edac/85xx: Remove deprecated IRQF_DISABLED
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418 3
d1ea71cd 4static struct edac_pci_ctl_info *pci_ctl;
2bc65418
DT
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
c7e5301a 34static const struct scrubrate {
39094443
BP
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
66fed2d4
BP
63int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
b2b0c605
BP
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
94c1acf2 101 * F16h: has only 1 DCT
b2b0c605
BP
102 */
103static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
104 const char *func)
105{
106 if (addr >= 0x100)
107 return -EINVAL;
108
109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
110}
111
112static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
113 const char *func)
114{
115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
116}
117
73ba8593
BP
118/*
119 * Select DCT to which PCI cfg accesses are routed
120 */
121static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122{
123 u32 reg = 0;
124
125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
18b94f66 126 reg &= (pvt->model >= 0x30) ? ~3 : ~1;
73ba8593
BP
127 reg |= dct;
128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
129}
130
b2b0c605
BP
131static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
132 const char *func)
133{
b2b0c605
BP
134 u8 dct = 0;
135
18b94f66 136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
b2b0c605 137 if (addr >= 0x140 && addr <= 0x1a0) {
18b94f66 138 dct = (pvt->model >= 0x30) ? 3 : 1;
b2b0c605
BP
139 addr -= 0x100;
140 }
141
73ba8593 142 f15h_select_dct(pvt, dct);
b2b0c605
BP
143
144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
145}
146
2bc65418
DT
147/*
148 * Memory scrubber control interface. For K8, memory scrubbing is handled by
149 * hardware and can involve L2 cache, dcache as well as the main memory. With
150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
151 * functionality.
152 *
153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
155 * bytes/sec for the setting.
156 *
157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
158 * other archs, we might not have access to the caches directly.
159 */
160
161/*
162 * scan the scrub rate mapping table for a close or matching bandwidth value to
163 * issue. If requested is too big, then use last maximum value found.
164 */
d1ea71cd 165static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
166{
167 u32 scrubval;
168 int i;
169
170 /*
171 * map the configured rate (new_bw) to a value specific to the AMD64
172 * memory controller and apply to register. Search for the first
173 * bandwidth entry that is greater or equal than the setting requested
174 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
175 *
176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
177 * by falling back to the last element in scrubrates[].
2bc65418 178 */
168bfeef 179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
180 /*
181 * skip scrub rates which aren't recommended
182 * (see F10 BKDG, F3x58)
183 */
395ae783 184 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
185 continue;
186
187 if (scrubrates[i].bandwidth <= new_bw)
188 break;
2bc65418
DT
189 }
190
191 scrubval = scrubrates[i].scrubval;
2bc65418 192
5980bb9c 193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 194
39094443
BP
195 if (scrubval)
196 return scrubrates[i].bandwidth;
197
2bc65418
DT
198 return 0;
199}
200
d1ea71cd 201static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
202{
203 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 204 u32 min_scrubrate = 0x5;
2bc65418 205
a4b4bedc 206 if (pvt->fam == 0xf)
87b3e0e6
BP
207 min_scrubrate = 0x0;
208
3f0aba4f
BP
209 /* Erratum #505 */
210 if (pvt->fam == 0x15 && pvt->model < 0x10)
73ba8593
BP
211 f15h_select_dct(pvt, 0);
212
d1ea71cd 213 return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
214}
215
d1ea71cd 216static int get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
217{
218 struct amd64_pvt *pvt = mci->pvt_info;
219 u32 scrubval = 0;
39094443 220 int i, retval = -EINVAL;
2bc65418 221
3f0aba4f
BP
222 /* Erratum #505 */
223 if (pvt->fam == 0x15 && pvt->model < 0x10)
73ba8593
BP
224 f15h_select_dct(pvt, 0);
225
5980bb9c 226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
227
228 scrubval = scrubval & 0x001F;
229
926311fd 230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 231 if (scrubrates[i].scrubval == scrubval) {
39094443 232 retval = scrubrates[i].bandwidth;
2bc65418
DT
233 break;
234 }
235 }
39094443 236 return retval;
2bc65418
DT
237}
238
6775763a 239/*
7f19bf75
BP
240 * returns true if the SysAddr given by sys_addr matches the
241 * DRAM base/limit associated with node_id
6775763a 242 */
d1ea71cd 243static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
6775763a 244{
7f19bf75 245 u64 addr;
6775763a
DT
246
247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
248 * all ones if the most significant implemented address bit is 1.
249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 * Application Programming.
252 */
253 addr = sys_addr & 0x000000ffffffffffull;
254
7f19bf75
BP
255 return ((addr >= get_dram_base(pvt, nid)) &&
256 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
257}
258
259/*
260 * Attempt to map a SysAddr to a node. On success, return a pointer to the
261 * mem_ctl_info structure for the node that the SysAddr maps to.
262 *
263 * On failure, return NULL.
264 */
265static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
266 u64 sys_addr)
267{
268 struct amd64_pvt *pvt;
c7e5301a 269 u8 node_id;
6775763a
DT
270 u32 intlv_en, bits;
271
272 /*
273 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
274 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 */
276 pvt = mci->pvt_info;
277
278 /*
279 * The value of this field should be the same for all DRAM Base
280 * registers. Therefore we arbitrarily choose to read it from the
281 * register for node 0.
282 */
7f19bf75 283 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
284
285 if (intlv_en == 0) {
7f19bf75 286 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
d1ea71cd 287 if (base_limit_match(pvt, sys_addr, node_id))
8edc5445 288 goto found;
6775763a 289 }
8edc5445 290 goto err_no_match;
6775763a
DT
291 }
292
72f158fe
BP
293 if (unlikely((intlv_en != 0x01) &&
294 (intlv_en != 0x03) &&
295 (intlv_en != 0x07))) {
24f9a7fe 296 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
297 return NULL;
298 }
299
300 bits = (((u32) sys_addr) >> 12) & intlv_en;
301
302 for (node_id = 0; ; ) {
7f19bf75 303 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
304 break; /* intlv_sel field matches */
305
7f19bf75 306 if (++node_id >= DRAM_RANGES)
6775763a
DT
307 goto err_no_match;
308 }
309
310 /* sanity test for sys_addr */
d1ea71cd 311 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
312 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
313 "range for node %d with node interleaving enabled.\n",
314 __func__, sys_addr, node_id);
6775763a
DT
315 return NULL;
316 }
317
318found:
b487c33e 319 return edac_mc_find((int)node_id);
6775763a
DT
320
321err_no_match:
956b9ba1
JP
322 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
323 (unsigned long)sys_addr);
6775763a
DT
324
325 return NULL;
326}
e2ce7255
DT
327
328/*
11c75ead
BP
329 * compute the CS base address of the @csrow on the DRAM controller @dct.
330 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 331 */
11c75ead
BP
332static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
333 u64 *base, u64 *mask)
e2ce7255 334{
11c75ead
BP
335 u64 csbase, csmask, base_bits, mask_bits;
336 u8 addr_shift;
e2ce7255 337
18b94f66 338 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
339 csbase = pvt->csels[dct].csbases[csrow];
340 csmask = pvt->csels[dct].csmasks[csrow];
10ef6b0d
CG
341 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
342 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
11c75ead 343 addr_shift = 4;
94c1acf2
AG
344
345 /*
18b94f66
AG
346 * F16h and F15h, models 30h and later need two addr_shift values:
347 * 8 for high and 6 for low (cf. F16h BKDG).
348 */
349 } else if (pvt->fam == 0x16 ||
350 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
94c1acf2
AG
351 csbase = pvt->csels[dct].csbases[csrow];
352 csmask = pvt->csels[dct].csmasks[csrow >> 1];
353
10ef6b0d
CG
354 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
355 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
356
357 *mask = ~0ULL;
358 /* poke holes for the csmask */
10ef6b0d
CG
359 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
360 (GENMASK_ULL(30, 19) << 8));
94c1acf2 361
10ef6b0d
CG
362 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
363 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
364
365 return;
11c75ead
BP
366 } else {
367 csbase = pvt->csels[dct].csbases[csrow];
368 csmask = pvt->csels[dct].csmasks[csrow >> 1];
369 addr_shift = 8;
e2ce7255 370
a4b4bedc 371 if (pvt->fam == 0x15)
10ef6b0d
CG
372 base_bits = mask_bits =
373 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
11c75ead 374 else
10ef6b0d
CG
375 base_bits = mask_bits =
376 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
11c75ead 377 }
e2ce7255 378
11c75ead 379 *base = (csbase & base_bits) << addr_shift;
e2ce7255 380
11c75ead
BP
381 *mask = ~0ULL;
382 /* poke holes for the csmask */
383 *mask &= ~(mask_bits << addr_shift);
384 /* OR them in */
385 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
386}
387
11c75ead
BP
388#define for_each_chip_select(i, dct, pvt) \
389 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
390
614ec9d8
BP
391#define chip_select_base(i, dct, pvt) \
392 pvt->csels[dct].csbases[i]
393
11c75ead
BP
394#define for_each_chip_select_mask(i, dct, pvt) \
395 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
396
e2ce7255
DT
397/*
398 * @input_addr is an InputAddr associated with the node given by mci. Return the
399 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
400 */
401static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
402{
403 struct amd64_pvt *pvt;
404 int csrow;
405 u64 base, mask;
406
407 pvt = mci->pvt_info;
408
11c75ead
BP
409 for_each_chip_select(csrow, 0, pvt) {
410 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
411 continue;
412
11c75ead
BP
413 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
414
415 mask = ~mask;
e2ce7255
DT
416
417 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
418 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
419 (unsigned long)input_addr, csrow,
420 pvt->mc_node_id);
e2ce7255
DT
421
422 return csrow;
423 }
424 }
956b9ba1
JP
425 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
426 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
427
428 return -1;
429}
430
e2ce7255
DT
431/*
432 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
433 * for the node represented by mci. Info is passed back in *hole_base,
434 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
435 * info is invalid. Info may be invalid for either of the following reasons:
436 *
437 * - The revision of the node is not E or greater. In this case, the DRAM Hole
438 * Address Register does not exist.
439 *
440 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
441 * indicating that its contents are not valid.
442 *
443 * The values passed back in *hole_base, *hole_offset, and *hole_size are
444 * complete 32-bit values despite the fact that the bitfields in the DHAR
445 * only represent bits 31-24 of the base and offset values.
446 */
447int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
448 u64 *hole_offset, u64 *hole_size)
449{
450 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
451
452 /* only revE and later have the DRAM Hole Address Register */
a4b4bedc 453 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
454 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
455 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
456 return 1;
457 }
458
bc21fa57 459 /* valid for Fam10h and above */
a4b4bedc 460 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 461 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
462 return 1;
463 }
464
c8e518d5 465 if (!dhar_valid(pvt)) {
956b9ba1
JP
466 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
467 pvt->mc_node_id);
e2ce7255
DT
468 return 1;
469 }
470
471 /* This node has Memory Hoisting */
472
473 /* +------------------+--------------------+--------------------+-----
474 * | memory | DRAM hole | relocated |
475 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
476 * | | | DRAM hole |
477 * | | | [0x100000000, |
478 * | | | (0x100000000+ |
479 * | | | (0xffffffff-x))] |
480 * +------------------+--------------------+--------------------+-----
481 *
482 * Above is a diagram of physical memory showing the DRAM hole and the
483 * relocated addresses from the DRAM hole. As shown, the DRAM hole
484 * starts at address x (the base address) and extends through address
485 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
486 * addresses in the hole so that they start at 0x100000000.
487 */
488
1f31677e
BP
489 *hole_base = dhar_base(pvt);
490 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255 491
a4b4bedc
BP
492 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
493 : k8_dhar_offset(pvt);
e2ce7255 494
956b9ba1
JP
495 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
496 pvt->mc_node_id, (unsigned long)*hole_base,
497 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
498
499 return 0;
500}
501EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
502
93c2df58
DT
503/*
504 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
505 * assumed that sys_addr maps to the node given by mci.
506 *
507 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
508 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
509 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
510 * then it is also involved in translating a SysAddr to a DramAddr. Sections
511 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
512 * These parts of the documentation are unclear. I interpret them as follows:
513 *
514 * When node n receives a SysAddr, it processes the SysAddr as follows:
515 *
516 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
517 * Limit registers for node n. If the SysAddr is not within the range
518 * specified by the base and limit values, then node n ignores the Sysaddr
519 * (since it does not map to node n). Otherwise continue to step 2 below.
520 *
521 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
522 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
523 * the range of relocated addresses (starting at 0x100000000) from the DRAM
524 * hole. If not, skip to step 3 below. Else get the value of the
525 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
526 * offset defined by this value from the SysAddr.
527 *
528 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
529 * Base register for node n. To obtain the DramAddr, subtract the base
530 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
531 */
532static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
533{
7f19bf75 534 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 535 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 536 int ret;
93c2df58 537
7f19bf75 538 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
539
540 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
541 &hole_size);
542 if (!ret) {
1f31677e
BP
543 if ((sys_addr >= (1ULL << 32)) &&
544 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
545 /* use DHAR to translate SysAddr to DramAddr */
546 dram_addr = sys_addr - hole_offset;
547
956b9ba1
JP
548 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
549 (unsigned long)sys_addr,
550 (unsigned long)dram_addr);
93c2df58
DT
551
552 return dram_addr;
553 }
554 }
555
556 /*
557 * Translate the SysAddr to a DramAddr as shown near the start of
558 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
559 * only deals with 40-bit values. Therefore we discard bits 63-40 of
560 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
561 * discard are all 1s. Otherwise the bits we discard are all 0s. See
562 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
563 * Programmer's Manual Volume 1 Application Programming.
564 */
10ef6b0d 565 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
93c2df58 566
956b9ba1
JP
567 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
568 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
569 return dram_addr;
570}
571
572/*
573 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
574 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
575 * for node interleaving.
576 */
577static int num_node_interleave_bits(unsigned intlv_en)
578{
579 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
580 int n;
581
582 BUG_ON(intlv_en > 7);
583 n = intlv_shift_table[intlv_en];
584 return n;
585}
586
587/* Translate the DramAddr given by @dram_addr to an InputAddr. */
588static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
589{
590 struct amd64_pvt *pvt;
591 int intlv_shift;
592 u64 input_addr;
593
594 pvt = mci->pvt_info;
595
596 /*
597 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
598 * concerning translating a DramAddr to an InputAddr.
599 */
7f19bf75 600 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
10ef6b0d 601 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
f678b8cc 602 (dram_addr & 0xfff);
93c2df58 603
956b9ba1
JP
604 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
605 intlv_shift, (unsigned long)dram_addr,
606 (unsigned long)input_addr);
93c2df58
DT
607
608 return input_addr;
609}
610
611/*
612 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
613 * assumed that @sys_addr maps to the node given by mci.
614 */
615static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
616{
617 u64 input_addr;
618
619 input_addr =
620 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
621
956b9ba1
JP
622 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
623 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
624
625 return input_addr;
626}
627
93c2df58
DT
628/* Map the Error address to a PAGE and PAGE OFFSET. */
629static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 630 struct err_info *err)
93c2df58 631{
33ca0643
BP
632 err->page = (u32) (error_address >> PAGE_SHIFT);
633 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
634}
635
636/*
637 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
638 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
639 * of a node that detected an ECC memory error. mci represents the node that
640 * the error address maps to (possibly different from the node that detected
641 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
642 * error.
643 */
644static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
645{
646 int csrow;
647
648 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
649
650 if (csrow == -1)
24f9a7fe
BP
651 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
652 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
653 return csrow;
654}
e2ce7255 655
bfc04aec 656static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 657
2da11654
DT
658/*
659 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
660 * are ECC capable.
661 */
d1ea71cd 662static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
2da11654 663{
cb328507 664 u8 bit;
1f6189ed 665 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 666
a4b4bedc 667 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
668 ? 19
669 : 17;
670
584fcff4 671 if (pvt->dclr0 & BIT(bit))
2da11654
DT
672 edac_cap = EDAC_FLAG_SECDED;
673
674 return edac_cap;
675}
676
d1ea71cd 677static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 678
d1ea71cd 679static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
68798e17 680{
956b9ba1 681 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 682
956b9ba1
JP
683 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
684 (dclr & BIT(16)) ? "un" : "",
685 (dclr & BIT(19)) ? "yes" : "no");
68798e17 686
956b9ba1
JP
687 edac_dbg(1, " PAR/ERR parity: %s\n",
688 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 689
a4b4bedc 690 if (pvt->fam == 0x10)
956b9ba1
JP
691 edac_dbg(1, " DCT 128bit mode width: %s\n",
692 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 693
956b9ba1
JP
694 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
695 (dclr & BIT(12)) ? "yes" : "no",
696 (dclr & BIT(13)) ? "yes" : "no",
697 (dclr & BIT(14)) ? "yes" : "no",
698 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
699}
700
2da11654 701/* Display and decode various NB registers for debug purposes. */
b2b0c605 702static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 703{
956b9ba1 704 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 705
956b9ba1
JP
706 edac_dbg(1, " NB two channel DRAM capable: %s\n",
707 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 708
956b9ba1
JP
709 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
710 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
711 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17 712
d1ea71cd 713 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
2da11654 714
956b9ba1 715 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 716
956b9ba1
JP
717 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
718 pvt->dhar, dhar_base(pvt),
a4b4bedc
BP
719 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
720 : f10_dhar_offset(pvt));
2da11654 721
956b9ba1 722 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 723
d1ea71cd 724 debug_display_dimm_sizes(pvt, 0);
4d796364 725
8de1d91e 726 /* everything below this point is Fam10h and above */
a4b4bedc 727 if (pvt->fam == 0xf)
2da11654 728 return;
4d796364 729
d1ea71cd 730 debug_display_dimm_sizes(pvt, 1);
2da11654 731
a3b7db09 732 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 733
8de1d91e 734 /* Only if NOT ganged does dclr1 have valid info */
68798e17 735 if (!dct_ganging_enabled(pvt))
d1ea71cd 736 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
2da11654
DT
737}
738
94be4bff 739/*
18b94f66 740 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 741 */
11c75ead 742static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 743{
18b94f66 744 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
745 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
746 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
18b94f66
AG
747 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
748 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
749 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
9d858bb1 750 } else {
11c75ead
BP
751 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
752 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
753 }
754}
755
756/*
11c75ead 757 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 758 */
b2b0c605 759static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 760{
11c75ead 761 int cs;
94be4bff 762
11c75ead 763 prep_chip_selects(pvt);
94be4bff 764
11c75ead 765 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
766 int reg0 = DCSB0 + (cs * 4);
767 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
768 u32 *base0 = &pvt->csels[0].csbases[cs];
769 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 770
11c75ead 771 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
772 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
773 cs, *base0, reg0);
94be4bff 774
a4b4bedc 775 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
11c75ead 776 continue;
b2b0c605 777
11c75ead 778 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
779 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
780 cs, *base1, reg1);
94be4bff
DT
781 }
782
11c75ead 783 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
784 int reg0 = DCSM0 + (cs * 4);
785 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
786 u32 *mask0 = &pvt->csels[0].csmasks[cs];
787 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 788
11c75ead 789 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
790 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
791 cs, *mask0, reg0);
94be4bff 792
a4b4bedc 793 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
11c75ead 794 continue;
b2b0c605 795
11c75ead 796 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
797 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
798 cs, *mask1, reg1);
94be4bff
DT
799 }
800}
801
d1ea71cd 802static enum mem_type determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
803{
804 enum mem_type type;
805
cb328507 806 /* F15h supports only DDR3 */
a4b4bedc 807 if (pvt->fam >= 0x15)
cb328507 808 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
a4b4bedc 809 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
810 if (pvt->dchr0 & DDR3_MODE)
811 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
812 else
813 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 814 } else {
94be4bff
DT
815 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
816 }
817
24f9a7fe 818 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
819
820 return type;
821}
822
cb328507 823/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
824static int k8_early_channel_count(struct amd64_pvt *pvt)
825{
cb328507 826 int flag;
ddff876d 827
9f56da0e 828 if (pvt->ext_model >= K8_REV_F)
ddff876d 829 /* RevF (NPT) and later */
41d8bfab 830 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 831 else
ddff876d
DT
832 /* RevE and earlier */
833 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
834
835 /* not used */
836 pvt->dclr1 = 0;
837
838 return (flag) ? 2 : 1;
839}
840
70046624 841/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
a4b4bedc 842static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
ddff876d 843{
c1ae6830 844 u64 addr;
70046624
BP
845 u8 start_bit = 1;
846 u8 end_bit = 47;
847
a4b4bedc 848 if (pvt->fam == 0xf) {
70046624
BP
849 start_bit = 3;
850 end_bit = 39;
851 }
852
10ef6b0d 853 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
c1ae6830
BP
854
855 /*
856 * Erratum 637 workaround
857 */
a4b4bedc 858 if (pvt->fam == 0x15) {
c1ae6830
BP
859 struct amd64_pvt *pvt;
860 u64 cc6_base, tmp_addr;
861 u32 tmp;
8b84c8df
DB
862 u16 mce_nid;
863 u8 intlv_en;
c1ae6830 864
10ef6b0d 865 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
c1ae6830
BP
866 return addr;
867
868 mce_nid = amd_get_nb_id(m->extcpu);
869 pvt = mcis[mce_nid]->pvt_info;
870
871 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
872 intlv_en = tmp >> 21 & 0x7;
873
874 /* add [47:27] + 3 trailing bits */
10ef6b0d 875 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
c1ae6830
BP
876
877 /* reverse and add DramIntlvEn */
878 cc6_base |= intlv_en ^ 0x7;
879
880 /* pin at [47:24] */
881 cc6_base <<= 24;
882
883 if (!intlv_en)
10ef6b0d 884 return cc6_base | (addr & GENMASK_ULL(23, 0));
c1ae6830
BP
885
886 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
887
888 /* faster log2 */
10ef6b0d 889 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
c1ae6830
BP
890
891 /* OR DramIntlvSel into bits [14:12] */
10ef6b0d 892 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
c1ae6830
BP
893
894 /* add remaining [11:0] bits from original MC4_ADDR */
10ef6b0d 895 tmp_addr |= addr & GENMASK_ULL(11, 0);
c1ae6830
BP
896
897 return cc6_base | tmp_addr;
898 }
899
900 return addr;
ddff876d
DT
901}
902
e2c0bffe
DB
903static struct pci_dev *pci_get_related_function(unsigned int vendor,
904 unsigned int device,
905 struct pci_dev *related)
906{
907 struct pci_dev *dev = NULL;
908
909 while ((dev = pci_get_device(vendor, device, dev))) {
910 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
911 (dev->bus->number == related->bus->number) &&
912 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
913 break;
914 }
915
916 return dev;
917}
918
7f19bf75 919static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 920{
e2c0bffe 921 struct amd_northbridge *nb;
18b94f66
AG
922 struct pci_dev *f1 = NULL;
923 unsigned int pci_func;
71d2a32e 924 int off = range << 3;
e2c0bffe 925 u32 llim;
ddff876d 926
7f19bf75
BP
927 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
928 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 929
18b94f66 930 if (pvt->fam == 0xf)
7f19bf75 931 return;
ddff876d 932
7f19bf75
BP
933 if (!dram_rw(pvt, range))
934 return;
ddff876d 935
7f19bf75
BP
936 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
937 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 938
e2c0bffe 939 /* F15h: factor in CC6 save area by reading dst node's limit reg */
18b94f66 940 if (pvt->fam != 0x15)
e2c0bffe 941 return;
f08e457c 942
e2c0bffe
DB
943 nb = node_to_amd_nb(dram_dst_node(pvt, range));
944 if (WARN_ON(!nb))
945 return;
f08e457c 946
18b94f66
AG
947 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
948 : PCI_DEVICE_ID_AMD_15H_NB_F1;
949
950 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
e2c0bffe
DB
951 if (WARN_ON(!f1))
952 return;
f08e457c 953
e2c0bffe 954 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 955
10ef6b0d 956 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
f08e457c 957
e2c0bffe
DB
958 /* {[39:27],111b} */
959 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 960
10ef6b0d 961 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
f08e457c 962
e2c0bffe
DB
963 /* [47:40] */
964 pvt->ranges[range].lim.hi |= llim >> 13;
965
966 pci_dev_put(f1);
ddff876d
DT
967}
968
f192c7b1 969static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 970 struct err_info *err)
ddff876d 971{
f192c7b1 972 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 973
33ca0643 974 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
975
976 /*
977 * Find out which node the error address belongs to. This may be
978 * different from the node that detected the error.
979 */
33ca0643
BP
980 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
981 if (!err->src_mci) {
ab5a503c
MCC
982 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
983 (unsigned long)sys_addr);
33ca0643 984 err->err_code = ERR_NODE;
ab5a503c
MCC
985 return;
986 }
987
988 /* Now map the sys_addr to a CSROW */
33ca0643
BP
989 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
990 if (err->csrow < 0) {
991 err->err_code = ERR_CSROW;
ab5a503c
MCC
992 return;
993 }
994
ddff876d 995 /* CHIPKILL enabled */
f192c7b1 996 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
997 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
998 if (err->channel < 0) {
ddff876d
DT
999 /*
1000 * Syndrome didn't map, so we don't know which of the
1001 * 2 DIMMs is in error. So we need to ID 'both' of them
1002 * as suspect.
1003 */
33ca0643 1004 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1005 "possible error reporting race\n",
33ca0643
BP
1006 err->syndrome);
1007 err->err_code = ERR_CHANNEL;
ddff876d
DT
1008 return;
1009 }
1010 } else {
1011 /*
1012 * non-chipkill ecc mode
1013 *
1014 * The k8 documentation is unclear about how to determine the
1015 * channel number when using non-chipkill memory. This method
1016 * was obtained from email communication with someone at AMD.
1017 * (Wish the email was placed in this comment - norsk)
1018 */
33ca0643 1019 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1020 }
ddff876d
DT
1021}
1022
41d8bfab 1023static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1024{
41d8bfab 1025 unsigned shift = 0;
ddff876d 1026
41d8bfab
BP
1027 if (i <= 2)
1028 shift = i;
1029 else if (!(i & 0x1))
1030 shift = i >> 1;
1433eb99 1031 else
41d8bfab 1032 shift = (i + 1) >> 1;
ddff876d 1033
41d8bfab
BP
1034 return 128 << (shift + !!dct_width);
1035}
1036
1037static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1038 unsigned cs_mode)
1039{
1040 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1041
1042 if (pvt->ext_model >= K8_REV_F) {
1043 WARN_ON(cs_mode > 11);
1044 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1045 }
1046 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1047 unsigned diff;
41d8bfab
BP
1048 WARN_ON(cs_mode > 10);
1049
11b0a314
BP
1050 /*
1051 * the below calculation, besides trying to win an obfuscated C
1052 * contest, maps cs_mode values to DIMM chip select sizes. The
1053 * mappings are:
1054 *
1055 * cs_mode CS size (mb)
1056 * ======= ============
1057 * 0 32
1058 * 1 64
1059 * 2 128
1060 * 3 128
1061 * 4 256
1062 * 5 512
1063 * 6 256
1064 * 7 512
1065 * 8 1024
1066 * 9 1024
1067 * 10 2048
1068 *
1069 * Basically, it calculates a value with which to shift the
1070 * smallest CS size of 32MB.
1071 *
1072 * ddr[23]_cs_size have a similar purpose.
1073 */
1074 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1075
1076 return 32 << (cs_mode - diff);
41d8bfab
BP
1077 }
1078 else {
1079 WARN_ON(cs_mode > 6);
1080 return 32 << cs_mode;
1081 }
ddff876d
DT
1082}
1083
1afd3c98
DT
1084/*
1085 * Get the number of DCT channels in use.
1086 *
1087 * Return:
1088 * number of Memory Channels in operation
1089 * Pass back:
1090 * contents of the DCL0_LOW register
1091 */
7d20d14d 1092static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1093{
6ba5dcdc 1094 int i, j, channels = 0;
1afd3c98 1095
7d20d14d 1096 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
a4b4bedc 1097 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1098 return 2;
1afd3c98
DT
1099
1100 /*
d16149e8
BP
1101 * Need to check if in unganged mode: In such, there are 2 channels,
1102 * but they are not in 128 bit mode and thus the above 'dclr0' status
1103 * bit will be OFF.
1afd3c98
DT
1104 *
1105 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1106 * their CSEnable bit on. If so, then SINGLE DIMM case.
1107 */
956b9ba1 1108 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1109
1afd3c98
DT
1110 /*
1111 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1112 * is more than just one DIMM present in unganged mode. Need to check
1113 * both controllers since DIMMs can be placed in either one.
1114 */
525a1b20
BP
1115 for (i = 0; i < 2; i++) {
1116 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1117
57a30854
WW
1118 for (j = 0; j < 4; j++) {
1119 if (DBAM_DIMM(j, dbam) > 0) {
1120 channels++;
1121 break;
1122 }
1123 }
1afd3c98
DT
1124 }
1125
d16149e8
BP
1126 if (channels > 2)
1127 channels = 2;
1128
24f9a7fe 1129 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1130
1131 return channels;
1afd3c98
DT
1132}
1133
41d8bfab 1134static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1135{
41d8bfab
BP
1136 unsigned shift = 0;
1137 int cs_size = 0;
1138
1139 if (i == 0 || i == 3 || i == 4)
1140 cs_size = -1;
1141 else if (i <= 2)
1142 shift = i;
1143 else if (i == 12)
1144 shift = 7;
1145 else if (!(i & 0x1))
1146 shift = i >> 1;
1147 else
1148 shift = (i + 1) >> 1;
1149
1150 if (cs_size != -1)
1151 cs_size = (128 * (1 << !!dct_width)) << shift;
1152
1153 return cs_size;
1154}
1155
1156static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1157 unsigned cs_mode)
1158{
1159 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1160
1161 WARN_ON(cs_mode > 11);
1433eb99
BP
1162
1163 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1164 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1165 else
41d8bfab
BP
1166 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1167}
1168
1169/*
1170 * F15h supports only 64bit DCT interfaces
1171 */
1172static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1173 unsigned cs_mode)
1174{
1175 WARN_ON(cs_mode > 12);
1433eb99 1176
41d8bfab 1177 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1178}
1179
94c1acf2 1180/*
18b94f66 1181 * F16h and F15h model 30h have only limited cs_modes.
94c1acf2
AG
1182 */
1183static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1184 unsigned cs_mode)
1185{
1186 WARN_ON(cs_mode > 12);
1187
1188 if (cs_mode == 6 || cs_mode == 8 ||
1189 cs_mode == 9 || cs_mode == 12)
1190 return -1;
1191 else
1192 return ddr3_cs_size(cs_mode, false);
1193}
1194
5a5d2371 1195static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1196{
6163b5d4 1197
a4b4bedc 1198 if (pvt->fam == 0xf)
5a5d2371
BP
1199 return;
1200
78da121e 1201 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1202 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1203 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1204
956b9ba1
JP
1205 edac_dbg(0, " DCTs operate in %s mode\n",
1206 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1207
1208 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1209 edac_dbg(0, " Address range split per DCT: %s\n",
1210 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1211
956b9ba1
JP
1212 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1213 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1214 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1215
956b9ba1
JP
1216 edac_dbg(0, " channel interleave: %s, "
1217 "interleave bits selector: 0x%x\n",
1218 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1219 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1220 }
1221
78da121e 1222 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1223}
1224
18b94f66
AG
1225/*
1226 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1227 * 2.10.12 Memory Interleaving Modes).
1228 */
1229static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1230 u8 intlv_en, int num_dcts_intlv,
1231 u32 dct_sel)
1232{
1233 u8 channel = 0;
1234 u8 select;
1235
1236 if (!(intlv_en))
1237 return (u8)(dct_sel);
1238
1239 if (num_dcts_intlv == 2) {
1240 select = (sys_addr >> 8) & 0x3;
1241 channel = select ? 0x3 : 0;
1242 } else if (num_dcts_intlv == 4)
1243 channel = (sys_addr >> 8) & 0x7;
1244
1245 return channel;
1246}
1247
f71d0a05 1248/*
229a7a11 1249 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1250 * Interleaving Modes.
1251 */
b15f0fca 1252static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1253 bool hi_range_sel, u8 intlv_en)
6163b5d4 1254{
151fa71c 1255 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1256
1257 if (dct_ganging_enabled(pvt))
229a7a11 1258 return 0;
6163b5d4 1259
229a7a11
BP
1260 if (hi_range_sel)
1261 return dct_sel_high;
6163b5d4 1262
229a7a11
BP
1263 /*
1264 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1265 */
1266 if (dct_interleave_enabled(pvt)) {
1267 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1268
1269 /* return DCT select function: 0=DCT0, 1=DCT1 */
1270 if (!intlv_addr)
1271 return sys_addr >> 6 & 1;
1272
1273 if (intlv_addr & 0x2) {
1274 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1275 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1276
1277 return ((sys_addr >> shift) & 1) ^ temp;
1278 }
1279
1280 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1281 }
1282
1283 if (dct_high_range_enabled(pvt))
1284 return ~dct_sel_high & 1;
6163b5d4
DT
1285
1286 return 0;
1287}
1288
c8e518d5 1289/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1290static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1291 u64 sys_addr, bool hi_rng,
1292 u32 dct_sel_base_addr)
6163b5d4
DT
1293{
1294 u64 chan_off;
c8e518d5
BP
1295 u64 dram_base = get_dram_base(pvt, range);
1296 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1297 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1298
c8e518d5
BP
1299 if (hi_rng) {
1300 /*
1301 * if
1302 * base address of high range is below 4Gb
1303 * (bits [47:27] at [31:11])
1304 * DRAM address space on this DCT is hoisted above 4Gb &&
1305 * sys_addr > 4Gb
1306 *
1307 * remove hole offset from sys_addr
1308 * else
1309 * remove high range offset from sys_addr
1310 */
1311 if ((!(dct_sel_base_addr >> 16) ||
1312 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1313 dhar_valid(pvt) &&
c8e518d5 1314 (sys_addr >= BIT_64(32)))
bc21fa57 1315 chan_off = hole_off;
6163b5d4
DT
1316 else
1317 chan_off = dct_sel_base_off;
1318 } else {
c8e518d5
BP
1319 /*
1320 * if
1321 * we have a valid hole &&
1322 * sys_addr > 4Gb
1323 *
1324 * remove hole
1325 * else
1326 * remove dram base to normalize to DCT address
1327 */
972ea17a 1328 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1329 chan_off = hole_off;
6163b5d4 1330 else
c8e518d5 1331 chan_off = dram_base;
6163b5d4
DT
1332 }
1333
10ef6b0d 1334 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
6163b5d4
DT
1335}
1336
6163b5d4
DT
1337/*
1338 * checks if the csrow passed in is marked as SPARED, if so returns the new
1339 * spare row
1340 */
11c75ead 1341static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1342{
614ec9d8
BP
1343 int tmp_cs;
1344
1345 if (online_spare_swap_done(pvt, dct) &&
1346 csrow == online_spare_bad_dramcs(pvt, dct)) {
1347
1348 for_each_chip_select(tmp_cs, dct, pvt) {
1349 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1350 csrow = tmp_cs;
1351 break;
1352 }
1353 }
6163b5d4
DT
1354 }
1355 return csrow;
1356}
1357
1358/*
1359 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1360 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1361 *
1362 * Return:
1363 * -EINVAL: NOT FOUND
1364 * 0..csrow = Chip-Select Row
1365 */
c7e5301a 1366static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1367{
1368 struct mem_ctl_info *mci;
1369 struct amd64_pvt *pvt;
11c75ead 1370 u64 cs_base, cs_mask;
6163b5d4
DT
1371 int cs_found = -EINVAL;
1372 int csrow;
1373
cc4d8860 1374 mci = mcis[nid];
6163b5d4
DT
1375 if (!mci)
1376 return cs_found;
1377
1378 pvt = mci->pvt_info;
1379
956b9ba1 1380 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1381
11c75ead
BP
1382 for_each_chip_select(csrow, dct, pvt) {
1383 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1384 continue;
1385
11c75ead 1386 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1387
956b9ba1
JP
1388 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1389 csrow, cs_base, cs_mask);
6163b5d4 1390
11c75ead 1391 cs_mask = ~cs_mask;
6163b5d4 1392
956b9ba1
JP
1393 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1394 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1395
11c75ead 1396 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
18b94f66
AG
1397 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1398 cs_found = csrow;
1399 break;
1400 }
11c75ead 1401 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1402
956b9ba1 1403 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1404 break;
1405 }
1406 }
1407 return cs_found;
1408}
1409
95b0ef55
BP
1410/*
1411 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1412 * swapped with a region located at the bottom of memory so that the GPU can use
1413 * the interleaved region and thus two channels.
1414 */
b15f0fca 1415static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1416{
1417 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1418
a4b4bedc 1419 if (pvt->fam == 0x10) {
95b0ef55 1420 /* only revC3 and revE have that feature */
a4b4bedc 1421 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
95b0ef55
BP
1422 return sys_addr;
1423 }
1424
1425 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1426
1427 if (!(swap_reg & 0x1))
1428 return sys_addr;
1429
1430 swap_base = (swap_reg >> 3) & 0x7f;
1431 swap_limit = (swap_reg >> 11) & 0x7f;
1432 rgn_size = (swap_reg >> 20) & 0x7f;
1433 tmp_addr = sys_addr >> 27;
1434
1435 if (!(sys_addr >> 34) &&
1436 (((tmp_addr >= swap_base) &&
1437 (tmp_addr <= swap_limit)) ||
1438 (tmp_addr < rgn_size)))
1439 return sys_addr ^ (u64)swap_base << 27;
1440
1441 return sys_addr;
1442}
1443
f71d0a05 1444/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1445static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1446 u64 sys_addr, int *chan_sel)
f71d0a05 1447{
229a7a11 1448 int cs_found = -EINVAL;
c8e518d5 1449 u64 chan_addr;
5d4b58e8 1450 u32 dct_sel_base;
11c75ead 1451 u8 channel;
229a7a11 1452 bool high_range = false;
f71d0a05 1453
7f19bf75 1454 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1455 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1456 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1457
956b9ba1
JP
1458 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1459 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1460
355fba60
BP
1461 if (dhar_valid(pvt) &&
1462 dhar_base(pvt) <= sys_addr &&
1463 sys_addr < BIT_64(32)) {
1464 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1465 sys_addr);
1466 return -EINVAL;
1467 }
1468
f030ddfb 1469 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1470 return -EINVAL;
1471
b15f0fca 1472 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1473
f71d0a05
DT
1474 dct_sel_base = dct_sel_baseaddr(pvt);
1475
1476 /*
1477 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1478 * select between DCT0 and DCT1.
1479 */
1480 if (dct_high_range_enabled(pvt) &&
1481 !dct_ganging_enabled(pvt) &&
1482 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1483 high_range = true;
f71d0a05 1484
b15f0fca 1485 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1486
b15f0fca 1487 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1488 high_range, dct_sel_base);
f71d0a05 1489
e2f79dbd
BP
1490 /* Remove node interleaving, see F1x120 */
1491 if (intlv_en)
1492 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1493 (chan_addr & 0xfff);
f71d0a05 1494
5d4b58e8 1495 /* remove channel interleave */
f71d0a05
DT
1496 if (dct_interleave_enabled(pvt) &&
1497 !dct_high_range_enabled(pvt) &&
1498 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1499
1500 if (dct_sel_interleave_addr(pvt) != 1) {
1501 if (dct_sel_interleave_addr(pvt) == 0x3)
1502 /* hash 9 */
1503 chan_addr = ((chan_addr >> 10) << 9) |
1504 (chan_addr & 0x1ff);
1505 else
1506 /* A[6] or hash 6 */
1507 chan_addr = ((chan_addr >> 7) << 6) |
1508 (chan_addr & 0x3f);
1509 } else
1510 /* A[12] */
1511 chan_addr = ((chan_addr >> 13) << 12) |
1512 (chan_addr & 0xfff);
f71d0a05
DT
1513 }
1514
956b9ba1 1515 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1516
b15f0fca 1517 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1518
33ca0643 1519 if (cs_found >= 0)
f71d0a05 1520 *chan_sel = channel;
33ca0643 1521
f71d0a05
DT
1522 return cs_found;
1523}
1524
18b94f66
AG
1525static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1526 u64 sys_addr, int *chan_sel)
1527{
1528 int cs_found = -EINVAL;
1529 int num_dcts_intlv = 0;
1530 u64 chan_addr, chan_offset;
1531 u64 dct_base, dct_limit;
1532 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1533 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1534
1535 u64 dhar_offset = f10_dhar_offset(pvt);
1536 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1537 u8 node_id = dram_dst_node(pvt, range);
1538 u8 intlv_en = dram_intlv_en(pvt, range);
1539
1540 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1541 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1542
1543 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1544 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1545
1546 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1547 range, sys_addr, get_dram_limit(pvt, range));
1548
1549 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1550 !(get_dram_limit(pvt, range) >= sys_addr))
1551 return -EINVAL;
1552
1553 if (dhar_valid(pvt) &&
1554 dhar_base(pvt) <= sys_addr &&
1555 sys_addr < BIT_64(32)) {
1556 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1557 sys_addr);
1558 return -EINVAL;
1559 }
1560
1561 /* Verify sys_addr is within DCT Range. */
4fc06b31
AG
1562 dct_base = (u64) dct_sel_baseaddr(pvt);
1563 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
18b94f66
AG
1564
1565 if (!(dct_cont_base_reg & BIT(0)) &&
4fc06b31
AG
1566 !(dct_base <= (sys_addr >> 27) &&
1567 dct_limit >= (sys_addr >> 27)))
18b94f66
AG
1568 return -EINVAL;
1569
1570 /* Verify number of dct's that participate in channel interleaving. */
1571 num_dcts_intlv = (int) hweight8(intlv_en);
1572
1573 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1574 return -EINVAL;
1575
1576 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1577 num_dcts_intlv, dct_sel);
1578
1579 /* Verify we stay within the MAX number of channels allowed */
7f3f5240 1580 if (channel > 3)
18b94f66
AG
1581 return -EINVAL;
1582
1583 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1584
1585 /* Get normalized DCT addr */
1586 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1587 chan_offset = dhar_offset;
1588 else
4fc06b31 1589 chan_offset = dct_base << 27;
18b94f66
AG
1590
1591 chan_addr = sys_addr - chan_offset;
1592
1593 /* remove channel interleave */
1594 if (num_dcts_intlv == 2) {
1595 if (intlv_addr == 0x4)
1596 chan_addr = ((chan_addr >> 9) << 8) |
1597 (chan_addr & 0xff);
1598 else if (intlv_addr == 0x5)
1599 chan_addr = ((chan_addr >> 10) << 9) |
1600 (chan_addr & 0x1ff);
1601 else
1602 return -EINVAL;
1603
1604 } else if (num_dcts_intlv == 4) {
1605 if (intlv_addr == 0x4)
1606 chan_addr = ((chan_addr >> 10) << 8) |
1607 (chan_addr & 0xff);
1608 else if (intlv_addr == 0x5)
1609 chan_addr = ((chan_addr >> 11) << 9) |
1610 (chan_addr & 0x1ff);
1611 else
1612 return -EINVAL;
1613 }
1614
1615 if (dct_offset_en) {
1616 amd64_read_pci_cfg(pvt->F1,
1617 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1618 &tmp);
4fc06b31 1619 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
18b94f66
AG
1620 }
1621
1622 f15h_select_dct(pvt, channel);
1623
1624 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1625
1626 /*
1627 * Find Chip select:
1628 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1629 * there is support for 4 DCT's, but only 2 are currently functional.
1630 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1631 * pvt->csels[1]. So we need to use '1' here to get correct info.
1632 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1633 */
1634 alias_channel = (channel == 3) ? 1 : channel;
1635
1636 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1637
1638 if (cs_found >= 0)
1639 *chan_sel = alias_channel;
1640
1641 return cs_found;
1642}
1643
1644static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1645 u64 sys_addr,
1646 int *chan_sel)
f71d0a05 1647{
e761359a
BP
1648 int cs_found = -EINVAL;
1649 unsigned range;
f71d0a05 1650
7f19bf75 1651 for (range = 0; range < DRAM_RANGES; range++) {
7f19bf75 1652 if (!dram_rw(pvt, range))
f71d0a05
DT
1653 continue;
1654
18b94f66
AG
1655 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1656 cs_found = f15_m30h_match_to_this_node(pvt, range,
1657 sys_addr,
1658 chan_sel);
f71d0a05 1659
18b94f66
AG
1660 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1661 (get_dram_limit(pvt, range) >= sys_addr)) {
b15f0fca 1662 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1663 sys_addr, chan_sel);
f71d0a05
DT
1664 if (cs_found >= 0)
1665 break;
1666 }
1667 }
1668 return cs_found;
1669}
1670
1671/*
bdc30a0c
BP
1672 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1673 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1674 *
bdc30a0c
BP
1675 * The @sys_addr is usually an error address received from the hardware
1676 * (MCX_ADDR).
f71d0a05 1677 */
b15f0fca 1678static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1679 struct err_info *err)
f71d0a05
DT
1680{
1681 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1682
33ca0643 1683 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1684
33ca0643
BP
1685 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1686 if (err->csrow < 0) {
1687 err->err_code = ERR_CSROW;
bdc30a0c
BP
1688 return;
1689 }
1690
bdc30a0c
BP
1691 /*
1692 * We need the syndromes for channel detection only when we're
1693 * ganged. Otherwise @chan should already contain the channel at
1694 * this point.
1695 */
a97fa68e 1696 if (dct_ganging_enabled(pvt))
33ca0643 1697 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1698}
1699
f71d0a05 1700/*
8566c4df 1701 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1702 * CSROWs
f71d0a05 1703 */
d1ea71cd 1704static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1705{
bb89f5a0 1706 int dimm, size0, size1;
525a1b20
BP
1707 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1708 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1709
a4b4bedc 1710 if (pvt->fam == 0xf) {
8566c4df 1711 /* K8 families < revF not supported yet */
1433eb99 1712 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1713 return;
1714 else
1715 WARN_ON(ctrl != 0);
1716 }
1717
4d796364 1718 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1719 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1720 : pvt->csels[0].csbases;
f71d0a05 1721
956b9ba1
JP
1722 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1723 ctrl, dbam);
f71d0a05 1724
8566c4df
BP
1725 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1726
f71d0a05
DT
1727 /* Dump memory sizes for DIMM and its CSROWs */
1728 for (dimm = 0; dimm < 4; dimm++) {
1729
1730 size0 = 0;
11c75ead 1731 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1732 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1733 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1734
1735 size1 = 0;
11c75ead 1736 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1737 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1738 DBAM_DIMM(dimm, dbam));
f71d0a05 1739
24f9a7fe 1740 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1741 dimm * 2, size0,
1742 dimm * 2 + 1, size1);
f71d0a05
DT
1743 }
1744}
1745
d1ea71cd 1746static struct amd64_family_type family_types[] = {
4d37607a 1747 [K8_CPUS] = {
0092b20d 1748 .ctl_name = "K8",
8d5b5d9c
BP
1749 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1750 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1751 .ops = {
1433eb99 1752 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1753 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1754 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1755 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1756 }
1757 },
1758 [F10_CPUS] = {
0092b20d 1759 .ctl_name = "F10h",
8d5b5d9c
BP
1760 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1761 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1762 .ops = {
7d20d14d 1763 .early_channel_count = f1x_early_channel_count,
b15f0fca 1764 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1765 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1766 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1767 }
1768 },
1769 [F15_CPUS] = {
1770 .ctl_name = "F15h",
df71a053
BP
1771 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1772 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1773 .ops = {
7d20d14d 1774 .early_channel_count = f1x_early_channel_count,
b15f0fca 1775 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1776 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1777 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1778 }
1779 },
18b94f66
AG
1780 [F15_M30H_CPUS] = {
1781 .ctl_name = "F15h_M30h",
1782 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
1783 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
1784 .ops = {
1785 .early_channel_count = f1x_early_channel_count,
1786 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1787 .dbam_to_cs = f16_dbam_to_chip_select,
1788 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1789 }
1790 },
94c1acf2
AG
1791 [F16_CPUS] = {
1792 .ctl_name = "F16h",
1793 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1794 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1795 .ops = {
1796 .early_channel_count = f1x_early_channel_count,
1797 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1798 .dbam_to_cs = f16_dbam_to_chip_select,
1799 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1800 }
1801 },
4d37607a
DT
1802};
1803
b1289d6f 1804/*
bfc04aec
BP
1805 * These are tables of eigenvectors (one per line) which can be used for the
1806 * construction of the syndrome tables. The modified syndrome search algorithm
1807 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1808 *
bfc04aec 1809 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1810 */
c7e5301a 1811static const u16 x4_vectors[] = {
bfc04aec
BP
1812 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1813 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1814 0x0001, 0x0002, 0x0004, 0x0008,
1815 0x1013, 0x3032, 0x4044, 0x8088,
1816 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1817 0x4857, 0xc4fe, 0x13cc, 0x3288,
1818 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1819 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1820 0x15c1, 0x2a42, 0x89ac, 0x4758,
1821 0x2b03, 0x1602, 0x4f0c, 0xca08,
1822 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1823 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1824 0x2b87, 0x164e, 0x642c, 0xdc18,
1825 0x40b9, 0x80de, 0x1094, 0x20e8,
1826 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1827 0x11c1, 0x2242, 0x84ac, 0x4c58,
1828 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1829 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1830 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1831 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1832 0x16b3, 0x3d62, 0x4f34, 0x8518,
1833 0x1e2f, 0x391a, 0x5cac, 0xf858,
1834 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1835 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1836 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1837 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1838 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1839 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1840 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1841 0x185d, 0x2ca6, 0x7914, 0x9e28,
1842 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1843 0x4199, 0x82ee, 0x19f4, 0x2e58,
1844 0x4807, 0xc40e, 0x130c, 0x3208,
1845 0x1905, 0x2e0a, 0x5804, 0xac08,
1846 0x213f, 0x132a, 0xadfc, 0x5ba8,
1847 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1848};
1849
c7e5301a 1850static const u16 x8_vectors[] = {
bfc04aec
BP
1851 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1852 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1853 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1854 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1855 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1856 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1857 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1858 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1859 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1860 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1861 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1862 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1863 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1864 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1865 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1866 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1867 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1868 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1869 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1870};
1871
c7e5301a 1872static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 1873 unsigned v_dim)
b1289d6f 1874{
bfc04aec
BP
1875 unsigned int i, err_sym;
1876
1877 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1878 u16 s = syndrome;
d34a6ecd
BP
1879 unsigned v_idx = err_sym * v_dim;
1880 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1881
1882 /* walk over all 16 bits of the syndrome */
1883 for (i = 1; i < (1U << 16); i <<= 1) {
1884
1885 /* if bit is set in that eigenvector... */
1886 if (v_idx < v_end && vectors[v_idx] & i) {
1887 u16 ev_comp = vectors[v_idx++];
1888
1889 /* ... and bit set in the modified syndrome, */
1890 if (s & i) {
1891 /* remove it. */
1892 s ^= ev_comp;
4d37607a 1893
bfc04aec
BP
1894 if (!s)
1895 return err_sym;
1896 }
b1289d6f 1897
bfc04aec
BP
1898 } else if (s & i)
1899 /* can't get to zero, move to next symbol */
1900 break;
1901 }
b1289d6f
DT
1902 }
1903
956b9ba1 1904 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1905 return -1;
1906}
d27bf6fa 1907
bfc04aec
BP
1908static int map_err_sym_to_channel(int err_sym, int sym_size)
1909{
1910 if (sym_size == 4)
1911 switch (err_sym) {
1912 case 0x20:
1913 case 0x21:
1914 return 0;
1915 break;
1916 case 0x22:
1917 case 0x23:
1918 return 1;
1919 break;
1920 default:
1921 return err_sym >> 4;
1922 break;
1923 }
1924 /* x8 symbols */
1925 else
1926 switch (err_sym) {
1927 /* imaginary bits not in a DIMM */
1928 case 0x10:
1929 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1930 err_sym);
1931 return -1;
1932 break;
1933
1934 case 0x11:
1935 return 0;
1936 break;
1937 case 0x12:
1938 return 1;
1939 break;
1940 default:
1941 return err_sym >> 3;
1942 break;
1943 }
1944 return -1;
1945}
1946
1947static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1948{
1949 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1950 int err_sym = -1;
1951
a3b7db09 1952 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1953 err_sym = decode_syndrome(syndrome, x8_vectors,
1954 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1955 pvt->ecc_sym_sz);
1956 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1957 err_sym = decode_syndrome(syndrome, x4_vectors,
1958 ARRAY_SIZE(x4_vectors),
a3b7db09 1959 pvt->ecc_sym_sz);
ad6a32e9 1960 else {
a3b7db09 1961 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1962 return err_sym;
bfc04aec 1963 }
ad6a32e9 1964
a3b7db09 1965 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1966}
1967
33ca0643
BP
1968static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1969 u8 ecc_type)
d27bf6fa 1970{
33ca0643
BP
1971 enum hw_event_mc_err_type err_type;
1972 const char *string;
d27bf6fa 1973
33ca0643
BP
1974 if (ecc_type == 2)
1975 err_type = HW_EVENT_ERR_CORRECTED;
1976 else if (ecc_type == 1)
1977 err_type = HW_EVENT_ERR_UNCORRECTED;
1978 else {
1979 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
1980 return;
1981 }
1982
33ca0643
BP
1983 switch (err->err_code) {
1984 case DECODE_OK:
1985 string = "";
1986 break;
1987 case ERR_NODE:
1988 string = "Failed to map error addr to a node";
1989 break;
1990 case ERR_CSROW:
1991 string = "Failed to map error addr to a csrow";
1992 break;
1993 case ERR_CHANNEL:
1994 string = "unknown syndrome - possible error reporting race";
1995 break;
1996 default:
1997 string = "WTF error";
1998 break;
d27bf6fa 1999 }
33ca0643
BP
2000
2001 edac_mc_handle_error(err_type, mci, 1,
2002 err->page, err->offset, err->syndrome,
2003 err->csrow, err->channel, -1,
2004 string, "");
d27bf6fa
DT
2005}
2006
df781d03 2007static inline void decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2008{
df781d03 2009 struct mem_ctl_info *mci = mcis[node_id];
33ca0643 2010 struct amd64_pvt *pvt = mci->pvt_info;
f192c7b1 2011 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
2012 u8 xec = XEC(m->status, 0x1f);
2013 u16 ec = EC(m->status);
33ca0643
BP
2014 u64 sys_addr;
2015 struct err_info err;
d27bf6fa 2016
66fed2d4 2017 /* Bail out early if this was an 'observed' error */
5980bb9c 2018 if (PP(ec) == NBSL_PP_OBS)
b70ef010 2019 return;
d27bf6fa 2020
ecaf5606
BP
2021 /* Do only ECC errors */
2022 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2023 return;
d27bf6fa 2024
33ca0643
BP
2025 memset(&err, 0, sizeof(err));
2026
a4b4bedc 2027 sys_addr = get_error_address(pvt, m);
33ca0643 2028
ecaf5606 2029 if (ecc_type == 2)
33ca0643
BP
2030 err.syndrome = extract_syndrome(m->status);
2031
2032 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2033
2034 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
2035}
2036
0ec449ee 2037/*
8d5b5d9c 2038 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2039 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2040 */
360b7f3c 2041static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2042{
0ec449ee 2043 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2044 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2045 if (!pvt->F1) {
24f9a7fe
BP
2046 amd64_err("error address map device not found: "
2047 "vendor %x device 0x%x (broken BIOS?)\n",
2048 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2049 return -ENODEV;
0ec449ee
DT
2050 }
2051
2052 /* Reserve the MISC Device */
8d5b5d9c
BP
2053 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2054 if (!pvt->F3) {
2055 pci_dev_put(pvt->F1);
2056 pvt->F1 = NULL;
0ec449ee 2057
24f9a7fe
BP
2058 amd64_err("error F3 device not found: "
2059 "vendor %x device 0x%x (broken BIOS?)\n",
2060 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2061
bbd0c1f6 2062 return -ENODEV;
0ec449ee 2063 }
956b9ba1
JP
2064 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2065 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2066 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2067
2068 return 0;
2069}
2070
360b7f3c 2071static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2072{
8d5b5d9c
BP
2073 pci_dev_put(pvt->F1);
2074 pci_dev_put(pvt->F3);
0ec449ee
DT
2075}
2076
2077/*
2078 * Retrieve the hardware registers of the memory controller (this includes the
2079 * 'Address Map' and 'Misc' device regs)
2080 */
360b7f3c 2081static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2082{
a4b4bedc 2083 unsigned range;
0ec449ee 2084 u64 msr_val;
ad6a32e9 2085 u32 tmp;
0ec449ee
DT
2086
2087 /*
2088 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2089 * those are Read-As-Zero
2090 */
e97f8bb8 2091 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2092 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2093
2094 /* check first whether TOP_MEM2 is enabled */
2095 rdmsrl(MSR_K8_SYSCFG, msr_val);
2096 if (msr_val & (1U << 21)) {
e97f8bb8 2097 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2098 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 2099 } else
956b9ba1 2100 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2101
5980bb9c 2102 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2103
5a5d2371 2104 read_dram_ctl_register(pvt);
0ec449ee 2105
7f19bf75
BP
2106 for (range = 0; range < DRAM_RANGES; range++) {
2107 u8 rw;
0ec449ee 2108
7f19bf75
BP
2109 /* read settings for this DRAM range */
2110 read_dram_base_limit_regs(pvt, range);
2111
2112 rw = dram_rw(pvt, range);
2113 if (!rw)
2114 continue;
2115
956b9ba1
JP
2116 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2117 range,
2118 get_dram_base(pvt, range),
2119 get_dram_limit(pvt, range));
7f19bf75 2120
956b9ba1
JP
2121 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2122 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2123 (rw & 0x1) ? "R" : "-",
2124 (rw & 0x2) ? "W" : "-",
2125 dram_intlv_sel(pvt, range),
2126 dram_dst_node(pvt, range));
0ec449ee
DT
2127 }
2128
b2b0c605 2129 read_dct_base_mask(pvt);
0ec449ee 2130
bc21fa57 2131 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2132 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2133
8d5b5d9c 2134 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2135
cb328507
BP
2136 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2137 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2138
78da121e 2139 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2140 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2141 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2142 }
ad6a32e9 2143
a3b7db09
BP
2144 pvt->ecc_sym_sz = 4;
2145
a4b4bedc 2146 if (pvt->fam >= 0x10) {
b2b0c605 2147 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
a4b4bedc 2148 if (pvt->fam != 0x16)
94c1acf2
AG
2149 /* F16h has only DCT0 */
2150 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2151
a3b7db09 2152 /* F10h, revD and later can do x8 ECC too */
a4b4bedc 2153 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
a3b7db09
BP
2154 pvt->ecc_sym_sz = 8;
2155 }
b2b0c605 2156 dump_misc_regs(pvt);
0ec449ee
DT
2157}
2158
2159/*
2160 * NOTE: CPU Revision Dependent code
2161 *
2162 * Input:
11c75ead 2163 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2164 * k8 private pointer to -->
2165 * DRAM Bank Address mapping register
2166 * node_id
2167 * DCL register where dual_channel_active is
2168 *
2169 * The DBAM register consists of 4 sets of 4 bits each definitions:
2170 *
2171 * Bits: CSROWs
2172 * 0-3 CSROWs 0 and 1
2173 * 4-7 CSROWs 2 and 3
2174 * 8-11 CSROWs 4 and 5
2175 * 12-15 CSROWs 6 and 7
2176 *
2177 * Values range from: 0 to 15
2178 * The meaning of the values depends on CPU revision and dual-channel state,
2179 * see relevant BKDG more info.
2180 *
2181 * The memory controller provides for total of only 8 CSROWs in its current
2182 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2183 * single channel or two (2) DIMMs in dual channel mode.
2184 *
2185 * The following code logic collapses the various tables for CSROW based on CPU
2186 * revision.
2187 *
2188 * Returns:
2189 * The number of PAGE_SIZE pages on the specified CSROW number it
2190 * encompasses
2191 *
2192 */
d1ea71cd 2193static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2194{
1433eb99 2195 u32 cs_mode, nr_pages;
f92cae45 2196 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2197
10de6497 2198
0ec449ee
DT
2199 /*
2200 * The math on this doesn't look right on the surface because x/2*4 can
2201 * be simplified to x*2 but this expression makes use of the fact that
2202 * it is integral math where 1/2=0. This intermediate value becomes the
2203 * number of bits to shift the DBAM register to extract the proper CSROW
2204 * field.
2205 */
0a5dfc31 2206 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2207
41d8bfab 2208 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2209
10de6497
BP
2210 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2211 csrow_nr, dct, cs_mode);
2212 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2213
2214 return nr_pages;
2215}
2216
2217/*
2218 * Initialize the array of csrow attribute instances, based on the values
2219 * from pci config hardware registers.
2220 */
360b7f3c 2221static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2222{
10de6497 2223 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2224 struct csrow_info *csrow;
de3910eb 2225 struct dimm_info *dimm;
084a4fcc 2226 enum edac_type edac_mode;
10de6497
BP
2227 enum mem_type mtype;
2228 int i, j, empty = 1;
a895bf8b 2229 int nr_pages = 0;
10de6497 2230 u32 val;
0ec449ee 2231
a97fa68e 2232 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2233
2299ef71 2234 pvt->nbcfg = val;
0ec449ee 2235
956b9ba1
JP
2236 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2237 pvt->mc_node_id, val,
2238 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2239
10de6497
BP
2240 /*
2241 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2242 */
11c75ead 2243 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2244 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2245 bool row_dct1 = false;
0ec449ee 2246
a4b4bedc 2247 if (pvt->fam != 0xf)
10de6497
BP
2248 row_dct1 = !!csrow_enabled(i, 1, pvt);
2249
2250 if (!row_dct0 && !row_dct1)
0ec449ee 2251 continue;
0ec449ee 2252
10de6497 2253 csrow = mci->csrows[i];
0ec449ee 2254 empty = 0;
10de6497
BP
2255
2256 edac_dbg(1, "MC node: %d, csrow: %d\n",
2257 pvt->mc_node_id, i);
2258
1eef1282 2259 if (row_dct0) {
d1ea71cd 2260 nr_pages = get_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2261 csrow->channels[0]->dimm->nr_pages = nr_pages;
2262 }
11c75ead 2263
10de6497 2264 /* K8 has only one DCT */
a4b4bedc 2265 if (pvt->fam != 0xf && row_dct1) {
d1ea71cd 2266 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
1eef1282
MCC
2267
2268 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2269 nr_pages += row_dct1_pages;
2270 }
0ec449ee 2271
d1ea71cd 2272 mtype = determine_memory_type(pvt, i);
0ec449ee 2273
10de6497 2274 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2275
2276 /*
2277 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2278 */
a97fa68e 2279 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2280 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2281 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2282 else
084a4fcc
MCC
2283 edac_mode = EDAC_NONE;
2284
2285 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2286 dimm = csrow->channels[j]->dimm;
2287 dimm->mtype = mtype;
2288 dimm->edac_mode = edac_mode;
084a4fcc 2289 }
0ec449ee
DT
2290 }
2291
2292 return empty;
2293}
d27bf6fa 2294
f6d6ae96 2295/* get all cores on this DCT */
8b84c8df 2296static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2297{
2298 int cpu;
2299
2300 for_each_online_cpu(cpu)
2301 if (amd_get_nb_id(cpu) == nid)
2302 cpumask_set_cpu(cpu, mask);
2303}
2304
2305/* check MCG_CTL on all the cpus on this node */
d1ea71cd 2306static bool nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2307{
2308 cpumask_var_t mask;
50542251 2309 int cpu, nbe;
f6d6ae96
BP
2310 bool ret = false;
2311
2312 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2313 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2314 return false;
2315 }
2316
2317 get_cpus_on_this_dct_cpumask(mask, nid);
2318
f6d6ae96
BP
2319 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2320
2321 for_each_cpu(cpu, mask) {
50542251 2322 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2323 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2324
956b9ba1
JP
2325 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2326 cpu, reg->q,
2327 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2328
2329 if (!nbe)
2330 goto out;
f6d6ae96
BP
2331 }
2332 ret = true;
2333
2334out:
f6d6ae96
BP
2335 free_cpumask_var(mask);
2336 return ret;
2337}
2338
c7e5301a 2339static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2340{
2341 cpumask_var_t cmask;
50542251 2342 int cpu;
f6d6ae96
BP
2343
2344 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2345 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2346 return false;
2347 }
2348
ae7bb7c6 2349 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2350
f6d6ae96
BP
2351 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2352
2353 for_each_cpu(cpu, cmask) {
2354
50542251
BP
2355 struct msr *reg = per_cpu_ptr(msrs, cpu);
2356
f6d6ae96 2357 if (on) {
5980bb9c 2358 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2359 s->flags.nb_mce_enable = 1;
f6d6ae96 2360
5980bb9c 2361 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2362 } else {
2363 /*
d95cf4de 2364 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2365 */
ae7bb7c6 2366 if (!s->flags.nb_mce_enable)
5980bb9c 2367 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2368 }
f6d6ae96
BP
2369 }
2370 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2371
f6d6ae96
BP
2372 free_cpumask_var(cmask);
2373
2374 return 0;
2375}
2376
c7e5301a 2377static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2378 struct pci_dev *F3)
f9431992 2379{
2299ef71 2380 bool ret = true;
c9f4f26e 2381 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2382
2299ef71
BP
2383 if (toggle_ecc_err_reporting(s, nid, ON)) {
2384 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2385 return false;
2386 }
2387
c9f4f26e 2388 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2389
ae7bb7c6
BP
2390 s->old_nbctl = value & mask;
2391 s->nbctl_valid = true;
f9431992
DT
2392
2393 value |= mask;
c9f4f26e 2394 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2395
a97fa68e 2396 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2397
956b9ba1
JP
2398 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2399 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2400
a97fa68e 2401 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2402 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2403
ae7bb7c6 2404 s->flags.nb_ecc_prev = 0;
d95cf4de 2405
f9431992 2406 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2407 value |= NBCFG_ECC_ENABLE;
2408 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2409
a97fa68e 2410 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2411
a97fa68e 2412 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2413 amd64_warn("Hardware rejected DRAM ECC enable,"
2414 "check memory DIMM configuration.\n");
2299ef71 2415 ret = false;
f9431992 2416 } else {
24f9a7fe 2417 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2418 }
d95cf4de 2419 } else {
ae7bb7c6 2420 s->flags.nb_ecc_prev = 1;
f9431992 2421 }
d95cf4de 2422
956b9ba1
JP
2423 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2424 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2425
2299ef71 2426 return ret;
f9431992
DT
2427}
2428
c7e5301a 2429static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 2430 struct pci_dev *F3)
f9431992 2431{
c9f4f26e
BP
2432 u32 value, mask = 0x3; /* UECC/CECC enable */
2433
f9431992 2434
ae7bb7c6 2435 if (!s->nbctl_valid)
f9431992
DT
2436 return;
2437
c9f4f26e 2438 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2439 value &= ~mask;
ae7bb7c6 2440 value |= s->old_nbctl;
f9431992 2441
c9f4f26e 2442 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2443
ae7bb7c6
BP
2444 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2445 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2446 amd64_read_pci_cfg(F3, NBCFG, &value);
2447 value &= ~NBCFG_ECC_ENABLE;
2448 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2449 }
2450
2451 /* restore the NB Enable MCGCTL bit */
2299ef71 2452 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2453 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2454}
2455
2456/*
2299ef71
BP
2457 * EDAC requires that the BIOS have ECC enabled before
2458 * taking over the processing of ECC errors. A command line
2459 * option allows to force-enable hardware ECC later in
2460 * enable_ecc_error_reporting().
f9431992 2461 */
cab4d277
BP
2462static const char *ecc_msg =
2463 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2464 " Either enable ECC checking or force module loading by setting "
2465 "'ecc_enable_override'.\n"
2466 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2467
c7e5301a 2468static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992
DT
2469{
2470 u32 value;
2299ef71 2471 u8 ecc_en = 0;
06724535 2472 bool nb_mce_en = false;
f9431992 2473
a97fa68e 2474 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2475
a97fa68e 2476 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2477 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2478
d1ea71cd 2479 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
06724535 2480 if (!nb_mce_en)
2299ef71
BP
2481 amd64_notice("NB MCE bank disabled, set MSR "
2482 "0x%08x[4] on node %d to enable.\n",
2483 MSR_IA32_MCG_CTL, nid);
f9431992 2484
2299ef71
BP
2485 if (!ecc_en || !nb_mce_en) {
2486 amd64_notice("%s", ecc_msg);
2487 return false;
2488 }
2489 return true;
f9431992
DT
2490}
2491
c5608759 2492static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2493{
a4b4bedc 2494 struct amd64_pvt *pvt = mci->pvt_info;
c5608759 2495 int rc;
7d6034d3 2496
c5608759
MCC
2497 rc = amd64_create_sysfs_dbg_files(mci);
2498 if (rc < 0)
2499 return rc;
7d6034d3 2500
a4b4bedc 2501 if (pvt->fam >= 0x10) {
c5608759
MCC
2502 rc = amd64_create_sysfs_inject_files(mci);
2503 if (rc < 0)
2504 return rc;
2505 }
2506
2507 return 0;
2508}
7d6034d3 2509
c5608759
MCC
2510static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2511{
a4b4bedc
BP
2512 struct amd64_pvt *pvt = mci->pvt_info;
2513
c5608759 2514 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2515
a4b4bedc 2516 if (pvt->fam >= 0x10)
c5608759 2517 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2518}
2519
df71a053
BP
2520static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2521 struct amd64_family_type *fam)
7d6034d3
DT
2522{
2523 struct amd64_pvt *pvt = mci->pvt_info;
2524
2525 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2526 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2527
5980bb9c 2528 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2529 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2530
5980bb9c 2531 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2532 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2533
d1ea71cd 2534 mci->edac_cap = determine_edac_cap(pvt);
7d6034d3
DT
2535 mci->mod_name = EDAC_MOD_STR;
2536 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2537 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2538 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2539 mci->ctl_page_to_phys = NULL;
2540
7d6034d3 2541 /* memory scrubber interface */
d1ea71cd
BP
2542 mci->set_sdram_scrub_rate = set_scrub_rate;
2543 mci->get_sdram_scrub_rate = get_scrub_rate;
7d6034d3
DT
2544}
2545
0092b20d
BP
2546/*
2547 * returns a pointer to the family descriptor on success, NULL otherwise.
2548 */
d1ea71cd 2549static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
395ae783 2550{
0092b20d
BP
2551 struct amd64_family_type *fam_type = NULL;
2552
18b94f66 2553 pvt->ext_model = boot_cpu_data.x86_model >> 4;
a4b4bedc 2554 pvt->stepping = boot_cpu_data.x86_mask;
18b94f66
AG
2555 pvt->model = boot_cpu_data.x86_model;
2556 pvt->fam = boot_cpu_data.x86;
2557
2558 switch (pvt->fam) {
395ae783 2559 case 0xf:
d1ea71cd
BP
2560 fam_type = &family_types[K8_CPUS];
2561 pvt->ops = &family_types[K8_CPUS].ops;
395ae783 2562 break;
df71a053 2563
395ae783 2564 case 0x10:
d1ea71cd
BP
2565 fam_type = &family_types[F10_CPUS];
2566 pvt->ops = &family_types[F10_CPUS].ops;
df71a053
BP
2567 break;
2568
2569 case 0x15:
18b94f66 2570 if (pvt->model == 0x30) {
d1ea71cd
BP
2571 fam_type = &family_types[F15_M30H_CPUS];
2572 pvt->ops = &family_types[F15_M30H_CPUS].ops;
18b94f66
AG
2573 break;
2574 }
2575
d1ea71cd
BP
2576 fam_type = &family_types[F15_CPUS];
2577 pvt->ops = &family_types[F15_CPUS].ops;
395ae783
BP
2578 break;
2579
94c1acf2 2580 case 0x16:
d1ea71cd
BP
2581 fam_type = &family_types[F16_CPUS];
2582 pvt->ops = &family_types[F16_CPUS].ops;
94c1acf2
AG
2583 break;
2584
395ae783 2585 default:
24f9a7fe 2586 amd64_err("Unsupported family!\n");
0092b20d 2587 return NULL;
395ae783 2588 }
0092b20d 2589
df71a053 2590 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
18b94f66 2591 (pvt->fam == 0xf ?
24f9a7fe
BP
2592 (pvt->ext_model >= K8_REV_F ? "revF or later "
2593 : "revE or earlier ")
2594 : ""), pvt->mc_node_id);
0092b20d 2595 return fam_type;
395ae783
BP
2596}
2597
d1ea71cd 2598static int init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2599{
2600 struct amd64_pvt *pvt = NULL;
0092b20d 2601 struct amd64_family_type *fam_type = NULL;
360b7f3c 2602 struct mem_ctl_info *mci = NULL;
ab5a503c 2603 struct edac_mc_layer layers[2];
7d6034d3 2604 int err = 0, ret;
772c3ff3 2605 u16 nid = amd_get_node_id(F2);
7d6034d3
DT
2606
2607 ret = -ENOMEM;
2608 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2609 if (!pvt)
360b7f3c 2610 goto err_ret;
7d6034d3 2611
360b7f3c 2612 pvt->mc_node_id = nid;
8d5b5d9c 2613 pvt->F2 = F2;
7d6034d3 2614
395ae783 2615 ret = -EINVAL;
d1ea71cd 2616 fam_type = per_family_init(pvt);
0092b20d 2617 if (!fam_type)
395ae783
BP
2618 goto err_free;
2619
7d6034d3 2620 ret = -ENODEV;
360b7f3c 2621 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2622 if (err)
2623 goto err_free;
2624
360b7f3c 2625 read_mc_regs(pvt);
7d6034d3 2626
7d6034d3
DT
2627 /*
2628 * We need to determine how many memory channels there are. Then use
2629 * that information for calculating the size of the dynamic instance
360b7f3c 2630 * tables in the 'mci' structure.
7d6034d3 2631 */
360b7f3c 2632 ret = -EINVAL;
7d6034d3
DT
2633 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2634 if (pvt->channel_count < 0)
360b7f3c 2635 goto err_siblings;
7d6034d3
DT
2636
2637 ret = -ENOMEM;
ab5a503c
MCC
2638 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2639 layers[0].size = pvt->csels[0].b_cnt;
2640 layers[0].is_virt_csrow = true;
2641 layers[1].type = EDAC_MC_LAYER_CHANNEL;
f0a56c48
BP
2642
2643 /*
2644 * Always allocate two channels since we can have setups with DIMMs on
2645 * only one channel. Also, this simplifies handling later for the price
2646 * of a couple of KBs tops.
2647 */
2648 layers[1].size = 2;
ab5a503c 2649 layers[1].is_virt_csrow = false;
f0a56c48 2650
ca0907b9 2651 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2652 if (!mci)
360b7f3c 2653 goto err_siblings;
7d6034d3
DT
2654
2655 mci->pvt_info = pvt;
fd687502 2656 mci->pdev = &pvt->F2->dev;
7d6034d3 2657
df71a053 2658 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2659
2660 if (init_csrows(mci))
7d6034d3
DT
2661 mci->edac_cap = EDAC_FLAG_NONE;
2662
7d6034d3
DT
2663 ret = -ENODEV;
2664 if (edac_mc_add_mc(mci)) {
956b9ba1 2665 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2666 goto err_add_mc;
2667 }
c5608759 2668 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2669 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2670 goto err_add_sysfs;
2671 }
7d6034d3 2672
549d042d
BP
2673 /* register stuff with EDAC MCE */
2674 if (report_gart_errors)
2675 amd_report_gart_errors(true);
2676
df781d03 2677 amd_register_ecc_decoder(decode_bus_error);
549d042d 2678
360b7f3c
BP
2679 mcis[nid] = mci;
2680
2681 atomic_inc(&drv_instances);
2682
7d6034d3
DT
2683 return 0;
2684
c5608759
MCC
2685err_add_sysfs:
2686 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2687err_add_mc:
2688 edac_mc_free(mci);
2689
360b7f3c
BP
2690err_siblings:
2691 free_mc_sibling_devs(pvt);
7d6034d3 2692
360b7f3c
BP
2693err_free:
2694 kfree(pvt);
7d6034d3 2695
360b7f3c 2696err_ret:
7d6034d3
DT
2697 return ret;
2698}
2699
d1ea71cd
BP
2700static int probe_one_instance(struct pci_dev *pdev,
2701 const struct pci_device_id *mc_type)
7d6034d3 2702{
772c3ff3 2703 u16 nid = amd_get_node_id(pdev);
2299ef71 2704 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2705 struct ecc_settings *s;
2299ef71 2706 int ret = 0;
7d6034d3 2707
7d6034d3 2708 ret = pci_enable_device(pdev);
b8cfa02f 2709 if (ret < 0) {
956b9ba1 2710 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2711 return -EIO;
2712 }
7d6034d3 2713
ae7bb7c6
BP
2714 ret = -ENOMEM;
2715 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2716 if (!s)
2299ef71 2717 goto err_out;
ae7bb7c6
BP
2718
2719 ecc_stngs[nid] = s;
2720
2299ef71
BP
2721 if (!ecc_enabled(F3, nid)) {
2722 ret = -ENODEV;
2723
2724 if (!ecc_enable_override)
2725 goto err_enable;
2726
2727 amd64_warn("Forcing ECC on!\n");
2728
2729 if (!enable_ecc_error_reporting(s, nid, F3))
2730 goto err_enable;
2731 }
2732
d1ea71cd 2733 ret = init_one_instance(pdev);
360b7f3c 2734 if (ret < 0) {
ae7bb7c6 2735 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2736 restore_ecc_error_reporting(s, nid, F3);
2737 }
7d6034d3
DT
2738
2739 return ret;
2299ef71
BP
2740
2741err_enable:
2742 kfree(s);
2743 ecc_stngs[nid] = NULL;
2744
2745err_out:
2746 return ret;
7d6034d3
DT
2747}
2748
d1ea71cd 2749static void remove_one_instance(struct pci_dev *pdev)
7d6034d3
DT
2750{
2751 struct mem_ctl_info *mci;
2752 struct amd64_pvt *pvt;
772c3ff3 2753 u16 nid = amd_get_node_id(pdev);
360b7f3c
BP
2754 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2755 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2756
c5608759 2757 mci = find_mci_by_dev(&pdev->dev);
a4b4bedc
BP
2758 WARN_ON(!mci);
2759
c5608759 2760 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2761 /* Remove from EDAC CORE tracking list */
2762 mci = edac_mc_del_mc(&pdev->dev);
2763 if (!mci)
2764 return;
2765
2766 pvt = mci->pvt_info;
2767
360b7f3c 2768 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2769
360b7f3c 2770 free_mc_sibling_devs(pvt);
7d6034d3 2771
549d042d
BP
2772 /* unregister from EDAC MCE */
2773 amd_report_gart_errors(false);
df781d03 2774 amd_unregister_ecc_decoder(decode_bus_error);
549d042d 2775
360b7f3c
BP
2776 kfree(ecc_stngs[nid]);
2777 ecc_stngs[nid] = NULL;
ae7bb7c6 2778
7d6034d3 2779 /* Free the EDAC CORE resources */
8f68ed97 2780 mci->pvt_info = NULL;
360b7f3c 2781 mcis[nid] = NULL;
8f68ed97
BP
2782
2783 kfree(pvt);
7d6034d3
DT
2784 edac_mc_free(mci);
2785}
2786
2787/*
2788 * This table is part of the interface for loading drivers for PCI devices. The
2789 * PCI core identifies what devices are on a system during boot, and then
2790 * inquiry this table to see if this driver is for a given device found.
2791 */
ba935f40 2792static const struct pci_device_id amd64_pci_table[] = {
7d6034d3
DT
2793 {
2794 .vendor = PCI_VENDOR_ID_AMD,
2795 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2796 .subvendor = PCI_ANY_ID,
2797 .subdevice = PCI_ANY_ID,
2798 .class = 0,
2799 .class_mask = 0,
7d6034d3
DT
2800 },
2801 {
2802 .vendor = PCI_VENDOR_ID_AMD,
2803 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2804 .subvendor = PCI_ANY_ID,
2805 .subdevice = PCI_ANY_ID,
2806 .class = 0,
2807 .class_mask = 0,
7d6034d3 2808 },
df71a053
BP
2809 {
2810 .vendor = PCI_VENDOR_ID_AMD,
2811 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2812 .subvendor = PCI_ANY_ID,
2813 .subdevice = PCI_ANY_ID,
2814 .class = 0,
2815 .class_mask = 0,
2816 },
18b94f66
AG
2817 {
2818 .vendor = PCI_VENDOR_ID_AMD,
2819 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2820 .subvendor = PCI_ANY_ID,
2821 .subdevice = PCI_ANY_ID,
2822 .class = 0,
2823 .class_mask = 0,
2824 },
94c1acf2
AG
2825 {
2826 .vendor = PCI_VENDOR_ID_AMD,
2827 .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
2828 .subvendor = PCI_ANY_ID,
2829 .subdevice = PCI_ANY_ID,
2830 .class = 0,
2831 .class_mask = 0,
2832 },
df71a053 2833
7d6034d3
DT
2834 {0, }
2835};
2836MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2837
2838static struct pci_driver amd64_pci_driver = {
2839 .name = EDAC_MOD_STR,
d1ea71cd
BP
2840 .probe = probe_one_instance,
2841 .remove = remove_one_instance,
7d6034d3
DT
2842 .id_table = amd64_pci_table,
2843};
2844
360b7f3c 2845static void setup_pci_device(void)
7d6034d3
DT
2846{
2847 struct mem_ctl_info *mci;
2848 struct amd64_pvt *pvt;
2849
d1ea71cd 2850 if (pci_ctl)
7d6034d3
DT
2851 return;
2852
cc4d8860 2853 mci = mcis[0];
d1ea71cd
BP
2854 if (!mci)
2855 return;
7d6034d3 2856
d1ea71cd
BP
2857 pvt = mci->pvt_info;
2858 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2859 if (!pci_ctl) {
2860 pr_warn("%s(): Unable to create PCI control\n", __func__);
2861 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
7d6034d3
DT
2862 }
2863}
2864
2865static int __init amd64_edac_init(void)
2866{
360b7f3c 2867 int err = -ENODEV;
7d6034d3 2868
df71a053 2869 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2870
2871 opstate_init();
2872
9653a5c7 2873 if (amd_cache_northbridges() < 0)
56b34b91 2874 goto err_ret;
7d6034d3 2875
cc4d8860 2876 err = -ENOMEM;
ae7bb7c6
BP
2877 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2878 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2879 if (!(mcis && ecc_stngs))
a9f0fbe2 2880 goto err_free;
cc4d8860 2881
50542251 2882 msrs = msrs_alloc();
56b34b91 2883 if (!msrs)
360b7f3c 2884 goto err_free;
50542251 2885
7d6034d3
DT
2886 err = pci_register_driver(&amd64_pci_driver);
2887 if (err)
56b34b91 2888 goto err_pci;
7d6034d3 2889
56b34b91 2890 err = -ENODEV;
360b7f3c
BP
2891 if (!atomic_read(&drv_instances))
2892 goto err_no_instances;
7d6034d3 2893
360b7f3c
BP
2894 setup_pci_device();
2895 return 0;
7d6034d3 2896
360b7f3c 2897err_no_instances:
7d6034d3 2898 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2899
56b34b91
BP
2900err_pci:
2901 msrs_free(msrs);
2902 msrs = NULL;
cc4d8860 2903
360b7f3c
BP
2904err_free:
2905 kfree(mcis);
2906 mcis = NULL;
2907
2908 kfree(ecc_stngs);
2909 ecc_stngs = NULL;
2910
56b34b91 2911err_ret:
7d6034d3
DT
2912 return err;
2913}
2914
2915static void __exit amd64_edac_exit(void)
2916{
d1ea71cd
BP
2917 if (pci_ctl)
2918 edac_pci_release_generic_ctl(pci_ctl);
7d6034d3
DT
2919
2920 pci_unregister_driver(&amd64_pci_driver);
50542251 2921
ae7bb7c6
BP
2922 kfree(ecc_stngs);
2923 ecc_stngs = NULL;
2924
cc4d8860
BP
2925 kfree(mcis);
2926 mcis = NULL;
2927
50542251
BP
2928 msrs_free(msrs);
2929 msrs = NULL;
7d6034d3
DT
2930}
2931
2932module_init(amd64_edac_init);
2933module_exit(amd64_edac_exit);
2934
2935MODULE_LICENSE("GPL");
2936MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2937 "Dave Peterson, Thayne Harbaugh");
2938MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2939 EDAC_AMD64_VERSION);
2940
2941module_param(edac_op_state, int, 0444);
2942MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.861614 seconds and 5 git commands to generate.