edac: edac_mc_handle_error(): add an error_count parameter
[deliverable/linux.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
da9bb1d2
AC
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
20bcb7a8 34#include "edac_core.h"
7c9281d7 35#include "edac_module.h"
da9bb1d2 36
53f2d028
MCC
37#define CREATE_TRACE_POINTS
38#define TRACE_INCLUDE_PATH ../../include/ras
39#include <ras/ras_event.h>
40
da9bb1d2 41/* lock to memory controller's control array */
63b7df91 42static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 43static LIST_HEAD(mc_devices);
da9bb1d2 44
6e84d359
MCC
45unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47{
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64}
65
da9bb1d2
AC
66#ifdef CONFIG_EDAC_DEBUG
67
a4b4be3f 68static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 69{
6e84d359
MCC
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
74}
75
6e84d359 76static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 77{
6e84d359
MCC
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
90}
91
2da1c119 92static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 93{
6e84d359
MCC
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
102}
103
2da1c119 104static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 105{
956b9ba1
JP
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
119}
120
24f9a7fe
BP
121#endif /* CONFIG_EDAC_DEBUG */
122
239642fe
BP
123/*
124 * keep those in sync with the enum mem_type
125 */
126const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144};
145EXPORT_SYMBOL_GPL(edac_mem_types);
146
93e4fe64
MCC
147/**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
da9bb1d2 164 */
93e4fe64 165void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
166{
167 unsigned align, r;
93e4fe64 168 void *ptr = *p;
da9bb1d2 169
93e4fe64
MCC
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
079708b9 190 return (char *)ptr;
da9bb1d2
AC
191
192 r = size % align;
193
194 if (r == 0)
079708b9 195 return (char *)ptr;
da9bb1d2 196
93e4fe64
MCC
197 *p += align - r;
198
7391c6dc 199 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
200}
201
da9bb1d2 202/**
4275be63
MCC
203 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
204 * @mc_num: Memory controller number
205 * @n_layers: Number of MC hierarchy layers
206 * layers: Describes each layer as seen by the Memory Controller
207 * @size_pvt: size of private storage needed
208 *
da9bb1d2
AC
209 *
210 * Everything is kmalloc'ed as one big chunk - more efficient.
211 * Only can be used if all structures have the same lifetime - otherwise
212 * you have to allocate and initialize your own structures.
213 *
214 * Use edac_mc_free() to free mc structures allocated by this function.
215 *
4275be63
MCC
216 * NOTE: drivers handle multi-rank memories in different ways: in some
217 * drivers, one multi-rank memory stick is mapped as one entry, while, in
218 * others, a single multi-rank memory stick would be mapped into several
219 * entries. Currently, this function will allocate multiple struct dimm_info
220 * on such scenarios, as grouping the multiple ranks require drivers change.
221 *
da9bb1d2 222 * Returns:
ca0907b9
MCC
223 * On failure: NULL
224 * On success: struct mem_ctl_info pointer
da9bb1d2 225 */
ca0907b9
MCC
226struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
227 unsigned n_layers,
228 struct edac_mc_layer *layers,
229 unsigned sz_pvt)
da9bb1d2
AC
230{
231 struct mem_ctl_info *mci;
4275be63 232 struct edac_mc_layer *layer;
de3910eb
MCC
233 struct csrow_info *csr;
234 struct rank_info *chan;
a7d7d2e1 235 struct dimm_info *dimm;
4275be63
MCC
236 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
237 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
238 unsigned size, tot_dimms = 1, count = 1;
239 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 240 void *pvt, *p, *ptr = NULL;
de3910eb 241 int i, j, row, chn, n, len, off;
4275be63
MCC
242 bool per_rank = false;
243
244 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
245 /*
246 * Calculate the total amount of dimms and csrows/cschannels while
247 * in the old API emulation mode
248 */
249 for (i = 0; i < n_layers; i++) {
250 tot_dimms *= layers[i].size;
251 if (layers[i].is_virt_csrow)
252 tot_csrows *= layers[i].size;
253 else
254 tot_channels *= layers[i].size;
255
256 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
257 per_rank = true;
258 }
da9bb1d2
AC
259
260 /* Figure out the offsets of the various items from the start of an mc
261 * structure. We want the alignment of each item to be at least as
262 * stringent as what the compiler would provide if we could simply
263 * hardcode everything into a single struct.
264 */
93e4fe64 265 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 266 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
267 for (i = 0; i < n_layers; i++) {
268 count *= layers[i].size;
956b9ba1 269 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
270 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
271 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
272 tot_errcount += 2 * count;
273 }
274
956b9ba1 275 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 276 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 277 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 278
956b9ba1
JP
279 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
280 size,
281 tot_dimms,
282 per_rank ? "ranks" : "dimms",
283 tot_csrows * tot_channels);
de3910eb 284
8096cfaf
DT
285 mci = kzalloc(size, GFP_KERNEL);
286 if (mci == NULL)
da9bb1d2
AC
287 return NULL;
288
289 /* Adjust pointers so they point within the memory we just allocated
290 * rather than an imaginary chunk of memory located at address 0.
291 */
4275be63 292 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
293 for (i = 0; i < n_layers; i++) {
294 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
295 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
296 }
079708b9 297 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 298
b8f6f975 299 /* setup index and various internal pointers */
4275be63 300 mci->mc_idx = mc_num;
4275be63 301 mci->tot_dimms = tot_dimms;
da9bb1d2 302 mci->pvt_info = pvt;
4275be63
MCC
303 mci->n_layers = n_layers;
304 mci->layers = layer;
305 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
306 mci->nr_csrows = tot_csrows;
307 mci->num_cschannel = tot_channels;
308 mci->mem_is_per_rank = per_rank;
da9bb1d2 309
a7d7d2e1 310 /*
de3910eb 311 * Alocate and fill the csrow/channels structs
a7d7d2e1 312 */
de3910eb
MCC
313 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL);
314 if (!mci->csrows)
315 goto error;
4275be63 316 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
317 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
318 if (!csr)
319 goto error;
320 mci->csrows[row] = csr;
4275be63
MCC
321 csr->csrow_idx = row;
322 csr->mci = mci;
323 csr->nr_channels = tot_channels;
de3910eb
MCC
324 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels,
325 GFP_KERNEL);
326 if (!csr->channels)
327 goto error;
4275be63
MCC
328
329 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
330 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
331 if (!chan)
332 goto error;
333 csr->channels[chn] = chan;
da9bb1d2 334 chan->chan_idx = chn;
4275be63
MCC
335 chan->csrow = csr;
336 }
337 }
338
339 /*
de3910eb 340 * Allocate and fill the dimm structs
4275be63 341 */
de3910eb
MCC
342 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL);
343 if (!mci->dimms)
344 goto error;
345
4275be63
MCC
346 memset(&pos, 0, sizeof(pos));
347 row = 0;
348 chn = 0;
4275be63 349 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
350 chan = mci->csrows[row]->channels[chn];
351 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
352 if (off < 0 || off >= tot_dimms) {
353 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
354 goto error;
355 }
356
357 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
358 if (!dimm)
359 goto error;
de3910eb 360 mci->dimms[off] = dimm;
4275be63
MCC
361 dimm->mci = mci;
362
5926ff50
MCC
363 /*
364 * Copy DIMM location and initialize it.
365 */
366 len = sizeof(dimm->label);
367 p = dimm->label;
368 n = snprintf(p, len, "mc#%u", mc_num);
369 p += n;
370 len -= n;
371 for (j = 0; j < n_layers; j++) {
372 n = snprintf(p, len, "%s#%u",
373 edac_layer_name[layers[j].type],
374 pos[j]);
375 p += n;
376 len -= n;
4275be63
MCC
377 dimm->location[j] = pos[j];
378
5926ff50
MCC
379 if (len <= 0)
380 break;
381 }
382
4275be63
MCC
383 /* Link it to the csrows old API data */
384 chan->dimm = dimm;
385 dimm->csrow = row;
386 dimm->cschannel = chn;
387
388 /* Increment csrow location */
389 row++;
390 if (row == tot_csrows) {
391 row = 0;
392 chn++;
393 }
a7d7d2e1 394
4275be63
MCC
395 /* Increment dimm location */
396 for (j = n_layers - 1; j >= 0; j--) {
397 pos[j]++;
398 if (pos[j] < layers[j].size)
399 break;
400 pos[j] = 0;
da9bb1d2
AC
401 }
402 }
403
81d87cb1
DJ
404 mci->op_state = OP_ALLOC;
405
8096cfaf
DT
406 /* at this point, the root kobj is valid, and in order to
407 * 'free' the object, then the function:
408 * edac_mc_unregister_sysfs_main_kobj() must be called
409 * which will perform kobj unregistration and the actual free
410 * will occur during the kobject callback operation
411 */
53f2d028 412
da9bb1d2 413 return mci;
de3910eb
MCC
414
415error:
416 if (mci->dimms) {
417 for (i = 0; i < tot_dimms; i++)
418 kfree(mci->dimms[i]);
419 kfree(mci->dimms);
420 }
421 if (mci->csrows) {
422 for (chn = 0; chn < tot_channels; chn++) {
423 csr = mci->csrows[chn];
424 if (csr) {
425 for (chn = 0; chn < tot_channels; chn++)
426 kfree(csr->channels[chn]);
427 kfree(csr);
428 }
429 kfree(mci->csrows[i]);
430 }
431 kfree(mci->csrows);
432 }
433 kfree(mci);
434
435 return NULL;
4275be63 436}
9110540f 437EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 438
da9bb1d2 439/**
8096cfaf
DT
440 * edac_mc_free
441 * 'Free' a previously allocated 'mci' structure
da9bb1d2 442 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
443 */
444void edac_mc_free(struct mem_ctl_info *mci)
445{
956b9ba1 446 edac_dbg(1, "\n");
bbc560ae 447
de3910eb 448 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 449 edac_unregister_sysfs(mci);
da9bb1d2 450}
9110540f 451EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 452
bce19683 453
939747bd 454/**
bce19683
DT
455 * find_mci_by_dev
456 *
457 * scan list of controllers looking for the one that manages
458 * the 'dev' device
939747bd 459 * @dev: pointer to a struct device related with the MCI
bce19683 460 */
939747bd 461struct mem_ctl_info *find_mci_by_dev(struct device *dev)
da9bb1d2
AC
462{
463 struct mem_ctl_info *mci;
464 struct list_head *item;
465
956b9ba1 466 edac_dbg(3, "\n");
da9bb1d2
AC
467
468 list_for_each(item, &mc_devices) {
469 mci = list_entry(item, struct mem_ctl_info, link);
470
fd687502 471 if (mci->pdev == dev)
da9bb1d2
AC
472 return mci;
473 }
474
475 return NULL;
476}
939747bd 477EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 478
81d87cb1
DJ
479/*
480 * handler for EDAC to check if NMI type handler has asserted interrupt
481 */
482static int edac_mc_assert_error_check_and_clear(void)
483{
66ee2f94 484 int old_state;
81d87cb1 485
079708b9 486 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
487 return 1;
488
66ee2f94
DJ
489 old_state = edac_err_assert;
490 edac_err_assert = 0;
81d87cb1 491
66ee2f94 492 return old_state;
81d87cb1
DJ
493}
494
495/*
496 * edac_mc_workq_function
497 * performs the operation scheduled by a workq request
498 */
81d87cb1
DJ
499static void edac_mc_workq_function(struct work_struct *work_req)
500{
fbeb4384 501 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 502 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
503
504 mutex_lock(&mem_ctls_mutex);
505
bf52fa4a
DT
506 /* if this control struct has movd to offline state, we are done */
507 if (mci->op_state == OP_OFFLINE) {
508 mutex_unlock(&mem_ctls_mutex);
509 return;
510 }
511
81d87cb1
DJ
512 /* Only poll controllers that are running polled and have a check */
513 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
514 mci->edac_check(mci);
515
81d87cb1
DJ
516 mutex_unlock(&mem_ctls_mutex);
517
518 /* Reschedule */
4de78c68 519 queue_delayed_work(edac_workqueue, &mci->work,
052dfb45 520 msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
521}
522
523/*
524 * edac_mc_workq_setup
525 * initialize a workq item for this mci
526 * passing in the new delay period in msec
bf52fa4a
DT
527 *
528 * locking model:
529 *
530 * called with the mem_ctls_mutex held
81d87cb1 531 */
bf52fa4a 532static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
81d87cb1 533{
956b9ba1 534 edac_dbg(0, "\n");
81d87cb1 535
bf52fa4a
DT
536 /* if this instance is not in the POLL state, then simply return */
537 if (mci->op_state != OP_RUNNING_POLL)
538 return;
539
81d87cb1 540 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
81d87cb1
DJ
541 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
542}
543
544/*
545 * edac_mc_workq_teardown
546 * stop the workq processing on this mci
bf52fa4a
DT
547 *
548 * locking model:
549 *
550 * called WITHOUT lock held
81d87cb1 551 */
bf52fa4a 552static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
81d87cb1
DJ
553{
554 int status;
555
00740c58
BP
556 if (mci->op_state != OP_RUNNING_POLL)
557 return;
558
bce19683
DT
559 status = cancel_delayed_work(&mci->work);
560 if (status == 0) {
956b9ba1 561 edac_dbg(0, "not canceled, flush the queue\n");
bf52fa4a 562
bce19683
DT
563 /* workq instance might be running, wait for it */
564 flush_workqueue(edac_workqueue);
81d87cb1
DJ
565 }
566}
567
568/*
bce19683
DT
569 * edac_mc_reset_delay_period(unsigned long value)
570 *
571 * user space has updated our poll period value, need to
572 * reset our workq delays
81d87cb1 573 */
bce19683 574void edac_mc_reset_delay_period(int value)
81d87cb1 575{
bce19683
DT
576 struct mem_ctl_info *mci;
577 struct list_head *item;
578
579 mutex_lock(&mem_ctls_mutex);
580
581 /* scan the list and turn off all workq timers, doing so under lock
582 */
583 list_for_each(item, &mc_devices) {
584 mci = list_entry(item, struct mem_ctl_info, link);
585
586 if (mci->op_state == OP_RUNNING_POLL)
587 cancel_delayed_work(&mci->work);
588 }
589
590 mutex_unlock(&mem_ctls_mutex);
81d87cb1 591
bce19683
DT
592
593 /* re-walk the list, and reset the poll delay */
bf52fa4a
DT
594 mutex_lock(&mem_ctls_mutex);
595
bce19683
DT
596 list_for_each(item, &mc_devices) {
597 mci = list_entry(item, struct mem_ctl_info, link);
598
599 edac_mc_workq_setup(mci, (unsigned long) value);
600 }
81d87cb1
DJ
601
602 mutex_unlock(&mem_ctls_mutex);
603}
604
bce19683
DT
605
606
2d7bbb91
DT
607/* Return 0 on success, 1 on failure.
608 * Before calling this function, caller must
609 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
610 *
611 * locking model:
612 *
613 * called with the mem_ctls_mutex lock held
2d7bbb91 614 */
079708b9 615static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
616{
617 struct list_head *item, *insert_before;
618 struct mem_ctl_info *p;
da9bb1d2 619
2d7bbb91 620 insert_before = &mc_devices;
da9bb1d2 621
fd687502 622 p = find_mci_by_dev(mci->pdev);
bf52fa4a 623 if (unlikely(p != NULL))
2d7bbb91 624 goto fail0;
da9bb1d2 625
2d7bbb91
DT
626 list_for_each(item, &mc_devices) {
627 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 628
2d7bbb91
DT
629 if (p->mc_idx >= mci->mc_idx) {
630 if (unlikely(p->mc_idx == mci->mc_idx))
631 goto fail1;
da9bb1d2 632
2d7bbb91
DT
633 insert_before = item;
634 break;
da9bb1d2 635 }
da9bb1d2
AC
636 }
637
638 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 639 atomic_inc(&edac_handlers);
da9bb1d2 640 return 0;
2d7bbb91 641
052dfb45 642fail0:
2d7bbb91 643 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 644 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 645 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
646 return 1;
647
052dfb45 648fail1:
2d7bbb91 649 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
650 "bug in low-level driver: attempt to assign\n"
651 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 652 return 1;
da9bb1d2
AC
653}
654
e7ecd891 655static void del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 656{
c0d12172 657 atomic_dec(&edac_handlers);
a1d03fcc 658 list_del_rcu(&mci->link);
e2e77098
LJ
659
660 /* these are for safe removal of devices from global list while
661 * NMI handlers may be traversing list
662 */
663 synchronize_rcu();
664 INIT_LIST_HEAD(&mci->link);
a1d03fcc
DP
665}
666
5da0831c
DT
667/**
668 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
669 *
670 * If found, return a pointer to the structure.
671 * Else return NULL.
672 *
673 * Caller must hold mem_ctls_mutex.
674 */
079708b9 675struct mem_ctl_info *edac_mc_find(int idx)
5da0831c
DT
676{
677 struct list_head *item;
678 struct mem_ctl_info *mci;
679
680 list_for_each(item, &mc_devices) {
681 mci = list_entry(item, struct mem_ctl_info, link);
682
683 if (mci->mc_idx >= idx) {
684 if (mci->mc_idx == idx)
685 return mci;
686
687 break;
688 }
689 }
690
691 return NULL;
692}
693EXPORT_SYMBOL(edac_mc_find);
694
da9bb1d2 695/**
472678eb
DP
696 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
697 * create sysfs entries associated with mci structure
da9bb1d2
AC
698 * @mci: pointer to the mci structure to be added to the list
699 *
700 * Return:
701 * 0 Success
702 * !0 Failure
703 */
704
705/* FIXME - should a warning be printed if no error detection? correction? */
b8f6f975 706int edac_mc_add_mc(struct mem_ctl_info *mci)
da9bb1d2 707{
956b9ba1 708 edac_dbg(0, "\n");
b8f6f975 709
da9bb1d2
AC
710#ifdef CONFIG_EDAC_DEBUG
711 if (edac_debug_level >= 3)
712 edac_mc_dump_mci(mci);
e7ecd891 713
da9bb1d2
AC
714 if (edac_debug_level >= 4) {
715 int i;
716
717 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
718 struct csrow_info *csrow = mci->csrows[i];
719 u32 nr_pages = 0;
da9bb1d2 720 int j;
e7ecd891 721
6e84d359
MCC
722 for (j = 0; j < csrow->nr_channels; j++)
723 nr_pages += csrow->channels[j]->dimm->nr_pages;
724 if (!nr_pages)
725 continue;
726 edac_mc_dump_csrow(csrow);
727 for (j = 0; j < csrow->nr_channels; j++)
728 if (csrow->channels[j]->dimm->nr_pages)
729 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 730 }
4275be63 731 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
732 if (mci->dimms[i]->nr_pages)
733 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
734 }
735#endif
63b7df91 736 mutex_lock(&mem_ctls_mutex);
da9bb1d2
AC
737
738 if (add_mc_to_global_list(mci))
028a7b6d 739 goto fail0;
da9bb1d2
AC
740
741 /* set load time so that error rate can be tracked */
742 mci->start_time = jiffies;
743
9794f33d 744 if (edac_create_sysfs_mci_device(mci)) {
745 edac_mc_printk(mci, KERN_WARNING,
052dfb45 746 "failed to create sysfs device\n");
9794f33d 747 goto fail1;
748 }
da9bb1d2 749
81d87cb1
DJ
750 /* If there IS a check routine, then we are running POLLED */
751 if (mci->edac_check != NULL) {
752 /* This instance is NOW RUNNING */
753 mci->op_state = OP_RUNNING_POLL;
754
755 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
756 } else {
757 mci->op_state = OP_RUNNING_INTERRUPT;
758 }
759
da9bb1d2 760 /* Report action taken */
bf52fa4a 761 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
17aa7e03 762 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
da9bb1d2 763
63b7df91 764 mutex_unlock(&mem_ctls_mutex);
028a7b6d 765 return 0;
da9bb1d2 766
052dfb45 767fail1:
028a7b6d
DP
768 del_mc_from_global_list(mci);
769
052dfb45 770fail0:
63b7df91 771 mutex_unlock(&mem_ctls_mutex);
028a7b6d 772 return 1;
da9bb1d2 773}
9110540f 774EXPORT_SYMBOL_GPL(edac_mc_add_mc);
da9bb1d2 775
da9bb1d2 776/**
472678eb
DP
777 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
778 * remove mci structure from global list
37f04581 779 * @pdev: Pointer to 'struct device' representing mci structure to remove.
da9bb1d2 780 *
18dbc337 781 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 782 */
079708b9 783struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 784{
18dbc337 785 struct mem_ctl_info *mci;
da9bb1d2 786
956b9ba1 787 edac_dbg(0, "\n");
bf52fa4a 788
63b7df91 789 mutex_lock(&mem_ctls_mutex);
18dbc337 790
bf52fa4a
DT
791 /* find the requested mci struct in the global list */
792 mci = find_mci_by_dev(dev);
793 if (mci == NULL) {
63b7df91 794 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
795 return NULL;
796 }
797
da9bb1d2 798 del_mc_from_global_list(mci);
63b7df91 799 mutex_unlock(&mem_ctls_mutex);
bf52fa4a 800
bb31b312 801 /* flush workq processes */
bf52fa4a 802 edac_mc_workq_teardown(mci);
bb31b312
BP
803
804 /* marking MCI offline */
805 mci->op_state = OP_OFFLINE;
806
807 /* remove from sysfs */
bf52fa4a
DT
808 edac_remove_sysfs_mci_device(mci);
809
537fba28 810 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 811 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 812 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 813
18dbc337 814 return mci;
da9bb1d2 815}
9110540f 816EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 817
2da1c119
AB
818static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
819 u32 size)
da9bb1d2
AC
820{
821 struct page *pg;
822 void *virt_addr;
823 unsigned long flags = 0;
824
956b9ba1 825 edac_dbg(3, "\n");
da9bb1d2
AC
826
827 /* ECC error page was not in our memory. Ignore it. */
079708b9 828 if (!pfn_valid(page))
da9bb1d2
AC
829 return;
830
831 /* Find the actual page structure then map it and fix */
832 pg = pfn_to_page(page);
833
834 if (PageHighMem(pg))
835 local_irq_save(flags);
836
4e5df7ca 837 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
838
839 /* Perform architecture specific atomic scrub operation */
840 atomic_scrub(virt_addr + offset, size);
841
842 /* Unmap and complete */
4e5df7ca 843 kunmap_atomic(virt_addr);
da9bb1d2
AC
844
845 if (PageHighMem(pg))
846 local_irq_restore(flags);
847}
848
da9bb1d2 849/* FIXME - should return -1 */
e7ecd891 850int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 851{
de3910eb 852 struct csrow_info **csrows = mci->csrows;
a895bf8b 853 int row, i, j, n;
da9bb1d2 854
956b9ba1 855 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
856 row = -1;
857
858 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 859 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
860 n = 0;
861 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 862 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
863 n += dimm->nr_pages;
864 }
865 if (n == 0)
da9bb1d2
AC
866 continue;
867
956b9ba1
JP
868 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
869 mci->mc_idx,
870 csrow->first_page, page, csrow->last_page,
871 csrow->page_mask);
da9bb1d2
AC
872
873 if ((page >= csrow->first_page) &&
874 (page <= csrow->last_page) &&
875 ((page & csrow->page_mask) ==
876 (csrow->first_page & csrow->page_mask))) {
877 row = i;
878 break;
879 }
880 }
881
882 if (row == -1)
537fba28 883 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
884 "could not look up page error address %lx\n",
885 (unsigned long)page);
da9bb1d2
AC
886
887 return row;
888}
9110540f 889EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 890
4275be63
MCC
891const char *edac_layer_name[] = {
892 [EDAC_MC_LAYER_BRANCH] = "branch",
893 [EDAC_MC_LAYER_CHANNEL] = "channel",
894 [EDAC_MC_LAYER_SLOT] = "slot",
895 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
896};
897EXPORT_SYMBOL_GPL(edac_layer_name);
898
899static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
900 bool enable_per_layer_report,
901 const int pos[EDAC_MAX_LAYERS],
902 const u16 count)
da9bb1d2 903{
4275be63 904 int i, index = 0;
da9bb1d2 905
9eb07a7f 906 mci->ce_mc += count;
da9bb1d2 907
4275be63 908 if (!enable_per_layer_report) {
9eb07a7f 909 mci->ce_noinfo_count += count;
da9bb1d2
AC
910 return;
911 }
e7ecd891 912
4275be63
MCC
913 for (i = 0; i < mci->n_layers; i++) {
914 if (pos[i] < 0)
915 break;
916 index += pos[i];
9eb07a7f 917 mci->ce_per_layer[i][index] += count;
4275be63
MCC
918
919 if (i < mci->n_layers - 1)
920 index *= mci->layers[i + 1].size;
921 }
922}
923
924static void edac_inc_ue_error(struct mem_ctl_info *mci,
925 bool enable_per_layer_report,
9eb07a7f
MCC
926 const int pos[EDAC_MAX_LAYERS],
927 const u16 count)
4275be63
MCC
928{
929 int i, index = 0;
930
9eb07a7f 931 mci->ue_mc += count;
4275be63
MCC
932
933 if (!enable_per_layer_report) {
9eb07a7f 934 mci->ce_noinfo_count += count;
da9bb1d2
AC
935 return;
936 }
937
4275be63
MCC
938 for (i = 0; i < mci->n_layers; i++) {
939 if (pos[i] < 0)
940 break;
941 index += pos[i];
9eb07a7f 942 mci->ue_per_layer[i][index] += count;
a7d7d2e1 943
4275be63
MCC
944 if (i < mci->n_layers - 1)
945 index *= mci->layers[i + 1].size;
946 }
947}
da9bb1d2 948
4275be63 949static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 950 const u16 error_count,
4275be63
MCC
951 const int pos[EDAC_MAX_LAYERS],
952 const char *msg,
953 const char *location,
954 const char *label,
955 const char *detail,
956 const char *other_detail,
957 const bool enable_per_layer_report,
958 const unsigned long page_frame_number,
959 const unsigned long offset_in_page,
53f2d028 960 long grain)
4275be63
MCC
961{
962 unsigned long remapped_page;
963
964 if (edac_mc_get_log_ce()) {
965 if (other_detail && *other_detail)
966 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
967 "%d CE %s on %s (%s %s - %s)\n",
968 error_count,
4275be63
MCC
969 msg, label, location,
970 detail, other_detail);
971 else
972 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
973 "%d CE %s on %s (%s %s)\n",
974 error_count,
4275be63
MCC
975 msg, label, location,
976 detail);
977 }
9eb07a7f 978 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
979
980 if (mci->scrub_mode & SCRUB_SW_SRC) {
981 /*
4275be63
MCC
982 * Some memory controllers (called MCs below) can remap
983 * memory so that it is still available at a different
984 * address when PCI devices map into memory.
985 * MC's that can't do this, lose the memory where PCI
986 * devices are mapped. This mapping is MC-dependent
987 * and so we call back into the MC driver for it to
988 * map the MC page to a physical (CPU) page which can
989 * then be mapped to a virtual page - which can then
990 * be scrubbed.
991 */
da9bb1d2 992 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
993 mci->ctl_page_to_phys(mci, page_frame_number) :
994 page_frame_number;
da9bb1d2 995
4275be63
MCC
996 edac_mc_scrub_block(remapped_page,
997 offset_in_page, grain);
da9bb1d2
AC
998 }
999}
1000
4275be63 1001static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 1002 const u16 error_count,
4275be63
MCC
1003 const int pos[EDAC_MAX_LAYERS],
1004 const char *msg,
1005 const char *location,
1006 const char *label,
1007 const char *detail,
1008 const char *other_detail,
1009 const bool enable_per_layer_report)
da9bb1d2 1010{
4275be63
MCC
1011 if (edac_mc_get_log_ue()) {
1012 if (other_detail && *other_detail)
1013 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
1014 "%d UE %s on %s (%s %s - %s)\n",
1015 error_count,
4275be63
MCC
1016 msg, label, location, detail,
1017 other_detail);
1018 else
1019 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
1020 "%d UE %s on %s (%s %s)\n",
1021 error_count,
4275be63
MCC
1022 msg, label, location, detail);
1023 }
e7ecd891 1024
4275be63
MCC
1025 if (edac_mc_get_panic_on_ue()) {
1026 if (other_detail && *other_detail)
1027 panic("UE %s on %s (%s%s - %s)\n",
1028 msg, label, location, detail, other_detail);
1029 else
1030 panic("UE %s on %s (%s%s)\n",
1031 msg, label, location, detail);
1032 }
1033
9eb07a7f 1034 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1035}
1036
4275be63 1037#define OTHER_LABEL " or "
53f2d028
MCC
1038
1039/**
1040 * edac_mc_handle_error - reports a memory event to userspace
1041 *
1042 * @type: severity of the error (CE/UE/Fatal)
1043 * @mci: a struct mem_ctl_info pointer
9eb07a7f 1044 * @error_count: Number of errors of the same type
53f2d028
MCC
1045 * @page_frame_number: mem page where the error occurred
1046 * @offset_in_page: offset of the error inside the page
1047 * @syndrome: ECC syndrome
1048 * @top_layer: Memory layer[0] position
1049 * @mid_layer: Memory layer[1] position
1050 * @low_layer: Memory layer[2] position
1051 * @msg: Message meaningful to the end users that
1052 * explains the event
1053 * @other_detail: Technical details about the event that
1054 * may help hardware manufacturers and
1055 * EDAC developers to analyse the event
53f2d028 1056 */
4275be63
MCC
1057void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1058 struct mem_ctl_info *mci,
9eb07a7f 1059 const u16 error_count,
4275be63
MCC
1060 const unsigned long page_frame_number,
1061 const unsigned long offset_in_page,
1062 const unsigned long syndrome,
53f2d028
MCC
1063 const int top_layer,
1064 const int mid_layer,
1065 const int low_layer,
4275be63 1066 const char *msg,
03f7eae8 1067 const char *other_detail)
da9bb1d2 1068{
4275be63
MCC
1069 /* FIXME: too much for stack: move it to some pre-alocated area */
1070 char detail[80], location[80];
1071 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1072 char *p;
1073 int row = -1, chan = -1;
53f2d028 1074 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
4275be63 1075 int i;
53f2d028 1076 long grain;
4275be63 1077 bool enable_per_layer_report = false;
53f2d028 1078 u8 grain_bits;
da9bb1d2 1079
956b9ba1 1080 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1081
4275be63
MCC
1082 /*
1083 * Check if the event report is consistent and if the memory
1084 * location is known. If it is known, enable_per_layer_report will be
1085 * true, the DIMM(s) label info will be filled and the per-layer
1086 * error counters will be incremented.
1087 */
1088 for (i = 0; i < mci->n_layers; i++) {
1089 if (pos[i] >= (int)mci->layers[i].size) {
1090 if (type == HW_EVENT_ERR_CORRECTED)
1091 p = "CE";
1092 else
1093 p = "UE";
1094
1095 edac_mc_printk(mci, KERN_ERR,
1096 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1097 edac_layer_name[mci->layers[i].type],
1098 pos[i], mci->layers[i].size);
1099 /*
1100 * Instead of just returning it, let's use what's
1101 * known about the error. The increment routines and
1102 * the DIMM filter logic will do the right thing by
1103 * pointing the likely damaged DIMMs.
1104 */
1105 pos[i] = -1;
1106 }
1107 if (pos[i] >= 0)
1108 enable_per_layer_report = true;
da9bb1d2
AC
1109 }
1110
4275be63
MCC
1111 /*
1112 * Get the dimm label/grain that applies to the match criteria.
1113 * As the error algorithm may not be able to point to just one memory
1114 * stick, the logic here will get all possible labels that could
1115 * pottentially be affected by the error.
1116 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1117 * to have only the MC channel and the MC dimm (also called "branch")
1118 * but the channel is not known, as the memory is arranged in pairs,
1119 * where each memory belongs to a separate channel within the same
1120 * branch.
1121 */
1122 grain = 0;
1123 p = label;
1124 *p = '\0';
1125 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1126 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1127
53f2d028 1128 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1129 continue;
53f2d028 1130 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1131 continue;
53f2d028 1132 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1133 continue;
da9bb1d2 1134
4275be63
MCC
1135 /* get the max grain, over the error match range */
1136 if (dimm->grain > grain)
1137 grain = dimm->grain;
9794f33d 1138
4275be63
MCC
1139 /*
1140 * If the error is memory-controller wide, there's no need to
1141 * seek for the affected DIMMs because the whole
1142 * channel/memory controller/... may be affected.
1143 * Also, don't show errors for empty DIMM slots.
1144 */
1145 if (enable_per_layer_report && dimm->nr_pages) {
1146 if (p != label) {
1147 strcpy(p, OTHER_LABEL);
1148 p += strlen(OTHER_LABEL);
1149 }
1150 strcpy(p, dimm->label);
1151 p += strlen(p);
1152 *p = '\0';
1153
1154 /*
1155 * get csrow/channel of the DIMM, in order to allow
1156 * incrementing the compat API counters
1157 */
956b9ba1
JP
1158 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1159 mci->mem_is_per_rank ? "rank" : "dimm",
1160 dimm->csrow, dimm->cschannel);
4275be63
MCC
1161 if (row == -1)
1162 row = dimm->csrow;
1163 else if (row >= 0 && row != dimm->csrow)
1164 row = -2;
1165
1166 if (chan == -1)
1167 chan = dimm->cschannel;
1168 else if (chan >= 0 && chan != dimm->cschannel)
1169 chan = -2;
1170 }
9794f33d 1171 }
1172
4275be63
MCC
1173 if (!enable_per_layer_report) {
1174 strcpy(label, "any memory");
1175 } else {
956b9ba1 1176 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
4275be63
MCC
1177 if (p == label)
1178 strcpy(label, "unknown memory");
1179 if (type == HW_EVENT_ERR_CORRECTED) {
1180 if (row >= 0) {
9eb07a7f 1181 mci->csrows[row]->ce_count += error_count;
4275be63 1182 if (chan >= 0)
9eb07a7f 1183 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1184 }
1185 } else
1186 if (row >= 0)
9eb07a7f 1187 mci->csrows[row]->ue_count += error_count;
9794f33d 1188 }
1189
4275be63
MCC
1190 /* Fill the RAM location data */
1191 p = location;
1192 for (i = 0; i < mci->n_layers; i++) {
1193 if (pos[i] < 0)
1194 continue;
9794f33d 1195
4275be63
MCC
1196 p += sprintf(p, "%s:%d ",
1197 edac_layer_name[mci->layers[i].type],
1198 pos[i]);
9794f33d 1199 }
53f2d028
MCC
1200 if (p > location)
1201 *(p - 1) = '\0';
1202
1203 /* Report the error via the trace interface */
1204
53f2d028
MCC
1205 grain_bits = fls_long(grain) + 1;
1206 trace_mc_event(type, msg, label, error_count,
1207 mci->mc_idx, top_layer, mid_layer, low_layer,
1208 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1209 grain_bits, syndrome, other_detail);
a7d7d2e1 1210
4275be63
MCC
1211 /* Memory type dependent details about the error */
1212 if (type == HW_EVENT_ERR_CORRECTED) {
1213 snprintf(detail, sizeof(detail),
53f2d028 1214 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
4275be63
MCC
1215 page_frame_number, offset_in_page,
1216 grain, syndrome);
9eb07a7f
MCC
1217 edac_ce_error(mci, error_count, pos, msg, location, label,
1218 detail, other_detail, enable_per_layer_report,
4275be63
MCC
1219 page_frame_number, offset_in_page, grain);
1220 } else {
1221 snprintf(detail, sizeof(detail),
53f2d028 1222 "page:0x%lx offset:0x%lx grain:%ld",
4275be63 1223 page_frame_number, offset_in_page, grain);
9794f33d 1224
9eb07a7f
MCC
1225 edac_ue_error(mci, error_count, pos, msg, location, label,
1226 detail, other_detail, enable_per_layer_report);
4275be63 1227 }
9794f33d 1228}
4275be63 1229EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.648042 seconds and 5 git commands to generate.