edac: driver for i5400 MCH (Seaburg)
[deliverable/linux.git] / drivers / edac / i5400_edac.c
CommitLineData
920c8df6
MCC
1/*
2 * Intel 5400 class Memory Controllers kernel module
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Copyright (c) 2008 by:
8 * Ben Woodard <woodard@redhat.com>
9 * Mauro Carvalho Chehab <mchehab@redhat.com>
10 *
11 * Red Hat Inc. http://www.redhat.com
12 *
13 * Forked and adapted from the i5000_edac driver which was
14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15 *
16 * This module is based on the following document:
17 *
18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19 * http://developer.intel.com/design/chipsets/datashts/313070.htm
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/pci.h>
26#include <linux/pci_ids.h>
27#include <linux/slab.h>
28#include <linux/edac.h>
29#include <linux/mmzone.h>
30
31#include "edac_core.h"
32
33/*
34 * Alter this version for the I5400 module when modifications are made
35 */
36#define I5400_REVISION " Ver: 1.0.0 " __DATE__
37
38#define EDAC_MOD_STR "i5400_edac"
39
40#define i5400_printk(level, fmt, arg...) \
41 edac_printk(level, "i5400", fmt, ##arg)
42
43#define i5400_mc_printk(mci, level, fmt, arg...) \
44 edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
45
46/* Limits for i5400 */
47#define NUM_MTRS_PER_BRANCH 4
48#define CHANNELS_PER_BRANCH 2
49#define MAX_CHANNELS 4
50#define MAX_DIMMS (MAX_CHANNELS * 4) /* Up to 4 DIMM's per channel */
51#define MAX_CSROWS (MAX_DIMMS * 2) /* max possible csrows per channel */
52
53/* Device 16,
54 * Function 0: System Address
55 * Function 1: Memory Branch Map, Control, Errors Register
56 * Function 2: FSB Error Registers
57 *
58 * All 3 functions of Device 16 (0,1,2) share the SAME DID
59 */
60#ifndef PCI_DEVICE_ID_INTEL_5400_ERR
61#define PCI_DEVICE_ID_INTEL_5400_ERR 0x4030 /* Device 16 (0,1,2) */
62#define PCI_DEVICE_ID_INTEL_5400_FBD0 0x4035 /* Device 21 (0,1) */
63#define PCI_DEVICE_ID_INTEL_5400_FBD1 0x4036 /* Device 21 (0,1) */
64#endif
65
66 /* OFFSETS for Function 0 */
67#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
68#define MAXCH 0x56 /* Max Channel Number */
69#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
70
71 /* OFFSETS for Function 1 */
72#define TOLM 0x6C
73#define REDMEMB 0x7C
74#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
75#define MIR0 0x80
76#define MIR1 0x84
77#define AMIR0 0x8c
78#define AMIR1 0x90
79
80 /* Fatal error registers */
81#define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
82#define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
83
84#define NERR_FAT_FBD 0x9c
85#define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
86
87 /* Non-fatal error register */
88#define NERR_NF_FBD 0xa4
89
90 /* Enable error mask */
91#define EMASK_FBD 0xa8
92
93#define ERR0_FBD 0xac
94#define ERR1_FBD 0xb0
95#define ERR2_FBD 0xb4
96#define MCERR_FBD 0xb8
97
98 /* No OFFSETS for Device 16 Function 2 */
99
100/*
101 * Device 21,
102 * Function 0: Memory Map Branch 0
103 *
104 * Device 22,
105 * Function 0: Memory Map Branch 1
106 */
107
108 /* OFFSETS for Function 0 */
109#define AMBPRESENT_0 0x64
110#define AMBPRESENT_1 0x66
111#define MTR0 0x80
112#define MTR1 0x82
113#define MTR2 0x84
114#define MTR3 0x86
115
116 /* OFFSETS for Function 1 */
117#define NRECFGLOG 0x74
118#define RECFGLOG 0x78
119#define NRECMEMA 0xbe
120#define NRECMEMB 0xc0
121#define NRECFB_DIMMA 0xc4
122#define NRECFB_DIMMB 0xc8
123#define NRECFB_DIMMC 0xcc
124#define NRECFB_DIMMD 0xd0
125#define NRECFB_DIMME 0xd4
126#define NRECFB_DIMMF 0xd8
127#define REDMEMA 0xdC
128#define RECMEMA 0xf0
129#define RECMEMB 0xf4
130#define RECFB_DIMMA 0xf8
131#define RECFB_DIMMB 0xec
132#define RECFB_DIMMC 0xf0
133#define RECFB_DIMMD 0xf4
134#define RECFB_DIMME 0xf8
135#define RECFB_DIMMF 0xfC
136
137/*
138 * Error indicator bits and masks
139 * Error masks are according with Table 5-17 of i5400 datasheet
140 */
141
142enum error_mask {
143 EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */
144 EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */
145 EMASK_M3 = 1<<2, /* Reserved */
146 EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */
147 EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
148 EMASK_M6 = 1<<5, /* Unsupported on i5400 */
149 EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
150 EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
151 EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
152 EMASK_M10 = 1<<9, /* Unsupported on i5400 */
153 EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
154 EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
155 EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
156 EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
157 EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
158 EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
159 EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
160 EMASK_M18 = 1<<17, /* Unsupported on i5400 */
161 EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
162 EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
163 EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
164 EMASK_M22 = 1<<21, /* SPD protocol Error */
165 EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
166 EMASK_M24 = 1<<23, /* Refresh error */
167 EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
168 EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
169 EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
170 EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
171 EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
172};
173
174/*
175 * Names to translate bit error into something useful
176 */
177char *error_name[] = {
178 [0] = "Memory Write error on non-redundant retry",
179 [1] = "Memory or FB-DIMM configuration CRC read error",
180 /* Reserved */
181 [3] = "Uncorrectable Data ECC on Replay",
182 [4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
183 /* Unsupported on i5400 */
184 [6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
185 [7] = "Aliased Uncorrectable Patrol Data ECC",
186 [8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
187 /* Unsupported */
188 [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
189 [11] = "Non-Aliased Uncorrectable Patrol Data ECC",
190 [12] = "Memory Write error on first attempt",
191 [13] = "FB-DIMM Configuration Write error on first attempt",
192 [14] = "Memory or FB-DIMM configuration CRC read error",
193 [15] = "Channel Failed-Over Occurred",
194 [16] = "Correctable Non-Mirrored Demand Data ECC",
195 /* Unsupported */
196 [18] = "Correctable Resilver- or Spare-Copy Data ECC",
197 [19] = "Correctable Patrol Data ECC",
198 [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
199 [21] = "SPD protocol Error",
200 [22] = "Non-Redundant Fast Reset Timeout",
201 [23] = "Refresh error",
202 [24] = "Memory Write error on redundant retry",
203 [25] = "Redundant Fast Reset Timeout",
204 [26] = "Correctable Counter Threshold Exceeded",
205 [27] = "DIMM-Spare Copy Completed",
206 [28] = "DIMM-Isolation Completed",
207};
208
209/* Fatal errors */
210#define ERROR_FAT_MASK (EMASK_M1 | \
211 EMASK_M2 | \
212 EMASK_M23)
213
214/* Correctable errors */
215#define ERROR_NF_CORRECTABLE (EMASK_M27 | \
216 EMASK_M20 | \
217 EMASK_M19 | \
218 EMASK_M18 | \
219 EMASK_M17 | \
220 EMASK_M16)
221#define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
222 EMASK_M28)
223#define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
224#define ERROR_NF_NORTH_CRC (EMASK_M21)
225
226/* Recoverable errors */
227#define ERROR_NF_RECOVERABLE (EMASK_M26 | \
228 EMASK_M25 | \
229 EMASK_M24 | \
230 EMASK_M15 | \
231 EMASK_M14 | \
232 EMASK_M13 | \
233 EMASK_M12 | \
234 EMASK_M11 | \
235 EMASK_M9 | \
236 EMASK_M8 | \
237 EMASK_M7 | \
238 EMASK_M5)
239
240/* uncorrectable errors */
241#define ERROR_NF_UNCORRECTABLE (EMASK_M4)
242
243/* mask to all non-fatal errors */
244#define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
245 ERROR_NF_UNCORRECTABLE | \
246 ERROR_NF_RECOVERABLE | \
247 ERROR_NF_DIMM_SPARE | \
248 ERROR_NF_SPD_PROTOCOL | \
249 ERROR_NF_NORTH_CRC)
250
251/*
252 * Define error masks for the several registers
253 */
254
255/* Enable all fatal and non fatal errors */
256#define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
257
258/* mask for fatal error registers */
259#define FERR_FAT_MASK ERROR_FAT_MASK
260
261/* masks for non-fatal error register */
262#define TO_NF_MASK(a) (((a) & EMASK_M29) | ((a) >> 3))
263#define FROM_NF_FERR(a) (((a) & EMASK_M29) | (((a) << 3) & ((1 << 30)-1)))
264
265#define FERR_NF_MASK TO_NF_MASK(ERROR_NF_MASK)
266#define FERR_NF_CORRECTABLE TO_NF_MASK(ERROR_NF_CORRECTABLE)
267#define FERR_NF_DIMM_SPARE TO_NF_MASK(ERROR_NF_DIMM_SPARE)
268#define FERR_NF_SPD_PROTOCOL TO_NF_MASK(ERROR_NF_SPD_PROTOCOL)
269#define FERR_NF_NORTH_CRC TO_NF_MASK(ERROR_NF_NORTH_CRC)
270#define FERR_NF_RECOVERABLE TO_NF_MASK(ERROR_NF_RECOVERABLE)
271#define FERR_NF_UNCORRECTABLE TO_NF_MASK(ERROR_NF_UNCORRECTABLE)
272
273/* Defines to extract the vaious fields from the
274 * MTRx - Memory Technology Registers
275 */
276#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
277#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
278#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1<< 8)) ? 8 : 4)
279#define MTR_DRAM_BANKS(mtr) (((mtr) & (1<< 6)) ? 8 : 4)
280#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
281#define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
282#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
283#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
284#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
285#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
286#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
287
288/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
289static inline int extract_fbdchan_indx(u32 x)
290{
291 return (x>>28) & 0x3;
292}
293
294#ifdef CONFIG_EDAC_DEBUG
295/* MTR NUMROW */
296static char *numrow_toString[] = {
297 "8,192 - 13 rows",
298 "16,384 - 14 rows",
299 "32,768 - 15 rows",
300 "65,536 - 16 rows"
301};
302
303/* MTR NUMCOL */
304static char *numcol_toString[] = {
305 "1,024 - 10 columns",
306 "2,048 - 11 columns",
307 "4,096 - 12 columns",
308 "reserved"
309};
310#endif
311
312/* Device name and register DID (Device ID) */
313struct i5400_dev_info {
314 const char *ctl_name; /* name for this device */
315 u16 fsb_mapping_errors; /* DID for the branchmap,control */
316};
317
318/* Table of devices attributes supported by this driver */
319static const struct i5400_dev_info i5400_devs[] = {
320 {
321 .ctl_name = "I5400",
322 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
323 },
324};
325
326struct i5400_dimm_info {
327 int megabytes; /* size, 0 means not present */
328 int dual_rank;
329};
330
331/* driver private data structure */
332struct i5400_pvt {
333 struct pci_dev *system_address; /* 16.0 */
334 struct pci_dev *branchmap_werrors; /* 16.1 */
335 struct pci_dev *fsb_error_regs; /* 16.2 */
336 struct pci_dev *branch_0; /* 21.0 */
337 struct pci_dev *branch_1; /* 22.0 */
338
339 u16 tolm; /* top of low memory */
340 u64 ambase; /* AMB BAR */
341
342 u16 mir0, mir1;
343
344 u16 b0_mtr[NUM_MTRS_PER_BRANCH]; /* Memory Technlogy Reg */
345 u16 b0_ambpresent0; /* Branch 0, Channel 0 */
346 u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
347
348 u16 b1_mtr[NUM_MTRS_PER_BRANCH]; /* Memory Technlogy Reg */
349 u16 b1_ambpresent0; /* Branch 1, Channel 8 */
350 u16 b1_ambpresent1; /* Branch 1, Channel 1 */
351
352 /* DIMM information matrix, allocating architecture maximums */
353 struct i5400_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
354
355 /* Actual values for this controller */
356 int maxch; /* Max channels */
357 int maxdimmperch; /* Max DIMMs per channel */
358};
359
360/* I5400 MCH error information retrieved from Hardware */
361struct i5400_error_info {
362 /* These registers are always read from the MC */
363 u32 ferr_fat_fbd; /* First Errors Fatal */
364 u32 nerr_fat_fbd; /* Next Errors Fatal */
365 u32 ferr_nf_fbd; /* First Errors Non-Fatal */
366 u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
367
368 /* These registers are input ONLY if there was a Recoverable Error */
369 u32 redmemb; /* Recoverable Mem Data Error log B */
370 u16 recmema; /* Recoverable Mem Error log A */
371 u32 recmemb; /* Recoverable Mem Error log B */
372
373 /* These registers are input ONLY if there was a Non-Recoverable Error */
374 u16 nrecmema; /* Non-Recoverable Mem log A */
375 u16 nrecmemb; /* Non-Recoverable Mem log B */
376
377};
378
379/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
380 5400 better to use an inline function than a macro in this case */
381static inline int nrec_bank(struct i5400_error_info *info)
382{
383 return ((info->nrecmema) >> 12) & 0x7;
384}
385static inline int nrec_rank(struct i5400_error_info *info)
386{
387 return ((info->nrecmema) >> 8) & 0xf;
388}
389static inline int nrec_buf_id(struct i5400_error_info *info)
390{
391 return ((info->nrecmema)) & 0xff;
392}
393static inline int nrec_rdwr(struct i5400_error_info *info)
394{
395 return (info->nrecmemb) >> 31;
396}
397/* This applies to both NREC and REC string so it can be used with nrec_rdwr
398 and rec_rdwr */
399static inline const char *rdwr_str(int rdwr)
400{
401 return rdwr ? "Write" : "Read";
402}
403static inline int nrec_cas(struct i5400_error_info *info)
404{
405 return ((info->nrecmemb) >> 16) & 0x1fff;
406}
407static inline int nrec_ras(struct i5400_error_info *info)
408{
409 return (info->nrecmemb) & 0xffff;
410}
411static inline int rec_bank(struct i5400_error_info *info)
412{
413 return ((info->recmema) >> 12) & 0x7;
414}
415static inline int rec_rank(struct i5400_error_info *info)
416{
417 return ((info->recmema) >> 8) & 0xf;
418}
419static inline int rec_rdwr(struct i5400_error_info *info)
420{
421 return (info->recmemb) >> 31;
422}
423static inline int rec_cas(struct i5400_error_info *info)
424{
425 return ((info->recmemb) >> 16) & 0x1fff;
426}
427static inline int rec_ras(struct i5400_error_info *info)
428{
429 return (info->recmemb) & 0xffff;
430}
431
432static struct edac_pci_ctl_info *i5400_pci;
433
434/*
435 * i5400_get_error_info Retrieve the hardware error information from
436 * the hardware and cache it in the 'info'
437 * structure
438 */
439static void i5400_get_error_info(struct mem_ctl_info *mci,
440 struct i5400_error_info *info)
441{
442 struct i5400_pvt *pvt;
443 u32 value;
444
445 pvt = mci->pvt_info;
446
447 /* read in the 1st FATAL error register */
448 pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
449
450 /* Mask only the bits that the doc says are valid
451 */
452 value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
453
454 /* If there is an error, then read in the
455 NEXT FATAL error register and the Memory Error Log Register A
456 */
457 if (value & FERR_FAT_MASK) {
458 info->ferr_fat_fbd = value;
459
460 /* harvest the various error data we need */
461 pci_read_config_dword(pvt->branchmap_werrors,
462 NERR_FAT_FBD, &info->nerr_fat_fbd);
463 pci_read_config_word(pvt->branchmap_werrors,
464 NRECMEMA, &info->nrecmema);
465 pci_read_config_word(pvt->branchmap_werrors,
466 NRECMEMB, &info->nrecmemb);
467
468 /* Clear the error bits, by writing them back */
469 pci_write_config_dword(pvt->branchmap_werrors,
470 FERR_FAT_FBD, value);
471 } else {
472 info->ferr_fat_fbd = 0;
473 info->nerr_fat_fbd = 0;
474 info->nrecmema = 0;
475 info->nrecmemb = 0;
476 }
477
478 /* read in the 1st NON-FATAL error register */
479 pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
480
481 /* If there is an error, then read in the 1st NON-FATAL error
482 * register as well */
483 if (value & FERR_NF_MASK) {
484 info->ferr_nf_fbd = value;
485
486 /* harvest the various error data we need */
487 pci_read_config_dword(pvt->branchmap_werrors,
488 NERR_NF_FBD, &info->nerr_nf_fbd);
489 pci_read_config_word(pvt->branchmap_werrors,
490 RECMEMA, &info->recmema);
491 pci_read_config_dword(pvt->branchmap_werrors,
492 RECMEMB, &info->recmemb);
493 pci_read_config_dword(pvt->branchmap_werrors,
494 REDMEMB, &info->redmemb);
495
496 /* Clear the error bits, by writing them back */
497 pci_write_config_dword(pvt->branchmap_werrors,
498 FERR_NF_FBD, value);
499 } else {
500 info->ferr_nf_fbd = 0;
501 info->nerr_nf_fbd = 0;
502 info->recmema = 0;
503 info->recmemb = 0;
504 info->redmemb = 0;
505 }
506}
507
508/*
509 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
510 * struct i5400_error_info *info,
511 * int handle_errors);
512 *
513 * handle the Intel FATAL and unrecoverable errors, if any
514 */
515static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
516 struct i5400_error_info *info,
517 unsigned long allErrors)
518{
519 char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
520 int branch;
521 int channel;
522 int bank;
523 int buf_id;
524 int rank;
525 int rdwr;
526 int ras, cas;
527 int errnum;
528 char *type = NULL;
529
530 if (!allErrors)
531 return; /* if no error, return now */
532
533 if (allErrors & ERROR_FAT_MASK)
534 type = "FATAL";
535 else if (allErrors & FERR_NF_UNCORRECTABLE)
536 type = "NON-FATAL uncorrected";
537 else
538 type = "NON-FATAL recoverable";
539
540 /* ONLY ONE of the possible error bits will be set, as per the docs */
541
542 branch = extract_fbdchan_indx(info->ferr_fat_fbd);
543 channel = branch;
544
545 /* Use the NON-Recoverable macros to extract data */
546 bank = nrec_bank(info);
547 rank = nrec_rank(info);
548 buf_id = nrec_buf_id(info);
549 rdwr = nrec_rdwr(info);
550 ras = nrec_ras(info);
551 cas = nrec_cas(info);
552
553 debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
554 "DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
555 rank, channel, channel + 1, branch >> 1, bank,
556 buf_id, rdwr_str(rdwr), ras, cas);
557
558 /* Only 1 bit will be on */
559 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
560
561 /* Form out message */
562 snprintf(msg, sizeof(msg),
563 "%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s RAS=%d CAS=%d "
564 "%s Err=0x%lx (%s))",
565 type, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas, type,
566 allErrors, error_name[errnum]);
567
568 /* Call the helper to output message */
569 edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
570}
571
572/*
573 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
574 * struct i5400_error_info *info,
575 * int handle_errors);
576 *
577 * handle the Intel NON-FATAL errors, if any
578 */
579static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
580 struct i5400_error_info *info)
581{
582 char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
583 unsigned long allErrors;
584 int branch;
585 int channel;
586 int bank;
587 int rank;
588 int rdwr;
589 int ras, cas;
590 int errnum;
591
592 /* mask off the Error bits that are possible */
593 allErrors = FROM_NF_FERR(info->ferr_nf_fbd & FERR_NF_MASK);
594 if (!allErrors)
595 return; /* if no error, return now */
596
597 /* ONLY ONE of the possible error bits will be set, as per the docs */
598
599 if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
600 i5400_proccess_non_recoverable_info(mci, info, allErrors);
601 return;
602 }
603
604 /* Correctable errors */
605 if (allErrors & ERROR_NF_CORRECTABLE) {
606 debugf0("\tCorrected bits= 0x%lx\n", allErrors);
607
608 branch = extract_fbdchan_indx(info->ferr_nf_fbd);
609
610 channel = 0;
611 if (REC_ECC_LOCATOR_ODD(info->redmemb))
612 channel = 1;
613
614 /* Convert channel to be based from zero, instead of
615 * from branch base of 0 */
616 channel += branch;
617
618 bank = rec_bank(info);
619 rank = rec_rank(info);
620 rdwr = rec_rdwr(info);
621 ras = rec_ras(info);
622 cas = rec_cas(info);
623
624 /* Only 1 bit will be on */
625 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
626
627 debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
628 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
629 rank, channel, branch >> 1, bank,
630 rdwr_str(rdwr), ras, cas);
631
632 /* Form out message */
633 snprintf(msg, sizeof(msg),
634 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
635 "CAS=%d, CE Err=0x%lx (%s))", branch >> 1, bank,
636 rdwr_str(rdwr), ras, cas, allErrors,
637 error_name[errnum]);
638
639 /* Call the helper to output message */
640 edac_mc_handle_fbd_ce(mci, rank, channel, msg);
641
642 return;
643 }
644
645 /* Miscelaneous errors */
646 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
647
648 branch = extract_fbdchan_indx(info->ferr_nf_fbd);
649
650 i5400_mc_printk(mci, KERN_EMERG,
651 "Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
652 branch >> 1, allErrors, error_name[errnum]);
653}
654
655/*
656 * i5400_process_error_info Process the error info that is
657 * in the 'info' structure, previously retrieved from hardware
658 */
659static void i5400_process_error_info(struct mem_ctl_info *mci,
660 struct i5400_error_info *info)
661{ u32 allErrors;
662
663 /* First handle any fatal errors that occurred */
664 allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
665 i5400_proccess_non_recoverable_info(mci, info, allErrors);
666
667 /* now handle any non-fatal errors that occurred */
668 i5400_process_nonfatal_error_info(mci, info);
669}
670
671/*
672 * i5400_clear_error Retrieve any error from the hardware
673 * but do NOT process that error.
674 * Used for 'clearing' out of previous errors
675 * Called by the Core module.
676 */
677static void i5400_clear_error(struct mem_ctl_info *mci)
678{
679 struct i5400_error_info info;
680
681 i5400_get_error_info(mci, &info);
682}
683
684/*
685 * i5400_check_error Retrieve and process errors reported by the
686 * hardware. Called by the Core module.
687 */
688static void i5400_check_error(struct mem_ctl_info *mci)
689{
690 struct i5400_error_info info;
691 debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
692 i5400_get_error_info(mci, &info);
693 i5400_process_error_info(mci, &info);
694}
695
696/*
697 * i5400_put_devices 'put' all the devices that we have
698 * reserved via 'get'
699 */
700static void i5400_put_devices(struct mem_ctl_info *mci)
701{
702 struct i5400_pvt *pvt;
703
704 pvt = mci->pvt_info;
705
706 /* Decrement usage count for devices */
707 if (pvt->branch_1)
708 pci_dev_put(pvt->branch_1);
709
710 if (pvt->branch_0)
711 pci_dev_put(pvt->branch_0);
712
713 if (pvt->fsb_error_regs)
714 pci_dev_put(pvt->fsb_error_regs);
715
716 if (pvt->branchmap_werrors)
717 pci_dev_put(pvt->branchmap_werrors);
718}
719
720/*
721 * i5400_get_devices Find and perform 'get' operation on the MCH's
722 * device/functions we want to reference for this driver
723 *
724 * Need to 'get' device 16 func 1 and func 2
725 */
726static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
727{
728 struct i5400_pvt *pvt;
729 struct pci_dev *pdev;
730
731 pvt = mci->pvt_info;
732 pvt->branchmap_werrors = NULL;
733 pvt->fsb_error_regs = NULL;
734 pvt->branch_0 = NULL;
735 pvt->branch_1 = NULL;
736
737 /* Attempt to 'get' the MCH register we want */
738 pdev = NULL;
739 while (!pvt->branchmap_werrors || !pvt->fsb_error_regs) {
740 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
741 PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
742 if (!pdev) {
743 /* End of list, leave */
744 i5400_printk(KERN_ERR,
745 "'system address,Process Bus' "
746 "device not found:"
747 "vendor 0x%x device 0x%x ERR funcs "
748 "(broken BIOS?)\n",
749 PCI_VENDOR_ID_INTEL,
750 PCI_DEVICE_ID_INTEL_5400_ERR);
751 goto error;
752 }
753
754 /* Store device 16 funcs 1 and 2 */
755 switch (PCI_FUNC(pdev->devfn)) {
756 case 1:
757 pvt->branchmap_werrors = pdev;
758 break;
759 case 2:
760 pvt->fsb_error_regs = pdev;
761 break;
762 }
763 }
764
765 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
766 pci_name(pvt->system_address),
767 pvt->system_address->vendor, pvt->system_address->device);
768 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
769 pci_name(pvt->branchmap_werrors),
770 pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
771 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
772 pci_name(pvt->fsb_error_regs),
773 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
774
775 pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
776 PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
777 if (!pvt->branch_0) {
778 i5400_printk(KERN_ERR,
779 "MC: 'BRANCH 0' device not found:"
780 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
781 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
782 goto error;
783 }
784
785 /* If this device claims to have more than 2 channels then
786 * fetch Branch 1's information
787 */
788 if (pvt->maxch < CHANNELS_PER_BRANCH)
789 return 0;
790
791 pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
792 PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
793 if (!pvt->branch_1) {
794 i5400_printk(KERN_ERR,
795 "MC: 'BRANCH 1' device not found:"
796 "vendor 0x%x device 0x%x Func 0 "
797 "(broken BIOS?)\n",
798 PCI_VENDOR_ID_INTEL,
799 PCI_DEVICE_ID_INTEL_5400_FBD1);
800 goto error;
801 }
802
803 return 0;
804
805error:
806 i5400_put_devices(mci);
807 return -ENODEV;
808}
809
810/*
811 * determine_amb_present
812 *
813 * the information is contained in NUM_MTRS_PER_BRANCH different registers
814 * determining which of the NUM_MTRS_PER_BRANCH requires knowing
815 * which channel is in question
816 *
817 * 2 branches, each with 2 channels
818 * b0_ambpresent0 for channel '0'
819 * b0_ambpresent1 for channel '1'
820 * b1_ambpresent0 for channel '2'
821 * b1_ambpresent1 for channel '3'
822 */
823static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
824{
825 int amb_present;
826
827 if (channel < CHANNELS_PER_BRANCH) {
828 if (channel & 0x1)
829 amb_present = pvt->b0_ambpresent1;
830 else
831 amb_present = pvt->b0_ambpresent0;
832 } else {
833 if (channel & 0x1)
834 amb_present = pvt->b1_ambpresent1;
835 else
836 amb_present = pvt->b1_ambpresent0;
837 }
838
839 return amb_present;
840}
841
842/*
843 * determine_mtr(pvt, csrow, channel)
844 *
845 * return the proper MTR register as determine by the csrow and channel desired
846 */
847static int determine_mtr(struct i5400_pvt *pvt, int csrow, int channel)
848{
849 int mtr;
850 int n;
851
852 /* There is one MTR for each slot pair of FB-DIMMs,
853 Each slot may have one or two ranks (2 csrows),
854 Each slot pair may be at branch 0 or branch 1.
855 So, csrow should be divided by eight
856 */
857 n = csrow >> 3;
858
859 if (n >= NUM_MTRS_PER_BRANCH) {
860 debugf0("ERROR: trying to access an invalid csrow: %d\n", csrow);
861 return 0;
862 }
863
864 if (channel < CHANNELS_PER_BRANCH)
865 mtr = pvt->b0_mtr[n];
866 else
867 mtr = pvt->b1_mtr[n];
868
869 return mtr;
870}
871
872/*
873 */
874static void decode_mtr(int slot_row, u16 mtr)
875{
876 int ans;
877
878 ans = MTR_DIMMS_PRESENT(mtr);
879
880 debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr,
881 ans ? "Present" : "NOT Present");
882 if (!ans)
883 return;
884
885 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
886
887 debugf2("\t\tELECTRICAL THROTTLING is %s\n",
888 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled": "disabled");
889
890 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
891 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
892 debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
893 debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
894}
895
896static void handle_channel(struct i5400_pvt *pvt, int csrow, int channel,
897 struct i5400_dimm_info *dinfo)
898{
899 int mtr;
900 int amb_present_reg;
901 int addrBits;
902
903 mtr = determine_mtr(pvt, csrow, channel);
904 if (MTR_DIMMS_PRESENT(mtr)) {
905 amb_present_reg = determine_amb_present_reg(pvt, channel);
906
907 /* Determine if there is a DIMM present in this DIMM slot */
908 if (amb_present_reg & (1 << (csrow >> 1))) {
909 dinfo->dual_rank = MTR_DIMM_RANK(mtr);
910
911 if (!((dinfo->dual_rank == 0) &&
912 ((csrow & 0x1) == 0x1))) {
913 /* Start with the number of bits for a Bank
914 * on the DRAM */
915 addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
916 /* Add thenumber of ROW bits */
917 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
918 /* add the number of COLUMN bits */
919 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
920
921 addrBits += 6; /* add 64 bits per DIMM */
922 addrBits -= 20; /* divide by 2^^20 */
923 addrBits -= 3; /* 8 bits per bytes */
924
925 dinfo->megabytes = 1 << addrBits;
926 }
927 }
928 }
929}
930
931/*
932 * calculate_dimm_size
933 *
934 * also will output a DIMM matrix map, if debug is enabled, for viewing
935 * how the DIMMs are populated
936 */
937static void calculate_dimm_size(struct i5400_pvt *pvt)
938{
939 struct i5400_dimm_info *dinfo;
940 int csrow, max_csrows;
941 char *p, *mem_buffer;
942 int space, n;
943 int channel;
944
945 /* ================= Generate some debug output ================= */
946 space = PAGE_SIZE;
947 mem_buffer = p = kmalloc(space, GFP_KERNEL);
948 if (p == NULL) {
949 i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
950 __FILE__, __func__);
951 return;
952 }
953
954 /* Scan all the actual CSROWS (which is # of DIMMS * 2)
955 * and calculate the information for each DIMM
956 * Start with the highest csrow first, to display it first
957 * and work toward the 0th csrow
958 */
959 max_csrows = pvt->maxdimmperch * 2;
960 for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
961
962 /* on an odd csrow, first output a 'boundary' marker,
963 * then reset the message buffer */
964 if (csrow & 0x1) {
965 n = snprintf(p, space, "---------------------------"
966 "--------------------------------");
967 p += n;
968 space -= n;
969 debugf2("%s\n", mem_buffer);
970 p = mem_buffer;
971 space = PAGE_SIZE;
972 }
973 n = snprintf(p, space, "csrow %2d ", csrow);
974 p += n;
975 space -= n;
976
977 for (channel = 0; channel < pvt->maxch; channel++) {
978 dinfo = &pvt->dimm_info[csrow][channel];
979 handle_channel(pvt, csrow, channel, dinfo);
980 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
981 p += n;
982 space -= n;
983 }
984 debugf2("%s\n", mem_buffer);
985 p = mem_buffer;
986 space = PAGE_SIZE;
987 }
988
989 /* Output the last bottom 'boundary' marker */
990 n = snprintf(p, space, "---------------------------"
991 "--------------------------------");
992 p += n;
993 space -= n;
994 debugf2("%s\n", mem_buffer);
995 p = mem_buffer;
996 space = PAGE_SIZE;
997
998 /* now output the 'channel' labels */
999 n = snprintf(p, space, " ");
1000 p += n;
1001 space -= n;
1002 for (channel = 0; channel < pvt->maxch; channel++) {
1003 n = snprintf(p, space, "channel %d | ", channel);
1004 p += n;
1005 space -= n;
1006 }
1007
1008 /* output the last message and free buffer */
1009 debugf2("%s\n", mem_buffer);
1010 kfree(mem_buffer);
1011}
1012
1013/*
1014 * i5400_get_mc_regs read in the necessary registers and
1015 * cache locally
1016 *
1017 * Fills in the private data members
1018 */
1019static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1020{
1021 struct i5400_pvt *pvt;
1022 u32 actual_tolm;
1023 u16 limit;
1024 int slot_row;
1025 int maxch;
1026 int maxdimmperch;
1027 int way0, way1;
1028
1029 pvt = mci->pvt_info;
1030
1031 pci_read_config_dword(pvt->system_address, AMBASE,
1032 (u32 *) &pvt->ambase);
1033 pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1034 ((u32 *) &pvt->ambase) + sizeof(u32));
1035
1036 maxdimmperch = pvt->maxdimmperch;
1037 maxch = pvt->maxch;
1038
1039 debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1040 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1041
1042 /* Get the Branch Map regs */
1043 pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1044 pvt->tolm >>= 12;
1045 debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1046 pvt->tolm);
1047
1048 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1049 debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1050 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1051
1052 pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1053 pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1054
1055 /* Get the MIR[0-1] regs */
1056 limit = (pvt->mir0 >> 4) & 0x0fff;
1057 way0 = pvt->mir0 & 0x1;
1058 way1 = pvt->mir0 & 0x2;
1059 debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1060 limit = (pvt->mir1 >> 4) & 0xfff;
1061 way0 = pvt->mir1 & 0x1;
1062 way1 = pvt->mir1 & 0x2;
1063 debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1064
1065 /* Get the set of MTR[0-3] regs by each branch */
1066 for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) {
1067 int where = MTR0 + (slot_row * sizeof(u32));
1068
1069 /* Branch 0 set of MTR registers */
1070 pci_read_config_word(pvt->branch_0, where,
1071 &pvt->b0_mtr[slot_row]);
1072
1073 debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1074 pvt->b0_mtr[slot_row]);
1075
1076 if (pvt->maxch < CHANNELS_PER_BRANCH) {
1077 pvt->b1_mtr[slot_row] = 0;
1078 continue;
1079 }
1080
1081 /* Branch 1 set of MTR registers */
1082 pci_read_config_word(pvt->branch_1, where,
1083 &pvt->b1_mtr[slot_row]);
1084 debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, where,
1085 pvt->b1_mtr[slot_row]);
1086 }
1087
1088 /* Read and dump branch 0's MTRs */
1089 debugf2("\nMemory Technology Registers:\n");
1090 debugf2(" Branch 0:\n");
1091 for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1092 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1093
1094 pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1095 &pvt->b0_ambpresent0);
1096 debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1097 pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1098 &pvt->b0_ambpresent1);
1099 debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1100
1101 /* Only if we have 2 branchs (4 channels) */
1102 if (pvt->maxch < CHANNELS_PER_BRANCH) {
1103 pvt->b1_ambpresent0 = 0;
1104 pvt->b1_ambpresent1 = 0;
1105 } else {
1106 /* Read and dump branch 1's MTRs */
1107 debugf2(" Branch 1:\n");
1108 for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1109 decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1110
1111 pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1112 &pvt->b1_ambpresent0);
1113 debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1114 pvt->b1_ambpresent0);
1115 pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1116 &pvt->b1_ambpresent1);
1117 debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1118 pvt->b1_ambpresent1);
1119 }
1120
1121 /* Go and determine the size of each DIMM and place in an
1122 * orderly matrix */
1123 calculate_dimm_size(pvt);
1124}
1125
1126/*
1127 * i5400_init_csrows Initialize the 'csrows' table within
1128 * the mci control structure with the
1129 * addressing of memory.
1130 *
1131 * return:
1132 * 0 success
1133 * 1 no actual memory found on this MC
1134 */
1135static int i5400_init_csrows(struct mem_ctl_info *mci)
1136{
1137 struct i5400_pvt *pvt;
1138 struct csrow_info *p_csrow;
1139 int empty, channel_count;
1140 int max_csrows;
1141 int mtr;
1142 int csrow_megs;
1143 int channel;
1144 int csrow;
1145
1146 pvt = mci->pvt_info;
1147
1148 channel_count = pvt->maxch;
1149 max_csrows = pvt->maxdimmperch * 2;
1150
1151 empty = 1; /* Assume NO memory */
1152
1153 for (csrow = 0; csrow < max_csrows; csrow++) {
1154 p_csrow = &mci->csrows[csrow];
1155
1156 p_csrow->csrow_idx = csrow;
1157
1158 /* use branch 0 for the basis */
1159 mtr = determine_mtr(pvt, csrow, 0);
1160
1161 /* if no DIMMS on this row, continue */
1162 if (!MTR_DIMMS_PRESENT(mtr))
1163 continue;
1164
1165 /* FAKE OUT VALUES, FIXME */
1166 p_csrow->first_page = 0 + csrow * 20;
1167 p_csrow->last_page = 9 + csrow * 20;
1168 p_csrow->page_mask = 0xFFF;
1169
1170 p_csrow->grain = 8;
1171
1172 csrow_megs = 0;
1173 for (channel = 0; channel < pvt->maxch; channel++)
1174 csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1175
1176 p_csrow->nr_pages = csrow_megs << 8;
1177
1178 /* Assume DDR2 for now */
1179 p_csrow->mtype = MEM_FB_DDR2;
1180
1181 /* ask what device type on this row */
1182 if (MTR_DRAM_WIDTH(mtr))
1183 p_csrow->dtype = DEV_X8;
1184 else
1185 p_csrow->dtype = DEV_X4;
1186
1187 p_csrow->edac_mode = EDAC_S8ECD8ED;
1188
1189 empty = 0;
1190 }
1191
1192 return empty;
1193}
1194
1195/*
1196 * i5400_enable_error_reporting
1197 * Turn on the memory reporting features of the hardware
1198 */
1199static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1200{
1201 struct i5400_pvt *pvt;
1202 u32 fbd_error_mask;
1203
1204 pvt = mci->pvt_info;
1205
1206 /* Read the FBD Error Mask Register */
1207 pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1208 &fbd_error_mask);
1209
1210 /* Enable with a '0' */
1211 fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1212
1213 pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1214 fbd_error_mask);
1215}
1216
1217/*
1218 * i5400_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1219 *
1220 * ask the device how many channels are present and how many CSROWS
1221 * as well
1222 */
1223static void i5400_get_dimm_and_channel_counts(struct pci_dev *pdev,
1224 int *num_dimms_per_channel,
1225 int *num_channels)
1226{
1227 u8 value;
1228
1229 /* Need to retrieve just how many channels and dimms per channel are
1230 * supported on this memory controller
1231 */
1232 pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1233 *num_dimms_per_channel = (int)value * 2;
1234
1235 pci_read_config_byte(pdev, MAXCH, &value);
1236 *num_channels = (int)value;
1237}
1238
1239/*
1240 * i5400_probe1 Probe for ONE instance of device to see if it is
1241 * present.
1242 * return:
1243 * 0 for FOUND a device
1244 * < 0 for error code
1245 */
1246static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1247{
1248 struct mem_ctl_info *mci;
1249 struct i5400_pvt *pvt;
1250 int num_channels;
1251 int num_dimms_per_channel;
1252 int num_csrows;
1253
1254 debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1255 __func__,
1256 pdev->bus->number,
1257 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1258
1259 /* We only are looking for func 0 of the set */
1260 if (PCI_FUNC(pdev->devfn) != 0)
1261 return -ENODEV;
1262
1263 /* Ask the devices for the number of CSROWS and CHANNELS so
1264 * that we can calculate the memory resources, etc
1265 *
1266 * The Chipset will report what it can handle which will be greater
1267 * or equal to what the motherboard manufacturer will implement.
1268 *
1269 * As we don't have a motherboard identification routine to determine
1270 * actual number of slots/dimms per channel, we thus utilize the
1271 * resource as specified by the chipset. Thus, we might have
1272 * have more DIMMs per channel than actually on the mobo, but this
1273 * allows the driver to support upto the chipset max, without
1274 * some fancy mobo determination.
1275 */
1276 i5400_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1277 &num_channels);
1278 num_csrows = num_dimms_per_channel * 2;
1279
1280 debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
1281 __func__, num_channels, num_dimms_per_channel, num_csrows);
1282
1283 /* allocate a new MC control structure */
1284 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1285
1286 if (mci == NULL)
1287 return -ENOMEM;
1288
1289 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1290
1291 mci->dev = &pdev->dev; /* record ptr to the generic device */
1292
1293 pvt = mci->pvt_info;
1294 pvt->system_address = pdev; /* Record this device in our private */
1295 pvt->maxch = num_channels;
1296 pvt->maxdimmperch = num_dimms_per_channel;
1297
1298 /* 'get' the pci devices we want to reserve for our use */
1299 if (i5400_get_devices(mci, dev_idx))
1300 goto fail0;
1301
1302 /* Time to get serious */
1303 i5400_get_mc_regs(mci); /* retrieve the hardware registers */
1304
1305 mci->mc_idx = 0;
1306 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1307 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1308 mci->edac_cap = EDAC_FLAG_NONE;
1309 mci->mod_name = "i5400_edac.c";
1310 mci->mod_ver = I5400_REVISION;
1311 mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1312 mci->dev_name = pci_name(pdev);
1313 mci->ctl_page_to_phys = NULL;
1314
1315 /* Set the function pointer to an actual operation function */
1316 mci->edac_check = i5400_check_error;
1317
1318 /* initialize the MC control structure 'csrows' table
1319 * with the mapping and control information */
1320 if (i5400_init_csrows(mci)) {
1321 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1322 " because i5400_init_csrows() returned nonzero "
1323 "value\n");
1324 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1325 } else {
1326 debugf1("MC: Enable error reporting now\n");
1327 i5400_enable_error_reporting(mci);
1328 }
1329
1330 /* add this new MC control structure to EDAC's list of MCs */
1331 if (edac_mc_add_mc(mci)) {
1332 debugf0("MC: " __FILE__
1333 ": %s(): failed edac_mc_add_mc()\n", __func__);
1334 /* FIXME: perhaps some code should go here that disables error
1335 * reporting if we just enabled it
1336 */
1337 goto fail1;
1338 }
1339
1340 i5400_clear_error(mci);
1341
1342 /* allocating generic PCI control info */
1343 i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1344 if (!i5400_pci) {
1345 printk(KERN_WARNING
1346 "%s(): Unable to create PCI control\n",
1347 __func__);
1348 printk(KERN_WARNING
1349 "%s(): PCI error report via EDAC not setup\n",
1350 __func__);
1351 }
1352
1353 return 0;
1354
1355 /* Error exit unwinding stack */
1356fail1:
1357
1358 i5400_put_devices(mci);
1359
1360fail0:
1361 edac_mc_free(mci);
1362 return -ENODEV;
1363}
1364
1365/*
1366 * i5400_init_one constructor for one instance of device
1367 *
1368 * returns:
1369 * negative on error
1370 * count (>= 0)
1371 */
1372static int __devinit i5400_init_one(struct pci_dev *pdev,
1373 const struct pci_device_id *id)
1374{
1375 int rc;
1376
1377 debugf0("MC: " __FILE__ ": %s()\n", __func__);
1378
1379 /* wake up device */
1380 rc = pci_enable_device(pdev);
1381 if (rc == -EIO)
1382 return rc;
1383
1384 /* now probe and enable the device */
1385 return i5400_probe1(pdev, id->driver_data);
1386}
1387
1388/*
1389 * i5400_remove_one destructor for one instance of device
1390 *
1391 */
1392static void __devexit i5400_remove_one(struct pci_dev *pdev)
1393{
1394 struct mem_ctl_info *mci;
1395
1396 debugf0(__FILE__ ": %s()\n", __func__);
1397
1398 if (i5400_pci)
1399 edac_pci_release_generic_ctl(i5400_pci);
1400
1401 mci = edac_mc_del_mc(&pdev->dev);
1402 if (!mci)
1403 return;
1404
1405 /* retrieve references to resources, and free those resources */
1406 i5400_put_devices(mci);
1407
1408 edac_mc_free(mci);
1409}
1410
1411/*
1412 * pci_device_id table for which devices we are looking for
1413 *
1414 * The "E500P" device is the first device supported.
1415 */
1416static const struct pci_device_id i5400_pci_tbl[] __devinitdata = {
1417 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1418 {0,} /* 0 terminated list. */
1419};
1420
1421MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1422
1423/*
1424 * i5400_driver pci_driver structure for this module
1425 *
1426 */
1427static struct pci_driver i5400_driver = {
1428 .name = KBUILD_BASENAME,
1429 .probe = i5400_init_one,
1430 .remove = __devexit_p(i5400_remove_one),
1431 .id_table = i5400_pci_tbl,
1432};
1433
1434/*
1435 * i5400_init Module entry function
1436 * Try to initialize this module for its devices
1437 */
1438static int __init i5400_init(void)
1439{
1440 int pci_rc;
1441
1442 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1443
1444 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1445 opstate_init();
1446
1447 pci_rc = pci_register_driver(&i5400_driver);
1448
1449 return (pci_rc < 0) ? pci_rc : 0;
1450}
1451
1452/*
1453 * i5400_exit() Module exit function
1454 * Unregister the driver
1455 */
1456static void __exit i5400_exit(void)
1457{
1458 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1459 pci_unregister_driver(&i5400_driver);
1460}
1461
1462module_init(i5400_init);
1463module_exit(i5400_exit);
1464
1465MODULE_LICENSE("GPL");
1466MODULE_AUTHOR("Ben Woodard <woodard@redhat.com> Red Hat Inc. (http://www.redhat.com)");
1467MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com> Red Hat Inc. (http://www.redhat.com)");
1468MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - " I5400_REVISION);
1469
1470module_param(edac_op_state, int, 0444);
1471MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.115214 seconds and 5 git commands to generate.