amd64_edac: Revamp online spare handling
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
b2b0c605
BP
110static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
112{
113 int err = 0;
114
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
119
120 return err;
121}
122
123int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
125{
126 int err = 0;
127
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
132
133 return err;
134}
135
136/*
137 *
138 * Depending on the family, F2 DCT reads need special handling:
139 *
140 * K8: has a single DCT only
141 *
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
145 *
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
147 *
148 */
149static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
151{
152 if (addr >= 0x100)
153 return -EINVAL;
154
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
156}
157
158static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
160{
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
162}
163
164static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
166{
167 u32 reg = 0;
168 u8 dct = 0;
169
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
173 }
174
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
179
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
181}
182
2bc65418
DT
183/*
184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
188 *
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
192 *
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
195 */
196
197/*
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
200 */
395ae783 201static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
202{
203 u32 scrubval;
204 int i;
205
206 /*
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
211 */
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
213 /*
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
216 */
395ae783 217 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
218 continue;
219
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
222
223 /*
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
227 */
228 }
229
230 scrubval = scrubrates[i].scrubval;
2bc65418 231
5980bb9c 232 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 233
39094443
BP
234 if (scrubval)
235 return scrubrates[i].bandwidth;
236
2bc65418
DT
237 return 0;
238}
239
395ae783 240static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
241{
242 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 243
8d5b5d9c 244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
245}
246
39094443 247static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
248{
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
39094443 251 int i, retval = -EINVAL;
2bc65418 252
5980bb9c 253 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
254
255 scrubval = scrubval & 0x001F;
256
24f9a7fe 257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 258
926311fd 259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 260 if (scrubrates[i].scrubval == scrubval) {
39094443 261 retval = scrubrates[i].bandwidth;
2bc65418
DT
262 break;
263 }
264 }
39094443 265 return retval;
2bc65418
DT
266}
267
6775763a 268/*
7f19bf75
BP
269 * returns true if the SysAddr given by sys_addr matches the
270 * DRAM base/limit associated with node_id
6775763a 271 */
7f19bf75 272static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
6775763a 273{
7f19bf75 274 u64 addr;
6775763a
DT
275
276 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
277 * all ones if the most significant implemented address bit is 1.
278 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
279 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
280 * Application Programming.
281 */
282 addr = sys_addr & 0x000000ffffffffffull;
283
7f19bf75
BP
284 return ((addr >= get_dram_base(pvt, nid)) &&
285 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
286}
287
288/*
289 * Attempt to map a SysAddr to a node. On success, return a pointer to the
290 * mem_ctl_info structure for the node that the SysAddr maps to.
291 *
292 * On failure, return NULL.
293 */
294static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
295 u64 sys_addr)
296{
297 struct amd64_pvt *pvt;
298 int node_id;
299 u32 intlv_en, bits;
300
301 /*
302 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
303 * 3.4.4.2) registers to map the SysAddr to a node ID.
304 */
305 pvt = mci->pvt_info;
306
307 /*
308 * The value of this field should be the same for all DRAM Base
309 * registers. Therefore we arbitrarily choose to read it from the
310 * register for node 0.
311 */
7f19bf75 312 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
313
314 if (intlv_en == 0) {
7f19bf75 315 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 316 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 317 goto found;
6775763a 318 }
8edc5445 319 goto err_no_match;
6775763a
DT
320 }
321
72f158fe
BP
322 if (unlikely((intlv_en != 0x01) &&
323 (intlv_en != 0x03) &&
324 (intlv_en != 0x07))) {
24f9a7fe 325 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
326 return NULL;
327 }
328
329 bits = (((u32) sys_addr) >> 12) & intlv_en;
330
331 for (node_id = 0; ; ) {
7f19bf75 332 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
333 break; /* intlv_sel field matches */
334
7f19bf75 335 if (++node_id >= DRAM_RANGES)
6775763a
DT
336 goto err_no_match;
337 }
338
339 /* sanity test for sys_addr */
340 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
341 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
342 "range for node %d with node interleaving enabled.\n",
343 __func__, sys_addr, node_id);
6775763a
DT
344 return NULL;
345 }
346
347found:
348 return edac_mc_find(node_id);
349
350err_no_match:
351 debugf2("sys_addr 0x%lx doesn't match any node\n",
352 (unsigned long)sys_addr);
353
354 return NULL;
355}
e2ce7255
DT
356
357/*
11c75ead
BP
358 * compute the CS base address of the @csrow on the DRAM controller @dct.
359 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 360 */
11c75ead
BP
361static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
362 u64 *base, u64 *mask)
e2ce7255 363{
11c75ead
BP
364 u64 csbase, csmask, base_bits, mask_bits;
365 u8 addr_shift;
e2ce7255 366
11c75ead
BP
367 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow];
370 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
371 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
372 addr_shift = 4;
373 } else {
374 csbase = pvt->csels[dct].csbases[csrow];
375 csmask = pvt->csels[dct].csmasks[csrow >> 1];
376 addr_shift = 8;
e2ce7255 377
11c75ead
BP
378 if (boot_cpu_data.x86 == 0x15)
379 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
380 else
381 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
382 }
e2ce7255 383
11c75ead 384 *base = (csbase & base_bits) << addr_shift;
e2ce7255 385
11c75ead
BP
386 *mask = ~0ULL;
387 /* poke holes for the csmask */
388 *mask &= ~(mask_bits << addr_shift);
389 /* OR them in */
390 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
391}
392
11c75ead
BP
393#define for_each_chip_select(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
395
614ec9d8
BP
396#define chip_select_base(i, dct, pvt) \
397 pvt->csels[dct].csbases[i]
398
11c75ead
BP
399#define for_each_chip_select_mask(i, dct, pvt) \
400 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
401
e2ce7255
DT
402/*
403 * @input_addr is an InputAddr associated with the node given by mci. Return the
404 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
405 */
406static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
407{
408 struct amd64_pvt *pvt;
409 int csrow;
410 u64 base, mask;
411
412 pvt = mci->pvt_info;
413
11c75ead
BP
414 for_each_chip_select(csrow, 0, pvt) {
415 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
416 continue;
417
11c75ead
BP
418 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
419
420 mask = ~mask;
e2ce7255
DT
421
422 if ((input_addr & mask) == (base & mask)) {
423 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
424 (unsigned long)input_addr, csrow,
425 pvt->mc_node_id);
426
427 return csrow;
428 }
429 }
e2ce7255
DT
430 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
431 (unsigned long)input_addr, pvt->mc_node_id);
432
433 return -1;
434}
435
e2ce7255
DT
436/*
437 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
438 * for the node represented by mci. Info is passed back in *hole_base,
439 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
440 * info is invalid. Info may be invalid for either of the following reasons:
441 *
442 * - The revision of the node is not E or greater. In this case, the DRAM Hole
443 * Address Register does not exist.
444 *
445 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
446 * indicating that its contents are not valid.
447 *
448 * The values passed back in *hole_base, *hole_offset, and *hole_size are
449 * complete 32-bit values despite the fact that the bitfields in the DHAR
450 * only represent bits 31-24 of the base and offset values.
451 */
452int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
453 u64 *hole_offset, u64 *hole_size)
454{
455 struct amd64_pvt *pvt = mci->pvt_info;
456 u64 base;
457
458 /* only revE and later have the DRAM Hole Address Register */
1433eb99 459 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
460 debugf1(" revision %d for node %d does not support DHAR\n",
461 pvt->ext_model, pvt->mc_node_id);
462 return 1;
463 }
464
bc21fa57 465 /* valid for Fam10h and above */
c8e518d5 466 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
467 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
468 return 1;
469 }
470
c8e518d5 471 if (!dhar_valid(pvt)) {
e2ce7255
DT
472 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
473 pvt->mc_node_id);
474 return 1;
475 }
476
477 /* This node has Memory Hoisting */
478
479 /* +------------------+--------------------+--------------------+-----
480 * | memory | DRAM hole | relocated |
481 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
482 * | | | DRAM hole |
483 * | | | [0x100000000, |
484 * | | | (0x100000000+ |
485 * | | | (0xffffffff-x))] |
486 * +------------------+--------------------+--------------------+-----
487 *
488 * Above is a diagram of physical memory showing the DRAM hole and the
489 * relocated addresses from the DRAM hole. As shown, the DRAM hole
490 * starts at address x (the base address) and extends through address
491 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
492 * addresses in the hole so that they start at 0x100000000.
493 */
494
bc21fa57 495 base = dhar_base(pvt);
e2ce7255
DT
496
497 *hole_base = base;
498 *hole_size = (0x1ull << 32) - base;
499
500 if (boot_cpu_data.x86 > 0xf)
bc21fa57 501 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 502 else
bc21fa57 503 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
504
505 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
506 pvt->mc_node_id, (unsigned long)*hole_base,
507 (unsigned long)*hole_offset, (unsigned long)*hole_size);
508
509 return 0;
510}
511EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
512
93c2df58
DT
513/*
514 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
515 * assumed that sys_addr maps to the node given by mci.
516 *
517 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
518 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
519 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
520 * then it is also involved in translating a SysAddr to a DramAddr. Sections
521 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
522 * These parts of the documentation are unclear. I interpret them as follows:
523 *
524 * When node n receives a SysAddr, it processes the SysAddr as follows:
525 *
526 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
527 * Limit registers for node n. If the SysAddr is not within the range
528 * specified by the base and limit values, then node n ignores the Sysaddr
529 * (since it does not map to node n). Otherwise continue to step 2 below.
530 *
531 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
532 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
533 * the range of relocated addresses (starting at 0x100000000) from the DRAM
534 * hole. If not, skip to step 3 below. Else get the value of the
535 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
536 * offset defined by this value from the SysAddr.
537 *
538 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
539 * Base register for node n. To obtain the DramAddr, subtract the base
540 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
541 */
542static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
543{
7f19bf75 544 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
545 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
546 int ret = 0;
547
7f19bf75 548 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
549
550 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
551 &hole_size);
552 if (!ret) {
553 if ((sys_addr >= (1ull << 32)) &&
554 (sys_addr < ((1ull << 32) + hole_size))) {
555 /* use DHAR to translate SysAddr to DramAddr */
556 dram_addr = sys_addr - hole_offset;
557
558 debugf2("using DHAR to translate SysAddr 0x%lx to "
559 "DramAddr 0x%lx\n",
560 (unsigned long)sys_addr,
561 (unsigned long)dram_addr);
562
563 return dram_addr;
564 }
565 }
566
567 /*
568 * Translate the SysAddr to a DramAddr as shown near the start of
569 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
570 * only deals with 40-bit values. Therefore we discard bits 63-40 of
571 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
572 * discard are all 1s. Otherwise the bits we discard are all 0s. See
573 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
574 * Programmer's Manual Volume 1 Application Programming.
575 */
f678b8cc 576 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
577
578 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
579 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
580 (unsigned long)dram_addr);
581 return dram_addr;
582}
583
584/*
585 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
586 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
587 * for node interleaving.
588 */
589static int num_node_interleave_bits(unsigned intlv_en)
590{
591 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
592 int n;
593
594 BUG_ON(intlv_en > 7);
595 n = intlv_shift_table[intlv_en];
596 return n;
597}
598
599/* Translate the DramAddr given by @dram_addr to an InputAddr. */
600static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
601{
602 struct amd64_pvt *pvt;
603 int intlv_shift;
604 u64 input_addr;
605
606 pvt = mci->pvt_info;
607
608 /*
609 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * concerning translating a DramAddr to an InputAddr.
611 */
7f19bf75 612 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
613 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
614 (dram_addr & 0xfff);
93c2df58
DT
615
616 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
617 intlv_shift, (unsigned long)dram_addr,
618 (unsigned long)input_addr);
619
620 return input_addr;
621}
622
623/*
624 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
625 * assumed that @sys_addr maps to the node given by mci.
626 */
627static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
628{
629 u64 input_addr;
630
631 input_addr =
632 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
633
634 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
635 (unsigned long)sys_addr, (unsigned long)input_addr);
636
637 return input_addr;
638}
639
640
641/*
642 * @input_addr is an InputAddr associated with the node represented by mci.
643 * Translate @input_addr to a DramAddr and return the result.
644 */
645static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
646{
647 struct amd64_pvt *pvt;
648 int node_id, intlv_shift;
649 u64 bits, dram_addr;
650 u32 intlv_sel;
651
652 /*
653 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
654 * shows how to translate a DramAddr to an InputAddr. Here we reverse
655 * this procedure. When translating from a DramAddr to an InputAddr, the
656 * bits used for node interleaving are discarded. Here we recover these
657 * bits from the IntlvSel field of the DRAM Limit register (section
658 * 3.4.4.2) for the node that input_addr is associated with.
659 */
660 pvt = mci->pvt_info;
661 node_id = pvt->mc_node_id;
662 BUG_ON((node_id < 0) || (node_id > 7));
663
7f19bf75 664 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
665
666 if (intlv_shift == 0) {
667 debugf1(" InputAddr 0x%lx translates to DramAddr of "
668 "same value\n", (unsigned long)input_addr);
669
670 return input_addr;
671 }
672
f678b8cc
BP
673 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
674 (input_addr & 0xfff);
93c2df58 675
7f19bf75 676 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
677 dram_addr = bits + (intlv_sel << 12);
678
679 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
680 "(%d node interleave bits)\n", (unsigned long)input_addr,
681 (unsigned long)dram_addr, intlv_shift);
682
683 return dram_addr;
684}
685
686/*
687 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
688 * @dram_addr to a SysAddr.
689 */
690static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
691{
692 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 693 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
694 int ret = 0;
695
696 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
697 &hole_size);
698 if (!ret) {
699 if ((dram_addr >= hole_base) &&
700 (dram_addr < (hole_base + hole_size))) {
701 sys_addr = dram_addr + hole_offset;
702
703 debugf1("using DHAR to translate DramAddr 0x%lx to "
704 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
705 (unsigned long)sys_addr);
706
707 return sys_addr;
708 }
709 }
710
7f19bf75 711 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
712 sys_addr = dram_addr + base;
713
714 /*
715 * The sys_addr we have computed up to this point is a 40-bit value
716 * because the k8 deals with 40-bit values. However, the value we are
717 * supposed to return is a full 64-bit physical address. The AMD
718 * x86-64 architecture specifies that the most significant implemented
719 * address bit through bit 63 of a physical address must be either all
720 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
721 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
722 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
723 * Programming.
724 */
725 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
726
727 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
728 pvt->mc_node_id, (unsigned long)dram_addr,
729 (unsigned long)sys_addr);
730
731 return sys_addr;
732}
733
734/*
735 * @input_addr is an InputAddr associated with the node given by mci. Translate
736 * @input_addr to a SysAddr.
737 */
738static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
739 u64 input_addr)
740{
741 return dram_addr_to_sys_addr(mci,
742 input_addr_to_dram_addr(mci, input_addr));
743}
744
745/*
746 * Find the minimum and maximum InputAddr values that map to the given @csrow.
747 * Pass back these values in *input_addr_min and *input_addr_max.
748 */
749static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
750 u64 *input_addr_min, u64 *input_addr_max)
751{
752 struct amd64_pvt *pvt;
753 u64 base, mask;
754
755 pvt = mci->pvt_info;
11c75ead 756 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 757
11c75ead 758 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
759
760 *input_addr_min = base & ~mask;
11c75ead 761 *input_addr_max = base | mask;
93c2df58
DT
762}
763
93c2df58
DT
764/* Map the Error address to a PAGE and PAGE OFFSET. */
765static inline void error_address_to_page_and_offset(u64 error_address,
766 u32 *page, u32 *offset)
767{
768 *page = (u32) (error_address >> PAGE_SHIFT);
769 *offset = ((u32) error_address) & ~PAGE_MASK;
770}
771
772/*
773 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
774 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
775 * of a node that detected an ECC memory error. mci represents the node that
776 * the error address maps to (possibly different from the node that detected
777 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
778 * error.
779 */
780static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
781{
782 int csrow;
783
784 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
785
786 if (csrow == -1)
24f9a7fe
BP
787 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
788 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
789 return csrow;
790}
e2ce7255 791
bfc04aec 792static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 793
2da11654
DT
794/*
795 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
796 * are ECC capable.
797 */
798static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
799{
cb328507 800 u8 bit;
584fcff4 801 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 802
1433eb99 803 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
804 ? 19
805 : 17;
806
584fcff4 807 if (pvt->dclr0 & BIT(bit))
2da11654
DT
808 edac_cap = EDAC_FLAG_SECDED;
809
810 return edac_cap;
811}
812
813
8566c4df 814static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 815
68798e17
BP
816static void amd64_dump_dramcfg_low(u32 dclr, int chan)
817{
818 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
819
820 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
821 (dclr & BIT(16)) ? "un" : "",
822 (dclr & BIT(19)) ? "yes" : "no");
823
824 debugf1(" PAR/ERR parity: %s\n",
825 (dclr & BIT(8)) ? "enabled" : "disabled");
826
cb328507
BP
827 if (boot_cpu_data.x86 == 0x10)
828 debugf1(" DCT 128bit mode width: %s\n",
829 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
830
831 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
832 (dclr & BIT(12)) ? "yes" : "no",
833 (dclr & BIT(13)) ? "yes" : "no",
834 (dclr & BIT(14)) ? "yes" : "no",
835 (dclr & BIT(15)) ? "yes" : "no");
836}
837
2da11654 838/* Display and decode various NB registers for debug purposes. */
b2b0c605 839static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 840{
68798e17
BP
841 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
842
843 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 844 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 845
68798e17 846 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
847 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
848 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
849
850 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 851
8de1d91e 852 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 853
8de1d91e
BP
854 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
855 "offset: 0x%08x\n",
bc21fa57
BP
856 pvt->dhar, dhar_base(pvt),
857 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
858 : f10_dhar_offset(pvt));
2da11654 859
c8e518d5 860 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 861
4d796364
BP
862 amd64_debug_display_dimm_sizes(0, pvt);
863
8de1d91e 864 /* everything below this point is Fam10h and above */
4d796364 865 if (boot_cpu_data.x86 == 0xf)
2da11654 866 return;
4d796364
BP
867
868 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 869
24f9a7fe 870 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 871
8de1d91e 872 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
873 if (!dct_ganging_enabled(pvt))
874 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
875}
876
94be4bff 877/*
11c75ead 878 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 879 */
11c75ead 880static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 881{
1433eb99 882 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
883 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
884 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 885 } else {
11c75ead
BP
886 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
887 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
888 }
889}
890
891/*
11c75ead 892 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 893 */
b2b0c605 894static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 895{
11c75ead 896 int cs;
94be4bff 897
11c75ead 898 prep_chip_selects(pvt);
94be4bff 899
11c75ead
BP
900 for_each_chip_select(cs, 0, pvt) {
901 u32 reg0 = DCSB0 + (cs * 4);
902 u32 reg1 = DCSB1 + (cs * 4);
903 u32 *base0 = &pvt->csels[0].csbases[cs];
904 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 905
11c75ead 906 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 907 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 908 cs, *base0, reg0);
94be4bff 909
11c75ead
BP
910 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
911 continue;
b2b0c605 912
11c75ead
BP
913 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
914 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
915 cs, *base1, reg1);
94be4bff
DT
916 }
917
11c75ead
BP
918 for_each_chip_select_mask(cs, 0, pvt) {
919 u32 reg0 = DCSM0 + (cs * 4);
920 u32 reg1 = DCSM1 + (cs * 4);
921 u32 *mask0 = &pvt->csels[0].csmasks[cs];
922 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 923
11c75ead 924 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 925 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 926 cs, *mask0, reg0);
94be4bff 927
11c75ead
BP
928 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
929 continue;
b2b0c605 930
11c75ead
BP
931 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
932 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
933 cs, *mask1, reg1);
94be4bff
DT
934 }
935}
936
24f9a7fe 937static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
938{
939 enum mem_type type;
940
cb328507
BP
941 /* F15h supports only DDR3 */
942 if (boot_cpu_data.x86 >= 0x15)
943 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
944 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
945 if (pvt->dchr0 & DDR3_MODE)
946 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
947 else
948 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 949 } else {
94be4bff
DT
950 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
951 }
952
24f9a7fe 953 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
954
955 return type;
956}
957
cb328507 958/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
959static int k8_early_channel_count(struct amd64_pvt *pvt)
960{
cb328507 961 int flag;
ddff876d 962
9f56da0e 963 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
964 /* RevF (NPT) and later */
965 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 966 else
ddff876d
DT
967 /* RevE and earlier */
968 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
969
970 /* not used */
971 pvt->dclr1 = 0;
972
973 return (flag) ? 2 : 1;
974}
975
70046624
BP
976/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
977static u64 get_error_address(struct mce *m)
ddff876d 978{
70046624
BP
979 u8 start_bit = 1;
980 u8 end_bit = 47;
981
982 if (boot_cpu_data.x86 == 0xf) {
983 start_bit = 3;
984 end_bit = 39;
985 }
986
987 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
988}
989
7f19bf75 990static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 991{
7f19bf75 992 u32 off = range << 3;
ddff876d 993
7f19bf75
BP
994 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
995 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 996
7f19bf75
BP
997 if (boot_cpu_data.x86 == 0xf)
998 return;
ddff876d 999
7f19bf75
BP
1000 if (!dram_rw(pvt, range))
1001 return;
ddff876d 1002
7f19bf75
BP
1003 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1004 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
1005}
1006
f192c7b1
BP
1007static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1008 u16 syndrome)
ddff876d
DT
1009{
1010 struct mem_ctl_info *src_mci;
f192c7b1 1011 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1012 int channel, csrow;
1013 u32 page, offset;
ddff876d
DT
1014
1015 /* CHIPKILL enabled */
f192c7b1 1016 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1017 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1018 if (channel < 0) {
1019 /*
1020 * Syndrome didn't map, so we don't know which of the
1021 * 2 DIMMs is in error. So we need to ID 'both' of them
1022 * as suspect.
1023 */
24f9a7fe
BP
1024 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1025 "error reporting race\n", syndrome);
ddff876d
DT
1026 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1027 return;
1028 }
1029 } else {
1030 /*
1031 * non-chipkill ecc mode
1032 *
1033 * The k8 documentation is unclear about how to determine the
1034 * channel number when using non-chipkill memory. This method
1035 * was obtained from email communication with someone at AMD.
1036 * (Wish the email was placed in this comment - norsk)
1037 */
44e9e2ee 1038 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1039 }
1040
1041 /*
1042 * Find out which node the error address belongs to. This may be
1043 * different from the node that detected the error.
1044 */
44e9e2ee 1045 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1046 if (!src_mci) {
24f9a7fe 1047 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1048 (unsigned long)sys_addr);
ddff876d
DT
1049 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1050 return;
1051 }
1052
44e9e2ee
BP
1053 /* Now map the sys_addr to a CSROW */
1054 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1055 if (csrow < 0) {
1056 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1057 } else {
44e9e2ee 1058 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1059
1060 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1061 channel, EDAC_MOD_STR);
1062 }
1063}
1064
1433eb99 1065static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1066{
1433eb99 1067 int *dbam_map;
ddff876d 1068
1433eb99
BP
1069 if (pvt->ext_model >= K8_REV_F)
1070 dbam_map = ddr2_dbam;
1071 else if (pvt->ext_model >= K8_REV_D)
1072 dbam_map = ddr2_dbam_revD;
1073 else
1074 dbam_map = ddr2_dbam_revCG;
ddff876d 1075
1433eb99 1076 return dbam_map[cs_mode];
ddff876d
DT
1077}
1078
1afd3c98
DT
1079/*
1080 * Get the number of DCT channels in use.
1081 *
1082 * Return:
1083 * number of Memory Channels in operation
1084 * Pass back:
1085 * contents of the DCL0_LOW register
1086 */
7d20d14d 1087static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1088{
6ba5dcdc 1089 int i, j, channels = 0;
1afd3c98 1090
7d20d14d
BP
1091 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1092 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128))
1093 return 2;
1afd3c98
DT
1094
1095 /*
d16149e8
BP
1096 * Need to check if in unganged mode: In such, there are 2 channels,
1097 * but they are not in 128 bit mode and thus the above 'dclr0' status
1098 * bit will be OFF.
1afd3c98
DT
1099 *
1100 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1101 * their CSEnable bit on. If so, then SINGLE DIMM case.
1102 */
d16149e8 1103 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1104
1afd3c98
DT
1105 /*
1106 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1107 * is more than just one DIMM present in unganged mode. Need to check
1108 * both controllers since DIMMs can be placed in either one.
1109 */
525a1b20
BP
1110 for (i = 0; i < 2; i++) {
1111 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1112
57a30854
WW
1113 for (j = 0; j < 4; j++) {
1114 if (DBAM_DIMM(j, dbam) > 0) {
1115 channels++;
1116 break;
1117 }
1118 }
1afd3c98
DT
1119 }
1120
d16149e8
BP
1121 if (channels > 2)
1122 channels = 2;
1123
24f9a7fe 1124 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1125
1126 return channels;
1afd3c98
DT
1127}
1128
1433eb99 1129static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1130{
1433eb99
BP
1131 int *dbam_map;
1132
1133 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1134 dbam_map = ddr3_dbam;
1135 else
1136 dbam_map = ddr2_dbam;
1137
1138 return dbam_map[cs_mode];
1afd3c98
DT
1139}
1140
6163b5d4
DT
1141static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1142{
6163b5d4 1143
78da121e
BP
1144 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1145 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1146 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1147
78da121e 1148 debugf0(" mode: %s, All DCTs on: %s\n",
72381bd5
BP
1149 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1150 (dct_dram_enabled(pvt) ? "yes" : "no"));
1151
1152 if (!dct_ganging_enabled(pvt))
1153 debugf0(" Address range split per DCT: %s\n",
1154 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1155
78da121e 1156 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1157 "DRAM cleared since last warm reset: %s\n",
1158 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1159 (dct_memory_cleared(pvt) ? "yes" : "no"));
1160
78da121e
BP
1161 debugf0(" channel interleave: %s, "
1162 "interleave bits selector: 0x%x\n",
72381bd5 1163 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1164 dct_sel_interleave_addr(pvt));
1165 }
1166
78da121e 1167 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1168}
1169
f71d0a05 1170/*
229a7a11 1171 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1172 * Interleaving Modes.
1173 */
11c75ead 1174static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1175 bool hi_range_sel, u8 intlv_en)
6163b5d4 1176{
78da121e 1177 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1178
1179 if (dct_ganging_enabled(pvt))
229a7a11 1180 return 0;
6163b5d4 1181
229a7a11
BP
1182 if (hi_range_sel)
1183 return dct_sel_high;
6163b5d4 1184
229a7a11
BP
1185 /*
1186 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1187 */
1188 if (dct_interleave_enabled(pvt)) {
1189 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1190
1191 /* return DCT select function: 0=DCT0, 1=DCT1 */
1192 if (!intlv_addr)
1193 return sys_addr >> 6 & 1;
1194
1195 if (intlv_addr & 0x2) {
1196 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1197 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1198
1199 return ((sys_addr >> shift) & 1) ^ temp;
1200 }
1201
1202 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1203 }
1204
1205 if (dct_high_range_enabled(pvt))
1206 return ~dct_sel_high & 1;
6163b5d4
DT
1207
1208 return 0;
1209}
1210
c8e518d5
BP
1211/* Convert the sys_addr to the normalized DCT address */
1212static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1213 u64 sys_addr, bool hi_rng,
1214 u32 dct_sel_base_addr)
6163b5d4
DT
1215{
1216 u64 chan_off;
c8e518d5
BP
1217 u64 dram_base = get_dram_base(pvt, range);
1218 u64 hole_off = f10_dhar_offset(pvt);
1219 u32 hole_valid = dhar_valid(pvt);
1220 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1221
c8e518d5
BP
1222 if (hi_rng) {
1223 /*
1224 * if
1225 * base address of high range is below 4Gb
1226 * (bits [47:27] at [31:11])
1227 * DRAM address space on this DCT is hoisted above 4Gb &&
1228 * sys_addr > 4Gb
1229 *
1230 * remove hole offset from sys_addr
1231 * else
1232 * remove high range offset from sys_addr
1233 */
1234 if ((!(dct_sel_base_addr >> 16) ||
1235 dct_sel_base_addr < dhar_base(pvt)) &&
1236 hole_valid &&
1237 (sys_addr >= BIT_64(32)))
bc21fa57 1238 chan_off = hole_off;
6163b5d4
DT
1239 else
1240 chan_off = dct_sel_base_off;
1241 } else {
c8e518d5
BP
1242 /*
1243 * if
1244 * we have a valid hole &&
1245 * sys_addr > 4Gb
1246 *
1247 * remove hole
1248 * else
1249 * remove dram base to normalize to DCT address
1250 */
1251 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1252 chan_off = hole_off;
6163b5d4 1253 else
c8e518d5 1254 chan_off = dram_base;
6163b5d4
DT
1255 }
1256
c8e518d5 1257 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1258}
1259
6163b5d4
DT
1260/*
1261 * checks if the csrow passed in is marked as SPARED, if so returns the new
1262 * spare row
1263 */
11c75ead 1264static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1265{
614ec9d8
BP
1266 int tmp_cs;
1267
1268 if (online_spare_swap_done(pvt, dct) &&
1269 csrow == online_spare_bad_dramcs(pvt, dct)) {
1270
1271 for_each_chip_select(tmp_cs, dct, pvt) {
1272 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1273 csrow = tmp_cs;
1274 break;
1275 }
1276 }
6163b5d4
DT
1277 }
1278 return csrow;
1279}
1280
1281/*
1282 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1283 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1284 *
1285 * Return:
1286 * -EINVAL: NOT FOUND
1287 * 0..csrow = Chip-Select Row
1288 */
11c75ead 1289static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1290{
1291 struct mem_ctl_info *mci;
1292 struct amd64_pvt *pvt;
11c75ead 1293 u64 cs_base, cs_mask;
6163b5d4
DT
1294 int cs_found = -EINVAL;
1295 int csrow;
1296
cc4d8860 1297 mci = mcis[nid];
6163b5d4
DT
1298 if (!mci)
1299 return cs_found;
1300
1301 pvt = mci->pvt_info;
1302
11c75ead 1303 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1304
11c75ead
BP
1305 for_each_chip_select(csrow, dct, pvt) {
1306 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1307 continue;
1308
11c75ead 1309 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1310
11c75ead
BP
1311 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1312 csrow, cs_base, cs_mask);
6163b5d4 1313
11c75ead 1314 cs_mask = ~cs_mask;
6163b5d4 1315
11c75ead
BP
1316 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1317 "(CSBase & ~CSMask)=0x%llx\n",
1318 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1319
11c75ead
BP
1320 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1321 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1322
1323 debugf1(" MATCH csrow=%d\n", cs_found);
1324 break;
1325 }
1326 }
1327 return cs_found;
1328}
1329
95b0ef55
BP
1330/*
1331 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1332 * swapped with a region located at the bottom of memory so that the GPU can use
1333 * the interleaved region and thus two channels.
1334 */
1335static u64 f10_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1336{
1337 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1338
1339 if (boot_cpu_data.x86 == 0x10) {
1340 /* only revC3 and revE have that feature */
1341 if (boot_cpu_data.x86_model < 4 ||
1342 (boot_cpu_data.x86_model < 0xa &&
1343 boot_cpu_data.x86_mask < 3))
1344 return sys_addr;
1345 }
1346
1347 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1348
1349 if (!(swap_reg & 0x1))
1350 return sys_addr;
1351
1352 swap_base = (swap_reg >> 3) & 0x7f;
1353 swap_limit = (swap_reg >> 11) & 0x7f;
1354 rgn_size = (swap_reg >> 20) & 0x7f;
1355 tmp_addr = sys_addr >> 27;
1356
1357 if (!(sys_addr >> 34) &&
1358 (((tmp_addr >= swap_base) &&
1359 (tmp_addr <= swap_limit)) ||
1360 (tmp_addr < rgn_size)))
1361 return sys_addr ^ (u64)swap_base << 27;
1362
1363 return sys_addr;
1364}
1365
f71d0a05 1366/* For a given @dram_range, check if @sys_addr falls within it. */
7f19bf75 1367static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1368 u64 sys_addr, int *nid, int *chan_sel)
1369{
229a7a11 1370 int cs_found = -EINVAL;
c8e518d5 1371 u64 chan_addr;
5d4b58e8 1372 u32 dct_sel_base;
11c75ead 1373 u8 channel;
229a7a11 1374 bool high_range = false;
f71d0a05 1375
7f19bf75 1376 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1377 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1378 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1379
c8e518d5
BP
1380 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1381 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1382
e726f3c3 1383 if (intlv_en &&
f71d0a05
DT
1384 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1385 return -EINVAL;
1386
95b0ef55
BP
1387 sys_addr = f10_swap_interleaved_region(pvt, sys_addr);
1388
f71d0a05
DT
1389 dct_sel_base = dct_sel_baseaddr(pvt);
1390
1391 /*
1392 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1393 * select between DCT0 and DCT1.
1394 */
1395 if (dct_high_range_enabled(pvt) &&
1396 !dct_ganging_enabled(pvt) &&
1397 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1398 high_range = true;
f71d0a05
DT
1399
1400 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1401
c8e518d5
BP
1402 chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
1403 high_range, dct_sel_base);
f71d0a05 1404
e2f79dbd
BP
1405 /* Remove node interleaving, see F1x120 */
1406 if (intlv_en)
1407 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1408 (chan_addr & 0xfff);
f71d0a05 1409
5d4b58e8 1410 /* remove channel interleave */
f71d0a05
DT
1411 if (dct_interleave_enabled(pvt) &&
1412 !dct_high_range_enabled(pvt) &&
1413 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1414
1415 if (dct_sel_interleave_addr(pvt) != 1) {
1416 if (dct_sel_interleave_addr(pvt) == 0x3)
1417 /* hash 9 */
1418 chan_addr = ((chan_addr >> 10) << 9) |
1419 (chan_addr & 0x1ff);
1420 else
1421 /* A[6] or hash 6 */
1422 chan_addr = ((chan_addr >> 7) << 6) |
1423 (chan_addr & 0x3f);
1424 } else
1425 /* A[12] */
1426 chan_addr = ((chan_addr >> 13) << 12) |
1427 (chan_addr & 0xfff);
f71d0a05
DT
1428 }
1429
5d4b58e8 1430 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1431
11c75ead 1432 cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1433
1434 if (cs_found >= 0) {
1435 *nid = node_id;
1436 *chan_sel = channel;
1437 }
1438 return cs_found;
1439}
1440
1441static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1442 int *node, int *chan_sel)
1443{
7f19bf75 1444 int range, cs_found = -EINVAL;
f71d0a05 1445
7f19bf75 1446 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1447
7f19bf75 1448 if (!dram_rw(pvt, range))
f71d0a05
DT
1449 continue;
1450
7f19bf75
BP
1451 if ((get_dram_base(pvt, range) <= sys_addr) &&
1452 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1453
7f19bf75 1454 cs_found = f10_match_to_this_node(pvt, range,
f71d0a05
DT
1455 sys_addr, node,
1456 chan_sel);
1457 if (cs_found >= 0)
1458 break;
1459 }
1460 }
1461 return cs_found;
1462}
1463
1464/*
bdc30a0c
BP
1465 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1466 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1467 *
bdc30a0c
BP
1468 * The @sys_addr is usually an error address received from the hardware
1469 * (MCX_ADDR).
f71d0a05 1470 */
f192c7b1
BP
1471static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1472 u16 syndrome)
f71d0a05
DT
1473{
1474 struct amd64_pvt *pvt = mci->pvt_info;
1475 u32 page, offset;
f71d0a05
DT
1476 int nid, csrow, chan = 0;
1477
1478 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1479
bdc30a0c
BP
1480 if (csrow < 0) {
1481 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1482 return;
1483 }
1484
1485 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1486
bdc30a0c
BP
1487 /*
1488 * We need the syndromes for channel detection only when we're
1489 * ganged. Otherwise @chan should already contain the channel at
1490 * this point.
1491 */
a97fa68e 1492 if (dct_ganging_enabled(pvt))
bdc30a0c 1493 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1494
bdc30a0c
BP
1495 if (chan >= 0)
1496 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1497 EDAC_MOD_STR);
1498 else
f71d0a05 1499 /*
bdc30a0c 1500 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1501 */
bdc30a0c 1502 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1503 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1504 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1505}
1506
f71d0a05 1507/*
8566c4df 1508 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1509 * CSROWs
f71d0a05 1510 */
8566c4df 1511static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1512{
603adaf6 1513 int dimm, size0, size1, factor = 0;
525a1b20
BP
1514 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1515 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1516
8566c4df 1517 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1518 if (pvt->dclr0 & F10_WIDTH_128)
1519 factor = 1;
1520
8566c4df 1521 /* K8 families < revF not supported yet */
1433eb99 1522 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1523 return;
1524 else
1525 WARN_ON(ctrl != 0);
1526 }
1527
4d796364 1528 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1529 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1530 : pvt->csels[0].csbases;
f71d0a05 1531
4d796364 1532 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1533
8566c4df
BP
1534 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1535
f71d0a05
DT
1536 /* Dump memory sizes for DIMM and its CSROWs */
1537 for (dimm = 0; dimm < 4; dimm++) {
1538
1539 size0 = 0;
11c75ead 1540 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1433eb99 1541 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1542
1543 size1 = 0;
11c75ead 1544 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1433eb99 1545 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1546
24f9a7fe
BP
1547 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1548 dimm * 2, size0 << factor,
1549 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1550 }
1551}
1552
4d37607a
DT
1553static struct amd64_family_type amd64_family_types[] = {
1554 [K8_CPUS] = {
0092b20d 1555 .ctl_name = "K8",
8d5b5d9c
BP
1556 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1557 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1558 .ops = {
1433eb99 1559 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1560 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1561 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1562 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1563 }
1564 },
1565 [F10_CPUS] = {
0092b20d 1566 .ctl_name = "F10h",
8d5b5d9c
BP
1567 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1568 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1569 .ops = {
7d20d14d 1570 .early_channel_count = f1x_early_channel_count,
1433eb99
BP
1571 .read_dram_ctl_register = f10_read_dram_ctl_register,
1572 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1573 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1574 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1575 }
1576 },
1577 [F15_CPUS] = {
1578 .ctl_name = "F15h",
1579 .ops = {
7d20d14d 1580 .early_channel_count = f1x_early_channel_count,
b2b0c605 1581 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1582 }
1583 },
4d37607a
DT
1584};
1585
1586static struct pci_dev *pci_get_related_function(unsigned int vendor,
1587 unsigned int device,
1588 struct pci_dev *related)
1589{
1590 struct pci_dev *dev = NULL;
1591
1592 dev = pci_get_device(vendor, device, dev);
1593 while (dev) {
1594 if ((dev->bus->number == related->bus->number) &&
1595 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1596 break;
1597 dev = pci_get_device(vendor, device, dev);
1598 }
1599
1600 return dev;
1601}
1602
b1289d6f 1603/*
bfc04aec
BP
1604 * These are tables of eigenvectors (one per line) which can be used for the
1605 * construction of the syndrome tables. The modified syndrome search algorithm
1606 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1607 *
bfc04aec 1608 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1609 */
bfc04aec
BP
1610static u16 x4_vectors[] = {
1611 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1612 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1613 0x0001, 0x0002, 0x0004, 0x0008,
1614 0x1013, 0x3032, 0x4044, 0x8088,
1615 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1616 0x4857, 0xc4fe, 0x13cc, 0x3288,
1617 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1618 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1619 0x15c1, 0x2a42, 0x89ac, 0x4758,
1620 0x2b03, 0x1602, 0x4f0c, 0xca08,
1621 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1622 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1623 0x2b87, 0x164e, 0x642c, 0xdc18,
1624 0x40b9, 0x80de, 0x1094, 0x20e8,
1625 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1626 0x11c1, 0x2242, 0x84ac, 0x4c58,
1627 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1628 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1629 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1630 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1631 0x16b3, 0x3d62, 0x4f34, 0x8518,
1632 0x1e2f, 0x391a, 0x5cac, 0xf858,
1633 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1634 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1635 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1636 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1637 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1638 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1639 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1640 0x185d, 0x2ca6, 0x7914, 0x9e28,
1641 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1642 0x4199, 0x82ee, 0x19f4, 0x2e58,
1643 0x4807, 0xc40e, 0x130c, 0x3208,
1644 0x1905, 0x2e0a, 0x5804, 0xac08,
1645 0x213f, 0x132a, 0xadfc, 0x5ba8,
1646 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1647};
1648
bfc04aec
BP
1649static u16 x8_vectors[] = {
1650 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1651 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1652 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1653 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1654 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1655 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1656 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1657 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1658 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1659 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1660 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1661 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1662 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1663 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1664 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1665 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1666 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1667 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1668 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1669};
1670
1671static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1672 int v_dim)
b1289d6f 1673{
bfc04aec
BP
1674 unsigned int i, err_sym;
1675
1676 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1677 u16 s = syndrome;
1678 int v_idx = err_sym * v_dim;
1679 int v_end = (err_sym + 1) * v_dim;
1680
1681 /* walk over all 16 bits of the syndrome */
1682 for (i = 1; i < (1U << 16); i <<= 1) {
1683
1684 /* if bit is set in that eigenvector... */
1685 if (v_idx < v_end && vectors[v_idx] & i) {
1686 u16 ev_comp = vectors[v_idx++];
1687
1688 /* ... and bit set in the modified syndrome, */
1689 if (s & i) {
1690 /* remove it. */
1691 s ^= ev_comp;
4d37607a 1692
bfc04aec
BP
1693 if (!s)
1694 return err_sym;
1695 }
b1289d6f 1696
bfc04aec
BP
1697 } else if (s & i)
1698 /* can't get to zero, move to next symbol */
1699 break;
1700 }
b1289d6f
DT
1701 }
1702
1703 debugf0("syndrome(%x) not found\n", syndrome);
1704 return -1;
1705}
d27bf6fa 1706
bfc04aec
BP
1707static int map_err_sym_to_channel(int err_sym, int sym_size)
1708{
1709 if (sym_size == 4)
1710 switch (err_sym) {
1711 case 0x20:
1712 case 0x21:
1713 return 0;
1714 break;
1715 case 0x22:
1716 case 0x23:
1717 return 1;
1718 break;
1719 default:
1720 return err_sym >> 4;
1721 break;
1722 }
1723 /* x8 symbols */
1724 else
1725 switch (err_sym) {
1726 /* imaginary bits not in a DIMM */
1727 case 0x10:
1728 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1729 err_sym);
1730 return -1;
1731 break;
1732
1733 case 0x11:
1734 return 0;
1735 break;
1736 case 0x12:
1737 return 1;
1738 break;
1739 default:
1740 return err_sym >> 3;
1741 break;
1742 }
1743 return -1;
1744}
1745
1746static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1747{
1748 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1749 int err_sym = -1;
1750
1751 if (pvt->syn_type == 8)
1752 err_sym = decode_syndrome(syndrome, x8_vectors,
1753 ARRAY_SIZE(x8_vectors),
1754 pvt->syn_type);
1755 else if (pvt->syn_type == 4)
1756 err_sym = decode_syndrome(syndrome, x4_vectors,
1757 ARRAY_SIZE(x4_vectors),
1758 pvt->syn_type);
1759 else {
24f9a7fe 1760 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1761 return err_sym;
bfc04aec 1762 }
ad6a32e9
BP
1763
1764 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1765}
1766
d27bf6fa
DT
1767/*
1768 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1769 * ADDRESS and process.
1770 */
f192c7b1 1771static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1772{
1773 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1774 u64 sys_addr;
f192c7b1 1775 u16 syndrome;
d27bf6fa
DT
1776
1777 /* Ensure that the Error Address is VALID */
f192c7b1 1778 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1779 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1780 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1781 return;
1782 }
1783
70046624 1784 sys_addr = get_error_address(m);
f192c7b1 1785 syndrome = extract_syndrome(m->status);
d27bf6fa 1786
24f9a7fe 1787 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1788
f192c7b1 1789 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1790}
1791
1792/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1793static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1794{
1f6bcee7 1795 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1796 int csrow;
44e9e2ee 1797 u64 sys_addr;
d27bf6fa 1798 u32 page, offset;
d27bf6fa
DT
1799
1800 log_mci = mci;
1801
f192c7b1 1802 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1803 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1804 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1805 return;
1806 }
1807
70046624 1808 sys_addr = get_error_address(m);
d27bf6fa
DT
1809
1810 /*
1811 * Find out which node the error address belongs to. This may be
1812 * different from the node that detected the error.
1813 */
44e9e2ee 1814 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1815 if (!src_mci) {
24f9a7fe
BP
1816 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1817 (unsigned long)sys_addr);
d27bf6fa
DT
1818 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1819 return;
1820 }
1821
1822 log_mci = src_mci;
1823
44e9e2ee 1824 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1825 if (csrow < 0) {
24f9a7fe
BP
1826 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1827 (unsigned long)sys_addr);
d27bf6fa
DT
1828 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1829 } else {
44e9e2ee 1830 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1831 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1832 }
1833}
1834
549d042d 1835static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1836 struct mce *m)
d27bf6fa 1837{
f192c7b1
BP
1838 u16 ec = EC(m->status);
1839 u8 xec = XEC(m->status, 0x1f);
1840 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1841
b70ef010 1842 /* Bail early out if this was an 'observed' error */
5980bb9c 1843 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1844 return;
d27bf6fa 1845
ecaf5606
BP
1846 /* Do only ECC errors */
1847 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1848 return;
d27bf6fa 1849
ecaf5606 1850 if (ecc_type == 2)
f192c7b1 1851 amd64_handle_ce(mci, m);
ecaf5606 1852 else if (ecc_type == 1)
f192c7b1 1853 amd64_handle_ue(mci, m);
d27bf6fa
DT
1854}
1855
7cfd4a87 1856void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1857{
cc4d8860 1858 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1859
f192c7b1 1860 __amd64_decode_bus_error(mci, m);
d27bf6fa 1861}
d27bf6fa 1862
0ec449ee 1863/*
8d5b5d9c 1864 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1865 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1866 */
360b7f3c 1867static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1868{
0ec449ee 1869 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1870 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1871 if (!pvt->F1) {
24f9a7fe
BP
1872 amd64_err("error address map device not found: "
1873 "vendor %x device 0x%x (broken BIOS?)\n",
1874 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1875 return -ENODEV;
0ec449ee
DT
1876 }
1877
1878 /* Reserve the MISC Device */
8d5b5d9c
BP
1879 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1880 if (!pvt->F3) {
1881 pci_dev_put(pvt->F1);
1882 pvt->F1 = NULL;
0ec449ee 1883
24f9a7fe
BP
1884 amd64_err("error F3 device not found: "
1885 "vendor %x device 0x%x (broken BIOS?)\n",
1886 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1887
bbd0c1f6 1888 return -ENODEV;
0ec449ee 1889 }
8d5b5d9c
BP
1890 debugf1("F1: %s\n", pci_name(pvt->F1));
1891 debugf1("F2: %s\n", pci_name(pvt->F2));
1892 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1893
1894 return 0;
1895}
1896
360b7f3c 1897static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1898{
8d5b5d9c
BP
1899 pci_dev_put(pvt->F1);
1900 pci_dev_put(pvt->F3);
0ec449ee
DT
1901}
1902
1903/*
1904 * Retrieve the hardware registers of the memory controller (this includes the
1905 * 'Address Map' and 'Misc' device regs)
1906 */
360b7f3c 1907static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
1908{
1909 u64 msr_val;
ad6a32e9 1910 u32 tmp;
7f19bf75 1911 int range;
0ec449ee
DT
1912
1913 /*
1914 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1915 * those are Read-As-Zero
1916 */
e97f8bb8
BP
1917 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1918 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1919
1920 /* check first whether TOP_MEM2 is enabled */
1921 rdmsrl(MSR_K8_SYSCFG, msr_val);
1922 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1923 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1924 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1925 } else
1926 debugf0(" TOP_MEM2 disabled.\n");
1927
5980bb9c 1928 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee
DT
1929
1930 if (pvt->ops->read_dram_ctl_register)
1931 pvt->ops->read_dram_ctl_register(pvt);
1932
7f19bf75
BP
1933 for (range = 0; range < DRAM_RANGES; range++) {
1934 u8 rw;
0ec449ee 1935
7f19bf75
BP
1936 /* read settings for this DRAM range */
1937 read_dram_base_limit_regs(pvt, range);
1938
1939 rw = dram_rw(pvt, range);
1940 if (!rw)
1941 continue;
1942
1943 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1944 range,
1945 get_dram_base(pvt, range),
1946 get_dram_limit(pvt, range));
1947
1948 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1949 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1950 (rw & 0x1) ? "R" : "-",
1951 (rw & 0x2) ? "W" : "-",
1952 dram_intlv_sel(pvt, range),
1953 dram_dst_node(pvt, range));
0ec449ee
DT
1954 }
1955
b2b0c605 1956 read_dct_base_mask(pvt);
0ec449ee 1957
bc21fa57 1958 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1959 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1960
8d5b5d9c 1961 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1962
cb328507
BP
1963 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1964 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1965
78da121e 1966 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1967 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1968 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1969 }
ad6a32e9 1970
525a1b20 1971 if (boot_cpu_data.x86 >= 0x10) {
b2b0c605 1972 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20
BP
1973 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1974 }
b2b0c605 1975
ad6a32e9
BP
1976 if (boot_cpu_data.x86 == 0x10 &&
1977 boot_cpu_data.x86_model > 7 &&
1978 /* F3x180[EccSymbolSize]=1 => x8 symbols */
1979 tmp & BIT(25))
1980 pvt->syn_type = 8;
1981 else
1982 pvt->syn_type = 4;
1983
b2b0c605 1984 dump_misc_regs(pvt);
0ec449ee
DT
1985}
1986
1987/*
1988 * NOTE: CPU Revision Dependent code
1989 *
1990 * Input:
11c75ead 1991 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
1992 * k8 private pointer to -->
1993 * DRAM Bank Address mapping register
1994 * node_id
1995 * DCL register where dual_channel_active is
1996 *
1997 * The DBAM register consists of 4 sets of 4 bits each definitions:
1998 *
1999 * Bits: CSROWs
2000 * 0-3 CSROWs 0 and 1
2001 * 4-7 CSROWs 2 and 3
2002 * 8-11 CSROWs 4 and 5
2003 * 12-15 CSROWs 6 and 7
2004 *
2005 * Values range from: 0 to 15
2006 * The meaning of the values depends on CPU revision and dual-channel state,
2007 * see relevant BKDG more info.
2008 *
2009 * The memory controller provides for total of only 8 CSROWs in its current
2010 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2011 * single channel or two (2) DIMMs in dual channel mode.
2012 *
2013 * The following code logic collapses the various tables for CSROW based on CPU
2014 * revision.
2015 *
2016 * Returns:
2017 * The number of PAGE_SIZE pages on the specified CSROW number it
2018 * encompasses
2019 *
2020 */
2021static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2022{
1433eb99 2023 u32 cs_mode, nr_pages;
0ec449ee
DT
2024
2025 /*
2026 * The math on this doesn't look right on the surface because x/2*4 can
2027 * be simplified to x*2 but this expression makes use of the fact that
2028 * it is integral math where 1/2=0. This intermediate value becomes the
2029 * number of bits to shift the DBAM register to extract the proper CSROW
2030 * field.
2031 */
1433eb99 2032 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2033
1433eb99 2034 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2035
2036 /*
2037 * If dual channel then double the memory size of single channel.
2038 * Channel count is 1 or 2
2039 */
2040 nr_pages <<= (pvt->channel_count - 1);
2041
1433eb99 2042 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2043 debugf0(" nr_pages= %u channel-count = %d\n",
2044 nr_pages, pvt->channel_count);
2045
2046 return nr_pages;
2047}
2048
2049/*
2050 * Initialize the array of csrow attribute instances, based on the values
2051 * from pci config hardware registers.
2052 */
360b7f3c 2053static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2054{
2055 struct csrow_info *csrow;
2299ef71 2056 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2057 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2058 u32 val;
6ba5dcdc 2059 int i, empty = 1;
0ec449ee 2060
a97fa68e 2061 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2062
2299ef71 2063 pvt->nbcfg = val;
0ec449ee 2064
2299ef71
BP
2065 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2066 pvt->mc_node_id, val,
a97fa68e 2067 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2068
11c75ead 2069 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2070 csrow = &mci->csrows[i];
2071
11c75ead 2072 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2073 debugf1("----CSROW %d EMPTY for node %d\n", i,
2074 pvt->mc_node_id);
2075 continue;
2076 }
2077
2078 debugf1("----CSROW %d VALID for MC node %d\n",
2079 i, pvt->mc_node_id);
2080
2081 empty = 0;
2082 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2083 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2084 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2085 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2086 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2087 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2088
2089 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2090 csrow->page_mask = ~mask;
0ec449ee
DT
2091 /* 8 bytes of resolution */
2092
24f9a7fe 2093 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2094
2095 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2096 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2097 (unsigned long)input_addr_min,
2098 (unsigned long)input_addr_max);
2099 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2100 (unsigned long)sys_addr, csrow->page_mask);
2101 debugf1(" nr_pages: %u first_page: 0x%lx "
2102 "last_page: 0x%lx\n",
2103 (unsigned)csrow->nr_pages,
2104 csrow->first_page, csrow->last_page);
2105
2106 /*
2107 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2108 */
a97fa68e 2109 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2110 csrow->edac_mode =
a97fa68e 2111 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2112 EDAC_S4ECD4ED : EDAC_SECDED;
2113 else
2114 csrow->edac_mode = EDAC_NONE;
2115 }
2116
2117 return empty;
2118}
d27bf6fa 2119
f6d6ae96
BP
2120/* get all cores on this DCT */
2121static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2122{
2123 int cpu;
2124
2125 for_each_online_cpu(cpu)
2126 if (amd_get_nb_id(cpu) == nid)
2127 cpumask_set_cpu(cpu, mask);
2128}
2129
2130/* check MCG_CTL on all the cpus on this node */
2131static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2132{
2133 cpumask_var_t mask;
50542251 2134 int cpu, nbe;
f6d6ae96
BP
2135 bool ret = false;
2136
2137 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2138 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2139 return false;
2140 }
2141
2142 get_cpus_on_this_dct_cpumask(mask, nid);
2143
f6d6ae96
BP
2144 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2145
2146 for_each_cpu(cpu, mask) {
50542251 2147 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2148 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2149
2150 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2151 cpu, reg->q,
f6d6ae96
BP
2152 (nbe ? "enabled" : "disabled"));
2153
2154 if (!nbe)
2155 goto out;
f6d6ae96
BP
2156 }
2157 ret = true;
2158
2159out:
f6d6ae96
BP
2160 free_cpumask_var(mask);
2161 return ret;
2162}
2163
2299ef71 2164static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2165{
2166 cpumask_var_t cmask;
50542251 2167 int cpu;
f6d6ae96
BP
2168
2169 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2170 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2171 return false;
2172 }
2173
ae7bb7c6 2174 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2175
f6d6ae96
BP
2176 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2177
2178 for_each_cpu(cpu, cmask) {
2179
50542251
BP
2180 struct msr *reg = per_cpu_ptr(msrs, cpu);
2181
f6d6ae96 2182 if (on) {
5980bb9c 2183 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2184 s->flags.nb_mce_enable = 1;
f6d6ae96 2185
5980bb9c 2186 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2187 } else {
2188 /*
d95cf4de 2189 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2190 */
ae7bb7c6 2191 if (!s->flags.nb_mce_enable)
5980bb9c 2192 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2193 }
f6d6ae96
BP
2194 }
2195 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2196
f6d6ae96
BP
2197 free_cpumask_var(cmask);
2198
2199 return 0;
2200}
2201
2299ef71
BP
2202static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2203 struct pci_dev *F3)
f9431992 2204{
2299ef71 2205 bool ret = true;
c9f4f26e 2206 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2207
2299ef71
BP
2208 if (toggle_ecc_err_reporting(s, nid, ON)) {
2209 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2210 return false;
2211 }
2212
c9f4f26e 2213 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2214
ae7bb7c6
BP
2215 s->old_nbctl = value & mask;
2216 s->nbctl_valid = true;
f9431992
DT
2217
2218 value |= mask;
c9f4f26e 2219 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2220
a97fa68e 2221 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2222
a97fa68e
BP
2223 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2224 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2225
a97fa68e 2226 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2227 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2228
ae7bb7c6 2229 s->flags.nb_ecc_prev = 0;
d95cf4de 2230
f9431992 2231 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2232 value |= NBCFG_ECC_ENABLE;
2233 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2234
a97fa68e 2235 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2236
a97fa68e 2237 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2238 amd64_warn("Hardware rejected DRAM ECC enable,"
2239 "check memory DIMM configuration.\n");
2299ef71 2240 ret = false;
f9431992 2241 } else {
24f9a7fe 2242 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2243 }
d95cf4de 2244 } else {
ae7bb7c6 2245 s->flags.nb_ecc_prev = 1;
f9431992 2246 }
d95cf4de 2247
a97fa68e
BP
2248 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2249 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2250
2299ef71 2251 return ret;
f9431992
DT
2252}
2253
360b7f3c
BP
2254static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2255 struct pci_dev *F3)
f9431992 2256{
c9f4f26e
BP
2257 u32 value, mask = 0x3; /* UECC/CECC enable */
2258
f9431992 2259
ae7bb7c6 2260 if (!s->nbctl_valid)
f9431992
DT
2261 return;
2262
c9f4f26e 2263 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2264 value &= ~mask;
ae7bb7c6 2265 value |= s->old_nbctl;
f9431992 2266
c9f4f26e 2267 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2268
ae7bb7c6
BP
2269 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2270 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2271 amd64_read_pci_cfg(F3, NBCFG, &value);
2272 value &= ~NBCFG_ECC_ENABLE;
2273 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2274 }
2275
2276 /* restore the NB Enable MCGCTL bit */
2299ef71 2277 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2278 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2279}
2280
2281/*
2299ef71
BP
2282 * EDAC requires that the BIOS have ECC enabled before
2283 * taking over the processing of ECC errors. A command line
2284 * option allows to force-enable hardware ECC later in
2285 * enable_ecc_error_reporting().
f9431992 2286 */
cab4d277
BP
2287static const char *ecc_msg =
2288 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2289 " Either enable ECC checking or force module loading by setting "
2290 "'ecc_enable_override'.\n"
2291 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2292
2299ef71 2293static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2294{
2295 u32 value;
2299ef71 2296 u8 ecc_en = 0;
06724535 2297 bool nb_mce_en = false;
f9431992 2298
a97fa68e 2299 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2300
a97fa68e 2301 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2302 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2303
2299ef71 2304 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2305 if (!nb_mce_en)
2299ef71
BP
2306 amd64_notice("NB MCE bank disabled, set MSR "
2307 "0x%08x[4] on node %d to enable.\n",
2308 MSR_IA32_MCG_CTL, nid);
f9431992 2309
2299ef71
BP
2310 if (!ecc_en || !nb_mce_en) {
2311 amd64_notice("%s", ecc_msg);
2312 return false;
2313 }
2314 return true;
f9431992
DT
2315}
2316
7d6034d3
DT
2317struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2318 ARRAY_SIZE(amd64_inj_attrs) +
2319 1];
2320
2321struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2322
360b7f3c 2323static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2324{
2325 unsigned int i = 0, j = 0;
2326
2327 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2328 sysfs_attrs[i] = amd64_dbg_attrs[i];
2329
a135cef7
BP
2330 if (boot_cpu_data.x86 >= 0x10)
2331 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2332 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2333
2334 sysfs_attrs[i] = terminator;
2335
2336 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2337}
2338
360b7f3c 2339static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2340{
2341 struct amd64_pvt *pvt = mci->pvt_info;
2342
2343 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2344 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2345
5980bb9c 2346 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2347 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2348
5980bb9c 2349 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2350 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2351
2352 mci->edac_cap = amd64_determine_edac_cap(pvt);
2353 mci->mod_name = EDAC_MOD_STR;
2354 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2355 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2356 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2357 mci->ctl_page_to_phys = NULL;
2358
7d6034d3
DT
2359 /* memory scrubber interface */
2360 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2361 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2362}
2363
0092b20d
BP
2364/*
2365 * returns a pointer to the family descriptor on success, NULL otherwise.
2366 */
2367static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2368{
0092b20d
BP
2369 u8 fam = boot_cpu_data.x86;
2370 struct amd64_family_type *fam_type = NULL;
2371
2372 switch (fam) {
395ae783 2373 case 0xf:
0092b20d 2374 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2375 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2376 pvt->ctl_name = fam_type->ctl_name;
2377 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2378 break;
2379 case 0x10:
0092b20d 2380 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2381 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2382 pvt->ctl_name = fam_type->ctl_name;
2383 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2384 break;
2385
2386 default:
24f9a7fe 2387 amd64_err("Unsupported family!\n");
0092b20d 2388 return NULL;
395ae783 2389 }
0092b20d 2390
b8cfa02f
BP
2391 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2392
24f9a7fe 2393 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2394 (fam == 0xf ?
24f9a7fe
BP
2395 (pvt->ext_model >= K8_REV_F ? "revF or later "
2396 : "revE or earlier ")
2397 : ""), pvt->mc_node_id);
0092b20d 2398 return fam_type;
395ae783
BP
2399}
2400
2299ef71 2401static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2402{
2403 struct amd64_pvt *pvt = NULL;
0092b20d 2404 struct amd64_family_type *fam_type = NULL;
360b7f3c 2405 struct mem_ctl_info *mci = NULL;
7d6034d3 2406 int err = 0, ret;
360b7f3c 2407 u8 nid = get_node_id(F2);
7d6034d3
DT
2408
2409 ret = -ENOMEM;
2410 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2411 if (!pvt)
360b7f3c 2412 goto err_ret;
7d6034d3 2413
360b7f3c 2414 pvt->mc_node_id = nid;
8d5b5d9c 2415 pvt->F2 = F2;
7d6034d3 2416
395ae783 2417 ret = -EINVAL;
0092b20d
BP
2418 fam_type = amd64_per_family_init(pvt);
2419 if (!fam_type)
395ae783
BP
2420 goto err_free;
2421
7d6034d3 2422 ret = -ENODEV;
360b7f3c 2423 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2424 if (err)
2425 goto err_free;
2426
360b7f3c 2427 read_mc_regs(pvt);
7d6034d3 2428
7d6034d3
DT
2429 /*
2430 * We need to determine how many memory channels there are. Then use
2431 * that information for calculating the size of the dynamic instance
360b7f3c 2432 * tables in the 'mci' structure.
7d6034d3 2433 */
360b7f3c 2434 ret = -EINVAL;
7d6034d3
DT
2435 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2436 if (pvt->channel_count < 0)
360b7f3c 2437 goto err_siblings;
7d6034d3
DT
2438
2439 ret = -ENOMEM;
11c75ead 2440 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2441 if (!mci)
360b7f3c 2442 goto err_siblings;
7d6034d3
DT
2443
2444 mci->pvt_info = pvt;
8d5b5d9c 2445 mci->dev = &pvt->F2->dev;
7d6034d3 2446
360b7f3c
BP
2447 setup_mci_misc_attrs(mci);
2448
2449 if (init_csrows(mci))
7d6034d3
DT
2450 mci->edac_cap = EDAC_FLAG_NONE;
2451
360b7f3c 2452 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2453
2454 ret = -ENODEV;
2455 if (edac_mc_add_mc(mci)) {
2456 debugf1("failed edac_mc_add_mc()\n");
2457 goto err_add_mc;
2458 }
2459
549d042d
BP
2460 /* register stuff with EDAC MCE */
2461 if (report_gart_errors)
2462 amd_report_gart_errors(true);
2463
2464 amd_register_ecc_decoder(amd64_decode_bus_error);
2465
360b7f3c
BP
2466 mcis[nid] = mci;
2467
2468 atomic_inc(&drv_instances);
2469
7d6034d3
DT
2470 return 0;
2471
2472err_add_mc:
2473 edac_mc_free(mci);
2474
360b7f3c
BP
2475err_siblings:
2476 free_mc_sibling_devs(pvt);
7d6034d3 2477
360b7f3c
BP
2478err_free:
2479 kfree(pvt);
7d6034d3 2480
360b7f3c 2481err_ret:
7d6034d3
DT
2482 return ret;
2483}
2484
2299ef71 2485static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2486 const struct pci_device_id *mc_type)
7d6034d3 2487{
ae7bb7c6 2488 u8 nid = get_node_id(pdev);
2299ef71 2489 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2490 struct ecc_settings *s;
2299ef71 2491 int ret = 0;
7d6034d3 2492
7d6034d3 2493 ret = pci_enable_device(pdev);
b8cfa02f
BP
2494 if (ret < 0) {
2495 debugf0("ret=%d\n", ret);
2496 return -EIO;
2497 }
7d6034d3 2498
ae7bb7c6
BP
2499 ret = -ENOMEM;
2500 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2501 if (!s)
2299ef71 2502 goto err_out;
ae7bb7c6
BP
2503
2504 ecc_stngs[nid] = s;
2505
2299ef71
BP
2506 if (!ecc_enabled(F3, nid)) {
2507 ret = -ENODEV;
2508
2509 if (!ecc_enable_override)
2510 goto err_enable;
2511
2512 amd64_warn("Forcing ECC on!\n");
2513
2514 if (!enable_ecc_error_reporting(s, nid, F3))
2515 goto err_enable;
2516 }
2517
2518 ret = amd64_init_one_instance(pdev);
360b7f3c 2519 if (ret < 0) {
ae7bb7c6 2520 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2521 restore_ecc_error_reporting(s, nid, F3);
2522 }
7d6034d3
DT
2523
2524 return ret;
2299ef71
BP
2525
2526err_enable:
2527 kfree(s);
2528 ecc_stngs[nid] = NULL;
2529
2530err_out:
2531 return ret;
7d6034d3
DT
2532}
2533
2534static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2535{
2536 struct mem_ctl_info *mci;
2537 struct amd64_pvt *pvt;
360b7f3c
BP
2538 u8 nid = get_node_id(pdev);
2539 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2540 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2541
2542 /* Remove from EDAC CORE tracking list */
2543 mci = edac_mc_del_mc(&pdev->dev);
2544 if (!mci)
2545 return;
2546
2547 pvt = mci->pvt_info;
2548
360b7f3c 2549 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2550
360b7f3c 2551 free_mc_sibling_devs(pvt);
7d6034d3 2552
549d042d
BP
2553 /* unregister from EDAC MCE */
2554 amd_report_gart_errors(false);
2555 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2556
360b7f3c
BP
2557 kfree(ecc_stngs[nid]);
2558 ecc_stngs[nid] = NULL;
ae7bb7c6 2559
7d6034d3 2560 /* Free the EDAC CORE resources */
8f68ed97 2561 mci->pvt_info = NULL;
360b7f3c 2562 mcis[nid] = NULL;
8f68ed97
BP
2563
2564 kfree(pvt);
7d6034d3
DT
2565 edac_mc_free(mci);
2566}
2567
2568/*
2569 * This table is part of the interface for loading drivers for PCI devices. The
2570 * PCI core identifies what devices are on a system during boot, and then
2571 * inquiry this table to see if this driver is for a given device found.
2572 */
2573static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2574 {
2575 .vendor = PCI_VENDOR_ID_AMD,
2576 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2577 .subvendor = PCI_ANY_ID,
2578 .subdevice = PCI_ANY_ID,
2579 .class = 0,
2580 .class_mask = 0,
7d6034d3
DT
2581 },
2582 {
2583 .vendor = PCI_VENDOR_ID_AMD,
2584 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2585 .subvendor = PCI_ANY_ID,
2586 .subdevice = PCI_ANY_ID,
2587 .class = 0,
2588 .class_mask = 0,
7d6034d3 2589 },
7d6034d3
DT
2590 {0, }
2591};
2592MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2593
2594static struct pci_driver amd64_pci_driver = {
2595 .name = EDAC_MOD_STR,
2299ef71 2596 .probe = amd64_probe_one_instance,
7d6034d3
DT
2597 .remove = __devexit_p(amd64_remove_one_instance),
2598 .id_table = amd64_pci_table,
2599};
2600
360b7f3c 2601static void setup_pci_device(void)
7d6034d3
DT
2602{
2603 struct mem_ctl_info *mci;
2604 struct amd64_pvt *pvt;
2605
2606 if (amd64_ctl_pci)
2607 return;
2608
cc4d8860 2609 mci = mcis[0];
7d6034d3
DT
2610 if (mci) {
2611
2612 pvt = mci->pvt_info;
2613 amd64_ctl_pci =
8d5b5d9c 2614 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2615
2616 if (!amd64_ctl_pci) {
2617 pr_warning("%s(): Unable to create PCI control\n",
2618 __func__);
2619
2620 pr_warning("%s(): PCI error report via EDAC not set\n",
2621 __func__);
2622 }
2623 }
2624}
2625
2626static int __init amd64_edac_init(void)
2627{
360b7f3c 2628 int err = -ENODEV;
7d6034d3
DT
2629
2630 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2631
2632 opstate_init();
2633
9653a5c7 2634 if (amd_cache_northbridges() < 0)
56b34b91 2635 goto err_ret;
7d6034d3 2636
cc4d8860 2637 err = -ENOMEM;
ae7bb7c6
BP
2638 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2639 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2640 if (!(mcis && ecc_stngs))
cc4d8860
BP
2641 goto err_ret;
2642
50542251 2643 msrs = msrs_alloc();
56b34b91 2644 if (!msrs)
360b7f3c 2645 goto err_free;
50542251 2646
7d6034d3
DT
2647 err = pci_register_driver(&amd64_pci_driver);
2648 if (err)
56b34b91 2649 goto err_pci;
7d6034d3 2650
56b34b91 2651 err = -ENODEV;
360b7f3c
BP
2652 if (!atomic_read(&drv_instances))
2653 goto err_no_instances;
7d6034d3 2654
360b7f3c
BP
2655 setup_pci_device();
2656 return 0;
7d6034d3 2657
360b7f3c 2658err_no_instances:
7d6034d3 2659 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2660
56b34b91
BP
2661err_pci:
2662 msrs_free(msrs);
2663 msrs = NULL;
cc4d8860 2664
360b7f3c
BP
2665err_free:
2666 kfree(mcis);
2667 mcis = NULL;
2668
2669 kfree(ecc_stngs);
2670 ecc_stngs = NULL;
2671
56b34b91 2672err_ret:
7d6034d3
DT
2673 return err;
2674}
2675
2676static void __exit amd64_edac_exit(void)
2677{
2678 if (amd64_ctl_pci)
2679 edac_pci_release_generic_ctl(amd64_ctl_pci);
2680
2681 pci_unregister_driver(&amd64_pci_driver);
50542251 2682
ae7bb7c6
BP
2683 kfree(ecc_stngs);
2684 ecc_stngs = NULL;
2685
cc4d8860
BP
2686 kfree(mcis);
2687 mcis = NULL;
2688
50542251
BP
2689 msrs_free(msrs);
2690 msrs = NULL;
7d6034d3
DT
2691}
2692
2693module_init(amd64_edac_init);
2694module_exit(amd64_edac_exit);
2695
2696MODULE_LICENSE("GPL");
2697MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2698 "Dave Peterson, Thayne Harbaugh");
2699MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2700 EDAC_AMD64_VERSION);
2701
2702module_param(edac_op_state, int, 0444);
2703MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.314899 seconds and 5 git commands to generate.