2229{
2230 int cpu;
2231
2232 for_each_online_cpu(cpu)
2233 if (amd_get_nb_id(cpu) == nid)
2234 cpumask_set_cpu(cpu, mask);
2235}
2236
2237/* check MCG_CTL on all the cpus on this node */
b487c33e 2238static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2239{
2240 cpumask_var_t mask;
50542251 2241 int cpu, nbe;
f6d6ae96
BP
2242 bool ret = false;
2243
2244 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2245 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2246 return false;
2247 }
2248
2249 get_cpus_on_this_dct_cpumask(mask, nid);
2250
f6d6ae96
BP
2251 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2252
2253 for_each_cpu(cpu, mask) {
50542251 2254 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2255 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2256
2257 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2258 cpu, reg->q,
f6d6ae96
BP
2259 (nbe ? "enabled" : "disabled"));
2260
2261 if (!nbe)
2262 goto out;
f6d6ae96
BP
2263 }
2264 ret = true;
2265
2266out:
f6d6ae96
BP
2267 free_cpumask_var(mask);
2268 return ret;
2269}
2270
2299ef71 2271static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2272{
2273 cpumask_var_t cmask;
50542251 2274 int cpu;
f6d6ae96
BP
2275
2276 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2277 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2278 return false;
2279 }
2280
ae7bb7c6 2281 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2282
f6d6ae96
BP
2283 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2284
2285 for_each_cpu(cpu, cmask) {
2286
50542251
BP
2287 struct msr *reg = per_cpu_ptr(msrs, cpu);
2288
f6d6ae96 2289 if (on) {
5980bb9c 2290 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2291 s->flags.nb_mce_enable = 1;
f6d6ae96 2292
5980bb9c 2293 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2294 } else {
2295 /*
d95cf4de 2296 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2297 */
ae7bb7c6 2298 if (!s->flags.nb_mce_enable)
5980bb9c 2299 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2300 }
f6d6ae96
BP
2301 }
2302 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2303
f6d6ae96
BP
2304 free_cpumask_var(cmask);
2305
2306 return 0;
2307}
2308
2299ef71
BP
2309static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2310 struct pci_dev *F3)
f9431992 2311{
2299ef71 2312 bool ret = true;
c9f4f26e 2313 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2314
2299ef71
BP
2315 if (toggle_ecc_err_reporting(s, nid, ON)) {
2316 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2317 return false;
2318 }
2319
c9f4f26e 2320 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2321
ae7bb7c6
BP
2322 s->old_nbctl = value & mask;
2323 s->nbctl_valid = true;
f9431992
DT
2324
2325 value |= mask;
c9f4f26e 2326 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2327
a97fa68e 2328 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2329
a97fa68e
BP
2330 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2331 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2332
a97fa68e 2333 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2334 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2335
ae7bb7c6 2336 s->flags.nb_ecc_prev = 0;
d95cf4de 2337
f9431992 2338 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2339 value |= NBCFG_ECC_ENABLE;
2340 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2341
a97fa68e 2342 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2343
a97fa68e 2344 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2345 amd64_warn("Hardware rejected DRAM ECC enable,"
2346 "check memory DIMM configuration.\n");
2299ef71 2347 ret = false;
f9431992 2348 } else {
24f9a7fe 2349 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2350 }
d95cf4de 2351 } else {
ae7bb7c6 2352 s->flags.nb_ecc_prev = 1;
f9431992 2353 }
d95cf4de 2354
a97fa68e
BP
2355 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2356 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2357
2299ef71 2358 return ret;
f9431992
DT
2359}
2360
360b7f3c
BP
2361static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2362 struct pci_dev *F3)
f9431992 2363{
c9f4f26e
BP
2364 u32 value, mask = 0x3; /* UECC/CECC enable */
2365
f9431992 2366
ae7bb7c6 2367 if (!s->nbctl_valid)
f9431992
DT
2368 return;
2369
c9f4f26e 2370 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2371 value &= ~mask;
ae7bb7c6 2372 value |= s->old_nbctl;
f9431992 2373
c9f4f26e 2374 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2375
ae7bb7c6
BP
2376 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2377 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2378 amd64_read_pci_cfg(F3, NBCFG, &value);
2379 value &= ~NBCFG_ECC_ENABLE;
2380 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2381 }
2382
2383 /* restore the NB Enable MCGCTL bit */
2299ef71 2384 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2385 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2386}
2387
2388/*
2299ef71
BP
2389 * EDAC requires that the BIOS have ECC enabled before
2390 * taking over the processing of ECC errors. A command line
2391 * option allows to force-enable hardware ECC later in
2392 * enable_ecc_error_reporting().
f9431992 2393 */
cab4d277
BP
2394static const char *ecc_msg =
2395 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2396 " Either enable ECC checking or force module loading by setting "
2397 "'ecc_enable_override'.\n"
2398 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2399
2299ef71 2400static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2401{
2402 u32 value;
2299ef71 2403 u8 ecc_en = 0;
06724535 2404 bool nb_mce_en = false;
f9431992 2405
a97fa68e 2406 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2407
a97fa68e 2408 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2409 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2410
2299ef71 2411 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2412 if (!nb_mce_en)
2299ef71
BP
2413 amd64_notice("NB MCE bank disabled, set MSR "
2414 "0x%08x[4] on node %d to enable.\n",
2415 MSR_IA32_MCG_CTL, nid);
f9431992 2416
2299ef71
BP
2417 if (!ecc_en || !nb_mce_en) {
2418 amd64_notice("%s", ecc_msg);
2419 return false;
2420 }
2421 return true;
f9431992
DT
2422}
2423
7d6034d3
DT
2424struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2425 ARRAY_SIZE(amd64_inj_attrs) +
2426 1];
2427
2428struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2429
360b7f3c 2430static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2431{
2432 unsigned int i = 0, j = 0;
2433
2434 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2435 sysfs_attrs[i] = amd64_dbg_attrs[i];
2436
a135cef7
BP
2437 if (boot_cpu_data.x86 >= 0x10)
2438 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2439 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2440
2441 sysfs_attrs[i] = terminator;
2442
2443 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2444}
2445
df71a053
BP
2446static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2447 struct amd64_family_type *fam)
7d6034d3
DT
2448{
2449 struct amd64_pvt *pvt = mci->pvt_info;
2450
2451 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2452 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2453
5980bb9c 2454 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2455 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2456
5980bb9c 2457 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2458 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2459
2460 mci->edac_cap = amd64_determine_edac_cap(pvt);
2461 mci->mod_name = EDAC_MOD_STR;
2462 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2463 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2464 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2465 mci->ctl_page_to_phys = NULL;
2466
7d6034d3
DT
2467 /* memory scrubber interface */
2468 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2469 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2470}
2471
0092b20d
BP
2472/*
2473 * returns a pointer to the family descriptor on success, NULL otherwise.
2474 */
2475static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2476{
0092b20d
BP
2477 u8 fam = boot_cpu_data.x86;
2478 struct amd64_family_type *fam_type = NULL;
2479
2480 switch (fam) {
395ae783 2481 case 0xf:
0092b20d 2482 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2483 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2484 break;
df71a053 2485
395ae783 2486 case 0x10:
0092b20d 2487 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2488 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2489 break;
2490
2491 case 0x15:
2492 fam_type = &amd64_family_types[F15_CPUS];
2493 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2494 break;
2495
2496 default:
24f9a7fe 2497 amd64_err("Unsupported family!\n");
0092b20d 2498 return NULL;
395ae783 2499 }
0092b20d 2500
b8cfa02f
BP
2501 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2502
df71a053 2503 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2504 (fam == 0xf ?
24f9a7fe
BP
2505 (pvt->ext_model >= K8_REV_F ? "revF or later "
2506 : "revE or earlier ")
2507 : ""), pvt->mc_node_id);
0092b20d 2508 return fam_type;
395ae783
BP
2509}
2510
2299ef71 2511static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2512{
2513 struct amd64_pvt *pvt = NULL;
0092b20d 2514 struct amd64_family_type *fam_type = NULL;
360b7f3c 2515 struct mem_ctl_info *mci = NULL;
7d6034d3 2516 int err = 0, ret;
360b7f3c 2517 u8 nid = get_node_id(F2);
7d6034d3
DT
2518
2519 ret = -ENOMEM;
2520 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2521 if (!pvt)
360b7f3c 2522 goto err_ret;
7d6034d3 2523
360b7f3c 2524 pvt->mc_node_id = nid;
8d5b5d9c 2525 pvt->F2 = F2;
7d6034d3 2526
395ae783 2527 ret = -EINVAL;
0092b20d
BP
2528 fam_type = amd64_per_family_init(pvt);
2529 if (!fam_type)
395ae783
BP
2530 goto err_free;
2531
7d6034d3 2532 ret = -ENODEV;
360b7f3c 2533 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2534 if (err)
2535 goto err_free;
2536
360b7f3c 2537 read_mc_regs(pvt);
7d6034d3 2538
7d6034d3
DT
2539 /*
2540 * We need to determine how many memory channels there are. Then use
2541 * that information for calculating the size of the dynamic instance
360b7f3c 2542 * tables in the 'mci' structure.
7d6034d3 2543 */
360b7f3c 2544 ret = -EINVAL;
7d6034d3
DT
2545 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2546 if (pvt->channel_count < 0)
360b7f3c 2547 goto err_siblings;
7d6034d3
DT
2548
2549 ret = -ENOMEM;
11c75ead 2550 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2551 if (!mci)
360b7f3c 2552 goto err_siblings;
7d6034d3
DT
2553
2554 mci->pvt_info = pvt;
8d5b5d9c 2555 mci->dev = &pvt->F2->dev;
7d6034d3 2556
df71a053 2557 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2558
2559 if (init_csrows(mci))
7d6034d3
DT
2560 mci->edac_cap = EDAC_FLAG_NONE;
2561
360b7f3c 2562 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2563
2564 ret = -ENODEV;
2565 if (edac_mc_add_mc(mci)) {
2566 debugf1("failed edac_mc_add_mc()\n");
2567 goto err_add_mc;
2568 }
2569
549d042d
BP
2570 /* register stuff with EDAC MCE */
2571 if (report_gart_errors)
2572 amd_report_gart_errors(true);
2573
2574 amd_register_ecc_decoder(amd64_decode_bus_error);
2575
360b7f3c
BP
2576 mcis[nid] = mci;
2577
2578 atomic_inc(&drv_instances);
2579
7d6034d3
DT
2580 return 0;
2581
2582err_add_mc:
2583 edac_mc_free(mci);
2584
360b7f3c
BP
2585err_siblings:
2586 free_mc_sibling_devs(pvt);
7d6034d3 2587
360b7f3c
BP
2588err_free:
2589 kfree(pvt);
7d6034d3 2590
360b7f3c 2591err_ret:
7d6034d3
DT
2592 return ret;
2593}
2594
2299ef71 2595static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2596 const struct pci_device_id *mc_type)
7d6034d3 2597{
ae7bb7c6 2598 u8 nid = get_node_id(pdev);
2299ef71 2599 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2600 struct ecc_settings *s;
2299ef71 2601 int ret = 0;
7d6034d3 2602
7d6034d3 2603 ret = pci_enable_device(pdev);
b8cfa02f
BP
2604 if (ret < 0) {
2605 debugf0("ret=%d\n", ret);
2606 return -EIO;
2607 }
7d6034d3 2608
ae7bb7c6
BP
2609 ret = -ENOMEM;
2610 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2611 if (!s)
2299ef71 2612 goto err_out;
ae7bb7c6
BP
2613
2614 ecc_stngs[nid] = s;
2615
2299ef71
BP
2616 if (!ecc_enabled(F3, nid)) {
2617 ret = -ENODEV;
2618
2619 if (!ecc_enable_override)
2620 goto err_enable;
2621
2622 amd64_warn("Forcing ECC on!\n");
2623
2624 if (!enable_ecc_error_reporting(s, nid, F3))
2625 goto err_enable;
2626 }
2627
2628 ret = amd64_init_one_instance(pdev);
360b7f3c 2629 if (ret < 0) {
ae7bb7c6 2630 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2631 restore_ecc_error_reporting(s, nid, F3);
2632 }
7d6034d3
DT
2633
2634 return ret;
2299ef71
BP
2635
2636err_enable:
2637 kfree(s);
2638 ecc_stngs[nid] = NULL;
2639
2640err_out:
2641 return ret;
7d6034d3
DT
2642}
2643
2644static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2645{
2646 struct mem_ctl_info *mci;
2647 struct amd64_pvt *pvt;
360b7f3c
BP
2648 u8 nid = get_node_id(pdev);
2649 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2650 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2651
2652 /* Remove from EDAC CORE tracking list */
2653 mci = edac_mc_del_mc(&pdev->dev);
2654 if (!mci)
2655 return;
2656
2657 pvt = mci->pvt_info;
2658
360b7f3c 2659 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2660
360b7f3c 2661 free_mc_sibling_devs(pvt);
7d6034d3 2662
549d042d
BP
2663 /* unregister from EDAC MCE */
2664 amd_report_gart_errors(false);
2665 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2666
360b7f3c
BP
2667 kfree(ecc_stngs[nid]);
2668 ecc_stngs[nid] = NULL;
ae7bb7c6 2669
7d6034d3 2670 /* Free the EDAC CORE resources */
8f68ed97 2671 mci->pvt_info = NULL;
360b7f3c 2672 mcis[nid] = NULL;
8f68ed97
BP
2673
2674 kfree(pvt);
7d6034d3
DT
2675 edac_mc_free(mci);
2676}
2677
2678/*
2679 * This table is part of the interface for loading drivers for PCI devices. The
2680 * PCI core identifies what devices are on a system during boot, and then
2681 * inquiry this table to see if this driver is for a given device found.
2682 */
36c46f31 2683static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2684 {
2685 .vendor = PCI_VENDOR_ID_AMD,
2686 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2687 .subvendor = PCI_ANY_ID,
2688 .subdevice = PCI_ANY_ID,
2689 .class = 0,
2690 .class_mask = 0,
7d6034d3
DT
2691 },
2692 {
2693 .vendor = PCI_VENDOR_ID_AMD,
2694 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2695 .subvendor = PCI_ANY_ID,
2696 .subdevice = PCI_ANY_ID,
2697 .class = 0,
2698 .class_mask = 0,
7d6034d3 2699 },
df71a053
BP
2700 {
2701 .vendor = PCI_VENDOR_ID_AMD,
2702 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2703 .subvendor = PCI_ANY_ID,
2704 .subdevice = PCI_ANY_ID,
2705 .class = 0,
2706 .class_mask = 0,
2707 },
2708
7d6034d3
DT
2709 {0, }
2710};
2711MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2712
2713static struct pci_driver amd64_pci_driver = {
2714 .name = EDAC_MOD_STR,
2299ef71 2715 .probe = amd64_probe_one_instance,
7d6034d3
DT
2716 .remove = __devexit_p(amd64_remove_one_instance),
2717 .id_table = amd64_pci_table,
2718};
2719
360b7f3c 2720static void setup_pci_device(void)
7d6034d3
DT
2721{
2722 struct mem_ctl_info *mci;
2723 struct amd64_pvt *pvt;
2724
2725 if (amd64_ctl_pci)
2726 return;
2727
cc4d8860 2728 mci = mcis[0];
7d6034d3
DT
2729 if (mci) {
2730
2731 pvt = mci->pvt_info;
2732 amd64_ctl_pci =
8d5b5d9c 2733 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2734
2735 if (!amd64_ctl_pci) {
2736 pr_warning("%s(): Unable to create PCI control\n",
2737 __func__);
2738
2739 pr_warning("%s(): PCI error report via EDAC not set\n",
2740 __func__);
2741 }
2742 }
2743}
2744
2745static int __init amd64_edac_init(void)
2746{
360b7f3c 2747 int err = -ENODEV;
7d6034d3 2748
df71a053 2749 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2750
2751 opstate_init();
2752
9653a5c7 2753 if (amd_cache_northbridges() < 0)
56b34b91 2754 goto err_ret;
7d6034d3 2755
cc4d8860 2756 err = -ENOMEM;
ae7bb7c6
BP
2757 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2758 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2759 if (!(mcis && ecc_stngs))
a9f0fbe2 2760 goto err_free;
cc4d8860 2761
50542251 2762 msrs = msrs_alloc();
56b34b91 2763 if (!msrs)
360b7f3c 2764 goto err_free;
50542251 2765
7d6034d3
DT
2766 err = pci_register_driver(&amd64_pci_driver);
2767 if (err)
56b34b91 2768 goto err_pci;
7d6034d3 2769
56b34b91 2770 err = -ENODEV;
360b7f3c
BP
2771 if (!atomic_read(&drv_instances))
2772 goto err_no_instances;
7d6034d3 2773
360b7f3c
BP
2774 setup_pci_device();
2775 return 0;
7d6034d3 2776
360b7f3c 2777err_no_instances:
7d6034d3 2778 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2779
56b34b91
BP
2780err_pci:
2781 msrs_free(msrs);
2782 msrs = NULL;
cc4d8860 2783
360b7f3c
BP
2784err_free:
2785 kfree(mcis);
2786 mcis = NULL;
2787
2788 kfree(ecc_stngs);
2789 ecc_stngs = NULL;
2790
56b34b91 2791err_ret:
7d6034d3
DT
2792 return err;
2793}
2794
2795static void __exit amd64_edac_exit(void)
2796{
2797 if (amd64_ctl_pci)
2798 edac_pci_release_generic_ctl(amd64_ctl_pci);
2799
2800 pci_unregister_driver(&amd64_pci_driver);
50542251 2801
ae7bb7c6
BP
2802 kfree(ecc_stngs);
2803 ecc_stngs = NULL;
2804
cc4d8860
BP
2805 kfree(mcis);
2806 mcis = NULL;
2807
50542251
BP
2808 msrs_free(msrs);
2809 msrs = NULL;
7d6034d3
DT
2810}
2811
2812module_init(amd64_edac_init);
2813module_exit(amd64_edac_exit);
2814
2815MODULE_LICENSE("GPL");
2816MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2817 "Dave Peterson, Thayne Harbaugh");
2818MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2819 EDAC_AMD64_VERSION);
2820
2821module_param(edac_op_state, int, 0444);
2822MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.438407 seconds and 5 git commands to generate.