amd64_edac: Correct node interleaving removal
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
b2b0c605
BP
110static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
112{
113 int err = 0;
114
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
119
120 return err;
121}
122
123int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
125{
126 int err = 0;
127
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
132
133 return err;
134}
135
136/*
137 *
138 * Depending on the family, F2 DCT reads need special handling:
139 *
140 * K8: has a single DCT only
141 *
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
145 *
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
147 *
148 */
149static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
151{
152 if (addr >= 0x100)
153 return -EINVAL;
154
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
156}
157
158static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
160{
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
162}
163
164static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
166{
167 u32 reg = 0;
168 u8 dct = 0;
169
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
173 }
174
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
179
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
181}
182
2bc65418
DT
183/*
184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
188 *
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
192 *
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
195 */
196
197/*
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
200 */
395ae783 201static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
202{
203 u32 scrubval;
204 int i;
205
206 /*
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
211 */
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
213 /*
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
216 */
395ae783 217 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
218 continue;
219
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
222
223 /*
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
227 */
228 }
229
230 scrubval = scrubrates[i].scrubval;
2bc65418 231
5980bb9c 232 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 233
39094443
BP
234 if (scrubval)
235 return scrubrates[i].bandwidth;
236
2bc65418
DT
237 return 0;
238}
239
395ae783 240static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
241{
242 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 243
8d5b5d9c 244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
245}
246
39094443 247static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
248{
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
39094443 251 int i, retval = -EINVAL;
2bc65418 252
5980bb9c 253 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
254
255 scrubval = scrubval & 0x001F;
256
24f9a7fe 257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 258
926311fd 259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 260 if (scrubrates[i].scrubval == scrubval) {
39094443 261 retval = scrubrates[i].bandwidth;
2bc65418
DT
262 break;
263 }
264 }
39094443 265 return retval;
2bc65418
DT
266}
267
6775763a 268/*
7f19bf75
BP
269 * returns true if the SysAddr given by sys_addr matches the
270 * DRAM base/limit associated with node_id
6775763a 271 */
7f19bf75 272static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
6775763a 273{
7f19bf75 274 u64 addr;
6775763a
DT
275
276 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
277 * all ones if the most significant implemented address bit is 1.
278 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
279 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
280 * Application Programming.
281 */
282 addr = sys_addr & 0x000000ffffffffffull;
283
7f19bf75
BP
284 return ((addr >= get_dram_base(pvt, nid)) &&
285 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
286}
287
288/*
289 * Attempt to map a SysAddr to a node. On success, return a pointer to the
290 * mem_ctl_info structure for the node that the SysAddr maps to.
291 *
292 * On failure, return NULL.
293 */
294static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
295 u64 sys_addr)
296{
297 struct amd64_pvt *pvt;
298 int node_id;
299 u32 intlv_en, bits;
300
301 /*
302 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
303 * 3.4.4.2) registers to map the SysAddr to a node ID.
304 */
305 pvt = mci->pvt_info;
306
307 /*
308 * The value of this field should be the same for all DRAM Base
309 * registers. Therefore we arbitrarily choose to read it from the
310 * register for node 0.
311 */
7f19bf75 312 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
313
314 if (intlv_en == 0) {
7f19bf75 315 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 316 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 317 goto found;
6775763a 318 }
8edc5445 319 goto err_no_match;
6775763a
DT
320 }
321
72f158fe
BP
322 if (unlikely((intlv_en != 0x01) &&
323 (intlv_en != 0x03) &&
324 (intlv_en != 0x07))) {
24f9a7fe 325 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
326 return NULL;
327 }
328
329 bits = (((u32) sys_addr) >> 12) & intlv_en;
330
331 for (node_id = 0; ; ) {
7f19bf75 332 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
333 break; /* intlv_sel field matches */
334
7f19bf75 335 if (++node_id >= DRAM_RANGES)
6775763a
DT
336 goto err_no_match;
337 }
338
339 /* sanity test for sys_addr */
340 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
341 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
342 "range for node %d with node interleaving enabled.\n",
343 __func__, sys_addr, node_id);
6775763a
DT
344 return NULL;
345 }
346
347found:
348 return edac_mc_find(node_id);
349
350err_no_match:
351 debugf2("sys_addr 0x%lx doesn't match any node\n",
352 (unsigned long)sys_addr);
353
354 return NULL;
355}
e2ce7255
DT
356
357/*
11c75ead
BP
358 * compute the CS base address of the @csrow on the DRAM controller @dct.
359 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 360 */
11c75ead
BP
361static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
362 u64 *base, u64 *mask)
e2ce7255 363{
11c75ead
BP
364 u64 csbase, csmask, base_bits, mask_bits;
365 u8 addr_shift;
e2ce7255 366
11c75ead
BP
367 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow];
370 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
371 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
372 addr_shift = 4;
373 } else {
374 csbase = pvt->csels[dct].csbases[csrow];
375 csmask = pvt->csels[dct].csmasks[csrow >> 1];
376 addr_shift = 8;
e2ce7255 377
11c75ead
BP
378 if (boot_cpu_data.x86 == 0x15)
379 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
380 else
381 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
382 }
e2ce7255 383
11c75ead 384 *base = (csbase & base_bits) << addr_shift;
e2ce7255 385
11c75ead
BP
386 *mask = ~0ULL;
387 /* poke holes for the csmask */
388 *mask &= ~(mask_bits << addr_shift);
389 /* OR them in */
390 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
391}
392
11c75ead
BP
393#define for_each_chip_select(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
395
396#define for_each_chip_select_mask(i, dct, pvt) \
397 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
398
e2ce7255
DT
399/*
400 * @input_addr is an InputAddr associated with the node given by mci. Return the
401 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
402 */
403static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
404{
405 struct amd64_pvt *pvt;
406 int csrow;
407 u64 base, mask;
408
409 pvt = mci->pvt_info;
410
11c75ead
BP
411 for_each_chip_select(csrow, 0, pvt) {
412 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
413 continue;
414
11c75ead
BP
415 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
416
417 mask = ~mask;
e2ce7255
DT
418
419 if ((input_addr & mask) == (base & mask)) {
420 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
421 (unsigned long)input_addr, csrow,
422 pvt->mc_node_id);
423
424 return csrow;
425 }
426 }
e2ce7255
DT
427 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
428 (unsigned long)input_addr, pvt->mc_node_id);
429
430 return -1;
431}
432
e2ce7255
DT
433/*
434 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
435 * for the node represented by mci. Info is passed back in *hole_base,
436 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
437 * info is invalid. Info may be invalid for either of the following reasons:
438 *
439 * - The revision of the node is not E or greater. In this case, the DRAM Hole
440 * Address Register does not exist.
441 *
442 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
443 * indicating that its contents are not valid.
444 *
445 * The values passed back in *hole_base, *hole_offset, and *hole_size are
446 * complete 32-bit values despite the fact that the bitfields in the DHAR
447 * only represent bits 31-24 of the base and offset values.
448 */
449int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
450 u64 *hole_offset, u64 *hole_size)
451{
452 struct amd64_pvt *pvt = mci->pvt_info;
453 u64 base;
454
455 /* only revE and later have the DRAM Hole Address Register */
1433eb99 456 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
457 debugf1(" revision %d for node %d does not support DHAR\n",
458 pvt->ext_model, pvt->mc_node_id);
459 return 1;
460 }
461
bc21fa57 462 /* valid for Fam10h and above */
c8e518d5 463 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
464 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
465 return 1;
466 }
467
c8e518d5 468 if (!dhar_valid(pvt)) {
e2ce7255
DT
469 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
470 pvt->mc_node_id);
471 return 1;
472 }
473
474 /* This node has Memory Hoisting */
475
476 /* +------------------+--------------------+--------------------+-----
477 * | memory | DRAM hole | relocated |
478 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
479 * | | | DRAM hole |
480 * | | | [0x100000000, |
481 * | | | (0x100000000+ |
482 * | | | (0xffffffff-x))] |
483 * +------------------+--------------------+--------------------+-----
484 *
485 * Above is a diagram of physical memory showing the DRAM hole and the
486 * relocated addresses from the DRAM hole. As shown, the DRAM hole
487 * starts at address x (the base address) and extends through address
488 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
489 * addresses in the hole so that they start at 0x100000000.
490 */
491
bc21fa57 492 base = dhar_base(pvt);
e2ce7255
DT
493
494 *hole_base = base;
495 *hole_size = (0x1ull << 32) - base;
496
497 if (boot_cpu_data.x86 > 0xf)
bc21fa57 498 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 499 else
bc21fa57 500 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
501
502 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
503 pvt->mc_node_id, (unsigned long)*hole_base,
504 (unsigned long)*hole_offset, (unsigned long)*hole_size);
505
506 return 0;
507}
508EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
509
93c2df58
DT
510/*
511 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
512 * assumed that sys_addr maps to the node given by mci.
513 *
514 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
515 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
516 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
517 * then it is also involved in translating a SysAddr to a DramAddr. Sections
518 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
519 * These parts of the documentation are unclear. I interpret them as follows:
520 *
521 * When node n receives a SysAddr, it processes the SysAddr as follows:
522 *
523 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
524 * Limit registers for node n. If the SysAddr is not within the range
525 * specified by the base and limit values, then node n ignores the Sysaddr
526 * (since it does not map to node n). Otherwise continue to step 2 below.
527 *
528 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
529 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
530 * the range of relocated addresses (starting at 0x100000000) from the DRAM
531 * hole. If not, skip to step 3 below. Else get the value of the
532 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
533 * offset defined by this value from the SysAddr.
534 *
535 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
536 * Base register for node n. To obtain the DramAddr, subtract the base
537 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
538 */
539static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
540{
7f19bf75 541 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
542 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
543 int ret = 0;
544
7f19bf75 545 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
546
547 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
548 &hole_size);
549 if (!ret) {
550 if ((sys_addr >= (1ull << 32)) &&
551 (sys_addr < ((1ull << 32) + hole_size))) {
552 /* use DHAR to translate SysAddr to DramAddr */
553 dram_addr = sys_addr - hole_offset;
554
555 debugf2("using DHAR to translate SysAddr 0x%lx to "
556 "DramAddr 0x%lx\n",
557 (unsigned long)sys_addr,
558 (unsigned long)dram_addr);
559
560 return dram_addr;
561 }
562 }
563
564 /*
565 * Translate the SysAddr to a DramAddr as shown near the start of
566 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
567 * only deals with 40-bit values. Therefore we discard bits 63-40 of
568 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
569 * discard are all 1s. Otherwise the bits we discard are all 0s. See
570 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
571 * Programmer's Manual Volume 1 Application Programming.
572 */
f678b8cc 573 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
574
575 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
576 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
577 (unsigned long)dram_addr);
578 return dram_addr;
579}
580
581/*
582 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
583 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
584 * for node interleaving.
585 */
586static int num_node_interleave_bits(unsigned intlv_en)
587{
588 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
589 int n;
590
591 BUG_ON(intlv_en > 7);
592 n = intlv_shift_table[intlv_en];
593 return n;
594}
595
596/* Translate the DramAddr given by @dram_addr to an InputAddr. */
597static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
598{
599 struct amd64_pvt *pvt;
600 int intlv_shift;
601 u64 input_addr;
602
603 pvt = mci->pvt_info;
604
605 /*
606 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
607 * concerning translating a DramAddr to an InputAddr.
608 */
7f19bf75 609 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
610 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
611 (dram_addr & 0xfff);
93c2df58
DT
612
613 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
614 intlv_shift, (unsigned long)dram_addr,
615 (unsigned long)input_addr);
616
617 return input_addr;
618}
619
620/*
621 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
622 * assumed that @sys_addr maps to the node given by mci.
623 */
624static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
625{
626 u64 input_addr;
627
628 input_addr =
629 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
630
631 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
632 (unsigned long)sys_addr, (unsigned long)input_addr);
633
634 return input_addr;
635}
636
637
638/*
639 * @input_addr is an InputAddr associated with the node represented by mci.
640 * Translate @input_addr to a DramAddr and return the result.
641 */
642static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
643{
644 struct amd64_pvt *pvt;
645 int node_id, intlv_shift;
646 u64 bits, dram_addr;
647 u32 intlv_sel;
648
649 /*
650 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
651 * shows how to translate a DramAddr to an InputAddr. Here we reverse
652 * this procedure. When translating from a DramAddr to an InputAddr, the
653 * bits used for node interleaving are discarded. Here we recover these
654 * bits from the IntlvSel field of the DRAM Limit register (section
655 * 3.4.4.2) for the node that input_addr is associated with.
656 */
657 pvt = mci->pvt_info;
658 node_id = pvt->mc_node_id;
659 BUG_ON((node_id < 0) || (node_id > 7));
660
7f19bf75 661 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
662
663 if (intlv_shift == 0) {
664 debugf1(" InputAddr 0x%lx translates to DramAddr of "
665 "same value\n", (unsigned long)input_addr);
666
667 return input_addr;
668 }
669
f678b8cc
BP
670 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
671 (input_addr & 0xfff);
93c2df58 672
7f19bf75 673 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
674 dram_addr = bits + (intlv_sel << 12);
675
676 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
677 "(%d node interleave bits)\n", (unsigned long)input_addr,
678 (unsigned long)dram_addr, intlv_shift);
679
680 return dram_addr;
681}
682
683/*
684 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
685 * @dram_addr to a SysAddr.
686 */
687static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
688{
689 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 690 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
691 int ret = 0;
692
693 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
694 &hole_size);
695 if (!ret) {
696 if ((dram_addr >= hole_base) &&
697 (dram_addr < (hole_base + hole_size))) {
698 sys_addr = dram_addr + hole_offset;
699
700 debugf1("using DHAR to translate DramAddr 0x%lx to "
701 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705 }
706 }
707
7f19bf75 708 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
709 sys_addr = dram_addr + base;
710
711 /*
712 * The sys_addr we have computed up to this point is a 40-bit value
713 * because the k8 deals with 40-bit values. However, the value we are
714 * supposed to return is a full 64-bit physical address. The AMD
715 * x86-64 architecture specifies that the most significant implemented
716 * address bit through bit 63 of a physical address must be either all
717 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
718 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
719 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
720 * Programming.
721 */
722 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
723
724 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
725 pvt->mc_node_id, (unsigned long)dram_addr,
726 (unsigned long)sys_addr);
727
728 return sys_addr;
729}
730
731/*
732 * @input_addr is an InputAddr associated with the node given by mci. Translate
733 * @input_addr to a SysAddr.
734 */
735static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
736 u64 input_addr)
737{
738 return dram_addr_to_sys_addr(mci,
739 input_addr_to_dram_addr(mci, input_addr));
740}
741
742/*
743 * Find the minimum and maximum InputAddr values that map to the given @csrow.
744 * Pass back these values in *input_addr_min and *input_addr_max.
745 */
746static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
747 u64 *input_addr_min, u64 *input_addr_max)
748{
749 struct amd64_pvt *pvt;
750 u64 base, mask;
751
752 pvt = mci->pvt_info;
11c75ead 753 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 754
11c75ead 755 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
756
757 *input_addr_min = base & ~mask;
11c75ead 758 *input_addr_max = base | mask;
93c2df58
DT
759}
760
93c2df58
DT
761/* Map the Error address to a PAGE and PAGE OFFSET. */
762static inline void error_address_to_page_and_offset(u64 error_address,
763 u32 *page, u32 *offset)
764{
765 *page = (u32) (error_address >> PAGE_SHIFT);
766 *offset = ((u32) error_address) & ~PAGE_MASK;
767}
768
769/*
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
775 * error.
776 */
777static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
778{
779 int csrow;
780
781 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
782
783 if (csrow == -1)
24f9a7fe
BP
784 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
785 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
786 return csrow;
787}
e2ce7255 788
bfc04aec 789static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 790
2da11654
DT
791/*
792 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
793 * are ECC capable.
794 */
795static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
796{
cb328507 797 u8 bit;
584fcff4 798 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 799
1433eb99 800 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
801 ? 19
802 : 17;
803
584fcff4 804 if (pvt->dclr0 & BIT(bit))
2da11654
DT
805 edac_cap = EDAC_FLAG_SECDED;
806
807 return edac_cap;
808}
809
810
8566c4df 811static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 812
68798e17
BP
813static void amd64_dump_dramcfg_low(u32 dclr, int chan)
814{
815 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
816
817 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
818 (dclr & BIT(16)) ? "un" : "",
819 (dclr & BIT(19)) ? "yes" : "no");
820
821 debugf1(" PAR/ERR parity: %s\n",
822 (dclr & BIT(8)) ? "enabled" : "disabled");
823
cb328507
BP
824 if (boot_cpu_data.x86 == 0x10)
825 debugf1(" DCT 128bit mode width: %s\n",
826 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
827
828 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
829 (dclr & BIT(12)) ? "yes" : "no",
830 (dclr & BIT(13)) ? "yes" : "no",
831 (dclr & BIT(14)) ? "yes" : "no",
832 (dclr & BIT(15)) ? "yes" : "no");
833}
834
2da11654 835/* Display and decode various NB registers for debug purposes. */
b2b0c605 836static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 837{
68798e17
BP
838 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
839
840 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 841 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 842
68798e17 843 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
844 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
845 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
846
847 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 848
8de1d91e 849 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 850
8de1d91e
BP
851 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
852 "offset: 0x%08x\n",
bc21fa57
BP
853 pvt->dhar, dhar_base(pvt),
854 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
855 : f10_dhar_offset(pvt));
2da11654 856
c8e518d5 857 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 858
4d796364
BP
859 amd64_debug_display_dimm_sizes(0, pvt);
860
8de1d91e 861 /* everything below this point is Fam10h and above */
4d796364 862 if (boot_cpu_data.x86 == 0xf)
2da11654 863 return;
4d796364
BP
864
865 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 866
24f9a7fe 867 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 868
8de1d91e 869 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
870 if (!dct_ganging_enabled(pvt))
871 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
872}
873
94be4bff 874/*
11c75ead 875 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 876 */
11c75ead 877static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 878{
1433eb99 879 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
880 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
881 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 882 } else {
11c75ead
BP
883 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
884 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
885 }
886}
887
888/*
11c75ead 889 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 890 */
b2b0c605 891static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 892{
11c75ead 893 int cs;
94be4bff 894
11c75ead 895 prep_chip_selects(pvt);
94be4bff 896
11c75ead
BP
897 for_each_chip_select(cs, 0, pvt) {
898 u32 reg0 = DCSB0 + (cs * 4);
899 u32 reg1 = DCSB1 + (cs * 4);
900 u32 *base0 = &pvt->csels[0].csbases[cs];
901 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 902
11c75ead 903 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 904 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 905 cs, *base0, reg0);
94be4bff 906
11c75ead
BP
907 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
908 continue;
b2b0c605 909
11c75ead
BP
910 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
911 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
912 cs, *base1, reg1);
94be4bff
DT
913 }
914
11c75ead
BP
915 for_each_chip_select_mask(cs, 0, pvt) {
916 u32 reg0 = DCSM0 + (cs * 4);
917 u32 reg1 = DCSM1 + (cs * 4);
918 u32 *mask0 = &pvt->csels[0].csmasks[cs];
919 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 920
11c75ead 921 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 922 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 923 cs, *mask0, reg0);
94be4bff 924
11c75ead
BP
925 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
926 continue;
b2b0c605 927
11c75ead
BP
928 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
929 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
930 cs, *mask1, reg1);
94be4bff
DT
931 }
932}
933
24f9a7fe 934static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
935{
936 enum mem_type type;
937
cb328507
BP
938 /* F15h supports only DDR3 */
939 if (boot_cpu_data.x86 >= 0x15)
940 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
941 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
942 if (pvt->dchr0 & DDR3_MODE)
943 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
944 else
945 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 946 } else {
94be4bff
DT
947 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
948 }
949
24f9a7fe 950 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
951
952 return type;
953}
954
cb328507 955/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
956static int k8_early_channel_count(struct amd64_pvt *pvt)
957{
cb328507 958 int flag;
ddff876d 959
9f56da0e 960 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
961 /* RevF (NPT) and later */
962 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 963 else
ddff876d
DT
964 /* RevE and earlier */
965 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
966
967 /* not used */
968 pvt->dclr1 = 0;
969
970 return (flag) ? 2 : 1;
971}
972
70046624
BP
973/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
974static u64 get_error_address(struct mce *m)
ddff876d 975{
70046624
BP
976 u8 start_bit = 1;
977 u8 end_bit = 47;
978
979 if (boot_cpu_data.x86 == 0xf) {
980 start_bit = 3;
981 end_bit = 39;
982 }
983
984 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
985}
986
7f19bf75 987static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 988{
7f19bf75 989 u32 off = range << 3;
ddff876d 990
7f19bf75
BP
991 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
992 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 993
7f19bf75
BP
994 if (boot_cpu_data.x86 == 0xf)
995 return;
ddff876d 996
7f19bf75
BP
997 if (!dram_rw(pvt, range))
998 return;
ddff876d 999
7f19bf75
BP
1000 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1001 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
1002}
1003
f192c7b1
BP
1004static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1005 u16 syndrome)
ddff876d
DT
1006{
1007 struct mem_ctl_info *src_mci;
f192c7b1 1008 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1009 int channel, csrow;
1010 u32 page, offset;
ddff876d
DT
1011
1012 /* CHIPKILL enabled */
f192c7b1 1013 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1014 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1015 if (channel < 0) {
1016 /*
1017 * Syndrome didn't map, so we don't know which of the
1018 * 2 DIMMs is in error. So we need to ID 'both' of them
1019 * as suspect.
1020 */
24f9a7fe
BP
1021 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1022 "error reporting race\n", syndrome);
ddff876d
DT
1023 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1024 return;
1025 }
1026 } else {
1027 /*
1028 * non-chipkill ecc mode
1029 *
1030 * The k8 documentation is unclear about how to determine the
1031 * channel number when using non-chipkill memory. This method
1032 * was obtained from email communication with someone at AMD.
1033 * (Wish the email was placed in this comment - norsk)
1034 */
44e9e2ee 1035 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1036 }
1037
1038 /*
1039 * Find out which node the error address belongs to. This may be
1040 * different from the node that detected the error.
1041 */
44e9e2ee 1042 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1043 if (!src_mci) {
24f9a7fe 1044 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1045 (unsigned long)sys_addr);
ddff876d
DT
1046 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1047 return;
1048 }
1049
44e9e2ee
BP
1050 /* Now map the sys_addr to a CSROW */
1051 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1052 if (csrow < 0) {
1053 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1054 } else {
44e9e2ee 1055 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1056
1057 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1058 channel, EDAC_MOD_STR);
1059 }
1060}
1061
1433eb99 1062static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1063{
1433eb99 1064 int *dbam_map;
ddff876d 1065
1433eb99
BP
1066 if (pvt->ext_model >= K8_REV_F)
1067 dbam_map = ddr2_dbam;
1068 else if (pvt->ext_model >= K8_REV_D)
1069 dbam_map = ddr2_dbam_revD;
1070 else
1071 dbam_map = ddr2_dbam_revCG;
ddff876d 1072
1433eb99 1073 return dbam_map[cs_mode];
ddff876d
DT
1074}
1075
1afd3c98
DT
1076/*
1077 * Get the number of DCT channels in use.
1078 *
1079 * Return:
1080 * number of Memory Channels in operation
1081 * Pass back:
1082 * contents of the DCL0_LOW register
1083 */
7d20d14d 1084static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1085{
6ba5dcdc 1086 int i, j, channels = 0;
1afd3c98 1087
7d20d14d
BP
1088 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1089 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128))
1090 return 2;
1afd3c98
DT
1091
1092 /*
d16149e8
BP
1093 * Need to check if in unganged mode: In such, there are 2 channels,
1094 * but they are not in 128 bit mode and thus the above 'dclr0' status
1095 * bit will be OFF.
1afd3c98
DT
1096 *
1097 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1098 * their CSEnable bit on. If so, then SINGLE DIMM case.
1099 */
d16149e8 1100 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1101
1afd3c98
DT
1102 /*
1103 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1104 * is more than just one DIMM present in unganged mode. Need to check
1105 * both controllers since DIMMs can be placed in either one.
1106 */
525a1b20
BP
1107 for (i = 0; i < 2; i++) {
1108 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1109
57a30854
WW
1110 for (j = 0; j < 4; j++) {
1111 if (DBAM_DIMM(j, dbam) > 0) {
1112 channels++;
1113 break;
1114 }
1115 }
1afd3c98
DT
1116 }
1117
d16149e8
BP
1118 if (channels > 2)
1119 channels = 2;
1120
24f9a7fe 1121 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1122
1123 return channels;
1afd3c98
DT
1124}
1125
1433eb99 1126static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1127{
1433eb99
BP
1128 int *dbam_map;
1129
1130 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1131 dbam_map = ddr3_dbam;
1132 else
1133 dbam_map = ddr2_dbam;
1134
1135 return dbam_map[cs_mode];
1afd3c98
DT
1136}
1137
6163b5d4
DT
1138static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1139{
6163b5d4 1140
78da121e
BP
1141 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1142 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1143 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1144
78da121e 1145 debugf0(" mode: %s, All DCTs on: %s\n",
72381bd5
BP
1146 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1147 (dct_dram_enabled(pvt) ? "yes" : "no"));
1148
1149 if (!dct_ganging_enabled(pvt))
1150 debugf0(" Address range split per DCT: %s\n",
1151 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1152
78da121e 1153 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1154 "DRAM cleared since last warm reset: %s\n",
1155 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1156 (dct_memory_cleared(pvt) ? "yes" : "no"));
1157
78da121e
BP
1158 debugf0(" channel interleave: %s, "
1159 "interleave bits selector: 0x%x\n",
72381bd5 1160 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1161 dct_sel_interleave_addr(pvt));
1162 }
1163
78da121e 1164 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1165}
1166
f71d0a05 1167/*
229a7a11 1168 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1169 * Interleaving Modes.
1170 */
11c75ead 1171static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1172 bool hi_range_sel, u8 intlv_en)
6163b5d4 1173{
78da121e 1174 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1175
1176 if (dct_ganging_enabled(pvt))
229a7a11 1177 return 0;
6163b5d4 1178
229a7a11
BP
1179 if (hi_range_sel)
1180 return dct_sel_high;
6163b5d4 1181
229a7a11
BP
1182 /*
1183 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1184 */
1185 if (dct_interleave_enabled(pvt)) {
1186 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1187
1188 /* return DCT select function: 0=DCT0, 1=DCT1 */
1189 if (!intlv_addr)
1190 return sys_addr >> 6 & 1;
1191
1192 if (intlv_addr & 0x2) {
1193 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1194 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1195
1196 return ((sys_addr >> shift) & 1) ^ temp;
1197 }
1198
1199 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1200 }
1201
1202 if (dct_high_range_enabled(pvt))
1203 return ~dct_sel_high & 1;
6163b5d4
DT
1204
1205 return 0;
1206}
1207
c8e518d5
BP
1208/* Convert the sys_addr to the normalized DCT address */
1209static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1210 u64 sys_addr, bool hi_rng,
1211 u32 dct_sel_base_addr)
6163b5d4
DT
1212{
1213 u64 chan_off;
c8e518d5
BP
1214 u64 dram_base = get_dram_base(pvt, range);
1215 u64 hole_off = f10_dhar_offset(pvt);
1216 u32 hole_valid = dhar_valid(pvt);
1217 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1218
c8e518d5
BP
1219 if (hi_rng) {
1220 /*
1221 * if
1222 * base address of high range is below 4Gb
1223 * (bits [47:27] at [31:11])
1224 * DRAM address space on this DCT is hoisted above 4Gb &&
1225 * sys_addr > 4Gb
1226 *
1227 * remove hole offset from sys_addr
1228 * else
1229 * remove high range offset from sys_addr
1230 */
1231 if ((!(dct_sel_base_addr >> 16) ||
1232 dct_sel_base_addr < dhar_base(pvt)) &&
1233 hole_valid &&
1234 (sys_addr >= BIT_64(32)))
bc21fa57 1235 chan_off = hole_off;
6163b5d4
DT
1236 else
1237 chan_off = dct_sel_base_off;
1238 } else {
c8e518d5
BP
1239 /*
1240 * if
1241 * we have a valid hole &&
1242 * sys_addr > 4Gb
1243 *
1244 * remove hole
1245 * else
1246 * remove dram base to normalize to DCT address
1247 */
1248 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1249 chan_off = hole_off;
6163b5d4 1250 else
c8e518d5 1251 chan_off = dram_base;
6163b5d4
DT
1252 }
1253
c8e518d5 1254 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1255}
1256
1257/* Hack for the time being - Can we get this from BIOS?? */
1258#define CH0SPARE_RANK 0
1259#define CH1SPARE_RANK 1
1260
1261/*
1262 * checks if the csrow passed in is marked as SPARED, if so returns the new
1263 * spare row
1264 */
11c75ead 1265static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4
DT
1266{
1267 u32 swap_done;
1268 u32 bad_dram_cs;
1269
1270 /* Depending on channel, isolate respective SPARING info */
11c75ead 1271 if (dct) {
6163b5d4
DT
1272 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1273 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1274 if (swap_done && (csrow == bad_dram_cs))
1275 csrow = CH1SPARE_RANK;
1276 } else {
1277 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1278 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1279 if (swap_done && (csrow == bad_dram_cs))
1280 csrow = CH0SPARE_RANK;
1281 }
1282 return csrow;
1283}
1284
1285/*
1286 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1287 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1288 *
1289 * Return:
1290 * -EINVAL: NOT FOUND
1291 * 0..csrow = Chip-Select Row
1292 */
11c75ead 1293static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1294{
1295 struct mem_ctl_info *mci;
1296 struct amd64_pvt *pvt;
11c75ead 1297 u64 cs_base, cs_mask;
6163b5d4
DT
1298 int cs_found = -EINVAL;
1299 int csrow;
1300
cc4d8860 1301 mci = mcis[nid];
6163b5d4
DT
1302 if (!mci)
1303 return cs_found;
1304
1305 pvt = mci->pvt_info;
1306
11c75ead 1307 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1308
11c75ead
BP
1309 for_each_chip_select(csrow, dct, pvt) {
1310 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1311 continue;
1312
11c75ead 1313 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1314
11c75ead
BP
1315 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1316 csrow, cs_base, cs_mask);
6163b5d4 1317
11c75ead 1318 cs_mask = ~cs_mask;
6163b5d4 1319
11c75ead
BP
1320 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1321 "(CSBase & ~CSMask)=0x%llx\n",
1322 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1323
11c75ead
BP
1324 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1325 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1326
1327 debugf1(" MATCH csrow=%d\n", cs_found);
1328 break;
1329 }
1330 }
1331 return cs_found;
1332}
1333
95b0ef55
BP
1334/*
1335 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1336 * swapped with a region located at the bottom of memory so that the GPU can use
1337 * the interleaved region and thus two channels.
1338 */
1339static u64 f10_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1340{
1341 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1342
1343 if (boot_cpu_data.x86 == 0x10) {
1344 /* only revC3 and revE have that feature */
1345 if (boot_cpu_data.x86_model < 4 ||
1346 (boot_cpu_data.x86_model < 0xa &&
1347 boot_cpu_data.x86_mask < 3))
1348 return sys_addr;
1349 }
1350
1351 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1352
1353 if (!(swap_reg & 0x1))
1354 return sys_addr;
1355
1356 swap_base = (swap_reg >> 3) & 0x7f;
1357 swap_limit = (swap_reg >> 11) & 0x7f;
1358 rgn_size = (swap_reg >> 20) & 0x7f;
1359 tmp_addr = sys_addr >> 27;
1360
1361 if (!(sys_addr >> 34) &&
1362 (((tmp_addr >= swap_base) &&
1363 (tmp_addr <= swap_limit)) ||
1364 (tmp_addr < rgn_size)))
1365 return sys_addr ^ (u64)swap_base << 27;
1366
1367 return sys_addr;
1368}
1369
f71d0a05 1370/* For a given @dram_range, check if @sys_addr falls within it. */
7f19bf75 1371static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1372 u64 sys_addr, int *nid, int *chan_sel)
1373{
229a7a11 1374 int cs_found = -EINVAL;
c8e518d5
BP
1375 u64 chan_addr;
1376 u32 tmp, dct_sel_base;
11c75ead 1377 u8 channel;
229a7a11 1378 bool high_range = false;
f71d0a05 1379
7f19bf75 1380 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1381 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1382 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1383
c8e518d5
BP
1384 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1385 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1386
e726f3c3 1387 if (intlv_en &&
f71d0a05
DT
1388 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1389 return -EINVAL;
1390
95b0ef55
BP
1391 sys_addr = f10_swap_interleaved_region(pvt, sys_addr);
1392
f71d0a05
DT
1393 dct_sel_base = dct_sel_baseaddr(pvt);
1394
1395 /*
1396 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1397 * select between DCT0 and DCT1.
1398 */
1399 if (dct_high_range_enabled(pvt) &&
1400 !dct_ganging_enabled(pvt) &&
1401 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1402 high_range = true;
f71d0a05
DT
1403
1404 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1405
c8e518d5
BP
1406 chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
1407 high_range, dct_sel_base);
f71d0a05 1408
e2f79dbd
BP
1409 /* Remove node interleaving, see F1x120 */
1410 if (intlv_en)
1411 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1412 (chan_addr & 0xfff);
f71d0a05
DT
1413
1414 /* remove channel interleave and hash */
1415 if (dct_interleave_enabled(pvt) &&
1416 !dct_high_range_enabled(pvt) &&
1417 !dct_ganging_enabled(pvt)) {
1418 if (dct_sel_interleave_addr(pvt) != 1)
f678b8cc 1419 chan_addr = (chan_addr >> 1) & GENMASK(6, 63);
f71d0a05
DT
1420 else {
1421 tmp = chan_addr & 0xFC0;
f678b8cc 1422 chan_addr = ((chan_addr & GENMASK(14, 63)) >> 1) | tmp;
f71d0a05
DT
1423 }
1424 }
1425
11c75ead 1426 debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr);
f71d0a05 1427
11c75ead 1428 cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1429
1430 if (cs_found >= 0) {
1431 *nid = node_id;
1432 *chan_sel = channel;
1433 }
1434 return cs_found;
1435}
1436
1437static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1438 int *node, int *chan_sel)
1439{
7f19bf75 1440 int range, cs_found = -EINVAL;
f71d0a05 1441
7f19bf75 1442 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1443
7f19bf75 1444 if (!dram_rw(pvt, range))
f71d0a05
DT
1445 continue;
1446
7f19bf75
BP
1447 if ((get_dram_base(pvt, range) <= sys_addr) &&
1448 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1449
7f19bf75 1450 cs_found = f10_match_to_this_node(pvt, range,
f71d0a05
DT
1451 sys_addr, node,
1452 chan_sel);
1453 if (cs_found >= 0)
1454 break;
1455 }
1456 }
1457 return cs_found;
1458}
1459
1460/*
bdc30a0c
BP
1461 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1462 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1463 *
bdc30a0c
BP
1464 * The @sys_addr is usually an error address received from the hardware
1465 * (MCX_ADDR).
f71d0a05 1466 */
f192c7b1
BP
1467static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1468 u16 syndrome)
f71d0a05
DT
1469{
1470 struct amd64_pvt *pvt = mci->pvt_info;
1471 u32 page, offset;
f71d0a05
DT
1472 int nid, csrow, chan = 0;
1473
1474 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1475
bdc30a0c
BP
1476 if (csrow < 0) {
1477 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1478 return;
1479 }
1480
1481 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1482
bdc30a0c
BP
1483 /*
1484 * We need the syndromes for channel detection only when we're
1485 * ganged. Otherwise @chan should already contain the channel at
1486 * this point.
1487 */
a97fa68e 1488 if (dct_ganging_enabled(pvt))
bdc30a0c 1489 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1490
bdc30a0c
BP
1491 if (chan >= 0)
1492 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1493 EDAC_MOD_STR);
1494 else
f71d0a05 1495 /*
bdc30a0c 1496 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1497 */
bdc30a0c 1498 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1499 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1500 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1501}
1502
f71d0a05 1503/*
8566c4df 1504 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1505 * CSROWs
f71d0a05 1506 */
8566c4df 1507static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1508{
603adaf6 1509 int dimm, size0, size1, factor = 0;
525a1b20
BP
1510 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1511 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1512
8566c4df 1513 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1514 if (pvt->dclr0 & F10_WIDTH_128)
1515 factor = 1;
1516
8566c4df 1517 /* K8 families < revF not supported yet */
1433eb99 1518 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1519 return;
1520 else
1521 WARN_ON(ctrl != 0);
1522 }
1523
4d796364 1524 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1525 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1526 : pvt->csels[0].csbases;
f71d0a05 1527
4d796364 1528 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1529
8566c4df
BP
1530 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1531
f71d0a05
DT
1532 /* Dump memory sizes for DIMM and its CSROWs */
1533 for (dimm = 0; dimm < 4; dimm++) {
1534
1535 size0 = 0;
11c75ead 1536 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1433eb99 1537 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1538
1539 size1 = 0;
11c75ead 1540 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1433eb99 1541 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1542
24f9a7fe
BP
1543 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1544 dimm * 2, size0 << factor,
1545 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1546 }
1547}
1548
4d37607a
DT
1549static struct amd64_family_type amd64_family_types[] = {
1550 [K8_CPUS] = {
0092b20d 1551 .ctl_name = "K8",
8d5b5d9c
BP
1552 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1553 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1554 .ops = {
1433eb99 1555 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1556 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1557 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1558 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1559 }
1560 },
1561 [F10_CPUS] = {
0092b20d 1562 .ctl_name = "F10h",
8d5b5d9c
BP
1563 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1564 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1565 .ops = {
7d20d14d 1566 .early_channel_count = f1x_early_channel_count,
1433eb99
BP
1567 .read_dram_ctl_register = f10_read_dram_ctl_register,
1568 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1569 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1570 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1571 }
1572 },
1573 [F15_CPUS] = {
1574 .ctl_name = "F15h",
1575 .ops = {
7d20d14d 1576 .early_channel_count = f1x_early_channel_count,
b2b0c605 1577 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1578 }
1579 },
4d37607a
DT
1580};
1581
1582static struct pci_dev *pci_get_related_function(unsigned int vendor,
1583 unsigned int device,
1584 struct pci_dev *related)
1585{
1586 struct pci_dev *dev = NULL;
1587
1588 dev = pci_get_device(vendor, device, dev);
1589 while (dev) {
1590 if ((dev->bus->number == related->bus->number) &&
1591 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1592 break;
1593 dev = pci_get_device(vendor, device, dev);
1594 }
1595
1596 return dev;
1597}
1598
b1289d6f 1599/*
bfc04aec
BP
1600 * These are tables of eigenvectors (one per line) which can be used for the
1601 * construction of the syndrome tables. The modified syndrome search algorithm
1602 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1603 *
bfc04aec 1604 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1605 */
bfc04aec
BP
1606static u16 x4_vectors[] = {
1607 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1608 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1609 0x0001, 0x0002, 0x0004, 0x0008,
1610 0x1013, 0x3032, 0x4044, 0x8088,
1611 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1612 0x4857, 0xc4fe, 0x13cc, 0x3288,
1613 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1614 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1615 0x15c1, 0x2a42, 0x89ac, 0x4758,
1616 0x2b03, 0x1602, 0x4f0c, 0xca08,
1617 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1618 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1619 0x2b87, 0x164e, 0x642c, 0xdc18,
1620 0x40b9, 0x80de, 0x1094, 0x20e8,
1621 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1622 0x11c1, 0x2242, 0x84ac, 0x4c58,
1623 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1624 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1625 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1626 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1627 0x16b3, 0x3d62, 0x4f34, 0x8518,
1628 0x1e2f, 0x391a, 0x5cac, 0xf858,
1629 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1630 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1631 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1632 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1633 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1634 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1635 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1636 0x185d, 0x2ca6, 0x7914, 0x9e28,
1637 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1638 0x4199, 0x82ee, 0x19f4, 0x2e58,
1639 0x4807, 0xc40e, 0x130c, 0x3208,
1640 0x1905, 0x2e0a, 0x5804, 0xac08,
1641 0x213f, 0x132a, 0xadfc, 0x5ba8,
1642 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1643};
1644
bfc04aec
BP
1645static u16 x8_vectors[] = {
1646 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1647 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1648 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1649 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1650 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1651 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1652 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1653 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1654 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1655 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1656 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1657 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1658 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1659 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1660 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1661 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1662 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1663 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1664 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1665};
1666
1667static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1668 int v_dim)
b1289d6f 1669{
bfc04aec
BP
1670 unsigned int i, err_sym;
1671
1672 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1673 u16 s = syndrome;
1674 int v_idx = err_sym * v_dim;
1675 int v_end = (err_sym + 1) * v_dim;
1676
1677 /* walk over all 16 bits of the syndrome */
1678 for (i = 1; i < (1U << 16); i <<= 1) {
1679
1680 /* if bit is set in that eigenvector... */
1681 if (v_idx < v_end && vectors[v_idx] & i) {
1682 u16 ev_comp = vectors[v_idx++];
1683
1684 /* ... and bit set in the modified syndrome, */
1685 if (s & i) {
1686 /* remove it. */
1687 s ^= ev_comp;
4d37607a 1688
bfc04aec
BP
1689 if (!s)
1690 return err_sym;
1691 }
b1289d6f 1692
bfc04aec
BP
1693 } else if (s & i)
1694 /* can't get to zero, move to next symbol */
1695 break;
1696 }
b1289d6f
DT
1697 }
1698
1699 debugf0("syndrome(%x) not found\n", syndrome);
1700 return -1;
1701}
d27bf6fa 1702
bfc04aec
BP
1703static int map_err_sym_to_channel(int err_sym, int sym_size)
1704{
1705 if (sym_size == 4)
1706 switch (err_sym) {
1707 case 0x20:
1708 case 0x21:
1709 return 0;
1710 break;
1711 case 0x22:
1712 case 0x23:
1713 return 1;
1714 break;
1715 default:
1716 return err_sym >> 4;
1717 break;
1718 }
1719 /* x8 symbols */
1720 else
1721 switch (err_sym) {
1722 /* imaginary bits not in a DIMM */
1723 case 0x10:
1724 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1725 err_sym);
1726 return -1;
1727 break;
1728
1729 case 0x11:
1730 return 0;
1731 break;
1732 case 0x12:
1733 return 1;
1734 break;
1735 default:
1736 return err_sym >> 3;
1737 break;
1738 }
1739 return -1;
1740}
1741
1742static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1743{
1744 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1745 int err_sym = -1;
1746
1747 if (pvt->syn_type == 8)
1748 err_sym = decode_syndrome(syndrome, x8_vectors,
1749 ARRAY_SIZE(x8_vectors),
1750 pvt->syn_type);
1751 else if (pvt->syn_type == 4)
1752 err_sym = decode_syndrome(syndrome, x4_vectors,
1753 ARRAY_SIZE(x4_vectors),
1754 pvt->syn_type);
1755 else {
24f9a7fe 1756 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1757 return err_sym;
bfc04aec 1758 }
ad6a32e9
BP
1759
1760 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1761}
1762
d27bf6fa
DT
1763/*
1764 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1765 * ADDRESS and process.
1766 */
f192c7b1 1767static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1768{
1769 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1770 u64 sys_addr;
f192c7b1 1771 u16 syndrome;
d27bf6fa
DT
1772
1773 /* Ensure that the Error Address is VALID */
f192c7b1 1774 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1775 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1776 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1777 return;
1778 }
1779
70046624 1780 sys_addr = get_error_address(m);
f192c7b1 1781 syndrome = extract_syndrome(m->status);
d27bf6fa 1782
24f9a7fe 1783 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1784
f192c7b1 1785 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1786}
1787
1788/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1789static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1790{
1f6bcee7 1791 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1792 int csrow;
44e9e2ee 1793 u64 sys_addr;
d27bf6fa 1794 u32 page, offset;
d27bf6fa
DT
1795
1796 log_mci = mci;
1797
f192c7b1 1798 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1799 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1800 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1801 return;
1802 }
1803
70046624 1804 sys_addr = get_error_address(m);
d27bf6fa
DT
1805
1806 /*
1807 * Find out which node the error address belongs to. This may be
1808 * different from the node that detected the error.
1809 */
44e9e2ee 1810 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1811 if (!src_mci) {
24f9a7fe
BP
1812 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1813 (unsigned long)sys_addr);
d27bf6fa
DT
1814 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1815 return;
1816 }
1817
1818 log_mci = src_mci;
1819
44e9e2ee 1820 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1821 if (csrow < 0) {
24f9a7fe
BP
1822 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1823 (unsigned long)sys_addr);
d27bf6fa
DT
1824 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1825 } else {
44e9e2ee 1826 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1827 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1828 }
1829}
1830
549d042d 1831static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1832 struct mce *m)
d27bf6fa 1833{
f192c7b1
BP
1834 u16 ec = EC(m->status);
1835 u8 xec = XEC(m->status, 0x1f);
1836 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1837
b70ef010 1838 /* Bail early out if this was an 'observed' error */
5980bb9c 1839 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1840 return;
d27bf6fa 1841
ecaf5606
BP
1842 /* Do only ECC errors */
1843 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1844 return;
d27bf6fa 1845
ecaf5606 1846 if (ecc_type == 2)
f192c7b1 1847 amd64_handle_ce(mci, m);
ecaf5606 1848 else if (ecc_type == 1)
f192c7b1 1849 amd64_handle_ue(mci, m);
d27bf6fa
DT
1850}
1851
7cfd4a87 1852void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1853{
cc4d8860 1854 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1855
f192c7b1 1856 __amd64_decode_bus_error(mci, m);
d27bf6fa 1857}
d27bf6fa 1858
0ec449ee 1859/*
8d5b5d9c 1860 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1861 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1862 */
360b7f3c 1863static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1864{
0ec449ee 1865 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1866 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1867 if (!pvt->F1) {
24f9a7fe
BP
1868 amd64_err("error address map device not found: "
1869 "vendor %x device 0x%x (broken BIOS?)\n",
1870 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1871 return -ENODEV;
0ec449ee
DT
1872 }
1873
1874 /* Reserve the MISC Device */
8d5b5d9c
BP
1875 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1876 if (!pvt->F3) {
1877 pci_dev_put(pvt->F1);
1878 pvt->F1 = NULL;
0ec449ee 1879
24f9a7fe
BP
1880 amd64_err("error F3 device not found: "
1881 "vendor %x device 0x%x (broken BIOS?)\n",
1882 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1883
bbd0c1f6 1884 return -ENODEV;
0ec449ee 1885 }
8d5b5d9c
BP
1886 debugf1("F1: %s\n", pci_name(pvt->F1));
1887 debugf1("F2: %s\n", pci_name(pvt->F2));
1888 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1889
1890 return 0;
1891}
1892
360b7f3c 1893static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1894{
8d5b5d9c
BP
1895 pci_dev_put(pvt->F1);
1896 pci_dev_put(pvt->F3);
0ec449ee
DT
1897}
1898
1899/*
1900 * Retrieve the hardware registers of the memory controller (this includes the
1901 * 'Address Map' and 'Misc' device regs)
1902 */
360b7f3c 1903static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
1904{
1905 u64 msr_val;
ad6a32e9 1906 u32 tmp;
7f19bf75 1907 int range;
0ec449ee
DT
1908
1909 /*
1910 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1911 * those are Read-As-Zero
1912 */
e97f8bb8
BP
1913 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1914 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1915
1916 /* check first whether TOP_MEM2 is enabled */
1917 rdmsrl(MSR_K8_SYSCFG, msr_val);
1918 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1919 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1920 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1921 } else
1922 debugf0(" TOP_MEM2 disabled.\n");
1923
5980bb9c 1924 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee
DT
1925
1926 if (pvt->ops->read_dram_ctl_register)
1927 pvt->ops->read_dram_ctl_register(pvt);
1928
7f19bf75
BP
1929 for (range = 0; range < DRAM_RANGES; range++) {
1930 u8 rw;
0ec449ee 1931
7f19bf75
BP
1932 /* read settings for this DRAM range */
1933 read_dram_base_limit_regs(pvt, range);
1934
1935 rw = dram_rw(pvt, range);
1936 if (!rw)
1937 continue;
1938
1939 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1940 range,
1941 get_dram_base(pvt, range),
1942 get_dram_limit(pvt, range));
1943
1944 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1945 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1946 (rw & 0x1) ? "R" : "-",
1947 (rw & 0x2) ? "W" : "-",
1948 dram_intlv_sel(pvt, range),
1949 dram_dst_node(pvt, range));
0ec449ee
DT
1950 }
1951
b2b0c605 1952 read_dct_base_mask(pvt);
0ec449ee 1953
bc21fa57 1954 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1955 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1956
8d5b5d9c 1957 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1958
cb328507
BP
1959 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1960 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1961
78da121e 1962 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1963 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1964 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1965 }
ad6a32e9 1966
525a1b20 1967 if (boot_cpu_data.x86 >= 0x10) {
b2b0c605 1968 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20
BP
1969 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1970 }
b2b0c605 1971
ad6a32e9
BP
1972 if (boot_cpu_data.x86 == 0x10 &&
1973 boot_cpu_data.x86_model > 7 &&
1974 /* F3x180[EccSymbolSize]=1 => x8 symbols */
1975 tmp & BIT(25))
1976 pvt->syn_type = 8;
1977 else
1978 pvt->syn_type = 4;
1979
b2b0c605 1980 dump_misc_regs(pvt);
0ec449ee
DT
1981}
1982
1983/*
1984 * NOTE: CPU Revision Dependent code
1985 *
1986 * Input:
11c75ead 1987 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
1988 * k8 private pointer to -->
1989 * DRAM Bank Address mapping register
1990 * node_id
1991 * DCL register where dual_channel_active is
1992 *
1993 * The DBAM register consists of 4 sets of 4 bits each definitions:
1994 *
1995 * Bits: CSROWs
1996 * 0-3 CSROWs 0 and 1
1997 * 4-7 CSROWs 2 and 3
1998 * 8-11 CSROWs 4 and 5
1999 * 12-15 CSROWs 6 and 7
2000 *
2001 * Values range from: 0 to 15
2002 * The meaning of the values depends on CPU revision and dual-channel state,
2003 * see relevant BKDG more info.
2004 *
2005 * The memory controller provides for total of only 8 CSROWs in its current
2006 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2007 * single channel or two (2) DIMMs in dual channel mode.
2008 *
2009 * The following code logic collapses the various tables for CSROW based on CPU
2010 * revision.
2011 *
2012 * Returns:
2013 * The number of PAGE_SIZE pages on the specified CSROW number it
2014 * encompasses
2015 *
2016 */
2017static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2018{
1433eb99 2019 u32 cs_mode, nr_pages;
0ec449ee
DT
2020
2021 /*
2022 * The math on this doesn't look right on the surface because x/2*4 can
2023 * be simplified to x*2 but this expression makes use of the fact that
2024 * it is integral math where 1/2=0. This intermediate value becomes the
2025 * number of bits to shift the DBAM register to extract the proper CSROW
2026 * field.
2027 */
1433eb99 2028 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2029
1433eb99 2030 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2031
2032 /*
2033 * If dual channel then double the memory size of single channel.
2034 * Channel count is 1 or 2
2035 */
2036 nr_pages <<= (pvt->channel_count - 1);
2037
1433eb99 2038 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2039 debugf0(" nr_pages= %u channel-count = %d\n",
2040 nr_pages, pvt->channel_count);
2041
2042 return nr_pages;
2043}
2044
2045/*
2046 * Initialize the array of csrow attribute instances, based on the values
2047 * from pci config hardware registers.
2048 */
360b7f3c 2049static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2050{
2051 struct csrow_info *csrow;
2299ef71 2052 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2053 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2054 u32 val;
6ba5dcdc 2055 int i, empty = 1;
0ec449ee 2056
a97fa68e 2057 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2058
2299ef71 2059 pvt->nbcfg = val;
0ec449ee 2060
2299ef71
BP
2061 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2062 pvt->mc_node_id, val,
a97fa68e 2063 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2064
11c75ead 2065 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2066 csrow = &mci->csrows[i];
2067
11c75ead 2068 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2069 debugf1("----CSROW %d EMPTY for node %d\n", i,
2070 pvt->mc_node_id);
2071 continue;
2072 }
2073
2074 debugf1("----CSROW %d VALID for MC node %d\n",
2075 i, pvt->mc_node_id);
2076
2077 empty = 0;
2078 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2079 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2080 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2081 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2082 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2083 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2084
2085 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2086 csrow->page_mask = ~mask;
0ec449ee
DT
2087 /* 8 bytes of resolution */
2088
24f9a7fe 2089 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2090
2091 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2092 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2093 (unsigned long)input_addr_min,
2094 (unsigned long)input_addr_max);
2095 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2096 (unsigned long)sys_addr, csrow->page_mask);
2097 debugf1(" nr_pages: %u first_page: 0x%lx "
2098 "last_page: 0x%lx\n",
2099 (unsigned)csrow->nr_pages,
2100 csrow->first_page, csrow->last_page);
2101
2102 /*
2103 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2104 */
a97fa68e 2105 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2106 csrow->edac_mode =
a97fa68e 2107 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2108 EDAC_S4ECD4ED : EDAC_SECDED;
2109 else
2110 csrow->edac_mode = EDAC_NONE;
2111 }
2112
2113 return empty;
2114}
d27bf6fa 2115
f6d6ae96
BP
2116/* get all cores on this DCT */
2117static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2118{
2119 int cpu;
2120
2121 for_each_online_cpu(cpu)
2122 if (amd_get_nb_id(cpu) == nid)
2123 cpumask_set_cpu(cpu, mask);
2124}
2125
2126/* check MCG_CTL on all the cpus on this node */
2127static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2128{
2129 cpumask_var_t mask;
50542251 2130 int cpu, nbe;
f6d6ae96
BP
2131 bool ret = false;
2132
2133 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2134 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2135 return false;
2136 }
2137
2138 get_cpus_on_this_dct_cpumask(mask, nid);
2139
f6d6ae96
BP
2140 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2141
2142 for_each_cpu(cpu, mask) {
50542251 2143 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2144 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2145
2146 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2147 cpu, reg->q,
f6d6ae96
BP
2148 (nbe ? "enabled" : "disabled"));
2149
2150 if (!nbe)
2151 goto out;
f6d6ae96
BP
2152 }
2153 ret = true;
2154
2155out:
f6d6ae96
BP
2156 free_cpumask_var(mask);
2157 return ret;
2158}
2159
2299ef71 2160static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2161{
2162 cpumask_var_t cmask;
50542251 2163 int cpu;
f6d6ae96
BP
2164
2165 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2166 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2167 return false;
2168 }
2169
ae7bb7c6 2170 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2171
f6d6ae96
BP
2172 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2173
2174 for_each_cpu(cpu, cmask) {
2175
50542251
BP
2176 struct msr *reg = per_cpu_ptr(msrs, cpu);
2177
f6d6ae96 2178 if (on) {
5980bb9c 2179 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2180 s->flags.nb_mce_enable = 1;
f6d6ae96 2181
5980bb9c 2182 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2183 } else {
2184 /*
d95cf4de 2185 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2186 */
ae7bb7c6 2187 if (!s->flags.nb_mce_enable)
5980bb9c 2188 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2189 }
f6d6ae96
BP
2190 }
2191 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2192
f6d6ae96
BP
2193 free_cpumask_var(cmask);
2194
2195 return 0;
2196}
2197
2299ef71
BP
2198static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2199 struct pci_dev *F3)
f9431992 2200{
2299ef71 2201 bool ret = true;
c9f4f26e 2202 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2203
2299ef71
BP
2204 if (toggle_ecc_err_reporting(s, nid, ON)) {
2205 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2206 return false;
2207 }
2208
c9f4f26e 2209 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2210
ae7bb7c6
BP
2211 s->old_nbctl = value & mask;
2212 s->nbctl_valid = true;
f9431992
DT
2213
2214 value |= mask;
c9f4f26e 2215 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2216
a97fa68e 2217 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2218
a97fa68e
BP
2219 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2220 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2221
a97fa68e 2222 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2223 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2224
ae7bb7c6 2225 s->flags.nb_ecc_prev = 0;
d95cf4de 2226
f9431992 2227 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2228 value |= NBCFG_ECC_ENABLE;
2229 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2230
a97fa68e 2231 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2232
a97fa68e 2233 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2234 amd64_warn("Hardware rejected DRAM ECC enable,"
2235 "check memory DIMM configuration.\n");
2299ef71 2236 ret = false;
f9431992 2237 } else {
24f9a7fe 2238 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2239 }
d95cf4de 2240 } else {
ae7bb7c6 2241 s->flags.nb_ecc_prev = 1;
f9431992 2242 }
d95cf4de 2243
a97fa68e
BP
2244 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2245 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2246
2299ef71 2247 return ret;
f9431992
DT
2248}
2249
360b7f3c
BP
2250static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2251 struct pci_dev *F3)
f9431992 2252{
c9f4f26e
BP
2253 u32 value, mask = 0x3; /* UECC/CECC enable */
2254
f9431992 2255
ae7bb7c6 2256 if (!s->nbctl_valid)
f9431992
DT
2257 return;
2258
c9f4f26e 2259 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2260 value &= ~mask;
ae7bb7c6 2261 value |= s->old_nbctl;
f9431992 2262
c9f4f26e 2263 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2264
ae7bb7c6
BP
2265 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2266 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2267 amd64_read_pci_cfg(F3, NBCFG, &value);
2268 value &= ~NBCFG_ECC_ENABLE;
2269 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2270 }
2271
2272 /* restore the NB Enable MCGCTL bit */
2299ef71 2273 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2274 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2275}
2276
2277/*
2299ef71
BP
2278 * EDAC requires that the BIOS have ECC enabled before
2279 * taking over the processing of ECC errors. A command line
2280 * option allows to force-enable hardware ECC later in
2281 * enable_ecc_error_reporting().
f9431992 2282 */
cab4d277
BP
2283static const char *ecc_msg =
2284 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2285 " Either enable ECC checking or force module loading by setting "
2286 "'ecc_enable_override'.\n"
2287 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2288
2299ef71 2289static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2290{
2291 u32 value;
2299ef71 2292 u8 ecc_en = 0;
06724535 2293 bool nb_mce_en = false;
f9431992 2294
a97fa68e 2295 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2296
a97fa68e 2297 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2298 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2299
2299ef71 2300 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2301 if (!nb_mce_en)
2299ef71
BP
2302 amd64_notice("NB MCE bank disabled, set MSR "
2303 "0x%08x[4] on node %d to enable.\n",
2304 MSR_IA32_MCG_CTL, nid);
f9431992 2305
2299ef71
BP
2306 if (!ecc_en || !nb_mce_en) {
2307 amd64_notice("%s", ecc_msg);
2308 return false;
2309 }
2310 return true;
f9431992
DT
2311}
2312
7d6034d3
DT
2313struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2314 ARRAY_SIZE(amd64_inj_attrs) +
2315 1];
2316
2317struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2318
360b7f3c 2319static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2320{
2321 unsigned int i = 0, j = 0;
2322
2323 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2324 sysfs_attrs[i] = amd64_dbg_attrs[i];
2325
a135cef7
BP
2326 if (boot_cpu_data.x86 >= 0x10)
2327 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2328 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2329
2330 sysfs_attrs[i] = terminator;
2331
2332 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2333}
2334
360b7f3c 2335static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2336{
2337 struct amd64_pvt *pvt = mci->pvt_info;
2338
2339 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2340 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2341
5980bb9c 2342 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2343 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2344
5980bb9c 2345 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2346 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2347
2348 mci->edac_cap = amd64_determine_edac_cap(pvt);
2349 mci->mod_name = EDAC_MOD_STR;
2350 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2351 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2352 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2353 mci->ctl_page_to_phys = NULL;
2354
7d6034d3
DT
2355 /* memory scrubber interface */
2356 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2357 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2358}
2359
0092b20d
BP
2360/*
2361 * returns a pointer to the family descriptor on success, NULL otherwise.
2362 */
2363static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2364{
0092b20d
BP
2365 u8 fam = boot_cpu_data.x86;
2366 struct amd64_family_type *fam_type = NULL;
2367
2368 switch (fam) {
395ae783 2369 case 0xf:
0092b20d 2370 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2371 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2372 pvt->ctl_name = fam_type->ctl_name;
2373 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2374 break;
2375 case 0x10:
0092b20d 2376 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2377 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2378 pvt->ctl_name = fam_type->ctl_name;
2379 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2380 break;
2381
2382 default:
24f9a7fe 2383 amd64_err("Unsupported family!\n");
0092b20d 2384 return NULL;
395ae783 2385 }
0092b20d 2386
b8cfa02f
BP
2387 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2388
24f9a7fe 2389 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2390 (fam == 0xf ?
24f9a7fe
BP
2391 (pvt->ext_model >= K8_REV_F ? "revF or later "
2392 : "revE or earlier ")
2393 : ""), pvt->mc_node_id);
0092b20d 2394 return fam_type;
395ae783
BP
2395}
2396
2299ef71 2397static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2398{
2399 struct amd64_pvt *pvt = NULL;
0092b20d 2400 struct amd64_family_type *fam_type = NULL;
360b7f3c 2401 struct mem_ctl_info *mci = NULL;
7d6034d3 2402 int err = 0, ret;
360b7f3c 2403 u8 nid = get_node_id(F2);
7d6034d3
DT
2404
2405 ret = -ENOMEM;
2406 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2407 if (!pvt)
360b7f3c 2408 goto err_ret;
7d6034d3 2409
360b7f3c 2410 pvt->mc_node_id = nid;
8d5b5d9c 2411 pvt->F2 = F2;
7d6034d3 2412
395ae783 2413 ret = -EINVAL;
0092b20d
BP
2414 fam_type = amd64_per_family_init(pvt);
2415 if (!fam_type)
395ae783
BP
2416 goto err_free;
2417
7d6034d3 2418 ret = -ENODEV;
360b7f3c 2419 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2420 if (err)
2421 goto err_free;
2422
360b7f3c 2423 read_mc_regs(pvt);
7d6034d3 2424
7d6034d3
DT
2425 /*
2426 * We need to determine how many memory channels there are. Then use
2427 * that information for calculating the size of the dynamic instance
360b7f3c 2428 * tables in the 'mci' structure.
7d6034d3 2429 */
360b7f3c 2430 ret = -EINVAL;
7d6034d3
DT
2431 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2432 if (pvt->channel_count < 0)
360b7f3c 2433 goto err_siblings;
7d6034d3
DT
2434
2435 ret = -ENOMEM;
11c75ead 2436 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2437 if (!mci)
360b7f3c 2438 goto err_siblings;
7d6034d3
DT
2439
2440 mci->pvt_info = pvt;
8d5b5d9c 2441 mci->dev = &pvt->F2->dev;
7d6034d3 2442
360b7f3c
BP
2443 setup_mci_misc_attrs(mci);
2444
2445 if (init_csrows(mci))
7d6034d3
DT
2446 mci->edac_cap = EDAC_FLAG_NONE;
2447
360b7f3c 2448 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2449
2450 ret = -ENODEV;
2451 if (edac_mc_add_mc(mci)) {
2452 debugf1("failed edac_mc_add_mc()\n");
2453 goto err_add_mc;
2454 }
2455
549d042d
BP
2456 /* register stuff with EDAC MCE */
2457 if (report_gart_errors)
2458 amd_report_gart_errors(true);
2459
2460 amd_register_ecc_decoder(amd64_decode_bus_error);
2461
360b7f3c
BP
2462 mcis[nid] = mci;
2463
2464 atomic_inc(&drv_instances);
2465
7d6034d3
DT
2466 return 0;
2467
2468err_add_mc:
2469 edac_mc_free(mci);
2470
360b7f3c
BP
2471err_siblings:
2472 free_mc_sibling_devs(pvt);
7d6034d3 2473
360b7f3c
BP
2474err_free:
2475 kfree(pvt);
7d6034d3 2476
360b7f3c 2477err_ret:
7d6034d3
DT
2478 return ret;
2479}
2480
2299ef71 2481static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2482 const struct pci_device_id *mc_type)
7d6034d3 2483{
ae7bb7c6 2484 u8 nid = get_node_id(pdev);
2299ef71 2485 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2486 struct ecc_settings *s;
2299ef71 2487 int ret = 0;
7d6034d3 2488
7d6034d3 2489 ret = pci_enable_device(pdev);
b8cfa02f
BP
2490 if (ret < 0) {
2491 debugf0("ret=%d\n", ret);
2492 return -EIO;
2493 }
7d6034d3 2494
ae7bb7c6
BP
2495 ret = -ENOMEM;
2496 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2497 if (!s)
2299ef71 2498 goto err_out;
ae7bb7c6
BP
2499
2500 ecc_stngs[nid] = s;
2501
2299ef71
BP
2502 if (!ecc_enabled(F3, nid)) {
2503 ret = -ENODEV;
2504
2505 if (!ecc_enable_override)
2506 goto err_enable;
2507
2508 amd64_warn("Forcing ECC on!\n");
2509
2510 if (!enable_ecc_error_reporting(s, nid, F3))
2511 goto err_enable;
2512 }
2513
2514 ret = amd64_init_one_instance(pdev);
360b7f3c 2515 if (ret < 0) {
ae7bb7c6 2516 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2517 restore_ecc_error_reporting(s, nid, F3);
2518 }
7d6034d3
DT
2519
2520 return ret;
2299ef71
BP
2521
2522err_enable:
2523 kfree(s);
2524 ecc_stngs[nid] = NULL;
2525
2526err_out:
2527 return ret;
7d6034d3
DT
2528}
2529
2530static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2531{
2532 struct mem_ctl_info *mci;
2533 struct amd64_pvt *pvt;
360b7f3c
BP
2534 u8 nid = get_node_id(pdev);
2535 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2536 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2537
2538 /* Remove from EDAC CORE tracking list */
2539 mci = edac_mc_del_mc(&pdev->dev);
2540 if (!mci)
2541 return;
2542
2543 pvt = mci->pvt_info;
2544
360b7f3c 2545 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2546
360b7f3c 2547 free_mc_sibling_devs(pvt);
7d6034d3 2548
549d042d
BP
2549 /* unregister from EDAC MCE */
2550 amd_report_gart_errors(false);
2551 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2552
360b7f3c
BP
2553 kfree(ecc_stngs[nid]);
2554 ecc_stngs[nid] = NULL;
ae7bb7c6 2555
7d6034d3 2556 /* Free the EDAC CORE resources */
8f68ed97 2557 mci->pvt_info = NULL;
360b7f3c 2558 mcis[nid] = NULL;
8f68ed97
BP
2559
2560 kfree(pvt);
7d6034d3
DT
2561 edac_mc_free(mci);
2562}
2563
2564/*
2565 * This table is part of the interface for loading drivers for PCI devices. The
2566 * PCI core identifies what devices are on a system during boot, and then
2567 * inquiry this table to see if this driver is for a given device found.
2568 */
2569static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2570 {
2571 .vendor = PCI_VENDOR_ID_AMD,
2572 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2573 .subvendor = PCI_ANY_ID,
2574 .subdevice = PCI_ANY_ID,
2575 .class = 0,
2576 .class_mask = 0,
7d6034d3
DT
2577 },
2578 {
2579 .vendor = PCI_VENDOR_ID_AMD,
2580 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2581 .subvendor = PCI_ANY_ID,
2582 .subdevice = PCI_ANY_ID,
2583 .class = 0,
2584 .class_mask = 0,
7d6034d3 2585 },
7d6034d3
DT
2586 {0, }
2587};
2588MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2589
2590static struct pci_driver amd64_pci_driver = {
2591 .name = EDAC_MOD_STR,
2299ef71 2592 .probe = amd64_probe_one_instance,
7d6034d3
DT
2593 .remove = __devexit_p(amd64_remove_one_instance),
2594 .id_table = amd64_pci_table,
2595};
2596
360b7f3c 2597static void setup_pci_device(void)
7d6034d3
DT
2598{
2599 struct mem_ctl_info *mci;
2600 struct amd64_pvt *pvt;
2601
2602 if (amd64_ctl_pci)
2603 return;
2604
cc4d8860 2605 mci = mcis[0];
7d6034d3
DT
2606 if (mci) {
2607
2608 pvt = mci->pvt_info;
2609 amd64_ctl_pci =
8d5b5d9c 2610 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2611
2612 if (!amd64_ctl_pci) {
2613 pr_warning("%s(): Unable to create PCI control\n",
2614 __func__);
2615
2616 pr_warning("%s(): PCI error report via EDAC not set\n",
2617 __func__);
2618 }
2619 }
2620}
2621
2622static int __init amd64_edac_init(void)
2623{
360b7f3c 2624 int err = -ENODEV;
7d6034d3
DT
2625
2626 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2627
2628 opstate_init();
2629
9653a5c7 2630 if (amd_cache_northbridges() < 0)
56b34b91 2631 goto err_ret;
7d6034d3 2632
cc4d8860 2633 err = -ENOMEM;
ae7bb7c6
BP
2634 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2635 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2636 if (!(mcis && ecc_stngs))
cc4d8860
BP
2637 goto err_ret;
2638
50542251 2639 msrs = msrs_alloc();
56b34b91 2640 if (!msrs)
360b7f3c 2641 goto err_free;
50542251 2642
7d6034d3
DT
2643 err = pci_register_driver(&amd64_pci_driver);
2644 if (err)
56b34b91 2645 goto err_pci;
7d6034d3 2646
56b34b91 2647 err = -ENODEV;
360b7f3c
BP
2648 if (!atomic_read(&drv_instances))
2649 goto err_no_instances;
7d6034d3 2650
360b7f3c
BP
2651 setup_pci_device();
2652 return 0;
7d6034d3 2653
360b7f3c 2654err_no_instances:
7d6034d3 2655 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2656
56b34b91
BP
2657err_pci:
2658 msrs_free(msrs);
2659 msrs = NULL;
cc4d8860 2660
360b7f3c
BP
2661err_free:
2662 kfree(mcis);
2663 mcis = NULL;
2664
2665 kfree(ecc_stngs);
2666 ecc_stngs = NULL;
2667
56b34b91 2668err_ret:
7d6034d3
DT
2669 return err;
2670}
2671
2672static void __exit amd64_edac_exit(void)
2673{
2674 if (amd64_ctl_pci)
2675 edac_pci_release_generic_ctl(amd64_ctl_pci);
2676
2677 pci_unregister_driver(&amd64_pci_driver);
50542251 2678
ae7bb7c6
BP
2679 kfree(ecc_stngs);
2680 ecc_stngs = NULL;
2681
cc4d8860
BP
2682 kfree(mcis);
2683 mcis = NULL;
2684
50542251
BP
2685 msrs_free(msrs);
2686 msrs = NULL;
7d6034d3
DT
2687}
2688
2689module_init(amd64_edac_init);
2690module_exit(amd64_edac_exit);
2691
2692MODULE_LICENSE("GPL");
2693MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2694 "Dave Peterson, Thayne Harbaugh");
2695MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2696 EDAC_AMD64_VERSION);
2697
2698module_param(edac_op_state, int, 0444);
2699MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.324985 seconds and 5 git commands to generate.