firewire: fw-ohci: missing dma_unmap_single
[deliverable/linux.git] / drivers / firewire / fw-ohci.c
CommitLineData
c781c06d
KH
1/*
2 * Driver for OHCI 1394 controllers
ed568912 3 *
ed568912
KH
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
e524f616 21#include <linux/compiler.h>
ed568912 22#include <linux/delay.h>
cf3e72fd 23#include <linux/dma-mapping.h>
c26f0234 24#include <linux/gfp.h>
a7fb60db
SR
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/kernel.h>
faa2fb4e 28#include <linux/mm.h>
a7fb60db
SR
29#include <linux/module.h>
30#include <linux/pci.h>
c26f0234 31#include <linux/spinlock.h>
cf3e72fd 32
c26f0234 33#include <asm/page.h>
ee71c2f9 34#include <asm/system.h>
ed568912 35
ed568912 36#include "fw-ohci.h"
a7fb60db 37#include "fw-transaction.h"
ed568912 38
a77754a7
KH
39#define DESCRIPTOR_OUTPUT_MORE 0
40#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
41#define DESCRIPTOR_INPUT_MORE (2 << 12)
42#define DESCRIPTOR_INPUT_LAST (3 << 12)
43#define DESCRIPTOR_STATUS (1 << 11)
44#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
45#define DESCRIPTOR_PING (1 << 7)
46#define DESCRIPTOR_YY (1 << 6)
47#define DESCRIPTOR_NO_IRQ (0 << 4)
48#define DESCRIPTOR_IRQ_ERROR (1 << 4)
49#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
50#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
51#define DESCRIPTOR_WAIT (3 << 0)
ed568912
KH
52
53struct descriptor {
54 __le16 req_count;
55 __le16 control;
56 __le32 data_address;
57 __le32 branch_address;
58 __le16 res_count;
59 __le16 transfer_status;
60} __attribute__((aligned(16)));
61
295e3feb
KH
62struct db_descriptor {
63 __le16 first_size;
64 __le16 control;
65 __le16 second_req_count;
66 __le16 first_req_count;
67 __le32 branch_address;
68 __le16 second_res_count;
69 __le16 first_res_count;
70 __le32 reserved0;
71 __le32 first_buffer;
72 __le32 second_buffer;
73 __le32 reserved1;
74} __attribute__((aligned(16)));
75
a77754a7
KH
76#define CONTROL_SET(regs) (regs)
77#define CONTROL_CLEAR(regs) ((regs) + 4)
78#define COMMAND_PTR(regs) ((regs) + 12)
79#define CONTEXT_MATCH(regs) ((regs) + 16)
72e318e0 80
32b46093 81struct ar_buffer {
ed568912 82 struct descriptor descriptor;
32b46093
KH
83 struct ar_buffer *next;
84 __le32 data[0];
85};
ed568912 86
32b46093
KH
87struct ar_context {
88 struct fw_ohci *ohci;
89 struct ar_buffer *current_buffer;
90 struct ar_buffer *last_buffer;
91 void *pointer;
72e318e0 92 u32 regs;
ed568912
KH
93 struct tasklet_struct tasklet;
94};
95
30200739
KH
96struct context;
97
98typedef int (*descriptor_callback_t)(struct context *ctx,
99 struct descriptor *d,
100 struct descriptor *last);
101struct context {
373b2edd 102 struct fw_ohci *ohci;
30200739 103 u32 regs;
373b2edd 104
30200739
KH
105 struct descriptor *buffer;
106 dma_addr_t buffer_bus;
107 size_t buffer_size;
108 struct descriptor *head_descriptor;
109 struct descriptor *tail_descriptor;
110 struct descriptor *tail_descriptor_last;
111 struct descriptor *prev_descriptor;
112
113 descriptor_callback_t callback;
114
373b2edd 115 struct tasklet_struct tasklet;
30200739 116};
30200739 117
a77754a7
KH
118#define IT_HEADER_SY(v) ((v) << 0)
119#define IT_HEADER_TCODE(v) ((v) << 4)
120#define IT_HEADER_CHANNEL(v) ((v) << 8)
121#define IT_HEADER_TAG(v) ((v) << 14)
122#define IT_HEADER_SPEED(v) ((v) << 16)
123#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
ed568912
KH
124
125struct iso_context {
126 struct fw_iso_context base;
30200739 127 struct context context;
9b32d5f3
KH
128 void *header;
129 size_t header_length;
ed568912
KH
130};
131
132#define CONFIG_ROM_SIZE 1024
133
134struct fw_ohci {
135 struct fw_card card;
136
e364cf4e 137 u32 version;
ed568912
KH
138 __iomem char *registers;
139 dma_addr_t self_id_bus;
140 __le32 *self_id_cpu;
141 struct tasklet_struct bus_reset_tasklet;
e636fe25 142 int node_id;
ed568912
KH
143 int generation;
144 int request_generation;
d60d7f1d 145 u32 bus_seconds;
ed568912 146
c781c06d
KH
147 /*
148 * Spinlock for accessing fw_ohci data. Never call out of
149 * this driver with this lock held.
150 */
ed568912
KH
151 spinlock_t lock;
152 u32 self_id_buffer[512];
153
154 /* Config rom buffers */
155 __be32 *config_rom;
156 dma_addr_t config_rom_bus;
157 __be32 *next_config_rom;
158 dma_addr_t next_config_rom_bus;
159 u32 next_header;
160
161 struct ar_context ar_request_ctx;
162 struct ar_context ar_response_ctx;
f319b6a0
KH
163 struct context at_request_ctx;
164 struct context at_response_ctx;
ed568912
KH
165
166 u32 it_context_mask;
167 struct iso_context *it_context_list;
168 u32 ir_context_mask;
169 struct iso_context *ir_context_list;
170};
171
95688e97 172static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
173{
174 return container_of(card, struct fw_ohci, card);
175}
176
295e3feb
KH
177#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
178#define IR_CONTEXT_BUFFER_FILL 0x80000000
179#define IR_CONTEXT_ISOCH_HEADER 0x40000000
180#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
181#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
182#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
ed568912
KH
183
184#define CONTEXT_RUN 0x8000
185#define CONTEXT_WAKE 0x1000
186#define CONTEXT_DEAD 0x0800
187#define CONTEXT_ACTIVE 0x0400
188
189#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
190#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
191#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
192
193#define FW_OHCI_MAJOR 240
194#define OHCI1394_REGISTER_SIZE 0x800
195#define OHCI_LOOP_COUNT 500
196#define OHCI1394_PCI_HCI_Control 0x40
197#define SELF_ID_BUF_SIZE 0x800
32b46093 198#define OHCI_TCODE_PHY_PACKET 0x0e
e364cf4e 199#define OHCI_VERSION_1_1 0x010010
f319b6a0
KH
200#define ISO_BUFFER_SIZE (64 * 1024)
201#define AT_BUFFER_SIZE 4096
0edeefd9 202
ed568912
KH
203static char ohci_driver_name[] = KBUILD_MODNAME;
204
95688e97 205static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
206{
207 writel(data, ohci->registers + offset);
208}
209
95688e97 210static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
211{
212 return readl(ohci->registers + offset);
213}
214
95688e97 215static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
216{
217 /* Do a dummy read to flush writes. */
218 reg_read(ohci, OHCI1394_Version);
219}
220
221static int
222ohci_update_phy_reg(struct fw_card *card, int addr,
223 int clear_bits, int set_bits)
224{
225 struct fw_ohci *ohci = fw_ohci(card);
226 u32 val, old;
227
228 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
362e901c 229 flush_writes(ohci);
ed568912
KH
230 msleep(2);
231 val = reg_read(ohci, OHCI1394_PhyControl);
232 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
233 fw_error("failed to set phy reg bits.\n");
234 return -EBUSY;
235 }
236
237 old = OHCI1394_PhyControl_ReadData(val);
238 old = (old & ~clear_bits) | set_bits;
239 reg_write(ohci, OHCI1394_PhyControl,
240 OHCI1394_PhyControl_Write(addr, old));
241
242 return 0;
243}
244
32b46093 245static int ar_context_add_page(struct ar_context *ctx)
ed568912 246{
32b46093
KH
247 struct device *dev = ctx->ohci->card.device;
248 struct ar_buffer *ab;
249 dma_addr_t ab_bus;
250 size_t offset;
251
252 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
253 if (ab == NULL)
254 return -ENOMEM;
255
256 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
257 if (dma_mapping_error(ab_bus)) {
258 free_page((unsigned long) ab);
259 return -ENOMEM;
260 }
261
2d826cc5 262 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
a77754a7
KH
263 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
264 DESCRIPTOR_STATUS |
265 DESCRIPTOR_BRANCH_ALWAYS);
32b46093
KH
266 offset = offsetof(struct ar_buffer, data);
267 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
268 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
269 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
270 ab->descriptor.branch_address = 0;
271
272 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
273
ec839e43 274 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
32b46093
KH
275 ctx->last_buffer->next = ab;
276 ctx->last_buffer = ab;
277
a77754a7 278 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
ed568912 279 flush_writes(ctx->ohci);
32b46093
KH
280
281 return 0;
ed568912
KH
282}
283
32b46093 284static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 285{
ed568912 286 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
287 struct fw_packet p;
288 u32 status, length, tcode;
2639a6fb 289
32b46093
KH
290 p.header[0] = le32_to_cpu(buffer[0]);
291 p.header[1] = le32_to_cpu(buffer[1]);
292 p.header[2] = le32_to_cpu(buffer[2]);
2639a6fb
KH
293
294 tcode = (p.header[0] >> 4) & 0x0f;
295 switch (tcode) {
296 case TCODE_WRITE_QUADLET_REQUEST:
297 case TCODE_READ_QUADLET_RESPONSE:
32b46093 298 p.header[3] = (__force __u32) buffer[3];
2639a6fb 299 p.header_length = 16;
32b46093 300 p.payload_length = 0;
2639a6fb
KH
301 break;
302
2639a6fb 303 case TCODE_READ_BLOCK_REQUEST :
32b46093
KH
304 p.header[3] = le32_to_cpu(buffer[3]);
305 p.header_length = 16;
306 p.payload_length = 0;
307 break;
308
309 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
310 case TCODE_READ_BLOCK_RESPONSE:
311 case TCODE_LOCK_REQUEST:
312 case TCODE_LOCK_RESPONSE:
32b46093 313 p.header[3] = le32_to_cpu(buffer[3]);
2639a6fb 314 p.header_length = 16;
32b46093 315 p.payload_length = p.header[3] >> 16;
2639a6fb
KH
316 break;
317
318 case TCODE_WRITE_RESPONSE:
319 case TCODE_READ_QUADLET_REQUEST:
32b46093 320 case OHCI_TCODE_PHY_PACKET:
2639a6fb 321 p.header_length = 12;
32b46093 322 p.payload_length = 0;
2639a6fb
KH
323 break;
324 }
ed568912 325
32b46093
KH
326 p.payload = (void *) buffer + p.header_length;
327
328 /* FIXME: What to do about evt_* errors? */
329 length = (p.header_length + p.payload_length + 3) / 4;
330 status = le32_to_cpu(buffer[length]);
331
332 p.ack = ((status >> 16) & 0x1f) - 16;
333 p.speed = (status >> 21) & 0x7;
334 p.timestamp = status & 0xffff;
335 p.generation = ohci->request_generation;
ed568912 336
c781c06d
KH
337 /*
338 * The OHCI bus reset handler synthesizes a phy packet with
ed568912
KH
339 * the new generation number when a bus reset happens (see
340 * section 8.4.2.3). This helps us determine when a request
341 * was received and make sure we send the response in the same
342 * generation. We only need this for requests; for responses
343 * we use the unique tlabel for finding the matching
c781c06d
KH
344 * request.
345 */
ed568912 346
2639a6fb 347 if (p.ack + 16 == 0x09)
32b46093 348 ohci->request_generation = (buffer[2] >> 16) & 0xff;
ed568912 349 else if (ctx == &ohci->ar_request_ctx)
2639a6fb 350 fw_core_handle_request(&ohci->card, &p);
ed568912 351 else
2639a6fb 352 fw_core_handle_response(&ohci->card, &p);
ed568912 353
32b46093
KH
354 return buffer + length + 1;
355}
ed568912 356
32b46093
KH
357static void ar_context_tasklet(unsigned long data)
358{
359 struct ar_context *ctx = (struct ar_context *)data;
360 struct fw_ohci *ohci = ctx->ohci;
361 struct ar_buffer *ab;
362 struct descriptor *d;
363 void *buffer, *end;
364
365 ab = ctx->current_buffer;
366 d = &ab->descriptor;
367
368 if (d->res_count == 0) {
369 size_t size, rest, offset;
370
c781c06d
KH
371 /*
372 * This descriptor is finished and we may have a
32b46093 373 * packet split across this and the next buffer. We
c781c06d
KH
374 * reuse the page for reassembling the split packet.
375 */
32b46093
KH
376
377 offset = offsetof(struct ar_buffer, data);
378 dma_unmap_single(ohci->card.device,
0a9972ba
SR
379 le32_to_cpu(ab->descriptor.data_address) - offset,
380 PAGE_SIZE, DMA_BIDIRECTIONAL);
32b46093
KH
381
382 buffer = ab;
383 ab = ab->next;
384 d = &ab->descriptor;
385 size = buffer + PAGE_SIZE - ctx->pointer;
386 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
387 memmove(buffer, ctx->pointer, size);
388 memcpy(buffer + size, ab->data, rest);
389 ctx->current_buffer = ab;
390 ctx->pointer = (void *) ab->data + rest;
391 end = buffer + size + rest;
392
393 while (buffer < end)
394 buffer = handle_ar_packet(ctx, buffer);
395
396 free_page((unsigned long)buffer);
397 ar_context_add_page(ctx);
398 } else {
399 buffer = ctx->pointer;
400 ctx->pointer = end =
401 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
402
403 while (buffer < end)
404 buffer = handle_ar_packet(ctx, buffer);
405 }
ed568912
KH
406}
407
408static int
72e318e0 409ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
ed568912 410{
32b46093 411 struct ar_buffer ab;
ed568912 412
72e318e0
KH
413 ctx->regs = regs;
414 ctx->ohci = ohci;
415 ctx->last_buffer = &ab;
ed568912
KH
416 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
417
32b46093
KH
418 ar_context_add_page(ctx);
419 ar_context_add_page(ctx);
420 ctx->current_buffer = ab.next;
421 ctx->pointer = ctx->current_buffer->data;
422
2aef469a
KH
423 return 0;
424}
425
426static void ar_context_run(struct ar_context *ctx)
427{
428 struct ar_buffer *ab = ctx->current_buffer;
429 dma_addr_t ab_bus;
430 size_t offset;
431
432 offset = offsetof(struct ar_buffer, data);
0a9972ba 433 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
2aef469a
KH
434
435 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
a77754a7 436 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
32b46093 437 flush_writes(ctx->ohci);
ed568912 438}
373b2edd 439
30200739
KH
440static void context_tasklet(unsigned long data)
441{
442 struct context *ctx = (struct context *) data;
443 struct fw_ohci *ohci = ctx->ohci;
444 struct descriptor *d, *last;
445 u32 address;
446 int z;
447
448 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
449 ctx->buffer_size, DMA_TO_DEVICE);
450
451 d = ctx->tail_descriptor;
452 last = ctx->tail_descriptor_last;
453
454 while (last->branch_address != 0) {
455 address = le32_to_cpu(last->branch_address);
456 z = address & 0xf;
2d826cc5 457 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
30200739
KH
458 last = (z == 2) ? d : d + z - 1;
459
460 if (!ctx->callback(ctx, d, last))
461 break;
462
463 ctx->tail_descriptor = d;
464 ctx->tail_descriptor_last = last;
465 }
466}
467
468static int
469context_init(struct context *ctx, struct fw_ohci *ohci,
470 size_t buffer_size, u32 regs,
471 descriptor_callback_t callback)
472{
473 ctx->ohci = ohci;
474 ctx->regs = regs;
475 ctx->buffer_size = buffer_size;
476 ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
477 if (ctx->buffer == NULL)
478 return -ENOMEM;
479
480 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
481 ctx->callback = callback;
482
483 ctx->buffer_bus =
484 dma_map_single(ohci->card.device, ctx->buffer,
485 buffer_size, DMA_TO_DEVICE);
486 if (dma_mapping_error(ctx->buffer_bus)) {
487 kfree(ctx->buffer);
488 return -ENOMEM;
489 }
490
491 ctx->head_descriptor = ctx->buffer;
492 ctx->prev_descriptor = ctx->buffer;
493 ctx->tail_descriptor = ctx->buffer;
494 ctx->tail_descriptor_last = ctx->buffer;
495
c781c06d
KH
496 /*
497 * We put a dummy descriptor in the buffer that has a NULL
30200739
KH
498 * branch address and looks like it's been sent. That way we
499 * have a descriptor to append DMA programs to. Also, the
500 * ring buffer invariant is that it always has at least one
c781c06d
KH
501 * element so that head == tail means buffer full.
502 */
30200739 503
2d826cc5 504 memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
a77754a7 505 ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
30200739
KH
506 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
507 ctx->head_descriptor++;
508
509 return 0;
510}
511
9b32d5f3 512static void
30200739
KH
513context_release(struct context *ctx)
514{
515 struct fw_card *card = &ctx->ohci->card;
516
517 dma_unmap_single(card->device, ctx->buffer_bus,
518 ctx->buffer_size, DMA_TO_DEVICE);
519 kfree(ctx->buffer);
520}
521
522static struct descriptor *
523context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
524{
525 struct descriptor *d, *tail, *end;
526
527 d = ctx->head_descriptor;
528 tail = ctx->tail_descriptor;
2d826cc5 529 end = ctx->buffer + ctx->buffer_size / sizeof(*d);
30200739
KH
530
531 if (d + z <= tail) {
532 goto has_space;
533 } else if (d > tail && d + z <= end) {
534 goto has_space;
535 } else if (d > tail && ctx->buffer + z <= tail) {
536 d = ctx->buffer;
537 goto has_space;
538 }
539
540 return NULL;
541
542 has_space:
2d826cc5
KH
543 memset(d, 0, z * sizeof(*d));
544 *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
30200739
KH
545
546 return d;
547}
548
295e3feb 549static void context_run(struct context *ctx, u32 extra)
30200739
KH
550{
551 struct fw_ohci *ohci = ctx->ohci;
552
a77754a7 553 reg_write(ohci, COMMAND_PTR(ctx->regs),
30200739 554 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
a77754a7
KH
555 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
556 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
30200739
KH
557 flush_writes(ohci);
558}
559
560static void context_append(struct context *ctx,
561 struct descriptor *d, int z, int extra)
562{
563 dma_addr_t d_bus;
564
2d826cc5 565 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
30200739
KH
566
567 ctx->head_descriptor = d + z + extra;
568 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
569 ctx->prev_descriptor = z == 2 ? d : d + z - 1;
570
571 dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
572 ctx->buffer_size, DMA_TO_DEVICE);
573
a77754a7 574 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
30200739
KH
575 flush_writes(ctx->ohci);
576}
577
578static void context_stop(struct context *ctx)
579{
580 u32 reg;
b8295668 581 int i;
30200739 582
a77754a7 583 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
b8295668 584 flush_writes(ctx->ohci);
30200739 585
b8295668 586 for (i = 0; i < 10; i++) {
a77754a7 587 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
b8295668
KH
588 if ((reg & CONTEXT_ACTIVE) == 0)
589 break;
590
591 fw_notify("context_stop: still active (0x%08x)\n", reg);
b980f5a2 592 mdelay(1);
b8295668 593 }
30200739 594}
ed568912 595
f319b6a0
KH
596struct driver_data {
597 struct fw_packet *packet;
598};
ed568912 599
c781c06d
KH
600/*
601 * This function apppends a packet to the DMA queue for transmission.
f319b6a0 602 * Must always be called with the ochi->lock held to ensure proper
c781c06d
KH
603 * generation handling and locking around packet queue manipulation.
604 */
f319b6a0
KH
605static int
606at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
ed568912 607{
ed568912 608 struct fw_ohci *ohci = ctx->ohci;
f319b6a0
KH
609 dma_addr_t d_bus, payload_bus;
610 struct driver_data *driver_data;
611 struct descriptor *d, *last;
612 __le32 *header;
ed568912 613 int z, tcode;
f319b6a0 614 u32 reg;
ed568912 615
f319b6a0
KH
616 d = context_get_descriptors(ctx, 4, &d_bus);
617 if (d == NULL) {
618 packet->ack = RCODE_SEND_ERROR;
619 return -1;
ed568912
KH
620 }
621
a77754a7 622 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
f319b6a0
KH
623 d[0].res_count = cpu_to_le16(packet->timestamp);
624
c781c06d
KH
625 /*
626 * The DMA format for asyncronous link packets is different
ed568912
KH
627 * from the IEEE1394 layout, so shift the fields around
628 * accordingly. If header_length is 8, it's a PHY packet, to
c781c06d
KH
629 * which we need to prepend an extra quadlet.
630 */
f319b6a0
KH
631
632 header = (__le32 *) &d[1];
ed568912 633 if (packet->header_length > 8) {
f319b6a0
KH
634 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
635 (packet->speed << 16));
636 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
637 (packet->header[0] & 0xffff0000));
638 header[2] = cpu_to_le32(packet->header[2]);
ed568912
KH
639
640 tcode = (packet->header[0] >> 4) & 0x0f;
641 if (TCODE_IS_BLOCK_PACKET(tcode))
f319b6a0 642 header[3] = cpu_to_le32(packet->header[3]);
ed568912 643 else
f319b6a0
KH
644 header[3] = (__force __le32) packet->header[3];
645
646 d[0].req_count = cpu_to_le16(packet->header_length);
ed568912 647 } else {
f319b6a0
KH
648 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
649 (packet->speed << 16));
650 header[1] = cpu_to_le32(packet->header[0]);
651 header[2] = cpu_to_le32(packet->header[1]);
652 d[0].req_count = cpu_to_le16(12);
ed568912
KH
653 }
654
f319b6a0
KH
655 driver_data = (struct driver_data *) &d[3];
656 driver_data->packet = packet;
20d11673 657 packet->driver_data = driver_data;
f319b6a0
KH
658
659 if (packet->payload_length > 0) {
660 payload_bus =
661 dma_map_single(ohci->card.device, packet->payload,
662 packet->payload_length, DMA_TO_DEVICE);
663 if (dma_mapping_error(payload_bus)) {
664 packet->ack = RCODE_SEND_ERROR;
665 return -1;
666 }
667
668 d[2].req_count = cpu_to_le16(packet->payload_length);
669 d[2].data_address = cpu_to_le32(payload_bus);
670 last = &d[2];
671 z = 3;
ed568912 672 } else {
f319b6a0
KH
673 last = &d[0];
674 z = 2;
ed568912 675 }
ed568912 676
a77754a7
KH
677 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
678 DESCRIPTOR_IRQ_ALWAYS |
679 DESCRIPTOR_BRANCH_ALWAYS);
ed568912 680
f319b6a0
KH
681 /* FIXME: Document how the locking works. */
682 if (ohci->generation != packet->generation) {
ab88ca48
SR
683 if (packet->payload_length > 0)
684 dma_unmap_single(ohci->card.device, payload_bus,
685 packet->payload_length, DMA_TO_DEVICE);
f319b6a0
KH
686 packet->ack = RCODE_GENERATION;
687 return -1;
688 }
689
690 context_append(ctx, d, z, 4 - z);
ed568912 691
f319b6a0 692 /* If the context isn't already running, start it up. */
a77754a7 693 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
053b3080 694 if ((reg & CONTEXT_RUN) == 0)
f319b6a0
KH
695 context_run(ctx, 0);
696
697 return 0;
ed568912
KH
698}
699
f319b6a0
KH
700static int handle_at_packet(struct context *context,
701 struct descriptor *d,
702 struct descriptor *last)
ed568912 703{
f319b6a0 704 struct driver_data *driver_data;
ed568912 705 struct fw_packet *packet;
f319b6a0
KH
706 struct fw_ohci *ohci = context->ohci;
707 dma_addr_t payload_bus;
ed568912
KH
708 int evt;
709
f319b6a0
KH
710 if (last->transfer_status == 0)
711 /* This descriptor isn't done yet, stop iteration. */
712 return 0;
ed568912 713
f319b6a0
KH
714 driver_data = (struct driver_data *) &d[3];
715 packet = driver_data->packet;
716 if (packet == NULL)
717 /* This packet was cancelled, just continue. */
718 return 1;
730c32f5 719
f319b6a0
KH
720 payload_bus = le32_to_cpu(last->data_address);
721 if (payload_bus != 0)
722 dma_unmap_single(ohci->card.device, payload_bus,
ed568912 723 packet->payload_length, DMA_TO_DEVICE);
ed568912 724
f319b6a0
KH
725 evt = le16_to_cpu(last->transfer_status) & 0x1f;
726 packet->timestamp = le16_to_cpu(last->res_count);
ed568912 727
f319b6a0
KH
728 switch (evt) {
729 case OHCI1394_evt_timeout:
730 /* Async response transmit timed out. */
731 packet->ack = RCODE_CANCELLED;
732 break;
ed568912 733
f319b6a0 734 case OHCI1394_evt_flushed:
c781c06d
KH
735 /*
736 * The packet was flushed should give same error as
737 * when we try to use a stale generation count.
738 */
f319b6a0
KH
739 packet->ack = RCODE_GENERATION;
740 break;
ed568912 741
f319b6a0 742 case OHCI1394_evt_missing_ack:
c781c06d
KH
743 /*
744 * Using a valid (current) generation count, but the
745 * node is not on the bus or not sending acks.
746 */
f319b6a0
KH
747 packet->ack = RCODE_NO_ACK;
748 break;
ed568912 749
f319b6a0
KH
750 case ACK_COMPLETE + 0x10:
751 case ACK_PENDING + 0x10:
752 case ACK_BUSY_X + 0x10:
753 case ACK_BUSY_A + 0x10:
754 case ACK_BUSY_B + 0x10:
755 case ACK_DATA_ERROR + 0x10:
756 case ACK_TYPE_ERROR + 0x10:
757 packet->ack = evt - 0x10;
758 break;
ed568912 759
f319b6a0
KH
760 default:
761 packet->ack = RCODE_SEND_ERROR;
762 break;
763 }
ed568912 764
f319b6a0 765 packet->callback(packet, &ohci->card, packet->ack);
ed568912 766
f319b6a0 767 return 1;
ed568912
KH
768}
769
a77754a7
KH
770#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
771#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
772#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
773#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
774#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
93c4cceb
KH
775
776static void
777handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
778{
779 struct fw_packet response;
780 int tcode, length, i;
781
a77754a7 782 tcode = HEADER_GET_TCODE(packet->header[0]);
93c4cceb 783 if (TCODE_IS_BLOCK_PACKET(tcode))
a77754a7 784 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb
KH
785 else
786 length = 4;
787
788 i = csr - CSR_CONFIG_ROM;
789 if (i + length > CONFIG_ROM_SIZE) {
790 fw_fill_response(&response, packet->header,
791 RCODE_ADDRESS_ERROR, NULL, 0);
792 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
793 fw_fill_response(&response, packet->header,
794 RCODE_TYPE_ERROR, NULL, 0);
795 } else {
796 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
797 (void *) ohci->config_rom + i, length);
798 }
799
800 fw_core_handle_response(&ohci->card, &response);
801}
802
803static void
804handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
805{
806 struct fw_packet response;
807 int tcode, length, ext_tcode, sel;
808 __be32 *payload, lock_old;
809 u32 lock_arg, lock_data;
810
a77754a7
KH
811 tcode = HEADER_GET_TCODE(packet->header[0]);
812 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb 813 payload = packet->payload;
a77754a7 814 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
93c4cceb
KH
815
816 if (tcode == TCODE_LOCK_REQUEST &&
817 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
818 lock_arg = be32_to_cpu(payload[0]);
819 lock_data = be32_to_cpu(payload[1]);
820 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
821 lock_arg = 0;
822 lock_data = 0;
823 } else {
824 fw_fill_response(&response, packet->header,
825 RCODE_TYPE_ERROR, NULL, 0);
826 goto out;
827 }
828
829 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
830 reg_write(ohci, OHCI1394_CSRData, lock_data);
831 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
832 reg_write(ohci, OHCI1394_CSRControl, sel);
833
834 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
835 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
836 else
837 fw_notify("swap not done yet\n");
838
839 fw_fill_response(&response, packet->header,
2d826cc5 840 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
93c4cceb
KH
841 out:
842 fw_core_handle_response(&ohci->card, &response);
843}
844
845static void
f319b6a0 846handle_local_request(struct context *ctx, struct fw_packet *packet)
93c4cceb
KH
847{
848 u64 offset;
849 u32 csr;
850
473d28c7
KH
851 if (ctx == &ctx->ohci->at_request_ctx) {
852 packet->ack = ACK_PENDING;
853 packet->callback(packet, &ctx->ohci->card, packet->ack);
854 }
93c4cceb
KH
855
856 offset =
857 ((unsigned long long)
a77754a7 858 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
93c4cceb
KH
859 packet->header[2];
860 csr = offset - CSR_REGISTER_BASE;
861
862 /* Handle config rom reads. */
863 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
864 handle_local_rom(ctx->ohci, packet, csr);
865 else switch (csr) {
866 case CSR_BUS_MANAGER_ID:
867 case CSR_BANDWIDTH_AVAILABLE:
868 case CSR_CHANNELS_AVAILABLE_HI:
869 case CSR_CHANNELS_AVAILABLE_LO:
870 handle_local_lock(ctx->ohci, packet, csr);
871 break;
872 default:
873 if (ctx == &ctx->ohci->at_request_ctx)
874 fw_core_handle_request(&ctx->ohci->card, packet);
875 else
876 fw_core_handle_response(&ctx->ohci->card, packet);
877 break;
878 }
473d28c7
KH
879
880 if (ctx == &ctx->ohci->at_response_ctx) {
881 packet->ack = ACK_COMPLETE;
882 packet->callback(packet, &ctx->ohci->card, packet->ack);
883 }
93c4cceb 884}
e636fe25 885
ed568912 886static void
f319b6a0 887at_context_transmit(struct context *ctx, struct fw_packet *packet)
ed568912 888{
ed568912 889 unsigned long flags;
f319b6a0 890 int retval;
ed568912
KH
891
892 spin_lock_irqsave(&ctx->ohci->lock, flags);
893
a77754a7 894 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
e636fe25 895 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
896 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
897 handle_local_request(ctx, packet);
898 return;
e636fe25 899 }
ed568912 900
f319b6a0 901 retval = at_context_queue_packet(ctx, packet);
ed568912
KH
902 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
903
f319b6a0
KH
904 if (retval < 0)
905 packet->callback(packet, &ctx->ohci->card, packet->ack);
906
ed568912
KH
907}
908
909static void bus_reset_tasklet(unsigned long data)
910{
911 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 912 int self_id_count, i, j, reg;
ed568912
KH
913 int generation, new_generation;
914 unsigned long flags;
4eaff7d6
SR
915 void *free_rom = NULL;
916 dma_addr_t free_rom_bus = 0;
ed568912
KH
917
918 reg = reg_read(ohci, OHCI1394_NodeID);
919 if (!(reg & OHCI1394_NodeID_idValid)) {
920 fw_error("node ID not valid, new bus reset in progress\n");
921 return;
922 }
e636fe25 923 ohci->node_id = reg & 0xffff;
ed568912 924
c781c06d
KH
925 /*
926 * The count in the SelfIDCount register is the number of
ed568912
KH
927 * bytes in the self ID receive buffer. Since we also receive
928 * the inverted quadlets and a header quadlet, we shift one
c781c06d
KH
929 * bit extra to get the actual number of self IDs.
930 */
ed568912
KH
931
932 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
933 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
ee71c2f9 934 rmb();
ed568912
KH
935
936 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
937 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
938 fw_error("inconsistent self IDs\n");
939 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
940 }
ee71c2f9 941 rmb();
ed568912 942
c781c06d
KH
943 /*
944 * Check the consistency of the self IDs we just read. The
ed568912
KH
945 * problem we face is that a new bus reset can start while we
946 * read out the self IDs from the DMA buffer. If this happens,
947 * the DMA buffer will be overwritten with new self IDs and we
948 * will read out inconsistent data. The OHCI specification
949 * (section 11.2) recommends a technique similar to
950 * linux/seqlock.h, where we remember the generation of the
951 * self IDs in the buffer before reading them out and compare
952 * it to the current generation after reading them out. If
953 * the two generations match we know we have a consistent set
c781c06d
KH
954 * of self IDs.
955 */
ed568912
KH
956
957 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
958 if (new_generation != generation) {
959 fw_notify("recursive bus reset detected, "
960 "discarding self ids\n");
961 return;
962 }
963
964 /* FIXME: Document how the locking works. */
965 spin_lock_irqsave(&ohci->lock, flags);
966
967 ohci->generation = generation;
f319b6a0
KH
968 context_stop(&ohci->at_request_ctx);
969 context_stop(&ohci->at_response_ctx);
ed568912
KH
970 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
971
c781c06d
KH
972 /*
973 * This next bit is unrelated to the AT context stuff but we
ed568912
KH
974 * have to do it under the spinlock also. If a new config rom
975 * was set up before this reset, the old one is now no longer
976 * in use and we can free it. Update the config rom pointers
977 * to point to the current config rom and clear the
c781c06d
KH
978 * next_config_rom pointer so a new udpate can take place.
979 */
ed568912
KH
980
981 if (ohci->next_config_rom != NULL) {
4eaff7d6
SR
982 free_rom = ohci->config_rom;
983 free_rom_bus = ohci->config_rom_bus;
ed568912
KH
984 ohci->config_rom = ohci->next_config_rom;
985 ohci->config_rom_bus = ohci->next_config_rom_bus;
986 ohci->next_config_rom = NULL;
987
c781c06d
KH
988 /*
989 * Restore config_rom image and manually update
ed568912
KH
990 * config_rom registers. Writing the header quadlet
991 * will indicate that the config rom is ready, so we
c781c06d
KH
992 * do that last.
993 */
ed568912
KH
994 reg_write(ohci, OHCI1394_BusOptions,
995 be32_to_cpu(ohci->config_rom[2]));
996 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
997 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
998 }
999
1000 spin_unlock_irqrestore(&ohci->lock, flags);
1001
4eaff7d6
SR
1002 if (free_rom)
1003 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1004 free_rom, free_rom_bus);
1005
e636fe25 1006 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
1007 self_id_count, ohci->self_id_buffer);
1008}
1009
1010static irqreturn_t irq_handler(int irq, void *data)
1011{
1012 struct fw_ohci *ohci = data;
d60d7f1d 1013 u32 event, iso_event, cycle_time;
ed568912
KH
1014 int i;
1015
1016 event = reg_read(ohci, OHCI1394_IntEventClear);
1017
a515958d 1018 if (!event || !~event)
ed568912
KH
1019 return IRQ_NONE;
1020
1021 reg_write(ohci, OHCI1394_IntEventClear, event);
1022
1023 if (event & OHCI1394_selfIDComplete)
1024 tasklet_schedule(&ohci->bus_reset_tasklet);
1025
1026 if (event & OHCI1394_RQPkt)
1027 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1028
1029 if (event & OHCI1394_RSPkt)
1030 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1031
1032 if (event & OHCI1394_reqTxComplete)
1033 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1034
1035 if (event & OHCI1394_respTxComplete)
1036 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1037
c889475f 1038 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
ed568912
KH
1039 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1040
1041 while (iso_event) {
1042 i = ffs(iso_event) - 1;
30200739 1043 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
ed568912
KH
1044 iso_event &= ~(1 << i);
1045 }
1046
c889475f 1047 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
ed568912
KH
1048 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1049
1050 while (iso_event) {
1051 i = ffs(iso_event) - 1;
30200739 1052 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
ed568912
KH
1053 iso_event &= ~(1 << i);
1054 }
1055
e524f616
SR
1056 if (unlikely(event & OHCI1394_postedWriteErr))
1057 fw_error("PCI posted write error\n");
1058
d60d7f1d
KH
1059 if (event & OHCI1394_cycle64Seconds) {
1060 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1061 if ((cycle_time & 0x80000000) == 0)
1062 ohci->bus_seconds++;
1063 }
1064
ed568912
KH
1065 return IRQ_HANDLED;
1066}
1067
2aef469a
KH
1068static int software_reset(struct fw_ohci *ohci)
1069{
1070 int i;
1071
1072 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1073
1074 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1075 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1076 OHCI1394_HCControl_softReset) == 0)
1077 return 0;
1078 msleep(1);
1079 }
1080
1081 return -EBUSY;
1082}
1083
ed568912
KH
1084static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1085{
1086 struct fw_ohci *ohci = fw_ohci(card);
1087 struct pci_dev *dev = to_pci_dev(card->device);
1088
2aef469a
KH
1089 if (software_reset(ohci)) {
1090 fw_error("Failed to reset ohci card.\n");
1091 return -EBUSY;
1092 }
1093
1094 /*
1095 * Now enable LPS, which we need in order to start accessing
1096 * most of the registers. In fact, on some cards (ALI M5251),
1097 * accessing registers in the SClk domain without LPS enabled
1098 * will lock up the machine. Wait 50msec to make sure we have
1099 * full link enabled.
1100 */
1101 reg_write(ohci, OHCI1394_HCControlSet,
1102 OHCI1394_HCControl_LPS |
1103 OHCI1394_HCControl_postedWriteEnable);
1104 flush_writes(ohci);
1105 msleep(50);
1106
1107 reg_write(ohci, OHCI1394_HCControlClear,
1108 OHCI1394_HCControl_noByteSwapData);
1109
1110 reg_write(ohci, OHCI1394_LinkControlSet,
1111 OHCI1394_LinkControl_rcvSelfID |
1112 OHCI1394_LinkControl_cycleTimerEnable |
1113 OHCI1394_LinkControl_cycleMaster);
1114
1115 reg_write(ohci, OHCI1394_ATRetries,
1116 OHCI1394_MAX_AT_REQ_RETRIES |
1117 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1118 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1119
1120 ar_context_run(&ohci->ar_request_ctx);
1121 ar_context_run(&ohci->ar_response_ctx);
1122
1123 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1124 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1125 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1126 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1127 reg_write(ohci, OHCI1394_IntMaskSet,
1128 OHCI1394_selfIDComplete |
1129 OHCI1394_RQPkt | OHCI1394_RSPkt |
1130 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1131 OHCI1394_isochRx | OHCI1394_isochTx |
e524f616
SR
1132 OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
1133 OHCI1394_masterIntEnable);
2aef469a
KH
1134
1135 /* Activate link_on bit and contender bit in our self ID packets.*/
1136 if (ohci_update_phy_reg(card, 4, 0,
1137 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1138 return -EIO;
1139
c781c06d
KH
1140 /*
1141 * When the link is not yet enabled, the atomic config rom
ed568912
KH
1142 * update mechanism described below in ohci_set_config_rom()
1143 * is not active. We have to update ConfigRomHeader and
1144 * BusOptions manually, and the write to ConfigROMmap takes
1145 * effect immediately. We tie this to the enabling of the
1146 * link, so we have a valid config rom before enabling - the
1147 * OHCI requires that ConfigROMhdr and BusOptions have valid
1148 * values before enabling.
1149 *
1150 * However, when the ConfigROMmap is written, some controllers
1151 * always read back quadlets 0 and 2 from the config rom to
1152 * the ConfigRomHeader and BusOptions registers on bus reset.
1153 * They shouldn't do that in this initial case where the link
1154 * isn't enabled. This means we have to use the same
1155 * workaround here, setting the bus header to 0 and then write
1156 * the right values in the bus reset tasklet.
1157 */
1158
1159 ohci->next_config_rom =
1160 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1161 &ohci->next_config_rom_bus, GFP_KERNEL);
1162 if (ohci->next_config_rom == NULL)
1163 return -ENOMEM;
1164
1165 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1166 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1167
1168 ohci->next_header = config_rom[0];
1169 ohci->next_config_rom[0] = 0;
1170 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1171 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1172 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1173
1174 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1175
1176 if (request_irq(dev->irq, irq_handler,
65efffa8 1177 IRQF_SHARED, ohci_driver_name, ohci)) {
ed568912
KH
1178 fw_error("Failed to allocate shared interrupt %d.\n",
1179 dev->irq);
1180 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1181 ohci->config_rom, ohci->config_rom_bus);
1182 return -EIO;
1183 }
1184
1185 reg_write(ohci, OHCI1394_HCControlSet,
1186 OHCI1394_HCControl_linkEnable |
1187 OHCI1394_HCControl_BIBimageValid);
1188 flush_writes(ohci);
1189
c781c06d
KH
1190 /*
1191 * We are ready to go, initiate bus reset to finish the
1192 * initialization.
1193 */
ed568912
KH
1194
1195 fw_core_initiate_bus_reset(&ohci->card, 1);
1196
1197 return 0;
1198}
1199
1200static int
1201ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1202{
1203 struct fw_ohci *ohci;
1204 unsigned long flags;
4eaff7d6 1205 int retval = -EBUSY;
ed568912
KH
1206 __be32 *next_config_rom;
1207 dma_addr_t next_config_rom_bus;
1208
1209 ohci = fw_ohci(card);
1210
c781c06d
KH
1211 /*
1212 * When the OHCI controller is enabled, the config rom update
ed568912
KH
1213 * mechanism is a bit tricky, but easy enough to use. See
1214 * section 5.5.6 in the OHCI specification.
1215 *
1216 * The OHCI controller caches the new config rom address in a
1217 * shadow register (ConfigROMmapNext) and needs a bus reset
1218 * for the changes to take place. When the bus reset is
1219 * detected, the controller loads the new values for the
1220 * ConfigRomHeader and BusOptions registers from the specified
1221 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1222 * shadow register. All automatically and atomically.
1223 *
1224 * Now, there's a twist to this story. The automatic load of
1225 * ConfigRomHeader and BusOptions doesn't honor the
1226 * noByteSwapData bit, so with a be32 config rom, the
1227 * controller will load be32 values in to these registers
1228 * during the atomic update, even on litte endian
1229 * architectures. The workaround we use is to put a 0 in the
1230 * header quadlet; 0 is endian agnostic and means that the
1231 * config rom isn't ready yet. In the bus reset tasklet we
1232 * then set up the real values for the two registers.
1233 *
1234 * We use ohci->lock to avoid racing with the code that sets
1235 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1236 */
1237
1238 next_config_rom =
1239 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1240 &next_config_rom_bus, GFP_KERNEL);
1241 if (next_config_rom == NULL)
1242 return -ENOMEM;
1243
1244 spin_lock_irqsave(&ohci->lock, flags);
1245
1246 if (ohci->next_config_rom == NULL) {
1247 ohci->next_config_rom = next_config_rom;
1248 ohci->next_config_rom_bus = next_config_rom_bus;
1249
1250 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1251 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1252 length * 4);
1253
1254 ohci->next_header = config_rom[0];
1255 ohci->next_config_rom[0] = 0;
1256
1257 reg_write(ohci, OHCI1394_ConfigROMmap,
1258 ohci->next_config_rom_bus);
4eaff7d6 1259 retval = 0;
ed568912
KH
1260 }
1261
1262 spin_unlock_irqrestore(&ohci->lock, flags);
1263
c781c06d
KH
1264 /*
1265 * Now initiate a bus reset to have the changes take
ed568912
KH
1266 * effect. We clean up the old config rom memory and DMA
1267 * mappings in the bus reset tasklet, since the OHCI
1268 * controller could need to access it before the bus reset
c781c06d
KH
1269 * takes effect.
1270 */
ed568912
KH
1271 if (retval == 0)
1272 fw_core_initiate_bus_reset(&ohci->card, 1);
4eaff7d6
SR
1273 else
1274 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1275 next_config_rom, next_config_rom_bus);
ed568912
KH
1276
1277 return retval;
1278}
1279
1280static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1281{
1282 struct fw_ohci *ohci = fw_ohci(card);
1283
1284 at_context_transmit(&ohci->at_request_ctx, packet);
1285}
1286
1287static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1288{
1289 struct fw_ohci *ohci = fw_ohci(card);
1290
1291 at_context_transmit(&ohci->at_response_ctx, packet);
1292}
1293
730c32f5
KH
1294static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1295{
1296 struct fw_ohci *ohci = fw_ohci(card);
f319b6a0
KH
1297 struct context *ctx = &ohci->at_request_ctx;
1298 struct driver_data *driver_data = packet->driver_data;
1299 int retval = -ENOENT;
730c32f5 1300
f319b6a0 1301 tasklet_disable(&ctx->tasklet);
730c32f5 1302
f319b6a0
KH
1303 if (packet->ack != 0)
1304 goto out;
730c32f5 1305
f319b6a0
KH
1306 driver_data->packet = NULL;
1307 packet->ack = RCODE_CANCELLED;
1308 packet->callback(packet, &ohci->card, packet->ack);
1309 retval = 0;
730c32f5 1310
f319b6a0
KH
1311 out:
1312 tasklet_enable(&ctx->tasklet);
730c32f5 1313
f319b6a0 1314 return retval;
730c32f5
KH
1315}
1316
ed568912
KH
1317static int
1318ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1319{
1320 struct fw_ohci *ohci = fw_ohci(card);
1321 unsigned long flags;
907293d7 1322 int n, retval = 0;
ed568912 1323
c781c06d
KH
1324 /*
1325 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1326 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1327 */
ed568912
KH
1328
1329 spin_lock_irqsave(&ohci->lock, flags);
1330
1331 if (ohci->generation != generation) {
1332 retval = -ESTALE;
1333 goto out;
1334 }
1335
c781c06d
KH
1336 /*
1337 * Note, if the node ID contains a non-local bus ID, physical DMA is
1338 * enabled for _all_ nodes on remote buses.
1339 */
907293d7
SR
1340
1341 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1342 if (n < 32)
1343 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1344 else
1345 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1346
ed568912 1347 flush_writes(ohci);
ed568912 1348 out:
6cad95fe 1349 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912
KH
1350 return retval;
1351}
373b2edd 1352
d60d7f1d
KH
1353static u64
1354ohci_get_bus_time(struct fw_card *card)
1355{
1356 struct fw_ohci *ohci = fw_ohci(card);
1357 u32 cycle_time;
1358 u64 bus_time;
1359
1360 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1361 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1362
1363 return bus_time;
1364}
1365
d2746dc1
KH
1366static int handle_ir_dualbuffer_packet(struct context *context,
1367 struct descriptor *d,
1368 struct descriptor *last)
ed568912 1369{
295e3feb
KH
1370 struct iso_context *ctx =
1371 container_of(context, struct iso_context, context);
1372 struct db_descriptor *db = (struct db_descriptor *) d;
c70dc788 1373 __le32 *ir_header;
9b32d5f3 1374 size_t header_length;
c70dc788
KH
1375 void *p, *end;
1376 int i;
d2746dc1 1377
295e3feb
KH
1378 if (db->first_res_count > 0 && db->second_res_count > 0)
1379 /* This descriptor isn't done yet, stop iteration. */
1380 return 0;
1381
c70dc788
KH
1382 header_length = le16_to_cpu(db->first_req_count) -
1383 le16_to_cpu(db->first_res_count);
1384
1385 i = ctx->header_length;
1386 p = db + 1;
1387 end = p + header_length;
1388 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
c781c06d
KH
1389 /*
1390 * The iso header is byteswapped to little endian by
15536221
KH
1391 * the controller, but the remaining header quadlets
1392 * are big endian. We want to present all the headers
1393 * as big endian, so we have to swap the first
c781c06d
KH
1394 * quadlet.
1395 */
15536221
KH
1396 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1397 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
c70dc788
KH
1398 i += ctx->base.header_size;
1399 p += ctx->base.header_size + 4;
1400 }
1401
1402 ctx->header_length = i;
9b32d5f3 1403
a77754a7 1404 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
c70dc788
KH
1405 ir_header = (__le32 *) (db + 1);
1406 ctx->base.callback(&ctx->base,
1407 le32_to_cpu(ir_header[0]) & 0xffff,
9b32d5f3 1408 ctx->header_length, ctx->header,
295e3feb 1409 ctx->base.callback_data);
9b32d5f3
KH
1410 ctx->header_length = 0;
1411 }
ed568912 1412
295e3feb 1413 return 1;
ed568912
KH
1414}
1415
30200739
KH
1416static int handle_it_packet(struct context *context,
1417 struct descriptor *d,
1418 struct descriptor *last)
ed568912 1419{
30200739
KH
1420 struct iso_context *ctx =
1421 container_of(context, struct iso_context, context);
373b2edd 1422
30200739
KH
1423 if (last->transfer_status == 0)
1424 /* This descriptor isn't done yet, stop iteration. */
1425 return 0;
1426
a77754a7 1427 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
9b32d5f3
KH
1428 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1429 0, NULL, ctx->base.callback_data);
30200739
KH
1430
1431 return 1;
ed568912
KH
1432}
1433
30200739 1434static struct fw_iso_context *
eb0306ea 1435ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
ed568912
KH
1436{
1437 struct fw_ohci *ohci = fw_ohci(card);
1438 struct iso_context *ctx, *list;
30200739 1439 descriptor_callback_t callback;
295e3feb 1440 u32 *mask, regs;
ed568912 1441 unsigned long flags;
9b32d5f3 1442 int index, retval = -ENOMEM;
ed568912
KH
1443
1444 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1445 mask = &ohci->it_context_mask;
1446 list = ohci->it_context_list;
30200739 1447 callback = handle_it_packet;
ed568912 1448 } else {
373b2edd
SR
1449 mask = &ohci->ir_context_mask;
1450 list = ohci->ir_context_list;
c70dc788 1451 callback = handle_ir_dualbuffer_packet;
ed568912
KH
1452 }
1453
c70dc788 1454 /* FIXME: We need a fallback for pre 1.1 OHCI. */
e364cf4e
KH
1455 if (callback == handle_ir_dualbuffer_packet &&
1456 ohci->version < OHCI_VERSION_1_1)
1457 return ERR_PTR(-EINVAL);
1458
ed568912
KH
1459 spin_lock_irqsave(&ohci->lock, flags);
1460 index = ffs(*mask) - 1;
1461 if (index >= 0)
1462 *mask &= ~(1 << index);
1463 spin_unlock_irqrestore(&ohci->lock, flags);
1464
1465 if (index < 0)
1466 return ERR_PTR(-EBUSY);
1467
373b2edd
SR
1468 if (type == FW_ISO_CONTEXT_TRANSMIT)
1469 regs = OHCI1394_IsoXmitContextBase(index);
1470 else
1471 regs = OHCI1394_IsoRcvContextBase(index);
1472
ed568912 1473 ctx = &list[index];
2d826cc5 1474 memset(ctx, 0, sizeof(*ctx));
9b32d5f3
KH
1475 ctx->header_length = 0;
1476 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1477 if (ctx->header == NULL)
1478 goto out;
1479
30200739 1480 retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
295e3feb 1481 regs, callback);
9b32d5f3
KH
1482 if (retval < 0)
1483 goto out_with_header;
ed568912
KH
1484
1485 return &ctx->base;
9b32d5f3
KH
1486
1487 out_with_header:
1488 free_page((unsigned long)ctx->header);
1489 out:
1490 spin_lock_irqsave(&ohci->lock, flags);
1491 *mask |= 1 << index;
1492 spin_unlock_irqrestore(&ohci->lock, flags);
1493
1494 return ERR_PTR(retval);
ed568912
KH
1495}
1496
eb0306ea
KH
1497static int ohci_start_iso(struct fw_iso_context *base,
1498 s32 cycle, u32 sync, u32 tags)
ed568912 1499{
373b2edd 1500 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1501 struct fw_ohci *ohci = ctx->context.ohci;
8a2f7d93 1502 u32 control, match;
ed568912
KH
1503 int index;
1504
295e3feb
KH
1505 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1506 index = ctx - ohci->it_context_list;
8a2f7d93
KH
1507 match = 0;
1508 if (cycle >= 0)
1509 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
295e3feb 1510 (cycle & 0x7fff) << 16;
21efb3cf 1511
295e3feb
KH
1512 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1513 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
8a2f7d93 1514 context_run(&ctx->context, match);
295e3feb
KH
1515 } else {
1516 index = ctx - ohci->ir_context_list;
8a2f7d93
KH
1517 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1518 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1519 if (cycle >= 0) {
1520 match |= (cycle & 0x07fff) << 12;
1521 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1522 }
ed568912 1523
295e3feb
KH
1524 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1525 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
a77754a7 1526 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
8a2f7d93 1527 context_run(&ctx->context, control);
295e3feb 1528 }
ed568912
KH
1529
1530 return 0;
1531}
1532
b8295668
KH
1533static int ohci_stop_iso(struct fw_iso_context *base)
1534{
1535 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1536 struct iso_context *ctx = container_of(base, struct iso_context, base);
b8295668
KH
1537 int index;
1538
1539 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1540 index = ctx - ohci->it_context_list;
1541 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1542 } else {
1543 index = ctx - ohci->ir_context_list;
1544 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1545 }
1546 flush_writes(ohci);
1547 context_stop(&ctx->context);
1548
1549 return 0;
1550}
1551
ed568912
KH
1552static void ohci_free_iso_context(struct fw_iso_context *base)
1553{
1554 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1555 struct iso_context *ctx = container_of(base, struct iso_context, base);
ed568912
KH
1556 unsigned long flags;
1557 int index;
1558
b8295668
KH
1559 ohci_stop_iso(base);
1560 context_release(&ctx->context);
9b32d5f3 1561 free_page((unsigned long)ctx->header);
b8295668 1562
ed568912
KH
1563 spin_lock_irqsave(&ohci->lock, flags);
1564
1565 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1566 index = ctx - ohci->it_context_list;
ed568912
KH
1567 ohci->it_context_mask |= 1 << index;
1568 } else {
1569 index = ctx - ohci->ir_context_list;
ed568912
KH
1570 ohci->ir_context_mask |= 1 << index;
1571 }
ed568912
KH
1572
1573 spin_unlock_irqrestore(&ohci->lock, flags);
1574}
1575
1576static int
295e3feb
KH
1577ohci_queue_iso_transmit(struct fw_iso_context *base,
1578 struct fw_iso_packet *packet,
1579 struct fw_iso_buffer *buffer,
1580 unsigned long payload)
ed568912 1581{
373b2edd 1582 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1583 struct descriptor *d, *last, *pd;
ed568912
KH
1584 struct fw_iso_packet *p;
1585 __le32 *header;
9aad8125 1586 dma_addr_t d_bus, page_bus;
ed568912
KH
1587 u32 z, header_z, payload_z, irq;
1588 u32 payload_index, payload_end_index, next_page_index;
30200739 1589 int page, end_page, i, length, offset;
ed568912 1590
c781c06d
KH
1591 /*
1592 * FIXME: Cycle lost behavior should be configurable: lose
1593 * packet, retransmit or terminate..
1594 */
ed568912
KH
1595
1596 p = packet;
9aad8125 1597 payload_index = payload;
ed568912
KH
1598
1599 if (p->skip)
1600 z = 1;
1601 else
1602 z = 2;
1603 if (p->header_length > 0)
1604 z++;
1605
1606 /* Determine the first page the payload isn't contained in. */
1607 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1608 if (p->payload_length > 0)
1609 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1610 else
1611 payload_z = 0;
1612
1613 z += payload_z;
1614
1615 /* Get header size in number of descriptors. */
2d826cc5 1616 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
ed568912 1617
30200739
KH
1618 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1619 if (d == NULL)
1620 return -ENOMEM;
ed568912
KH
1621
1622 if (!p->skip) {
a77754a7 1623 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
ed568912
KH
1624 d[0].req_count = cpu_to_le16(8);
1625
1626 header = (__le32 *) &d[1];
a77754a7
KH
1627 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1628 IT_HEADER_TAG(p->tag) |
1629 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1630 IT_HEADER_CHANNEL(ctx->base.channel) |
1631 IT_HEADER_SPEED(ctx->base.speed));
ed568912 1632 header[1] =
a77754a7 1633 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
ed568912
KH
1634 p->payload_length));
1635 }
1636
1637 if (p->header_length > 0) {
1638 d[2].req_count = cpu_to_le16(p->header_length);
2d826cc5 1639 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
ed568912
KH
1640 memcpy(&d[z], p->header, p->header_length);
1641 }
1642
1643 pd = d + z - payload_z;
1644 payload_end_index = payload_index + p->payload_length;
1645 for (i = 0; i < payload_z; i++) {
1646 page = payload_index >> PAGE_SHIFT;
1647 offset = payload_index & ~PAGE_MASK;
1648 next_page_index = (page + 1) << PAGE_SHIFT;
1649 length =
1650 min(next_page_index, payload_end_index) - payload_index;
1651 pd[i].req_count = cpu_to_le16(length);
9aad8125
KH
1652
1653 page_bus = page_private(buffer->pages[page]);
1654 pd[i].data_address = cpu_to_le32(page_bus + offset);
ed568912
KH
1655
1656 payload_index += length;
1657 }
1658
ed568912 1659 if (p->interrupt)
a77754a7 1660 irq = DESCRIPTOR_IRQ_ALWAYS;
ed568912 1661 else
a77754a7 1662 irq = DESCRIPTOR_NO_IRQ;
ed568912 1663
30200739 1664 last = z == 2 ? d : d + z - 1;
a77754a7
KH
1665 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1666 DESCRIPTOR_STATUS |
1667 DESCRIPTOR_BRANCH_ALWAYS |
cbb59da7 1668 irq);
ed568912 1669
30200739 1670 context_append(&ctx->context, d, z, header_z);
ed568912
KH
1671
1672 return 0;
1673}
373b2edd 1674
295e3feb 1675static int
d2746dc1
KH
1676ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1677 struct fw_iso_packet *packet,
1678 struct fw_iso_buffer *buffer,
1679 unsigned long payload)
295e3feb
KH
1680{
1681 struct iso_context *ctx = container_of(base, struct iso_context, base);
1682 struct db_descriptor *db = NULL;
1683 struct descriptor *d;
1684 struct fw_iso_packet *p;
1685 dma_addr_t d_bus, page_bus;
1686 u32 z, header_z, length, rest;
c70dc788 1687 int page, offset, packet_count, header_size;
373b2edd 1688
c781c06d
KH
1689 /*
1690 * FIXME: Cycle lost behavior should be configurable: lose
1691 * packet, retransmit or terminate..
1692 */
295e3feb 1693
c70dc788
KH
1694 if (packet->skip) {
1695 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1696 if (d == NULL)
1697 return -ENOMEM;
1698
1699 db = (struct db_descriptor *) d;
a77754a7
KH
1700 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1701 DESCRIPTOR_BRANCH_ALWAYS |
1702 DESCRIPTOR_WAIT);
c70dc788
KH
1703 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1704 context_append(&ctx->context, d, 2, 0);
1705 }
98b6cbe8 1706
295e3feb
KH
1707 p = packet;
1708 z = 2;
1709
c781c06d
KH
1710 /*
1711 * The OHCI controller puts the status word in the header
1712 * buffer too, so we need 4 extra bytes per packet.
1713 */
c70dc788
KH
1714 packet_count = p->header_length / ctx->base.header_size;
1715 header_size = packet_count * (ctx->base.header_size + 4);
1716
295e3feb 1717 /* Get header size in number of descriptors. */
2d826cc5 1718 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
295e3feb
KH
1719 page = payload >> PAGE_SHIFT;
1720 offset = payload & ~PAGE_MASK;
1721 rest = p->payload_length;
1722
1723 /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
295e3feb
KH
1724 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1725 while (rest > 0) {
1726 d = context_get_descriptors(&ctx->context,
1727 z + header_z, &d_bus);
1728 if (d == NULL)
1729 return -ENOMEM;
1730
1731 db = (struct db_descriptor *) d;
a77754a7
KH
1732 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1733 DESCRIPTOR_BRANCH_ALWAYS);
c70dc788
KH
1734 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1735 db->first_req_count = cpu_to_le16(header_size);
1e1d196b 1736 db->first_res_count = db->first_req_count;
2d826cc5 1737 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
373b2edd 1738
295e3feb
KH
1739 if (offset + rest < PAGE_SIZE)
1740 length = rest;
1741 else
1742 length = PAGE_SIZE - offset;
1743
1e1d196b
KH
1744 db->second_req_count = cpu_to_le16(length);
1745 db->second_res_count = db->second_req_count;
295e3feb
KH
1746 page_bus = page_private(buffer->pages[page]);
1747 db->second_buffer = cpu_to_le32(page_bus + offset);
1748
cb2d2cdb 1749 if (p->interrupt && length == rest)
a77754a7 1750 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
cb2d2cdb 1751
295e3feb
KH
1752 context_append(&ctx->context, d, z, header_z);
1753 offset = (offset + length) & ~PAGE_MASK;
1754 rest -= length;
1755 page++;
1756 }
1757
d2746dc1
KH
1758 return 0;
1759}
21efb3cf 1760
295e3feb
KH
1761static int
1762ohci_queue_iso(struct fw_iso_context *base,
1763 struct fw_iso_packet *packet,
1764 struct fw_iso_buffer *buffer,
1765 unsigned long payload)
1766{
e364cf4e
KH
1767 struct iso_context *ctx = container_of(base, struct iso_context, base);
1768
295e3feb
KH
1769 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1770 return ohci_queue_iso_transmit(base, packet, buffer, payload);
e364cf4e 1771 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
d2746dc1
KH
1772 return ohci_queue_iso_receive_dualbuffer(base, packet,
1773 buffer, payload);
e364cf4e
KH
1774 else
1775 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1776 return -EINVAL;
295e3feb
KH
1777}
1778
21ebcd12 1779static const struct fw_card_driver ohci_driver = {
ed568912
KH
1780 .name = ohci_driver_name,
1781 .enable = ohci_enable,
1782 .update_phy_reg = ohci_update_phy_reg,
1783 .set_config_rom = ohci_set_config_rom,
1784 .send_request = ohci_send_request,
1785 .send_response = ohci_send_response,
730c32f5 1786 .cancel_packet = ohci_cancel_packet,
ed568912 1787 .enable_phys_dma = ohci_enable_phys_dma,
d60d7f1d 1788 .get_bus_time = ohci_get_bus_time,
ed568912
KH
1789
1790 .allocate_iso_context = ohci_allocate_iso_context,
1791 .free_iso_context = ohci_free_iso_context,
1792 .queue_iso = ohci_queue_iso,
69cdb726 1793 .start_iso = ohci_start_iso,
b8295668 1794 .stop_iso = ohci_stop_iso,
ed568912
KH
1795};
1796
ed568912
KH
1797static int __devinit
1798pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1799{
1800 struct fw_ohci *ohci;
e364cf4e 1801 u32 bus_options, max_receive, link_speed;
ed568912 1802 u64 guid;
d79406dd 1803 int err;
ed568912
KH
1804 size_t size;
1805
2d826cc5 1806 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
ed568912
KH
1807 if (ohci == NULL) {
1808 fw_error("Could not malloc fw_ohci data.\n");
1809 return -ENOMEM;
1810 }
1811
1812 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1813
d79406dd
KH
1814 err = pci_enable_device(dev);
1815 if (err) {
ed568912 1816 fw_error("Failed to enable OHCI hardware.\n");
d79406dd 1817 goto fail_put_card;
ed568912
KH
1818 }
1819
1820 pci_set_master(dev);
1821 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1822 pci_set_drvdata(dev, ohci);
1823
1824 spin_lock_init(&ohci->lock);
1825
1826 tasklet_init(&ohci->bus_reset_tasklet,
1827 bus_reset_tasklet, (unsigned long)ohci);
1828
d79406dd
KH
1829 err = pci_request_region(dev, 0, ohci_driver_name);
1830 if (err) {
ed568912 1831 fw_error("MMIO resource unavailable\n");
d79406dd 1832 goto fail_disable;
ed568912
KH
1833 }
1834
1835 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1836 if (ohci->registers == NULL) {
1837 fw_error("Failed to remap registers\n");
d79406dd
KH
1838 err = -ENXIO;
1839 goto fail_iomem;
ed568912
KH
1840 }
1841
ed568912
KH
1842 ar_context_init(&ohci->ar_request_ctx, ohci,
1843 OHCI1394_AsReqRcvContextControlSet);
1844
1845 ar_context_init(&ohci->ar_response_ctx, ohci,
1846 OHCI1394_AsRspRcvContextControlSet);
1847
f319b6a0
KH
1848 context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1849 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
ed568912 1850
f319b6a0
KH
1851 context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1852 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
ed568912 1853
ed568912
KH
1854 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1855 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1856 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1857 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1858 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1859
1860 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1861 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1862 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1863 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1864 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1865
1866 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1867 fw_error("Out of memory for it/ir contexts.\n");
d79406dd
KH
1868 err = -ENOMEM;
1869 goto fail_registers;
ed568912
KH
1870 }
1871
1872 /* self-id dma buffer allocation */
1873 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1874 SELF_ID_BUF_SIZE,
1875 &ohci->self_id_bus,
1876 GFP_KERNEL);
1877 if (ohci->self_id_cpu == NULL) {
1878 fw_error("Out of memory for self ID buffer.\n");
d79406dd
KH
1879 err = -ENOMEM;
1880 goto fail_registers;
ed568912
KH
1881 }
1882
ed568912
KH
1883 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1884 max_receive = (bus_options >> 12) & 0xf;
1885 link_speed = bus_options & 0x7;
1886 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1887 reg_read(ohci, OHCI1394_GUIDLo);
1888
d79406dd
KH
1889 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1890 if (err < 0)
1891 goto fail_self_id;
ed568912 1892
e364cf4e 1893 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
500be725 1894 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
e364cf4e 1895 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
ed568912
KH
1896
1897 return 0;
d79406dd
KH
1898
1899 fail_self_id:
1900 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1901 ohci->self_id_cpu, ohci->self_id_bus);
1902 fail_registers:
1903 kfree(ohci->it_context_list);
1904 kfree(ohci->ir_context_list);
1905 pci_iounmap(dev, ohci->registers);
1906 fail_iomem:
1907 pci_release_region(dev, 0);
1908 fail_disable:
1909 pci_disable_device(dev);
1910 fail_put_card:
1911 fw_card_put(&ohci->card);
1912
1913 return err;
ed568912
KH
1914}
1915
1916static void pci_remove(struct pci_dev *dev)
1917{
1918 struct fw_ohci *ohci;
1919
1920 ohci = pci_get_drvdata(dev);
e254a4b4
KH
1921 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1922 flush_writes(ohci);
ed568912
KH
1923 fw_core_remove_card(&ohci->card);
1924
c781c06d
KH
1925 /*
1926 * FIXME: Fail all pending packets here, now that the upper
1927 * layers can't queue any more.
1928 */
ed568912
KH
1929
1930 software_reset(ohci);
1931 free_irq(dev->irq, ohci);
d79406dd
KH
1932 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1933 ohci->self_id_cpu, ohci->self_id_bus);
1934 kfree(ohci->it_context_list);
1935 kfree(ohci->ir_context_list);
1936 pci_iounmap(dev, ohci->registers);
1937 pci_release_region(dev, 0);
1938 pci_disable_device(dev);
1939 fw_card_put(&ohci->card);
ed568912
KH
1940
1941 fw_notify("Removed fw-ohci device.\n");
1942}
1943
2aef469a
KH
1944#ifdef CONFIG_PM
1945static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
1946{
1947 struct fw_ohci *ohci = pci_get_drvdata(pdev);
1948 int err;
1949
1950 software_reset(ohci);
1951 free_irq(pdev->irq, ohci);
1952 err = pci_save_state(pdev);
1953 if (err) {
8a8cea27 1954 fw_error("pci_save_state failed\n");
2aef469a
KH
1955 return err;
1956 }
1957 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
55111428
SR
1958 if (err)
1959 fw_error("pci_set_power_state failed with %d\n", err);
2aef469a
KH
1960
1961 return 0;
1962}
1963
1964static int pci_resume(struct pci_dev *pdev)
1965{
1966 struct fw_ohci *ohci = pci_get_drvdata(pdev);
1967 int err;
1968
1969 pci_set_power_state(pdev, PCI_D0);
1970 pci_restore_state(pdev);
1971 err = pci_enable_device(pdev);
1972 if (err) {
8a8cea27 1973 fw_error("pci_enable_device failed\n");
2aef469a
KH
1974 return err;
1975 }
1976
1977 return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
1978}
1979#endif
1980
ed568912
KH
1981static struct pci_device_id pci_table[] = {
1982 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1983 { }
1984};
1985
1986MODULE_DEVICE_TABLE(pci, pci_table);
1987
1988static struct pci_driver fw_ohci_pci_driver = {
1989 .name = ohci_driver_name,
1990 .id_table = pci_table,
1991 .probe = pci_probe,
1992 .remove = pci_remove,
2aef469a
KH
1993#ifdef CONFIG_PM
1994 .resume = pci_resume,
1995 .suspend = pci_suspend,
1996#endif
ed568912
KH
1997};
1998
1999MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2000MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2001MODULE_LICENSE("GPL");
2002
1e4c7b0d
OH
2003/* Provide a module alias so root-on-sbp2 initrds don't break. */
2004#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2005MODULE_ALIAS("ohci1394");
2006#endif
2007
ed568912
KH
2008static int __init fw_ohci_init(void)
2009{
2010 return pci_register_driver(&fw_ohci_pci_driver);
2011}
2012
2013static void __exit fw_ohci_cleanup(void)
2014{
2015 pci_unregister_driver(&fw_ohci_pci_driver);
2016}
2017
2018module_init(fw_ohci_init);
2019module_exit(fw_ohci_cleanup);
This page took 0.288345 seconds and 5 git commands to generate.