firewire: fw-ohci: log regAccessFail events
[deliverable/linux.git] / drivers / firewire / fw-ohci.c
CommitLineData
c781c06d
KH
1/*
2 * Driver for OHCI 1394 controllers
ed568912 3 *
ed568912
KH
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
e524f616 21#include <linux/compiler.h>
ed568912 22#include <linux/delay.h>
cf3e72fd 23#include <linux/dma-mapping.h>
c26f0234 24#include <linux/gfp.h>
a7fb60db
SR
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/kernel.h>
faa2fb4e 28#include <linux/mm.h>
a7fb60db 29#include <linux/module.h>
ad3c0fe8 30#include <linux/moduleparam.h>
a7fb60db 31#include <linux/pci.h>
c26f0234 32#include <linux/spinlock.h>
cf3e72fd 33
c26f0234 34#include <asm/page.h>
ee71c2f9 35#include <asm/system.h>
ed568912 36
ea8d006b
SR
37#ifdef CONFIG_PPC_PMAC
38#include <asm/pmac_feature.h>
39#endif
40
ed568912 41#include "fw-ohci.h"
a7fb60db 42#include "fw-transaction.h"
ed568912 43
a77754a7
KH
44#define DESCRIPTOR_OUTPUT_MORE 0
45#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
46#define DESCRIPTOR_INPUT_MORE (2 << 12)
47#define DESCRIPTOR_INPUT_LAST (3 << 12)
48#define DESCRIPTOR_STATUS (1 << 11)
49#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
50#define DESCRIPTOR_PING (1 << 7)
51#define DESCRIPTOR_YY (1 << 6)
52#define DESCRIPTOR_NO_IRQ (0 << 4)
53#define DESCRIPTOR_IRQ_ERROR (1 << 4)
54#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
55#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
56#define DESCRIPTOR_WAIT (3 << 0)
ed568912
KH
57
58struct descriptor {
59 __le16 req_count;
60 __le16 control;
61 __le32 data_address;
62 __le32 branch_address;
63 __le16 res_count;
64 __le16 transfer_status;
65} __attribute__((aligned(16)));
66
295e3feb
KH
67struct db_descriptor {
68 __le16 first_size;
69 __le16 control;
70 __le16 second_req_count;
71 __le16 first_req_count;
72 __le32 branch_address;
73 __le16 second_res_count;
74 __le16 first_res_count;
75 __le32 reserved0;
76 __le32 first_buffer;
77 __le32 second_buffer;
78 __le32 reserved1;
79} __attribute__((aligned(16)));
80
a77754a7
KH
81#define CONTROL_SET(regs) (regs)
82#define CONTROL_CLEAR(regs) ((regs) + 4)
83#define COMMAND_PTR(regs) ((regs) + 12)
84#define CONTEXT_MATCH(regs) ((regs) + 16)
72e318e0 85
32b46093 86struct ar_buffer {
ed568912 87 struct descriptor descriptor;
32b46093
KH
88 struct ar_buffer *next;
89 __le32 data[0];
90};
ed568912 91
32b46093
KH
92struct ar_context {
93 struct fw_ohci *ohci;
94 struct ar_buffer *current_buffer;
95 struct ar_buffer *last_buffer;
96 void *pointer;
72e318e0 97 u32 regs;
ed568912
KH
98 struct tasklet_struct tasklet;
99};
100
30200739
KH
101struct context;
102
103typedef int (*descriptor_callback_t)(struct context *ctx,
104 struct descriptor *d,
105 struct descriptor *last);
fe5ca634
DM
106
107/*
108 * A buffer that contains a block of DMA-able coherent memory used for
109 * storing a portion of a DMA descriptor program.
110 */
111struct descriptor_buffer {
112 struct list_head list;
113 dma_addr_t buffer_bus;
114 size_t buffer_size;
115 size_t used;
116 struct descriptor buffer[0];
117};
118
30200739 119struct context {
373b2edd 120 struct fw_ohci *ohci;
30200739 121 u32 regs;
fe5ca634 122 int total_allocation;
373b2edd 123
fe5ca634
DM
124 /*
125 * List of page-sized buffers for storing DMA descriptors.
126 * Head of list contains buffers in use and tail of list contains
127 * free buffers.
128 */
129 struct list_head buffer_list;
130
131 /*
132 * Pointer to a buffer inside buffer_list that contains the tail
133 * end of the current DMA program.
134 */
135 struct descriptor_buffer *buffer_tail;
136
137 /*
138 * The descriptor containing the branch address of the first
139 * descriptor that has not yet been filled by the device.
140 */
141 struct descriptor *last;
142
143 /*
144 * The last descriptor in the DMA program. It contains the branch
145 * address that must be updated upon appending a new descriptor.
146 */
147 struct descriptor *prev;
30200739
KH
148
149 descriptor_callback_t callback;
150
373b2edd 151 struct tasklet_struct tasklet;
30200739 152};
30200739 153
a77754a7
KH
154#define IT_HEADER_SY(v) ((v) << 0)
155#define IT_HEADER_TCODE(v) ((v) << 4)
156#define IT_HEADER_CHANNEL(v) ((v) << 8)
157#define IT_HEADER_TAG(v) ((v) << 14)
158#define IT_HEADER_SPEED(v) ((v) << 16)
159#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
ed568912
KH
160
161struct iso_context {
162 struct fw_iso_context base;
30200739 163 struct context context;
0642b657 164 int excess_bytes;
9b32d5f3
KH
165 void *header;
166 size_t header_length;
ed568912
KH
167};
168
169#define CONFIG_ROM_SIZE 1024
170
171struct fw_ohci {
172 struct fw_card card;
173
e364cf4e 174 u32 version;
ed568912
KH
175 __iomem char *registers;
176 dma_addr_t self_id_bus;
177 __le32 *self_id_cpu;
178 struct tasklet_struct bus_reset_tasklet;
e636fe25 179 int node_id;
ed568912
KH
180 int generation;
181 int request_generation;
d60d7f1d 182 u32 bus_seconds;
11bf20ad 183 bool old_uninorth;
ed568912 184
c781c06d
KH
185 /*
186 * Spinlock for accessing fw_ohci data. Never call out of
187 * this driver with this lock held.
188 */
ed568912
KH
189 spinlock_t lock;
190 u32 self_id_buffer[512];
191
192 /* Config rom buffers */
193 __be32 *config_rom;
194 dma_addr_t config_rom_bus;
195 __be32 *next_config_rom;
196 dma_addr_t next_config_rom_bus;
197 u32 next_header;
198
199 struct ar_context ar_request_ctx;
200 struct ar_context ar_response_ctx;
f319b6a0
KH
201 struct context at_request_ctx;
202 struct context at_response_ctx;
ed568912
KH
203
204 u32 it_context_mask;
205 struct iso_context *it_context_list;
206 u32 ir_context_mask;
207 struct iso_context *ir_context_list;
208};
209
95688e97 210static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
211{
212 return container_of(card, struct fw_ohci, card);
213}
214
295e3feb
KH
215#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
216#define IR_CONTEXT_BUFFER_FILL 0x80000000
217#define IR_CONTEXT_ISOCH_HEADER 0x40000000
218#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
219#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
220#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
ed568912
KH
221
222#define CONTEXT_RUN 0x8000
223#define CONTEXT_WAKE 0x1000
224#define CONTEXT_DEAD 0x0800
225#define CONTEXT_ACTIVE 0x0400
226
227#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
228#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
229#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
230
231#define FW_OHCI_MAJOR 240
232#define OHCI1394_REGISTER_SIZE 0x800
233#define OHCI_LOOP_COUNT 500
234#define OHCI1394_PCI_HCI_Control 0x40
235#define SELF_ID_BUF_SIZE 0x800
32b46093 236#define OHCI_TCODE_PHY_PACKET 0x0e
e364cf4e 237#define OHCI_VERSION_1_1 0x010010
0edeefd9 238
ed568912
KH
239static char ohci_driver_name[] = KBUILD_MODNAME;
240
ad3c0fe8
SR
241#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
242
243#define OHCI_PARAM_DEBUG_IRQS 1
244#define OHCI_PARAM_DEBUG_SELFIDS 2
245#define OHCI_PARAM_DEBUG_AT_AR 4
246
247static int param_debug;
248module_param_named(debug, param_debug, int, 0644);
249MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
250 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
251 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
252 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
253 ", or a combination, or all = -1)");
254
255static void log_irqs(u32 evt)
256{
257 if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
258 return;
259
75f7832e 260 printk(KERN_DEBUG KBUILD_MODNAME ": IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s\n",
ad3c0fe8
SR
261 evt,
262 evt & OHCI1394_selfIDComplete ? " selfID" : "",
263 evt & OHCI1394_RQPkt ? " AR_req" : "",
264 evt & OHCI1394_RSPkt ? " AR_resp" : "",
265 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
266 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
267 evt & OHCI1394_isochRx ? " IR" : "",
268 evt & OHCI1394_isochTx ? " IT" : "",
269 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
270 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
271 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
75f7832e 272 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
ad3c0fe8
SR
273 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
274 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
275 OHCI1394_respTxComplete | OHCI1394_isochRx |
276 OHCI1394_isochTx | OHCI1394_postedWriteErr |
75f7832e
JW
277 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
278 OHCI1394_regAccessFail)
ad3c0fe8
SR
279 ? " ?" : "");
280}
281
282static const char *speed[] = {
283 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
284};
285static const char *power[] = {
286 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
287 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
288};
289static const char port[] = { '.', '-', 'p', 'c', };
290
291static char _p(u32 *s, int shift)
292{
293 return port[*s >> shift & 3];
294}
295
296static void log_selfids(int generation, int self_id_count, u32 *s)
297{
298 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
299 return;
300
301 printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d\n",
302 self_id_count, generation);
303
304 for (; self_id_count--; ++s)
305 if ((*s & 1 << 23) == 0)
306 printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
307 "%s gc=%d %s %s%s%s\n",
308 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
309 speed[*s >> 14 & 3], *s >> 16 & 63,
310 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
311 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
312 else
313 printk(KERN_DEBUG "selfID n: %08x, phy %d "
314 "[%c%c%c%c%c%c%c%c]\n",
315 *s, *s >> 24 & 63,
316 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
317 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
318}
319
320static const char *evts[] = {
321 [0x00] = "evt_no_status", [0x01] = "-reserved-",
322 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
323 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
324 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
325 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
326 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
327 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
328 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
329 [0x10] = "-reserved-", [0x11] = "ack_complete",
330 [0x12] = "ack_pending ", [0x13] = "-reserved-",
331 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
332 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
333 [0x18] = "-reserved-", [0x19] = "-reserved-",
334 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
335 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
336 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
337 [0x20] = "pending/cancelled",
338};
339static const char *tcodes[] = {
340 [0x0] = "QW req", [0x1] = "BW req",
341 [0x2] = "W resp", [0x3] = "-reserved-",
342 [0x4] = "QR req", [0x5] = "BR req",
343 [0x6] = "QR resp", [0x7] = "BR resp",
344 [0x8] = "cycle start", [0x9] = "Lk req",
345 [0xa] = "async stream packet", [0xb] = "Lk resp",
346 [0xc] = "-reserved-", [0xd] = "-reserved-",
347 [0xe] = "link internal", [0xf] = "-reserved-",
348};
349static const char *phys[] = {
350 [0x0] = "phy config packet", [0x1] = "link-on packet",
351 [0x2] = "self-id packet", [0x3] = "-reserved-",
352};
353
354static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
355{
356 int tcode = header[0] >> 4 & 0xf;
357 char specific[12];
358
359 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
360 return;
361
362 if (unlikely(evt >= ARRAY_SIZE(evts)))
363 evt = 0x1f;
364
365 if (header[0] == ~header[1]) {
366 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
367 dir, evts[evt], phys[header[0] >> 30 & 0x3],
368 header[0]);
369 return;
370 }
371
372 switch (tcode) {
373 case 0x0: case 0x6: case 0x8:
374 snprintf(specific, sizeof(specific), " = %08x",
375 be32_to_cpu((__force __be32)header[3]));
376 break;
377 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
378 snprintf(specific, sizeof(specific), " %x,%x",
379 header[3] >> 16, header[3] & 0xffff);
380 break;
381 default:
382 specific[0] = '\0';
383 }
384
385 switch (tcode) {
386 case 0xe: case 0xa:
387 printk(KERN_DEBUG "A%c %s, %s\n",
388 dir, evts[evt], tcodes[tcode]);
389 break;
390 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
391 printk(KERN_DEBUG "A%c spd %x tl %02x, "
392 "%04x -> %04x, %s, "
393 "%s, %04x%08x%s\n",
394 dir, speed, header[0] >> 10 & 0x3f,
395 header[1] >> 16, header[0] >> 16, evts[evt],
396 tcodes[tcode], header[1] & 0xffff, header[2], specific);
397 break;
398 default:
399 printk(KERN_DEBUG "A%c spd %x tl %02x, "
400 "%04x -> %04x, %s, "
401 "%s%s\n",
402 dir, speed, header[0] >> 10 & 0x3f,
403 header[1] >> 16, header[0] >> 16, evts[evt],
404 tcodes[tcode], specific);
405 }
406}
407
408#else
409
410#define log_irqs(evt)
411#define log_selfids(generation, self_id_count, sid)
412#define log_ar_at_event(dir, speed, header, evt)
413
414#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
415
95688e97 416static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
417{
418 writel(data, ohci->registers + offset);
419}
420
95688e97 421static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
422{
423 return readl(ohci->registers + offset);
424}
425
95688e97 426static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
427{
428 /* Do a dummy read to flush writes. */
429 reg_read(ohci, OHCI1394_Version);
430}
431
432static int
433ohci_update_phy_reg(struct fw_card *card, int addr,
434 int clear_bits, int set_bits)
435{
436 struct fw_ohci *ohci = fw_ohci(card);
437 u32 val, old;
438
439 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
362e901c 440 flush_writes(ohci);
ed568912
KH
441 msleep(2);
442 val = reg_read(ohci, OHCI1394_PhyControl);
443 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
444 fw_error("failed to set phy reg bits.\n");
445 return -EBUSY;
446 }
447
448 old = OHCI1394_PhyControl_ReadData(val);
449 old = (old & ~clear_bits) | set_bits;
450 reg_write(ohci, OHCI1394_PhyControl,
451 OHCI1394_PhyControl_Write(addr, old));
452
453 return 0;
454}
455
32b46093 456static int ar_context_add_page(struct ar_context *ctx)
ed568912 457{
32b46093
KH
458 struct device *dev = ctx->ohci->card.device;
459 struct ar_buffer *ab;
f5101d58 460 dma_addr_t uninitialized_var(ab_bus);
32b46093
KH
461 size_t offset;
462
bde1709a 463 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
32b46093
KH
464 if (ab == NULL)
465 return -ENOMEM;
466
2d826cc5 467 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
a77754a7
KH
468 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
469 DESCRIPTOR_STATUS |
470 DESCRIPTOR_BRANCH_ALWAYS);
32b46093
KH
471 offset = offsetof(struct ar_buffer, data);
472 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
473 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
474 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
475 ab->descriptor.branch_address = 0;
476
ec839e43 477 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
32b46093
KH
478 ctx->last_buffer->next = ab;
479 ctx->last_buffer = ab;
480
a77754a7 481 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
ed568912 482 flush_writes(ctx->ohci);
32b46093
KH
483
484 return 0;
ed568912
KH
485}
486
11bf20ad
SR
487#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
488#define cond_le32_to_cpu(v) \
489 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
490#else
491#define cond_le32_to_cpu(v) le32_to_cpu(v)
492#endif
493
32b46093 494static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 495{
ed568912 496 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
497 struct fw_packet p;
498 u32 status, length, tcode;
43286568 499 int evt;
2639a6fb 500
11bf20ad
SR
501 p.header[0] = cond_le32_to_cpu(buffer[0]);
502 p.header[1] = cond_le32_to_cpu(buffer[1]);
503 p.header[2] = cond_le32_to_cpu(buffer[2]);
2639a6fb
KH
504
505 tcode = (p.header[0] >> 4) & 0x0f;
506 switch (tcode) {
507 case TCODE_WRITE_QUADLET_REQUEST:
508 case TCODE_READ_QUADLET_RESPONSE:
32b46093 509 p.header[3] = (__force __u32) buffer[3];
2639a6fb 510 p.header_length = 16;
32b46093 511 p.payload_length = 0;
2639a6fb
KH
512 break;
513
2639a6fb 514 case TCODE_READ_BLOCK_REQUEST :
11bf20ad 515 p.header[3] = cond_le32_to_cpu(buffer[3]);
32b46093
KH
516 p.header_length = 16;
517 p.payload_length = 0;
518 break;
519
520 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
521 case TCODE_READ_BLOCK_RESPONSE:
522 case TCODE_LOCK_REQUEST:
523 case TCODE_LOCK_RESPONSE:
11bf20ad 524 p.header[3] = cond_le32_to_cpu(buffer[3]);
2639a6fb 525 p.header_length = 16;
32b46093 526 p.payload_length = p.header[3] >> 16;
2639a6fb
KH
527 break;
528
529 case TCODE_WRITE_RESPONSE:
530 case TCODE_READ_QUADLET_REQUEST:
32b46093 531 case OHCI_TCODE_PHY_PACKET:
2639a6fb 532 p.header_length = 12;
32b46093 533 p.payload_length = 0;
2639a6fb
KH
534 break;
535 }
ed568912 536
32b46093
KH
537 p.payload = (void *) buffer + p.header_length;
538
539 /* FIXME: What to do about evt_* errors? */
540 length = (p.header_length + p.payload_length + 3) / 4;
11bf20ad 541 status = cond_le32_to_cpu(buffer[length]);
43286568 542 evt = (status >> 16) & 0x1f;
32b46093 543
43286568 544 p.ack = evt - 16;
32b46093
KH
545 p.speed = (status >> 21) & 0x7;
546 p.timestamp = status & 0xffff;
547 p.generation = ohci->request_generation;
ed568912 548
43286568 549 log_ar_at_event('R', p.speed, p.header, evt);
ad3c0fe8 550
c781c06d
KH
551 /*
552 * The OHCI bus reset handler synthesizes a phy packet with
ed568912
KH
553 * the new generation number when a bus reset happens (see
554 * section 8.4.2.3). This helps us determine when a request
555 * was received and make sure we send the response in the same
556 * generation. We only need this for requests; for responses
557 * we use the unique tlabel for finding the matching
c781c06d
KH
558 * request.
559 */
ed568912 560
43286568 561 if (evt == OHCI1394_evt_bus_reset)
25df287d 562 ohci->request_generation = (p.header[2] >> 16) & 0xff;
ed568912 563 else if (ctx == &ohci->ar_request_ctx)
2639a6fb 564 fw_core_handle_request(&ohci->card, &p);
ed568912 565 else
2639a6fb 566 fw_core_handle_response(&ohci->card, &p);
ed568912 567
32b46093
KH
568 return buffer + length + 1;
569}
ed568912 570
32b46093
KH
571static void ar_context_tasklet(unsigned long data)
572{
573 struct ar_context *ctx = (struct ar_context *)data;
574 struct fw_ohci *ohci = ctx->ohci;
575 struct ar_buffer *ab;
576 struct descriptor *d;
577 void *buffer, *end;
578
579 ab = ctx->current_buffer;
580 d = &ab->descriptor;
581
582 if (d->res_count == 0) {
583 size_t size, rest, offset;
6b84236d
JW
584 dma_addr_t start_bus;
585 void *start;
32b46093 586
c781c06d
KH
587 /*
588 * This descriptor is finished and we may have a
32b46093 589 * packet split across this and the next buffer. We
c781c06d
KH
590 * reuse the page for reassembling the split packet.
591 */
32b46093
KH
592
593 offset = offsetof(struct ar_buffer, data);
6b84236d
JW
594 start = buffer = ab;
595 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
32b46093 596
32b46093
KH
597 ab = ab->next;
598 d = &ab->descriptor;
599 size = buffer + PAGE_SIZE - ctx->pointer;
600 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
601 memmove(buffer, ctx->pointer, size);
602 memcpy(buffer + size, ab->data, rest);
603 ctx->current_buffer = ab;
604 ctx->pointer = (void *) ab->data + rest;
605 end = buffer + size + rest;
606
607 while (buffer < end)
608 buffer = handle_ar_packet(ctx, buffer);
609
bde1709a 610 dma_free_coherent(ohci->card.device, PAGE_SIZE,
6b84236d 611 start, start_bus);
32b46093
KH
612 ar_context_add_page(ctx);
613 } else {
614 buffer = ctx->pointer;
615 ctx->pointer = end =
616 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
617
618 while (buffer < end)
619 buffer = handle_ar_packet(ctx, buffer);
620 }
ed568912
KH
621}
622
623static int
72e318e0 624ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
ed568912 625{
32b46093 626 struct ar_buffer ab;
ed568912 627
72e318e0
KH
628 ctx->regs = regs;
629 ctx->ohci = ohci;
630 ctx->last_buffer = &ab;
ed568912
KH
631 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
632
32b46093
KH
633 ar_context_add_page(ctx);
634 ar_context_add_page(ctx);
635 ctx->current_buffer = ab.next;
636 ctx->pointer = ctx->current_buffer->data;
637
2aef469a
KH
638 return 0;
639}
640
641static void ar_context_run(struct ar_context *ctx)
642{
643 struct ar_buffer *ab = ctx->current_buffer;
644 dma_addr_t ab_bus;
645 size_t offset;
646
647 offset = offsetof(struct ar_buffer, data);
0a9972ba 648 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
2aef469a
KH
649
650 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
a77754a7 651 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
32b46093 652 flush_writes(ctx->ohci);
ed568912 653}
373b2edd 654
a186b4a6
JW
655static struct descriptor *
656find_branch_descriptor(struct descriptor *d, int z)
657{
658 int b, key;
659
660 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
661 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
662
663 /* figure out which descriptor the branch address goes in */
664 if (z == 2 && (b == 3 || key == 2))
665 return d;
666 else
667 return d + z - 1;
668}
669
30200739
KH
670static void context_tasklet(unsigned long data)
671{
672 struct context *ctx = (struct context *) data;
30200739
KH
673 struct descriptor *d, *last;
674 u32 address;
675 int z;
fe5ca634 676 struct descriptor_buffer *desc;
30200739 677
fe5ca634
DM
678 desc = list_entry(ctx->buffer_list.next,
679 struct descriptor_buffer, list);
680 last = ctx->last;
30200739 681 while (last->branch_address != 0) {
fe5ca634 682 struct descriptor_buffer *old_desc = desc;
30200739
KH
683 address = le32_to_cpu(last->branch_address);
684 z = address & 0xf;
fe5ca634
DM
685 address &= ~0xf;
686
687 /* If the branch address points to a buffer outside of the
688 * current buffer, advance to the next buffer. */
689 if (address < desc->buffer_bus ||
690 address >= desc->buffer_bus + desc->used)
691 desc = list_entry(desc->list.next,
692 struct descriptor_buffer, list);
693 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
a186b4a6 694 last = find_branch_descriptor(d, z);
30200739
KH
695
696 if (!ctx->callback(ctx, d, last))
697 break;
698
fe5ca634
DM
699 if (old_desc != desc) {
700 /* If we've advanced to the next buffer, move the
701 * previous buffer to the free list. */
702 unsigned long flags;
703 old_desc->used = 0;
704 spin_lock_irqsave(&ctx->ohci->lock, flags);
705 list_move_tail(&old_desc->list, &ctx->buffer_list);
706 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
707 }
708 ctx->last = last;
30200739
KH
709 }
710}
711
fe5ca634
DM
712/*
713 * Allocate a new buffer and add it to the list of free buffers for this
714 * context. Must be called with ohci->lock held.
715 */
716static int
717context_add_buffer(struct context *ctx)
718{
719 struct descriptor_buffer *desc;
f5101d58 720 dma_addr_t uninitialized_var(bus_addr);
fe5ca634
DM
721 int offset;
722
723 /*
724 * 16MB of descriptors should be far more than enough for any DMA
725 * program. This will catch run-away userspace or DoS attacks.
726 */
727 if (ctx->total_allocation >= 16*1024*1024)
728 return -ENOMEM;
729
730 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
731 &bus_addr, GFP_ATOMIC);
732 if (!desc)
733 return -ENOMEM;
734
735 offset = (void *)&desc->buffer - (void *)desc;
736 desc->buffer_size = PAGE_SIZE - offset;
737 desc->buffer_bus = bus_addr + offset;
738 desc->used = 0;
739
740 list_add_tail(&desc->list, &ctx->buffer_list);
741 ctx->total_allocation += PAGE_SIZE;
742
743 return 0;
744}
745
30200739
KH
746static int
747context_init(struct context *ctx, struct fw_ohci *ohci,
fe5ca634 748 u32 regs, descriptor_callback_t callback)
30200739
KH
749{
750 ctx->ohci = ohci;
751 ctx->regs = regs;
fe5ca634
DM
752 ctx->total_allocation = 0;
753
754 INIT_LIST_HEAD(&ctx->buffer_list);
755 if (context_add_buffer(ctx) < 0)
30200739
KH
756 return -ENOMEM;
757
fe5ca634
DM
758 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
759 struct descriptor_buffer, list);
760
30200739
KH
761 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
762 ctx->callback = callback;
763
c781c06d
KH
764 /*
765 * We put a dummy descriptor in the buffer that has a NULL
30200739 766 * branch address and looks like it's been sent. That way we
fe5ca634 767 * have a descriptor to append DMA programs to.
c781c06d 768 */
fe5ca634
DM
769 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
770 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
771 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
772 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
773 ctx->last = ctx->buffer_tail->buffer;
774 ctx->prev = ctx->buffer_tail->buffer;
30200739
KH
775
776 return 0;
777}
778
9b32d5f3 779static void
30200739
KH
780context_release(struct context *ctx)
781{
782 struct fw_card *card = &ctx->ohci->card;
fe5ca634 783 struct descriptor_buffer *desc, *tmp;
30200739 784
fe5ca634
DM
785 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
786 dma_free_coherent(card->device, PAGE_SIZE, desc,
787 desc->buffer_bus -
788 ((void *)&desc->buffer - (void *)desc));
30200739
KH
789}
790
fe5ca634 791/* Must be called with ohci->lock held */
30200739
KH
792static struct descriptor *
793context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
794{
fe5ca634
DM
795 struct descriptor *d = NULL;
796 struct descriptor_buffer *desc = ctx->buffer_tail;
797
798 if (z * sizeof(*d) > desc->buffer_size)
799 return NULL;
800
801 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
802 /* No room for the descriptor in this buffer, so advance to the
803 * next one. */
30200739 804
fe5ca634
DM
805 if (desc->list.next == &ctx->buffer_list) {
806 /* If there is no free buffer next in the list,
807 * allocate one. */
808 if (context_add_buffer(ctx) < 0)
809 return NULL;
810 }
811 desc = list_entry(desc->list.next,
812 struct descriptor_buffer, list);
813 ctx->buffer_tail = desc;
814 }
30200739 815
fe5ca634 816 d = desc->buffer + desc->used / sizeof(*d);
2d826cc5 817 memset(d, 0, z * sizeof(*d));
fe5ca634 818 *d_bus = desc->buffer_bus + desc->used;
30200739
KH
819
820 return d;
821}
822
295e3feb 823static void context_run(struct context *ctx, u32 extra)
30200739
KH
824{
825 struct fw_ohci *ohci = ctx->ohci;
826
a77754a7 827 reg_write(ohci, COMMAND_PTR(ctx->regs),
fe5ca634 828 le32_to_cpu(ctx->last->branch_address));
a77754a7
KH
829 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
830 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
30200739
KH
831 flush_writes(ohci);
832}
833
834static void context_append(struct context *ctx,
835 struct descriptor *d, int z, int extra)
836{
837 dma_addr_t d_bus;
fe5ca634 838 struct descriptor_buffer *desc = ctx->buffer_tail;
30200739 839
fe5ca634 840 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
30200739 841
fe5ca634
DM
842 desc->used += (z + extra) * sizeof(*d);
843 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
844 ctx->prev = find_branch_descriptor(d, z);
30200739 845
a77754a7 846 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
30200739
KH
847 flush_writes(ctx->ohci);
848}
849
850static void context_stop(struct context *ctx)
851{
852 u32 reg;
b8295668 853 int i;
30200739 854
a77754a7 855 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
b8295668 856 flush_writes(ctx->ohci);
30200739 857
b8295668 858 for (i = 0; i < 10; i++) {
a77754a7 859 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
b8295668
KH
860 if ((reg & CONTEXT_ACTIVE) == 0)
861 break;
862
863 fw_notify("context_stop: still active (0x%08x)\n", reg);
b980f5a2 864 mdelay(1);
b8295668 865 }
30200739 866}
ed568912 867
f319b6a0
KH
868struct driver_data {
869 struct fw_packet *packet;
870};
ed568912 871
c781c06d
KH
872/*
873 * This function apppends a packet to the DMA queue for transmission.
f319b6a0 874 * Must always be called with the ochi->lock held to ensure proper
c781c06d
KH
875 * generation handling and locking around packet queue manipulation.
876 */
f319b6a0
KH
877static int
878at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
ed568912 879{
ed568912 880 struct fw_ohci *ohci = ctx->ohci;
4b6d51ec 881 dma_addr_t d_bus, uninitialized_var(payload_bus);
f319b6a0
KH
882 struct driver_data *driver_data;
883 struct descriptor *d, *last;
884 __le32 *header;
ed568912 885 int z, tcode;
f319b6a0 886 u32 reg;
ed568912 887
f319b6a0
KH
888 d = context_get_descriptors(ctx, 4, &d_bus);
889 if (d == NULL) {
890 packet->ack = RCODE_SEND_ERROR;
891 return -1;
ed568912
KH
892 }
893
a77754a7 894 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
f319b6a0
KH
895 d[0].res_count = cpu_to_le16(packet->timestamp);
896
c781c06d
KH
897 /*
898 * The DMA format for asyncronous link packets is different
ed568912
KH
899 * from the IEEE1394 layout, so shift the fields around
900 * accordingly. If header_length is 8, it's a PHY packet, to
c781c06d
KH
901 * which we need to prepend an extra quadlet.
902 */
f319b6a0
KH
903
904 header = (__le32 *) &d[1];
ed568912 905 if (packet->header_length > 8) {
f319b6a0
KH
906 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
907 (packet->speed << 16));
908 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
909 (packet->header[0] & 0xffff0000));
910 header[2] = cpu_to_le32(packet->header[2]);
ed568912
KH
911
912 tcode = (packet->header[0] >> 4) & 0x0f;
913 if (TCODE_IS_BLOCK_PACKET(tcode))
f319b6a0 914 header[3] = cpu_to_le32(packet->header[3]);
ed568912 915 else
f319b6a0
KH
916 header[3] = (__force __le32) packet->header[3];
917
918 d[0].req_count = cpu_to_le16(packet->header_length);
ed568912 919 } else {
f319b6a0
KH
920 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
921 (packet->speed << 16));
922 header[1] = cpu_to_le32(packet->header[0]);
923 header[2] = cpu_to_le32(packet->header[1]);
924 d[0].req_count = cpu_to_le16(12);
ed568912
KH
925 }
926
f319b6a0
KH
927 driver_data = (struct driver_data *) &d[3];
928 driver_data->packet = packet;
20d11673 929 packet->driver_data = driver_data;
a186b4a6 930
f319b6a0
KH
931 if (packet->payload_length > 0) {
932 payload_bus =
933 dma_map_single(ohci->card.device, packet->payload,
934 packet->payload_length, DMA_TO_DEVICE);
935 if (dma_mapping_error(payload_bus)) {
936 packet->ack = RCODE_SEND_ERROR;
937 return -1;
938 }
939
940 d[2].req_count = cpu_to_le16(packet->payload_length);
941 d[2].data_address = cpu_to_le32(payload_bus);
942 last = &d[2];
943 z = 3;
ed568912 944 } else {
f319b6a0
KH
945 last = &d[0];
946 z = 2;
ed568912 947 }
ed568912 948
a77754a7
KH
949 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
950 DESCRIPTOR_IRQ_ALWAYS |
951 DESCRIPTOR_BRANCH_ALWAYS);
ed568912 952
f319b6a0
KH
953 /* FIXME: Document how the locking works. */
954 if (ohci->generation != packet->generation) {
ab88ca48
SR
955 if (packet->payload_length > 0)
956 dma_unmap_single(ohci->card.device, payload_bus,
957 packet->payload_length, DMA_TO_DEVICE);
f319b6a0
KH
958 packet->ack = RCODE_GENERATION;
959 return -1;
960 }
961
962 context_append(ctx, d, z, 4 - z);
ed568912 963
f319b6a0 964 /* If the context isn't already running, start it up. */
a77754a7 965 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
053b3080 966 if ((reg & CONTEXT_RUN) == 0)
f319b6a0
KH
967 context_run(ctx, 0);
968
969 return 0;
ed568912
KH
970}
971
f319b6a0
KH
972static int handle_at_packet(struct context *context,
973 struct descriptor *d,
974 struct descriptor *last)
ed568912 975{
f319b6a0 976 struct driver_data *driver_data;
ed568912 977 struct fw_packet *packet;
f319b6a0
KH
978 struct fw_ohci *ohci = context->ohci;
979 dma_addr_t payload_bus;
ed568912
KH
980 int evt;
981
f319b6a0
KH
982 if (last->transfer_status == 0)
983 /* This descriptor isn't done yet, stop iteration. */
984 return 0;
ed568912 985
f319b6a0
KH
986 driver_data = (struct driver_data *) &d[3];
987 packet = driver_data->packet;
988 if (packet == NULL)
989 /* This packet was cancelled, just continue. */
990 return 1;
730c32f5 991
f319b6a0
KH
992 payload_bus = le32_to_cpu(last->data_address);
993 if (payload_bus != 0)
994 dma_unmap_single(ohci->card.device, payload_bus,
ed568912 995 packet->payload_length, DMA_TO_DEVICE);
ed568912 996
f319b6a0
KH
997 evt = le16_to_cpu(last->transfer_status) & 0x1f;
998 packet->timestamp = le16_to_cpu(last->res_count);
ed568912 999
ad3c0fe8
SR
1000 log_ar_at_event('T', packet->speed, packet->header, evt);
1001
f319b6a0
KH
1002 switch (evt) {
1003 case OHCI1394_evt_timeout:
1004 /* Async response transmit timed out. */
1005 packet->ack = RCODE_CANCELLED;
1006 break;
ed568912 1007
f319b6a0 1008 case OHCI1394_evt_flushed:
c781c06d
KH
1009 /*
1010 * The packet was flushed should give same error as
1011 * when we try to use a stale generation count.
1012 */
f319b6a0
KH
1013 packet->ack = RCODE_GENERATION;
1014 break;
ed568912 1015
f319b6a0 1016 case OHCI1394_evt_missing_ack:
c781c06d
KH
1017 /*
1018 * Using a valid (current) generation count, but the
1019 * node is not on the bus or not sending acks.
1020 */
f319b6a0
KH
1021 packet->ack = RCODE_NO_ACK;
1022 break;
ed568912 1023
f319b6a0
KH
1024 case ACK_COMPLETE + 0x10:
1025 case ACK_PENDING + 0x10:
1026 case ACK_BUSY_X + 0x10:
1027 case ACK_BUSY_A + 0x10:
1028 case ACK_BUSY_B + 0x10:
1029 case ACK_DATA_ERROR + 0x10:
1030 case ACK_TYPE_ERROR + 0x10:
1031 packet->ack = evt - 0x10;
1032 break;
ed568912 1033
f319b6a0
KH
1034 default:
1035 packet->ack = RCODE_SEND_ERROR;
1036 break;
1037 }
ed568912 1038
f319b6a0 1039 packet->callback(packet, &ohci->card, packet->ack);
ed568912 1040
f319b6a0 1041 return 1;
ed568912
KH
1042}
1043
a77754a7
KH
1044#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1045#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1046#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1047#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1048#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
93c4cceb
KH
1049
1050static void
1051handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1052{
1053 struct fw_packet response;
1054 int tcode, length, i;
1055
a77754a7 1056 tcode = HEADER_GET_TCODE(packet->header[0]);
93c4cceb 1057 if (TCODE_IS_BLOCK_PACKET(tcode))
a77754a7 1058 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb
KH
1059 else
1060 length = 4;
1061
1062 i = csr - CSR_CONFIG_ROM;
1063 if (i + length > CONFIG_ROM_SIZE) {
1064 fw_fill_response(&response, packet->header,
1065 RCODE_ADDRESS_ERROR, NULL, 0);
1066 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1067 fw_fill_response(&response, packet->header,
1068 RCODE_TYPE_ERROR, NULL, 0);
1069 } else {
1070 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1071 (void *) ohci->config_rom + i, length);
1072 }
1073
1074 fw_core_handle_response(&ohci->card, &response);
1075}
1076
1077static void
1078handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1079{
1080 struct fw_packet response;
1081 int tcode, length, ext_tcode, sel;
1082 __be32 *payload, lock_old;
1083 u32 lock_arg, lock_data;
1084
a77754a7
KH
1085 tcode = HEADER_GET_TCODE(packet->header[0]);
1086 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb 1087 payload = packet->payload;
a77754a7 1088 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
93c4cceb
KH
1089
1090 if (tcode == TCODE_LOCK_REQUEST &&
1091 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1092 lock_arg = be32_to_cpu(payload[0]);
1093 lock_data = be32_to_cpu(payload[1]);
1094 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1095 lock_arg = 0;
1096 lock_data = 0;
1097 } else {
1098 fw_fill_response(&response, packet->header,
1099 RCODE_TYPE_ERROR, NULL, 0);
1100 goto out;
1101 }
1102
1103 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1104 reg_write(ohci, OHCI1394_CSRData, lock_data);
1105 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1106 reg_write(ohci, OHCI1394_CSRControl, sel);
1107
1108 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1109 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1110 else
1111 fw_notify("swap not done yet\n");
1112
1113 fw_fill_response(&response, packet->header,
2d826cc5 1114 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
93c4cceb
KH
1115 out:
1116 fw_core_handle_response(&ohci->card, &response);
1117}
1118
1119static void
f319b6a0 1120handle_local_request(struct context *ctx, struct fw_packet *packet)
93c4cceb
KH
1121{
1122 u64 offset;
1123 u32 csr;
1124
473d28c7
KH
1125 if (ctx == &ctx->ohci->at_request_ctx) {
1126 packet->ack = ACK_PENDING;
1127 packet->callback(packet, &ctx->ohci->card, packet->ack);
1128 }
93c4cceb
KH
1129
1130 offset =
1131 ((unsigned long long)
a77754a7 1132 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
93c4cceb
KH
1133 packet->header[2];
1134 csr = offset - CSR_REGISTER_BASE;
1135
1136 /* Handle config rom reads. */
1137 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1138 handle_local_rom(ctx->ohci, packet, csr);
1139 else switch (csr) {
1140 case CSR_BUS_MANAGER_ID:
1141 case CSR_BANDWIDTH_AVAILABLE:
1142 case CSR_CHANNELS_AVAILABLE_HI:
1143 case CSR_CHANNELS_AVAILABLE_LO:
1144 handle_local_lock(ctx->ohci, packet, csr);
1145 break;
1146 default:
1147 if (ctx == &ctx->ohci->at_request_ctx)
1148 fw_core_handle_request(&ctx->ohci->card, packet);
1149 else
1150 fw_core_handle_response(&ctx->ohci->card, packet);
1151 break;
1152 }
473d28c7
KH
1153
1154 if (ctx == &ctx->ohci->at_response_ctx) {
1155 packet->ack = ACK_COMPLETE;
1156 packet->callback(packet, &ctx->ohci->card, packet->ack);
1157 }
93c4cceb 1158}
e636fe25 1159
ed568912 1160static void
f319b6a0 1161at_context_transmit(struct context *ctx, struct fw_packet *packet)
ed568912 1162{
ed568912 1163 unsigned long flags;
f319b6a0 1164 int retval;
ed568912
KH
1165
1166 spin_lock_irqsave(&ctx->ohci->lock, flags);
1167
a77754a7 1168 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
e636fe25 1169 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
1170 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1171 handle_local_request(ctx, packet);
1172 return;
e636fe25 1173 }
ed568912 1174
f319b6a0 1175 retval = at_context_queue_packet(ctx, packet);
ed568912
KH
1176 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1177
f319b6a0
KH
1178 if (retval < 0)
1179 packet->callback(packet, &ctx->ohci->card, packet->ack);
a186b4a6 1180
ed568912
KH
1181}
1182
1183static void bus_reset_tasklet(unsigned long data)
1184{
1185 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 1186 int self_id_count, i, j, reg;
ed568912
KH
1187 int generation, new_generation;
1188 unsigned long flags;
4eaff7d6
SR
1189 void *free_rom = NULL;
1190 dma_addr_t free_rom_bus = 0;
ed568912
KH
1191
1192 reg = reg_read(ohci, OHCI1394_NodeID);
1193 if (!(reg & OHCI1394_NodeID_idValid)) {
02ff8f8e 1194 fw_notify("node ID not valid, new bus reset in progress\n");
ed568912
KH
1195 return;
1196 }
02ff8f8e
SR
1197 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1198 fw_notify("malconfigured bus\n");
1199 return;
1200 }
1201 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1202 OHCI1394_NodeID_nodeNumber);
ed568912 1203
c8a9a498
SR
1204 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1205 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1206 fw_notify("inconsistent self IDs\n");
1207 return;
1208 }
c781c06d
KH
1209 /*
1210 * The count in the SelfIDCount register is the number of
ed568912
KH
1211 * bytes in the self ID receive buffer. Since we also receive
1212 * the inverted quadlets and a header quadlet, we shift one
c781c06d
KH
1213 * bit extra to get the actual number of self IDs.
1214 */
c8a9a498 1215 self_id_count = (reg >> 3) & 0x3ff;
016bf3df
SR
1216 if (self_id_count == 0) {
1217 fw_notify("inconsistent self IDs\n");
1218 return;
1219 }
11bf20ad 1220 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
ee71c2f9 1221 rmb();
ed568912
KH
1222
1223 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
c8a9a498
SR
1224 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1225 fw_notify("inconsistent self IDs\n");
1226 return;
1227 }
11bf20ad
SR
1228 ohci->self_id_buffer[j] =
1229 cond_le32_to_cpu(ohci->self_id_cpu[i]);
ed568912 1230 }
ee71c2f9 1231 rmb();
ed568912 1232
c781c06d
KH
1233 /*
1234 * Check the consistency of the self IDs we just read. The
ed568912
KH
1235 * problem we face is that a new bus reset can start while we
1236 * read out the self IDs from the DMA buffer. If this happens,
1237 * the DMA buffer will be overwritten with new self IDs and we
1238 * will read out inconsistent data. The OHCI specification
1239 * (section 11.2) recommends a technique similar to
1240 * linux/seqlock.h, where we remember the generation of the
1241 * self IDs in the buffer before reading them out and compare
1242 * it to the current generation after reading them out. If
1243 * the two generations match we know we have a consistent set
c781c06d
KH
1244 * of self IDs.
1245 */
ed568912
KH
1246
1247 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1248 if (new_generation != generation) {
1249 fw_notify("recursive bus reset detected, "
1250 "discarding self ids\n");
1251 return;
1252 }
1253
1254 /* FIXME: Document how the locking works. */
1255 spin_lock_irqsave(&ohci->lock, flags);
1256
1257 ohci->generation = generation;
f319b6a0
KH
1258 context_stop(&ohci->at_request_ctx);
1259 context_stop(&ohci->at_response_ctx);
ed568912
KH
1260 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1261
c781c06d
KH
1262 /*
1263 * This next bit is unrelated to the AT context stuff but we
ed568912
KH
1264 * have to do it under the spinlock also. If a new config rom
1265 * was set up before this reset, the old one is now no longer
1266 * in use and we can free it. Update the config rom pointers
1267 * to point to the current config rom and clear the
c781c06d
KH
1268 * next_config_rom pointer so a new udpate can take place.
1269 */
ed568912
KH
1270
1271 if (ohci->next_config_rom != NULL) {
0bd243c4
KH
1272 if (ohci->next_config_rom != ohci->config_rom) {
1273 free_rom = ohci->config_rom;
1274 free_rom_bus = ohci->config_rom_bus;
1275 }
ed568912
KH
1276 ohci->config_rom = ohci->next_config_rom;
1277 ohci->config_rom_bus = ohci->next_config_rom_bus;
1278 ohci->next_config_rom = NULL;
1279
c781c06d
KH
1280 /*
1281 * Restore config_rom image and manually update
ed568912
KH
1282 * config_rom registers. Writing the header quadlet
1283 * will indicate that the config rom is ready, so we
c781c06d
KH
1284 * do that last.
1285 */
ed568912
KH
1286 reg_write(ohci, OHCI1394_BusOptions,
1287 be32_to_cpu(ohci->config_rom[2]));
1288 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1289 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1290 }
1291
080de8c2
SR
1292#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1293 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1294 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1295#endif
1296
ed568912
KH
1297 spin_unlock_irqrestore(&ohci->lock, flags);
1298
4eaff7d6
SR
1299 if (free_rom)
1300 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1301 free_rom, free_rom_bus);
1302
ad3c0fe8
SR
1303 log_selfids(generation, self_id_count, ohci->self_id_buffer);
1304
e636fe25 1305 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
1306 self_id_count, ohci->self_id_buffer);
1307}
1308
1309static irqreturn_t irq_handler(int irq, void *data)
1310{
1311 struct fw_ohci *ohci = data;
d60d7f1d 1312 u32 event, iso_event, cycle_time;
ed568912
KH
1313 int i;
1314
1315 event = reg_read(ohci, OHCI1394_IntEventClear);
1316
a515958d 1317 if (!event || !~event)
ed568912
KH
1318 return IRQ_NONE;
1319
1320 reg_write(ohci, OHCI1394_IntEventClear, event);
ad3c0fe8 1321 log_irqs(event);
ed568912
KH
1322
1323 if (event & OHCI1394_selfIDComplete)
1324 tasklet_schedule(&ohci->bus_reset_tasklet);
1325
1326 if (event & OHCI1394_RQPkt)
1327 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1328
1329 if (event & OHCI1394_RSPkt)
1330 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1331
1332 if (event & OHCI1394_reqTxComplete)
1333 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1334
1335 if (event & OHCI1394_respTxComplete)
1336 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1337
c889475f 1338 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
ed568912
KH
1339 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1340
1341 while (iso_event) {
1342 i = ffs(iso_event) - 1;
30200739 1343 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
ed568912
KH
1344 iso_event &= ~(1 << i);
1345 }
1346
c889475f 1347 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
ed568912
KH
1348 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1349
1350 while (iso_event) {
1351 i = ffs(iso_event) - 1;
30200739 1352 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
ed568912
KH
1353 iso_event &= ~(1 << i);
1354 }
1355
75f7832e
JW
1356 if (unlikely(event & OHCI1394_regAccessFail))
1357 fw_error("Register access failure - "
1358 "please notify linux1394-devel@lists.sf.net\n");
1359
e524f616
SR
1360 if (unlikely(event & OHCI1394_postedWriteErr))
1361 fw_error("PCI posted write error\n");
1362
bb9f2206
SR
1363 if (unlikely(event & OHCI1394_cycleTooLong)) {
1364 if (printk_ratelimit())
1365 fw_notify("isochronous cycle too long\n");
1366 reg_write(ohci, OHCI1394_LinkControlSet,
1367 OHCI1394_LinkControl_cycleMaster);
1368 }
1369
d60d7f1d
KH
1370 if (event & OHCI1394_cycle64Seconds) {
1371 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1372 if ((cycle_time & 0x80000000) == 0)
1373 ohci->bus_seconds++;
1374 }
1375
ed568912
KH
1376 return IRQ_HANDLED;
1377}
1378
2aef469a
KH
1379static int software_reset(struct fw_ohci *ohci)
1380{
1381 int i;
1382
1383 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1384
1385 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1386 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1387 OHCI1394_HCControl_softReset) == 0)
1388 return 0;
1389 msleep(1);
1390 }
1391
1392 return -EBUSY;
1393}
1394
ed568912
KH
1395static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1396{
1397 struct fw_ohci *ohci = fw_ohci(card);
1398 struct pci_dev *dev = to_pci_dev(card->device);
02214724
JW
1399 u32 lps;
1400 int i;
ed568912 1401
2aef469a
KH
1402 if (software_reset(ohci)) {
1403 fw_error("Failed to reset ohci card.\n");
1404 return -EBUSY;
1405 }
1406
1407 /*
1408 * Now enable LPS, which we need in order to start accessing
1409 * most of the registers. In fact, on some cards (ALI M5251),
1410 * accessing registers in the SClk domain without LPS enabled
1411 * will lock up the machine. Wait 50msec to make sure we have
02214724
JW
1412 * full link enabled. However, with some cards (well, at least
1413 * a JMicron PCIe card), we have to try again sometimes.
2aef469a
KH
1414 */
1415 reg_write(ohci, OHCI1394_HCControlSet,
1416 OHCI1394_HCControl_LPS |
1417 OHCI1394_HCControl_postedWriteEnable);
1418 flush_writes(ohci);
02214724
JW
1419
1420 for (lps = 0, i = 0; !lps && i < 3; i++) {
1421 msleep(50);
1422 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1423 OHCI1394_HCControl_LPS;
1424 }
1425
1426 if (!lps) {
1427 fw_error("Failed to set Link Power Status\n");
1428 return -EIO;
1429 }
2aef469a
KH
1430
1431 reg_write(ohci, OHCI1394_HCControlClear,
1432 OHCI1394_HCControl_noByteSwapData);
1433
1434 reg_write(ohci, OHCI1394_LinkControlSet,
1435 OHCI1394_LinkControl_rcvSelfID |
1436 OHCI1394_LinkControl_cycleTimerEnable |
1437 OHCI1394_LinkControl_cycleMaster);
1438
1439 reg_write(ohci, OHCI1394_ATRetries,
1440 OHCI1394_MAX_AT_REQ_RETRIES |
1441 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1442 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1443
1444 ar_context_run(&ohci->ar_request_ctx);
1445 ar_context_run(&ohci->ar_response_ctx);
1446
1447 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1448 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1449 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1450 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1451 reg_write(ohci, OHCI1394_IntMaskSet,
1452 OHCI1394_selfIDComplete |
1453 OHCI1394_RQPkt | OHCI1394_RSPkt |
1454 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1455 OHCI1394_isochRx | OHCI1394_isochTx |
bb9f2206 1456 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
75f7832e
JW
1457 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1458 OHCI1394_masterIntEnable);
2aef469a
KH
1459
1460 /* Activate link_on bit and contender bit in our self ID packets.*/
1461 if (ohci_update_phy_reg(card, 4, 0,
1462 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1463 return -EIO;
1464
c781c06d
KH
1465 /*
1466 * When the link is not yet enabled, the atomic config rom
ed568912
KH
1467 * update mechanism described below in ohci_set_config_rom()
1468 * is not active. We have to update ConfigRomHeader and
1469 * BusOptions manually, and the write to ConfigROMmap takes
1470 * effect immediately. We tie this to the enabling of the
1471 * link, so we have a valid config rom before enabling - the
1472 * OHCI requires that ConfigROMhdr and BusOptions have valid
1473 * values before enabling.
1474 *
1475 * However, when the ConfigROMmap is written, some controllers
1476 * always read back quadlets 0 and 2 from the config rom to
1477 * the ConfigRomHeader and BusOptions registers on bus reset.
1478 * They shouldn't do that in this initial case where the link
1479 * isn't enabled. This means we have to use the same
1480 * workaround here, setting the bus header to 0 and then write
1481 * the right values in the bus reset tasklet.
1482 */
1483
0bd243c4
KH
1484 if (config_rom) {
1485 ohci->next_config_rom =
1486 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1487 &ohci->next_config_rom_bus,
1488 GFP_KERNEL);
1489 if (ohci->next_config_rom == NULL)
1490 return -ENOMEM;
ed568912 1491
0bd243c4
KH
1492 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1493 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1494 } else {
1495 /*
1496 * In the suspend case, config_rom is NULL, which
1497 * means that we just reuse the old config rom.
1498 */
1499 ohci->next_config_rom = ohci->config_rom;
1500 ohci->next_config_rom_bus = ohci->config_rom_bus;
1501 }
ed568912 1502
0bd243c4 1503 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
ed568912
KH
1504 ohci->next_config_rom[0] = 0;
1505 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
0bd243c4
KH
1506 reg_write(ohci, OHCI1394_BusOptions,
1507 be32_to_cpu(ohci->next_config_rom[2]));
ed568912
KH
1508 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1509
1510 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1511
1512 if (request_irq(dev->irq, irq_handler,
65efffa8 1513 IRQF_SHARED, ohci_driver_name, ohci)) {
ed568912
KH
1514 fw_error("Failed to allocate shared interrupt %d.\n",
1515 dev->irq);
1516 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1517 ohci->config_rom, ohci->config_rom_bus);
1518 return -EIO;
1519 }
1520
1521 reg_write(ohci, OHCI1394_HCControlSet,
1522 OHCI1394_HCControl_linkEnable |
1523 OHCI1394_HCControl_BIBimageValid);
1524 flush_writes(ohci);
1525
c781c06d
KH
1526 /*
1527 * We are ready to go, initiate bus reset to finish the
1528 * initialization.
1529 */
ed568912
KH
1530
1531 fw_core_initiate_bus_reset(&ohci->card, 1);
1532
1533 return 0;
1534}
1535
1536static int
1537ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1538{
1539 struct fw_ohci *ohci;
1540 unsigned long flags;
4eaff7d6 1541 int retval = -EBUSY;
ed568912 1542 __be32 *next_config_rom;
f5101d58 1543 dma_addr_t uninitialized_var(next_config_rom_bus);
ed568912
KH
1544
1545 ohci = fw_ohci(card);
1546
c781c06d
KH
1547 /*
1548 * When the OHCI controller is enabled, the config rom update
ed568912
KH
1549 * mechanism is a bit tricky, but easy enough to use. See
1550 * section 5.5.6 in the OHCI specification.
1551 *
1552 * The OHCI controller caches the new config rom address in a
1553 * shadow register (ConfigROMmapNext) and needs a bus reset
1554 * for the changes to take place. When the bus reset is
1555 * detected, the controller loads the new values for the
1556 * ConfigRomHeader and BusOptions registers from the specified
1557 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1558 * shadow register. All automatically and atomically.
1559 *
1560 * Now, there's a twist to this story. The automatic load of
1561 * ConfigRomHeader and BusOptions doesn't honor the
1562 * noByteSwapData bit, so with a be32 config rom, the
1563 * controller will load be32 values in to these registers
1564 * during the atomic update, even on litte endian
1565 * architectures. The workaround we use is to put a 0 in the
1566 * header quadlet; 0 is endian agnostic and means that the
1567 * config rom isn't ready yet. In the bus reset tasklet we
1568 * then set up the real values for the two registers.
1569 *
1570 * We use ohci->lock to avoid racing with the code that sets
1571 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1572 */
1573
1574 next_config_rom =
1575 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1576 &next_config_rom_bus, GFP_KERNEL);
1577 if (next_config_rom == NULL)
1578 return -ENOMEM;
1579
1580 spin_lock_irqsave(&ohci->lock, flags);
1581
1582 if (ohci->next_config_rom == NULL) {
1583 ohci->next_config_rom = next_config_rom;
1584 ohci->next_config_rom_bus = next_config_rom_bus;
1585
1586 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1587 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1588 length * 4);
1589
1590 ohci->next_header = config_rom[0];
1591 ohci->next_config_rom[0] = 0;
1592
1593 reg_write(ohci, OHCI1394_ConfigROMmap,
1594 ohci->next_config_rom_bus);
4eaff7d6 1595 retval = 0;
ed568912
KH
1596 }
1597
1598 spin_unlock_irqrestore(&ohci->lock, flags);
1599
c781c06d
KH
1600 /*
1601 * Now initiate a bus reset to have the changes take
ed568912
KH
1602 * effect. We clean up the old config rom memory and DMA
1603 * mappings in the bus reset tasklet, since the OHCI
1604 * controller could need to access it before the bus reset
c781c06d
KH
1605 * takes effect.
1606 */
ed568912
KH
1607 if (retval == 0)
1608 fw_core_initiate_bus_reset(&ohci->card, 1);
4eaff7d6
SR
1609 else
1610 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1611 next_config_rom, next_config_rom_bus);
ed568912
KH
1612
1613 return retval;
1614}
1615
1616static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1617{
1618 struct fw_ohci *ohci = fw_ohci(card);
1619
1620 at_context_transmit(&ohci->at_request_ctx, packet);
1621}
1622
1623static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1624{
1625 struct fw_ohci *ohci = fw_ohci(card);
1626
1627 at_context_transmit(&ohci->at_response_ctx, packet);
1628}
1629
730c32f5
KH
1630static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1631{
1632 struct fw_ohci *ohci = fw_ohci(card);
f319b6a0
KH
1633 struct context *ctx = &ohci->at_request_ctx;
1634 struct driver_data *driver_data = packet->driver_data;
1635 int retval = -ENOENT;
730c32f5 1636
f319b6a0 1637 tasklet_disable(&ctx->tasklet);
730c32f5 1638
f319b6a0
KH
1639 if (packet->ack != 0)
1640 goto out;
730c32f5 1641
ad3c0fe8 1642 log_ar_at_event('T', packet->speed, packet->header, 0x20);
f319b6a0
KH
1643 driver_data->packet = NULL;
1644 packet->ack = RCODE_CANCELLED;
1645 packet->callback(packet, &ohci->card, packet->ack);
1646 retval = 0;
730c32f5 1647
f319b6a0
KH
1648 out:
1649 tasklet_enable(&ctx->tasklet);
730c32f5 1650
f319b6a0 1651 return retval;
730c32f5
KH
1652}
1653
ed568912
KH
1654static int
1655ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1656{
080de8c2
SR
1657#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1658 return 0;
1659#else
ed568912
KH
1660 struct fw_ohci *ohci = fw_ohci(card);
1661 unsigned long flags;
907293d7 1662 int n, retval = 0;
ed568912 1663
c781c06d
KH
1664 /*
1665 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1666 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1667 */
ed568912
KH
1668
1669 spin_lock_irqsave(&ohci->lock, flags);
1670
1671 if (ohci->generation != generation) {
1672 retval = -ESTALE;
1673 goto out;
1674 }
1675
c781c06d
KH
1676 /*
1677 * Note, if the node ID contains a non-local bus ID, physical DMA is
1678 * enabled for _all_ nodes on remote buses.
1679 */
907293d7
SR
1680
1681 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1682 if (n < 32)
1683 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1684 else
1685 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1686
ed568912 1687 flush_writes(ohci);
ed568912 1688 out:
6cad95fe 1689 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912 1690 return retval;
080de8c2 1691#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
ed568912 1692}
373b2edd 1693
d60d7f1d
KH
1694static u64
1695ohci_get_bus_time(struct fw_card *card)
1696{
1697 struct fw_ohci *ohci = fw_ohci(card);
1698 u32 cycle_time;
1699 u64 bus_time;
1700
1701 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1702 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1703
1704 return bus_time;
1705}
1706
d2746dc1
KH
1707static int handle_ir_dualbuffer_packet(struct context *context,
1708 struct descriptor *d,
1709 struct descriptor *last)
ed568912 1710{
295e3feb
KH
1711 struct iso_context *ctx =
1712 container_of(context, struct iso_context, context);
1713 struct db_descriptor *db = (struct db_descriptor *) d;
c70dc788 1714 __le32 *ir_header;
9b32d5f3 1715 size_t header_length;
c70dc788
KH
1716 void *p, *end;
1717 int i;
d2746dc1 1718
efbf390a 1719 if (db->first_res_count != 0 && db->second_res_count != 0) {
0642b657
DM
1720 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1721 /* This descriptor isn't done yet, stop iteration. */
1722 return 0;
1723 }
1724 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1725 }
295e3feb 1726
c70dc788
KH
1727 header_length = le16_to_cpu(db->first_req_count) -
1728 le16_to_cpu(db->first_res_count);
1729
1730 i = ctx->header_length;
1731 p = db + 1;
1732 end = p + header_length;
1733 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
c781c06d
KH
1734 /*
1735 * The iso header is byteswapped to little endian by
15536221
KH
1736 * the controller, but the remaining header quadlets
1737 * are big endian. We want to present all the headers
1738 * as big endian, so we have to swap the first
c781c06d
KH
1739 * quadlet.
1740 */
15536221
KH
1741 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1742 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
c70dc788 1743 i += ctx->base.header_size;
0642b657 1744 ctx->excess_bytes +=
efbf390a 1745 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
c70dc788
KH
1746 p += ctx->base.header_size + 4;
1747 }
c70dc788 1748 ctx->header_length = i;
9b32d5f3 1749
0642b657
DM
1750 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1751 le16_to_cpu(db->second_res_count);
1752
a77754a7 1753 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
c70dc788
KH
1754 ir_header = (__le32 *) (db + 1);
1755 ctx->base.callback(&ctx->base,
1756 le32_to_cpu(ir_header[0]) & 0xffff,
9b32d5f3 1757 ctx->header_length, ctx->header,
295e3feb 1758 ctx->base.callback_data);
9b32d5f3
KH
1759 ctx->header_length = 0;
1760 }
ed568912 1761
295e3feb 1762 return 1;
ed568912
KH
1763}
1764
a186b4a6
JW
1765static int handle_ir_packet_per_buffer(struct context *context,
1766 struct descriptor *d,
1767 struct descriptor *last)
1768{
1769 struct iso_context *ctx =
1770 container_of(context, struct iso_context, context);
bcee893c 1771 struct descriptor *pd;
a186b4a6 1772 __le32 *ir_header;
bcee893c
DM
1773 void *p;
1774 int i;
a186b4a6 1775
bcee893c
DM
1776 for (pd = d; pd <= last; pd++) {
1777 if (pd->transfer_status)
1778 break;
1779 }
1780 if (pd > last)
a186b4a6
JW
1781 /* Descriptor(s) not done yet, stop iteration */
1782 return 0;
1783
a186b4a6 1784 i = ctx->header_length;
bcee893c 1785 p = last + 1;
a186b4a6 1786
bcee893c
DM
1787 if (ctx->base.header_size > 0 &&
1788 i + ctx->base.header_size <= PAGE_SIZE) {
a186b4a6
JW
1789 /*
1790 * The iso header is byteswapped to little endian by
1791 * the controller, but the remaining header quadlets
1792 * are big endian. We want to present all the headers
1793 * as big endian, so we have to swap the first quadlet.
1794 */
1795 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1796 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
bcee893c 1797 ctx->header_length += ctx->base.header_size;
a186b4a6
JW
1798 }
1799
bcee893c
DM
1800 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1801 ir_header = (__le32 *) p;
a186b4a6
JW
1802 ctx->base.callback(&ctx->base,
1803 le32_to_cpu(ir_header[0]) & 0xffff,
1804 ctx->header_length, ctx->header,
1805 ctx->base.callback_data);
1806 ctx->header_length = 0;
1807 }
1808
a186b4a6
JW
1809 return 1;
1810}
1811
30200739
KH
1812static int handle_it_packet(struct context *context,
1813 struct descriptor *d,
1814 struct descriptor *last)
ed568912 1815{
30200739
KH
1816 struct iso_context *ctx =
1817 container_of(context, struct iso_context, context);
373b2edd 1818
30200739
KH
1819 if (last->transfer_status == 0)
1820 /* This descriptor isn't done yet, stop iteration. */
1821 return 0;
1822
a77754a7 1823 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
9b32d5f3
KH
1824 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1825 0, NULL, ctx->base.callback_data);
30200739
KH
1826
1827 return 1;
ed568912
KH
1828}
1829
30200739 1830static struct fw_iso_context *
eb0306ea 1831ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
ed568912
KH
1832{
1833 struct fw_ohci *ohci = fw_ohci(card);
1834 struct iso_context *ctx, *list;
30200739 1835 descriptor_callback_t callback;
295e3feb 1836 u32 *mask, regs;
ed568912 1837 unsigned long flags;
9b32d5f3 1838 int index, retval = -ENOMEM;
ed568912
KH
1839
1840 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1841 mask = &ohci->it_context_mask;
1842 list = ohci->it_context_list;
30200739 1843 callback = handle_it_packet;
ed568912 1844 } else {
373b2edd
SR
1845 mask = &ohci->ir_context_mask;
1846 list = ohci->ir_context_list;
a186b4a6
JW
1847 if (ohci->version >= OHCI_VERSION_1_1)
1848 callback = handle_ir_dualbuffer_packet;
1849 else
1850 callback = handle_ir_packet_per_buffer;
ed568912
KH
1851 }
1852
1853 spin_lock_irqsave(&ohci->lock, flags);
1854 index = ffs(*mask) - 1;
1855 if (index >= 0)
1856 *mask &= ~(1 << index);
1857 spin_unlock_irqrestore(&ohci->lock, flags);
1858
1859 if (index < 0)
1860 return ERR_PTR(-EBUSY);
1861
373b2edd
SR
1862 if (type == FW_ISO_CONTEXT_TRANSMIT)
1863 regs = OHCI1394_IsoXmitContextBase(index);
1864 else
1865 regs = OHCI1394_IsoRcvContextBase(index);
1866
ed568912 1867 ctx = &list[index];
2d826cc5 1868 memset(ctx, 0, sizeof(*ctx));
9b32d5f3
KH
1869 ctx->header_length = 0;
1870 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1871 if (ctx->header == NULL)
1872 goto out;
1873
fe5ca634 1874 retval = context_init(&ctx->context, ohci, regs, callback);
9b32d5f3
KH
1875 if (retval < 0)
1876 goto out_with_header;
ed568912
KH
1877
1878 return &ctx->base;
9b32d5f3
KH
1879
1880 out_with_header:
1881 free_page((unsigned long)ctx->header);
1882 out:
1883 spin_lock_irqsave(&ohci->lock, flags);
1884 *mask |= 1 << index;
1885 spin_unlock_irqrestore(&ohci->lock, flags);
1886
1887 return ERR_PTR(retval);
ed568912
KH
1888}
1889
eb0306ea
KH
1890static int ohci_start_iso(struct fw_iso_context *base,
1891 s32 cycle, u32 sync, u32 tags)
ed568912 1892{
373b2edd 1893 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1894 struct fw_ohci *ohci = ctx->context.ohci;
8a2f7d93 1895 u32 control, match;
ed568912
KH
1896 int index;
1897
295e3feb
KH
1898 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1899 index = ctx - ohci->it_context_list;
8a2f7d93
KH
1900 match = 0;
1901 if (cycle >= 0)
1902 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
295e3feb 1903 (cycle & 0x7fff) << 16;
21efb3cf 1904
295e3feb
KH
1905 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1906 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
8a2f7d93 1907 context_run(&ctx->context, match);
295e3feb
KH
1908 } else {
1909 index = ctx - ohci->ir_context_list;
a186b4a6
JW
1910 control = IR_CONTEXT_ISOCH_HEADER;
1911 if (ohci->version >= OHCI_VERSION_1_1)
1912 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
8a2f7d93
KH
1913 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1914 if (cycle >= 0) {
1915 match |= (cycle & 0x07fff) << 12;
1916 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1917 }
ed568912 1918
295e3feb
KH
1919 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1920 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
a77754a7 1921 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
8a2f7d93 1922 context_run(&ctx->context, control);
295e3feb 1923 }
ed568912
KH
1924
1925 return 0;
1926}
1927
b8295668
KH
1928static int ohci_stop_iso(struct fw_iso_context *base)
1929{
1930 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1931 struct iso_context *ctx = container_of(base, struct iso_context, base);
b8295668
KH
1932 int index;
1933
1934 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1935 index = ctx - ohci->it_context_list;
1936 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1937 } else {
1938 index = ctx - ohci->ir_context_list;
1939 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1940 }
1941 flush_writes(ohci);
1942 context_stop(&ctx->context);
1943
1944 return 0;
1945}
1946
ed568912
KH
1947static void ohci_free_iso_context(struct fw_iso_context *base)
1948{
1949 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1950 struct iso_context *ctx = container_of(base, struct iso_context, base);
ed568912
KH
1951 unsigned long flags;
1952 int index;
1953
b8295668
KH
1954 ohci_stop_iso(base);
1955 context_release(&ctx->context);
9b32d5f3 1956 free_page((unsigned long)ctx->header);
b8295668 1957
ed568912
KH
1958 spin_lock_irqsave(&ohci->lock, flags);
1959
1960 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1961 index = ctx - ohci->it_context_list;
ed568912
KH
1962 ohci->it_context_mask |= 1 << index;
1963 } else {
1964 index = ctx - ohci->ir_context_list;
ed568912
KH
1965 ohci->ir_context_mask |= 1 << index;
1966 }
ed568912
KH
1967
1968 spin_unlock_irqrestore(&ohci->lock, flags);
1969}
1970
1971static int
295e3feb
KH
1972ohci_queue_iso_transmit(struct fw_iso_context *base,
1973 struct fw_iso_packet *packet,
1974 struct fw_iso_buffer *buffer,
1975 unsigned long payload)
ed568912 1976{
373b2edd 1977 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1978 struct descriptor *d, *last, *pd;
ed568912
KH
1979 struct fw_iso_packet *p;
1980 __le32 *header;
9aad8125 1981 dma_addr_t d_bus, page_bus;
ed568912
KH
1982 u32 z, header_z, payload_z, irq;
1983 u32 payload_index, payload_end_index, next_page_index;
30200739 1984 int page, end_page, i, length, offset;
ed568912 1985
c781c06d
KH
1986 /*
1987 * FIXME: Cycle lost behavior should be configurable: lose
1988 * packet, retransmit or terminate..
1989 */
ed568912
KH
1990
1991 p = packet;
9aad8125 1992 payload_index = payload;
ed568912
KH
1993
1994 if (p->skip)
1995 z = 1;
1996 else
1997 z = 2;
1998 if (p->header_length > 0)
1999 z++;
2000
2001 /* Determine the first page the payload isn't contained in. */
2002 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2003 if (p->payload_length > 0)
2004 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2005 else
2006 payload_z = 0;
2007
2008 z += payload_z;
2009
2010 /* Get header size in number of descriptors. */
2d826cc5 2011 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
ed568912 2012
30200739
KH
2013 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2014 if (d == NULL)
2015 return -ENOMEM;
ed568912
KH
2016
2017 if (!p->skip) {
a77754a7 2018 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
ed568912
KH
2019 d[0].req_count = cpu_to_le16(8);
2020
2021 header = (__le32 *) &d[1];
a77754a7
KH
2022 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2023 IT_HEADER_TAG(p->tag) |
2024 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2025 IT_HEADER_CHANNEL(ctx->base.channel) |
2026 IT_HEADER_SPEED(ctx->base.speed));
ed568912 2027 header[1] =
a77754a7 2028 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
ed568912
KH
2029 p->payload_length));
2030 }
2031
2032 if (p->header_length > 0) {
2033 d[2].req_count = cpu_to_le16(p->header_length);
2d826cc5 2034 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
ed568912
KH
2035 memcpy(&d[z], p->header, p->header_length);
2036 }
2037
2038 pd = d + z - payload_z;
2039 payload_end_index = payload_index + p->payload_length;
2040 for (i = 0; i < payload_z; i++) {
2041 page = payload_index >> PAGE_SHIFT;
2042 offset = payload_index & ~PAGE_MASK;
2043 next_page_index = (page + 1) << PAGE_SHIFT;
2044 length =
2045 min(next_page_index, payload_end_index) - payload_index;
2046 pd[i].req_count = cpu_to_le16(length);
9aad8125
KH
2047
2048 page_bus = page_private(buffer->pages[page]);
2049 pd[i].data_address = cpu_to_le32(page_bus + offset);
ed568912
KH
2050
2051 payload_index += length;
2052 }
2053
ed568912 2054 if (p->interrupt)
a77754a7 2055 irq = DESCRIPTOR_IRQ_ALWAYS;
ed568912 2056 else
a77754a7 2057 irq = DESCRIPTOR_NO_IRQ;
ed568912 2058
30200739 2059 last = z == 2 ? d : d + z - 1;
a77754a7
KH
2060 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2061 DESCRIPTOR_STATUS |
2062 DESCRIPTOR_BRANCH_ALWAYS |
cbb59da7 2063 irq);
ed568912 2064
30200739 2065 context_append(&ctx->context, d, z, header_z);
ed568912
KH
2066
2067 return 0;
2068}
373b2edd 2069
295e3feb 2070static int
d2746dc1
KH
2071ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2072 struct fw_iso_packet *packet,
2073 struct fw_iso_buffer *buffer,
2074 unsigned long payload)
295e3feb
KH
2075{
2076 struct iso_context *ctx = container_of(base, struct iso_context, base);
2077 struct db_descriptor *db = NULL;
2078 struct descriptor *d;
2079 struct fw_iso_packet *p;
2080 dma_addr_t d_bus, page_bus;
2081 u32 z, header_z, length, rest;
c70dc788 2082 int page, offset, packet_count, header_size;
373b2edd 2083
c781c06d
KH
2084 /*
2085 * FIXME: Cycle lost behavior should be configurable: lose
2086 * packet, retransmit or terminate..
2087 */
295e3feb
KH
2088
2089 p = packet;
2090 z = 2;
2091
c781c06d
KH
2092 /*
2093 * The OHCI controller puts the status word in the header
2094 * buffer too, so we need 4 extra bytes per packet.
2095 */
c70dc788
KH
2096 packet_count = p->header_length / ctx->base.header_size;
2097 header_size = packet_count * (ctx->base.header_size + 4);
2098
295e3feb 2099 /* Get header size in number of descriptors. */
2d826cc5 2100 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
295e3feb
KH
2101 page = payload >> PAGE_SHIFT;
2102 offset = payload & ~PAGE_MASK;
2103 rest = p->payload_length;
2104
295e3feb
KH
2105 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2106 while (rest > 0) {
2107 d = context_get_descriptors(&ctx->context,
2108 z + header_z, &d_bus);
2109 if (d == NULL)
2110 return -ENOMEM;
2111
2112 db = (struct db_descriptor *) d;
a77754a7
KH
2113 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2114 DESCRIPTOR_BRANCH_ALWAYS);
c70dc788 2115 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
0642b657
DM
2116 if (p->skip && rest == p->payload_length) {
2117 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2118 db->first_req_count = db->first_size;
2119 } else {
2120 db->first_req_count = cpu_to_le16(header_size);
2121 }
1e1d196b 2122 db->first_res_count = db->first_req_count;
2d826cc5 2123 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
373b2edd 2124
0642b657
DM
2125 if (p->skip && rest == p->payload_length)
2126 length = 4;
2127 else if (offset + rest < PAGE_SIZE)
295e3feb
KH
2128 length = rest;
2129 else
2130 length = PAGE_SIZE - offset;
2131
1e1d196b
KH
2132 db->second_req_count = cpu_to_le16(length);
2133 db->second_res_count = db->second_req_count;
295e3feb
KH
2134 page_bus = page_private(buffer->pages[page]);
2135 db->second_buffer = cpu_to_le32(page_bus + offset);
2136
cb2d2cdb 2137 if (p->interrupt && length == rest)
a77754a7 2138 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
cb2d2cdb 2139
295e3feb
KH
2140 context_append(&ctx->context, d, z, header_z);
2141 offset = (offset + length) & ~PAGE_MASK;
2142 rest -= length;
0642b657
DM
2143 if (offset == 0)
2144 page++;
295e3feb
KH
2145 }
2146
d2746dc1
KH
2147 return 0;
2148}
21efb3cf 2149
a186b4a6
JW
2150static int
2151ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2152 struct fw_iso_packet *packet,
2153 struct fw_iso_buffer *buffer,
2154 unsigned long payload)
2155{
2156 struct iso_context *ctx = container_of(base, struct iso_context, base);
2157 struct descriptor *d = NULL, *pd = NULL;
bcee893c 2158 struct fw_iso_packet *p = packet;
a186b4a6
JW
2159 dma_addr_t d_bus, page_bus;
2160 u32 z, header_z, rest;
bcee893c
DM
2161 int i, j, length;
2162 int page, offset, packet_count, header_size, payload_per_buffer;
a186b4a6
JW
2163
2164 /*
2165 * The OHCI controller puts the status word in the
2166 * buffer too, so we need 4 extra bytes per packet.
2167 */
2168 packet_count = p->header_length / ctx->base.header_size;
bcee893c 2169 header_size = ctx->base.header_size + 4;
a186b4a6
JW
2170
2171 /* Get header size in number of descriptors. */
2172 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2173 page = payload >> PAGE_SHIFT;
2174 offset = payload & ~PAGE_MASK;
bcee893c 2175 payload_per_buffer = p->payload_length / packet_count;
a186b4a6
JW
2176
2177 for (i = 0; i < packet_count; i++) {
2178 /* d points to the header descriptor */
bcee893c 2179 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
a186b4a6 2180 d = context_get_descriptors(&ctx->context,
bcee893c 2181 z + header_z, &d_bus);
a186b4a6
JW
2182 if (d == NULL)
2183 return -ENOMEM;
2184
bcee893c
DM
2185 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2186 DESCRIPTOR_INPUT_MORE);
2187 if (p->skip && i == 0)
2188 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
a186b4a6
JW
2189 d->req_count = cpu_to_le16(header_size);
2190 d->res_count = d->req_count;
bcee893c 2191 d->transfer_status = 0;
a186b4a6
JW
2192 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2193
bcee893c
DM
2194 rest = payload_per_buffer;
2195 for (j = 1; j < z; j++) {
2196 pd = d + j;
2197 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2198 DESCRIPTOR_INPUT_MORE);
2199
2200 if (offset + rest < PAGE_SIZE)
2201 length = rest;
2202 else
2203 length = PAGE_SIZE - offset;
2204 pd->req_count = cpu_to_le16(length);
2205 pd->res_count = pd->req_count;
2206 pd->transfer_status = 0;
2207
2208 page_bus = page_private(buffer->pages[page]);
2209 pd->data_address = cpu_to_le32(page_bus + offset);
2210
2211 offset = (offset + length) & ~PAGE_MASK;
2212 rest -= length;
2213 if (offset == 0)
2214 page++;
2215 }
a186b4a6
JW
2216 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2217 DESCRIPTOR_INPUT_LAST |
2218 DESCRIPTOR_BRANCH_ALWAYS);
bcee893c 2219 if (p->interrupt && i == packet_count - 1)
a186b4a6
JW
2220 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2221
a186b4a6
JW
2222 context_append(&ctx->context, d, z, header_z);
2223 }
2224
2225 return 0;
2226}
2227
295e3feb
KH
2228static int
2229ohci_queue_iso(struct fw_iso_context *base,
2230 struct fw_iso_packet *packet,
2231 struct fw_iso_buffer *buffer,
2232 unsigned long payload)
2233{
e364cf4e 2234 struct iso_context *ctx = container_of(base, struct iso_context, base);
fe5ca634
DM
2235 unsigned long flags;
2236 int retval;
e364cf4e 2237
fe5ca634 2238 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
295e3feb 2239 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
fe5ca634 2240 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
e364cf4e 2241 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
fe5ca634 2242 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
d2746dc1 2243 buffer, payload);
e364cf4e 2244 else
fe5ca634 2245 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
a186b4a6
JW
2246 buffer,
2247 payload);
fe5ca634
DM
2248 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2249
2250 return retval;
295e3feb
KH
2251}
2252
21ebcd12 2253static const struct fw_card_driver ohci_driver = {
ed568912
KH
2254 .name = ohci_driver_name,
2255 .enable = ohci_enable,
2256 .update_phy_reg = ohci_update_phy_reg,
2257 .set_config_rom = ohci_set_config_rom,
2258 .send_request = ohci_send_request,
2259 .send_response = ohci_send_response,
730c32f5 2260 .cancel_packet = ohci_cancel_packet,
ed568912 2261 .enable_phys_dma = ohci_enable_phys_dma,
d60d7f1d 2262 .get_bus_time = ohci_get_bus_time,
ed568912
KH
2263
2264 .allocate_iso_context = ohci_allocate_iso_context,
2265 .free_iso_context = ohci_free_iso_context,
2266 .queue_iso = ohci_queue_iso,
69cdb726 2267 .start_iso = ohci_start_iso,
b8295668 2268 .stop_iso = ohci_stop_iso,
ed568912
KH
2269};
2270
ea8d006b 2271#ifdef CONFIG_PPC_PMAC
2ed0f181
SR
2272static void ohci_pmac_on(struct pci_dev *dev)
2273{
ea8d006b
SR
2274 if (machine_is(powermac)) {
2275 struct device_node *ofn = pci_device_to_OF_node(dev);
2276
2277 if (ofn) {
2278 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2279 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2280 }
2281 }
2ed0f181
SR
2282}
2283
2284static void ohci_pmac_off(struct pci_dev *dev)
2285{
2286 if (machine_is(powermac)) {
2287 struct device_node *ofn = pci_device_to_OF_node(dev);
2288
2289 if (ofn) {
2290 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2291 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2292 }
2293 }
2294}
2295#else
2296#define ohci_pmac_on(dev)
2297#define ohci_pmac_off(dev)
ea8d006b
SR
2298#endif /* CONFIG_PPC_PMAC */
2299
2ed0f181
SR
2300static int __devinit
2301pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2302{
2303 struct fw_ohci *ohci;
2304 u32 bus_options, max_receive, link_speed;
2305 u64 guid;
2306 int err;
2307 size_t size;
2308
2d826cc5 2309 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
ed568912
KH
2310 if (ohci == NULL) {
2311 fw_error("Could not malloc fw_ohci data.\n");
2312 return -ENOMEM;
2313 }
2314
2315 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2316
130d5496
SR
2317 ohci_pmac_on(dev);
2318
d79406dd
KH
2319 err = pci_enable_device(dev);
2320 if (err) {
ed568912 2321 fw_error("Failed to enable OHCI hardware.\n");
bd7dee63 2322 goto fail_free;
ed568912
KH
2323 }
2324
2325 pci_set_master(dev);
2326 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2327 pci_set_drvdata(dev, ohci);
2328
11bf20ad
SR
2329#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2330 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2331 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2332#endif
ed568912
KH
2333 spin_lock_init(&ohci->lock);
2334
2335 tasklet_init(&ohci->bus_reset_tasklet,
2336 bus_reset_tasklet, (unsigned long)ohci);
2337
d79406dd
KH
2338 err = pci_request_region(dev, 0, ohci_driver_name);
2339 if (err) {
ed568912 2340 fw_error("MMIO resource unavailable\n");
d79406dd 2341 goto fail_disable;
ed568912
KH
2342 }
2343
2344 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2345 if (ohci->registers == NULL) {
2346 fw_error("Failed to remap registers\n");
d79406dd
KH
2347 err = -ENXIO;
2348 goto fail_iomem;
ed568912
KH
2349 }
2350
ed568912
KH
2351 ar_context_init(&ohci->ar_request_ctx, ohci,
2352 OHCI1394_AsReqRcvContextControlSet);
2353
2354 ar_context_init(&ohci->ar_response_ctx, ohci,
2355 OHCI1394_AsRspRcvContextControlSet);
2356
fe5ca634 2357 context_init(&ohci->at_request_ctx, ohci,
f319b6a0 2358 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
ed568912 2359
fe5ca634 2360 context_init(&ohci->at_response_ctx, ohci,
f319b6a0 2361 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
ed568912 2362
ed568912
KH
2363 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2364 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2365 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2366 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2367 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2368
2369 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2370 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2371 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2372 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2373 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2374
2375 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2376 fw_error("Out of memory for it/ir contexts.\n");
d79406dd
KH
2377 err = -ENOMEM;
2378 goto fail_registers;
ed568912
KH
2379 }
2380
2381 /* self-id dma buffer allocation */
2382 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2383 SELF_ID_BUF_SIZE,
2384 &ohci->self_id_bus,
2385 GFP_KERNEL);
2386 if (ohci->self_id_cpu == NULL) {
2387 fw_error("Out of memory for self ID buffer.\n");
d79406dd
KH
2388 err = -ENOMEM;
2389 goto fail_registers;
ed568912
KH
2390 }
2391
ed568912
KH
2392 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2393 max_receive = (bus_options >> 12) & 0xf;
2394 link_speed = bus_options & 0x7;
2395 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2396 reg_read(ohci, OHCI1394_GUIDLo);
2397
d79406dd
KH
2398 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2399 if (err < 0)
2400 goto fail_self_id;
ed568912 2401
e364cf4e 2402 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
500be725 2403 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
e364cf4e 2404 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
ed568912 2405 return 0;
d79406dd
KH
2406
2407 fail_self_id:
2408 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2409 ohci->self_id_cpu, ohci->self_id_bus);
2410 fail_registers:
2411 kfree(ohci->it_context_list);
2412 kfree(ohci->ir_context_list);
2413 pci_iounmap(dev, ohci->registers);
2414 fail_iomem:
2415 pci_release_region(dev, 0);
2416 fail_disable:
2417 pci_disable_device(dev);
bd7dee63
SR
2418 fail_free:
2419 kfree(&ohci->card);
130d5496 2420 ohci_pmac_off(dev);
d79406dd
KH
2421
2422 return err;
ed568912
KH
2423}
2424
2425static void pci_remove(struct pci_dev *dev)
2426{
2427 struct fw_ohci *ohci;
2428
2429 ohci = pci_get_drvdata(dev);
e254a4b4
KH
2430 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2431 flush_writes(ohci);
ed568912
KH
2432 fw_core_remove_card(&ohci->card);
2433
c781c06d
KH
2434 /*
2435 * FIXME: Fail all pending packets here, now that the upper
2436 * layers can't queue any more.
2437 */
ed568912
KH
2438
2439 software_reset(ohci);
2440 free_irq(dev->irq, ohci);
d79406dd
KH
2441 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2442 ohci->self_id_cpu, ohci->self_id_bus);
2443 kfree(ohci->it_context_list);
2444 kfree(ohci->ir_context_list);
2445 pci_iounmap(dev, ohci->registers);
2446 pci_release_region(dev, 0);
2447 pci_disable_device(dev);
bd7dee63 2448 kfree(&ohci->card);
2ed0f181 2449 ohci_pmac_off(dev);
ea8d006b 2450
ed568912
KH
2451 fw_notify("Removed fw-ohci device.\n");
2452}
2453
2aef469a 2454#ifdef CONFIG_PM
2ed0f181 2455static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2aef469a 2456{
2ed0f181 2457 struct fw_ohci *ohci = pci_get_drvdata(dev);
2aef469a
KH
2458 int err;
2459
2460 software_reset(ohci);
2ed0f181
SR
2461 free_irq(dev->irq, ohci);
2462 err = pci_save_state(dev);
2aef469a 2463 if (err) {
8a8cea27 2464 fw_error("pci_save_state failed\n");
2aef469a
KH
2465 return err;
2466 }
2ed0f181 2467 err = pci_set_power_state(dev, pci_choose_state(dev, state));
55111428
SR
2468 if (err)
2469 fw_error("pci_set_power_state failed with %d\n", err);
2ed0f181 2470 ohci_pmac_off(dev);
ea8d006b 2471
2aef469a
KH
2472 return 0;
2473}
2474
2ed0f181 2475static int pci_resume(struct pci_dev *dev)
2aef469a 2476{
2ed0f181 2477 struct fw_ohci *ohci = pci_get_drvdata(dev);
2aef469a
KH
2478 int err;
2479
2ed0f181
SR
2480 ohci_pmac_on(dev);
2481 pci_set_power_state(dev, PCI_D0);
2482 pci_restore_state(dev);
2483 err = pci_enable_device(dev);
2aef469a 2484 if (err) {
8a8cea27 2485 fw_error("pci_enable_device failed\n");
2aef469a
KH
2486 return err;
2487 }
2488
0bd243c4 2489 return ohci_enable(&ohci->card, NULL, 0);
2aef469a
KH
2490}
2491#endif
2492
ed568912
KH
2493static struct pci_device_id pci_table[] = {
2494 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2495 { }
2496};
2497
2498MODULE_DEVICE_TABLE(pci, pci_table);
2499
2500static struct pci_driver fw_ohci_pci_driver = {
2501 .name = ohci_driver_name,
2502 .id_table = pci_table,
2503 .probe = pci_probe,
2504 .remove = pci_remove,
2aef469a
KH
2505#ifdef CONFIG_PM
2506 .resume = pci_resume,
2507 .suspend = pci_suspend,
2508#endif
ed568912
KH
2509};
2510
2511MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2512MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2513MODULE_LICENSE("GPL");
2514
1e4c7b0d
OH
2515/* Provide a module alias so root-on-sbp2 initrds don't break. */
2516#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2517MODULE_ALIAS("ohci1394");
2518#endif
2519
ed568912
KH
2520static int __init fw_ohci_init(void)
2521{
2522 return pci_register_driver(&fw_ohci_pci_driver);
2523}
2524
2525static void __exit fw_ohci_cleanup(void)
2526{
2527 pci_unregister_driver(&fw_ohci_pci_driver);
2528}
2529
2530module_init(fw_ohci_init);
2531module_exit(fw_ohci_cleanup);
This page took 0.36859 seconds and 5 git commands to generate.