amd64_edac: Simplify decoding path
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
b2b0c605
BP
110static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
112{
113 int err = 0;
114
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
119
120 return err;
121}
122
123int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
125{
126 int err = 0;
127
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
132
133 return err;
134}
135
136/*
137 *
138 * Depending on the family, F2 DCT reads need special handling:
139 *
140 * K8: has a single DCT only
141 *
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
145 *
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
147 *
148 */
149static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
151{
152 if (addr >= 0x100)
153 return -EINVAL;
154
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
156}
157
158static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
160{
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
162}
163
164static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
166{
167 u32 reg = 0;
168 u8 dct = 0;
169
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
173 }
174
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
179
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
181}
182
2bc65418
DT
183/*
184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
188 *
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
192 *
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
195 */
196
197/*
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
200 */
395ae783 201static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
202{
203 u32 scrubval;
204 int i;
205
206 /*
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
211 */
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
213 /*
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
216 */
395ae783 217 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
218 continue;
219
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
222
223 /*
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
227 */
228 }
229
230 scrubval = scrubrates[i].scrubval;
2bc65418 231
5980bb9c 232 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 233
39094443
BP
234 if (scrubval)
235 return scrubrates[i].bandwidth;
236
2bc65418
DT
237 return 0;
238}
239
395ae783 240static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
241{
242 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 243
8d5b5d9c 244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
245}
246
39094443 247static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
248{
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
39094443 251 int i, retval = -EINVAL;
2bc65418 252
5980bb9c 253 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
254
255 scrubval = scrubval & 0x001F;
256
24f9a7fe 257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 258
926311fd 259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 260 if (scrubrates[i].scrubval == scrubval) {
39094443 261 retval = scrubrates[i].bandwidth;
2bc65418
DT
262 break;
263 }
264 }
39094443 265 return retval;
2bc65418
DT
266}
267
6775763a 268/*
7f19bf75
BP
269 * returns true if the SysAddr given by sys_addr matches the
270 * DRAM base/limit associated with node_id
6775763a 271 */
7f19bf75 272static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
6775763a 273{
7f19bf75 274 u64 addr;
6775763a
DT
275
276 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
277 * all ones if the most significant implemented address bit is 1.
278 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
279 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
280 * Application Programming.
281 */
282 addr = sys_addr & 0x000000ffffffffffull;
283
7f19bf75
BP
284 return ((addr >= get_dram_base(pvt, nid)) &&
285 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
286}
287
288/*
289 * Attempt to map a SysAddr to a node. On success, return a pointer to the
290 * mem_ctl_info structure for the node that the SysAddr maps to.
291 *
292 * On failure, return NULL.
293 */
294static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
295 u64 sys_addr)
296{
297 struct amd64_pvt *pvt;
298 int node_id;
299 u32 intlv_en, bits;
300
301 /*
302 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
303 * 3.4.4.2) registers to map the SysAddr to a node ID.
304 */
305 pvt = mci->pvt_info;
306
307 /*
308 * The value of this field should be the same for all DRAM Base
309 * registers. Therefore we arbitrarily choose to read it from the
310 * register for node 0.
311 */
7f19bf75 312 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
313
314 if (intlv_en == 0) {
7f19bf75 315 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 316 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 317 goto found;
6775763a 318 }
8edc5445 319 goto err_no_match;
6775763a
DT
320 }
321
72f158fe
BP
322 if (unlikely((intlv_en != 0x01) &&
323 (intlv_en != 0x03) &&
324 (intlv_en != 0x07))) {
24f9a7fe 325 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
326 return NULL;
327 }
328
329 bits = (((u32) sys_addr) >> 12) & intlv_en;
330
331 for (node_id = 0; ; ) {
7f19bf75 332 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
333 break; /* intlv_sel field matches */
334
7f19bf75 335 if (++node_id >= DRAM_RANGES)
6775763a
DT
336 goto err_no_match;
337 }
338
339 /* sanity test for sys_addr */
340 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
341 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
342 "range for node %d with node interleaving enabled.\n",
343 __func__, sys_addr, node_id);
6775763a
DT
344 return NULL;
345 }
346
347found:
348 return edac_mc_find(node_id);
349
350err_no_match:
351 debugf2("sys_addr 0x%lx doesn't match any node\n",
352 (unsigned long)sys_addr);
353
354 return NULL;
355}
e2ce7255
DT
356
357/*
11c75ead
BP
358 * compute the CS base address of the @csrow on the DRAM controller @dct.
359 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 360 */
11c75ead
BP
361static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
362 u64 *base, u64 *mask)
e2ce7255 363{
11c75ead
BP
364 u64 csbase, csmask, base_bits, mask_bits;
365 u8 addr_shift;
e2ce7255 366
11c75ead
BP
367 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow];
370 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
371 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
372 addr_shift = 4;
373 } else {
374 csbase = pvt->csels[dct].csbases[csrow];
375 csmask = pvt->csels[dct].csmasks[csrow >> 1];
376 addr_shift = 8;
e2ce7255 377
11c75ead
BP
378 if (boot_cpu_data.x86 == 0x15)
379 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
380 else
381 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
382 }
e2ce7255 383
11c75ead 384 *base = (csbase & base_bits) << addr_shift;
e2ce7255 385
11c75ead
BP
386 *mask = ~0ULL;
387 /* poke holes for the csmask */
388 *mask &= ~(mask_bits << addr_shift);
389 /* OR them in */
390 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
391}
392
11c75ead
BP
393#define for_each_chip_select(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
395
396#define for_each_chip_select_mask(i, dct, pvt) \
397 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
398
e2ce7255
DT
399/*
400 * @input_addr is an InputAddr associated with the node given by mci. Return the
401 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
402 */
403static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
404{
405 struct amd64_pvt *pvt;
406 int csrow;
407 u64 base, mask;
408
409 pvt = mci->pvt_info;
410
11c75ead
BP
411 for_each_chip_select(csrow, 0, pvt) {
412 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
413 continue;
414
11c75ead
BP
415 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
416
417 mask = ~mask;
e2ce7255
DT
418
419 if ((input_addr & mask) == (base & mask)) {
420 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
421 (unsigned long)input_addr, csrow,
422 pvt->mc_node_id);
423
424 return csrow;
425 }
426 }
e2ce7255
DT
427 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
428 (unsigned long)input_addr, pvt->mc_node_id);
429
430 return -1;
431}
432
e2ce7255
DT
433/*
434 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
435 * for the node represented by mci. Info is passed back in *hole_base,
436 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
437 * info is invalid. Info may be invalid for either of the following reasons:
438 *
439 * - The revision of the node is not E or greater. In this case, the DRAM Hole
440 * Address Register does not exist.
441 *
442 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
443 * indicating that its contents are not valid.
444 *
445 * The values passed back in *hole_base, *hole_offset, and *hole_size are
446 * complete 32-bit values despite the fact that the bitfields in the DHAR
447 * only represent bits 31-24 of the base and offset values.
448 */
449int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
450 u64 *hole_offset, u64 *hole_size)
451{
452 struct amd64_pvt *pvt = mci->pvt_info;
453 u64 base;
454
455 /* only revE and later have the DRAM Hole Address Register */
1433eb99 456 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
457 debugf1(" revision %d for node %d does not support DHAR\n",
458 pvt->ext_model, pvt->mc_node_id);
459 return 1;
460 }
461
bc21fa57 462 /* valid for Fam10h and above */
c8e518d5 463 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
464 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
465 return 1;
466 }
467
c8e518d5 468 if (!dhar_valid(pvt)) {
e2ce7255
DT
469 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
470 pvt->mc_node_id);
471 return 1;
472 }
473
474 /* This node has Memory Hoisting */
475
476 /* +------------------+--------------------+--------------------+-----
477 * | memory | DRAM hole | relocated |
478 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
479 * | | | DRAM hole |
480 * | | | [0x100000000, |
481 * | | | (0x100000000+ |
482 * | | | (0xffffffff-x))] |
483 * +------------------+--------------------+--------------------+-----
484 *
485 * Above is a diagram of physical memory showing the DRAM hole and the
486 * relocated addresses from the DRAM hole. As shown, the DRAM hole
487 * starts at address x (the base address) and extends through address
488 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
489 * addresses in the hole so that they start at 0x100000000.
490 */
491
bc21fa57 492 base = dhar_base(pvt);
e2ce7255
DT
493
494 *hole_base = base;
495 *hole_size = (0x1ull << 32) - base;
496
497 if (boot_cpu_data.x86 > 0xf)
bc21fa57 498 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 499 else
bc21fa57 500 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
501
502 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
503 pvt->mc_node_id, (unsigned long)*hole_base,
504 (unsigned long)*hole_offset, (unsigned long)*hole_size);
505
506 return 0;
507}
508EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
509
93c2df58
DT
510/*
511 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
512 * assumed that sys_addr maps to the node given by mci.
513 *
514 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
515 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
516 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
517 * then it is also involved in translating a SysAddr to a DramAddr. Sections
518 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
519 * These parts of the documentation are unclear. I interpret them as follows:
520 *
521 * When node n receives a SysAddr, it processes the SysAddr as follows:
522 *
523 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
524 * Limit registers for node n. If the SysAddr is not within the range
525 * specified by the base and limit values, then node n ignores the Sysaddr
526 * (since it does not map to node n). Otherwise continue to step 2 below.
527 *
528 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
529 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
530 * the range of relocated addresses (starting at 0x100000000) from the DRAM
531 * hole. If not, skip to step 3 below. Else get the value of the
532 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
533 * offset defined by this value from the SysAddr.
534 *
535 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
536 * Base register for node n. To obtain the DramAddr, subtract the base
537 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
538 */
539static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
540{
7f19bf75 541 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
542 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
543 int ret = 0;
544
7f19bf75 545 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
546
547 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
548 &hole_size);
549 if (!ret) {
550 if ((sys_addr >= (1ull << 32)) &&
551 (sys_addr < ((1ull << 32) + hole_size))) {
552 /* use DHAR to translate SysAddr to DramAddr */
553 dram_addr = sys_addr - hole_offset;
554
555 debugf2("using DHAR to translate SysAddr 0x%lx to "
556 "DramAddr 0x%lx\n",
557 (unsigned long)sys_addr,
558 (unsigned long)dram_addr);
559
560 return dram_addr;
561 }
562 }
563
564 /*
565 * Translate the SysAddr to a DramAddr as shown near the start of
566 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
567 * only deals with 40-bit values. Therefore we discard bits 63-40 of
568 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
569 * discard are all 1s. Otherwise the bits we discard are all 0s. See
570 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
571 * Programmer's Manual Volume 1 Application Programming.
572 */
f678b8cc 573 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
574
575 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
576 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
577 (unsigned long)dram_addr);
578 return dram_addr;
579}
580
581/*
582 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
583 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
584 * for node interleaving.
585 */
586static int num_node_interleave_bits(unsigned intlv_en)
587{
588 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
589 int n;
590
591 BUG_ON(intlv_en > 7);
592 n = intlv_shift_table[intlv_en];
593 return n;
594}
595
596/* Translate the DramAddr given by @dram_addr to an InputAddr. */
597static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
598{
599 struct amd64_pvt *pvt;
600 int intlv_shift;
601 u64 input_addr;
602
603 pvt = mci->pvt_info;
604
605 /*
606 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
607 * concerning translating a DramAddr to an InputAddr.
608 */
7f19bf75 609 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
610 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
611 (dram_addr & 0xfff);
93c2df58
DT
612
613 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
614 intlv_shift, (unsigned long)dram_addr,
615 (unsigned long)input_addr);
616
617 return input_addr;
618}
619
620/*
621 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
622 * assumed that @sys_addr maps to the node given by mci.
623 */
624static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
625{
626 u64 input_addr;
627
628 input_addr =
629 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
630
631 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
632 (unsigned long)sys_addr, (unsigned long)input_addr);
633
634 return input_addr;
635}
636
637
638/*
639 * @input_addr is an InputAddr associated with the node represented by mci.
640 * Translate @input_addr to a DramAddr and return the result.
641 */
642static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
643{
644 struct amd64_pvt *pvt;
645 int node_id, intlv_shift;
646 u64 bits, dram_addr;
647 u32 intlv_sel;
648
649 /*
650 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
651 * shows how to translate a DramAddr to an InputAddr. Here we reverse
652 * this procedure. When translating from a DramAddr to an InputAddr, the
653 * bits used for node interleaving are discarded. Here we recover these
654 * bits from the IntlvSel field of the DRAM Limit register (section
655 * 3.4.4.2) for the node that input_addr is associated with.
656 */
657 pvt = mci->pvt_info;
658 node_id = pvt->mc_node_id;
659 BUG_ON((node_id < 0) || (node_id > 7));
660
7f19bf75 661 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
662
663 if (intlv_shift == 0) {
664 debugf1(" InputAddr 0x%lx translates to DramAddr of "
665 "same value\n", (unsigned long)input_addr);
666
667 return input_addr;
668 }
669
f678b8cc
BP
670 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
671 (input_addr & 0xfff);
93c2df58 672
7f19bf75 673 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
674 dram_addr = bits + (intlv_sel << 12);
675
676 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
677 "(%d node interleave bits)\n", (unsigned long)input_addr,
678 (unsigned long)dram_addr, intlv_shift);
679
680 return dram_addr;
681}
682
683/*
684 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
685 * @dram_addr to a SysAddr.
686 */
687static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
688{
689 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 690 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
691 int ret = 0;
692
693 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
694 &hole_size);
695 if (!ret) {
696 if ((dram_addr >= hole_base) &&
697 (dram_addr < (hole_base + hole_size))) {
698 sys_addr = dram_addr + hole_offset;
699
700 debugf1("using DHAR to translate DramAddr 0x%lx to "
701 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705 }
706 }
707
7f19bf75 708 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
709 sys_addr = dram_addr + base;
710
711 /*
712 * The sys_addr we have computed up to this point is a 40-bit value
713 * because the k8 deals with 40-bit values. However, the value we are
714 * supposed to return is a full 64-bit physical address. The AMD
715 * x86-64 architecture specifies that the most significant implemented
716 * address bit through bit 63 of a physical address must be either all
717 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
718 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
719 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
720 * Programming.
721 */
722 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
723
724 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
725 pvt->mc_node_id, (unsigned long)dram_addr,
726 (unsigned long)sys_addr);
727
728 return sys_addr;
729}
730
731/*
732 * @input_addr is an InputAddr associated with the node given by mci. Translate
733 * @input_addr to a SysAddr.
734 */
735static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
736 u64 input_addr)
737{
738 return dram_addr_to_sys_addr(mci,
739 input_addr_to_dram_addr(mci, input_addr));
740}
741
742/*
743 * Find the minimum and maximum InputAddr values that map to the given @csrow.
744 * Pass back these values in *input_addr_min and *input_addr_max.
745 */
746static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
747 u64 *input_addr_min, u64 *input_addr_max)
748{
749 struct amd64_pvt *pvt;
750 u64 base, mask;
751
752 pvt = mci->pvt_info;
11c75ead 753 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 754
11c75ead 755 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
756
757 *input_addr_min = base & ~mask;
11c75ead 758 *input_addr_max = base | mask;
93c2df58
DT
759}
760
93c2df58
DT
761/* Map the Error address to a PAGE and PAGE OFFSET. */
762static inline void error_address_to_page_and_offset(u64 error_address,
763 u32 *page, u32 *offset)
764{
765 *page = (u32) (error_address >> PAGE_SHIFT);
766 *offset = ((u32) error_address) & ~PAGE_MASK;
767}
768
769/*
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
775 * error.
776 */
777static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
778{
779 int csrow;
780
781 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
782
783 if (csrow == -1)
24f9a7fe
BP
784 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
785 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
786 return csrow;
787}
e2ce7255 788
bfc04aec 789static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 790
2da11654
DT
791/*
792 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
793 * are ECC capable.
794 */
795static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
796{
cb328507 797 u8 bit;
584fcff4 798 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 799
1433eb99 800 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
801 ? 19
802 : 17;
803
584fcff4 804 if (pvt->dclr0 & BIT(bit))
2da11654
DT
805 edac_cap = EDAC_FLAG_SECDED;
806
807 return edac_cap;
808}
809
810
8566c4df 811static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 812
68798e17
BP
813static void amd64_dump_dramcfg_low(u32 dclr, int chan)
814{
815 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
816
817 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
818 (dclr & BIT(16)) ? "un" : "",
819 (dclr & BIT(19)) ? "yes" : "no");
820
821 debugf1(" PAR/ERR parity: %s\n",
822 (dclr & BIT(8)) ? "enabled" : "disabled");
823
cb328507
BP
824 if (boot_cpu_data.x86 == 0x10)
825 debugf1(" DCT 128bit mode width: %s\n",
826 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
827
828 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
829 (dclr & BIT(12)) ? "yes" : "no",
830 (dclr & BIT(13)) ? "yes" : "no",
831 (dclr & BIT(14)) ? "yes" : "no",
832 (dclr & BIT(15)) ? "yes" : "no");
833}
834
2da11654 835/* Display and decode various NB registers for debug purposes. */
b2b0c605 836static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 837{
68798e17
BP
838 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
839
840 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 841 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 842
68798e17 843 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
844 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
845 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
846
847 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 848
8de1d91e 849 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 850
8de1d91e
BP
851 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
852 "offset: 0x%08x\n",
bc21fa57
BP
853 pvt->dhar, dhar_base(pvt),
854 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
855 : f10_dhar_offset(pvt));
2da11654 856
c8e518d5 857 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 858
4d796364
BP
859 amd64_debug_display_dimm_sizes(0, pvt);
860
8de1d91e 861 /* everything below this point is Fam10h and above */
4d796364 862 if (boot_cpu_data.x86 == 0xf)
2da11654 863 return;
4d796364
BP
864
865 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 866
24f9a7fe 867 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 868
8de1d91e 869 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
870 if (!dct_ganging_enabled(pvt))
871 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
872}
873
94be4bff 874/*
11c75ead 875 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 876 */
11c75ead 877static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 878{
1433eb99 879 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
880 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
881 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 882 } else {
11c75ead
BP
883 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
884 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
885 }
886}
887
888/*
11c75ead 889 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 890 */
b2b0c605 891static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 892{
11c75ead 893 int cs;
94be4bff 894
11c75ead 895 prep_chip_selects(pvt);
94be4bff 896
11c75ead
BP
897 for_each_chip_select(cs, 0, pvt) {
898 u32 reg0 = DCSB0 + (cs * 4);
899 u32 reg1 = DCSB1 + (cs * 4);
900 u32 *base0 = &pvt->csels[0].csbases[cs];
901 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 902
11c75ead 903 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 904 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 905 cs, *base0, reg0);
94be4bff 906
11c75ead
BP
907 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
908 continue;
b2b0c605 909
11c75ead
BP
910 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
911 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
912 cs, *base1, reg1);
94be4bff
DT
913 }
914
11c75ead
BP
915 for_each_chip_select_mask(cs, 0, pvt) {
916 u32 reg0 = DCSM0 + (cs * 4);
917 u32 reg1 = DCSM1 + (cs * 4);
918 u32 *mask0 = &pvt->csels[0].csmasks[cs];
919 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 920
11c75ead 921 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 922 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 923 cs, *mask0, reg0);
94be4bff 924
11c75ead
BP
925 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
926 continue;
b2b0c605 927
11c75ead
BP
928 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
929 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
930 cs, *mask1, reg1);
94be4bff
DT
931 }
932}
933
24f9a7fe 934static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
935{
936 enum mem_type type;
937
cb328507
BP
938 /* F15h supports only DDR3 */
939 if (boot_cpu_data.x86 >= 0x15)
940 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
941 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
942 if (pvt->dchr0 & DDR3_MODE)
943 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
944 else
945 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 946 } else {
94be4bff
DT
947 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
948 }
949
24f9a7fe 950 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
951
952 return type;
953}
954
cb328507 955/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
956static int k8_early_channel_count(struct amd64_pvt *pvt)
957{
cb328507 958 int flag;
ddff876d 959
9f56da0e 960 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
961 /* RevF (NPT) and later */
962 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 963 else
ddff876d
DT
964 /* RevE and earlier */
965 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
966
967 /* not used */
968 pvt->dclr1 = 0;
969
970 return (flag) ? 2 : 1;
971}
972
f192c7b1 973static u64 k8_get_error_address(struct mem_ctl_info *mci, struct mce *m)
ddff876d 974{
f192c7b1
BP
975 /* ErrAddr[39:3] */
976 return m->addr & GENMASK(3, 39);
ddff876d
DT
977}
978
7f19bf75 979static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 980{
7f19bf75 981 u32 off = range << 3;
ddff876d 982
7f19bf75
BP
983 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
984 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 985
7f19bf75
BP
986 if (boot_cpu_data.x86 == 0xf)
987 return;
ddff876d 988
7f19bf75
BP
989 if (!dram_rw(pvt, range))
990 return;
ddff876d 991
7f19bf75
BP
992 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
993 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
994}
995
f192c7b1
BP
996static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
997 u16 syndrome)
ddff876d
DT
998{
999 struct mem_ctl_info *src_mci;
f192c7b1 1000 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1001 int channel, csrow;
1002 u32 page, offset;
ddff876d
DT
1003
1004 /* CHIPKILL enabled */
f192c7b1 1005 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1006 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1007 if (channel < 0) {
1008 /*
1009 * Syndrome didn't map, so we don't know which of the
1010 * 2 DIMMs is in error. So we need to ID 'both' of them
1011 * as suspect.
1012 */
24f9a7fe
BP
1013 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1014 "error reporting race\n", syndrome);
ddff876d
DT
1015 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1016 return;
1017 }
1018 } else {
1019 /*
1020 * non-chipkill ecc mode
1021 *
1022 * The k8 documentation is unclear about how to determine the
1023 * channel number when using non-chipkill memory. This method
1024 * was obtained from email communication with someone at AMD.
1025 * (Wish the email was placed in this comment - norsk)
1026 */
44e9e2ee 1027 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1028 }
1029
1030 /*
1031 * Find out which node the error address belongs to. This may be
1032 * different from the node that detected the error.
1033 */
44e9e2ee 1034 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1035 if (!src_mci) {
24f9a7fe 1036 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1037 (unsigned long)sys_addr);
ddff876d
DT
1038 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1039 return;
1040 }
1041
44e9e2ee
BP
1042 /* Now map the sys_addr to a CSROW */
1043 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1044 if (csrow < 0) {
1045 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1046 } else {
44e9e2ee 1047 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1048
1049 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1050 channel, EDAC_MOD_STR);
1051 }
1052}
1053
1433eb99 1054static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1055{
1433eb99 1056 int *dbam_map;
ddff876d 1057
1433eb99
BP
1058 if (pvt->ext_model >= K8_REV_F)
1059 dbam_map = ddr2_dbam;
1060 else if (pvt->ext_model >= K8_REV_D)
1061 dbam_map = ddr2_dbam_revD;
1062 else
1063 dbam_map = ddr2_dbam_revCG;
ddff876d 1064
1433eb99 1065 return dbam_map[cs_mode];
ddff876d
DT
1066}
1067
1afd3c98
DT
1068/*
1069 * Get the number of DCT channels in use.
1070 *
1071 * Return:
1072 * number of Memory Channels in operation
1073 * Pass back:
1074 * contents of the DCL0_LOW register
1075 */
7d20d14d 1076static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1077{
6ba5dcdc 1078 int i, j, channels = 0;
1afd3c98 1079
7d20d14d
BP
1080 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1081 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128))
1082 return 2;
1afd3c98
DT
1083
1084 /*
d16149e8
BP
1085 * Need to check if in unganged mode: In such, there are 2 channels,
1086 * but they are not in 128 bit mode and thus the above 'dclr0' status
1087 * bit will be OFF.
1afd3c98
DT
1088 *
1089 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1090 * their CSEnable bit on. If so, then SINGLE DIMM case.
1091 */
d16149e8 1092 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1093
1afd3c98
DT
1094 /*
1095 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1096 * is more than just one DIMM present in unganged mode. Need to check
1097 * both controllers since DIMMs can be placed in either one.
1098 */
525a1b20
BP
1099 for (i = 0; i < 2; i++) {
1100 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1101
57a30854
WW
1102 for (j = 0; j < 4; j++) {
1103 if (DBAM_DIMM(j, dbam) > 0) {
1104 channels++;
1105 break;
1106 }
1107 }
1afd3c98
DT
1108 }
1109
d16149e8
BP
1110 if (channels > 2)
1111 channels = 2;
1112
24f9a7fe 1113 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1114
1115 return channels;
1afd3c98
DT
1116}
1117
1433eb99 1118static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1119{
1433eb99
BP
1120 int *dbam_map;
1121
1122 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1123 dbam_map = ddr3_dbam;
1124 else
1125 dbam_map = ddr2_dbam;
1126
1127 return dbam_map[cs_mode];
1afd3c98
DT
1128}
1129
f192c7b1 1130static u64 f10_get_error_address(struct mem_ctl_info *mci, struct mce *m)
1afd3c98 1131{
f192c7b1 1132 return m->addr & GENMASK(1, 47);
1afd3c98
DT
1133}
1134
6163b5d4
DT
1135static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1136{
6163b5d4 1137
78da121e
BP
1138 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1139 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1140 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1141
78da121e 1142 debugf0(" mode: %s, All DCTs on: %s\n",
72381bd5
BP
1143 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1144 (dct_dram_enabled(pvt) ? "yes" : "no"));
1145
1146 if (!dct_ganging_enabled(pvt))
1147 debugf0(" Address range split per DCT: %s\n",
1148 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1149
78da121e 1150 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1151 "DRAM cleared since last warm reset: %s\n",
1152 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1153 (dct_memory_cleared(pvt) ? "yes" : "no"));
1154
78da121e
BP
1155 debugf0(" channel interleave: %s, "
1156 "interleave bits selector: 0x%x\n",
72381bd5 1157 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1158 dct_sel_interleave_addr(pvt));
1159 }
1160
78da121e 1161 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1162}
1163
f71d0a05 1164/*
229a7a11 1165 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1166 * Interleaving Modes.
1167 */
11c75ead 1168static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1169 bool hi_range_sel, u8 intlv_en)
6163b5d4 1170{
78da121e 1171 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1172
1173 if (dct_ganging_enabled(pvt))
229a7a11 1174 return 0;
6163b5d4 1175
229a7a11
BP
1176 if (hi_range_sel)
1177 return dct_sel_high;
6163b5d4 1178
229a7a11
BP
1179 /*
1180 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1181 */
1182 if (dct_interleave_enabled(pvt)) {
1183 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1184
1185 /* return DCT select function: 0=DCT0, 1=DCT1 */
1186 if (!intlv_addr)
1187 return sys_addr >> 6 & 1;
1188
1189 if (intlv_addr & 0x2) {
1190 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1191 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1192
1193 return ((sys_addr >> shift) & 1) ^ temp;
1194 }
1195
1196 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1197 }
1198
1199 if (dct_high_range_enabled(pvt))
1200 return ~dct_sel_high & 1;
6163b5d4
DT
1201
1202 return 0;
1203}
1204
c8e518d5
BP
1205/* Convert the sys_addr to the normalized DCT address */
1206static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1207 u64 sys_addr, bool hi_rng,
1208 u32 dct_sel_base_addr)
6163b5d4
DT
1209{
1210 u64 chan_off;
c8e518d5
BP
1211 u64 dram_base = get_dram_base(pvt, range);
1212 u64 hole_off = f10_dhar_offset(pvt);
1213 u32 hole_valid = dhar_valid(pvt);
1214 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1215
c8e518d5
BP
1216 if (hi_rng) {
1217 /*
1218 * if
1219 * base address of high range is below 4Gb
1220 * (bits [47:27] at [31:11])
1221 * DRAM address space on this DCT is hoisted above 4Gb &&
1222 * sys_addr > 4Gb
1223 *
1224 * remove hole offset from sys_addr
1225 * else
1226 * remove high range offset from sys_addr
1227 */
1228 if ((!(dct_sel_base_addr >> 16) ||
1229 dct_sel_base_addr < dhar_base(pvt)) &&
1230 hole_valid &&
1231 (sys_addr >= BIT_64(32)))
bc21fa57 1232 chan_off = hole_off;
6163b5d4
DT
1233 else
1234 chan_off = dct_sel_base_off;
1235 } else {
c8e518d5
BP
1236 /*
1237 * if
1238 * we have a valid hole &&
1239 * sys_addr > 4Gb
1240 *
1241 * remove hole
1242 * else
1243 * remove dram base to normalize to DCT address
1244 */
1245 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1246 chan_off = hole_off;
6163b5d4 1247 else
c8e518d5 1248 chan_off = dram_base;
6163b5d4
DT
1249 }
1250
c8e518d5 1251 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1252}
1253
1254/* Hack for the time being - Can we get this from BIOS?? */
1255#define CH0SPARE_RANK 0
1256#define CH1SPARE_RANK 1
1257
1258/*
1259 * checks if the csrow passed in is marked as SPARED, if so returns the new
1260 * spare row
1261 */
11c75ead 1262static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4
DT
1263{
1264 u32 swap_done;
1265 u32 bad_dram_cs;
1266
1267 /* Depending on channel, isolate respective SPARING info */
11c75ead 1268 if (dct) {
6163b5d4
DT
1269 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1270 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1271 if (swap_done && (csrow == bad_dram_cs))
1272 csrow = CH1SPARE_RANK;
1273 } else {
1274 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1275 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1276 if (swap_done && (csrow == bad_dram_cs))
1277 csrow = CH0SPARE_RANK;
1278 }
1279 return csrow;
1280}
1281
1282/*
1283 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1284 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1285 *
1286 * Return:
1287 * -EINVAL: NOT FOUND
1288 * 0..csrow = Chip-Select Row
1289 */
11c75ead 1290static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1291{
1292 struct mem_ctl_info *mci;
1293 struct amd64_pvt *pvt;
11c75ead 1294 u64 cs_base, cs_mask;
6163b5d4
DT
1295 int cs_found = -EINVAL;
1296 int csrow;
1297
cc4d8860 1298 mci = mcis[nid];
6163b5d4
DT
1299 if (!mci)
1300 return cs_found;
1301
1302 pvt = mci->pvt_info;
1303
11c75ead 1304 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1305
11c75ead
BP
1306 for_each_chip_select(csrow, dct, pvt) {
1307 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1308 continue;
1309
11c75ead 1310 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1311
11c75ead
BP
1312 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1313 csrow, cs_base, cs_mask);
6163b5d4 1314
11c75ead 1315 cs_mask = ~cs_mask;
6163b5d4 1316
11c75ead
BP
1317 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1318 "(CSBase & ~CSMask)=0x%llx\n",
1319 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1320
11c75ead
BP
1321 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1322 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1323
1324 debugf1(" MATCH csrow=%d\n", cs_found);
1325 break;
1326 }
1327 }
1328 return cs_found;
1329}
1330
f71d0a05 1331/* For a given @dram_range, check if @sys_addr falls within it. */
7f19bf75 1332static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1333 u64 sys_addr, int *nid, int *chan_sel)
1334{
229a7a11 1335 int cs_found = -EINVAL;
c8e518d5
BP
1336 u64 chan_addr;
1337 u32 tmp, dct_sel_base;
11c75ead 1338 u8 channel;
229a7a11 1339 bool high_range = false;
f71d0a05 1340
7f19bf75 1341 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1342 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1343 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1344
c8e518d5
BP
1345 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1346 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1347
e726f3c3 1348 if (intlv_en &&
f71d0a05
DT
1349 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1350 return -EINVAL;
1351
1352 dct_sel_base = dct_sel_baseaddr(pvt);
1353
1354 /*
1355 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1356 * select between DCT0 and DCT1.
1357 */
1358 if (dct_high_range_enabled(pvt) &&
1359 !dct_ganging_enabled(pvt) &&
1360 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1361 high_range = true;
f71d0a05
DT
1362
1363 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1364
c8e518d5
BP
1365 chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
1366 high_range, dct_sel_base);
f71d0a05 1367
f678b8cc 1368 /* remove Node ID (in case of node interleaving) */
f71d0a05
DT
1369 tmp = chan_addr & 0xFC0;
1370
f678b8cc 1371 chan_addr = ((chan_addr >> hweight8(intlv_en)) & GENMASK(12, 47)) | tmp;
f71d0a05
DT
1372
1373 /* remove channel interleave and hash */
1374 if (dct_interleave_enabled(pvt) &&
1375 !dct_high_range_enabled(pvt) &&
1376 !dct_ganging_enabled(pvt)) {
1377 if (dct_sel_interleave_addr(pvt) != 1)
f678b8cc 1378 chan_addr = (chan_addr >> 1) & GENMASK(6, 63);
f71d0a05
DT
1379 else {
1380 tmp = chan_addr & 0xFC0;
f678b8cc 1381 chan_addr = ((chan_addr & GENMASK(14, 63)) >> 1) | tmp;
f71d0a05
DT
1382 }
1383 }
1384
11c75ead 1385 debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr);
f71d0a05 1386
11c75ead 1387 cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1388
1389 if (cs_found >= 0) {
1390 *nid = node_id;
1391 *chan_sel = channel;
1392 }
1393 return cs_found;
1394}
1395
1396static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1397 int *node, int *chan_sel)
1398{
7f19bf75 1399 int range, cs_found = -EINVAL;
f71d0a05 1400
7f19bf75 1401 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1402
7f19bf75 1403 if (!dram_rw(pvt, range))
f71d0a05
DT
1404 continue;
1405
7f19bf75
BP
1406 if ((get_dram_base(pvt, range) <= sys_addr) &&
1407 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1408
7f19bf75 1409 cs_found = f10_match_to_this_node(pvt, range,
f71d0a05
DT
1410 sys_addr, node,
1411 chan_sel);
1412 if (cs_found >= 0)
1413 break;
1414 }
1415 }
1416 return cs_found;
1417}
1418
1419/*
bdc30a0c
BP
1420 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1421 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1422 *
bdc30a0c
BP
1423 * The @sys_addr is usually an error address received from the hardware
1424 * (MCX_ADDR).
f71d0a05 1425 */
f192c7b1
BP
1426static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1427 u16 syndrome)
f71d0a05
DT
1428{
1429 struct amd64_pvt *pvt = mci->pvt_info;
1430 u32 page, offset;
f71d0a05
DT
1431 int nid, csrow, chan = 0;
1432
1433 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1434
bdc30a0c
BP
1435 if (csrow < 0) {
1436 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1437 return;
1438 }
1439
1440 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1441
bdc30a0c
BP
1442 /*
1443 * We need the syndromes for channel detection only when we're
1444 * ganged. Otherwise @chan should already contain the channel at
1445 * this point.
1446 */
a97fa68e 1447 if (dct_ganging_enabled(pvt))
bdc30a0c 1448 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1449
bdc30a0c
BP
1450 if (chan >= 0)
1451 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1452 EDAC_MOD_STR);
1453 else
f71d0a05 1454 /*
bdc30a0c 1455 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1456 */
bdc30a0c 1457 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1458 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1459 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1460}
1461
f71d0a05 1462/*
8566c4df 1463 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1464 * CSROWs
f71d0a05 1465 */
8566c4df 1466static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1467{
603adaf6 1468 int dimm, size0, size1, factor = 0;
525a1b20
BP
1469 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1470 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1471
8566c4df 1472 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1473 if (pvt->dclr0 & F10_WIDTH_128)
1474 factor = 1;
1475
8566c4df 1476 /* K8 families < revF not supported yet */
1433eb99 1477 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1478 return;
1479 else
1480 WARN_ON(ctrl != 0);
1481 }
1482
4d796364 1483 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1484 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1485 : pvt->csels[0].csbases;
f71d0a05 1486
4d796364 1487 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1488
8566c4df
BP
1489 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1490
f71d0a05
DT
1491 /* Dump memory sizes for DIMM and its CSROWs */
1492 for (dimm = 0; dimm < 4; dimm++) {
1493
1494 size0 = 0;
11c75ead 1495 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1433eb99 1496 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1497
1498 size1 = 0;
11c75ead 1499 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1433eb99 1500 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1501
24f9a7fe
BP
1502 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1503 dimm * 2, size0 << factor,
1504 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1505 }
1506}
1507
4d37607a
DT
1508static struct amd64_family_type amd64_family_types[] = {
1509 [K8_CPUS] = {
0092b20d 1510 .ctl_name = "K8",
8d5b5d9c
BP
1511 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1512 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1513 .ops = {
1433eb99
BP
1514 .early_channel_count = k8_early_channel_count,
1515 .get_error_address = k8_get_error_address,
1433eb99
BP
1516 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1517 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1518 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1519 }
1520 },
1521 [F10_CPUS] = {
0092b20d 1522 .ctl_name = "F10h",
8d5b5d9c
BP
1523 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1524 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1525 .ops = {
7d20d14d 1526 .early_channel_count = f1x_early_channel_count,
1433eb99 1527 .get_error_address = f10_get_error_address,
1433eb99
BP
1528 .read_dram_ctl_register = f10_read_dram_ctl_register,
1529 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1530 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1531 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1532 }
1533 },
1534 [F15_CPUS] = {
1535 .ctl_name = "F15h",
1536 .ops = {
7d20d14d 1537 .early_channel_count = f1x_early_channel_count,
b2b0c605 1538 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1539 }
1540 },
4d37607a
DT
1541};
1542
1543static struct pci_dev *pci_get_related_function(unsigned int vendor,
1544 unsigned int device,
1545 struct pci_dev *related)
1546{
1547 struct pci_dev *dev = NULL;
1548
1549 dev = pci_get_device(vendor, device, dev);
1550 while (dev) {
1551 if ((dev->bus->number == related->bus->number) &&
1552 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1553 break;
1554 dev = pci_get_device(vendor, device, dev);
1555 }
1556
1557 return dev;
1558}
1559
b1289d6f 1560/*
bfc04aec
BP
1561 * These are tables of eigenvectors (one per line) which can be used for the
1562 * construction of the syndrome tables. The modified syndrome search algorithm
1563 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1564 *
bfc04aec 1565 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1566 */
bfc04aec
BP
1567static u16 x4_vectors[] = {
1568 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1569 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1570 0x0001, 0x0002, 0x0004, 0x0008,
1571 0x1013, 0x3032, 0x4044, 0x8088,
1572 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1573 0x4857, 0xc4fe, 0x13cc, 0x3288,
1574 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1575 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1576 0x15c1, 0x2a42, 0x89ac, 0x4758,
1577 0x2b03, 0x1602, 0x4f0c, 0xca08,
1578 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1579 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1580 0x2b87, 0x164e, 0x642c, 0xdc18,
1581 0x40b9, 0x80de, 0x1094, 0x20e8,
1582 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1583 0x11c1, 0x2242, 0x84ac, 0x4c58,
1584 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1585 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1586 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1587 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1588 0x16b3, 0x3d62, 0x4f34, 0x8518,
1589 0x1e2f, 0x391a, 0x5cac, 0xf858,
1590 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1591 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1592 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1593 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1594 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1595 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1596 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1597 0x185d, 0x2ca6, 0x7914, 0x9e28,
1598 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1599 0x4199, 0x82ee, 0x19f4, 0x2e58,
1600 0x4807, 0xc40e, 0x130c, 0x3208,
1601 0x1905, 0x2e0a, 0x5804, 0xac08,
1602 0x213f, 0x132a, 0xadfc, 0x5ba8,
1603 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1604};
1605
bfc04aec
BP
1606static u16 x8_vectors[] = {
1607 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1608 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1609 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1610 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1611 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1612 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1613 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1614 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1615 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1616 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1617 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1618 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1619 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1620 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1621 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1622 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1623 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1624 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1625 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1626};
1627
1628static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1629 int v_dim)
b1289d6f 1630{
bfc04aec
BP
1631 unsigned int i, err_sym;
1632
1633 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1634 u16 s = syndrome;
1635 int v_idx = err_sym * v_dim;
1636 int v_end = (err_sym + 1) * v_dim;
1637
1638 /* walk over all 16 bits of the syndrome */
1639 for (i = 1; i < (1U << 16); i <<= 1) {
1640
1641 /* if bit is set in that eigenvector... */
1642 if (v_idx < v_end && vectors[v_idx] & i) {
1643 u16 ev_comp = vectors[v_idx++];
1644
1645 /* ... and bit set in the modified syndrome, */
1646 if (s & i) {
1647 /* remove it. */
1648 s ^= ev_comp;
4d37607a 1649
bfc04aec
BP
1650 if (!s)
1651 return err_sym;
1652 }
b1289d6f 1653
bfc04aec
BP
1654 } else if (s & i)
1655 /* can't get to zero, move to next symbol */
1656 break;
1657 }
b1289d6f
DT
1658 }
1659
1660 debugf0("syndrome(%x) not found\n", syndrome);
1661 return -1;
1662}
d27bf6fa 1663
bfc04aec
BP
1664static int map_err_sym_to_channel(int err_sym, int sym_size)
1665{
1666 if (sym_size == 4)
1667 switch (err_sym) {
1668 case 0x20:
1669 case 0x21:
1670 return 0;
1671 break;
1672 case 0x22:
1673 case 0x23:
1674 return 1;
1675 break;
1676 default:
1677 return err_sym >> 4;
1678 break;
1679 }
1680 /* x8 symbols */
1681 else
1682 switch (err_sym) {
1683 /* imaginary bits not in a DIMM */
1684 case 0x10:
1685 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1686 err_sym);
1687 return -1;
1688 break;
1689
1690 case 0x11:
1691 return 0;
1692 break;
1693 case 0x12:
1694 return 1;
1695 break;
1696 default:
1697 return err_sym >> 3;
1698 break;
1699 }
1700 return -1;
1701}
1702
1703static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1704{
1705 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1706 int err_sym = -1;
1707
1708 if (pvt->syn_type == 8)
1709 err_sym = decode_syndrome(syndrome, x8_vectors,
1710 ARRAY_SIZE(x8_vectors),
1711 pvt->syn_type);
1712 else if (pvt->syn_type == 4)
1713 err_sym = decode_syndrome(syndrome, x4_vectors,
1714 ARRAY_SIZE(x4_vectors),
1715 pvt->syn_type);
1716 else {
24f9a7fe 1717 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1718 return err_sym;
bfc04aec 1719 }
ad6a32e9
BP
1720
1721 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1722}
1723
d27bf6fa
DT
1724/*
1725 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1726 * ADDRESS and process.
1727 */
f192c7b1 1728static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1729{
1730 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1731 u64 sys_addr;
f192c7b1 1732 u16 syndrome;
d27bf6fa
DT
1733
1734 /* Ensure that the Error Address is VALID */
f192c7b1 1735 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1736 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1737 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1738 return;
1739 }
1740
f192c7b1
BP
1741 sys_addr = pvt->ops->get_error_address(mci, m);
1742 syndrome = extract_syndrome(m->status);
d27bf6fa 1743
24f9a7fe 1744 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1745
f192c7b1 1746 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1747}
1748
1749/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1750static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1751{
1f6bcee7
BP
1752 struct amd64_pvt *pvt = mci->pvt_info;
1753 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1754 int csrow;
44e9e2ee 1755 u64 sys_addr;
d27bf6fa 1756 u32 page, offset;
d27bf6fa
DT
1757
1758 log_mci = mci;
1759
f192c7b1 1760 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1761 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1762 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1763 return;
1764 }
1765
f192c7b1 1766 sys_addr = pvt->ops->get_error_address(mci, m);
d27bf6fa
DT
1767
1768 /*
1769 * Find out which node the error address belongs to. This may be
1770 * different from the node that detected the error.
1771 */
44e9e2ee 1772 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1773 if (!src_mci) {
24f9a7fe
BP
1774 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1775 (unsigned long)sys_addr);
d27bf6fa
DT
1776 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1777 return;
1778 }
1779
1780 log_mci = src_mci;
1781
44e9e2ee 1782 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1783 if (csrow < 0) {
24f9a7fe
BP
1784 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1785 (unsigned long)sys_addr);
d27bf6fa
DT
1786 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1787 } else {
44e9e2ee 1788 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1789 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1790 }
1791}
1792
549d042d 1793static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1794 struct mce *m)
d27bf6fa 1795{
f192c7b1
BP
1796 u16 ec = EC(m->status);
1797 u8 xec = XEC(m->status, 0x1f);
1798 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1799
b70ef010 1800 /* Bail early out if this was an 'observed' error */
5980bb9c 1801 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1802 return;
d27bf6fa 1803
ecaf5606
BP
1804 /* Do only ECC errors */
1805 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1806 return;
d27bf6fa 1807
ecaf5606 1808 if (ecc_type == 2)
f192c7b1 1809 amd64_handle_ce(mci, m);
ecaf5606 1810 else if (ecc_type == 1)
f192c7b1 1811 amd64_handle_ue(mci, m);
d27bf6fa
DT
1812}
1813
7cfd4a87 1814void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1815{
cc4d8860 1816 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1817
f192c7b1 1818 __amd64_decode_bus_error(mci, m);
d27bf6fa 1819}
d27bf6fa 1820
0ec449ee 1821/*
8d5b5d9c 1822 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1823 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1824 */
360b7f3c 1825static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1826{
0ec449ee 1827 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1828 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1829 if (!pvt->F1) {
24f9a7fe
BP
1830 amd64_err("error address map device not found: "
1831 "vendor %x device 0x%x (broken BIOS?)\n",
1832 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1833 return -ENODEV;
0ec449ee
DT
1834 }
1835
1836 /* Reserve the MISC Device */
8d5b5d9c
BP
1837 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1838 if (!pvt->F3) {
1839 pci_dev_put(pvt->F1);
1840 pvt->F1 = NULL;
0ec449ee 1841
24f9a7fe
BP
1842 amd64_err("error F3 device not found: "
1843 "vendor %x device 0x%x (broken BIOS?)\n",
1844 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1845
bbd0c1f6 1846 return -ENODEV;
0ec449ee 1847 }
8d5b5d9c
BP
1848 debugf1("F1: %s\n", pci_name(pvt->F1));
1849 debugf1("F2: %s\n", pci_name(pvt->F2));
1850 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1851
1852 return 0;
1853}
1854
360b7f3c 1855static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1856{
8d5b5d9c
BP
1857 pci_dev_put(pvt->F1);
1858 pci_dev_put(pvt->F3);
0ec449ee
DT
1859}
1860
1861/*
1862 * Retrieve the hardware registers of the memory controller (this includes the
1863 * 'Address Map' and 'Misc' device regs)
1864 */
360b7f3c 1865static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
1866{
1867 u64 msr_val;
ad6a32e9 1868 u32 tmp;
7f19bf75 1869 int range;
0ec449ee
DT
1870
1871 /*
1872 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1873 * those are Read-As-Zero
1874 */
e97f8bb8
BP
1875 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1876 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1877
1878 /* check first whether TOP_MEM2 is enabled */
1879 rdmsrl(MSR_K8_SYSCFG, msr_val);
1880 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1881 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1882 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1883 } else
1884 debugf0(" TOP_MEM2 disabled.\n");
1885
5980bb9c 1886 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee
DT
1887
1888 if (pvt->ops->read_dram_ctl_register)
1889 pvt->ops->read_dram_ctl_register(pvt);
1890
7f19bf75
BP
1891 for (range = 0; range < DRAM_RANGES; range++) {
1892 u8 rw;
0ec449ee 1893
7f19bf75
BP
1894 /* read settings for this DRAM range */
1895 read_dram_base_limit_regs(pvt, range);
1896
1897 rw = dram_rw(pvt, range);
1898 if (!rw)
1899 continue;
1900
1901 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1902 range,
1903 get_dram_base(pvt, range),
1904 get_dram_limit(pvt, range));
1905
1906 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1907 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1908 (rw & 0x1) ? "R" : "-",
1909 (rw & 0x2) ? "W" : "-",
1910 dram_intlv_sel(pvt, range),
1911 dram_dst_node(pvt, range));
0ec449ee
DT
1912 }
1913
b2b0c605 1914 read_dct_base_mask(pvt);
0ec449ee 1915
bc21fa57 1916 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1917 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1918
8d5b5d9c 1919 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1920
cb328507
BP
1921 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1922 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1923
78da121e 1924 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1925 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1926 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1927 }
ad6a32e9 1928
525a1b20 1929 if (boot_cpu_data.x86 >= 0x10) {
b2b0c605 1930 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20
BP
1931 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1932 }
b2b0c605 1933
ad6a32e9
BP
1934 if (boot_cpu_data.x86 == 0x10 &&
1935 boot_cpu_data.x86_model > 7 &&
1936 /* F3x180[EccSymbolSize]=1 => x8 symbols */
1937 tmp & BIT(25))
1938 pvt->syn_type = 8;
1939 else
1940 pvt->syn_type = 4;
1941
b2b0c605 1942 dump_misc_regs(pvt);
0ec449ee
DT
1943}
1944
1945/*
1946 * NOTE: CPU Revision Dependent code
1947 *
1948 * Input:
11c75ead 1949 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
1950 * k8 private pointer to -->
1951 * DRAM Bank Address mapping register
1952 * node_id
1953 * DCL register where dual_channel_active is
1954 *
1955 * The DBAM register consists of 4 sets of 4 bits each definitions:
1956 *
1957 * Bits: CSROWs
1958 * 0-3 CSROWs 0 and 1
1959 * 4-7 CSROWs 2 and 3
1960 * 8-11 CSROWs 4 and 5
1961 * 12-15 CSROWs 6 and 7
1962 *
1963 * Values range from: 0 to 15
1964 * The meaning of the values depends on CPU revision and dual-channel state,
1965 * see relevant BKDG more info.
1966 *
1967 * The memory controller provides for total of only 8 CSROWs in its current
1968 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
1969 * single channel or two (2) DIMMs in dual channel mode.
1970 *
1971 * The following code logic collapses the various tables for CSROW based on CPU
1972 * revision.
1973 *
1974 * Returns:
1975 * The number of PAGE_SIZE pages on the specified CSROW number it
1976 * encompasses
1977 *
1978 */
1979static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
1980{
1433eb99 1981 u32 cs_mode, nr_pages;
0ec449ee
DT
1982
1983 /*
1984 * The math on this doesn't look right on the surface because x/2*4 can
1985 * be simplified to x*2 but this expression makes use of the fact that
1986 * it is integral math where 1/2=0. This intermediate value becomes the
1987 * number of bits to shift the DBAM register to extract the proper CSROW
1988 * field.
1989 */
1433eb99 1990 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 1991
1433eb99 1992 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
1993
1994 /*
1995 * If dual channel then double the memory size of single channel.
1996 * Channel count is 1 or 2
1997 */
1998 nr_pages <<= (pvt->channel_count - 1);
1999
1433eb99 2000 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2001 debugf0(" nr_pages= %u channel-count = %d\n",
2002 nr_pages, pvt->channel_count);
2003
2004 return nr_pages;
2005}
2006
2007/*
2008 * Initialize the array of csrow attribute instances, based on the values
2009 * from pci config hardware registers.
2010 */
360b7f3c 2011static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2012{
2013 struct csrow_info *csrow;
2299ef71 2014 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2015 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2016 u32 val;
6ba5dcdc 2017 int i, empty = 1;
0ec449ee 2018
a97fa68e 2019 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2020
2299ef71 2021 pvt->nbcfg = val;
0ec449ee 2022
2299ef71
BP
2023 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2024 pvt->mc_node_id, val,
a97fa68e 2025 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2026
11c75ead 2027 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2028 csrow = &mci->csrows[i];
2029
11c75ead 2030 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2031 debugf1("----CSROW %d EMPTY for node %d\n", i,
2032 pvt->mc_node_id);
2033 continue;
2034 }
2035
2036 debugf1("----CSROW %d VALID for MC node %d\n",
2037 i, pvt->mc_node_id);
2038
2039 empty = 0;
2040 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2041 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2042 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2043 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2044 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2045 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2046
2047 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2048 csrow->page_mask = ~mask;
0ec449ee
DT
2049 /* 8 bytes of resolution */
2050
24f9a7fe 2051 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2052
2053 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2054 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2055 (unsigned long)input_addr_min,
2056 (unsigned long)input_addr_max);
2057 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2058 (unsigned long)sys_addr, csrow->page_mask);
2059 debugf1(" nr_pages: %u first_page: 0x%lx "
2060 "last_page: 0x%lx\n",
2061 (unsigned)csrow->nr_pages,
2062 csrow->first_page, csrow->last_page);
2063
2064 /*
2065 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2066 */
a97fa68e 2067 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2068 csrow->edac_mode =
a97fa68e 2069 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2070 EDAC_S4ECD4ED : EDAC_SECDED;
2071 else
2072 csrow->edac_mode = EDAC_NONE;
2073 }
2074
2075 return empty;
2076}
d27bf6fa 2077
f6d6ae96
BP
2078/* get all cores on this DCT */
2079static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2080{
2081 int cpu;
2082
2083 for_each_online_cpu(cpu)
2084 if (amd_get_nb_id(cpu) == nid)
2085 cpumask_set_cpu(cpu, mask);
2086}
2087
2088/* check MCG_CTL on all the cpus on this node */
2089static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2090{
2091 cpumask_var_t mask;
50542251 2092 int cpu, nbe;
f6d6ae96
BP
2093 bool ret = false;
2094
2095 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2096 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2097 return false;
2098 }
2099
2100 get_cpus_on_this_dct_cpumask(mask, nid);
2101
f6d6ae96
BP
2102 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2103
2104 for_each_cpu(cpu, mask) {
50542251 2105 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2106 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2107
2108 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2109 cpu, reg->q,
f6d6ae96
BP
2110 (nbe ? "enabled" : "disabled"));
2111
2112 if (!nbe)
2113 goto out;
f6d6ae96
BP
2114 }
2115 ret = true;
2116
2117out:
f6d6ae96
BP
2118 free_cpumask_var(mask);
2119 return ret;
2120}
2121
2299ef71 2122static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2123{
2124 cpumask_var_t cmask;
50542251 2125 int cpu;
f6d6ae96
BP
2126
2127 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2128 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2129 return false;
2130 }
2131
ae7bb7c6 2132 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2133
f6d6ae96
BP
2134 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2135
2136 for_each_cpu(cpu, cmask) {
2137
50542251
BP
2138 struct msr *reg = per_cpu_ptr(msrs, cpu);
2139
f6d6ae96 2140 if (on) {
5980bb9c 2141 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2142 s->flags.nb_mce_enable = 1;
f6d6ae96 2143
5980bb9c 2144 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2145 } else {
2146 /*
d95cf4de 2147 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2148 */
ae7bb7c6 2149 if (!s->flags.nb_mce_enable)
5980bb9c 2150 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2151 }
f6d6ae96
BP
2152 }
2153 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2154
f6d6ae96
BP
2155 free_cpumask_var(cmask);
2156
2157 return 0;
2158}
2159
2299ef71
BP
2160static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2161 struct pci_dev *F3)
f9431992 2162{
2299ef71 2163 bool ret = true;
c9f4f26e 2164 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2165
2299ef71
BP
2166 if (toggle_ecc_err_reporting(s, nid, ON)) {
2167 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2168 return false;
2169 }
2170
c9f4f26e 2171 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2172
ae7bb7c6
BP
2173 s->old_nbctl = value & mask;
2174 s->nbctl_valid = true;
f9431992
DT
2175
2176 value |= mask;
c9f4f26e 2177 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2178
a97fa68e 2179 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2180
a97fa68e
BP
2181 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2182 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2183
a97fa68e 2184 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2185 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2186
ae7bb7c6 2187 s->flags.nb_ecc_prev = 0;
d95cf4de 2188
f9431992 2189 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2190 value |= NBCFG_ECC_ENABLE;
2191 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2192
a97fa68e 2193 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2194
a97fa68e 2195 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2196 amd64_warn("Hardware rejected DRAM ECC enable,"
2197 "check memory DIMM configuration.\n");
2299ef71 2198 ret = false;
f9431992 2199 } else {
24f9a7fe 2200 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2201 }
d95cf4de 2202 } else {
ae7bb7c6 2203 s->flags.nb_ecc_prev = 1;
f9431992 2204 }
d95cf4de 2205
a97fa68e
BP
2206 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2207 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2208
2299ef71 2209 return ret;
f9431992
DT
2210}
2211
360b7f3c
BP
2212static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2213 struct pci_dev *F3)
f9431992 2214{
c9f4f26e
BP
2215 u32 value, mask = 0x3; /* UECC/CECC enable */
2216
f9431992 2217
ae7bb7c6 2218 if (!s->nbctl_valid)
f9431992
DT
2219 return;
2220
c9f4f26e 2221 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2222 value &= ~mask;
ae7bb7c6 2223 value |= s->old_nbctl;
f9431992 2224
c9f4f26e 2225 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2226
ae7bb7c6
BP
2227 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2228 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2229 amd64_read_pci_cfg(F3, NBCFG, &value);
2230 value &= ~NBCFG_ECC_ENABLE;
2231 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2232 }
2233
2234 /* restore the NB Enable MCGCTL bit */
2299ef71 2235 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2236 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2237}
2238
2239/*
2299ef71
BP
2240 * EDAC requires that the BIOS have ECC enabled before
2241 * taking over the processing of ECC errors. A command line
2242 * option allows to force-enable hardware ECC later in
2243 * enable_ecc_error_reporting().
f9431992 2244 */
cab4d277
BP
2245static const char *ecc_msg =
2246 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2247 " Either enable ECC checking or force module loading by setting "
2248 "'ecc_enable_override'.\n"
2249 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2250
2299ef71 2251static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2252{
2253 u32 value;
2299ef71 2254 u8 ecc_en = 0;
06724535 2255 bool nb_mce_en = false;
f9431992 2256
a97fa68e 2257 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2258
a97fa68e 2259 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2260 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2261
2299ef71 2262 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2263 if (!nb_mce_en)
2299ef71
BP
2264 amd64_notice("NB MCE bank disabled, set MSR "
2265 "0x%08x[4] on node %d to enable.\n",
2266 MSR_IA32_MCG_CTL, nid);
f9431992 2267
2299ef71
BP
2268 if (!ecc_en || !nb_mce_en) {
2269 amd64_notice("%s", ecc_msg);
2270 return false;
2271 }
2272 return true;
f9431992
DT
2273}
2274
7d6034d3
DT
2275struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2276 ARRAY_SIZE(amd64_inj_attrs) +
2277 1];
2278
2279struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2280
360b7f3c 2281static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2282{
2283 unsigned int i = 0, j = 0;
2284
2285 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2286 sysfs_attrs[i] = amd64_dbg_attrs[i];
2287
a135cef7
BP
2288 if (boot_cpu_data.x86 >= 0x10)
2289 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2290 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2291
2292 sysfs_attrs[i] = terminator;
2293
2294 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2295}
2296
360b7f3c 2297static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2298{
2299 struct amd64_pvt *pvt = mci->pvt_info;
2300
2301 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2302 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2303
5980bb9c 2304 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2305 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2306
5980bb9c 2307 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2308 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2309
2310 mci->edac_cap = amd64_determine_edac_cap(pvt);
2311 mci->mod_name = EDAC_MOD_STR;
2312 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2313 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2314 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2315 mci->ctl_page_to_phys = NULL;
2316
7d6034d3
DT
2317 /* memory scrubber interface */
2318 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2319 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2320}
2321
0092b20d
BP
2322/*
2323 * returns a pointer to the family descriptor on success, NULL otherwise.
2324 */
2325static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2326{
0092b20d
BP
2327 u8 fam = boot_cpu_data.x86;
2328 struct amd64_family_type *fam_type = NULL;
2329
2330 switch (fam) {
395ae783 2331 case 0xf:
0092b20d 2332 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2333 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2334 pvt->ctl_name = fam_type->ctl_name;
2335 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2336 break;
2337 case 0x10:
0092b20d 2338 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2339 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2340 pvt->ctl_name = fam_type->ctl_name;
2341 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2342 break;
2343
2344 default:
24f9a7fe 2345 amd64_err("Unsupported family!\n");
0092b20d 2346 return NULL;
395ae783 2347 }
0092b20d 2348
b8cfa02f
BP
2349 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2350
24f9a7fe 2351 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2352 (fam == 0xf ?
24f9a7fe
BP
2353 (pvt->ext_model >= K8_REV_F ? "revF or later "
2354 : "revE or earlier ")
2355 : ""), pvt->mc_node_id);
0092b20d 2356 return fam_type;
395ae783
BP
2357}
2358
2299ef71 2359static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2360{
2361 struct amd64_pvt *pvt = NULL;
0092b20d 2362 struct amd64_family_type *fam_type = NULL;
360b7f3c 2363 struct mem_ctl_info *mci = NULL;
7d6034d3 2364 int err = 0, ret;
360b7f3c 2365 u8 nid = get_node_id(F2);
7d6034d3
DT
2366
2367 ret = -ENOMEM;
2368 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2369 if (!pvt)
360b7f3c 2370 goto err_ret;
7d6034d3 2371
360b7f3c 2372 pvt->mc_node_id = nid;
8d5b5d9c 2373 pvt->F2 = F2;
7d6034d3 2374
395ae783 2375 ret = -EINVAL;
0092b20d
BP
2376 fam_type = amd64_per_family_init(pvt);
2377 if (!fam_type)
395ae783
BP
2378 goto err_free;
2379
7d6034d3 2380 ret = -ENODEV;
360b7f3c 2381 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2382 if (err)
2383 goto err_free;
2384
360b7f3c 2385 read_mc_regs(pvt);
7d6034d3 2386
7d6034d3
DT
2387 /*
2388 * We need to determine how many memory channels there are. Then use
2389 * that information for calculating the size of the dynamic instance
360b7f3c 2390 * tables in the 'mci' structure.
7d6034d3 2391 */
360b7f3c 2392 ret = -EINVAL;
7d6034d3
DT
2393 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2394 if (pvt->channel_count < 0)
360b7f3c 2395 goto err_siblings;
7d6034d3
DT
2396
2397 ret = -ENOMEM;
11c75ead 2398 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2399 if (!mci)
360b7f3c 2400 goto err_siblings;
7d6034d3
DT
2401
2402 mci->pvt_info = pvt;
8d5b5d9c 2403 mci->dev = &pvt->F2->dev;
7d6034d3 2404
360b7f3c
BP
2405 setup_mci_misc_attrs(mci);
2406
2407 if (init_csrows(mci))
7d6034d3
DT
2408 mci->edac_cap = EDAC_FLAG_NONE;
2409
360b7f3c 2410 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2411
2412 ret = -ENODEV;
2413 if (edac_mc_add_mc(mci)) {
2414 debugf1("failed edac_mc_add_mc()\n");
2415 goto err_add_mc;
2416 }
2417
549d042d
BP
2418 /* register stuff with EDAC MCE */
2419 if (report_gart_errors)
2420 amd_report_gart_errors(true);
2421
2422 amd_register_ecc_decoder(amd64_decode_bus_error);
2423
360b7f3c
BP
2424 mcis[nid] = mci;
2425
2426 atomic_inc(&drv_instances);
2427
7d6034d3
DT
2428 return 0;
2429
2430err_add_mc:
2431 edac_mc_free(mci);
2432
360b7f3c
BP
2433err_siblings:
2434 free_mc_sibling_devs(pvt);
7d6034d3 2435
360b7f3c
BP
2436err_free:
2437 kfree(pvt);
7d6034d3 2438
360b7f3c 2439err_ret:
7d6034d3
DT
2440 return ret;
2441}
2442
2299ef71 2443static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2444 const struct pci_device_id *mc_type)
7d6034d3 2445{
ae7bb7c6 2446 u8 nid = get_node_id(pdev);
2299ef71 2447 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2448 struct ecc_settings *s;
2299ef71 2449 int ret = 0;
7d6034d3 2450
7d6034d3 2451 ret = pci_enable_device(pdev);
b8cfa02f
BP
2452 if (ret < 0) {
2453 debugf0("ret=%d\n", ret);
2454 return -EIO;
2455 }
7d6034d3 2456
ae7bb7c6
BP
2457 ret = -ENOMEM;
2458 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2459 if (!s)
2299ef71 2460 goto err_out;
ae7bb7c6
BP
2461
2462 ecc_stngs[nid] = s;
2463
2299ef71
BP
2464 if (!ecc_enabled(F3, nid)) {
2465 ret = -ENODEV;
2466
2467 if (!ecc_enable_override)
2468 goto err_enable;
2469
2470 amd64_warn("Forcing ECC on!\n");
2471
2472 if (!enable_ecc_error_reporting(s, nid, F3))
2473 goto err_enable;
2474 }
2475
2476 ret = amd64_init_one_instance(pdev);
360b7f3c 2477 if (ret < 0) {
ae7bb7c6 2478 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2479 restore_ecc_error_reporting(s, nid, F3);
2480 }
7d6034d3
DT
2481
2482 return ret;
2299ef71
BP
2483
2484err_enable:
2485 kfree(s);
2486 ecc_stngs[nid] = NULL;
2487
2488err_out:
2489 return ret;
7d6034d3
DT
2490}
2491
2492static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2493{
2494 struct mem_ctl_info *mci;
2495 struct amd64_pvt *pvt;
360b7f3c
BP
2496 u8 nid = get_node_id(pdev);
2497 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2498 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2499
2500 /* Remove from EDAC CORE tracking list */
2501 mci = edac_mc_del_mc(&pdev->dev);
2502 if (!mci)
2503 return;
2504
2505 pvt = mci->pvt_info;
2506
360b7f3c 2507 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2508
360b7f3c 2509 free_mc_sibling_devs(pvt);
7d6034d3 2510
549d042d
BP
2511 /* unregister from EDAC MCE */
2512 amd_report_gart_errors(false);
2513 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2514
360b7f3c
BP
2515 kfree(ecc_stngs[nid]);
2516 ecc_stngs[nid] = NULL;
ae7bb7c6 2517
7d6034d3 2518 /* Free the EDAC CORE resources */
8f68ed97 2519 mci->pvt_info = NULL;
360b7f3c 2520 mcis[nid] = NULL;
8f68ed97
BP
2521
2522 kfree(pvt);
7d6034d3
DT
2523 edac_mc_free(mci);
2524}
2525
2526/*
2527 * This table is part of the interface for loading drivers for PCI devices. The
2528 * PCI core identifies what devices are on a system during boot, and then
2529 * inquiry this table to see if this driver is for a given device found.
2530 */
2531static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2532 {
2533 .vendor = PCI_VENDOR_ID_AMD,
2534 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2535 .subvendor = PCI_ANY_ID,
2536 .subdevice = PCI_ANY_ID,
2537 .class = 0,
2538 .class_mask = 0,
7d6034d3
DT
2539 },
2540 {
2541 .vendor = PCI_VENDOR_ID_AMD,
2542 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2543 .subvendor = PCI_ANY_ID,
2544 .subdevice = PCI_ANY_ID,
2545 .class = 0,
2546 .class_mask = 0,
7d6034d3 2547 },
7d6034d3
DT
2548 {0, }
2549};
2550MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2551
2552static struct pci_driver amd64_pci_driver = {
2553 .name = EDAC_MOD_STR,
2299ef71 2554 .probe = amd64_probe_one_instance,
7d6034d3
DT
2555 .remove = __devexit_p(amd64_remove_one_instance),
2556 .id_table = amd64_pci_table,
2557};
2558
360b7f3c 2559static void setup_pci_device(void)
7d6034d3
DT
2560{
2561 struct mem_ctl_info *mci;
2562 struct amd64_pvt *pvt;
2563
2564 if (amd64_ctl_pci)
2565 return;
2566
cc4d8860 2567 mci = mcis[0];
7d6034d3
DT
2568 if (mci) {
2569
2570 pvt = mci->pvt_info;
2571 amd64_ctl_pci =
8d5b5d9c 2572 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2573
2574 if (!amd64_ctl_pci) {
2575 pr_warning("%s(): Unable to create PCI control\n",
2576 __func__);
2577
2578 pr_warning("%s(): PCI error report via EDAC not set\n",
2579 __func__);
2580 }
2581 }
2582}
2583
2584static int __init amd64_edac_init(void)
2585{
360b7f3c 2586 int err = -ENODEV;
7d6034d3
DT
2587
2588 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2589
2590 opstate_init();
2591
9653a5c7 2592 if (amd_cache_northbridges() < 0)
56b34b91 2593 goto err_ret;
7d6034d3 2594
cc4d8860 2595 err = -ENOMEM;
ae7bb7c6
BP
2596 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2597 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2598 if (!(mcis && ecc_stngs))
cc4d8860
BP
2599 goto err_ret;
2600
50542251 2601 msrs = msrs_alloc();
56b34b91 2602 if (!msrs)
360b7f3c 2603 goto err_free;
50542251 2604
7d6034d3
DT
2605 err = pci_register_driver(&amd64_pci_driver);
2606 if (err)
56b34b91 2607 goto err_pci;
7d6034d3 2608
56b34b91 2609 err = -ENODEV;
360b7f3c
BP
2610 if (!atomic_read(&drv_instances))
2611 goto err_no_instances;
7d6034d3 2612
360b7f3c
BP
2613 setup_pci_device();
2614 return 0;
7d6034d3 2615
360b7f3c 2616err_no_instances:
7d6034d3 2617 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2618
56b34b91
BP
2619err_pci:
2620 msrs_free(msrs);
2621 msrs = NULL;
cc4d8860 2622
360b7f3c
BP
2623err_free:
2624 kfree(mcis);
2625 mcis = NULL;
2626
2627 kfree(ecc_stngs);
2628 ecc_stngs = NULL;
2629
56b34b91 2630err_ret:
7d6034d3
DT
2631 return err;
2632}
2633
2634static void __exit amd64_edac_exit(void)
2635{
2636 if (amd64_ctl_pci)
2637 edac_pci_release_generic_ctl(amd64_ctl_pci);
2638
2639 pci_unregister_driver(&amd64_pci_driver);
50542251 2640
ae7bb7c6
BP
2641 kfree(ecc_stngs);
2642 ecc_stngs = NULL;
2643
cc4d8860
BP
2644 kfree(mcis);
2645 mcis = NULL;
2646
50542251
BP
2647 msrs_free(msrs);
2648 msrs = NULL;
7d6034d3
DT
2649}
2650
2651module_init(amd64_edac_init);
2652module_exit(amd64_edac_exit);
2653
2654MODULE_LICENSE("GPL");
2655MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2656 "Dave Peterson, Thayne Harbaugh");
2657MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2658 EDAC_AMD64_VERSION);
2659
2660module_param(edac_op_state, int, 0444);
2661MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.322829 seconds and 5 git commands to generate.