Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
da9bb1d2
AC
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
20bcb7a8 34#include "edac_core.h"
7c9281d7 35#include "edac_module.h"
da9bb1d2 36
53f2d028
MCC
37#define CREATE_TRACE_POINTS
38#define TRACE_INCLUDE_PATH ../../include/ras
39#include <ras/ras_event.h>
40
da9bb1d2 41/* lock to memory controller's control array */
63b7df91 42static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 43static LIST_HEAD(mc_devices);
da9bb1d2 44
80cc7d87
MCC
45/*
46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47 * apei/ghes and i7core_edac to be used at the same time.
48 */
49static void const *edac_mc_owner;
50
88d84ac9
BP
51static struct bus_type mc_bus[EDAC_MAX_MCS];
52
6e84d359
MCC
53unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
54 unsigned len)
55{
56 struct mem_ctl_info *mci = dimm->mci;
57 int i, n, count = 0;
58 char *p = buf;
59
60 for (i = 0; i < mci->n_layers; i++) {
61 n = snprintf(p, len, "%s %d ",
62 edac_layer_name[mci->layers[i].type],
63 dimm->location[i]);
64 p += n;
65 len -= n;
66 count += n;
67 if (!len)
68 break;
69 }
70
71 return count;
72}
73
da9bb1d2
AC
74#ifdef CONFIG_EDAC_DEBUG
75
a4b4be3f 76static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 77{
6e84d359
MCC
78 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
79 edac_dbg(4, " channel = %p\n", chan);
80 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
81 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
82}
83
6e84d359 84static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 85{
6e84d359
MCC
86 char location[80];
87
88 edac_dimm_info_location(dimm, location, sizeof(location));
89
90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
9713faec 91 dimm->mci->csbased ? "rank" : "dimm",
6e84d359
MCC
92 number, location, dimm->csrow, dimm->cschannel);
93 edac_dbg(4, " dimm = %p\n", dimm);
94 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
96 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
98}
99
2da1c119 100static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 101{
6e84d359
MCC
102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
103 edac_dbg(4, " csrow = %p\n", csrow);
104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
108 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
109 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
110}
111
2da1c119 112static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 113{
956b9ba1
JP
114 edac_dbg(3, "\tmci = %p\n", mci);
115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
118 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 mci->nr_csrows, mci->csrows);
121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 mci->tot_dimms, mci->dimms);
123 edac_dbg(3, "\tdev = %p\n", mci->pdev);
124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 mci->mod_name, mci->ctl_name);
126 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
127}
128
24f9a7fe
BP
129#endif /* CONFIG_EDAC_DEBUG */
130
239642fe
BP
131/*
132 * keep those in sync with the enum mem_type
133 */
134const char *edac_mem_types[] = {
135 "Empty csrow",
136 "Reserved csrow type",
137 "Unknown csrow type",
138 "Fast page mode RAM",
139 "Extended data out RAM",
140 "Burst Extended data out RAM",
141 "Single data rate SDRAM",
142 "Registered single data rate SDRAM",
143 "Double data rate SDRAM",
144 "Registered Double data rate SDRAM",
145 "Rambus DRAM",
146 "Unbuffered DDR2 RAM",
147 "Fully buffered DDR2",
148 "Registered DDR2 RAM",
149 "Rambus XDR",
150 "Unbuffered DDR3 RAM",
151 "Registered DDR3 RAM",
152};
153EXPORT_SYMBOL_GPL(edac_mem_types);
154
93e4fe64
MCC
155/**
156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157 * @p: pointer to a pointer with the memory offset to be used. At
158 * return, this will be incremented to point to the next offset
159 * @size: Size of the data structure to be reserved
160 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
161 *
162 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
163 * down to either a no-op or the addition of a constant to the value of '*p'.
164 *
165 * The 'p' pointer is absolutely needed to keep the proper advancing
166 * further in memory to the proper offsets when allocating the struct along
167 * with its embedded structs, as edac_device_alloc_ctl_info() does it
168 * above, for example.
169 *
170 * At return, the pointer 'p' will be incremented to be used on a next call
171 * to this function.
da9bb1d2 172 */
93e4fe64 173void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
174{
175 unsigned align, r;
93e4fe64 176 void *ptr = *p;
da9bb1d2 177
93e4fe64
MCC
178 *p += size * n_elems;
179
180 /*
181 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 * 'size'. Adjust 'p' so that its alignment is at least as
183 * stringent as what the compiler would provide for X and return
184 * the aligned result.
185 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
186 * stringent alignment that the compiler will ever provide by default.
187 * As far as I know, this is a reasonable assumption.
188 */
189 if (size > sizeof(long))
190 align = sizeof(long long);
191 else if (size > sizeof(int))
192 align = sizeof(long);
193 else if (size > sizeof(short))
194 align = sizeof(int);
195 else if (size > sizeof(char))
196 align = sizeof(short);
197 else
079708b9 198 return (char *)ptr;
da9bb1d2 199
8447c4d1 200 r = (unsigned long)p % align;
da9bb1d2
AC
201
202 if (r == 0)
079708b9 203 return (char *)ptr;
da9bb1d2 204
93e4fe64
MCC
205 *p += align - r;
206
7391c6dc 207 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
208}
209
faa2ad09
SR
210static void _edac_mc_free(struct mem_ctl_info *mci)
211{
212 int i, chn, row;
213 struct csrow_info *csr;
214 const unsigned int tot_dimms = mci->tot_dimms;
215 const unsigned int tot_channels = mci->num_cschannel;
216 const unsigned int tot_csrows = mci->nr_csrows;
217
218 if (mci->dimms) {
219 for (i = 0; i < tot_dimms; i++)
220 kfree(mci->dimms[i]);
221 kfree(mci->dimms);
222 }
223 if (mci->csrows) {
224 for (row = 0; row < tot_csrows; row++) {
225 csr = mci->csrows[row];
226 if (csr) {
227 if (csr->channels) {
228 for (chn = 0; chn < tot_channels; chn++)
229 kfree(csr->channels[chn]);
230 kfree(csr->channels);
231 }
232 kfree(csr);
233 }
234 }
235 kfree(mci->csrows);
236 }
237 kfree(mci);
238}
239
da9bb1d2 240/**
4275be63
MCC
241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242 * @mc_num: Memory controller number
243 * @n_layers: Number of MC hierarchy layers
244 * layers: Describes each layer as seen by the Memory Controller
245 * @size_pvt: size of private storage needed
246 *
da9bb1d2
AC
247 *
248 * Everything is kmalloc'ed as one big chunk - more efficient.
249 * Only can be used if all structures have the same lifetime - otherwise
250 * you have to allocate and initialize your own structures.
251 *
252 * Use edac_mc_free() to free mc structures allocated by this function.
253 *
4275be63
MCC
254 * NOTE: drivers handle multi-rank memories in different ways: in some
255 * drivers, one multi-rank memory stick is mapped as one entry, while, in
256 * others, a single multi-rank memory stick would be mapped into several
257 * entries. Currently, this function will allocate multiple struct dimm_info
258 * on such scenarios, as grouping the multiple ranks require drivers change.
259 *
da9bb1d2 260 * Returns:
ca0907b9
MCC
261 * On failure: NULL
262 * On success: struct mem_ctl_info pointer
da9bb1d2 263 */
ca0907b9
MCC
264struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
265 unsigned n_layers,
266 struct edac_mc_layer *layers,
267 unsigned sz_pvt)
da9bb1d2
AC
268{
269 struct mem_ctl_info *mci;
4275be63 270 struct edac_mc_layer *layer;
de3910eb
MCC
271 struct csrow_info *csr;
272 struct rank_info *chan;
a7d7d2e1 273 struct dimm_info *dimm;
4275be63
MCC
274 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
275 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
276 unsigned size, tot_dimms = 1, count = 1;
277 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 278 void *pvt, *p, *ptr = NULL;
de3910eb 279 int i, j, row, chn, n, len, off;
4275be63
MCC
280 bool per_rank = false;
281
282 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
283 /*
284 * Calculate the total amount of dimms and csrows/cschannels while
285 * in the old API emulation mode
286 */
287 for (i = 0; i < n_layers; i++) {
288 tot_dimms *= layers[i].size;
289 if (layers[i].is_virt_csrow)
290 tot_csrows *= layers[i].size;
291 else
292 tot_channels *= layers[i].size;
293
294 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
295 per_rank = true;
296 }
da9bb1d2
AC
297
298 /* Figure out the offsets of the various items from the start of an mc
299 * structure. We want the alignment of each item to be at least as
300 * stringent as what the compiler would provide if we could simply
301 * hardcode everything into a single struct.
302 */
93e4fe64 303 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 304 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
305 for (i = 0; i < n_layers; i++) {
306 count *= layers[i].size;
956b9ba1 307 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
308 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
309 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
310 tot_errcount += 2 * count;
311 }
312
956b9ba1 313 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 314 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 315 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 316
956b9ba1
JP
317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
318 size,
319 tot_dimms,
320 per_rank ? "ranks" : "dimms",
321 tot_csrows * tot_channels);
de3910eb 322
8096cfaf
DT
323 mci = kzalloc(size, GFP_KERNEL);
324 if (mci == NULL)
da9bb1d2
AC
325 return NULL;
326
327 /* Adjust pointers so they point within the memory we just allocated
328 * rather than an imaginary chunk of memory located at address 0.
329 */
4275be63 330 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
331 for (i = 0; i < n_layers; i++) {
332 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
333 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
334 }
079708b9 335 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 336
b8f6f975 337 /* setup index and various internal pointers */
4275be63 338 mci->mc_idx = mc_num;
4275be63 339 mci->tot_dimms = tot_dimms;
da9bb1d2 340 mci->pvt_info = pvt;
4275be63
MCC
341 mci->n_layers = n_layers;
342 mci->layers = layer;
343 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
344 mci->nr_csrows = tot_csrows;
345 mci->num_cschannel = tot_channels;
9713faec 346 mci->csbased = per_rank;
da9bb1d2 347
a7d7d2e1 348 /*
de3910eb 349 * Alocate and fill the csrow/channels structs
a7d7d2e1 350 */
d3d09e18 351 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
de3910eb
MCC
352 if (!mci->csrows)
353 goto error;
4275be63 354 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
355 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
356 if (!csr)
357 goto error;
358 mci->csrows[row] = csr;
4275be63
MCC
359 csr->csrow_idx = row;
360 csr->mci = mci;
361 csr->nr_channels = tot_channels;
d3d09e18 362 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
de3910eb
MCC
363 GFP_KERNEL);
364 if (!csr->channels)
365 goto error;
4275be63
MCC
366
367 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
368 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
369 if (!chan)
370 goto error;
371 csr->channels[chn] = chan;
da9bb1d2 372 chan->chan_idx = chn;
4275be63
MCC
373 chan->csrow = csr;
374 }
375 }
376
377 /*
de3910eb 378 * Allocate and fill the dimm structs
4275be63 379 */
d3d09e18 380 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
de3910eb
MCC
381 if (!mci->dimms)
382 goto error;
383
4275be63
MCC
384 memset(&pos, 0, sizeof(pos));
385 row = 0;
386 chn = 0;
4275be63 387 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
388 chan = mci->csrows[row]->channels[chn];
389 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
390 if (off < 0 || off >= tot_dimms) {
391 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392 goto error;
393 }
4275be63 394
de3910eb 395 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
396 if (!dimm)
397 goto error;
de3910eb 398 mci->dimms[off] = dimm;
4275be63 399 dimm->mci = mci;
4275be63 400
5926ff50
MCC
401 /*
402 * Copy DIMM location and initialize it.
403 */
404 len = sizeof(dimm->label);
405 p = dimm->label;
406 n = snprintf(p, len, "mc#%u", mc_num);
407 p += n;
408 len -= n;
409 for (j = 0; j < n_layers; j++) {
410 n = snprintf(p, len, "%s#%u",
411 edac_layer_name[layers[j].type],
412 pos[j]);
413 p += n;
414 len -= n;
4275be63
MCC
415 dimm->location[j] = pos[j];
416
5926ff50
MCC
417 if (len <= 0)
418 break;
419 }
420
4275be63
MCC
421 /* Link it to the csrows old API data */
422 chan->dimm = dimm;
423 dimm->csrow = row;
424 dimm->cschannel = chn;
425
426 /* Increment csrow location */
24bef66e 427 if (layers[0].is_virt_csrow) {
4275be63 428 chn++;
24bef66e
MCC
429 if (chn == tot_channels) {
430 chn = 0;
431 row++;
432 }
433 } else {
434 row++;
435 if (row == tot_csrows) {
436 row = 0;
437 chn++;
438 }
4275be63 439 }
a7d7d2e1 440
4275be63
MCC
441 /* Increment dimm location */
442 for (j = n_layers - 1; j >= 0; j--) {
443 pos[j]++;
444 if (pos[j] < layers[j].size)
445 break;
446 pos[j] = 0;
da9bb1d2
AC
447 }
448 }
449
81d87cb1 450 mci->op_state = OP_ALLOC;
8096cfaf 451
da9bb1d2 452 return mci;
de3910eb
MCC
453
454error:
faa2ad09 455 _edac_mc_free(mci);
de3910eb
MCC
456
457 return NULL;
4275be63 458}
9110540f 459EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 460
da9bb1d2 461/**
8096cfaf
DT
462 * edac_mc_free
463 * 'Free' a previously allocated 'mci' structure
da9bb1d2 464 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
465 */
466void edac_mc_free(struct mem_ctl_info *mci)
467{
956b9ba1 468 edac_dbg(1, "\n");
bbc560ae 469
faa2ad09
SR
470 /* If we're not yet registered with sysfs free only what was allocated
471 * in edac_mc_alloc().
472 */
473 if (!device_is_registered(&mci->dev)) {
474 _edac_mc_free(mci);
475 return;
476 }
477
de3910eb 478 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 479 edac_unregister_sysfs(mci);
da9bb1d2 480}
9110540f 481EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 482
bce19683 483
939747bd 484/**
bce19683
DT
485 * find_mci_by_dev
486 *
487 * scan list of controllers looking for the one that manages
488 * the 'dev' device
939747bd 489 * @dev: pointer to a struct device related with the MCI
bce19683 490 */
939747bd 491struct mem_ctl_info *find_mci_by_dev(struct device *dev)
da9bb1d2
AC
492{
493 struct mem_ctl_info *mci;
494 struct list_head *item;
495
956b9ba1 496 edac_dbg(3, "\n");
da9bb1d2
AC
497
498 list_for_each(item, &mc_devices) {
499 mci = list_entry(item, struct mem_ctl_info, link);
500
fd687502 501 if (mci->pdev == dev)
da9bb1d2
AC
502 return mci;
503 }
504
505 return NULL;
506}
939747bd 507EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 508
81d87cb1
DJ
509/*
510 * handler for EDAC to check if NMI type handler has asserted interrupt
511 */
512static int edac_mc_assert_error_check_and_clear(void)
513{
66ee2f94 514 int old_state;
81d87cb1 515
079708b9 516 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
517 return 1;
518
66ee2f94
DJ
519 old_state = edac_err_assert;
520 edac_err_assert = 0;
81d87cb1 521
66ee2f94 522 return old_state;
81d87cb1
DJ
523}
524
525/*
526 * edac_mc_workq_function
527 * performs the operation scheduled by a workq request
528 */
81d87cb1
DJ
529static void edac_mc_workq_function(struct work_struct *work_req)
530{
fbeb4384 531 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 532 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
533
534 mutex_lock(&mem_ctls_mutex);
535
bf52fa4a
DT
536 /* if this control struct has movd to offline state, we are done */
537 if (mci->op_state == OP_OFFLINE) {
538 mutex_unlock(&mem_ctls_mutex);
539 return;
540 }
541
81d87cb1
DJ
542 /* Only poll controllers that are running polled and have a check */
543 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
544 mci->edac_check(mci);
545
81d87cb1
DJ
546 mutex_unlock(&mem_ctls_mutex);
547
548 /* Reschedule */
4de78c68 549 queue_delayed_work(edac_workqueue, &mci->work,
052dfb45 550 msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
551}
552
553/*
554 * edac_mc_workq_setup
555 * initialize a workq item for this mci
556 * passing in the new delay period in msec
bf52fa4a
DT
557 *
558 * locking model:
559 *
560 * called with the mem_ctls_mutex held
81d87cb1 561 */
cb6ef42e
BP
562static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
563 bool init)
81d87cb1 564{
956b9ba1 565 edac_dbg(0, "\n");
81d87cb1 566
bf52fa4a
DT
567 /* if this instance is not in the POLL state, then simply return */
568 if (mci->op_state != OP_RUNNING_POLL)
569 return;
570
cb6ef42e
BP
571 if (init)
572 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
573
41f63c53 574 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
81d87cb1
DJ
575}
576
577/*
578 * edac_mc_workq_teardown
579 * stop the workq processing on this mci
bf52fa4a
DT
580 *
581 * locking model:
582 *
583 * called WITHOUT lock held
81d87cb1 584 */
bf52fa4a 585static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
81d87cb1
DJ
586{
587 int status;
588
00740c58
BP
589 if (mci->op_state != OP_RUNNING_POLL)
590 return;
591
bce19683
DT
592 status = cancel_delayed_work(&mci->work);
593 if (status == 0) {
956b9ba1 594 edac_dbg(0, "not canceled, flush the queue\n");
bf52fa4a 595
bce19683
DT
596 /* workq instance might be running, wait for it */
597 flush_workqueue(edac_workqueue);
81d87cb1
DJ
598 }
599}
600
601/*
bce19683
DT
602 * edac_mc_reset_delay_period(unsigned long value)
603 *
604 * user space has updated our poll period value, need to
605 * reset our workq delays
81d87cb1 606 */
9da21b15 607void edac_mc_reset_delay_period(unsigned long value)
81d87cb1 608{
bce19683
DT
609 struct mem_ctl_info *mci;
610 struct list_head *item;
611
612 mutex_lock(&mem_ctls_mutex);
613
bce19683
DT
614 list_for_each(item, &mc_devices) {
615 mci = list_entry(item, struct mem_ctl_info, link);
616
cb6ef42e 617 edac_mc_workq_setup(mci, value, false);
bce19683 618 }
81d87cb1
DJ
619
620 mutex_unlock(&mem_ctls_mutex);
621}
622
bce19683
DT
623
624
2d7bbb91
DT
625/* Return 0 on success, 1 on failure.
626 * Before calling this function, caller must
627 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
628 *
629 * locking model:
630 *
631 * called with the mem_ctls_mutex lock held
2d7bbb91 632 */
079708b9 633static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
634{
635 struct list_head *item, *insert_before;
636 struct mem_ctl_info *p;
da9bb1d2 637
2d7bbb91 638 insert_before = &mc_devices;
da9bb1d2 639
fd687502 640 p = find_mci_by_dev(mci->pdev);
bf52fa4a 641 if (unlikely(p != NULL))
2d7bbb91 642 goto fail0;
da9bb1d2 643
2d7bbb91
DT
644 list_for_each(item, &mc_devices) {
645 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 646
2d7bbb91
DT
647 if (p->mc_idx >= mci->mc_idx) {
648 if (unlikely(p->mc_idx == mci->mc_idx))
649 goto fail1;
da9bb1d2 650
2d7bbb91
DT
651 insert_before = item;
652 break;
da9bb1d2 653 }
da9bb1d2
AC
654 }
655
656 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 657 atomic_inc(&edac_handlers);
da9bb1d2 658 return 0;
2d7bbb91 659
052dfb45 660fail0:
2d7bbb91 661 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 662 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 663 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
664 return 1;
665
052dfb45 666fail1:
2d7bbb91 667 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
668 "bug in low-level driver: attempt to assign\n"
669 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 670 return 1;
da9bb1d2
AC
671}
672
80cc7d87 673static int del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 674{
80cc7d87 675 int handlers = atomic_dec_return(&edac_handlers);
a1d03fcc 676 list_del_rcu(&mci->link);
e2e77098
LJ
677
678 /* these are for safe removal of devices from global list while
679 * NMI handlers may be traversing list
680 */
681 synchronize_rcu();
682 INIT_LIST_HEAD(&mci->link);
80cc7d87
MCC
683
684 return handlers;
a1d03fcc
DP
685}
686
5da0831c
DT
687/**
688 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
689 *
690 * If found, return a pointer to the structure.
691 * Else return NULL.
692 *
693 * Caller must hold mem_ctls_mutex.
694 */
079708b9 695struct mem_ctl_info *edac_mc_find(int idx)
5da0831c
DT
696{
697 struct list_head *item;
698 struct mem_ctl_info *mci;
699
700 list_for_each(item, &mc_devices) {
701 mci = list_entry(item, struct mem_ctl_info, link);
702
703 if (mci->mc_idx >= idx) {
704 if (mci->mc_idx == idx)
705 return mci;
706
707 break;
708 }
709 }
710
711 return NULL;
712}
713EXPORT_SYMBOL(edac_mc_find);
714
da9bb1d2 715/**
472678eb
DP
716 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
717 * create sysfs entries associated with mci structure
da9bb1d2
AC
718 * @mci: pointer to the mci structure to be added to the list
719 *
720 * Return:
721 * 0 Success
722 * !0 Failure
723 */
724
725/* FIXME - should a warning be printed if no error detection? correction? */
b8f6f975 726int edac_mc_add_mc(struct mem_ctl_info *mci)
da9bb1d2 727{
80cc7d87 728 int ret = -EINVAL;
956b9ba1 729 edac_dbg(0, "\n");
b8f6f975 730
88d84ac9
BP
731 if (mci->mc_idx >= EDAC_MAX_MCS) {
732 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
733 return -ENODEV;
734 }
735
da9bb1d2
AC
736#ifdef CONFIG_EDAC_DEBUG
737 if (edac_debug_level >= 3)
738 edac_mc_dump_mci(mci);
e7ecd891 739
da9bb1d2
AC
740 if (edac_debug_level >= 4) {
741 int i;
742
743 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
744 struct csrow_info *csrow = mci->csrows[i];
745 u32 nr_pages = 0;
da9bb1d2 746 int j;
e7ecd891 747
6e84d359
MCC
748 for (j = 0; j < csrow->nr_channels; j++)
749 nr_pages += csrow->channels[j]->dimm->nr_pages;
750 if (!nr_pages)
751 continue;
752 edac_mc_dump_csrow(csrow);
753 for (j = 0; j < csrow->nr_channels; j++)
754 if (csrow->channels[j]->dimm->nr_pages)
755 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 756 }
4275be63 757 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
758 if (mci->dimms[i]->nr_pages)
759 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
760 }
761#endif
63b7df91 762 mutex_lock(&mem_ctls_mutex);
da9bb1d2 763
80cc7d87
MCC
764 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
765 ret = -EPERM;
766 goto fail0;
767 }
768
da9bb1d2 769 if (add_mc_to_global_list(mci))
028a7b6d 770 goto fail0;
da9bb1d2
AC
771
772 /* set load time so that error rate can be tracked */
773 mci->start_time = jiffies;
774
88d84ac9
BP
775 mci->bus = &mc_bus[mci->mc_idx];
776
9794f33d 777 if (edac_create_sysfs_mci_device(mci)) {
778 edac_mc_printk(mci, KERN_WARNING,
052dfb45 779 "failed to create sysfs device\n");
9794f33d 780 goto fail1;
781 }
da9bb1d2 782
81d87cb1
DJ
783 /* If there IS a check routine, then we are running POLLED */
784 if (mci->edac_check != NULL) {
785 /* This instance is NOW RUNNING */
786 mci->op_state = OP_RUNNING_POLL;
787
cb6ef42e 788 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
81d87cb1
DJ
789 } else {
790 mci->op_state = OP_RUNNING_INTERRUPT;
791 }
792
da9bb1d2 793 /* Report action taken */
7270a608
RR
794 edac_mc_printk(mci, KERN_INFO,
795 "Giving out device to module %s controller %s: DEV %s (%s)\n",
796 mci->mod_name, mci->ctl_name, mci->dev_name,
797 edac_op_state_to_string(mci->op_state));
da9bb1d2 798
80cc7d87
MCC
799 edac_mc_owner = mci->mod_name;
800
63b7df91 801 mutex_unlock(&mem_ctls_mutex);
028a7b6d 802 return 0;
da9bb1d2 803
052dfb45 804fail1:
028a7b6d
DP
805 del_mc_from_global_list(mci);
806
052dfb45 807fail0:
63b7df91 808 mutex_unlock(&mem_ctls_mutex);
80cc7d87 809 return ret;
da9bb1d2 810}
9110540f 811EXPORT_SYMBOL_GPL(edac_mc_add_mc);
da9bb1d2 812
da9bb1d2 813/**
472678eb
DP
814 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
815 * remove mci structure from global list
37f04581 816 * @pdev: Pointer to 'struct device' representing mci structure to remove.
da9bb1d2 817 *
18dbc337 818 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 819 */
079708b9 820struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 821{
18dbc337 822 struct mem_ctl_info *mci;
da9bb1d2 823
956b9ba1 824 edac_dbg(0, "\n");
bf52fa4a 825
63b7df91 826 mutex_lock(&mem_ctls_mutex);
18dbc337 827
bf52fa4a
DT
828 /* find the requested mci struct in the global list */
829 mci = find_mci_by_dev(dev);
830 if (mci == NULL) {
63b7df91 831 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
832 return NULL;
833 }
834
80cc7d87
MCC
835 if (!del_mc_from_global_list(mci))
836 edac_mc_owner = NULL;
63b7df91 837 mutex_unlock(&mem_ctls_mutex);
bf52fa4a 838
bb31b312 839 /* flush workq processes */
bf52fa4a 840 edac_mc_workq_teardown(mci);
bb31b312
BP
841
842 /* marking MCI offline */
843 mci->op_state = OP_OFFLINE;
844
845 /* remove from sysfs */
bf52fa4a
DT
846 edac_remove_sysfs_mci_device(mci);
847
537fba28 848 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 849 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 850 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 851
18dbc337 852 return mci;
da9bb1d2 853}
9110540f 854EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 855
2da1c119
AB
856static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
857 u32 size)
da9bb1d2
AC
858{
859 struct page *pg;
860 void *virt_addr;
861 unsigned long flags = 0;
862
956b9ba1 863 edac_dbg(3, "\n");
da9bb1d2
AC
864
865 /* ECC error page was not in our memory. Ignore it. */
079708b9 866 if (!pfn_valid(page))
da9bb1d2
AC
867 return;
868
869 /* Find the actual page structure then map it and fix */
870 pg = pfn_to_page(page);
871
872 if (PageHighMem(pg))
873 local_irq_save(flags);
874
4e5df7ca 875 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
876
877 /* Perform architecture specific atomic scrub operation */
878 atomic_scrub(virt_addr + offset, size);
879
880 /* Unmap and complete */
4e5df7ca 881 kunmap_atomic(virt_addr);
da9bb1d2
AC
882
883 if (PageHighMem(pg))
884 local_irq_restore(flags);
885}
886
da9bb1d2 887/* FIXME - should return -1 */
e7ecd891 888int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 889{
de3910eb 890 struct csrow_info **csrows = mci->csrows;
a895bf8b 891 int row, i, j, n;
da9bb1d2 892
956b9ba1 893 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
894 row = -1;
895
896 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 897 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
898 n = 0;
899 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 900 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
901 n += dimm->nr_pages;
902 }
903 if (n == 0)
da9bb1d2
AC
904 continue;
905
956b9ba1
JP
906 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
907 mci->mc_idx,
908 csrow->first_page, page, csrow->last_page,
909 csrow->page_mask);
da9bb1d2
AC
910
911 if ((page >= csrow->first_page) &&
912 (page <= csrow->last_page) &&
913 ((page & csrow->page_mask) ==
914 (csrow->first_page & csrow->page_mask))) {
915 row = i;
916 break;
917 }
918 }
919
920 if (row == -1)
537fba28 921 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
922 "could not look up page error address %lx\n",
923 (unsigned long)page);
da9bb1d2
AC
924
925 return row;
926}
9110540f 927EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 928
4275be63
MCC
929const char *edac_layer_name[] = {
930 [EDAC_MC_LAYER_BRANCH] = "branch",
931 [EDAC_MC_LAYER_CHANNEL] = "channel",
932 [EDAC_MC_LAYER_SLOT] = "slot",
933 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
c66b5a79 934 [EDAC_MC_LAYER_ALL_MEM] = "memory",
4275be63
MCC
935};
936EXPORT_SYMBOL_GPL(edac_layer_name);
937
938static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
939 bool enable_per_layer_report,
940 const int pos[EDAC_MAX_LAYERS],
941 const u16 count)
da9bb1d2 942{
4275be63 943 int i, index = 0;
da9bb1d2 944
9eb07a7f 945 mci->ce_mc += count;
da9bb1d2 946
4275be63 947 if (!enable_per_layer_report) {
9eb07a7f 948 mci->ce_noinfo_count += count;
da9bb1d2
AC
949 return;
950 }
e7ecd891 951
4275be63
MCC
952 for (i = 0; i < mci->n_layers; i++) {
953 if (pos[i] < 0)
954 break;
955 index += pos[i];
9eb07a7f 956 mci->ce_per_layer[i][index] += count;
4275be63
MCC
957
958 if (i < mci->n_layers - 1)
959 index *= mci->layers[i + 1].size;
960 }
961}
962
963static void edac_inc_ue_error(struct mem_ctl_info *mci,
964 bool enable_per_layer_report,
9eb07a7f
MCC
965 const int pos[EDAC_MAX_LAYERS],
966 const u16 count)
4275be63
MCC
967{
968 int i, index = 0;
969
9eb07a7f 970 mci->ue_mc += count;
4275be63
MCC
971
972 if (!enable_per_layer_report) {
9eb07a7f 973 mci->ce_noinfo_count += count;
da9bb1d2
AC
974 return;
975 }
976
4275be63
MCC
977 for (i = 0; i < mci->n_layers; i++) {
978 if (pos[i] < 0)
979 break;
980 index += pos[i];
9eb07a7f 981 mci->ue_per_layer[i][index] += count;
a7d7d2e1 982
4275be63
MCC
983 if (i < mci->n_layers - 1)
984 index *= mci->layers[i + 1].size;
985 }
986}
da9bb1d2 987
4275be63 988static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 989 const u16 error_count,
4275be63
MCC
990 const int pos[EDAC_MAX_LAYERS],
991 const char *msg,
992 const char *location,
993 const char *label,
994 const char *detail,
995 const char *other_detail,
996 const bool enable_per_layer_report,
997 const unsigned long page_frame_number,
998 const unsigned long offset_in_page,
53f2d028 999 long grain)
4275be63
MCC
1000{
1001 unsigned long remapped_page;
f430d570
BP
1002 char *msg_aux = "";
1003
1004 if (*msg)
1005 msg_aux = " ";
4275be63
MCC
1006
1007 if (edac_mc_get_log_ce()) {
1008 if (other_detail && *other_detail)
1009 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1010 "%d CE %s%son %s (%s %s - %s)\n",
1011 error_count, msg, msg_aux, label,
1012 location, detail, other_detail);
4275be63
MCC
1013 else
1014 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1015 "%d CE %s%son %s (%s %s)\n",
1016 error_count, msg, msg_aux, label,
1017 location, detail);
4275be63 1018 }
9eb07a7f 1019 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1020
1021 if (mci->scrub_mode & SCRUB_SW_SRC) {
1022 /*
4275be63
MCC
1023 * Some memory controllers (called MCs below) can remap
1024 * memory so that it is still available at a different
1025 * address when PCI devices map into memory.
1026 * MC's that can't do this, lose the memory where PCI
1027 * devices are mapped. This mapping is MC-dependent
1028 * and so we call back into the MC driver for it to
1029 * map the MC page to a physical (CPU) page which can
1030 * then be mapped to a virtual page - which can then
1031 * be scrubbed.
1032 */
da9bb1d2 1033 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
1034 mci->ctl_page_to_phys(mci, page_frame_number) :
1035 page_frame_number;
da9bb1d2 1036
4275be63
MCC
1037 edac_mc_scrub_block(remapped_page,
1038 offset_in_page, grain);
da9bb1d2
AC
1039 }
1040}
1041
4275be63 1042static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 1043 const u16 error_count,
4275be63
MCC
1044 const int pos[EDAC_MAX_LAYERS],
1045 const char *msg,
1046 const char *location,
1047 const char *label,
1048 const char *detail,
1049 const char *other_detail,
1050 const bool enable_per_layer_report)
da9bb1d2 1051{
f430d570
BP
1052 char *msg_aux = "";
1053
1054 if (*msg)
1055 msg_aux = " ";
1056
4275be63
MCC
1057 if (edac_mc_get_log_ue()) {
1058 if (other_detail && *other_detail)
1059 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1060 "%d UE %s%son %s (%s %s - %s)\n",
1061 error_count, msg, msg_aux, label,
1062 location, detail, other_detail);
4275be63
MCC
1063 else
1064 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1065 "%d UE %s%son %s (%s %s)\n",
1066 error_count, msg, msg_aux, label,
1067 location, detail);
4275be63 1068 }
e7ecd891 1069
4275be63
MCC
1070 if (edac_mc_get_panic_on_ue()) {
1071 if (other_detail && *other_detail)
f430d570
BP
1072 panic("UE %s%son %s (%s%s - %s)\n",
1073 msg, msg_aux, label, location, detail, other_detail);
4275be63 1074 else
f430d570
BP
1075 panic("UE %s%son %s (%s%s)\n",
1076 msg, msg_aux, label, location, detail);
4275be63
MCC
1077 }
1078
9eb07a7f 1079 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1080}
1081
e7e24830
MCC
1082/**
1083 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1084 * anything to discover the error location
1085 *
1086 * @type: severity of the error (CE/UE/Fatal)
1087 * @mci: a struct mem_ctl_info pointer
1088 * @e: error description
1089 *
1090 * This raw function is used internally by edac_mc_handle_error(). It should
1091 * only be called directly when the hardware error come directly from BIOS,
1092 * like in the case of APEI GHES driver.
1093 */
1094void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1095 struct mem_ctl_info *mci,
1096 struct edac_raw_error_desc *e)
1097{
1098 char detail[80];
1099 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1100
1101 /* Memory type dependent details about the error */
1102 if (type == HW_EVENT_ERR_CORRECTED) {
1103 snprintf(detail, sizeof(detail),
1104 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1105 e->page_frame_number, e->offset_in_page,
1106 e->grain, e->syndrome);
1107 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1108 detail, e->other_detail, e->enable_per_layer_report,
1109 e->page_frame_number, e->offset_in_page, e->grain);
1110 } else {
1111 snprintf(detail, sizeof(detail),
1112 "page:0x%lx offset:0x%lx grain:%ld",
1113 e->page_frame_number, e->offset_in_page, e->grain);
1114
1115 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1116 detail, e->other_detail, e->enable_per_layer_report);
1117 }
1118
1119
1120}
1121EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
53f2d028
MCC
1122
1123/**
1124 * edac_mc_handle_error - reports a memory event to userspace
1125 *
1126 * @type: severity of the error (CE/UE/Fatal)
1127 * @mci: a struct mem_ctl_info pointer
9eb07a7f 1128 * @error_count: Number of errors of the same type
53f2d028
MCC
1129 * @page_frame_number: mem page where the error occurred
1130 * @offset_in_page: offset of the error inside the page
1131 * @syndrome: ECC syndrome
1132 * @top_layer: Memory layer[0] position
1133 * @mid_layer: Memory layer[1] position
1134 * @low_layer: Memory layer[2] position
1135 * @msg: Message meaningful to the end users that
1136 * explains the event
1137 * @other_detail: Technical details about the event that
1138 * may help hardware manufacturers and
1139 * EDAC developers to analyse the event
53f2d028 1140 */
4275be63
MCC
1141void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1142 struct mem_ctl_info *mci,
9eb07a7f 1143 const u16 error_count,
4275be63
MCC
1144 const unsigned long page_frame_number,
1145 const unsigned long offset_in_page,
1146 const unsigned long syndrome,
53f2d028
MCC
1147 const int top_layer,
1148 const int mid_layer,
1149 const int low_layer,
4275be63 1150 const char *msg,
03f7eae8 1151 const char *other_detail)
da9bb1d2 1152{
4275be63
MCC
1153 char *p;
1154 int row = -1, chan = -1;
53f2d028 1155 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
c7ef7645 1156 int i, n_labels = 0;
53f2d028 1157 u8 grain_bits;
c7ef7645 1158 struct edac_raw_error_desc *e = &mci->error_desc;
da9bb1d2 1159
956b9ba1 1160 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1161
c7ef7645
MCC
1162 /* Fills the error report buffer */
1163 memset(e, 0, sizeof (*e));
1164 e->error_count = error_count;
1165 e->top_layer = top_layer;
1166 e->mid_layer = mid_layer;
1167 e->low_layer = low_layer;
1168 e->page_frame_number = page_frame_number;
1169 e->offset_in_page = offset_in_page;
1170 e->syndrome = syndrome;
1171 e->msg = msg;
1172 e->other_detail = other_detail;
1173
4275be63
MCC
1174 /*
1175 * Check if the event report is consistent and if the memory
1176 * location is known. If it is known, enable_per_layer_report will be
1177 * true, the DIMM(s) label info will be filled and the per-layer
1178 * error counters will be incremented.
1179 */
1180 for (i = 0; i < mci->n_layers; i++) {
1181 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1182
1183 edac_mc_printk(mci, KERN_ERR,
1184 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1185 edac_layer_name[mci->layers[i].type],
1186 pos[i], mci->layers[i].size);
1187 /*
1188 * Instead of just returning it, let's use what's
1189 * known about the error. The increment routines and
1190 * the DIMM filter logic will do the right thing by
1191 * pointing the likely damaged DIMMs.
1192 */
1193 pos[i] = -1;
1194 }
1195 if (pos[i] >= 0)
c7ef7645 1196 e->enable_per_layer_report = true;
da9bb1d2
AC
1197 }
1198
4275be63
MCC
1199 /*
1200 * Get the dimm label/grain that applies to the match criteria.
1201 * As the error algorithm may not be able to point to just one memory
1202 * stick, the logic here will get all possible labels that could
1203 * pottentially be affected by the error.
1204 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1205 * to have only the MC channel and the MC dimm (also called "branch")
1206 * but the channel is not known, as the memory is arranged in pairs,
1207 * where each memory belongs to a separate channel within the same
1208 * branch.
1209 */
c7ef7645 1210 p = e->label;
4275be63 1211 *p = '\0';
4da1b7bf 1212
4275be63 1213 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1214 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1215
53f2d028 1216 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1217 continue;
53f2d028 1218 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1219 continue;
53f2d028 1220 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1221 continue;
da9bb1d2 1222
4275be63 1223 /* get the max grain, over the error match range */
c7ef7645
MCC
1224 if (dimm->grain > e->grain)
1225 e->grain = dimm->grain;
9794f33d 1226
4275be63
MCC
1227 /*
1228 * If the error is memory-controller wide, there's no need to
1229 * seek for the affected DIMMs because the whole
1230 * channel/memory controller/... may be affected.
1231 * Also, don't show errors for empty DIMM slots.
1232 */
c7ef7645
MCC
1233 if (e->enable_per_layer_report && dimm->nr_pages) {
1234 if (n_labels >= EDAC_MAX_LABELS) {
1235 e->enable_per_layer_report = false;
1236 break;
1237 }
1238 n_labels++;
1239 if (p != e->label) {
4275be63
MCC
1240 strcpy(p, OTHER_LABEL);
1241 p += strlen(OTHER_LABEL);
1242 }
1243 strcpy(p, dimm->label);
1244 p += strlen(p);
1245 *p = '\0';
1246
1247 /*
1248 * get csrow/channel of the DIMM, in order to allow
1249 * incrementing the compat API counters
1250 */
956b9ba1 1251 edac_dbg(4, "%s csrows map: (%d,%d)\n",
9713faec 1252 mci->csbased ? "rank" : "dimm",
956b9ba1 1253 dimm->csrow, dimm->cschannel);
4275be63
MCC
1254 if (row == -1)
1255 row = dimm->csrow;
1256 else if (row >= 0 && row != dimm->csrow)
1257 row = -2;
1258
1259 if (chan == -1)
1260 chan = dimm->cschannel;
1261 else if (chan >= 0 && chan != dimm->cschannel)
1262 chan = -2;
1263 }
9794f33d 1264 }
1265
c7ef7645
MCC
1266 if (!e->enable_per_layer_report) {
1267 strcpy(e->label, "any memory");
4275be63 1268 } else {
956b9ba1 1269 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
c7ef7645
MCC
1270 if (p == e->label)
1271 strcpy(e->label, "unknown memory");
4275be63
MCC
1272 if (type == HW_EVENT_ERR_CORRECTED) {
1273 if (row >= 0) {
9eb07a7f 1274 mci->csrows[row]->ce_count += error_count;
4275be63 1275 if (chan >= 0)
9eb07a7f 1276 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1277 }
1278 } else
1279 if (row >= 0)
9eb07a7f 1280 mci->csrows[row]->ue_count += error_count;
9794f33d 1281 }
1282
4275be63 1283 /* Fill the RAM location data */
c7ef7645 1284 p = e->location;
4da1b7bf 1285
4275be63
MCC
1286 for (i = 0; i < mci->n_layers; i++) {
1287 if (pos[i] < 0)
1288 continue;
9794f33d 1289
4275be63
MCC
1290 p += sprintf(p, "%s:%d ",
1291 edac_layer_name[mci->layers[i].type],
1292 pos[i]);
9794f33d 1293 }
c7ef7645 1294 if (p > e->location)
53f2d028
MCC
1295 *(p - 1) = '\0';
1296
1297 /* Report the error via the trace interface */
c7ef7645
MCC
1298 grain_bits = fls_long(e->grain) + 1;
1299 trace_mc_event(type, e->msg, e->label, e->error_count,
1300 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1301 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
e7e24830 1302 grain_bits, e->syndrome, e->other_detail);
a7d7d2e1 1303
e7e24830 1304 edac_raw_mc_handle_error(type, mci, e);
9794f33d 1305}
4275be63 1306EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.769008 seconds and 5 git commands to generate.