amd64_edac: Fix PCI function lookup
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
66fed2d4
BP
63int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
b2b0c605
BP
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
173 *
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
2bc65418 176 */
168bfeef 177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
178 /*
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
181 */
395ae783 182 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
183 continue;
184
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
2bc65418
DT
187 }
188
189 scrubval = scrubrates[i].scrubval;
2bc65418 190
5980bb9c 191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 192
39094443
BP
193 if (scrubval)
194 return scrubrates[i].bandwidth;
195
2bc65418
DT
196 return 0;
197}
198
395ae783 199static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
200{
201 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 202 u32 min_scrubrate = 0x5;
2bc65418 203
87b3e0e6
BP
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
206
73ba8593
BP
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
210
87b3e0e6 211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
212}
213
39094443 214static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
215{
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
39094443 218 int i, retval = -EINVAL;
2bc65418 219
73ba8593
BP
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
223
5980bb9c 224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
225
226 scrubval = scrubval & 0x001F;
227
926311fd 228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 229 if (scrubrates[i].scrubval == scrubval) {
39094443 230 retval = scrubrates[i].bandwidth;
2bc65418
DT
231 break;
232 }
233 }
39094443 234 return retval;
2bc65418
DT
235}
236
6775763a 237/*
7f19bf75
BP
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
6775763a 240 */
b487c33e
BP
241static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 unsigned nid)
6775763a 243{
7f19bf75 244 u64 addr;
6775763a
DT
245
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
251 */
252 addr = sys_addr & 0x000000ffffffffffull;
253
7f19bf75
BP
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
256}
257
258/*
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
261 *
262 * On failure, return NULL.
263 */
264static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
266{
267 struct amd64_pvt *pvt;
b487c33e 268 unsigned node_id;
6775763a
DT
269 u32 intlv_en, bits;
270
271 /*
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 */
275 pvt = mci->pvt_info;
276
277 /*
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
281 */
7f19bf75 282 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
283
284 if (intlv_en == 0) {
7f19bf75 285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 287 goto found;
6775763a 288 }
8edc5445 289 goto err_no_match;
6775763a
DT
290 }
291
72f158fe
BP
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
24f9a7fe 295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
7f19bf75 302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
303 break; /* intlv_sel field matches */
304
7f19bf75 305 if (++node_id >= DRAM_RANGES)
6775763a
DT
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
6775763a
DT
314 return NULL;
315 }
316
317found:
b487c33e 318 return edac_mc_find((int)node_id);
6775763a
DT
319
320err_no_match:
956b9ba1
JP
321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
6775763a
DT
323
324 return NULL;
325}
e2ce7255
DT
326
327/*
11c75ead
BP
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 330 */
11c75ead
BP
331static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
e2ce7255 333{
11c75ead
BP
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
e2ce7255 336
11c75ead
BP
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
e2ce7255 347
11c75ead
BP
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 }
e2ce7255 353
11c75ead 354 *base = (csbase & base_bits) << addr_shift;
e2ce7255 355
11c75ead
BP
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
361}
362
11c75ead
BP
363#define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365
614ec9d8
BP
366#define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
368
11c75ead
BP
369#define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371
e2ce7255
DT
372/*
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375 */
376static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377{
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
381
382 pvt = mci->pvt_info;
383
11c75ead
BP
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
386 continue;
387
11c75ead
BP
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389
390 mask = ~mask;
e2ce7255
DT
391
392 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
e2ce7255
DT
396
397 return csrow;
398 }
399 }
956b9ba1
JP
400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
402
403 return -1;
404}
405
e2ce7255
DT
406/*
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
411 *
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
414 *
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
417 *
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
421 */
422int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
424{
425 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
426
427 /* only revE and later have the DRAM Hole Address Register */
1433eb99 428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
429 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
430 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
431 return 1;
432 }
433
bc21fa57 434 /* valid for Fam10h and above */
c8e518d5 435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
437 return 1;
438 }
439
c8e518d5 440 if (!dhar_valid(pvt)) {
956b9ba1
JP
441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
442 pvt->mc_node_id);
e2ce7255
DT
443 return 1;
444 }
445
446 /* This node has Memory Hoisting */
447
448 /* +------------------+--------------------+--------------------+-----
449 * | memory | DRAM hole | relocated |
450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
451 * | | | DRAM hole |
452 * | | | [0x100000000, |
453 * | | | (0x100000000+ |
454 * | | | (0xffffffff-x))] |
455 * +------------------+--------------------+--------------------+-----
456 *
457 * Above is a diagram of physical memory showing the DRAM hole and the
458 * relocated addresses from the DRAM hole. As shown, the DRAM hole
459 * starts at address x (the base address) and extends through address
460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
461 * addresses in the hole so that they start at 0x100000000.
462 */
463
1f31677e
BP
464 *hole_base = dhar_base(pvt);
465 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255
DT
466
467 if (boot_cpu_data.x86 > 0xf)
bc21fa57 468 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 469 else
bc21fa57 470 *hole_offset = k8_dhar_offset(pvt);
e2ce7255 471
956b9ba1
JP
472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
473 pvt->mc_node_id, (unsigned long)*hole_base,
474 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
475
476 return 0;
477}
478EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
479
93c2df58
DT
480/*
481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
482 * assumed that sys_addr maps to the node given by mci.
483 *
484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
487 * then it is also involved in translating a SysAddr to a DramAddr. Sections
488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
489 * These parts of the documentation are unclear. I interpret them as follows:
490 *
491 * When node n receives a SysAddr, it processes the SysAddr as follows:
492 *
493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
494 * Limit registers for node n. If the SysAddr is not within the range
495 * specified by the base and limit values, then node n ignores the Sysaddr
496 * (since it does not map to node n). Otherwise continue to step 2 below.
497 *
498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
500 * the range of relocated addresses (starting at 0x100000000) from the DRAM
501 * hole. If not, skip to step 3 below. Else get the value of the
502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
503 * offset defined by this value from the SysAddr.
504 *
505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
506 * Base register for node n. To obtain the DramAddr, subtract the base
507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
508 */
509static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
510{
7f19bf75 511 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 513 int ret;
93c2df58 514
7f19bf75 515 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
516
517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
518 &hole_size);
519 if (!ret) {
1f31677e
BP
520 if ((sys_addr >= (1ULL << 32)) &&
521 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
522 /* use DHAR to translate SysAddr to DramAddr */
523 dram_addr = sys_addr - hole_offset;
524
956b9ba1
JP
525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
526 (unsigned long)sys_addr,
527 (unsigned long)dram_addr);
93c2df58
DT
528
529 return dram_addr;
530 }
531 }
532
533 /*
534 * Translate the SysAddr to a DramAddr as shown near the start of
535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
536 * only deals with 40-bit values. Therefore we discard bits 63-40 of
537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
538 * discard are all 1s. Otherwise the bits we discard are all 0s. See
539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
540 * Programmer's Manual Volume 1 Application Programming.
541 */
f678b8cc 542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58 543
956b9ba1
JP
544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
545 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
546 return dram_addr;
547}
548
549/*
550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
552 * for node interleaving.
553 */
554static int num_node_interleave_bits(unsigned intlv_en)
555{
556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
557 int n;
558
559 BUG_ON(intlv_en > 7);
560 n = intlv_shift_table[intlv_en];
561 return n;
562}
563
564/* Translate the DramAddr given by @dram_addr to an InputAddr. */
565static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
566{
567 struct amd64_pvt *pvt;
568 int intlv_shift;
569 u64 input_addr;
570
571 pvt = mci->pvt_info;
572
573 /*
574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
575 * concerning translating a DramAddr to an InputAddr.
576 */
7f19bf75 577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
579 (dram_addr & 0xfff);
93c2df58 580
956b9ba1
JP
581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
582 intlv_shift, (unsigned long)dram_addr,
583 (unsigned long)input_addr);
93c2df58
DT
584
585 return input_addr;
586}
587
588/*
589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
590 * assumed that @sys_addr maps to the node given by mci.
591 */
592static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
593{
594 u64 input_addr;
595
596 input_addr =
597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
598
956b9ba1
JP
599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
600 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
601
602 return input_addr;
603}
604
605
606/*
607 * @input_addr is an InputAddr associated with the node represented by mci.
608 * Translate @input_addr to a DramAddr and return the result.
609 */
610static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
611{
612 struct amd64_pvt *pvt;
b487c33e 613 unsigned node_id, intlv_shift;
93c2df58
DT
614 u64 bits, dram_addr;
615 u32 intlv_sel;
616
617 /*
618 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
619 * shows how to translate a DramAddr to an InputAddr. Here we reverse
620 * this procedure. When translating from a DramAddr to an InputAddr, the
621 * bits used for node interleaving are discarded. Here we recover these
622 * bits from the IntlvSel field of the DRAM Limit register (section
623 * 3.4.4.2) for the node that input_addr is associated with.
624 */
625 pvt = mci->pvt_info;
626 node_id = pvt->mc_node_id;
b487c33e
BP
627
628 BUG_ON(node_id > 7);
93c2df58 629
7f19bf75 630 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58 631 if (intlv_shift == 0) {
956b9ba1
JP
632 edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n",
633 (unsigned long)input_addr);
93c2df58
DT
634
635 return input_addr;
636 }
637
f678b8cc
BP
638 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
639 (input_addr & 0xfff);
93c2df58 640
7f19bf75 641 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
642 dram_addr = bits + (intlv_sel << 12);
643
956b9ba1
JP
644 edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
645 (unsigned long)input_addr,
646 (unsigned long)dram_addr, intlv_shift);
93c2df58
DT
647
648 return dram_addr;
649}
650
651/*
652 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
653 * @dram_addr to a SysAddr.
654 */
655static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
656{
657 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 658 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
659 int ret = 0;
660
661 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
662 &hole_size);
663 if (!ret) {
664 if ((dram_addr >= hole_base) &&
665 (dram_addr < (hole_base + hole_size))) {
666 sys_addr = dram_addr + hole_offset;
667
956b9ba1
JP
668 edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
669 (unsigned long)dram_addr,
670 (unsigned long)sys_addr);
93c2df58
DT
671
672 return sys_addr;
673 }
674 }
675
7f19bf75 676 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
677 sys_addr = dram_addr + base;
678
679 /*
680 * The sys_addr we have computed up to this point is a 40-bit value
681 * because the k8 deals with 40-bit values. However, the value we are
682 * supposed to return is a full 64-bit physical address. The AMD
683 * x86-64 architecture specifies that the most significant implemented
684 * address bit through bit 63 of a physical address must be either all
685 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
686 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
687 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
688 * Programming.
689 */
690 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
691
956b9ba1
JP
692 edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
693 pvt->mc_node_id, (unsigned long)dram_addr,
694 (unsigned long)sys_addr);
93c2df58
DT
695
696 return sys_addr;
697}
698
699/*
700 * @input_addr is an InputAddr associated with the node given by mci. Translate
701 * @input_addr to a SysAddr.
702 */
703static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
704 u64 input_addr)
705{
706 return dram_addr_to_sys_addr(mci,
707 input_addr_to_dram_addr(mci, input_addr));
708}
709
93c2df58
DT
710/* Map the Error address to a PAGE and PAGE OFFSET. */
711static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 712 struct err_info *err)
93c2df58 713{
33ca0643
BP
714 err->page = (u32) (error_address >> PAGE_SHIFT);
715 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
716}
717
718/*
719 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
720 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
721 * of a node that detected an ECC memory error. mci represents the node that
722 * the error address maps to (possibly different from the node that detected
723 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
724 * error.
725 */
726static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
727{
728 int csrow;
729
730 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
731
732 if (csrow == -1)
24f9a7fe
BP
733 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
734 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
735 return csrow;
736}
e2ce7255 737
bfc04aec 738static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 739
2da11654
DT
740/*
741 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
742 * are ECC capable.
743 */
1f6189ed 744static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 745{
cb328507 746 u8 bit;
1f6189ed 747 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 748
1433eb99 749 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
750 ? 19
751 : 17;
752
584fcff4 753 if (pvt->dclr0 & BIT(bit))
2da11654
DT
754 edac_cap = EDAC_FLAG_SECDED;
755
756 return edac_cap;
757}
758
8c671751 759static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 760
68798e17
BP
761static void amd64_dump_dramcfg_low(u32 dclr, int chan)
762{
956b9ba1 763 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 764
956b9ba1
JP
765 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
766 (dclr & BIT(16)) ? "un" : "",
767 (dclr & BIT(19)) ? "yes" : "no");
68798e17 768
956b9ba1
JP
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 771
cb328507 772 if (boot_cpu_data.x86 == 0x10)
956b9ba1
JP
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 775
956b9ba1
JP
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
781}
782
2da11654 783/* Display and decode various NB registers for debug purposes. */
b2b0c605 784static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 785{
956b9ba1 786 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 787
956b9ba1
JP
788 edac_dbg(1, " NB two channel DRAM capable: %s\n",
789 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 790
956b9ba1
JP
791 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
792 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
793 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
794
795 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 796
956b9ba1 797 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 798
956b9ba1
JP
799 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
800 pvt->dhar, dhar_base(pvt),
801 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
802 : f10_dhar_offset(pvt));
2da11654 803
956b9ba1 804 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 805
8c671751 806 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 807
8de1d91e 808 /* everything below this point is Fam10h and above */
4d796364 809 if (boot_cpu_data.x86 == 0xf)
2da11654 810 return;
4d796364 811
8c671751 812 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 813
a3b7db09 814 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 815
8de1d91e 816 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
817 if (!dct_ganging_enabled(pvt))
818 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
819}
820
94be4bff 821/*
11c75ead 822 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 823 */
11c75ead 824static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 825{
1433eb99 826 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
827 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
828 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 829 } else {
11c75ead
BP
830 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
831 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
832 }
833}
834
835/*
11c75ead 836 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 837 */
b2b0c605 838static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 839{
11c75ead 840 int cs;
94be4bff 841
11c75ead 842 prep_chip_selects(pvt);
94be4bff 843
11c75ead 844 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
845 int reg0 = DCSB0 + (cs * 4);
846 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
847 u32 *base0 = &pvt->csels[0].csbases[cs];
848 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 849
11c75ead 850 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
851 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
852 cs, *base0, reg0);
94be4bff 853
11c75ead
BP
854 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
855 continue;
b2b0c605 856
11c75ead 857 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
858 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
859 cs, *base1, reg1);
94be4bff
DT
860 }
861
11c75ead 862 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
863 int reg0 = DCSM0 + (cs * 4);
864 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
865 u32 *mask0 = &pvt->csels[0].csmasks[cs];
866 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 867
11c75ead 868 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
869 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
870 cs, *mask0, reg0);
94be4bff 871
11c75ead
BP
872 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
873 continue;
b2b0c605 874
11c75ead 875 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
876 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
877 cs, *mask1, reg1);
94be4bff
DT
878 }
879}
880
24f9a7fe 881static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
882{
883 enum mem_type type;
884
cb328507
BP
885 /* F15h supports only DDR3 */
886 if (boot_cpu_data.x86 >= 0x15)
887 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
888 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
889 if (pvt->dchr0 & DDR3_MODE)
890 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
891 else
892 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 893 } else {
94be4bff
DT
894 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
895 }
896
24f9a7fe 897 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
898
899 return type;
900}
901
cb328507 902/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
903static int k8_early_channel_count(struct amd64_pvt *pvt)
904{
cb328507 905 int flag;
ddff876d 906
9f56da0e 907 if (pvt->ext_model >= K8_REV_F)
ddff876d 908 /* RevF (NPT) and later */
41d8bfab 909 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 910 else
ddff876d
DT
911 /* RevE and earlier */
912 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
913
914 /* not used */
915 pvt->dclr1 = 0;
916
917 return (flag) ? 2 : 1;
918}
919
70046624
BP
920/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
921static u64 get_error_address(struct mce *m)
ddff876d 922{
c1ae6830
BP
923 struct cpuinfo_x86 *c = &boot_cpu_data;
924 u64 addr;
70046624
BP
925 u8 start_bit = 1;
926 u8 end_bit = 47;
927
c1ae6830 928 if (c->x86 == 0xf) {
70046624
BP
929 start_bit = 3;
930 end_bit = 39;
931 }
932
c1ae6830
BP
933 addr = m->addr & GENMASK(start_bit, end_bit);
934
935 /*
936 * Erratum 637 workaround
937 */
938 if (c->x86 == 0x15) {
939 struct amd64_pvt *pvt;
940 u64 cc6_base, tmp_addr;
941 u32 tmp;
8b84c8df
DB
942 u16 mce_nid;
943 u8 intlv_en;
c1ae6830
BP
944
945 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
946 return addr;
947
948 mce_nid = amd_get_nb_id(m->extcpu);
949 pvt = mcis[mce_nid]->pvt_info;
950
951 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
952 intlv_en = tmp >> 21 & 0x7;
953
954 /* add [47:27] + 3 trailing bits */
955 cc6_base = (tmp & GENMASK(0, 20)) << 3;
956
957 /* reverse and add DramIntlvEn */
958 cc6_base |= intlv_en ^ 0x7;
959
960 /* pin at [47:24] */
961 cc6_base <<= 24;
962
963 if (!intlv_en)
964 return cc6_base | (addr & GENMASK(0, 23));
965
966 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
967
968 /* faster log2 */
969 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
970
971 /* OR DramIntlvSel into bits [14:12] */
972 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
973
974 /* add remaining [11:0] bits from original MC4_ADDR */
975 tmp_addr |= addr & GENMASK(0, 11);
976
977 return cc6_base | tmp_addr;
978 }
979
980 return addr;
ddff876d
DT
981}
982
e2c0bffe
DB
983static struct pci_dev *pci_get_related_function(unsigned int vendor,
984 unsigned int device,
985 struct pci_dev *related)
986{
987 struct pci_dev *dev = NULL;
988
989 while ((dev = pci_get_device(vendor, device, dev))) {
990 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
991 (dev->bus->number == related->bus->number) &&
992 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
993 break;
994 }
995
996 return dev;
997}
998
7f19bf75 999static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 1000{
e2c0bffe
DB
1001 struct amd_northbridge *nb;
1002 struct pci_dev *misc, *f1 = NULL;
f08e457c 1003 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 1004 int off = range << 3;
e2c0bffe 1005 u32 llim;
ddff876d 1006
7f19bf75
BP
1007 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1008 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 1009
f08e457c 1010 if (c->x86 == 0xf)
7f19bf75 1011 return;
ddff876d 1012
7f19bf75
BP
1013 if (!dram_rw(pvt, range))
1014 return;
ddff876d 1015
7f19bf75
BP
1016 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1017 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 1018
e2c0bffe
DB
1019 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1020 if (c->x86 != 0x15)
1021 return;
f08e457c 1022
e2c0bffe
DB
1023 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1024 if (WARN_ON(!nb))
1025 return;
f08e457c 1026
e2c0bffe
DB
1027 misc = nb->misc;
1028 f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
1029 if (WARN_ON(!f1))
1030 return;
f08e457c 1031
e2c0bffe 1032 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 1033
e2c0bffe 1034 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
f08e457c 1035
e2c0bffe
DB
1036 /* {[39:27],111b} */
1037 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 1038
e2c0bffe 1039 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
f08e457c 1040
e2c0bffe
DB
1041 /* [47:40] */
1042 pvt->ranges[range].lim.hi |= llim >> 13;
1043
1044 pci_dev_put(f1);
ddff876d
DT
1045}
1046
f192c7b1 1047static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1048 struct err_info *err)
ddff876d 1049{
f192c7b1 1050 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 1051
33ca0643 1052 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
1053
1054 /*
1055 * Find out which node the error address belongs to. This may be
1056 * different from the node that detected the error.
1057 */
33ca0643
BP
1058 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1059 if (!err->src_mci) {
ab5a503c
MCC
1060 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1061 (unsigned long)sys_addr);
33ca0643 1062 err->err_code = ERR_NODE;
ab5a503c
MCC
1063 return;
1064 }
1065
1066 /* Now map the sys_addr to a CSROW */
33ca0643
BP
1067 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1068 if (err->csrow < 0) {
1069 err->err_code = ERR_CSROW;
ab5a503c
MCC
1070 return;
1071 }
1072
ddff876d 1073 /* CHIPKILL enabled */
f192c7b1 1074 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
1075 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1076 if (err->channel < 0) {
ddff876d
DT
1077 /*
1078 * Syndrome didn't map, so we don't know which of the
1079 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 * as suspect.
1081 */
33ca0643 1082 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1083 "possible error reporting race\n",
33ca0643
BP
1084 err->syndrome);
1085 err->err_code = ERR_CHANNEL;
ddff876d
DT
1086 return;
1087 }
1088 } else {
1089 /*
1090 * non-chipkill ecc mode
1091 *
1092 * The k8 documentation is unclear about how to determine the
1093 * channel number when using non-chipkill memory. This method
1094 * was obtained from email communication with someone at AMD.
1095 * (Wish the email was placed in this comment - norsk)
1096 */
33ca0643 1097 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1098 }
ddff876d
DT
1099}
1100
41d8bfab 1101static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1102{
41d8bfab 1103 unsigned shift = 0;
ddff876d 1104
41d8bfab
BP
1105 if (i <= 2)
1106 shift = i;
1107 else if (!(i & 0x1))
1108 shift = i >> 1;
1433eb99 1109 else
41d8bfab 1110 shift = (i + 1) >> 1;
ddff876d 1111
41d8bfab
BP
1112 return 128 << (shift + !!dct_width);
1113}
1114
1115static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1116 unsigned cs_mode)
1117{
1118 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1119
1120 if (pvt->ext_model >= K8_REV_F) {
1121 WARN_ON(cs_mode > 11);
1122 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1123 }
1124 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1125 unsigned diff;
41d8bfab
BP
1126 WARN_ON(cs_mode > 10);
1127
11b0a314
BP
1128 /*
1129 * the below calculation, besides trying to win an obfuscated C
1130 * contest, maps cs_mode values to DIMM chip select sizes. The
1131 * mappings are:
1132 *
1133 * cs_mode CS size (mb)
1134 * ======= ============
1135 * 0 32
1136 * 1 64
1137 * 2 128
1138 * 3 128
1139 * 4 256
1140 * 5 512
1141 * 6 256
1142 * 7 512
1143 * 8 1024
1144 * 9 1024
1145 * 10 2048
1146 *
1147 * Basically, it calculates a value with which to shift the
1148 * smallest CS size of 32MB.
1149 *
1150 * ddr[23]_cs_size have a similar purpose.
1151 */
1152 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1153
1154 return 32 << (cs_mode - diff);
41d8bfab
BP
1155 }
1156 else {
1157 WARN_ON(cs_mode > 6);
1158 return 32 << cs_mode;
1159 }
ddff876d
DT
1160}
1161
1afd3c98
DT
1162/*
1163 * Get the number of DCT channels in use.
1164 *
1165 * Return:
1166 * number of Memory Channels in operation
1167 * Pass back:
1168 * contents of the DCL0_LOW register
1169 */
7d20d14d 1170static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1171{
6ba5dcdc 1172 int i, j, channels = 0;
1afd3c98 1173
7d20d14d 1174 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1175 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1176 return 2;
1afd3c98
DT
1177
1178 /*
d16149e8
BP
1179 * Need to check if in unganged mode: In such, there are 2 channels,
1180 * but they are not in 128 bit mode and thus the above 'dclr0' status
1181 * bit will be OFF.
1afd3c98
DT
1182 *
1183 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1184 * their CSEnable bit on. If so, then SINGLE DIMM case.
1185 */
956b9ba1 1186 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1187
1afd3c98
DT
1188 /*
1189 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1190 * is more than just one DIMM present in unganged mode. Need to check
1191 * both controllers since DIMMs can be placed in either one.
1192 */
525a1b20
BP
1193 for (i = 0; i < 2; i++) {
1194 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1195
57a30854
WW
1196 for (j = 0; j < 4; j++) {
1197 if (DBAM_DIMM(j, dbam) > 0) {
1198 channels++;
1199 break;
1200 }
1201 }
1afd3c98
DT
1202 }
1203
d16149e8
BP
1204 if (channels > 2)
1205 channels = 2;
1206
24f9a7fe 1207 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1208
1209 return channels;
1afd3c98
DT
1210}
1211
41d8bfab 1212static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1213{
41d8bfab
BP
1214 unsigned shift = 0;
1215 int cs_size = 0;
1216
1217 if (i == 0 || i == 3 || i == 4)
1218 cs_size = -1;
1219 else if (i <= 2)
1220 shift = i;
1221 else if (i == 12)
1222 shift = 7;
1223 else if (!(i & 0x1))
1224 shift = i >> 1;
1225 else
1226 shift = (i + 1) >> 1;
1227
1228 if (cs_size != -1)
1229 cs_size = (128 * (1 << !!dct_width)) << shift;
1230
1231 return cs_size;
1232}
1233
1234static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1235 unsigned cs_mode)
1236{
1237 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1238
1239 WARN_ON(cs_mode > 11);
1433eb99
BP
1240
1241 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1242 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1243 else
41d8bfab
BP
1244 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1245}
1246
1247/*
1248 * F15h supports only 64bit DCT interfaces
1249 */
1250static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1251 unsigned cs_mode)
1252{
1253 WARN_ON(cs_mode > 12);
1433eb99 1254
41d8bfab 1255 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1256}
1257
5a5d2371 1258static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1259{
6163b5d4 1260
5a5d2371
BP
1261 if (boot_cpu_data.x86 == 0xf)
1262 return;
1263
78da121e 1264 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1265 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1266 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1267
956b9ba1
JP
1268 edac_dbg(0, " DCTs operate in %s mode\n",
1269 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1270
1271 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1272 edac_dbg(0, " Address range split per DCT: %s\n",
1273 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1274
956b9ba1
JP
1275 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1276 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1277 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1278
956b9ba1
JP
1279 edac_dbg(0, " channel interleave: %s, "
1280 "interleave bits selector: 0x%x\n",
1281 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1282 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1283 }
1284
78da121e 1285 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1286}
1287
f71d0a05 1288/*
229a7a11 1289 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1290 * Interleaving Modes.
1291 */
b15f0fca 1292static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1293 bool hi_range_sel, u8 intlv_en)
6163b5d4 1294{
151fa71c 1295 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1296
1297 if (dct_ganging_enabled(pvt))
229a7a11 1298 return 0;
6163b5d4 1299
229a7a11
BP
1300 if (hi_range_sel)
1301 return dct_sel_high;
6163b5d4 1302
229a7a11
BP
1303 /*
1304 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1305 */
1306 if (dct_interleave_enabled(pvt)) {
1307 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1308
1309 /* return DCT select function: 0=DCT0, 1=DCT1 */
1310 if (!intlv_addr)
1311 return sys_addr >> 6 & 1;
1312
1313 if (intlv_addr & 0x2) {
1314 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1315 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1316
1317 return ((sys_addr >> shift) & 1) ^ temp;
1318 }
1319
1320 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1321 }
1322
1323 if (dct_high_range_enabled(pvt))
1324 return ~dct_sel_high & 1;
6163b5d4
DT
1325
1326 return 0;
1327}
1328
c8e518d5 1329/* Convert the sys_addr to the normalized DCT address */
e761359a 1330static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1331 u64 sys_addr, bool hi_rng,
1332 u32 dct_sel_base_addr)
6163b5d4
DT
1333{
1334 u64 chan_off;
c8e518d5
BP
1335 u64 dram_base = get_dram_base(pvt, range);
1336 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1337 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1338
c8e518d5
BP
1339 if (hi_rng) {
1340 /*
1341 * if
1342 * base address of high range is below 4Gb
1343 * (bits [47:27] at [31:11])
1344 * DRAM address space on this DCT is hoisted above 4Gb &&
1345 * sys_addr > 4Gb
1346 *
1347 * remove hole offset from sys_addr
1348 * else
1349 * remove high range offset from sys_addr
1350 */
1351 if ((!(dct_sel_base_addr >> 16) ||
1352 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1353 dhar_valid(pvt) &&
c8e518d5 1354 (sys_addr >= BIT_64(32)))
bc21fa57 1355 chan_off = hole_off;
6163b5d4
DT
1356 else
1357 chan_off = dct_sel_base_off;
1358 } else {
c8e518d5
BP
1359 /*
1360 * if
1361 * we have a valid hole &&
1362 * sys_addr > 4Gb
1363 *
1364 * remove hole
1365 * else
1366 * remove dram base to normalize to DCT address
1367 */
972ea17a 1368 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1369 chan_off = hole_off;
6163b5d4 1370 else
c8e518d5 1371 chan_off = dram_base;
6163b5d4
DT
1372 }
1373
c8e518d5 1374 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1375}
1376
6163b5d4
DT
1377/*
1378 * checks if the csrow passed in is marked as SPARED, if so returns the new
1379 * spare row
1380 */
11c75ead 1381static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1382{
614ec9d8
BP
1383 int tmp_cs;
1384
1385 if (online_spare_swap_done(pvt, dct) &&
1386 csrow == online_spare_bad_dramcs(pvt, dct)) {
1387
1388 for_each_chip_select(tmp_cs, dct, pvt) {
1389 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1390 csrow = tmp_cs;
1391 break;
1392 }
1393 }
6163b5d4
DT
1394 }
1395 return csrow;
1396}
1397
1398/*
1399 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1400 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1401 *
1402 * Return:
1403 * -EINVAL: NOT FOUND
1404 * 0..csrow = Chip-Select Row
1405 */
b15f0fca 1406static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1407{
1408 struct mem_ctl_info *mci;
1409 struct amd64_pvt *pvt;
11c75ead 1410 u64 cs_base, cs_mask;
6163b5d4
DT
1411 int cs_found = -EINVAL;
1412 int csrow;
1413
cc4d8860 1414 mci = mcis[nid];
6163b5d4
DT
1415 if (!mci)
1416 return cs_found;
1417
1418 pvt = mci->pvt_info;
1419
956b9ba1 1420 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1421
11c75ead
BP
1422 for_each_chip_select(csrow, dct, pvt) {
1423 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1424 continue;
1425
11c75ead 1426 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1427
956b9ba1
JP
1428 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1429 csrow, cs_base, cs_mask);
6163b5d4 1430
11c75ead 1431 cs_mask = ~cs_mask;
6163b5d4 1432
956b9ba1
JP
1433 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1434 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1435
11c75ead
BP
1436 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1437 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1438
956b9ba1 1439 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1440 break;
1441 }
1442 }
1443 return cs_found;
1444}
1445
95b0ef55
BP
1446/*
1447 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1448 * swapped with a region located at the bottom of memory so that the GPU can use
1449 * the interleaved region and thus two channels.
1450 */
b15f0fca 1451static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1452{
1453 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1454
1455 if (boot_cpu_data.x86 == 0x10) {
1456 /* only revC3 and revE have that feature */
1457 if (boot_cpu_data.x86_model < 4 ||
1458 (boot_cpu_data.x86_model < 0xa &&
1459 boot_cpu_data.x86_mask < 3))
1460 return sys_addr;
1461 }
1462
1463 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1464
1465 if (!(swap_reg & 0x1))
1466 return sys_addr;
1467
1468 swap_base = (swap_reg >> 3) & 0x7f;
1469 swap_limit = (swap_reg >> 11) & 0x7f;
1470 rgn_size = (swap_reg >> 20) & 0x7f;
1471 tmp_addr = sys_addr >> 27;
1472
1473 if (!(sys_addr >> 34) &&
1474 (((tmp_addr >= swap_base) &&
1475 (tmp_addr <= swap_limit)) ||
1476 (tmp_addr < rgn_size)))
1477 return sys_addr ^ (u64)swap_base << 27;
1478
1479 return sys_addr;
1480}
1481
f71d0a05 1482/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1483static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1484 u64 sys_addr, int *chan_sel)
f71d0a05 1485{
229a7a11 1486 int cs_found = -EINVAL;
c8e518d5 1487 u64 chan_addr;
5d4b58e8 1488 u32 dct_sel_base;
11c75ead 1489 u8 channel;
229a7a11 1490 bool high_range = false;
f71d0a05 1491
7f19bf75 1492 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1493 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1494 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1495
956b9ba1
JP
1496 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1497 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1498
355fba60
BP
1499 if (dhar_valid(pvt) &&
1500 dhar_base(pvt) <= sys_addr &&
1501 sys_addr < BIT_64(32)) {
1502 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1503 sys_addr);
1504 return -EINVAL;
1505 }
1506
f030ddfb 1507 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1508 return -EINVAL;
1509
b15f0fca 1510 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1511
f71d0a05
DT
1512 dct_sel_base = dct_sel_baseaddr(pvt);
1513
1514 /*
1515 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1516 * select between DCT0 and DCT1.
1517 */
1518 if (dct_high_range_enabled(pvt) &&
1519 !dct_ganging_enabled(pvt) &&
1520 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1521 high_range = true;
f71d0a05 1522
b15f0fca 1523 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1524
b15f0fca 1525 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1526 high_range, dct_sel_base);
f71d0a05 1527
e2f79dbd
BP
1528 /* Remove node interleaving, see F1x120 */
1529 if (intlv_en)
1530 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1531 (chan_addr & 0xfff);
f71d0a05 1532
5d4b58e8 1533 /* remove channel interleave */
f71d0a05
DT
1534 if (dct_interleave_enabled(pvt) &&
1535 !dct_high_range_enabled(pvt) &&
1536 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1537
1538 if (dct_sel_interleave_addr(pvt) != 1) {
1539 if (dct_sel_interleave_addr(pvt) == 0x3)
1540 /* hash 9 */
1541 chan_addr = ((chan_addr >> 10) << 9) |
1542 (chan_addr & 0x1ff);
1543 else
1544 /* A[6] or hash 6 */
1545 chan_addr = ((chan_addr >> 7) << 6) |
1546 (chan_addr & 0x3f);
1547 } else
1548 /* A[12] */
1549 chan_addr = ((chan_addr >> 13) << 12) |
1550 (chan_addr & 0xfff);
f71d0a05
DT
1551 }
1552
956b9ba1 1553 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1554
b15f0fca 1555 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1556
33ca0643 1557 if (cs_found >= 0)
f71d0a05 1558 *chan_sel = channel;
33ca0643 1559
f71d0a05
DT
1560 return cs_found;
1561}
1562
b15f0fca 1563static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
33ca0643 1564 int *chan_sel)
f71d0a05 1565{
e761359a
BP
1566 int cs_found = -EINVAL;
1567 unsigned range;
f71d0a05 1568
7f19bf75 1569 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1570
7f19bf75 1571 if (!dram_rw(pvt, range))
f71d0a05
DT
1572 continue;
1573
7f19bf75
BP
1574 if ((get_dram_base(pvt, range) <= sys_addr) &&
1575 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1576
b15f0fca 1577 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1578 sys_addr, chan_sel);
f71d0a05
DT
1579 if (cs_found >= 0)
1580 break;
1581 }
1582 }
1583 return cs_found;
1584}
1585
1586/*
bdc30a0c
BP
1587 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1588 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1589 *
bdc30a0c
BP
1590 * The @sys_addr is usually an error address received from the hardware
1591 * (MCX_ADDR).
f71d0a05 1592 */
b15f0fca 1593static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1594 struct err_info *err)
f71d0a05
DT
1595{
1596 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1597
33ca0643 1598 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1599
33ca0643
BP
1600 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1601 if (err->csrow < 0) {
1602 err->err_code = ERR_CSROW;
bdc30a0c
BP
1603 return;
1604 }
1605
bdc30a0c
BP
1606 /*
1607 * We need the syndromes for channel detection only when we're
1608 * ganged. Otherwise @chan should already contain the channel at
1609 * this point.
1610 */
a97fa68e 1611 if (dct_ganging_enabled(pvt))
33ca0643 1612 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1613}
1614
f71d0a05 1615/*
8566c4df 1616 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1617 * CSROWs
f71d0a05 1618 */
8c671751 1619static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1620{
bb89f5a0 1621 int dimm, size0, size1;
525a1b20
BP
1622 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1623 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1624
8566c4df
BP
1625 if (boot_cpu_data.x86 == 0xf) {
1626 /* K8 families < revF not supported yet */
1433eb99 1627 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1628 return;
1629 else
1630 WARN_ON(ctrl != 0);
1631 }
1632
4d796364 1633 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1634 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1635 : pvt->csels[0].csbases;
f71d0a05 1636
956b9ba1
JP
1637 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1638 ctrl, dbam);
f71d0a05 1639
8566c4df
BP
1640 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1641
f71d0a05
DT
1642 /* Dump memory sizes for DIMM and its CSROWs */
1643 for (dimm = 0; dimm < 4; dimm++) {
1644
1645 size0 = 0;
11c75ead 1646 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1647 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1648 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1649
1650 size1 = 0;
11c75ead 1651 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1652 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1653 DBAM_DIMM(dimm, dbam));
f71d0a05 1654
24f9a7fe 1655 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1656 dimm * 2, size0,
1657 dimm * 2 + 1, size1);
f71d0a05
DT
1658 }
1659}
1660
4d37607a
DT
1661static struct amd64_family_type amd64_family_types[] = {
1662 [K8_CPUS] = {
0092b20d 1663 .ctl_name = "K8",
8d5b5d9c
BP
1664 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1665 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1666 .ops = {
1433eb99 1667 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1668 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1669 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1670 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1671 }
1672 },
1673 [F10_CPUS] = {
0092b20d 1674 .ctl_name = "F10h",
8d5b5d9c
BP
1675 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1676 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1677 .ops = {
7d20d14d 1678 .early_channel_count = f1x_early_channel_count,
b15f0fca 1679 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1680 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1681 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1682 }
1683 },
1684 [F15_CPUS] = {
1685 .ctl_name = "F15h",
df71a053
BP
1686 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1687 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1688 .ops = {
7d20d14d 1689 .early_channel_count = f1x_early_channel_count,
b15f0fca 1690 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1691 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1692 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1693 }
1694 },
4d37607a
DT
1695};
1696
b1289d6f 1697/*
bfc04aec
BP
1698 * These are tables of eigenvectors (one per line) which can be used for the
1699 * construction of the syndrome tables. The modified syndrome search algorithm
1700 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1701 *
bfc04aec 1702 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1703 */
bfc04aec
BP
1704static u16 x4_vectors[] = {
1705 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1706 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1707 0x0001, 0x0002, 0x0004, 0x0008,
1708 0x1013, 0x3032, 0x4044, 0x8088,
1709 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1710 0x4857, 0xc4fe, 0x13cc, 0x3288,
1711 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1712 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1713 0x15c1, 0x2a42, 0x89ac, 0x4758,
1714 0x2b03, 0x1602, 0x4f0c, 0xca08,
1715 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1716 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1717 0x2b87, 0x164e, 0x642c, 0xdc18,
1718 0x40b9, 0x80de, 0x1094, 0x20e8,
1719 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1720 0x11c1, 0x2242, 0x84ac, 0x4c58,
1721 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1722 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1723 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1724 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1725 0x16b3, 0x3d62, 0x4f34, 0x8518,
1726 0x1e2f, 0x391a, 0x5cac, 0xf858,
1727 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1728 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1729 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1730 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1731 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1732 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1733 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1734 0x185d, 0x2ca6, 0x7914, 0x9e28,
1735 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1736 0x4199, 0x82ee, 0x19f4, 0x2e58,
1737 0x4807, 0xc40e, 0x130c, 0x3208,
1738 0x1905, 0x2e0a, 0x5804, 0xac08,
1739 0x213f, 0x132a, 0xadfc, 0x5ba8,
1740 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1741};
1742
bfc04aec
BP
1743static u16 x8_vectors[] = {
1744 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1745 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1746 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1747 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1748 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1749 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1750 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1751 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1752 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1753 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1754 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1755 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1756 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1757 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1758 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1759 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1760 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1761 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1762 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1763};
1764
d34a6ecd
BP
1765static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1766 unsigned v_dim)
b1289d6f 1767{
bfc04aec
BP
1768 unsigned int i, err_sym;
1769
1770 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1771 u16 s = syndrome;
d34a6ecd
BP
1772 unsigned v_idx = err_sym * v_dim;
1773 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1774
1775 /* walk over all 16 bits of the syndrome */
1776 for (i = 1; i < (1U << 16); i <<= 1) {
1777
1778 /* if bit is set in that eigenvector... */
1779 if (v_idx < v_end && vectors[v_idx] & i) {
1780 u16 ev_comp = vectors[v_idx++];
1781
1782 /* ... and bit set in the modified syndrome, */
1783 if (s & i) {
1784 /* remove it. */
1785 s ^= ev_comp;
4d37607a 1786
bfc04aec
BP
1787 if (!s)
1788 return err_sym;
1789 }
b1289d6f 1790
bfc04aec
BP
1791 } else if (s & i)
1792 /* can't get to zero, move to next symbol */
1793 break;
1794 }
b1289d6f
DT
1795 }
1796
956b9ba1 1797 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1798 return -1;
1799}
d27bf6fa 1800
bfc04aec
BP
1801static int map_err_sym_to_channel(int err_sym, int sym_size)
1802{
1803 if (sym_size == 4)
1804 switch (err_sym) {
1805 case 0x20:
1806 case 0x21:
1807 return 0;
1808 break;
1809 case 0x22:
1810 case 0x23:
1811 return 1;
1812 break;
1813 default:
1814 return err_sym >> 4;
1815 break;
1816 }
1817 /* x8 symbols */
1818 else
1819 switch (err_sym) {
1820 /* imaginary bits not in a DIMM */
1821 case 0x10:
1822 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1823 err_sym);
1824 return -1;
1825 break;
1826
1827 case 0x11:
1828 return 0;
1829 break;
1830 case 0x12:
1831 return 1;
1832 break;
1833 default:
1834 return err_sym >> 3;
1835 break;
1836 }
1837 return -1;
1838}
1839
1840static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1841{
1842 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1843 int err_sym = -1;
1844
a3b7db09 1845 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1846 err_sym = decode_syndrome(syndrome, x8_vectors,
1847 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1848 pvt->ecc_sym_sz);
1849 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1850 err_sym = decode_syndrome(syndrome, x4_vectors,
1851 ARRAY_SIZE(x4_vectors),
a3b7db09 1852 pvt->ecc_sym_sz);
ad6a32e9 1853 else {
a3b7db09 1854 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1855 return err_sym;
bfc04aec 1856 }
ad6a32e9 1857
a3b7db09 1858 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1859}
1860
33ca0643
BP
1861static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1862 u8 ecc_type)
d27bf6fa 1863{
33ca0643
BP
1864 enum hw_event_mc_err_type err_type;
1865 const char *string;
d27bf6fa 1866
33ca0643
BP
1867 if (ecc_type == 2)
1868 err_type = HW_EVENT_ERR_CORRECTED;
1869 else if (ecc_type == 1)
1870 err_type = HW_EVENT_ERR_UNCORRECTED;
1871 else {
1872 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
1873 return;
1874 }
1875
33ca0643
BP
1876 switch (err->err_code) {
1877 case DECODE_OK:
1878 string = "";
1879 break;
1880 case ERR_NODE:
1881 string = "Failed to map error addr to a node";
1882 break;
1883 case ERR_CSROW:
1884 string = "Failed to map error addr to a csrow";
1885 break;
1886 case ERR_CHANNEL:
1887 string = "unknown syndrome - possible error reporting race";
1888 break;
1889 default:
1890 string = "WTF error";
1891 break;
d27bf6fa 1892 }
33ca0643
BP
1893
1894 edac_mc_handle_error(err_type, mci, 1,
1895 err->page, err->offset, err->syndrome,
1896 err->csrow, err->channel, -1,
1897 string, "");
d27bf6fa
DT
1898}
1899
549d042d 1900static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1901 struct mce *m)
d27bf6fa 1902{
33ca0643 1903 struct amd64_pvt *pvt = mci->pvt_info;
f192c7b1 1904 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
1905 u8 xec = XEC(m->status, 0x1f);
1906 u16 ec = EC(m->status);
33ca0643
BP
1907 u64 sys_addr;
1908 struct err_info err;
d27bf6fa 1909
66fed2d4 1910 /* Bail out early if this was an 'observed' error */
5980bb9c 1911 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1912 return;
d27bf6fa 1913
ecaf5606
BP
1914 /* Do only ECC errors */
1915 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1916 return;
d27bf6fa 1917
33ca0643
BP
1918 memset(&err, 0, sizeof(err));
1919
1920 sys_addr = get_error_address(m);
1921
ecaf5606 1922 if (ecc_type == 2)
33ca0643
BP
1923 err.syndrome = extract_syndrome(m->status);
1924
1925 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1926
1927 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
1928}
1929
b0b07a2b 1930void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 1931{
b0b07a2b 1932 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 1933}
d27bf6fa 1934
0ec449ee 1935/*
8d5b5d9c 1936 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1937 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1938 */
360b7f3c 1939static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1940{
0ec449ee 1941 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1942 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1943 if (!pvt->F1) {
24f9a7fe
BP
1944 amd64_err("error address map device not found: "
1945 "vendor %x device 0x%x (broken BIOS?)\n",
1946 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1947 return -ENODEV;
0ec449ee
DT
1948 }
1949
1950 /* Reserve the MISC Device */
8d5b5d9c
BP
1951 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1952 if (!pvt->F3) {
1953 pci_dev_put(pvt->F1);
1954 pvt->F1 = NULL;
0ec449ee 1955
24f9a7fe
BP
1956 amd64_err("error F3 device not found: "
1957 "vendor %x device 0x%x (broken BIOS?)\n",
1958 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1959
bbd0c1f6 1960 return -ENODEV;
0ec449ee 1961 }
956b9ba1
JP
1962 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1963 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1964 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1965
1966 return 0;
1967}
1968
360b7f3c 1969static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1970{
8d5b5d9c
BP
1971 pci_dev_put(pvt->F1);
1972 pci_dev_put(pvt->F3);
0ec449ee
DT
1973}
1974
1975/*
1976 * Retrieve the hardware registers of the memory controller (this includes the
1977 * 'Address Map' and 'Misc' device regs)
1978 */
360b7f3c 1979static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1980{
a3b7db09 1981 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1982 u64 msr_val;
ad6a32e9 1983 u32 tmp;
e761359a 1984 unsigned range;
0ec449ee
DT
1985
1986 /*
1987 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1988 * those are Read-As-Zero
1989 */
e97f8bb8 1990 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 1991 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1992
1993 /* check first whether TOP_MEM2 is enabled */
1994 rdmsrl(MSR_K8_SYSCFG, msr_val);
1995 if (msr_val & (1U << 21)) {
e97f8bb8 1996 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 1997 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 1998 } else
956b9ba1 1999 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2000
5980bb9c 2001 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2002
5a5d2371 2003 read_dram_ctl_register(pvt);
0ec449ee 2004
7f19bf75
BP
2005 for (range = 0; range < DRAM_RANGES; range++) {
2006 u8 rw;
0ec449ee 2007
7f19bf75
BP
2008 /* read settings for this DRAM range */
2009 read_dram_base_limit_regs(pvt, range);
2010
2011 rw = dram_rw(pvt, range);
2012 if (!rw)
2013 continue;
2014
956b9ba1
JP
2015 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2016 range,
2017 get_dram_base(pvt, range),
2018 get_dram_limit(pvt, range));
7f19bf75 2019
956b9ba1
JP
2020 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2021 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2022 (rw & 0x1) ? "R" : "-",
2023 (rw & 0x2) ? "W" : "-",
2024 dram_intlv_sel(pvt, range),
2025 dram_dst_node(pvt, range));
0ec449ee
DT
2026 }
2027
b2b0c605 2028 read_dct_base_mask(pvt);
0ec449ee 2029
bc21fa57 2030 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2031 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2032
8d5b5d9c 2033 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2034
cb328507
BP
2035 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2036 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2037
78da121e 2038 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2039 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2040 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2041 }
ad6a32e9 2042
a3b7db09
BP
2043 pvt->ecc_sym_sz = 4;
2044
2045 if (c->x86 >= 0x10) {
b2b0c605 2046 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2047 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2048
a3b7db09
BP
2049 /* F10h, revD and later can do x8 ECC too */
2050 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2051 pvt->ecc_sym_sz = 8;
2052 }
b2b0c605 2053 dump_misc_regs(pvt);
0ec449ee
DT
2054}
2055
2056/*
2057 * NOTE: CPU Revision Dependent code
2058 *
2059 * Input:
11c75ead 2060 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2061 * k8 private pointer to -->
2062 * DRAM Bank Address mapping register
2063 * node_id
2064 * DCL register where dual_channel_active is
2065 *
2066 * The DBAM register consists of 4 sets of 4 bits each definitions:
2067 *
2068 * Bits: CSROWs
2069 * 0-3 CSROWs 0 and 1
2070 * 4-7 CSROWs 2 and 3
2071 * 8-11 CSROWs 4 and 5
2072 * 12-15 CSROWs 6 and 7
2073 *
2074 * Values range from: 0 to 15
2075 * The meaning of the values depends on CPU revision and dual-channel state,
2076 * see relevant BKDG more info.
2077 *
2078 * The memory controller provides for total of only 8 CSROWs in its current
2079 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2080 * single channel or two (2) DIMMs in dual channel mode.
2081 *
2082 * The following code logic collapses the various tables for CSROW based on CPU
2083 * revision.
2084 *
2085 * Returns:
2086 * The number of PAGE_SIZE pages on the specified CSROW number it
2087 * encompasses
2088 *
2089 */
41d8bfab 2090static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2091{
1433eb99 2092 u32 cs_mode, nr_pages;
f92cae45 2093 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2094
10de6497 2095
0ec449ee
DT
2096 /*
2097 * The math on this doesn't look right on the surface because x/2*4 can
2098 * be simplified to x*2 but this expression makes use of the fact that
2099 * it is integral math where 1/2=0. This intermediate value becomes the
2100 * number of bits to shift the DBAM register to extract the proper CSROW
2101 * field.
2102 */
0a5dfc31 2103 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2104
41d8bfab 2105 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2106
10de6497
BP
2107 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2108 csrow_nr, dct, cs_mode);
2109 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2110
2111 return nr_pages;
2112}
2113
2114/*
2115 * Initialize the array of csrow attribute instances, based on the values
2116 * from pci config hardware registers.
2117 */
360b7f3c 2118static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2119{
10de6497 2120 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2121 struct csrow_info *csrow;
de3910eb 2122 struct dimm_info *dimm;
084a4fcc 2123 enum edac_type edac_mode;
10de6497
BP
2124 enum mem_type mtype;
2125 int i, j, empty = 1;
a895bf8b 2126 int nr_pages = 0;
10de6497 2127 u32 val;
0ec449ee 2128
a97fa68e 2129 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2130
2299ef71 2131 pvt->nbcfg = val;
0ec449ee 2132
956b9ba1
JP
2133 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2134 pvt->mc_node_id, val,
2135 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2136
10de6497
BP
2137 /*
2138 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2139 */
11c75ead 2140 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2141 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2142 bool row_dct1 = false;
0ec449ee 2143
10de6497
BP
2144 if (boot_cpu_data.x86 != 0xf)
2145 row_dct1 = !!csrow_enabled(i, 1, pvt);
2146
2147 if (!row_dct0 && !row_dct1)
0ec449ee 2148 continue;
0ec449ee 2149
10de6497 2150 csrow = mci->csrows[i];
0ec449ee 2151 empty = 0;
10de6497
BP
2152
2153 edac_dbg(1, "MC node: %d, csrow: %d\n",
2154 pvt->mc_node_id, i);
2155
2156 if (row_dct0)
a895bf8b 2157 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
11c75ead 2158
10de6497
BP
2159 /* K8 has only one DCT */
2160 if (boot_cpu_data.x86 != 0xf && row_dct1)
2161 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
0ec449ee 2162
084a4fcc 2163 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee 2164
10de6497 2165 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2166
2167 /*
2168 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2169 */
a97fa68e 2170 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2171 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2172 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2173 else
084a4fcc
MCC
2174 edac_mode = EDAC_NONE;
2175
2176 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2177 dimm = csrow->channels[j]->dimm;
2178 dimm->mtype = mtype;
2179 dimm->edac_mode = edac_mode;
2180 dimm->nr_pages = nr_pages;
084a4fcc 2181 }
16a528ee 2182 csrow->nr_pages = nr_pages;
0ec449ee
DT
2183 }
2184
2185 return empty;
2186}
d27bf6fa 2187
f6d6ae96 2188/* get all cores on this DCT */
8b84c8df 2189static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2190{
2191 int cpu;
2192
2193 for_each_online_cpu(cpu)
2194 if (amd_get_nb_id(cpu) == nid)
2195 cpumask_set_cpu(cpu, mask);
2196}
2197
2198/* check MCG_CTL on all the cpus on this node */
b487c33e 2199static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2200{
2201 cpumask_var_t mask;
50542251 2202 int cpu, nbe;
f6d6ae96
BP
2203 bool ret = false;
2204
2205 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2206 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2207 return false;
2208 }
2209
2210 get_cpus_on_this_dct_cpumask(mask, nid);
2211
f6d6ae96
BP
2212 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2213
2214 for_each_cpu(cpu, mask) {
50542251 2215 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2216 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2217
956b9ba1
JP
2218 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2219 cpu, reg->q,
2220 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2221
2222 if (!nbe)
2223 goto out;
f6d6ae96
BP
2224 }
2225 ret = true;
2226
2227out:
f6d6ae96
BP
2228 free_cpumask_var(mask);
2229 return ret;
2230}
2231
2299ef71 2232static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2233{
2234 cpumask_var_t cmask;
50542251 2235 int cpu;
f6d6ae96
BP
2236
2237 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2238 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2239 return false;
2240 }
2241
ae7bb7c6 2242 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2243
f6d6ae96
BP
2244 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2245
2246 for_each_cpu(cpu, cmask) {
2247
50542251
BP
2248 struct msr *reg = per_cpu_ptr(msrs, cpu);
2249
f6d6ae96 2250 if (on) {
5980bb9c 2251 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2252 s->flags.nb_mce_enable = 1;
f6d6ae96 2253
5980bb9c 2254 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2255 } else {
2256 /*
d95cf4de 2257 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2258 */
ae7bb7c6 2259 if (!s->flags.nb_mce_enable)
5980bb9c 2260 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2261 }
f6d6ae96
BP
2262 }
2263 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2264
f6d6ae96
BP
2265 free_cpumask_var(cmask);
2266
2267 return 0;
2268}
2269
2299ef71
BP
2270static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2271 struct pci_dev *F3)
f9431992 2272{
2299ef71 2273 bool ret = true;
c9f4f26e 2274 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2275
2299ef71
BP
2276 if (toggle_ecc_err_reporting(s, nid, ON)) {
2277 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2278 return false;
2279 }
2280
c9f4f26e 2281 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2282
ae7bb7c6
BP
2283 s->old_nbctl = value & mask;
2284 s->nbctl_valid = true;
f9431992
DT
2285
2286 value |= mask;
c9f4f26e 2287 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2288
a97fa68e 2289 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2290
956b9ba1
JP
2291 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2292 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2293
a97fa68e 2294 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2295 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2296
ae7bb7c6 2297 s->flags.nb_ecc_prev = 0;
d95cf4de 2298
f9431992 2299 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2300 value |= NBCFG_ECC_ENABLE;
2301 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2302
a97fa68e 2303 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2304
a97fa68e 2305 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2306 amd64_warn("Hardware rejected DRAM ECC enable,"
2307 "check memory DIMM configuration.\n");
2299ef71 2308 ret = false;
f9431992 2309 } else {
24f9a7fe 2310 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2311 }
d95cf4de 2312 } else {
ae7bb7c6 2313 s->flags.nb_ecc_prev = 1;
f9431992 2314 }
d95cf4de 2315
956b9ba1
JP
2316 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2317 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2318
2299ef71 2319 return ret;
f9431992
DT
2320}
2321
360b7f3c
BP
2322static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2323 struct pci_dev *F3)
f9431992 2324{
c9f4f26e
BP
2325 u32 value, mask = 0x3; /* UECC/CECC enable */
2326
f9431992 2327
ae7bb7c6 2328 if (!s->nbctl_valid)
f9431992
DT
2329 return;
2330
c9f4f26e 2331 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2332 value &= ~mask;
ae7bb7c6 2333 value |= s->old_nbctl;
f9431992 2334
c9f4f26e 2335 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2336
ae7bb7c6
BP
2337 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2338 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2339 amd64_read_pci_cfg(F3, NBCFG, &value);
2340 value &= ~NBCFG_ECC_ENABLE;
2341 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2342 }
2343
2344 /* restore the NB Enable MCGCTL bit */
2299ef71 2345 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2346 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2347}
2348
2349/*
2299ef71
BP
2350 * EDAC requires that the BIOS have ECC enabled before
2351 * taking over the processing of ECC errors. A command line
2352 * option allows to force-enable hardware ECC later in
2353 * enable_ecc_error_reporting().
f9431992 2354 */
cab4d277
BP
2355static const char *ecc_msg =
2356 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2357 " Either enable ECC checking or force module loading by setting "
2358 "'ecc_enable_override'.\n"
2359 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2360
2299ef71 2361static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2362{
2363 u32 value;
2299ef71 2364 u8 ecc_en = 0;
06724535 2365 bool nb_mce_en = false;
f9431992 2366
a97fa68e 2367 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2368
a97fa68e 2369 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2370 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2371
2299ef71 2372 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2373 if (!nb_mce_en)
2299ef71
BP
2374 amd64_notice("NB MCE bank disabled, set MSR "
2375 "0x%08x[4] on node %d to enable.\n",
2376 MSR_IA32_MCG_CTL, nid);
f9431992 2377
2299ef71
BP
2378 if (!ecc_en || !nb_mce_en) {
2379 amd64_notice("%s", ecc_msg);
2380 return false;
2381 }
2382 return true;
f9431992
DT
2383}
2384
c5608759 2385static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2386{
c5608759 2387 int rc;
7d6034d3 2388
c5608759
MCC
2389 rc = amd64_create_sysfs_dbg_files(mci);
2390 if (rc < 0)
2391 return rc;
7d6034d3 2392
c5608759
MCC
2393 if (boot_cpu_data.x86 >= 0x10) {
2394 rc = amd64_create_sysfs_inject_files(mci);
2395 if (rc < 0)
2396 return rc;
2397 }
2398
2399 return 0;
2400}
7d6034d3 2401
c5608759
MCC
2402static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2403{
2404 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2405
c5608759
MCC
2406 if (boot_cpu_data.x86 >= 0x10)
2407 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2408}
2409
df71a053
BP
2410static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2411 struct amd64_family_type *fam)
7d6034d3
DT
2412{
2413 struct amd64_pvt *pvt = mci->pvt_info;
2414
2415 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2416 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2417
5980bb9c 2418 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2419 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2420
5980bb9c 2421 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2422 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2423
2424 mci->edac_cap = amd64_determine_edac_cap(pvt);
2425 mci->mod_name = EDAC_MOD_STR;
2426 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2427 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2428 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2429 mci->ctl_page_to_phys = NULL;
2430
7d6034d3
DT
2431 /* memory scrubber interface */
2432 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2433 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2434}
2435
0092b20d
BP
2436/*
2437 * returns a pointer to the family descriptor on success, NULL otherwise.
2438 */
2439static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2440{
0092b20d
BP
2441 u8 fam = boot_cpu_data.x86;
2442 struct amd64_family_type *fam_type = NULL;
2443
2444 switch (fam) {
395ae783 2445 case 0xf:
0092b20d 2446 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2447 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2448 break;
df71a053 2449
395ae783 2450 case 0x10:
0092b20d 2451 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2452 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2453 break;
2454
2455 case 0x15:
2456 fam_type = &amd64_family_types[F15_CPUS];
2457 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2458 break;
2459
2460 default:
24f9a7fe 2461 amd64_err("Unsupported family!\n");
0092b20d 2462 return NULL;
395ae783 2463 }
0092b20d 2464
b8cfa02f
BP
2465 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2466
df71a053 2467 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2468 (fam == 0xf ?
24f9a7fe
BP
2469 (pvt->ext_model >= K8_REV_F ? "revF or later "
2470 : "revE or earlier ")
2471 : ""), pvt->mc_node_id);
0092b20d 2472 return fam_type;
395ae783
BP
2473}
2474
2299ef71 2475static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2476{
2477 struct amd64_pvt *pvt = NULL;
0092b20d 2478 struct amd64_family_type *fam_type = NULL;
360b7f3c 2479 struct mem_ctl_info *mci = NULL;
ab5a503c 2480 struct edac_mc_layer layers[2];
7d6034d3 2481 int err = 0, ret;
772c3ff3 2482 u16 nid = amd_get_node_id(F2);
7d6034d3
DT
2483
2484 ret = -ENOMEM;
2485 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2486 if (!pvt)
360b7f3c 2487 goto err_ret;
7d6034d3 2488
360b7f3c 2489 pvt->mc_node_id = nid;
8d5b5d9c 2490 pvt->F2 = F2;
7d6034d3 2491
395ae783 2492 ret = -EINVAL;
0092b20d
BP
2493 fam_type = amd64_per_family_init(pvt);
2494 if (!fam_type)
395ae783
BP
2495 goto err_free;
2496
7d6034d3 2497 ret = -ENODEV;
360b7f3c 2498 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2499 if (err)
2500 goto err_free;
2501
360b7f3c 2502 read_mc_regs(pvt);
7d6034d3 2503
7d6034d3
DT
2504 /*
2505 * We need to determine how many memory channels there are. Then use
2506 * that information for calculating the size of the dynamic instance
360b7f3c 2507 * tables in the 'mci' structure.
7d6034d3 2508 */
360b7f3c 2509 ret = -EINVAL;
7d6034d3
DT
2510 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2511 if (pvt->channel_count < 0)
360b7f3c 2512 goto err_siblings;
7d6034d3
DT
2513
2514 ret = -ENOMEM;
ab5a503c
MCC
2515 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2516 layers[0].size = pvt->csels[0].b_cnt;
2517 layers[0].is_virt_csrow = true;
2518 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2519 layers[1].size = pvt->channel_count;
2520 layers[1].is_virt_csrow = false;
ca0907b9 2521 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2522 if (!mci)
360b7f3c 2523 goto err_siblings;
7d6034d3
DT
2524
2525 mci->pvt_info = pvt;
fd687502 2526 mci->pdev = &pvt->F2->dev;
11652769 2527 mci->csbased = 1;
7d6034d3 2528
df71a053 2529 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2530
2531 if (init_csrows(mci))
7d6034d3
DT
2532 mci->edac_cap = EDAC_FLAG_NONE;
2533
7d6034d3
DT
2534 ret = -ENODEV;
2535 if (edac_mc_add_mc(mci)) {
956b9ba1 2536 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2537 goto err_add_mc;
2538 }
c5608759 2539 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2540 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2541 goto err_add_sysfs;
2542 }
7d6034d3 2543
549d042d
BP
2544 /* register stuff with EDAC MCE */
2545 if (report_gart_errors)
2546 amd_report_gart_errors(true);
2547
2548 amd_register_ecc_decoder(amd64_decode_bus_error);
2549
360b7f3c
BP
2550 mcis[nid] = mci;
2551
2552 atomic_inc(&drv_instances);
2553
7d6034d3
DT
2554 return 0;
2555
c5608759
MCC
2556err_add_sysfs:
2557 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2558err_add_mc:
2559 edac_mc_free(mci);
2560
360b7f3c
BP
2561err_siblings:
2562 free_mc_sibling_devs(pvt);
7d6034d3 2563
360b7f3c
BP
2564err_free:
2565 kfree(pvt);
7d6034d3 2566
360b7f3c 2567err_ret:
7d6034d3
DT
2568 return ret;
2569}
2570
9b3c6e85
GKH
2571static int amd64_probe_one_instance(struct pci_dev *pdev,
2572 const struct pci_device_id *mc_type)
7d6034d3 2573{
772c3ff3 2574 u16 nid = amd_get_node_id(pdev);
2299ef71 2575 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2576 struct ecc_settings *s;
2299ef71 2577 int ret = 0;
7d6034d3 2578
7d6034d3 2579 ret = pci_enable_device(pdev);
b8cfa02f 2580 if (ret < 0) {
956b9ba1 2581 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2582 return -EIO;
2583 }
7d6034d3 2584
ae7bb7c6
BP
2585 ret = -ENOMEM;
2586 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2587 if (!s)
2299ef71 2588 goto err_out;
ae7bb7c6
BP
2589
2590 ecc_stngs[nid] = s;
2591
2299ef71
BP
2592 if (!ecc_enabled(F3, nid)) {
2593 ret = -ENODEV;
2594
2595 if (!ecc_enable_override)
2596 goto err_enable;
2597
2598 amd64_warn("Forcing ECC on!\n");
2599
2600 if (!enable_ecc_error_reporting(s, nid, F3))
2601 goto err_enable;
2602 }
2603
2604 ret = amd64_init_one_instance(pdev);
360b7f3c 2605 if (ret < 0) {
ae7bb7c6 2606 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2607 restore_ecc_error_reporting(s, nid, F3);
2608 }
7d6034d3
DT
2609
2610 return ret;
2299ef71
BP
2611
2612err_enable:
2613 kfree(s);
2614 ecc_stngs[nid] = NULL;
2615
2616err_out:
2617 return ret;
7d6034d3
DT
2618}
2619
9b3c6e85 2620static void amd64_remove_one_instance(struct pci_dev *pdev)
7d6034d3
DT
2621{
2622 struct mem_ctl_info *mci;
2623 struct amd64_pvt *pvt;
772c3ff3 2624 u16 nid = amd_get_node_id(pdev);
360b7f3c
BP
2625 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2626 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2627
c5608759
MCC
2628 mci = find_mci_by_dev(&pdev->dev);
2629 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2630 /* Remove from EDAC CORE tracking list */
2631 mci = edac_mc_del_mc(&pdev->dev);
2632 if (!mci)
2633 return;
2634
2635 pvt = mci->pvt_info;
2636
360b7f3c 2637 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2638
360b7f3c 2639 free_mc_sibling_devs(pvt);
7d6034d3 2640
549d042d
BP
2641 /* unregister from EDAC MCE */
2642 amd_report_gart_errors(false);
2643 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2644
360b7f3c
BP
2645 kfree(ecc_stngs[nid]);
2646 ecc_stngs[nid] = NULL;
ae7bb7c6 2647
7d6034d3 2648 /* Free the EDAC CORE resources */
8f68ed97 2649 mci->pvt_info = NULL;
360b7f3c 2650 mcis[nid] = NULL;
8f68ed97
BP
2651
2652 kfree(pvt);
7d6034d3
DT
2653 edac_mc_free(mci);
2654}
2655
2656/*
2657 * This table is part of the interface for loading drivers for PCI devices. The
2658 * PCI core identifies what devices are on a system during boot, and then
2659 * inquiry this table to see if this driver is for a given device found.
2660 */
36c46f31 2661static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2662 {
2663 .vendor = PCI_VENDOR_ID_AMD,
2664 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2665 .subvendor = PCI_ANY_ID,
2666 .subdevice = PCI_ANY_ID,
2667 .class = 0,
2668 .class_mask = 0,
7d6034d3
DT
2669 },
2670 {
2671 .vendor = PCI_VENDOR_ID_AMD,
2672 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2673 .subvendor = PCI_ANY_ID,
2674 .subdevice = PCI_ANY_ID,
2675 .class = 0,
2676 .class_mask = 0,
7d6034d3 2677 },
df71a053
BP
2678 {
2679 .vendor = PCI_VENDOR_ID_AMD,
2680 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2681 .subvendor = PCI_ANY_ID,
2682 .subdevice = PCI_ANY_ID,
2683 .class = 0,
2684 .class_mask = 0,
2685 },
2686
7d6034d3
DT
2687 {0, }
2688};
2689MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2690
2691static struct pci_driver amd64_pci_driver = {
2692 .name = EDAC_MOD_STR,
2299ef71 2693 .probe = amd64_probe_one_instance,
9b3c6e85 2694 .remove = amd64_remove_one_instance,
7d6034d3
DT
2695 .id_table = amd64_pci_table,
2696};
2697
360b7f3c 2698static void setup_pci_device(void)
7d6034d3
DT
2699{
2700 struct mem_ctl_info *mci;
2701 struct amd64_pvt *pvt;
2702
2703 if (amd64_ctl_pci)
2704 return;
2705
cc4d8860 2706 mci = mcis[0];
7d6034d3
DT
2707 if (mci) {
2708
2709 pvt = mci->pvt_info;
2710 amd64_ctl_pci =
8d5b5d9c 2711 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2712
2713 if (!amd64_ctl_pci) {
2714 pr_warning("%s(): Unable to create PCI control\n",
2715 __func__);
2716
2717 pr_warning("%s(): PCI error report via EDAC not set\n",
2718 __func__);
2719 }
2720 }
2721}
2722
2723static int __init amd64_edac_init(void)
2724{
360b7f3c 2725 int err = -ENODEV;
7d6034d3 2726
df71a053 2727 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2728
2729 opstate_init();
2730
9653a5c7 2731 if (amd_cache_northbridges() < 0)
56b34b91 2732 goto err_ret;
7d6034d3 2733
cc4d8860 2734 err = -ENOMEM;
ae7bb7c6
BP
2735 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2736 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2737 if (!(mcis && ecc_stngs))
a9f0fbe2 2738 goto err_free;
cc4d8860 2739
50542251 2740 msrs = msrs_alloc();
56b34b91 2741 if (!msrs)
360b7f3c 2742 goto err_free;
50542251 2743
7d6034d3
DT
2744 err = pci_register_driver(&amd64_pci_driver);
2745 if (err)
56b34b91 2746 goto err_pci;
7d6034d3 2747
56b34b91 2748 err = -ENODEV;
360b7f3c
BP
2749 if (!atomic_read(&drv_instances))
2750 goto err_no_instances;
7d6034d3 2751
360b7f3c
BP
2752 setup_pci_device();
2753 return 0;
7d6034d3 2754
360b7f3c 2755err_no_instances:
7d6034d3 2756 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2757
56b34b91
BP
2758err_pci:
2759 msrs_free(msrs);
2760 msrs = NULL;
cc4d8860 2761
360b7f3c
BP
2762err_free:
2763 kfree(mcis);
2764 mcis = NULL;
2765
2766 kfree(ecc_stngs);
2767 ecc_stngs = NULL;
2768
56b34b91 2769err_ret:
7d6034d3
DT
2770 return err;
2771}
2772
2773static void __exit amd64_edac_exit(void)
2774{
2775 if (amd64_ctl_pci)
2776 edac_pci_release_generic_ctl(amd64_ctl_pci);
2777
2778 pci_unregister_driver(&amd64_pci_driver);
50542251 2779
ae7bb7c6
BP
2780 kfree(ecc_stngs);
2781 ecc_stngs = NULL;
2782
cc4d8860
BP
2783 kfree(mcis);
2784 mcis = NULL;
2785
50542251
BP
2786 msrs_free(msrs);
2787 msrs = NULL;
7d6034d3
DT
2788}
2789
2790module_init(amd64_edac_init);
2791module_exit(amd64_edac_exit);
2792
2793MODULE_LICENSE("GPL");
2794MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2795 "Dave Peterson, Thayne Harbaugh");
2796MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2797 EDAC_AMD64_VERSION);
2798
2799module_param(edac_op_state, int, 0444);
2800MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.436719 seconds and 5 git commands to generate.