Merge 2.6.38-rc5 into staging-next
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
2bc65418
DT
110/*
111 * Memory scrubber control interface. For K8, memory scrubbing is handled by
112 * hardware and can involve L2 cache, dcache as well as the main memory. With
113 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
114 * functionality.
115 *
116 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
117 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
118 * bytes/sec for the setting.
119 *
120 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
121 * other archs, we might not have access to the caches directly.
122 */
123
124/*
125 * scan the scrub rate mapping table for a close or matching bandwidth value to
126 * issue. If requested is too big, then use last maximum value found.
127 */
395ae783 128static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
129{
130 u32 scrubval;
131 int i;
132
133 /*
134 * map the configured rate (new_bw) to a value specific to the AMD64
135 * memory controller and apply to register. Search for the first
136 * bandwidth entry that is greater or equal than the setting requested
137 * and program that. If at last entry, turn off DRAM scrubbing.
138 */
139 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
140 /*
141 * skip scrub rates which aren't recommended
142 * (see F10 BKDG, F3x58)
143 */
395ae783 144 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
145 continue;
146
147 if (scrubrates[i].bandwidth <= new_bw)
148 break;
149
150 /*
151 * if no suitable bandwidth found, turn off DRAM scrubbing
152 * entirely by falling back to the last element in the
153 * scrubrates array.
154 */
155 }
156
157 scrubval = scrubrates[i].scrubval;
2bc65418
DT
158
159 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
160
39094443
BP
161 if (scrubval)
162 return scrubrates[i].bandwidth;
163
2bc65418
DT
164 return 0;
165}
166
395ae783 167static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
168{
169 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 170
8d5b5d9c 171 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
172}
173
39094443 174static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
175{
176 struct amd64_pvt *pvt = mci->pvt_info;
177 u32 scrubval = 0;
39094443 178 int i, retval = -EINVAL;
2bc65418 179
8d5b5d9c 180 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
2bc65418
DT
181
182 scrubval = scrubval & 0x001F;
183
24f9a7fe 184 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 185
926311fd 186 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 187 if (scrubrates[i].scrubval == scrubval) {
39094443 188 retval = scrubrates[i].bandwidth;
2bc65418
DT
189 break;
190 }
191 }
39094443 192 return retval;
2bc65418
DT
193}
194
6775763a
DT
195/* Map from a CSROW entry to the mask entry that operates on it */
196static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
197{
1433eb99 198 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
199 return csrow;
200 else
201 return csrow >> 1;
6775763a
DT
202}
203
204/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
205static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
206{
207 if (dct == 0)
208 return pvt->dcsb0[csrow];
209 else
210 return pvt->dcsb1[csrow];
211}
212
213/*
214 * Return the 'mask' address the i'th CS entry. This function is needed because
215 * there number of DCSM registers on Rev E and prior vs Rev F and later is
216 * different.
217 */
218static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
219{
220 if (dct == 0)
221 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
222 else
223 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
224}
225
226
227/*
228 * In *base and *limit, pass back the full 40-bit base and limit physical
229 * addresses for the node given by node_id. This information is obtained from
230 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
231 * base and limit addresses are of type SysAddr, as defined at the start of
232 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
233 * in the address range they represent.
234 */
235static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
236 u64 *base, u64 *limit)
237{
238 *base = pvt->dram_base[node_id];
239 *limit = pvt->dram_limit[node_id];
240}
241
242/*
243 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
244 * with node_id
245 */
246static int amd64_base_limit_match(struct amd64_pvt *pvt,
247 u64 sys_addr, int node_id)
248{
249 u64 base, limit, addr;
250
251 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
252
253 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
254 * all ones if the most significant implemented address bit is 1.
255 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
256 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
257 * Application Programming.
258 */
259 addr = sys_addr & 0x000000ffffffffffull;
260
261 return (addr >= base) && (addr <= limit);
262}
263
264/*
265 * Attempt to map a SysAddr to a node. On success, return a pointer to the
266 * mem_ctl_info structure for the node that the SysAddr maps to.
267 *
268 * On failure, return NULL.
269 */
270static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
271 u64 sys_addr)
272{
273 struct amd64_pvt *pvt;
274 int node_id;
275 u32 intlv_en, bits;
276
277 /*
278 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
279 * 3.4.4.2) registers to map the SysAddr to a node ID.
280 */
281 pvt = mci->pvt_info;
282
283 /*
284 * The value of this field should be the same for all DRAM Base
285 * registers. Therefore we arbitrarily choose to read it from the
286 * register for node 0.
287 */
288 intlv_en = pvt->dram_IntlvEn[0];
289
290 if (intlv_en == 0) {
8edc5445 291 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 292 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 293 goto found;
6775763a 294 }
8edc5445 295 goto err_no_match;
6775763a
DT
296 }
297
72f158fe
BP
298 if (unlikely((intlv_en != 0x01) &&
299 (intlv_en != 0x03) &&
300 (intlv_en != 0x07))) {
24f9a7fe 301 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
302 return NULL;
303 }
304
305 bits = (((u32) sys_addr) >> 12) & intlv_en;
306
307 for (node_id = 0; ; ) {
8edc5445 308 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
309 break; /* intlv_sel field matches */
310
311 if (++node_id >= DRAM_REG_COUNT)
312 goto err_no_match;
313 }
314
315 /* sanity test for sys_addr */
316 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
317 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
318 "range for node %d with node interleaving enabled.\n",
319 __func__, sys_addr, node_id);
6775763a
DT
320 return NULL;
321 }
322
323found:
324 return edac_mc_find(node_id);
325
326err_no_match:
327 debugf2("sys_addr 0x%lx doesn't match any node\n",
328 (unsigned long)sys_addr);
329
330 return NULL;
331}
e2ce7255
DT
332
333/*
334 * Extract the DRAM CS base address from selected csrow register.
335 */
336static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
337{
338 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
339 pvt->dcs_shift;
340}
341
342/*
343 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
344 */
345static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
346{
347 u64 dcsm_bits, other_bits;
348 u64 mask;
349
350 /* Extract bits from DRAM CS Mask. */
351 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
352
353 other_bits = pvt->dcsm_mask;
354 other_bits = ~(other_bits << pvt->dcs_shift);
355
356 /*
357 * The extracted bits from DCSM belong in the spaces represented by
358 * the cleared bits in other_bits.
359 */
360 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
361
362 return mask;
363}
364
365/*
366 * @input_addr is an InputAddr associated with the node given by mci. Return the
367 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
368 */
369static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
370{
371 struct amd64_pvt *pvt;
372 int csrow;
373 u64 base, mask;
374
375 pvt = mci->pvt_info;
376
377 /*
378 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
379 * base/mask register pair, test the condition shown near the start of
380 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
381 */
9d858bb1 382 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
383
384 /* This DRAM chip select is disabled on this node */
385 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
386 continue;
387
388 base = base_from_dct_base(pvt, csrow);
389 mask = ~mask_from_dct_mask(pvt, csrow);
390
391 if ((input_addr & mask) == (base & mask)) {
392 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
393 (unsigned long)input_addr, csrow,
394 pvt->mc_node_id);
395
396 return csrow;
397 }
398 }
399
400 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
402
403 return -1;
404}
405
406/*
407 * Return the base value defined by the DRAM Base register for the node
408 * represented by mci. This function returns the full 40-bit value despite the
409 * fact that the register only stores bits 39-24 of the value. See section
410 * 3.4.4.1 (BKDG #26094, K8, revA-E)
411 */
412static inline u64 get_dram_base(struct mem_ctl_info *mci)
413{
414 struct amd64_pvt *pvt = mci->pvt_info;
415
416 return pvt->dram_base[pvt->mc_node_id];
417}
418
419/*
420 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
421 * for the node represented by mci. Info is passed back in *hole_base,
422 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
423 * info is invalid. Info may be invalid for either of the following reasons:
424 *
425 * - The revision of the node is not E or greater. In this case, the DRAM Hole
426 * Address Register does not exist.
427 *
428 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
429 * indicating that its contents are not valid.
430 *
431 * The values passed back in *hole_base, *hole_offset, and *hole_size are
432 * complete 32-bit values despite the fact that the bitfields in the DHAR
433 * only represent bits 31-24 of the base and offset values.
434 */
435int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
436 u64 *hole_offset, u64 *hole_size)
437{
438 struct amd64_pvt *pvt = mci->pvt_info;
439 u64 base;
440
441 /* only revE and later have the DRAM Hole Address Register */
1433eb99 442 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
443 debugf1(" revision %d for node %d does not support DHAR\n",
444 pvt->ext_model, pvt->mc_node_id);
445 return 1;
446 }
447
448 /* only valid for Fam10h */
449 if (boot_cpu_data.x86 == 0x10 &&
450 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
451 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
452 return 1;
453 }
454
455 if ((pvt->dhar & DHAR_VALID) == 0) {
456 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
457 pvt->mc_node_id);
458 return 1;
459 }
460
461 /* This node has Memory Hoisting */
462
463 /* +------------------+--------------------+--------------------+-----
464 * | memory | DRAM hole | relocated |
465 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
466 * | | | DRAM hole |
467 * | | | [0x100000000, |
468 * | | | (0x100000000+ |
469 * | | | (0xffffffff-x))] |
470 * +------------------+--------------------+--------------------+-----
471 *
472 * Above is a diagram of physical memory showing the DRAM hole and the
473 * relocated addresses from the DRAM hole. As shown, the DRAM hole
474 * starts at address x (the base address) and extends through address
475 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
476 * addresses in the hole so that they start at 0x100000000.
477 */
478
479 base = dhar_base(pvt->dhar);
480
481 *hole_base = base;
482 *hole_size = (0x1ull << 32) - base;
483
484 if (boot_cpu_data.x86 > 0xf)
485 *hole_offset = f10_dhar_offset(pvt->dhar);
486 else
487 *hole_offset = k8_dhar_offset(pvt->dhar);
488
489 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
490 pvt->mc_node_id, (unsigned long)*hole_base,
491 (unsigned long)*hole_offset, (unsigned long)*hole_size);
492
493 return 0;
494}
495EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
496
93c2df58
DT
497/*
498 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
499 * assumed that sys_addr maps to the node given by mci.
500 *
501 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
502 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
503 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
504 * then it is also involved in translating a SysAddr to a DramAddr. Sections
505 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
506 * These parts of the documentation are unclear. I interpret them as follows:
507 *
508 * When node n receives a SysAddr, it processes the SysAddr as follows:
509 *
510 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
511 * Limit registers for node n. If the SysAddr is not within the range
512 * specified by the base and limit values, then node n ignores the Sysaddr
513 * (since it does not map to node n). Otherwise continue to step 2 below.
514 *
515 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
516 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
517 * the range of relocated addresses (starting at 0x100000000) from the DRAM
518 * hole. If not, skip to step 3 below. Else get the value of the
519 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
520 * offset defined by this value from the SysAddr.
521 *
522 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
523 * Base register for node n. To obtain the DramAddr, subtract the base
524 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
525 */
526static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
527{
528 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
529 int ret = 0;
530
531 dram_base = get_dram_base(mci);
532
533 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
534 &hole_size);
535 if (!ret) {
536 if ((sys_addr >= (1ull << 32)) &&
537 (sys_addr < ((1ull << 32) + hole_size))) {
538 /* use DHAR to translate SysAddr to DramAddr */
539 dram_addr = sys_addr - hole_offset;
540
541 debugf2("using DHAR to translate SysAddr 0x%lx to "
542 "DramAddr 0x%lx\n",
543 (unsigned long)sys_addr,
544 (unsigned long)dram_addr);
545
546 return dram_addr;
547 }
548 }
549
550 /*
551 * Translate the SysAddr to a DramAddr as shown near the start of
552 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
553 * only deals with 40-bit values. Therefore we discard bits 63-40 of
554 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
555 * discard are all 1s. Otherwise the bits we discard are all 0s. See
556 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
557 * Programmer's Manual Volume 1 Application Programming.
558 */
559 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
560
561 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
563 (unsigned long)dram_addr);
564 return dram_addr;
565}
566
567/*
568 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
569 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
570 * for node interleaving.
571 */
572static int num_node_interleave_bits(unsigned intlv_en)
573{
574 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
575 int n;
576
577 BUG_ON(intlv_en > 7);
578 n = intlv_shift_table[intlv_en];
579 return n;
580}
581
582/* Translate the DramAddr given by @dram_addr to an InputAddr. */
583static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
584{
585 struct amd64_pvt *pvt;
586 int intlv_shift;
587 u64 input_addr;
588
589 pvt = mci->pvt_info;
590
591 /*
592 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
593 * concerning translating a DramAddr to an InputAddr.
594 */
595 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
596 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
597 (dram_addr & 0xfff);
598
599 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
600 intlv_shift, (unsigned long)dram_addr,
601 (unsigned long)input_addr);
602
603 return input_addr;
604}
605
606/*
607 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
608 * assumed that @sys_addr maps to the node given by mci.
609 */
610static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
611{
612 u64 input_addr;
613
614 input_addr =
615 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
616
617 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
618 (unsigned long)sys_addr, (unsigned long)input_addr);
619
620 return input_addr;
621}
622
623
624/*
625 * @input_addr is an InputAddr associated with the node represented by mci.
626 * Translate @input_addr to a DramAddr and return the result.
627 */
628static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
629{
630 struct amd64_pvt *pvt;
631 int node_id, intlv_shift;
632 u64 bits, dram_addr;
633 u32 intlv_sel;
634
635 /*
636 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
637 * shows how to translate a DramAddr to an InputAddr. Here we reverse
638 * this procedure. When translating from a DramAddr to an InputAddr, the
639 * bits used for node interleaving are discarded. Here we recover these
640 * bits from the IntlvSel field of the DRAM Limit register (section
641 * 3.4.4.2) for the node that input_addr is associated with.
642 */
643 pvt = mci->pvt_info;
644 node_id = pvt->mc_node_id;
645 BUG_ON((node_id < 0) || (node_id > 7));
646
647 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
648
649 if (intlv_shift == 0) {
650 debugf1(" InputAddr 0x%lx translates to DramAddr of "
651 "same value\n", (unsigned long)input_addr);
652
653 return input_addr;
654 }
655
656 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
657 (input_addr & 0xfff);
658
659 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
660 dram_addr = bits + (intlv_sel << 12);
661
662 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
663 "(%d node interleave bits)\n", (unsigned long)input_addr,
664 (unsigned long)dram_addr, intlv_shift);
665
666 return dram_addr;
667}
668
669/*
670 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
671 * @dram_addr to a SysAddr.
672 */
673static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
674{
675 struct amd64_pvt *pvt = mci->pvt_info;
676 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
677 int ret = 0;
678
679 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
680 &hole_size);
681 if (!ret) {
682 if ((dram_addr >= hole_base) &&
683 (dram_addr < (hole_base + hole_size))) {
684 sys_addr = dram_addr + hole_offset;
685
686 debugf1("using DHAR to translate DramAddr 0x%lx to "
687 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
688 (unsigned long)sys_addr);
689
690 return sys_addr;
691 }
692 }
693
694 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
695 sys_addr = dram_addr + base;
696
697 /*
698 * The sys_addr we have computed up to this point is a 40-bit value
699 * because the k8 deals with 40-bit values. However, the value we are
700 * supposed to return is a full 64-bit physical address. The AMD
701 * x86-64 architecture specifies that the most significant implemented
702 * address bit through bit 63 of a physical address must be either all
703 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
704 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
705 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
706 * Programming.
707 */
708 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
709
710 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
711 pvt->mc_node_id, (unsigned long)dram_addr,
712 (unsigned long)sys_addr);
713
714 return sys_addr;
715}
716
717/*
718 * @input_addr is an InputAddr associated with the node given by mci. Translate
719 * @input_addr to a SysAddr.
720 */
721static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
722 u64 input_addr)
723{
724 return dram_addr_to_sys_addr(mci,
725 input_addr_to_dram_addr(mci, input_addr));
726}
727
728/*
729 * Find the minimum and maximum InputAddr values that map to the given @csrow.
730 * Pass back these values in *input_addr_min and *input_addr_max.
731 */
732static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
733 u64 *input_addr_min, u64 *input_addr_max)
734{
735 struct amd64_pvt *pvt;
736 u64 base, mask;
737
738 pvt = mci->pvt_info;
9d858bb1 739 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
740
741 base = base_from_dct_base(pvt, csrow);
742 mask = mask_from_dct_mask(pvt, csrow);
743
744 *input_addr_min = base & ~mask;
745 *input_addr_max = base | mask | pvt->dcs_mask_notused;
746}
747
93c2df58
DT
748/* Map the Error address to a PAGE and PAGE OFFSET. */
749static inline void error_address_to_page_and_offset(u64 error_address,
750 u32 *page, u32 *offset)
751{
752 *page = (u32) (error_address >> PAGE_SHIFT);
753 *offset = ((u32) error_address) & ~PAGE_MASK;
754}
755
756/*
757 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
758 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
759 * of a node that detected an ECC memory error. mci represents the node that
760 * the error address maps to (possibly different from the node that detected
761 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
762 * error.
763 */
764static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
765{
766 int csrow;
767
768 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
769
770 if (csrow == -1)
24f9a7fe
BP
771 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
772 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
773 return csrow;
774}
e2ce7255 775
bfc04aec 776static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 777
ad6a32e9
BP
778static u16 extract_syndrome(struct err_regs *err)
779{
780 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
781}
782
2da11654
DT
783/*
784 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
785 * are ECC capable.
786 */
787static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
788{
789 int bit;
584fcff4 790 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 791
1433eb99 792 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
793 ? 19
794 : 17;
795
584fcff4 796 if (pvt->dclr0 & BIT(bit))
2da11654
DT
797 edac_cap = EDAC_FLAG_SECDED;
798
799 return edac_cap;
800}
801
802
8566c4df 803static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 804
68798e17
BP
805static void amd64_dump_dramcfg_low(u32 dclr, int chan)
806{
807 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
808
809 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
810 (dclr & BIT(16)) ? "un" : "",
811 (dclr & BIT(19)) ? "yes" : "no");
812
813 debugf1(" PAR/ERR parity: %s\n",
814 (dclr & BIT(8)) ? "enabled" : "disabled");
815
816 debugf1(" DCT 128bit mode width: %s\n",
817 (dclr & BIT(11)) ? "128b" : "64b");
818
819 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
820 (dclr & BIT(12)) ? "yes" : "no",
821 (dclr & BIT(13)) ? "yes" : "no",
822 (dclr & BIT(14)) ? "yes" : "no",
823 (dclr & BIT(15)) ? "yes" : "no");
824}
825
2da11654
DT
826/* Display and decode various NB registers for debug purposes. */
827static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
828{
68798e17
BP
829 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
830
831 debugf1(" NB two channel DRAM capable: %s\n",
832 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 833
68798e17
BP
834 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
835 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
836 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
837
838 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 839
8de1d91e 840 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 841
8de1d91e
BP
842 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
843 "offset: 0x%08x\n",
844 pvt->dhar,
845 dhar_base(pvt->dhar),
846 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
847 : f10_dhar_offset(pvt->dhar));
2da11654 848
8de1d91e
BP
849 debugf1(" DramHoleValid: %s\n",
850 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 851
4d796364
BP
852 amd64_debug_display_dimm_sizes(0, pvt);
853
8de1d91e 854 /* everything below this point is Fam10h and above */
4d796364 855 if (boot_cpu_data.x86 == 0xf)
2da11654 856 return;
4d796364
BP
857
858 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 859
24f9a7fe 860 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 861
8de1d91e 862 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
863 if (!dct_ganging_enabled(pvt))
864 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
865}
866
867/* Read in both of DBAM registers */
868static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
869{
8d5b5d9c 870 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
2da11654 871
6ba5dcdc 872 if (boot_cpu_data.x86 >= 0x10)
8d5b5d9c 873 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
2da11654
DT
874}
875
94be4bff
DT
876/*
877 * NOTE: CPU Revision Dependent code: Rev E and Rev F
878 *
879 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
880 * set the shift factor for the DCSB and DCSM values.
881 *
882 * ->dcs_mask_notused, RevE:
883 *
884 * To find the max InputAddr for the csrow, start with the base address and set
885 * all bits that are "don't care" bits in the test at the start of section
886 * 3.5.4 (p. 84).
887 *
888 * The "don't care" bits are all set bits in the mask and all bits in the gaps
889 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
890 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
891 * gaps.
892 *
893 * ->dcs_mask_notused, RevF and later:
894 *
895 * To find the max InputAddr for the csrow, start with the base address and set
896 * all bits that are "don't care" bits in the test at the start of NPT section
897 * 4.5.4 (p. 87).
898 *
899 * The "don't care" bits are all set bits in the mask and all bits in the gaps
900 * between bit ranges [36:27] and [21:13].
901 *
902 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
903 * which are all bits in the above-mentioned gaps.
904 */
905static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
906{
9d858bb1 907
1433eb99 908 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
909 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
910 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
911 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
912 pvt->dcs_shift = REV_E_DCS_SHIFT;
913 pvt->cs_count = 8;
914 pvt->num_dcsm = 8;
915 } else {
94be4bff
DT
916 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
917 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
918 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
919 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
3ab0e7dc
BP
920 pvt->cs_count = 8;
921 pvt->num_dcsm = 4;
94be4bff
DT
922 }
923}
924
925/*
926 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
927 */
928static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
929{
6ba5dcdc 930 int cs, reg;
94be4bff
DT
931
932 amd64_set_dct_base_and_mask(pvt);
933
9d858bb1 934 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 935 reg = K8_DCSB0 + (cs * 4);
8d5b5d9c 936 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
94be4bff
DT
937 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
938 cs, pvt->dcsb0[cs], reg);
939
940 /* If DCT are NOT ganged, then read in DCT1's base */
941 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
942 reg = F10_DCSB1 + (cs * 4);
8d5b5d9c 943 if (!amd64_read_pci_cfg(pvt->F2, reg,
6ba5dcdc 944 &pvt->dcsb1[cs]))
94be4bff
DT
945 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
946 cs, pvt->dcsb1[cs], reg);
947 } else {
948 pvt->dcsb1[cs] = 0;
949 }
950 }
951
952 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 953 reg = K8_DCSM0 + (cs * 4);
8d5b5d9c 954 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
94be4bff
DT
955 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
956 cs, pvt->dcsm0[cs], reg);
957
958 /* If DCT are NOT ganged, then read in DCT1's mask */
959 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
960 reg = F10_DCSM1 + (cs * 4);
8d5b5d9c 961 if (!amd64_read_pci_cfg(pvt->F2, reg,
6ba5dcdc 962 &pvt->dcsm1[cs]))
94be4bff
DT
963 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
964 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 965 } else {
94be4bff 966 pvt->dcsm1[cs] = 0;
6ba5dcdc 967 }
94be4bff
DT
968 }
969}
970
24f9a7fe 971static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
972{
973 enum mem_type type;
974
1433eb99 975 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
976 if (pvt->dchr0 & DDR3_MODE)
977 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
978 else
979 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 980 } else {
94be4bff
DT
981 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
982 }
983
24f9a7fe 984 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
985
986 return type;
987}
988
ddff876d
DT
989/*
990 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
991 * and the later RevF memory controllers (DDR vs DDR2)
992 *
993 * Return:
994 * number of memory channels in operation
995 * Pass back:
996 * contents of the DCL0_LOW register
997 */
998static int k8_early_channel_count(struct amd64_pvt *pvt)
999{
1000 int flag, err = 0;
1001
8d5b5d9c 1002 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1003 if (err)
1004 return err;
1005
9f56da0e 1006 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
1007 /* RevF (NPT) and later */
1008 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 1009 else
ddff876d
DT
1010 /* RevE and earlier */
1011 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
1012
1013 /* not used */
1014 pvt->dclr1 = 0;
1015
1016 return (flag) ? 2 : 1;
1017}
1018
1019/* extract the ERROR ADDRESS for the K8 CPUs */
1020static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1021 struct err_regs *info)
ddff876d
DT
1022{
1023 return (((u64) (info->nbeah & 0xff)) << 32) +
1024 (info->nbeal & ~0x03);
1025}
1026
1027/*
1028 * Read the Base and Limit registers for K8 based Memory controllers; extract
1029 * fields from the 'raw' reg into separate data fields
1030 *
1031 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1032 */
1033static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1034{
1035 u32 low;
1036 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1037
8d5b5d9c 1038 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1039
1040 /* Extract parts into separate data entries */
4997811e 1041 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1042 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1043 pvt->dram_rw_en[dram] = (low & 0x3);
1044
8d5b5d9c 1045 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1046
1047 /*
1048 * Extract parts into separate data entries. Limit is the HIGHEST memory
1049 * location of the region, so lower 24 bits need to be all ones
1050 */
4997811e 1051 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1052 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1053 pvt->dram_DstNode[dram] = (low & 0x7);
1054}
1055
1056static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1057 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1058{
1059 struct mem_ctl_info *src_mci;
ddff876d
DT
1060 int channel, csrow;
1061 u32 page, offset;
ad6a32e9 1062 u16 syndrome;
ddff876d 1063
ad6a32e9 1064 syndrome = extract_syndrome(err_info);
ddff876d
DT
1065
1066 /* CHIPKILL enabled */
ad6a32e9 1067 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1068 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1069 if (channel < 0) {
1070 /*
1071 * Syndrome didn't map, so we don't know which of the
1072 * 2 DIMMs is in error. So we need to ID 'both' of them
1073 * as suspect.
1074 */
24f9a7fe
BP
1075 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1076 "error reporting race\n", syndrome);
ddff876d
DT
1077 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1078 return;
1079 }
1080 } else {
1081 /*
1082 * non-chipkill ecc mode
1083 *
1084 * The k8 documentation is unclear about how to determine the
1085 * channel number when using non-chipkill memory. This method
1086 * was obtained from email communication with someone at AMD.
1087 * (Wish the email was placed in this comment - norsk)
1088 */
44e9e2ee 1089 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1090 }
1091
1092 /*
1093 * Find out which node the error address belongs to. This may be
1094 * different from the node that detected the error.
1095 */
44e9e2ee 1096 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1097 if (!src_mci) {
24f9a7fe 1098 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1099 (unsigned long)sys_addr);
ddff876d
DT
1100 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1101 return;
1102 }
1103
44e9e2ee
BP
1104 /* Now map the sys_addr to a CSROW */
1105 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1106 if (csrow < 0) {
1107 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1108 } else {
44e9e2ee 1109 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1110
1111 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1112 channel, EDAC_MOD_STR);
1113 }
1114}
1115
1433eb99 1116static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1117{
1433eb99 1118 int *dbam_map;
ddff876d 1119
1433eb99
BP
1120 if (pvt->ext_model >= K8_REV_F)
1121 dbam_map = ddr2_dbam;
1122 else if (pvt->ext_model >= K8_REV_D)
1123 dbam_map = ddr2_dbam_revD;
1124 else
1125 dbam_map = ddr2_dbam_revCG;
ddff876d 1126
1433eb99 1127 return dbam_map[cs_mode];
ddff876d
DT
1128}
1129
1afd3c98
DT
1130/*
1131 * Get the number of DCT channels in use.
1132 *
1133 * Return:
1134 * number of Memory Channels in operation
1135 * Pass back:
1136 * contents of the DCL0_LOW register
1137 */
1138static int f10_early_channel_count(struct amd64_pvt *pvt)
1139{
57a30854 1140 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1141 int i, j, channels = 0;
1afd3c98
DT
1142 u32 dbam;
1143
1afd3c98
DT
1144 /* If we are in 128 bit mode, then we are using 2 channels */
1145 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1146 channels = 2;
1147 return channels;
1148 }
1149
1150 /*
d16149e8
BP
1151 * Need to check if in unganged mode: In such, there are 2 channels,
1152 * but they are not in 128 bit mode and thus the above 'dclr0' status
1153 * bit will be OFF.
1afd3c98
DT
1154 *
1155 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1156 * their CSEnable bit on. If so, then SINGLE DIMM case.
1157 */
d16149e8 1158 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1159
1afd3c98
DT
1160 /*
1161 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1162 * is more than just one DIMM present in unganged mode. Need to check
1163 * both controllers since DIMMs can be placed in either one.
1164 */
57a30854 1165 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
8d5b5d9c 1166 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1afd3c98
DT
1167 goto err_reg;
1168
57a30854
WW
1169 for (j = 0; j < 4; j++) {
1170 if (DBAM_DIMM(j, dbam) > 0) {
1171 channels++;
1172 break;
1173 }
1174 }
1afd3c98
DT
1175 }
1176
d16149e8
BP
1177 if (channels > 2)
1178 channels = 2;
1179
24f9a7fe 1180 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1181
1182 return channels;
1183
1184err_reg:
1185 return -1;
1186
1187}
1188
1433eb99 1189static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1190{
1433eb99
BP
1191 int *dbam_map;
1192
1193 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1194 dbam_map = ddr3_dbam;
1195 else
1196 dbam_map = ddr2_dbam;
1197
1198 return dbam_map[cs_mode];
1afd3c98
DT
1199}
1200
1afd3c98 1201static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1202 struct err_regs *info)
1afd3c98
DT
1203{
1204 return (((u64) (info->nbeah & 0xffff)) << 32) +
1205 (info->nbeal & ~0x01);
1206}
1207
1208/*
1209 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1210 * fields from the 'raw' reg into separate data fields.
1211 *
1212 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1213 */
1214static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1215{
1216 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1217
1218 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1219 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1220
1221 /* read the 'raw' DRAM BASE Address register */
8d5b5d9c 1222 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
8d5b5d9c 1223 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1afd3c98
DT
1224
1225 /* Extract parts into separate data entries */
1226 pvt->dram_rw_en[dram] = (low_base & 0x3);
1227
1228 if (pvt->dram_rw_en[dram] == 0)
1229 return;
1230
1231 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1232
66216a7a 1233 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1234 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1235
1236 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1237 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1238
1239 /* read the 'raw' LIMIT registers */
8d5b5d9c 1240 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
8d5b5d9c 1241 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1afd3c98 1242
1afd3c98
DT
1243 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1244 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1245
1246 /*
1247 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1248 * memory location of the region, so low 24 bits need to be all ones.
1249 */
66216a7a 1250 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1251 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1252 0x00FFFFFF;
1afd3c98 1253}
6163b5d4
DT
1254
1255static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1256{
6163b5d4 1257
8d5b5d9c 1258 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
6ba5dcdc 1259 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1260 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1261 "High range addresses at: 0x%x\n",
1262 pvt->dram_ctl_select_low,
1263 dct_sel_baseaddr(pvt));
1264
1265 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1266 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1267 (dct_dram_enabled(pvt) ? "yes" : "no"));
1268
1269 if (!dct_ganging_enabled(pvt))
1270 debugf0(" Address range split per DCT: %s\n",
1271 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1272
1273 debugf0(" DCT data interleave for ECC: %s, "
1274 "DRAM cleared since last warm reset: %s\n",
1275 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1276 (dct_memory_cleared(pvt) ? "yes" : "no"));
1277
1278 debugf0(" DCT channel interleave: %s, "
1279 "DCT interleave bits selector: 0x%x\n",
1280 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1281 dct_sel_interleave_addr(pvt));
1282 }
1283
8d5b5d9c 1284 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
6ba5dcdc 1285 &pvt->dram_ctl_select_high);
6163b5d4
DT
1286}
1287
f71d0a05
DT
1288/*
1289 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1290 * Interleaving Modes.
1291 */
6163b5d4
DT
1292static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1293 int hi_range_sel, u32 intlv_en)
1294{
1295 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1296
1297 if (dct_ganging_enabled(pvt))
1298 cs = 0;
1299 else if (hi_range_sel)
1300 cs = dct_sel_high;
1301 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1302 /*
1303 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1304 */
6163b5d4
DT
1305 if (dct_sel_interleave_addr(pvt) == 0)
1306 cs = sys_addr >> 6 & 1;
1307 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1308 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1309
1310 if (dct_sel_interleave_addr(pvt) & 1)
1311 cs = (sys_addr >> 9 & 1) ^ temp;
1312 else
1313 cs = (sys_addr >> 6 & 1) ^ temp;
1314 } else if (intlv_en & 4)
1315 cs = sys_addr >> 15 & 1;
1316 else if (intlv_en & 2)
1317 cs = sys_addr >> 14 & 1;
1318 else if (intlv_en & 1)
1319 cs = sys_addr >> 13 & 1;
1320 else
1321 cs = sys_addr >> 12 & 1;
1322 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1323 cs = ~dct_sel_high & 1;
1324 else
1325 cs = 0;
1326
1327 return cs;
1328}
1329
1330static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1331{
1332 if (intlv_en == 1)
1333 return 1;
1334 else if (intlv_en == 3)
1335 return 2;
1336 else if (intlv_en == 7)
1337 return 3;
1338
1339 return 0;
1340}
1341
f71d0a05
DT
1342/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1343static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1344 u32 dct_sel_base_addr,
1345 u64 dct_sel_base_off,
f71d0a05 1346 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1347 u64 dram_base)
1348{
1349 u64 chan_off;
1350
1351 if (hi_range_sel) {
9975a5f2 1352 if (!(dct_sel_base_addr & 0xFFFF0000) &&
f71d0a05 1353 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1354 chan_off = hole_off << 16;
1355 else
1356 chan_off = dct_sel_base_off;
1357 } else {
f71d0a05 1358 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1359 chan_off = hole_off << 16;
1360 else
1361 chan_off = dram_base & 0xFFFFF8000000ULL;
1362 }
1363
1364 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1365 (chan_off & 0x0000FFFFFF800000ULL);
1366}
1367
1368/* Hack for the time being - Can we get this from BIOS?? */
1369#define CH0SPARE_RANK 0
1370#define CH1SPARE_RANK 1
1371
1372/*
1373 * checks if the csrow passed in is marked as SPARED, if so returns the new
1374 * spare row
1375 */
1376static inline int f10_process_possible_spare(int csrow,
1377 u32 cs, struct amd64_pvt *pvt)
1378{
1379 u32 swap_done;
1380 u32 bad_dram_cs;
1381
1382 /* Depending on channel, isolate respective SPARING info */
1383 if (cs) {
1384 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1385 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1386 if (swap_done && (csrow == bad_dram_cs))
1387 csrow = CH1SPARE_RANK;
1388 } else {
1389 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1390 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1391 if (swap_done && (csrow == bad_dram_cs))
1392 csrow = CH0SPARE_RANK;
1393 }
1394 return csrow;
1395}
1396
1397/*
1398 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1399 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1400 *
1401 * Return:
1402 * -EINVAL: NOT FOUND
1403 * 0..csrow = Chip-Select Row
1404 */
1405static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1406{
1407 struct mem_ctl_info *mci;
1408 struct amd64_pvt *pvt;
1409 u32 cs_base, cs_mask;
1410 int cs_found = -EINVAL;
1411 int csrow;
1412
cc4d8860 1413 mci = mcis[nid];
6163b5d4
DT
1414 if (!mci)
1415 return cs_found;
1416
1417 pvt = mci->pvt_info;
1418
1419 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1420
9d858bb1 1421 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1422
1423 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1424 if (!(cs_base & K8_DCSB_CS_ENABLE))
1425 continue;
1426
1427 /*
1428 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1429 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1430 * of the actual address.
1431 */
1432 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1433
1434 /*
1435 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1436 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1437 */
1438 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1439
1440 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1441 csrow, cs_base, cs_mask);
1442
1443 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1444
1445 debugf1(" Final CSMask=0x%x\n", cs_mask);
1446 debugf1(" (InputAddr & ~CSMask)=0x%x "
1447 "(CSBase & ~CSMask)=0x%x\n",
1448 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1449
1450 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1451 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1452
1453 debugf1(" MATCH csrow=%d\n", cs_found);
1454 break;
1455 }
1456 }
1457 return cs_found;
1458}
1459
f71d0a05
DT
1460/* For a given @dram_range, check if @sys_addr falls within it. */
1461static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1462 u64 sys_addr, int *nid, int *chan_sel)
1463{
1464 int node_id, cs_found = -EINVAL, high_range = 0;
1465 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1466 u32 hole_valid, tmp, dct_sel_base, channel;
1467 u64 dram_base, chan_addr, dct_sel_base_off;
1468
1469 dram_base = pvt->dram_base[dram_range];
1470 intlv_en = pvt->dram_IntlvEn[dram_range];
1471
1472 node_id = pvt->dram_DstNode[dram_range];
1473 intlv_sel = pvt->dram_IntlvSel[dram_range];
1474
1475 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1476 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1477
1478 /*
1479 * This assumes that one node's DHAR is the same as all the other
1480 * nodes' DHAR.
1481 */
1482 hole_off = (pvt->dhar & 0x0000FF80);
1483 hole_valid = (pvt->dhar & 0x1);
1484 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1485
1486 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1487 hole_off, hole_valid, intlv_sel);
1488
e726f3c3 1489 if (intlv_en &&
f71d0a05
DT
1490 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1491 return -EINVAL;
1492
1493 dct_sel_base = dct_sel_baseaddr(pvt);
1494
1495 /*
1496 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1497 * select between DCT0 and DCT1.
1498 */
1499 if (dct_high_range_enabled(pvt) &&
1500 !dct_ganging_enabled(pvt) &&
1501 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1502 high_range = 1;
1503
1504 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1505
1506 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1507 dct_sel_base_off, hole_valid,
1508 hole_off, dram_base);
1509
1510 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1511
1512 /* remove Node ID (in case of memory interleaving) */
1513 tmp = chan_addr & 0xFC0;
1514
1515 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1516
1517 /* remove channel interleave and hash */
1518 if (dct_interleave_enabled(pvt) &&
1519 !dct_high_range_enabled(pvt) &&
1520 !dct_ganging_enabled(pvt)) {
1521 if (dct_sel_interleave_addr(pvt) != 1)
1522 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1523 else {
1524 tmp = chan_addr & 0xFC0;
1525 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1526 | tmp;
1527 }
1528 }
1529
1530 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1531 chan_addr, (u32)(chan_addr >> 8));
1532
1533 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1534
1535 if (cs_found >= 0) {
1536 *nid = node_id;
1537 *chan_sel = channel;
1538 }
1539 return cs_found;
1540}
1541
1542static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1543 int *node, int *chan_sel)
1544{
1545 int dram_range, cs_found = -EINVAL;
1546 u64 dram_base, dram_limit;
1547
1548 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1549
1550 if (!pvt->dram_rw_en[dram_range])
1551 continue;
1552
1553 dram_base = pvt->dram_base[dram_range];
1554 dram_limit = pvt->dram_limit[dram_range];
1555
1556 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1557
1558 cs_found = f10_match_to_this_node(pvt, dram_range,
1559 sys_addr, node,
1560 chan_sel);
1561 if (cs_found >= 0)
1562 break;
1563 }
1564 }
1565 return cs_found;
1566}
1567
1568/*
bdc30a0c
BP
1569 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1570 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1571 *
bdc30a0c
BP
1572 * The @sys_addr is usually an error address received from the hardware
1573 * (MCX_ADDR).
f71d0a05
DT
1574 */
1575static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1576 struct err_regs *err_info,
f71d0a05
DT
1577 u64 sys_addr)
1578{
1579 struct amd64_pvt *pvt = mci->pvt_info;
1580 u32 page, offset;
f71d0a05 1581 int nid, csrow, chan = 0;
ad6a32e9 1582 u16 syndrome;
f71d0a05
DT
1583
1584 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1585
bdc30a0c
BP
1586 if (csrow < 0) {
1587 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1588 return;
1589 }
1590
1591 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1592
ad6a32e9 1593 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1594
1595 /*
1596 * We need the syndromes for channel detection only when we're
1597 * ganged. Otherwise @chan should already contain the channel at
1598 * this point.
1599 */
962b70a1 1600 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1601 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1602
bdc30a0c
BP
1603 if (chan >= 0)
1604 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1605 EDAC_MOD_STR);
1606 else
f71d0a05 1607 /*
bdc30a0c 1608 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1609 */
bdc30a0c 1610 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1611 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1612 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1613}
1614
f71d0a05 1615/*
8566c4df 1616 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1617 * CSROWs as well
1618 */
8566c4df 1619static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1620{
603adaf6 1621 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1622 u32 dbam;
1623 u32 *dcsb;
1624
8566c4df 1625 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1626 if (pvt->dclr0 & F10_WIDTH_128)
1627 factor = 1;
1628
8566c4df 1629 /* K8 families < revF not supported yet */
1433eb99 1630 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1631 return;
1632 else
1633 WARN_ON(ctrl != 0);
1634 }
1635
4d796364
BP
1636 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1637 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dcsb1 : pvt->dcsb0;
f71d0a05 1638
4d796364 1639 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1640
8566c4df
BP
1641 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1642
f71d0a05
DT
1643 /* Dump memory sizes for DIMM and its CSROWs */
1644 for (dimm = 0; dimm < 4; dimm++) {
1645
1646 size0 = 0;
1647 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1648 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1649
1650 size1 = 0;
1651 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1652 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1653
24f9a7fe
BP
1654 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1655 dimm * 2, size0 << factor,
1656 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1657 }
1658}
1659
4d37607a
DT
1660static struct amd64_family_type amd64_family_types[] = {
1661 [K8_CPUS] = {
0092b20d 1662 .ctl_name = "K8",
8d5b5d9c
BP
1663 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1664 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1665 .ops = {
1433eb99
BP
1666 .early_channel_count = k8_early_channel_count,
1667 .get_error_address = k8_get_error_address,
1668 .read_dram_base_limit = k8_read_dram_base_limit,
1669 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1670 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1671 }
1672 },
1673 [F10_CPUS] = {
0092b20d 1674 .ctl_name = "F10h",
8d5b5d9c
BP
1675 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1676 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1677 .ops = {
1433eb99
BP
1678 .early_channel_count = f10_early_channel_count,
1679 .get_error_address = f10_get_error_address,
1680 .read_dram_base_limit = f10_read_dram_base_limit,
1681 .read_dram_ctl_register = f10_read_dram_ctl_register,
1682 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1683 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1684 }
1685 },
4d37607a
DT
1686};
1687
1688static struct pci_dev *pci_get_related_function(unsigned int vendor,
1689 unsigned int device,
1690 struct pci_dev *related)
1691{
1692 struct pci_dev *dev = NULL;
1693
1694 dev = pci_get_device(vendor, device, dev);
1695 while (dev) {
1696 if ((dev->bus->number == related->bus->number) &&
1697 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1698 break;
1699 dev = pci_get_device(vendor, device, dev);
1700 }
1701
1702 return dev;
1703}
1704
b1289d6f 1705/*
bfc04aec
BP
1706 * These are tables of eigenvectors (one per line) which can be used for the
1707 * construction of the syndrome tables. The modified syndrome search algorithm
1708 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1709 *
bfc04aec 1710 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1711 */
bfc04aec
BP
1712static u16 x4_vectors[] = {
1713 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1714 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1715 0x0001, 0x0002, 0x0004, 0x0008,
1716 0x1013, 0x3032, 0x4044, 0x8088,
1717 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1718 0x4857, 0xc4fe, 0x13cc, 0x3288,
1719 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1720 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1721 0x15c1, 0x2a42, 0x89ac, 0x4758,
1722 0x2b03, 0x1602, 0x4f0c, 0xca08,
1723 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1724 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1725 0x2b87, 0x164e, 0x642c, 0xdc18,
1726 0x40b9, 0x80de, 0x1094, 0x20e8,
1727 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1728 0x11c1, 0x2242, 0x84ac, 0x4c58,
1729 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1730 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1731 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1732 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1733 0x16b3, 0x3d62, 0x4f34, 0x8518,
1734 0x1e2f, 0x391a, 0x5cac, 0xf858,
1735 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1736 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1737 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1738 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1739 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1740 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1741 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1742 0x185d, 0x2ca6, 0x7914, 0x9e28,
1743 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1744 0x4199, 0x82ee, 0x19f4, 0x2e58,
1745 0x4807, 0xc40e, 0x130c, 0x3208,
1746 0x1905, 0x2e0a, 0x5804, 0xac08,
1747 0x213f, 0x132a, 0xadfc, 0x5ba8,
1748 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1749};
1750
bfc04aec
BP
1751static u16 x8_vectors[] = {
1752 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1753 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1754 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1755 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1756 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1757 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1758 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1759 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1760 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1761 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1762 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1763 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1764 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1765 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1766 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1767 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1768 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1769 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1770 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1771};
1772
1773static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1774 int v_dim)
b1289d6f 1775{
bfc04aec
BP
1776 unsigned int i, err_sym;
1777
1778 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1779 u16 s = syndrome;
1780 int v_idx = err_sym * v_dim;
1781 int v_end = (err_sym + 1) * v_dim;
1782
1783 /* walk over all 16 bits of the syndrome */
1784 for (i = 1; i < (1U << 16); i <<= 1) {
1785
1786 /* if bit is set in that eigenvector... */
1787 if (v_idx < v_end && vectors[v_idx] & i) {
1788 u16 ev_comp = vectors[v_idx++];
1789
1790 /* ... and bit set in the modified syndrome, */
1791 if (s & i) {
1792 /* remove it. */
1793 s ^= ev_comp;
4d37607a 1794
bfc04aec
BP
1795 if (!s)
1796 return err_sym;
1797 }
b1289d6f 1798
bfc04aec
BP
1799 } else if (s & i)
1800 /* can't get to zero, move to next symbol */
1801 break;
1802 }
b1289d6f
DT
1803 }
1804
1805 debugf0("syndrome(%x) not found\n", syndrome);
1806 return -1;
1807}
d27bf6fa 1808
bfc04aec
BP
1809static int map_err_sym_to_channel(int err_sym, int sym_size)
1810{
1811 if (sym_size == 4)
1812 switch (err_sym) {
1813 case 0x20:
1814 case 0x21:
1815 return 0;
1816 break;
1817 case 0x22:
1818 case 0x23:
1819 return 1;
1820 break;
1821 default:
1822 return err_sym >> 4;
1823 break;
1824 }
1825 /* x8 symbols */
1826 else
1827 switch (err_sym) {
1828 /* imaginary bits not in a DIMM */
1829 case 0x10:
1830 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1831 err_sym);
1832 return -1;
1833 break;
1834
1835 case 0x11:
1836 return 0;
1837 break;
1838 case 0x12:
1839 return 1;
1840 break;
1841 default:
1842 return err_sym >> 3;
1843 break;
1844 }
1845 return -1;
1846}
1847
1848static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1849{
1850 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1851 int err_sym = -1;
1852
1853 if (pvt->syn_type == 8)
1854 err_sym = decode_syndrome(syndrome, x8_vectors,
1855 ARRAY_SIZE(x8_vectors),
1856 pvt->syn_type);
1857 else if (pvt->syn_type == 4)
1858 err_sym = decode_syndrome(syndrome, x4_vectors,
1859 ARRAY_SIZE(x4_vectors),
1860 pvt->syn_type);
1861 else {
24f9a7fe 1862 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1863 return err_sym;
bfc04aec 1864 }
ad6a32e9
BP
1865
1866 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1867}
1868
d27bf6fa
DT
1869/*
1870 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1871 * ADDRESS and process.
1872 */
1873static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1874 struct err_regs *info)
d27bf6fa
DT
1875{
1876 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1877 u64 sys_addr;
d27bf6fa
DT
1878
1879 /* Ensure that the Error Address is VALID */
24f9a7fe
BP
1880 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1881 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1882 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1883 return;
1884 }
1885
1f6bcee7 1886 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa 1887
24f9a7fe 1888 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1889
44e9e2ee 1890 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1891}
1892
1893/* Handle any Un-correctable Errors (UEs) */
1894static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1895 struct err_regs *info)
d27bf6fa 1896{
1f6bcee7
BP
1897 struct amd64_pvt *pvt = mci->pvt_info;
1898 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1899 int csrow;
44e9e2ee 1900 u64 sys_addr;
d27bf6fa 1901 u32 page, offset;
d27bf6fa
DT
1902
1903 log_mci = mci;
1904
24f9a7fe
BP
1905 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1906 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1907 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1908 return;
1909 }
1910
1f6bcee7 1911 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1912
1913 /*
1914 * Find out which node the error address belongs to. This may be
1915 * different from the node that detected the error.
1916 */
44e9e2ee 1917 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1918 if (!src_mci) {
24f9a7fe
BP
1919 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1920 (unsigned long)sys_addr);
d27bf6fa
DT
1921 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1922 return;
1923 }
1924
1925 log_mci = src_mci;
1926
44e9e2ee 1927 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1928 if (csrow < 0) {
24f9a7fe
BP
1929 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1930 (unsigned long)sys_addr);
d27bf6fa
DT
1931 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1932 } else {
44e9e2ee 1933 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1934 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1935 }
1936}
1937
549d042d 1938static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 1939 struct err_regs *info)
d27bf6fa 1940{
62452882
BP
1941 u16 ec = EC(info->nbsl);
1942 u8 xec = XEC(info->nbsl, 0x1f);
17adea01 1943 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 1944
b70ef010
BP
1945 /* Bail early out if this was an 'observed' error */
1946 if (PP(ec) == K8_NBSL_PP_OBS)
1947 return;
d27bf6fa 1948
ecaf5606
BP
1949 /* Do only ECC errors */
1950 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1951 return;
d27bf6fa 1952
ecaf5606 1953 if (ecc_type == 2)
d27bf6fa 1954 amd64_handle_ce(mci, info);
ecaf5606 1955 else if (ecc_type == 1)
d27bf6fa 1956 amd64_handle_ue(mci, info);
d27bf6fa
DT
1957}
1958
7cfd4a87 1959void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1960{
cc4d8860 1961 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1962 struct err_regs regs;
d27bf6fa 1963
7cfd4a87
BP
1964 regs.nbsl = (u32) m->status;
1965 regs.nbsh = (u32)(m->status >> 32);
1966 regs.nbeal = (u32) m->addr;
1967 regs.nbeah = (u32)(m->addr >> 32);
1968 regs.nbcfg = nbcfg;
1969
1970 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 1971
d27bf6fa
DT
1972 /*
1973 * Check the UE bit of the NB status high register, if set generate some
1974 * logs. If NOT a GART error, then process the event as a NO-INFO event.
1975 * If it was a GART error, skip that process.
549d042d
BP
1976 *
1977 * FIXME: this should go somewhere else, if at all.
d27bf6fa 1978 */
7cfd4a87 1979 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 1980 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 1981
d27bf6fa 1982}
d27bf6fa 1983
0ec449ee 1984/*
8d5b5d9c 1985 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1986 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1987 */
360b7f3c 1988static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1989{
0ec449ee 1990 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1991 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1992 if (!pvt->F1) {
24f9a7fe
BP
1993 amd64_err("error address map device not found: "
1994 "vendor %x device 0x%x (broken BIOS?)\n",
1995 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1996 return -ENODEV;
0ec449ee
DT
1997 }
1998
1999 /* Reserve the MISC Device */
8d5b5d9c
BP
2000 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2001 if (!pvt->F3) {
2002 pci_dev_put(pvt->F1);
2003 pvt->F1 = NULL;
0ec449ee 2004
24f9a7fe
BP
2005 amd64_err("error F3 device not found: "
2006 "vendor %x device 0x%x (broken BIOS?)\n",
2007 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2008
bbd0c1f6 2009 return -ENODEV;
0ec449ee 2010 }
8d5b5d9c
BP
2011 debugf1("F1: %s\n", pci_name(pvt->F1));
2012 debugf1("F2: %s\n", pci_name(pvt->F2));
2013 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2014
2015 return 0;
2016}
2017
360b7f3c 2018static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2019{
8d5b5d9c
BP
2020 pci_dev_put(pvt->F1);
2021 pci_dev_put(pvt->F3);
0ec449ee
DT
2022}
2023
2024/*
2025 * Retrieve the hardware registers of the memory controller (this includes the
2026 * 'Address Map' and 'Misc' device regs)
2027 */
360b7f3c 2028static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
2029{
2030 u64 msr_val;
ad6a32e9 2031 u32 tmp;
6ba5dcdc 2032 int dram;
0ec449ee
DT
2033
2034 /*
2035 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2036 * those are Read-As-Zero
2037 */
e97f8bb8
BP
2038 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2039 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2040
2041 /* check first whether TOP_MEM2 is enabled */
2042 rdmsrl(MSR_K8_SYSCFG, msr_val);
2043 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2044 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2045 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2046 } else
2047 debugf0(" TOP_MEM2 disabled.\n");
2048
8d5b5d9c 2049 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2050
2051 if (pvt->ops->read_dram_ctl_register)
2052 pvt->ops->read_dram_ctl_register(pvt);
2053
2054 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2055 /*
2056 * Call CPU specific READ function to get the DRAM Base and
2057 * Limit values from the DCT.
2058 */
2059 pvt->ops->read_dram_base_limit(pvt, dram);
2060
2061 /*
2062 * Only print out debug info on rows with both R and W Enabled.
2063 * Normal processing, compiler should optimize this whole 'if'
2064 * debug output block away.
2065 */
2066 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2067 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2068 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2069 dram,
e97f8bb8
BP
2070 pvt->dram_base[dram],
2071 pvt->dram_limit[dram]);
2072
0ec449ee
DT
2073 debugf1(" IntlvEn=%s %s %s "
2074 "IntlvSel=%d DstNode=%d\n",
2075 pvt->dram_IntlvEn[dram] ?
2076 "Enabled" : "Disabled",
2077 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2078 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2079 pvt->dram_IntlvSel[dram],
2080 pvt->dram_DstNode[dram]);
2081 }
2082 }
2083
2084 amd64_read_dct_base_mask(pvt);
2085
8d5b5d9c 2086 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2087 amd64_read_dbam_reg(pvt);
2088
8d5b5d9c 2089 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2090
8d5b5d9c
BP
2091 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2092 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
0ec449ee 2093
ad6a32e9
BP
2094 if (boot_cpu_data.x86 >= 0x10) {
2095 if (!dct_ganging_enabled(pvt)) {
8d5b5d9c
BP
2096 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2097 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
ad6a32e9 2098 }
8d5b5d9c 2099 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
0ec449ee 2100 }
ad6a32e9
BP
2101
2102 if (boot_cpu_data.x86 == 0x10 &&
2103 boot_cpu_data.x86_model > 7 &&
2104 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2105 tmp & BIT(25))
2106 pvt->syn_type = 8;
2107 else
2108 pvt->syn_type = 4;
2109
0ec449ee 2110 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2111}
2112
2113/*
2114 * NOTE: CPU Revision Dependent code
2115 *
2116 * Input:
9d858bb1 2117 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2118 * k8 private pointer to -->
2119 * DRAM Bank Address mapping register
2120 * node_id
2121 * DCL register where dual_channel_active is
2122 *
2123 * The DBAM register consists of 4 sets of 4 bits each definitions:
2124 *
2125 * Bits: CSROWs
2126 * 0-3 CSROWs 0 and 1
2127 * 4-7 CSROWs 2 and 3
2128 * 8-11 CSROWs 4 and 5
2129 * 12-15 CSROWs 6 and 7
2130 *
2131 * Values range from: 0 to 15
2132 * The meaning of the values depends on CPU revision and dual-channel state,
2133 * see relevant BKDG more info.
2134 *
2135 * The memory controller provides for total of only 8 CSROWs in its current
2136 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2137 * single channel or two (2) DIMMs in dual channel mode.
2138 *
2139 * The following code logic collapses the various tables for CSROW based on CPU
2140 * revision.
2141 *
2142 * Returns:
2143 * The number of PAGE_SIZE pages on the specified CSROW number it
2144 * encompasses
2145 *
2146 */
2147static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2148{
1433eb99 2149 u32 cs_mode, nr_pages;
0ec449ee
DT
2150
2151 /*
2152 * The math on this doesn't look right on the surface because x/2*4 can
2153 * be simplified to x*2 but this expression makes use of the fact that
2154 * it is integral math where 1/2=0. This intermediate value becomes the
2155 * number of bits to shift the DBAM register to extract the proper CSROW
2156 * field.
2157 */
1433eb99 2158 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2159
1433eb99 2160 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2161
2162 /*
2163 * If dual channel then double the memory size of single channel.
2164 * Channel count is 1 or 2
2165 */
2166 nr_pages <<= (pvt->channel_count - 1);
2167
1433eb99 2168 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2169 debugf0(" nr_pages= %u channel-count = %d\n",
2170 nr_pages, pvt->channel_count);
2171
2172 return nr_pages;
2173}
2174
2175/*
2176 * Initialize the array of csrow attribute instances, based on the values
2177 * from pci config hardware registers.
2178 */
360b7f3c 2179static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2180{
2181 struct csrow_info *csrow;
2299ef71 2182 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2183 u64 input_addr_min, input_addr_max, sys_addr;
2299ef71 2184 u32 val;
6ba5dcdc 2185 int i, empty = 1;
0ec449ee 2186
2299ef71 2187 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
0ec449ee 2188
2299ef71
BP
2189 pvt->nbcfg = val;
2190 pvt->ctl_error_info.nbcfg = val;
0ec449ee 2191
2299ef71
BP
2192 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2193 pvt->mc_node_id, val,
2194 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
0ec449ee 2195
9d858bb1 2196 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2197 csrow = &mci->csrows[i];
2198
2199 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2200 debugf1("----CSROW %d EMPTY for node %d\n", i,
2201 pvt->mc_node_id);
2202 continue;
2203 }
2204
2205 debugf1("----CSROW %d VALID for MC node %d\n",
2206 i, pvt->mc_node_id);
2207
2208 empty = 0;
2209 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2210 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2211 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2212 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2213 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2214 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2215 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2216 /* 8 bytes of resolution */
2217
24f9a7fe 2218 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2219
2220 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2221 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2222 (unsigned long)input_addr_min,
2223 (unsigned long)input_addr_max);
2224 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2225 (unsigned long)sys_addr, csrow->page_mask);
2226 debugf1(" nr_pages: %u first_page: 0x%lx "
2227 "last_page: 0x%lx\n",
2228 (unsigned)csrow->nr_pages,
2229 csrow->first_page, csrow->last_page);
2230
2231 /*
2232 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2233 */
2234 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2235 csrow->edac_mode =
2236 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2237 EDAC_S4ECD4ED : EDAC_SECDED;
2238 else
2239 csrow->edac_mode = EDAC_NONE;
2240 }
2241
2242 return empty;
2243}
d27bf6fa 2244
f6d6ae96
BP
2245/* get all cores on this DCT */
2246static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2247{
2248 int cpu;
2249
2250 for_each_online_cpu(cpu)
2251 if (amd_get_nb_id(cpu) == nid)
2252 cpumask_set_cpu(cpu, mask);
2253}
2254
2255/* check MCG_CTL on all the cpus on this node */
2256static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2257{
2258 cpumask_var_t mask;
50542251 2259 int cpu, nbe;
f6d6ae96
BP
2260 bool ret = false;
2261
2262 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2263 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2264 return false;
2265 }
2266
2267 get_cpus_on_this_dct_cpumask(mask, nid);
2268
f6d6ae96
BP
2269 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2270
2271 for_each_cpu(cpu, mask) {
50542251
BP
2272 struct msr *reg = per_cpu_ptr(msrs, cpu);
2273 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2274
2275 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2276 cpu, reg->q,
f6d6ae96
BP
2277 (nbe ? "enabled" : "disabled"));
2278
2279 if (!nbe)
2280 goto out;
f6d6ae96
BP
2281 }
2282 ret = true;
2283
2284out:
f6d6ae96
BP
2285 free_cpumask_var(mask);
2286 return ret;
2287}
2288
2299ef71 2289static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2290{
2291 cpumask_var_t cmask;
50542251 2292 int cpu;
f6d6ae96
BP
2293
2294 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2295 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2296 return false;
2297 }
2298
ae7bb7c6 2299 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2300
f6d6ae96
BP
2301 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2302
2303 for_each_cpu(cpu, cmask) {
2304
50542251
BP
2305 struct msr *reg = per_cpu_ptr(msrs, cpu);
2306
f6d6ae96 2307 if (on) {
50542251 2308 if (reg->l & K8_MSR_MCGCTL_NBE)
ae7bb7c6 2309 s->flags.nb_mce_enable = 1;
f6d6ae96 2310
50542251 2311 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2312 } else {
2313 /*
d95cf4de 2314 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2315 */
ae7bb7c6 2316 if (!s->flags.nb_mce_enable)
50542251 2317 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2318 }
f6d6ae96
BP
2319 }
2320 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2321
f6d6ae96
BP
2322 free_cpumask_var(cmask);
2323
2324 return 0;
2325}
2326
2299ef71
BP
2327static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2328 struct pci_dev *F3)
f9431992 2329{
2299ef71 2330 bool ret = true;
f6d6ae96 2331 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2332
2299ef71
BP
2333 if (toggle_ecc_err_reporting(s, nid, ON)) {
2334 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2335 return false;
2336 }
2337
2338 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
f9431992 2339
ae7bb7c6
BP
2340 /* turn on UECCEn and CECCEn bits */
2341 s->old_nbctl = value & mask;
2342 s->nbctl_valid = true;
f9431992
DT
2343
2344 value |= mask;
2299ef71 2345 pci_write_config_dword(F3, K8_NBCTL, value);
f9431992 2346
2299ef71 2347 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2348
2299ef71
BP
2349 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2350 nid, value,
2351 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992
DT
2352
2353 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe 2354 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2355
ae7bb7c6 2356 s->flags.nb_ecc_prev = 0;
d95cf4de 2357
f9431992
DT
2358 /* Attempt to turn on DRAM ECC Enable */
2359 value |= K8_NBCFG_ECC_ENABLE;
2299ef71 2360 pci_write_config_dword(F3, K8_NBCFG, value);
f9431992 2361
2299ef71 2362 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992
DT
2363
2364 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2365 amd64_warn("Hardware rejected DRAM ECC enable,"
2366 "check memory DIMM configuration.\n");
2299ef71 2367 ret = false;
f9431992 2368 } else {
24f9a7fe 2369 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2370 }
d95cf4de 2371 } else {
ae7bb7c6 2372 s->flags.nb_ecc_prev = 1;
f9431992 2373 }
d95cf4de 2374
2299ef71
BP
2375 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2376 nid, value,
2377 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992 2378
2299ef71 2379 return ret;
f9431992
DT
2380}
2381
360b7f3c
BP
2382static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2383 struct pci_dev *F3)
f9431992 2384{
f6d6ae96 2385 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2386
ae7bb7c6 2387 if (!s->nbctl_valid)
f9431992
DT
2388 return;
2389
360b7f3c 2390 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
f9431992 2391 value &= ~mask;
ae7bb7c6 2392 value |= s->old_nbctl;
f9431992 2393
360b7f3c 2394 pci_write_config_dword(F3, K8_NBCTL, value);
f9431992 2395
ae7bb7c6
BP
2396 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2397 if (!s->flags.nb_ecc_prev) {
360b7f3c 2398 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
d95cf4de 2399 value &= ~K8_NBCFG_ECC_ENABLE;
360b7f3c 2400 pci_write_config_dword(F3, K8_NBCFG, value);
d95cf4de
BP
2401 }
2402
2403 /* restore the NB Enable MCGCTL bit */
2299ef71 2404 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2405 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2406}
2407
2408/*
2299ef71
BP
2409 * EDAC requires that the BIOS have ECC enabled before
2410 * taking over the processing of ECC errors. A command line
2411 * option allows to force-enable hardware ECC later in
2412 * enable_ecc_error_reporting().
f9431992 2413 */
cab4d277
BP
2414static const char *ecc_msg =
2415 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2416 " Either enable ECC checking or force module loading by setting "
2417 "'ecc_enable_override'.\n"
2418 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2419
2299ef71 2420static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2421{
2422 u32 value;
2299ef71 2423 u8 ecc_en = 0;
06724535 2424 bool nb_mce_en = false;
f9431992 2425
2299ef71 2426 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2427
2299ef71
BP
2428 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2429 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2430
2299ef71 2431 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2432 if (!nb_mce_en)
2299ef71
BP
2433 amd64_notice("NB MCE bank disabled, set MSR "
2434 "0x%08x[4] on node %d to enable.\n",
2435 MSR_IA32_MCG_CTL, nid);
f9431992 2436
2299ef71
BP
2437 if (!ecc_en || !nb_mce_en) {
2438 amd64_notice("%s", ecc_msg);
2439 return false;
2440 }
2441 return true;
f9431992
DT
2442}
2443
7d6034d3
DT
2444struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2445 ARRAY_SIZE(amd64_inj_attrs) +
2446 1];
2447
2448struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2449
360b7f3c 2450static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2451{
2452 unsigned int i = 0, j = 0;
2453
2454 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2455 sysfs_attrs[i] = amd64_dbg_attrs[i];
2456
a135cef7
BP
2457 if (boot_cpu_data.x86 >= 0x10)
2458 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2459 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2460
2461 sysfs_attrs[i] = terminator;
2462
2463 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2464}
2465
360b7f3c 2466static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2467{
2468 struct amd64_pvt *pvt = mci->pvt_info;
2469
2470 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2471 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2472
2473 if (pvt->nbcap & K8_NBCAP_SECDED)
2474 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2475
2476 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2477 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2478
2479 mci->edac_cap = amd64_determine_edac_cap(pvt);
2480 mci->mod_name = EDAC_MOD_STR;
2481 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2482 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2483 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2484 mci->ctl_page_to_phys = NULL;
2485
7d6034d3
DT
2486 /* memory scrubber interface */
2487 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2488 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2489}
2490
0092b20d
BP
2491/*
2492 * returns a pointer to the family descriptor on success, NULL otherwise.
2493 */
2494static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2495{
0092b20d
BP
2496 u8 fam = boot_cpu_data.x86;
2497 struct amd64_family_type *fam_type = NULL;
2498
2499 switch (fam) {
395ae783 2500 case 0xf:
0092b20d 2501 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2502 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2503 pvt->ctl_name = fam_type->ctl_name;
2504 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2505 break;
2506 case 0x10:
0092b20d 2507 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2508 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2509 pvt->ctl_name = fam_type->ctl_name;
2510 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2511 break;
2512
2513 default:
24f9a7fe 2514 amd64_err("Unsupported family!\n");
0092b20d 2515 return NULL;
395ae783 2516 }
0092b20d 2517
b8cfa02f
BP
2518 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2519
24f9a7fe 2520 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2521 (fam == 0xf ?
24f9a7fe
BP
2522 (pvt->ext_model >= K8_REV_F ? "revF or later "
2523 : "revE or earlier ")
2524 : ""), pvt->mc_node_id);
0092b20d 2525 return fam_type;
395ae783
BP
2526}
2527
2299ef71 2528static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2529{
2530 struct amd64_pvt *pvt = NULL;
0092b20d 2531 struct amd64_family_type *fam_type = NULL;
360b7f3c 2532 struct mem_ctl_info *mci = NULL;
7d6034d3 2533 int err = 0, ret;
360b7f3c 2534 u8 nid = get_node_id(F2);
7d6034d3
DT
2535
2536 ret = -ENOMEM;
2537 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2538 if (!pvt)
360b7f3c 2539 goto err_ret;
7d6034d3 2540
360b7f3c 2541 pvt->mc_node_id = nid;
8d5b5d9c 2542 pvt->F2 = F2;
7d6034d3 2543
395ae783 2544 ret = -EINVAL;
0092b20d
BP
2545 fam_type = amd64_per_family_init(pvt);
2546 if (!fam_type)
395ae783
BP
2547 goto err_free;
2548
7d6034d3 2549 ret = -ENODEV;
360b7f3c 2550 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2551 if (err)
2552 goto err_free;
2553
360b7f3c 2554 read_mc_regs(pvt);
7d6034d3 2555
7d6034d3
DT
2556 /*
2557 * We need to determine how many memory channels there are. Then use
2558 * that information for calculating the size of the dynamic instance
360b7f3c 2559 * tables in the 'mci' structure.
7d6034d3 2560 */
360b7f3c 2561 ret = -EINVAL;
7d6034d3
DT
2562 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2563 if (pvt->channel_count < 0)
360b7f3c 2564 goto err_siblings;
7d6034d3
DT
2565
2566 ret = -ENOMEM;
360b7f3c 2567 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
7d6034d3 2568 if (!mci)
360b7f3c 2569 goto err_siblings;
7d6034d3
DT
2570
2571 mci->pvt_info = pvt;
8d5b5d9c 2572 mci->dev = &pvt->F2->dev;
7d6034d3 2573
360b7f3c
BP
2574 setup_mci_misc_attrs(mci);
2575
2576 if (init_csrows(mci))
7d6034d3
DT
2577 mci->edac_cap = EDAC_FLAG_NONE;
2578
360b7f3c 2579 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2580
2581 ret = -ENODEV;
2582 if (edac_mc_add_mc(mci)) {
2583 debugf1("failed edac_mc_add_mc()\n");
2584 goto err_add_mc;
2585 }
2586
549d042d
BP
2587 /* register stuff with EDAC MCE */
2588 if (report_gart_errors)
2589 amd_report_gart_errors(true);
2590
2591 amd_register_ecc_decoder(amd64_decode_bus_error);
2592
360b7f3c
BP
2593 mcis[nid] = mci;
2594
2595 atomic_inc(&drv_instances);
2596
7d6034d3
DT
2597 return 0;
2598
2599err_add_mc:
2600 edac_mc_free(mci);
2601
360b7f3c
BP
2602err_siblings:
2603 free_mc_sibling_devs(pvt);
7d6034d3 2604
360b7f3c
BP
2605err_free:
2606 kfree(pvt);
7d6034d3 2607
360b7f3c 2608err_ret:
7d6034d3
DT
2609 return ret;
2610}
2611
2299ef71 2612static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2613 const struct pci_device_id *mc_type)
7d6034d3 2614{
ae7bb7c6 2615 u8 nid = get_node_id(pdev);
2299ef71 2616 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2617 struct ecc_settings *s;
2299ef71 2618 int ret = 0;
7d6034d3 2619
7d6034d3 2620 ret = pci_enable_device(pdev);
b8cfa02f
BP
2621 if (ret < 0) {
2622 debugf0("ret=%d\n", ret);
2623 return -EIO;
2624 }
7d6034d3 2625
ae7bb7c6
BP
2626 ret = -ENOMEM;
2627 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2628 if (!s)
2299ef71 2629 goto err_out;
ae7bb7c6
BP
2630
2631 ecc_stngs[nid] = s;
2632
2299ef71
BP
2633 if (!ecc_enabled(F3, nid)) {
2634 ret = -ENODEV;
2635
2636 if (!ecc_enable_override)
2637 goto err_enable;
2638
2639 amd64_warn("Forcing ECC on!\n");
2640
2641 if (!enable_ecc_error_reporting(s, nid, F3))
2642 goto err_enable;
2643 }
2644
2645 ret = amd64_init_one_instance(pdev);
360b7f3c 2646 if (ret < 0) {
ae7bb7c6 2647 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2648 restore_ecc_error_reporting(s, nid, F3);
2649 }
7d6034d3
DT
2650
2651 return ret;
2299ef71
BP
2652
2653err_enable:
2654 kfree(s);
2655 ecc_stngs[nid] = NULL;
2656
2657err_out:
2658 return ret;
7d6034d3
DT
2659}
2660
2661static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2662{
2663 struct mem_ctl_info *mci;
2664 struct amd64_pvt *pvt;
360b7f3c
BP
2665 u8 nid = get_node_id(pdev);
2666 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2667 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2668
2669 /* Remove from EDAC CORE tracking list */
2670 mci = edac_mc_del_mc(&pdev->dev);
2671 if (!mci)
2672 return;
2673
2674 pvt = mci->pvt_info;
2675
360b7f3c 2676 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2677
360b7f3c 2678 free_mc_sibling_devs(pvt);
7d6034d3 2679
549d042d
BP
2680 /* unregister from EDAC MCE */
2681 amd_report_gart_errors(false);
2682 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2683
360b7f3c
BP
2684 kfree(ecc_stngs[nid]);
2685 ecc_stngs[nid] = NULL;
ae7bb7c6 2686
7d6034d3 2687 /* Free the EDAC CORE resources */
8f68ed97 2688 mci->pvt_info = NULL;
360b7f3c 2689 mcis[nid] = NULL;
8f68ed97
BP
2690
2691 kfree(pvt);
7d6034d3
DT
2692 edac_mc_free(mci);
2693}
2694
2695/*
2696 * This table is part of the interface for loading drivers for PCI devices. The
2697 * PCI core identifies what devices are on a system during boot, and then
2698 * inquiry this table to see if this driver is for a given device found.
2699 */
2700static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2701 {
2702 .vendor = PCI_VENDOR_ID_AMD,
2703 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2704 .subvendor = PCI_ANY_ID,
2705 .subdevice = PCI_ANY_ID,
2706 .class = 0,
2707 .class_mask = 0,
7d6034d3
DT
2708 },
2709 {
2710 .vendor = PCI_VENDOR_ID_AMD,
2711 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2712 .subvendor = PCI_ANY_ID,
2713 .subdevice = PCI_ANY_ID,
2714 .class = 0,
2715 .class_mask = 0,
7d6034d3 2716 },
7d6034d3
DT
2717 {0, }
2718};
2719MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2720
2721static struct pci_driver amd64_pci_driver = {
2722 .name = EDAC_MOD_STR,
2299ef71 2723 .probe = amd64_probe_one_instance,
7d6034d3
DT
2724 .remove = __devexit_p(amd64_remove_one_instance),
2725 .id_table = amd64_pci_table,
2726};
2727
360b7f3c 2728static void setup_pci_device(void)
7d6034d3
DT
2729{
2730 struct mem_ctl_info *mci;
2731 struct amd64_pvt *pvt;
2732
2733 if (amd64_ctl_pci)
2734 return;
2735
cc4d8860 2736 mci = mcis[0];
7d6034d3
DT
2737 if (mci) {
2738
2739 pvt = mci->pvt_info;
2740 amd64_ctl_pci =
8d5b5d9c 2741 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2742
2743 if (!amd64_ctl_pci) {
2744 pr_warning("%s(): Unable to create PCI control\n",
2745 __func__);
2746
2747 pr_warning("%s(): PCI error report via EDAC not set\n",
2748 __func__);
2749 }
2750 }
2751}
2752
2753static int __init amd64_edac_init(void)
2754{
360b7f3c 2755 int err = -ENODEV;
7d6034d3
DT
2756
2757 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2758
2759 opstate_init();
2760
9653a5c7 2761 if (amd_cache_northbridges() < 0)
56b34b91 2762 goto err_ret;
7d6034d3 2763
cc4d8860 2764 err = -ENOMEM;
ae7bb7c6
BP
2765 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2766 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2767 if (!(mcis && ecc_stngs))
cc4d8860
BP
2768 goto err_ret;
2769
50542251 2770 msrs = msrs_alloc();
56b34b91 2771 if (!msrs)
360b7f3c 2772 goto err_free;
50542251 2773
7d6034d3
DT
2774 err = pci_register_driver(&amd64_pci_driver);
2775 if (err)
56b34b91 2776 goto err_pci;
7d6034d3 2777
56b34b91 2778 err = -ENODEV;
360b7f3c
BP
2779 if (!atomic_read(&drv_instances))
2780 goto err_no_instances;
7d6034d3 2781
360b7f3c
BP
2782 setup_pci_device();
2783 return 0;
7d6034d3 2784
360b7f3c 2785err_no_instances:
7d6034d3 2786 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2787
56b34b91
BP
2788err_pci:
2789 msrs_free(msrs);
2790 msrs = NULL;
cc4d8860 2791
360b7f3c
BP
2792err_free:
2793 kfree(mcis);
2794 mcis = NULL;
2795
2796 kfree(ecc_stngs);
2797 ecc_stngs = NULL;
2798
56b34b91 2799err_ret:
7d6034d3
DT
2800 return err;
2801}
2802
2803static void __exit amd64_edac_exit(void)
2804{
2805 if (amd64_ctl_pci)
2806 edac_pci_release_generic_ctl(amd64_ctl_pci);
2807
2808 pci_unregister_driver(&amd64_pci_driver);
50542251 2809
ae7bb7c6
BP
2810 kfree(ecc_stngs);
2811 ecc_stngs = NULL;
2812
cc4d8860
BP
2813 kfree(mcis);
2814 mcis = NULL;
2815
50542251
BP
2816 msrs_free(msrs);
2817 msrs = NULL;
7d6034d3
DT
2818}
2819
2820module_init(amd64_edac_init);
2821module_exit(amd64_edac_exit);
2822
2823MODULE_LICENSE("GPL");
2824MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2825 "Dave Peterson, Thayne Harbaugh");
2826MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2827 EDAC_AMD64_VERSION);
2828
2829module_param(edac_op_state, int, 0444);
2830MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.320786 seconds and 5 git commands to generate.