i7300_edac: Make the debug messages coherent with the others
[deliverable/linux.git] / drivers / edac / i7300_edac.c
CommitLineData
fcaf780b
MCC
1/*
2 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License version 2 only.
6 *
7 * Copyright (c) 2010 by:
8 * Mauro Carvalho Chehab <mchehab@redhat.com>
9 *
10 * Red Hat Inc. http://www.redhat.com
11 *
12 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://www.intel.com/Assets/PDF/datasheet/318082.pdf
14 *
15 * TODO: The chipset allow checking for PCI Express errors also. Currently,
16 * the driver covers only memory error errors
17 *
18 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
19 */
20
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/pci.h>
24#include <linux/pci_ids.h>
25#include <linux/slab.h>
26#include <linux/edac.h>
27#include <linux/mmzone.h>
28
29#include "edac_core.h"
30
31/*
32 * Alter this version for the I7300 module when modifications are made
33 */
34#define I7300_REVISION " Ver: 1.0.0 " __DATE__
35
36#define EDAC_MOD_STR "i7300_edac"
37
38#define i7300_printk(level, fmt, arg...) \
39 edac_printk(level, "i7300", fmt, ##arg)
40
41#define i7300_mc_printk(mci, level, fmt, arg...) \
42 edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
43
44/*
45 * Memory topology is organized as:
46 * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
47 * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
48 * Each channel can have to 8 DIMM sets (called as SLOTS)
49 * Slots should generally be filled in pairs
50 * Except on Single Channel mode of operation
51 * just slot 0/channel0 filled on this mode
52 * On normal operation mode, the two channels on a branch should be
c3af2eaf 53 * filled together for the same SLOT#
fcaf780b
MCC
54 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
55 * channels on both branches should be filled
56 */
57
58/* Limits for i7300 */
59#define MAX_SLOTS 8
60#define MAX_BRANCHES 2
61#define MAX_CH_PER_BRANCH 2
62#define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
63#define MAX_MIR 3
64
65#define to_channel(ch, branch) ((((branch)) << 1) | (ch))
66
67#define to_csrow(slot, ch, branch) \
68 (to_channel(ch, branch) | ((slot) << 2))
69
c3af2eaf
MCC
70/*
71 * I7300 devices
fcaf780b
MCC
72 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
73 * uses PCI_DEVICE_ID_INTEL_I7300_MCH_ERR for device 16 (0,1,2),
74 * PCI_DEVICE_ID_INTEL_I7300_MCH_FB0 and PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
75 * for device 21 (0,1).
c3af2eaf
MCC
76 */
77
78/****************************************************
79 * i7300 Register definitions for memory enumberation
80 ****************************************************/
81
82/*
83 * Device 16,
84 * Function 0: System Address (not documented)
85 * Function 1: Memory Branch Map, Control, Errors Register
fcaf780b
MCC
86 */
87
88 /* OFFSETS for Function 0 */
af3d8831
MCC
89#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
90#define MAXCH 0x56 /* Max Channel Number */
91#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
fcaf780b
MCC
92
93 /* OFFSETS for Function 1 */
af3d8831 94#define MC_SETTINGS 0x40
bb81a216
MCC
95 #define IS_MIRRORED(mc) ((mc) & (1 << 16))
96 #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
97 #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
98 #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
fcaf780b 99
bb81a216
MCC
100#define MC_SETTINGS_A 0x58
101 #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
d7de2bdb 102
af3d8831
MCC
103#define TOLM 0x6C
104#define REDMEMB 0x7C
105
106#define MIR0 0x80
107#define MIR1 0x84
108#define MIR2 0x88
fcaf780b 109
fcaf780b
MCC
110/*
111 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
112 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
113 * seems that we cannot use this information directly for the same usage.
114 * Each memory slot may have up to 2 AMB interfaces, one for income and another
115 * for outcome interface to the next slot.
116 * For now, the driver just stores the AMB present registers, but rely only at
117 * the MTR info to detect memory.
118 * Datasheet is also not clear about how to map each AMBPRESENT registers to
119 * one of the 4 available channels.
120 */
121#define AMBPRESENT_0 0x64
122#define AMBPRESENT_1 0x66
123
124const static u16 mtr_regs [MAX_SLOTS] = {
125 0x80, 0x84, 0x88, 0x8c,
126 0x82, 0x86, 0x8a, 0x8e
127};
128
129/* Defines to extract the vaious fields from the
130 * MTRx - Memory Technology Registers
131 */
132#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
133#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
134#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
135#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
136#define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
137#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
138#define MTR_DRAM_BANKS_ADDR_BITS 2
139#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
140#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
141#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
142
fcaf780b
MCC
143#ifdef CONFIG_EDAC_DEBUG
144/* MTR NUMROW */
145static const char *numrow_toString[] = {
146 "8,192 - 13 rows",
147 "16,384 - 14 rows",
148 "32,768 - 15 rows",
149 "65,536 - 16 rows"
150};
151
152/* MTR NUMCOL */
153static const char *numcol_toString[] = {
154 "1,024 - 10 columns",
155 "2,048 - 11 columns",
156 "4,096 - 12 columns",
157 "reserved"
158};
159#endif
160
c3af2eaf
MCC
161/************************************************
162 * i7300 Register definitions for error detection
163 ************************************************/
57021918
MCC
164
165/*
166 * Device 16.1: FBD Error Registers
167 */
168#define FERR_FAT_FBD 0x98
169static const char *ferr_fat_fbd_name[] = {
170 [22] = "Non-Redundant Fast Reset Timeout",
171 [2] = ">Tmid Thermal event with intelligent throttling disabled",
172 [1] = "Memory or FBD configuration CRC read error",
173 [0] = "Memory Write error on non-redundant retry or "
174 "FBD configuration Write error on retry",
175};
176#define GET_FBD_FAT_IDX(fbderr) (fbderr & (3 << 28))
177#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3))
178
179#define FERR_NF_FBD 0xa0
180static const char *ferr_nf_fbd_name[] = {
181 [24] = "DIMM-Spare Copy Completed",
182 [23] = "DIMM-Spare Copy Initiated",
183 [22] = "Redundant Fast Reset Timeout",
184 [21] = "Memory Write error on redundant retry",
185 [18] = "SPD protocol Error",
186 [17] = "FBD Northbound parity error on FBD Sync Status",
187 [16] = "Correctable Patrol Data ECC",
188 [15] = "Correctable Resilver- or Spare-Copy Data ECC",
189 [14] = "Correctable Mirrored Demand Data ECC",
190 [13] = "Correctable Non-Mirrored Demand Data ECC",
191 [11] = "Memory or FBD configuration CRC read error",
192 [10] = "FBD Configuration Write error on first attempt",
193 [9] = "Memory Write error on first attempt",
194 [8] = "Non-Aliased Uncorrectable Patrol Data ECC",
195 [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
196 [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
197 [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
198 [4] = "Aliased Uncorrectable Patrol Data ECC",
199 [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
200 [2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
201 [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
202 [0] = "Uncorrectable Data ECC on Replay",
203};
204#define GET_FBD_NF_IDX(fbderr) (fbderr & (3 << 28))
205#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
206 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
207 (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
208 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
209 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
210 (1 << 1) | (1 << 0))
211
212#define EMASK_FBD 0xa8
213#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
214 (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
215 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
216 (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
217 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
218 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
219 (1 << 1) | (1 << 0))
220
c3af2eaf
MCC
221/*
222 * Device 16.2: Global Error Registers
223 */
224
5de6e07e
MCC
225#define FERR_GLOBAL_HI 0x48
226static const char *ferr_global_hi_name[] = {
227 [3] = "FSB 3 Fatal Error",
228 [2] = "FSB 2 Fatal Error",
229 [1] = "FSB 1 Fatal Error",
230 [0] = "FSB 0 Fatal Error",
231};
232#define ferr_global_hi_is_fatal(errno) 1
233
c3af2eaf 234#define FERR_GLOBAL_LO 0x40
5de6e07e 235static const char *ferr_global_lo_name[] = {
c3af2eaf
MCC
236 [31] = "Internal MCH Fatal Error",
237 [30] = "Intel QuickData Technology Device Fatal Error",
238 [29] = "FSB1 Fatal Error",
239 [28] = "FSB0 Fatal Error",
240 [27] = "FBD Channel 3 Fatal Error",
241 [26] = "FBD Channel 2 Fatal Error",
242 [25] = "FBD Channel 1 Fatal Error",
243 [24] = "FBD Channel 0 Fatal Error",
244 [23] = "PCI Express Device 7Fatal Error",
245 [22] = "PCI Express Device 6 Fatal Error",
246 [21] = "PCI Express Device 5 Fatal Error",
247 [20] = "PCI Express Device 4 Fatal Error",
248 [19] = "PCI Express Device 3 Fatal Error",
249 [18] = "PCI Express Device 2 Fatal Error",
250 [17] = "PCI Express Device 1 Fatal Error",
251 [16] = "ESI Fatal Error",
252 [15] = "Internal MCH Non-Fatal Error",
253 [14] = "Intel QuickData Technology Device Non Fatal Error",
254 [13] = "FSB1 Non-Fatal Error",
255 [12] = "FSB 0 Non-Fatal Error",
256 [11] = "FBD Channel 3 Non-Fatal Error",
257 [10] = "FBD Channel 2 Non-Fatal Error",
258 [9] = "FBD Channel 1 Non-Fatal Error",
259 [8] = "FBD Channel 0 Non-Fatal Error",
260 [7] = "PCI Express Device 7 Non-Fatal Error",
261 [6] = "PCI Express Device 6 Non-Fatal Error",
262 [5] = "PCI Express Device 5 Non-Fatal Error",
263 [4] = "PCI Express Device 4 Non-Fatal Error",
264 [3] = "PCI Express Device 3 Non-Fatal Error",
265 [2] = "PCI Express Device 2 Non-Fatal Error",
266 [1] = "PCI Express Device 1 Non-Fatal Error",
267 [0] = "ESI Non-Fatal Error",
268};
5de6e07e 269#define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
fcaf780b
MCC
270
271/* Device name and register DID (Device ID) */
272struct i7300_dev_info {
273 const char *ctl_name; /* name for this device */
274 u16 fsb_mapping_errors; /* DID for the branchmap,control */
275};
276
277/* Table of devices attributes supported by this driver */
278static const struct i7300_dev_info i7300_devs[] = {
279 {
280 .ctl_name = "I7300",
281 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
282 },
283};
284
285struct i7300_dimm_info {
286 int megabytes; /* size, 0 means not present */
287};
288
289/* driver private data structure */
290struct i7300_pvt {
3e57eef6
MCC
291 struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
292 struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
293 struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
294 struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
fcaf780b
MCC
295
296 u16 tolm; /* top of low memory */
297 u64 ambase; /* AMB BAR */
298
bb81a216
MCC
299 u32 mc_settings; /* Report several settings */
300 u32 mc_settings_a;
301
302 u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
fcaf780b
MCC
303
304 u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
305 u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
306
307 /* DIMM information matrix, allocating architecture maximums */
308 struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
309};
310
fcaf780b
MCC
311/* FIXME: Why do we need to have this static? */
312static struct edac_pci_ctl_info *i7300_pci;
313
5de6e07e
MCC
314/********************************************
315 * i7300 Functions related to error detection
316 ********************************************/
fcaf780b 317
5de6e07e 318const char *get_err_from_table(const char *table[], int size, int pos)
fcaf780b 319{
5de6e07e
MCC
320 if (pos >= size)
321 return "Reserved";
322
323 return table[pos];
fcaf780b
MCC
324}
325
5de6e07e
MCC
326#define GET_ERR_FROM_TABLE(table, pos) \
327 get_err_from_table(table, ARRAY_SIZE(table), pos)
328
fcaf780b 329/*
5de6e07e
MCC
330 * i7300_process_error_global Retrieve the hardware error information from
331 * the hardware and cache it in the 'info'
332 * structure
fcaf780b 333 */
f4277422 334static void i7300_process_error_global(struct mem_ctl_info *mci)
fcaf780b 335{
5de6e07e
MCC
336 struct i7300_pvt *pvt;
337 u32 errnum, value;
338 unsigned long errors;
339 const char *specific;
340 bool is_fatal;
fcaf780b 341
5de6e07e 342 pvt = mci->pvt_info;
fcaf780b 343
5de6e07e
MCC
344 /* read in the 1st FATAL error register */
345 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
346 FERR_GLOBAL_HI, &value);
347 if (unlikely(value)) {
348 errors = value;
349 errnum = find_first_bit(&errors,
350 ARRAY_SIZE(ferr_global_hi_name));
351 specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
352 is_fatal = ferr_global_hi_is_fatal(errnum);
86002324
MCC
353
354 /* Clear the error bit */
355 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
356 FERR_GLOBAL_HI, value);
357
5de6e07e 358 goto error_global;
fcaf780b
MCC
359 }
360
5de6e07e
MCC
361 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
362 FERR_GLOBAL_LO, &value);
363 if (unlikely(value)) {
364 errors = value;
365 errnum = find_first_bit(&errors,
366 ARRAY_SIZE(ferr_global_lo_name));
367 specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
368 is_fatal = ferr_global_lo_is_fatal(errnum);
86002324
MCC
369
370 /* Clear the error bit */
371 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
372 FERR_GLOBAL_LO, value);
373
5de6e07e
MCC
374 goto error_global;
375 }
376 return;
fcaf780b 377
5de6e07e
MCC
378error_global:
379 i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
380 is_fatal ? "Fatal" : "NOT fatal", specific);
fcaf780b
MCC
381}
382
57021918
MCC
383/*
384 * i7300_process_fbd_error Retrieve the hardware error information from
385 * the hardware and cache it in the 'info'
386 * structure
387 */
f4277422 388static void i7300_process_fbd_error(struct mem_ctl_info *mci)
57021918
MCC
389{
390 struct i7300_pvt *pvt;
391 u32 errnum, value;
392 int branch;
393 unsigned long errors;
394 const char *specific;
395 bool is_fatal;
396
397 pvt = mci->pvt_info;
398
399 /* read in the 1st FATAL error register */
400 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
401 FERR_FAT_FBD, &value);
402 if (unlikely(value & FERR_FAT_FBD_ERR_MASK)) {
403 errors = value & FERR_FAT_FBD_ERR_MASK ;
404 errnum = find_first_bit(&errors,
405 ARRAY_SIZE(ferr_fat_fbd_name));
406 specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
407 is_fatal = 1;
408
409 branch = (GET_FBD_FAT_IDX(value) == 2) ? 1 : 0;
410
411 goto error_fbd;
412 }
413
414 /* read in the 1st NON-FATAL error register */
415 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
416 FERR_NF_FBD, &value);
417 if (unlikely(value & FERR_NF_FBD_ERR_MASK)) {
418 errors = value & FERR_NF_FBD_ERR_MASK;
419 errnum = find_first_bit(&errors,
420 ARRAY_SIZE(ferr_nf_fbd_name));
421 specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
422 is_fatal = 0;
423
424 /* Clear the error bit */
425 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
426 FERR_GLOBAL_LO, value);
427
428 goto error_fbd;
429 }
430 return;
431
432error_fbd:
433 i7300_mc_printk(mci, KERN_EMERG, "%s FBD error on branch %d: %s\n",
434 is_fatal ? "Fatal" : "NOT fatal", branch, specific);
435}
436
fcaf780b 437/*
f4277422 438 * i7300_check_error Retrieve the hardware error information from
5de6e07e
MCC
439 * the hardware and cache it in the 'info'
440 * structure
fcaf780b 441 */
f4277422 442static void i7300_check_error(struct mem_ctl_info *mci)
5de6e07e 443{
f4277422
MCC
444 i7300_process_error_global(mci);
445 i7300_process_fbd_error(mci);
5de6e07e 446};
fcaf780b
MCC
447
448/*
449 * i7300_clear_error Retrieve any error from the hardware
450 * but do NOT process that error.
451 * Used for 'clearing' out of previous errors
452 * Called by the Core module.
453 */
454static void i7300_clear_error(struct mem_ctl_info *mci)
455{
e4327605
MCC
456 struct i7300_pvt *pvt = mci->pvt_info;
457 u32 value;
458 /*
459 * All error values are RWC - we need to read and write 1 to the
460 * bit that we want to cleanup
461 */
fcaf780b 462
e4327605
MCC
463 /* Clear global error registers */
464 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
465 FERR_GLOBAL_HI, &value);
466 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
467 FERR_GLOBAL_HI, value);
468
469 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
470 FERR_GLOBAL_LO, &value);
471 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
472 FERR_GLOBAL_LO, value);
473
474 /* Clear FBD error registers */
475 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
476 FERR_FAT_FBD, &value);
477 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
478 FERR_FAT_FBD, value);
479
480 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
481 FERR_NF_FBD, &value);
482 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
483 FERR_NF_FBD, value);
fcaf780b
MCC
484}
485
fcaf780b
MCC
486/*
487 * i7300_enable_error_reporting
488 * Turn on the memory reporting features of the hardware
489 */
490static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
491{
57021918
MCC
492 struct i7300_pvt *pvt = mci->pvt_info;
493 u32 fbd_error_mask;
494
495 /* Read the FBD Error Mask Register */
496 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
497 EMASK_FBD, &fbd_error_mask);
498
499 /* Enable with a '0' */
500 fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
501
502 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
503 EMASK_FBD, fbd_error_mask);
fcaf780b 504}
5de6e07e
MCC
505
506/************************************************
507 * i7300 Functions related to memory enumberation
508 ************************************************/
fcaf780b
MCC
509
510/*
511 * determine_mtr(pvt, csrow, channel)
512 *
513 * return the proper MTR register as determine by the csrow and desired channel
514 */
515static int decode_mtr(struct i7300_pvt *pvt,
516 int slot, int ch, int branch,
517 struct i7300_dimm_info *dinfo,
518 struct csrow_info *p_csrow)
519{
520 int mtr, ans, addrBits, channel;
521
522 channel = to_channel(ch, branch);
523
524 mtr = pvt->mtr[slot][branch];
525 ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
526
527 debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
528 slot, channel,
529 ans ? "Present" : "NOT Present");
530
531 /* Determine if there is a DIMM present in this DIMM slot */
532
533#if 0
534 if (!amb_present || !ans)
535 return 0;
536#else
537 if (!ans)
538 return 0;
539#endif
540
541 /* Start with the number of bits for a Bank
542 * on the DRAM */
543 addrBits = MTR_DRAM_BANKS_ADDR_BITS;
544 /* Add thenumber of ROW bits */
545 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
546 /* add the number of COLUMN bits */
547 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
548 /* add the number of RANK bits */
549 addrBits += MTR_DIMM_RANKS(mtr);
550
551 addrBits += 6; /* add 64 bits per DIMM */
552 addrBits -= 20; /* divide by 2^^20 */
553 addrBits -= 3; /* 8 bits per bytes */
554
555 dinfo->megabytes = 1 << addrBits;
556
557 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
558
559 debugf2("\t\tELECTRICAL THROTTLING is %s\n",
560 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
561
562 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
563 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
564 debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
565 debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
566 debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);
567
568 p_csrow->grain = 8;
569 p_csrow->nr_pages = dinfo->megabytes << 8;
570 p_csrow->mtype = MEM_FB_DDR2;
116389ed
MCC
571
572 /*
15154c57 573 * The type of error detection actually depends of the
116389ed 574 * mode of operation. When it is just one single memory chip, at
15154c57
MCC
575 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
576 * In normal or mirrored mode, it uses Lockstep mode,
116389ed
MCC
577 * with the possibility of using an extended algorithm for x8 memories
578 * See datasheet Sections 7.3.6 to 7.3.8
579 */
15154c57
MCC
580
581 if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
582 p_csrow->edac_mode = EDAC_SECDED;
3b330f67 583 debugf2("\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
15154c57 584 } else {
3b330f67 585 debugf2("\t\tECC code is on Lockstep mode\n");
15154c57
MCC
586 if (MTR_DRAM_WIDTH(mtr))
587 p_csrow->edac_mode = EDAC_S8ECD8ED;
588 else
589 p_csrow->edac_mode = EDAC_S4ECD4ED;
590 }
fcaf780b
MCC
591
592 /* ask what device type on this row */
d7de2bdb 593 if (MTR_DRAM_WIDTH(mtr)) {
3b330f67 594 debugf2("\t\tScrub algorithm for x8 is on %s mode\n",
d7de2bdb
MCC
595 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
596 "enhanced" : "normal");
597
fcaf780b 598 p_csrow->dtype = DEV_X8;
d7de2bdb 599 } else
fcaf780b
MCC
600 p_csrow->dtype = DEV_X4;
601
602 return mtr;
603}
604
605/*
606 * print_dimm_size
607 *
608 * also will output a DIMM matrix map, if debug is enabled, for viewing
609 * how the DIMMs are populated
610 */
611static void print_dimm_size(struct i7300_pvt *pvt)
612{
613 struct i7300_dimm_info *dinfo;
614 char *p, *mem_buffer;
615 int space, n;
616 int channel, slot;
617
618 space = PAGE_SIZE;
619 mem_buffer = p = kmalloc(space, GFP_KERNEL);
620 if (p == NULL) {
621 i7300_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
622 __FILE__, __func__);
623 return;
624 }
625
626 n = snprintf(p, space, " ");
627 p += n;
628 space -= n;
629 for (channel = 0; channel < MAX_CHANNELS; channel++) {
630 n = snprintf(p, space, "channel %d | ", channel);
631 p += n;
632 space -= n;
633 }
634 debugf2("%s\n", mem_buffer);
635 p = mem_buffer;
636 space = PAGE_SIZE;
637 n = snprintf(p, space, "-------------------------------"
638 "------------------------------");
639 p += n;
640 space -= n;
641 debugf2("%s\n", mem_buffer);
642 p = mem_buffer;
643 space = PAGE_SIZE;
644
645 for (slot = 0; slot < MAX_SLOTS; slot++) {
646 n = snprintf(p, space, "csrow/SLOT %d ", slot);
647 p += n;
648 space -= n;
649
650 for (channel = 0; channel < MAX_CHANNELS; channel++) {
651 dinfo = &pvt->dimm_info[slot][channel];
652 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
653 p += n;
654 space -= n;
655 }
656
657 debugf2("%s\n", mem_buffer);
658 p = mem_buffer;
659 space = PAGE_SIZE;
660 }
661
662 n = snprintf(p, space, "-------------------------------"
663 "------------------------------");
664 p += n;
665 space -= n;
666 debugf2("%s\n", mem_buffer);
667 p = mem_buffer;
668 space = PAGE_SIZE;
669
670 kfree(mem_buffer);
671}
672
673/*
674 * i7300_init_csrows Initialize the 'csrows' table within
675 * the mci control structure with the
676 * addressing of memory.
677 *
678 * return:
679 * 0 success
680 * 1 no actual memory found on this MC
681 */
682static int i7300_init_csrows(struct mem_ctl_info *mci)
683{
684 struct i7300_pvt *pvt;
685 struct i7300_dimm_info *dinfo;
686 struct csrow_info *p_csrow;
687 int empty;
688 int mtr;
689 int ch, branch, slot, channel;
690
691 pvt = mci->pvt_info;
692
693 empty = 1; /* Assume NO memory */
694
695 debugf2("Memory Technology Registers:\n");
696
697 /* Get the AMB present registers for the four channels */
698 for (branch = 0; branch < MAX_BRANCHES; branch++) {
699 /* Read and dump branch 0's MTRs */
700 channel = to_channel(0, branch);
3e57eef6 701 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_0,
fcaf780b
MCC
702 &pvt->ambpresent[channel]);
703 debugf2("\t\tAMB-present CH%d = 0x%x:\n",
704 channel, pvt->ambpresent[channel]);
705
706 channel = to_channel(1, branch);
3e57eef6 707 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_1,
fcaf780b
MCC
708 &pvt->ambpresent[channel]);
709 debugf2("\t\tAMB-present CH%d = 0x%x:\n",
710 channel, pvt->ambpresent[channel]);
711 }
712
713 /* Get the set of MTR[0-7] regs by each branch */
714 for (slot = 0; slot < MAX_SLOTS; slot++) {
715 int where = mtr_regs[slot];
716 for (branch = 0; branch < MAX_BRANCHES; branch++) {
3e57eef6 717 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
fcaf780b
MCC
718 where,
719 &pvt->mtr[slot][branch]);
720 for (ch = 0; ch < MAX_BRANCHES; ch++) {
721 int channel = to_channel(ch, branch);
722
723 dinfo = &pvt->dimm_info[slot][channel];
724 p_csrow = &mci->csrows[slot];
725
726 mtr = decode_mtr(pvt, slot, ch, branch,
727 dinfo, p_csrow);
728 /* if no DIMMS on this row, continue */
729 if (!MTR_DIMMS_PRESENT(mtr))
730 continue;
731
732 p_csrow->csrow_idx = slot;
733
734 /* FAKE OUT VALUES, FIXME */
735 p_csrow->first_page = 0 + slot * 20;
736 p_csrow->last_page = 9 + slot * 20;
737 p_csrow->page_mask = 0xfff;
738
739 empty = 0;
740 }
741 }
742 }
743
744 return empty;
745}
746
747static void decode_mir(int mir_no, u16 mir[MAX_MIR])
748{
749 if (mir[mir_no] & 3)
750 debugf2("MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
751 mir_no,
752 (mir[mir_no] >> 4) & 0xfff,
753 (mir[mir_no] & 1) ? "B0" : "",
754 (mir[mir_no] & 2) ? "B1": "");
755}
756
757/*
758 * i7300_get_mc_regs read in the necessary registers and
759 * cache locally
760 *
761 * Fills in the private data members
762 */
763static int i7300_get_mc_regs(struct mem_ctl_info *mci)
764{
765 struct i7300_pvt *pvt;
766 u32 actual_tolm;
767 int i, rc;
768
769 pvt = mci->pvt_info;
770
3e57eef6 771 pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
fcaf780b
MCC
772 (u32 *) &pvt->ambase);
773
774 debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
775
776 /* Get the Branch Map regs */
3e57eef6 777 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
fcaf780b
MCC
778 pvt->tolm >>= 12;
779 debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
780 pvt->tolm);
781
782 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
783 debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
784 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
785
af3d8831 786 /* Get memory controller settings */
3e57eef6 787 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
af3d8831 788 &pvt->mc_settings);
bb81a216
MCC
789 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
790 &pvt->mc_settings_a);
d7de2bdb 791
bb81a216
MCC
792 if (IS_SINGLE_MODE(pvt->mc_settings_a))
793 debugf0("Memory controller operating on single mode\n");
794 else
795 debugf0("Memory controller operating on %s mode\n",
d7de2bdb 796 IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored");
bb81a216 797
af3d8831 798 debugf0("Error detection is %s\n",
d7de2bdb
MCC
799 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
800 debugf0("Retry is %s\n",
801 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
af3d8831
MCC
802
803 /* Get Memory Interleave Range registers */
3e57eef6
MCC
804 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0, &pvt->mir[0]);
805 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1, &pvt->mir[1]);
806 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2, &pvt->mir[2]);
fcaf780b
MCC
807
808 /* Decode the MIR regs */
809 for (i = 0; i < MAX_MIR; i++)
810 decode_mir(i, pvt->mir);
811
812 rc = i7300_init_csrows(mci);
813 if (rc < 0)
814 return rc;
815
816 /* Go and determine the size of each DIMM and place in an
817 * orderly matrix */
818 print_dimm_size(pvt);
819
820 return 0;
821}
822
5de6e07e
MCC
823/*************************************************
824 * i7300 Functions related to device probe/release
825 *************************************************/
826
fcaf780b
MCC
827/*
828 * i7300_put_devices 'put' all the devices that we have
829 * reserved via 'get'
830 */
831static void i7300_put_devices(struct mem_ctl_info *mci)
832{
833 struct i7300_pvt *pvt;
834 int branch;
835
836 pvt = mci->pvt_info;
837
838 /* Decrement usage count for devices */
839 for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
3e57eef6
MCC
840 pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
841 pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
842 pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
fcaf780b
MCC
843}
844
845/*
846 * i7300_get_devices Find and perform 'get' operation on the MCH's
847 * device/functions we want to reference for this driver
848 *
849 * Need to 'get' device 16 func 1 and func 2
850 */
851static int i7300_get_devices(struct mem_ctl_info *mci, int dev_idx)
852{
853 struct i7300_pvt *pvt;
854 struct pci_dev *pdev;
855
856 pvt = mci->pvt_info;
857
858 /* Attempt to 'get' the MCH register we want */
859 pdev = NULL;
3e57eef6 860 while (!pvt->pci_dev_16_1_fsb_addr_map || !pvt->pci_dev_16_2_fsb_err_regs) {
fcaf780b
MCC
861 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
862 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
863 if (!pdev) {
864 /* End of list, leave */
865 i7300_printk(KERN_ERR,
866 "'system address,Process Bus' "
867 "device not found:"
868 "vendor 0x%x device 0x%x ERR funcs "
869 "(broken BIOS?)\n",
870 PCI_VENDOR_ID_INTEL,
871 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
872 goto error;
873 }
874
875 /* Store device 16 funcs 1 and 2 */
876 switch (PCI_FUNC(pdev->devfn)) {
877 case 1:
3e57eef6 878 pvt->pci_dev_16_1_fsb_addr_map = pdev;
fcaf780b
MCC
879 break;
880 case 2:
3e57eef6 881 pvt->pci_dev_16_2_fsb_err_regs = pdev;
fcaf780b
MCC
882 break;
883 }
884 }
885
886 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
3e57eef6
MCC
887 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
888 pvt->pci_dev_16_0_fsb_ctlr->vendor, pvt->pci_dev_16_0_fsb_ctlr->device);
fcaf780b 889 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
3e57eef6
MCC
890 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
891 pvt->pci_dev_16_1_fsb_addr_map->vendor, pvt->pci_dev_16_1_fsb_addr_map->device);
fcaf780b 892 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
3e57eef6
MCC
893 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
894 pvt->pci_dev_16_2_fsb_err_regs->vendor, pvt->pci_dev_16_2_fsb_err_regs->device);
fcaf780b 895
3e57eef6 896 pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
fcaf780b
MCC
897 PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
898 NULL);
3e57eef6 899 if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
fcaf780b
MCC
900 i7300_printk(KERN_ERR,
901 "MC: 'BRANCH 0' device not found:"
902 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
903 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
904 goto error;
905 }
906
3e57eef6 907 pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
fcaf780b
MCC
908 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
909 NULL);
3e57eef6 910 if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
fcaf780b
MCC
911 i7300_printk(KERN_ERR,
912 "MC: 'BRANCH 1' device not found:"
913 "vendor 0x%x device 0x%x Func 0 "
914 "(broken BIOS?)\n",
915 PCI_VENDOR_ID_INTEL,
916 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
917 goto error;
918 }
919
920 return 0;
921
922error:
923 i7300_put_devices(mci);
924 return -ENODEV;
925}
926
927/*
928 * i7300_probe1 Probe for ONE instance of device to see if it is
929 * present.
930 * return:
931 * 0 for FOUND a device
932 * < 0 for error code
933 */
934static int i7300_probe1(struct pci_dev *pdev, int dev_idx)
935{
936 struct mem_ctl_info *mci;
937 struct i7300_pvt *pvt;
938 int num_channels;
939 int num_dimms_per_channel;
940 int num_csrows;
941
942 if (dev_idx >= ARRAY_SIZE(i7300_devs))
943 return -EINVAL;
944
945 debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
946 __func__,
947 pdev->bus->number,
948 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
949
950 /* We only are looking for func 0 of the set */
951 if (PCI_FUNC(pdev->devfn) != 0)
952 return -ENODEV;
953
954 /* As we don't have a motherboard identification routine to determine
955 * actual number of slots/dimms per channel, we thus utilize the
956 * resource as specified by the chipset. Thus, we might have
957 * have more DIMMs per channel than actually on the mobo, but this
958 * allows the driver to support upto the chipset max, without
959 * some fancy mobo determination.
960 */
961 num_dimms_per_channel = MAX_SLOTS;
962 num_channels = MAX_CHANNELS;
963 num_csrows = MAX_SLOTS * MAX_CHANNELS;
964
965 debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
966 __func__, num_channels, num_dimms_per_channel, num_csrows);
967
968 /* allocate a new MC control structure */
969 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
970
971 if (mci == NULL)
972 return -ENOMEM;
973
974 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
975
976 mci->dev = &pdev->dev; /* record ptr to the generic device */
977
978 pvt = mci->pvt_info;
3e57eef6 979 pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
fcaf780b
MCC
980
981 /* 'get' the pci devices we want to reserve for our use */
982 if (i7300_get_devices(mci, dev_idx))
983 goto fail0;
984
985 mci->mc_idx = 0;
986 mci->mtype_cap = MEM_FLAG_FB_DDR2;
987 mci->edac_ctl_cap = EDAC_FLAG_NONE;
988 mci->edac_cap = EDAC_FLAG_NONE;
989 mci->mod_name = "i7300_edac.c";
990 mci->mod_ver = I7300_REVISION;
991 mci->ctl_name = i7300_devs[dev_idx].ctl_name;
992 mci->dev_name = pci_name(pdev);
993 mci->ctl_page_to_phys = NULL;
994
fcaf780b
MCC
995 /* Set the function pointer to an actual operation function */
996 mci->edac_check = i7300_check_error;
fcaf780b
MCC
997
998 /* initialize the MC control structure 'csrows' table
999 * with the mapping and control information */
1000 if (i7300_get_mc_regs(mci)) {
1001 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1002 " because i7300_init_csrows() returned nonzero "
1003 "value\n");
1004 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1005 } else {
fcaf780b
MCC
1006 debugf1("MC: Enable error reporting now\n");
1007 i7300_enable_error_reporting(mci);
fcaf780b
MCC
1008 }
1009
1010 /* add this new MC control structure to EDAC's list of MCs */
1011 if (edac_mc_add_mc(mci)) {
1012 debugf0("MC: " __FILE__
1013 ": %s(): failed edac_mc_add_mc()\n", __func__);
1014 /* FIXME: perhaps some code should go here that disables error
1015 * reporting if we just enabled it
1016 */
1017 goto fail1;
1018 }
1019
fcaf780b 1020 i7300_clear_error(mci);
fcaf780b
MCC
1021
1022 /* allocating generic PCI control info */
1023 i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1024 if (!i7300_pci) {
1025 printk(KERN_WARNING
1026 "%s(): Unable to create PCI control\n",
1027 __func__);
1028 printk(KERN_WARNING
1029 "%s(): PCI error report via EDAC not setup\n",
1030 __func__);
1031 }
1032
1033 return 0;
1034
1035 /* Error exit unwinding stack */
1036fail1:
1037
1038 i7300_put_devices(mci);
1039
1040fail0:
1041 edac_mc_free(mci);
1042 return -ENODEV;
1043}
1044
1045/*
1046 * i7300_init_one constructor for one instance of device
1047 *
1048 * returns:
1049 * negative on error
1050 * count (>= 0)
1051 */
1052static int __devinit i7300_init_one(struct pci_dev *pdev,
1053 const struct pci_device_id *id)
1054{
1055 int rc;
1056
1057 debugf0("MC: " __FILE__ ": %s()\n", __func__);
1058
1059 /* wake up device */
1060 rc = pci_enable_device(pdev);
1061 if (rc == -EIO)
1062 return rc;
1063
1064 /* now probe and enable the device */
1065 return i7300_probe1(pdev, id->driver_data);
1066}
1067
1068/*
1069 * i7300_remove_one destructor for one instance of device
1070 *
1071 */
1072static void __devexit i7300_remove_one(struct pci_dev *pdev)
1073{
1074 struct mem_ctl_info *mci;
1075
1076 debugf0(__FILE__ ": %s()\n", __func__);
1077
1078 if (i7300_pci)
1079 edac_pci_release_generic_ctl(i7300_pci);
1080
1081 mci = edac_mc_del_mc(&pdev->dev);
1082 if (!mci)
1083 return;
1084
1085 /* retrieve references to resources, and free those resources */
1086 i7300_put_devices(mci);
1087
1088 edac_mc_free(mci);
1089}
1090
1091/*
1092 * pci_device_id table for which devices we are looking for
1093 *
1094 * The "E500P" device is the first device supported.
1095 */
1096static const struct pci_device_id i7300_pci_tbl[] __devinitdata = {
1097 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1098 {0,} /* 0 terminated list. */
1099};
1100
1101MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1102
1103/*
1104 * i7300_driver pci_driver structure for this module
1105 *
1106 */
1107static struct pci_driver i7300_driver = {
1108 .name = "i7300_edac",
1109 .probe = i7300_init_one,
1110 .remove = __devexit_p(i7300_remove_one),
1111 .id_table = i7300_pci_tbl,
1112};
1113
1114/*
1115 * i7300_init Module entry function
1116 * Try to initialize this module for its devices
1117 */
1118static int __init i7300_init(void)
1119{
1120 int pci_rc;
1121
1122 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1123
1124 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1125 opstate_init();
1126
1127 pci_rc = pci_register_driver(&i7300_driver);
1128
1129 return (pci_rc < 0) ? pci_rc : 0;
1130}
1131
1132/*
1133 * i7300_exit() Module exit function
1134 * Unregister the driver
1135 */
1136static void __exit i7300_exit(void)
1137{
1138 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1139 pci_unregister_driver(&i7300_driver);
1140}
1141
1142module_init(i7300_init);
1143module_exit(i7300_exit);
1144
1145MODULE_LICENSE("GPL");
1146MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1147MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1148MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1149 I7300_REVISION);
1150
1151module_param(edac_op_state, int, 0444);
1152MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.087271 seconds and 5 git commands to generate.