firewire: core: normalize a function argument name
[deliverable/linux.git] / drivers / firewire / fw-ohci.c
CommitLineData
c781c06d
KH
1/*
2 * Driver for OHCI 1394 controllers
ed568912 3 *
ed568912
KH
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
e524f616 21#include <linux/compiler.h>
ed568912 22#include <linux/delay.h>
cf3e72fd 23#include <linux/dma-mapping.h>
c26f0234 24#include <linux/gfp.h>
a7fb60db
SR
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/kernel.h>
faa2fb4e 28#include <linux/mm.h>
a7fb60db 29#include <linux/module.h>
ad3c0fe8 30#include <linux/moduleparam.h>
a7fb60db 31#include <linux/pci.h>
c26f0234 32#include <linux/spinlock.h>
cf3e72fd 33
c26f0234 34#include <asm/page.h>
ee71c2f9 35#include <asm/system.h>
ed568912 36
ea8d006b
SR
37#ifdef CONFIG_PPC_PMAC
38#include <asm/pmac_feature.h>
39#endif
40
ed568912 41#include "fw-ohci.h"
a7fb60db 42#include "fw-transaction.h"
ed568912 43
a77754a7
KH
44#define DESCRIPTOR_OUTPUT_MORE 0
45#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
46#define DESCRIPTOR_INPUT_MORE (2 << 12)
47#define DESCRIPTOR_INPUT_LAST (3 << 12)
48#define DESCRIPTOR_STATUS (1 << 11)
49#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
50#define DESCRIPTOR_PING (1 << 7)
51#define DESCRIPTOR_YY (1 << 6)
52#define DESCRIPTOR_NO_IRQ (0 << 4)
53#define DESCRIPTOR_IRQ_ERROR (1 << 4)
54#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
55#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
56#define DESCRIPTOR_WAIT (3 << 0)
ed568912
KH
57
58struct descriptor {
59 __le16 req_count;
60 __le16 control;
61 __le32 data_address;
62 __le32 branch_address;
63 __le16 res_count;
64 __le16 transfer_status;
65} __attribute__((aligned(16)));
66
295e3feb
KH
67struct db_descriptor {
68 __le16 first_size;
69 __le16 control;
70 __le16 second_req_count;
71 __le16 first_req_count;
72 __le32 branch_address;
73 __le16 second_res_count;
74 __le16 first_res_count;
75 __le32 reserved0;
76 __le32 first_buffer;
77 __le32 second_buffer;
78 __le32 reserved1;
79} __attribute__((aligned(16)));
80
a77754a7
KH
81#define CONTROL_SET(regs) (regs)
82#define CONTROL_CLEAR(regs) ((regs) + 4)
83#define COMMAND_PTR(regs) ((regs) + 12)
84#define CONTEXT_MATCH(regs) ((regs) + 16)
72e318e0 85
32b46093 86struct ar_buffer {
ed568912 87 struct descriptor descriptor;
32b46093
KH
88 struct ar_buffer *next;
89 __le32 data[0];
90};
ed568912 91
32b46093
KH
92struct ar_context {
93 struct fw_ohci *ohci;
94 struct ar_buffer *current_buffer;
95 struct ar_buffer *last_buffer;
96 void *pointer;
72e318e0 97 u32 regs;
ed568912
KH
98 struct tasklet_struct tasklet;
99};
100
30200739
KH
101struct context;
102
103typedef int (*descriptor_callback_t)(struct context *ctx,
104 struct descriptor *d,
105 struct descriptor *last);
fe5ca634
DM
106
107/*
108 * A buffer that contains a block of DMA-able coherent memory used for
109 * storing a portion of a DMA descriptor program.
110 */
111struct descriptor_buffer {
112 struct list_head list;
113 dma_addr_t buffer_bus;
114 size_t buffer_size;
115 size_t used;
116 struct descriptor buffer[0];
117};
118
30200739 119struct context {
373b2edd 120 struct fw_ohci *ohci;
30200739 121 u32 regs;
fe5ca634 122 int total_allocation;
373b2edd 123
fe5ca634
DM
124 /*
125 * List of page-sized buffers for storing DMA descriptors.
126 * Head of list contains buffers in use and tail of list contains
127 * free buffers.
128 */
129 struct list_head buffer_list;
130
131 /*
132 * Pointer to a buffer inside buffer_list that contains the tail
133 * end of the current DMA program.
134 */
135 struct descriptor_buffer *buffer_tail;
136
137 /*
138 * The descriptor containing the branch address of the first
139 * descriptor that has not yet been filled by the device.
140 */
141 struct descriptor *last;
142
143 /*
144 * The last descriptor in the DMA program. It contains the branch
145 * address that must be updated upon appending a new descriptor.
146 */
147 struct descriptor *prev;
30200739
KH
148
149 descriptor_callback_t callback;
150
373b2edd 151 struct tasklet_struct tasklet;
30200739 152};
30200739 153
a77754a7
KH
154#define IT_HEADER_SY(v) ((v) << 0)
155#define IT_HEADER_TCODE(v) ((v) << 4)
156#define IT_HEADER_CHANNEL(v) ((v) << 8)
157#define IT_HEADER_TAG(v) ((v) << 14)
158#define IT_HEADER_SPEED(v) ((v) << 16)
159#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
ed568912
KH
160
161struct iso_context {
162 struct fw_iso_context base;
30200739 163 struct context context;
0642b657 164 int excess_bytes;
9b32d5f3
KH
165 void *header;
166 size_t header_length;
ed568912
KH
167};
168
169#define CONFIG_ROM_SIZE 1024
170
171struct fw_ohci {
172 struct fw_card card;
173
174 __iomem char *registers;
175 dma_addr_t self_id_bus;
176 __le32 *self_id_cpu;
177 struct tasklet_struct bus_reset_tasklet;
e636fe25 178 int node_id;
ed568912 179 int generation;
e09770db 180 int request_generation; /* for timestamping incoming requests */
d60d7f1d 181 u32 bus_seconds;
95984f62
SR
182
183 bool use_dualbuffer;
11bf20ad 184 bool old_uninorth;
d34316a4 185 bool bus_reset_packet_quirk;
ed568912 186
c781c06d
KH
187 /*
188 * Spinlock for accessing fw_ohci data. Never call out of
189 * this driver with this lock held.
190 */
ed568912
KH
191 spinlock_t lock;
192 u32 self_id_buffer[512];
193
194 /* Config rom buffers */
195 __be32 *config_rom;
196 dma_addr_t config_rom_bus;
197 __be32 *next_config_rom;
198 dma_addr_t next_config_rom_bus;
199 u32 next_header;
200
201 struct ar_context ar_request_ctx;
202 struct ar_context ar_response_ctx;
f319b6a0
KH
203 struct context at_request_ctx;
204 struct context at_response_ctx;
ed568912
KH
205
206 u32 it_context_mask;
207 struct iso_context *it_context_list;
4817ed24 208 u64 ir_context_channels;
ed568912
KH
209 u32 ir_context_mask;
210 struct iso_context *ir_context_list;
211};
212
95688e97 213static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
214{
215 return container_of(card, struct fw_ohci, card);
216}
217
295e3feb
KH
218#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
219#define IR_CONTEXT_BUFFER_FILL 0x80000000
220#define IR_CONTEXT_ISOCH_HEADER 0x40000000
221#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
222#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
223#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
ed568912
KH
224
225#define CONTEXT_RUN 0x8000
226#define CONTEXT_WAKE 0x1000
227#define CONTEXT_DEAD 0x0800
228#define CONTEXT_ACTIVE 0x0400
229
8b7b6afa 230#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
ed568912
KH
231#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
232#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
233
234#define FW_OHCI_MAJOR 240
235#define OHCI1394_REGISTER_SIZE 0x800
236#define OHCI_LOOP_COUNT 500
237#define OHCI1394_PCI_HCI_Control 0x40
238#define SELF_ID_BUF_SIZE 0x800
32b46093 239#define OHCI_TCODE_PHY_PACKET 0x0e
e364cf4e 240#define OHCI_VERSION_1_1 0x010010
0edeefd9 241
ed568912
KH
242static char ohci_driver_name[] = KBUILD_MODNAME;
243
ad3c0fe8
SR
244#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
245
a007bb85 246#define OHCI_PARAM_DEBUG_AT_AR 1
ad3c0fe8 247#define OHCI_PARAM_DEBUG_SELFIDS 2
a007bb85
SR
248#define OHCI_PARAM_DEBUG_IRQS 4
249#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
ad3c0fe8
SR
250
251static int param_debug;
252module_param_named(debug, param_debug, int, 0644);
253MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
ad3c0fe8 254 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
a007bb85
SR
255 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
256 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
257 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
ad3c0fe8
SR
258 ", or a combination, or all = -1)");
259
260static void log_irqs(u32 evt)
261{
a007bb85
SR
262 if (likely(!(param_debug &
263 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
264 return;
265
266 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
267 !(evt & OHCI1394_busReset))
ad3c0fe8
SR
268 return;
269
161b96e7
SR
270 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
271 evt & OHCI1394_selfIDComplete ? " selfID" : "",
272 evt & OHCI1394_RQPkt ? " AR_req" : "",
273 evt & OHCI1394_RSPkt ? " AR_resp" : "",
274 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
275 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
276 evt & OHCI1394_isochRx ? " IR" : "",
277 evt & OHCI1394_isochTx ? " IT" : "",
278 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
279 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
280 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
281 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
282 evt & OHCI1394_busReset ? " busReset" : "",
283 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
284 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
285 OHCI1394_respTxComplete | OHCI1394_isochRx |
286 OHCI1394_isochTx | OHCI1394_postedWriteErr |
287 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
288 OHCI1394_regAccessFail | OHCI1394_busReset)
ad3c0fe8
SR
289 ? " ?" : "");
290}
291
292static const char *speed[] = {
293 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
294};
295static const char *power[] = {
296 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
297 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
298};
299static const char port[] = { '.', '-', 'p', 'c', };
300
301static char _p(u32 *s, int shift)
302{
303 return port[*s >> shift & 3];
304}
305
08ddb2f4 306static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
ad3c0fe8
SR
307{
308 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
309 return;
310
161b96e7
SR
311 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
312 self_id_count, generation, node_id);
ad3c0fe8
SR
313
314 for (; self_id_count--; ++s)
315 if ((*s & 1 << 23) == 0)
161b96e7
SR
316 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
317 "%s gc=%d %s %s%s%s\n",
318 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
319 speed[*s >> 14 & 3], *s >> 16 & 63,
320 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
321 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
ad3c0fe8 322 else
161b96e7
SR
323 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
324 *s, *s >> 24 & 63,
325 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
326 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
ad3c0fe8
SR
327}
328
329static const char *evts[] = {
330 [0x00] = "evt_no_status", [0x01] = "-reserved-",
331 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
332 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
333 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
334 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
335 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
336 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
337 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
338 [0x10] = "-reserved-", [0x11] = "ack_complete",
339 [0x12] = "ack_pending ", [0x13] = "-reserved-",
340 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
341 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
342 [0x18] = "-reserved-", [0x19] = "-reserved-",
343 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
344 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
345 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
346 [0x20] = "pending/cancelled",
347};
348static const char *tcodes[] = {
349 [0x0] = "QW req", [0x1] = "BW req",
350 [0x2] = "W resp", [0x3] = "-reserved-",
351 [0x4] = "QR req", [0x5] = "BR req",
352 [0x6] = "QR resp", [0x7] = "BR resp",
353 [0x8] = "cycle start", [0x9] = "Lk req",
354 [0xa] = "async stream packet", [0xb] = "Lk resp",
355 [0xc] = "-reserved-", [0xd] = "-reserved-",
356 [0xe] = "link internal", [0xf] = "-reserved-",
357};
358static const char *phys[] = {
359 [0x0] = "phy config packet", [0x1] = "link-on packet",
360 [0x2] = "self-id packet", [0x3] = "-reserved-",
361};
362
363static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
364{
365 int tcode = header[0] >> 4 & 0xf;
366 char specific[12];
367
368 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
369 return;
370
371 if (unlikely(evt >= ARRAY_SIZE(evts)))
372 evt = 0x1f;
373
08ddb2f4 374 if (evt == OHCI1394_evt_bus_reset) {
161b96e7
SR
375 fw_notify("A%c evt_bus_reset, generation %d\n",
376 dir, (header[2] >> 16) & 0xff);
08ddb2f4
SR
377 return;
378 }
379
ad3c0fe8 380 if (header[0] == ~header[1]) {
161b96e7
SR
381 fw_notify("A%c %s, %s, %08x\n",
382 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
ad3c0fe8
SR
383 return;
384 }
385
386 switch (tcode) {
387 case 0x0: case 0x6: case 0x8:
388 snprintf(specific, sizeof(specific), " = %08x",
389 be32_to_cpu((__force __be32)header[3]));
390 break;
391 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
392 snprintf(specific, sizeof(specific), " %x,%x",
393 header[3] >> 16, header[3] & 0xffff);
394 break;
395 default:
396 specific[0] = '\0';
397 }
398
399 switch (tcode) {
400 case 0xe: case 0xa:
161b96e7 401 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
ad3c0fe8
SR
402 break;
403 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
161b96e7
SR
404 fw_notify("A%c spd %x tl %02x, "
405 "%04x -> %04x, %s, "
406 "%s, %04x%08x%s\n",
407 dir, speed, header[0] >> 10 & 0x3f,
408 header[1] >> 16, header[0] >> 16, evts[evt],
409 tcodes[tcode], header[1] & 0xffff, header[2], specific);
ad3c0fe8
SR
410 break;
411 default:
161b96e7
SR
412 fw_notify("A%c spd %x tl %02x, "
413 "%04x -> %04x, %s, "
414 "%s%s\n",
415 dir, speed, header[0] >> 10 & 0x3f,
416 header[1] >> 16, header[0] >> 16, evts[evt],
417 tcodes[tcode], specific);
ad3c0fe8
SR
418 }
419}
420
421#else
422
423#define log_irqs(evt)
08ddb2f4 424#define log_selfids(node_id, generation, self_id_count, sid)
ad3c0fe8
SR
425#define log_ar_at_event(dir, speed, header, evt)
426
427#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
428
95688e97 429static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
430{
431 writel(data, ohci->registers + offset);
432}
433
95688e97 434static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
435{
436 return readl(ohci->registers + offset);
437}
438
95688e97 439static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
440{
441 /* Do a dummy read to flush writes. */
442 reg_read(ohci, OHCI1394_Version);
443}
444
53dca511
SR
445static int ohci_update_phy_reg(struct fw_card *card, int addr,
446 int clear_bits, int set_bits)
ed568912
KH
447{
448 struct fw_ohci *ohci = fw_ohci(card);
449 u32 val, old;
450
451 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
362e901c 452 flush_writes(ohci);
ed568912
KH
453 msleep(2);
454 val = reg_read(ohci, OHCI1394_PhyControl);
455 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
456 fw_error("failed to set phy reg bits.\n");
457 return -EBUSY;
458 }
459
460 old = OHCI1394_PhyControl_ReadData(val);
461 old = (old & ~clear_bits) | set_bits;
462 reg_write(ohci, OHCI1394_PhyControl,
463 OHCI1394_PhyControl_Write(addr, old));
464
465 return 0;
466}
467
32b46093 468static int ar_context_add_page(struct ar_context *ctx)
ed568912 469{
32b46093
KH
470 struct device *dev = ctx->ohci->card.device;
471 struct ar_buffer *ab;
f5101d58 472 dma_addr_t uninitialized_var(ab_bus);
32b46093
KH
473 size_t offset;
474
bde1709a 475 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
32b46093
KH
476 if (ab == NULL)
477 return -ENOMEM;
478
a55709ba 479 ab->next = NULL;
2d826cc5 480 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
a77754a7
KH
481 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
482 DESCRIPTOR_STATUS |
483 DESCRIPTOR_BRANCH_ALWAYS);
32b46093
KH
484 offset = offsetof(struct ar_buffer, data);
485 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
486 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
487 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
488 ab->descriptor.branch_address = 0;
489
ec839e43 490 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
32b46093
KH
491 ctx->last_buffer->next = ab;
492 ctx->last_buffer = ab;
493
a77754a7 494 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
ed568912 495 flush_writes(ctx->ohci);
32b46093
KH
496
497 return 0;
ed568912
KH
498}
499
a55709ba
JF
500static void ar_context_release(struct ar_context *ctx)
501{
502 struct ar_buffer *ab, *ab_next;
503 size_t offset;
504 dma_addr_t ab_bus;
505
506 for (ab = ctx->current_buffer; ab; ab = ab_next) {
507 ab_next = ab->next;
508 offset = offsetof(struct ar_buffer, data);
509 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
510 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
511 ab, ab_bus);
512 }
513}
514
11bf20ad
SR
515#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
516#define cond_le32_to_cpu(v) \
517 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
518#else
519#define cond_le32_to_cpu(v) le32_to_cpu(v)
520#endif
521
32b46093 522static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 523{
ed568912 524 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
525 struct fw_packet p;
526 u32 status, length, tcode;
43286568 527 int evt;
2639a6fb 528
11bf20ad
SR
529 p.header[0] = cond_le32_to_cpu(buffer[0]);
530 p.header[1] = cond_le32_to_cpu(buffer[1]);
531 p.header[2] = cond_le32_to_cpu(buffer[2]);
2639a6fb
KH
532
533 tcode = (p.header[0] >> 4) & 0x0f;
534 switch (tcode) {
535 case TCODE_WRITE_QUADLET_REQUEST:
536 case TCODE_READ_QUADLET_RESPONSE:
32b46093 537 p.header[3] = (__force __u32) buffer[3];
2639a6fb 538 p.header_length = 16;
32b46093 539 p.payload_length = 0;
2639a6fb
KH
540 break;
541
2639a6fb 542 case TCODE_READ_BLOCK_REQUEST :
11bf20ad 543 p.header[3] = cond_le32_to_cpu(buffer[3]);
32b46093
KH
544 p.header_length = 16;
545 p.payload_length = 0;
546 break;
547
548 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
549 case TCODE_READ_BLOCK_RESPONSE:
550 case TCODE_LOCK_REQUEST:
551 case TCODE_LOCK_RESPONSE:
11bf20ad 552 p.header[3] = cond_le32_to_cpu(buffer[3]);
2639a6fb 553 p.header_length = 16;
32b46093 554 p.payload_length = p.header[3] >> 16;
2639a6fb
KH
555 break;
556
557 case TCODE_WRITE_RESPONSE:
558 case TCODE_READ_QUADLET_REQUEST:
32b46093 559 case OHCI_TCODE_PHY_PACKET:
2639a6fb 560 p.header_length = 12;
32b46093 561 p.payload_length = 0;
2639a6fb 562 break;
ccff9629
SR
563
564 default:
565 /* FIXME: Stop context, discard everything, and restart? */
566 p.header_length = 0;
567 p.payload_length = 0;
2639a6fb 568 }
ed568912 569
32b46093
KH
570 p.payload = (void *) buffer + p.header_length;
571
572 /* FIXME: What to do about evt_* errors? */
573 length = (p.header_length + p.payload_length + 3) / 4;
11bf20ad 574 status = cond_le32_to_cpu(buffer[length]);
43286568 575 evt = (status >> 16) & 0x1f;
32b46093 576
43286568 577 p.ack = evt - 16;
32b46093
KH
578 p.speed = (status >> 21) & 0x7;
579 p.timestamp = status & 0xffff;
580 p.generation = ohci->request_generation;
ed568912 581
43286568 582 log_ar_at_event('R', p.speed, p.header, evt);
ad3c0fe8 583
c781c06d
KH
584 /*
585 * The OHCI bus reset handler synthesizes a phy packet with
ed568912
KH
586 * the new generation number when a bus reset happens (see
587 * section 8.4.2.3). This helps us determine when a request
588 * was received and make sure we send the response in the same
589 * generation. We only need this for requests; for responses
590 * we use the unique tlabel for finding the matching
c781c06d 591 * request.
d34316a4
SR
592 *
593 * Alas some chips sometimes emit bus reset packets with a
594 * wrong generation. We set the correct generation for these
595 * at a slightly incorrect time (in bus_reset_tasklet).
c781c06d 596 */
d34316a4
SR
597 if (evt == OHCI1394_evt_bus_reset) {
598 if (!ohci->bus_reset_packet_quirk)
599 ohci->request_generation = (p.header[2] >> 16) & 0xff;
600 } else if (ctx == &ohci->ar_request_ctx) {
2639a6fb 601 fw_core_handle_request(&ohci->card, &p);
d34316a4 602 } else {
2639a6fb 603 fw_core_handle_response(&ohci->card, &p);
d34316a4 604 }
ed568912 605
32b46093
KH
606 return buffer + length + 1;
607}
ed568912 608
32b46093
KH
609static void ar_context_tasklet(unsigned long data)
610{
611 struct ar_context *ctx = (struct ar_context *)data;
612 struct fw_ohci *ohci = ctx->ohci;
613 struct ar_buffer *ab;
614 struct descriptor *d;
615 void *buffer, *end;
616
617 ab = ctx->current_buffer;
618 d = &ab->descriptor;
619
620 if (d->res_count == 0) {
621 size_t size, rest, offset;
6b84236d
JW
622 dma_addr_t start_bus;
623 void *start;
32b46093 624
c781c06d
KH
625 /*
626 * This descriptor is finished and we may have a
32b46093 627 * packet split across this and the next buffer. We
c781c06d
KH
628 * reuse the page for reassembling the split packet.
629 */
32b46093
KH
630
631 offset = offsetof(struct ar_buffer, data);
6b84236d
JW
632 start = buffer = ab;
633 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
32b46093 634
32b46093
KH
635 ab = ab->next;
636 d = &ab->descriptor;
637 size = buffer + PAGE_SIZE - ctx->pointer;
638 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
639 memmove(buffer, ctx->pointer, size);
640 memcpy(buffer + size, ab->data, rest);
641 ctx->current_buffer = ab;
642 ctx->pointer = (void *) ab->data + rest;
643 end = buffer + size + rest;
644
645 while (buffer < end)
646 buffer = handle_ar_packet(ctx, buffer);
647
bde1709a 648 dma_free_coherent(ohci->card.device, PAGE_SIZE,
6b84236d 649 start, start_bus);
32b46093
KH
650 ar_context_add_page(ctx);
651 } else {
652 buffer = ctx->pointer;
653 ctx->pointer = end =
654 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
655
656 while (buffer < end)
657 buffer = handle_ar_packet(ctx, buffer);
658 }
ed568912
KH
659}
660
53dca511
SR
661static int ar_context_init(struct ar_context *ctx,
662 struct fw_ohci *ohci, u32 regs)
ed568912 663{
32b46093 664 struct ar_buffer ab;
ed568912 665
72e318e0
KH
666 ctx->regs = regs;
667 ctx->ohci = ohci;
668 ctx->last_buffer = &ab;
ed568912
KH
669 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
670
32b46093
KH
671 ar_context_add_page(ctx);
672 ar_context_add_page(ctx);
673 ctx->current_buffer = ab.next;
674 ctx->pointer = ctx->current_buffer->data;
675
2aef469a
KH
676 return 0;
677}
678
679static void ar_context_run(struct ar_context *ctx)
680{
681 struct ar_buffer *ab = ctx->current_buffer;
682 dma_addr_t ab_bus;
683 size_t offset;
684
685 offset = offsetof(struct ar_buffer, data);
0a9972ba 686 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
2aef469a
KH
687
688 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
a77754a7 689 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
32b46093 690 flush_writes(ctx->ohci);
ed568912 691}
373b2edd 692
53dca511 693static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
a186b4a6
JW
694{
695 int b, key;
696
697 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
698 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
699
700 /* figure out which descriptor the branch address goes in */
701 if (z == 2 && (b == 3 || key == 2))
702 return d;
703 else
704 return d + z - 1;
705}
706
30200739
KH
707static void context_tasklet(unsigned long data)
708{
709 struct context *ctx = (struct context *) data;
30200739
KH
710 struct descriptor *d, *last;
711 u32 address;
712 int z;
fe5ca634 713 struct descriptor_buffer *desc;
30200739 714
fe5ca634
DM
715 desc = list_entry(ctx->buffer_list.next,
716 struct descriptor_buffer, list);
717 last = ctx->last;
30200739 718 while (last->branch_address != 0) {
fe5ca634 719 struct descriptor_buffer *old_desc = desc;
30200739
KH
720 address = le32_to_cpu(last->branch_address);
721 z = address & 0xf;
fe5ca634
DM
722 address &= ~0xf;
723
724 /* If the branch address points to a buffer outside of the
725 * current buffer, advance to the next buffer. */
726 if (address < desc->buffer_bus ||
727 address >= desc->buffer_bus + desc->used)
728 desc = list_entry(desc->list.next,
729 struct descriptor_buffer, list);
730 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
a186b4a6 731 last = find_branch_descriptor(d, z);
30200739
KH
732
733 if (!ctx->callback(ctx, d, last))
734 break;
735
fe5ca634
DM
736 if (old_desc != desc) {
737 /* If we've advanced to the next buffer, move the
738 * previous buffer to the free list. */
739 unsigned long flags;
740 old_desc->used = 0;
741 spin_lock_irqsave(&ctx->ohci->lock, flags);
742 list_move_tail(&old_desc->list, &ctx->buffer_list);
743 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
744 }
745 ctx->last = last;
30200739
KH
746 }
747}
748
fe5ca634
DM
749/*
750 * Allocate a new buffer and add it to the list of free buffers for this
751 * context. Must be called with ohci->lock held.
752 */
53dca511 753static int context_add_buffer(struct context *ctx)
fe5ca634
DM
754{
755 struct descriptor_buffer *desc;
f5101d58 756 dma_addr_t uninitialized_var(bus_addr);
fe5ca634
DM
757 int offset;
758
759 /*
760 * 16MB of descriptors should be far more than enough for any DMA
761 * program. This will catch run-away userspace or DoS attacks.
762 */
763 if (ctx->total_allocation >= 16*1024*1024)
764 return -ENOMEM;
765
766 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
767 &bus_addr, GFP_ATOMIC);
768 if (!desc)
769 return -ENOMEM;
770
771 offset = (void *)&desc->buffer - (void *)desc;
772 desc->buffer_size = PAGE_SIZE - offset;
773 desc->buffer_bus = bus_addr + offset;
774 desc->used = 0;
775
776 list_add_tail(&desc->list, &ctx->buffer_list);
777 ctx->total_allocation += PAGE_SIZE;
778
779 return 0;
780}
781
53dca511
SR
782static int context_init(struct context *ctx, struct fw_ohci *ohci,
783 u32 regs, descriptor_callback_t callback)
30200739
KH
784{
785 ctx->ohci = ohci;
786 ctx->regs = regs;
fe5ca634
DM
787 ctx->total_allocation = 0;
788
789 INIT_LIST_HEAD(&ctx->buffer_list);
790 if (context_add_buffer(ctx) < 0)
30200739
KH
791 return -ENOMEM;
792
fe5ca634
DM
793 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
794 struct descriptor_buffer, list);
795
30200739
KH
796 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
797 ctx->callback = callback;
798
c781c06d
KH
799 /*
800 * We put a dummy descriptor in the buffer that has a NULL
30200739 801 * branch address and looks like it's been sent. That way we
fe5ca634 802 * have a descriptor to append DMA programs to.
c781c06d 803 */
fe5ca634
DM
804 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
805 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
806 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
807 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
808 ctx->last = ctx->buffer_tail->buffer;
809 ctx->prev = ctx->buffer_tail->buffer;
30200739
KH
810
811 return 0;
812}
813
53dca511 814static void context_release(struct context *ctx)
30200739
KH
815{
816 struct fw_card *card = &ctx->ohci->card;
fe5ca634 817 struct descriptor_buffer *desc, *tmp;
30200739 818
fe5ca634
DM
819 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
820 dma_free_coherent(card->device, PAGE_SIZE, desc,
821 desc->buffer_bus -
822 ((void *)&desc->buffer - (void *)desc));
30200739
KH
823}
824
fe5ca634 825/* Must be called with ohci->lock held */
53dca511
SR
826static struct descriptor *context_get_descriptors(struct context *ctx,
827 int z, dma_addr_t *d_bus)
30200739 828{
fe5ca634
DM
829 struct descriptor *d = NULL;
830 struct descriptor_buffer *desc = ctx->buffer_tail;
831
832 if (z * sizeof(*d) > desc->buffer_size)
833 return NULL;
834
835 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
836 /* No room for the descriptor in this buffer, so advance to the
837 * next one. */
30200739 838
fe5ca634
DM
839 if (desc->list.next == &ctx->buffer_list) {
840 /* If there is no free buffer next in the list,
841 * allocate one. */
842 if (context_add_buffer(ctx) < 0)
843 return NULL;
844 }
845 desc = list_entry(desc->list.next,
846 struct descriptor_buffer, list);
847 ctx->buffer_tail = desc;
848 }
30200739 849
fe5ca634 850 d = desc->buffer + desc->used / sizeof(*d);
2d826cc5 851 memset(d, 0, z * sizeof(*d));
fe5ca634 852 *d_bus = desc->buffer_bus + desc->used;
30200739
KH
853
854 return d;
855}
856
295e3feb 857static void context_run(struct context *ctx, u32 extra)
30200739
KH
858{
859 struct fw_ohci *ohci = ctx->ohci;
860
a77754a7 861 reg_write(ohci, COMMAND_PTR(ctx->regs),
fe5ca634 862 le32_to_cpu(ctx->last->branch_address));
a77754a7
KH
863 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
864 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
30200739
KH
865 flush_writes(ohci);
866}
867
868static void context_append(struct context *ctx,
869 struct descriptor *d, int z, int extra)
870{
871 dma_addr_t d_bus;
fe5ca634 872 struct descriptor_buffer *desc = ctx->buffer_tail;
30200739 873
fe5ca634 874 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
30200739 875
fe5ca634
DM
876 desc->used += (z + extra) * sizeof(*d);
877 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
878 ctx->prev = find_branch_descriptor(d, z);
30200739 879
a77754a7 880 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
30200739
KH
881 flush_writes(ctx->ohci);
882}
883
884static void context_stop(struct context *ctx)
885{
886 u32 reg;
b8295668 887 int i;
30200739 888
a77754a7 889 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
b8295668 890 flush_writes(ctx->ohci);
30200739 891
b8295668 892 for (i = 0; i < 10; i++) {
a77754a7 893 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
b8295668 894 if ((reg & CONTEXT_ACTIVE) == 0)
b0068549 895 return;
b8295668 896
b980f5a2 897 mdelay(1);
b8295668 898 }
b0068549 899 fw_error("Error: DMA context still active (0x%08x)\n", reg);
30200739 900}
ed568912 901
f319b6a0
KH
902struct driver_data {
903 struct fw_packet *packet;
904};
ed568912 905
c781c06d
KH
906/*
907 * This function apppends a packet to the DMA queue for transmission.
f319b6a0 908 * Must always be called with the ochi->lock held to ensure proper
c781c06d
KH
909 * generation handling and locking around packet queue manipulation.
910 */
53dca511
SR
911static int at_context_queue_packet(struct context *ctx,
912 struct fw_packet *packet)
ed568912 913{
ed568912 914 struct fw_ohci *ohci = ctx->ohci;
4b6d51ec 915 dma_addr_t d_bus, uninitialized_var(payload_bus);
f319b6a0
KH
916 struct driver_data *driver_data;
917 struct descriptor *d, *last;
918 __le32 *header;
ed568912 919 int z, tcode;
f319b6a0 920 u32 reg;
ed568912 921
f319b6a0
KH
922 d = context_get_descriptors(ctx, 4, &d_bus);
923 if (d == NULL) {
924 packet->ack = RCODE_SEND_ERROR;
925 return -1;
ed568912
KH
926 }
927
a77754a7 928 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
f319b6a0
KH
929 d[0].res_count = cpu_to_le16(packet->timestamp);
930
c781c06d
KH
931 /*
932 * The DMA format for asyncronous link packets is different
ed568912
KH
933 * from the IEEE1394 layout, so shift the fields around
934 * accordingly. If header_length is 8, it's a PHY packet, to
c781c06d
KH
935 * which we need to prepend an extra quadlet.
936 */
f319b6a0
KH
937
938 header = (__le32 *) &d[1];
ed568912 939 if (packet->header_length > 8) {
f319b6a0
KH
940 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
941 (packet->speed << 16));
942 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
943 (packet->header[0] & 0xffff0000));
944 header[2] = cpu_to_le32(packet->header[2]);
ed568912
KH
945
946 tcode = (packet->header[0] >> 4) & 0x0f;
947 if (TCODE_IS_BLOCK_PACKET(tcode))
f319b6a0 948 header[3] = cpu_to_le32(packet->header[3]);
ed568912 949 else
f319b6a0
KH
950 header[3] = (__force __le32) packet->header[3];
951
952 d[0].req_count = cpu_to_le16(packet->header_length);
ed568912 953 } else {
f319b6a0
KH
954 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
955 (packet->speed << 16));
956 header[1] = cpu_to_le32(packet->header[0]);
957 header[2] = cpu_to_le32(packet->header[1]);
958 d[0].req_count = cpu_to_le16(12);
ed568912
KH
959 }
960
f319b6a0
KH
961 driver_data = (struct driver_data *) &d[3];
962 driver_data->packet = packet;
20d11673 963 packet->driver_data = driver_data;
a186b4a6 964
f319b6a0
KH
965 if (packet->payload_length > 0) {
966 payload_bus =
967 dma_map_single(ohci->card.device, packet->payload,
968 packet->payload_length, DMA_TO_DEVICE);
8d8bb39b 969 if (dma_mapping_error(ohci->card.device, payload_bus)) {
f319b6a0
KH
970 packet->ack = RCODE_SEND_ERROR;
971 return -1;
972 }
1d1dc5e8 973 packet->payload_bus = payload_bus;
f319b6a0
KH
974
975 d[2].req_count = cpu_to_le16(packet->payload_length);
976 d[2].data_address = cpu_to_le32(payload_bus);
977 last = &d[2];
978 z = 3;
ed568912 979 } else {
f319b6a0
KH
980 last = &d[0];
981 z = 2;
ed568912 982 }
ed568912 983
a77754a7
KH
984 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
985 DESCRIPTOR_IRQ_ALWAYS |
986 DESCRIPTOR_BRANCH_ALWAYS);
ed568912 987
76f73ca1
JW
988 /*
989 * If the controller and packet generations don't match, we need to
990 * bail out and try again. If IntEvent.busReset is set, the AT context
991 * is halted, so appending to the context and trying to run it is
992 * futile. Most controllers do the right thing and just flush the AT
993 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
994 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
995 * up stalling out. So we just bail out in software and try again
996 * later, and everyone is happy.
997 * FIXME: Document how the locking works.
998 */
999 if (ohci->generation != packet->generation ||
1000 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
ab88ca48
SR
1001 if (packet->payload_length > 0)
1002 dma_unmap_single(ohci->card.device, payload_bus,
1003 packet->payload_length, DMA_TO_DEVICE);
f319b6a0
KH
1004 packet->ack = RCODE_GENERATION;
1005 return -1;
1006 }
1007
1008 context_append(ctx, d, z, 4 - z);
ed568912 1009
f319b6a0 1010 /* If the context isn't already running, start it up. */
a77754a7 1011 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
053b3080 1012 if ((reg & CONTEXT_RUN) == 0)
f319b6a0
KH
1013 context_run(ctx, 0);
1014
1015 return 0;
ed568912
KH
1016}
1017
f319b6a0
KH
1018static int handle_at_packet(struct context *context,
1019 struct descriptor *d,
1020 struct descriptor *last)
ed568912 1021{
f319b6a0 1022 struct driver_data *driver_data;
ed568912 1023 struct fw_packet *packet;
f319b6a0 1024 struct fw_ohci *ohci = context->ohci;
ed568912
KH
1025 int evt;
1026
f319b6a0
KH
1027 if (last->transfer_status == 0)
1028 /* This descriptor isn't done yet, stop iteration. */
1029 return 0;
ed568912 1030
f319b6a0
KH
1031 driver_data = (struct driver_data *) &d[3];
1032 packet = driver_data->packet;
1033 if (packet == NULL)
1034 /* This packet was cancelled, just continue. */
1035 return 1;
730c32f5 1036
1d1dc5e8
SR
1037 if (packet->payload_bus)
1038 dma_unmap_single(ohci->card.device, packet->payload_bus,
ed568912 1039 packet->payload_length, DMA_TO_DEVICE);
ed568912 1040
f319b6a0
KH
1041 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1042 packet->timestamp = le16_to_cpu(last->res_count);
ed568912 1043
ad3c0fe8
SR
1044 log_ar_at_event('T', packet->speed, packet->header, evt);
1045
f319b6a0
KH
1046 switch (evt) {
1047 case OHCI1394_evt_timeout:
1048 /* Async response transmit timed out. */
1049 packet->ack = RCODE_CANCELLED;
1050 break;
ed568912 1051
f319b6a0 1052 case OHCI1394_evt_flushed:
c781c06d
KH
1053 /*
1054 * The packet was flushed should give same error as
1055 * when we try to use a stale generation count.
1056 */
f319b6a0
KH
1057 packet->ack = RCODE_GENERATION;
1058 break;
ed568912 1059
f319b6a0 1060 case OHCI1394_evt_missing_ack:
c781c06d
KH
1061 /*
1062 * Using a valid (current) generation count, but the
1063 * node is not on the bus or not sending acks.
1064 */
f319b6a0
KH
1065 packet->ack = RCODE_NO_ACK;
1066 break;
ed568912 1067
f319b6a0
KH
1068 case ACK_COMPLETE + 0x10:
1069 case ACK_PENDING + 0x10:
1070 case ACK_BUSY_X + 0x10:
1071 case ACK_BUSY_A + 0x10:
1072 case ACK_BUSY_B + 0x10:
1073 case ACK_DATA_ERROR + 0x10:
1074 case ACK_TYPE_ERROR + 0x10:
1075 packet->ack = evt - 0x10;
1076 break;
ed568912 1077
f319b6a0
KH
1078 default:
1079 packet->ack = RCODE_SEND_ERROR;
1080 break;
1081 }
ed568912 1082
f319b6a0 1083 packet->callback(packet, &ohci->card, packet->ack);
ed568912 1084
f319b6a0 1085 return 1;
ed568912
KH
1086}
1087
a77754a7
KH
1088#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1089#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1090#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1091#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1092#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
93c4cceb 1093
53dca511
SR
1094static void handle_local_rom(struct fw_ohci *ohci,
1095 struct fw_packet *packet, u32 csr)
93c4cceb
KH
1096{
1097 struct fw_packet response;
1098 int tcode, length, i;
1099
a77754a7 1100 tcode = HEADER_GET_TCODE(packet->header[0]);
93c4cceb 1101 if (TCODE_IS_BLOCK_PACKET(tcode))
a77754a7 1102 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb
KH
1103 else
1104 length = 4;
1105
1106 i = csr - CSR_CONFIG_ROM;
1107 if (i + length > CONFIG_ROM_SIZE) {
1108 fw_fill_response(&response, packet->header,
1109 RCODE_ADDRESS_ERROR, NULL, 0);
1110 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1111 fw_fill_response(&response, packet->header,
1112 RCODE_TYPE_ERROR, NULL, 0);
1113 } else {
1114 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1115 (void *) ohci->config_rom + i, length);
1116 }
1117
1118 fw_core_handle_response(&ohci->card, &response);
1119}
1120
53dca511
SR
1121static void handle_local_lock(struct fw_ohci *ohci,
1122 struct fw_packet *packet, u32 csr)
93c4cceb
KH
1123{
1124 struct fw_packet response;
1125 int tcode, length, ext_tcode, sel;
1126 __be32 *payload, lock_old;
1127 u32 lock_arg, lock_data;
1128
a77754a7
KH
1129 tcode = HEADER_GET_TCODE(packet->header[0]);
1130 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb 1131 payload = packet->payload;
a77754a7 1132 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
93c4cceb
KH
1133
1134 if (tcode == TCODE_LOCK_REQUEST &&
1135 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1136 lock_arg = be32_to_cpu(payload[0]);
1137 lock_data = be32_to_cpu(payload[1]);
1138 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1139 lock_arg = 0;
1140 lock_data = 0;
1141 } else {
1142 fw_fill_response(&response, packet->header,
1143 RCODE_TYPE_ERROR, NULL, 0);
1144 goto out;
1145 }
1146
1147 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1148 reg_write(ohci, OHCI1394_CSRData, lock_data);
1149 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1150 reg_write(ohci, OHCI1394_CSRControl, sel);
1151
1152 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1153 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1154 else
1155 fw_notify("swap not done yet\n");
1156
1157 fw_fill_response(&response, packet->header,
2d826cc5 1158 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
93c4cceb
KH
1159 out:
1160 fw_core_handle_response(&ohci->card, &response);
1161}
1162
53dca511 1163static void handle_local_request(struct context *ctx, struct fw_packet *packet)
93c4cceb
KH
1164{
1165 u64 offset;
1166 u32 csr;
1167
473d28c7
KH
1168 if (ctx == &ctx->ohci->at_request_ctx) {
1169 packet->ack = ACK_PENDING;
1170 packet->callback(packet, &ctx->ohci->card, packet->ack);
1171 }
93c4cceb
KH
1172
1173 offset =
1174 ((unsigned long long)
a77754a7 1175 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
93c4cceb
KH
1176 packet->header[2];
1177 csr = offset - CSR_REGISTER_BASE;
1178
1179 /* Handle config rom reads. */
1180 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1181 handle_local_rom(ctx->ohci, packet, csr);
1182 else switch (csr) {
1183 case CSR_BUS_MANAGER_ID:
1184 case CSR_BANDWIDTH_AVAILABLE:
1185 case CSR_CHANNELS_AVAILABLE_HI:
1186 case CSR_CHANNELS_AVAILABLE_LO:
1187 handle_local_lock(ctx->ohci, packet, csr);
1188 break;
1189 default:
1190 if (ctx == &ctx->ohci->at_request_ctx)
1191 fw_core_handle_request(&ctx->ohci->card, packet);
1192 else
1193 fw_core_handle_response(&ctx->ohci->card, packet);
1194 break;
1195 }
473d28c7
KH
1196
1197 if (ctx == &ctx->ohci->at_response_ctx) {
1198 packet->ack = ACK_COMPLETE;
1199 packet->callback(packet, &ctx->ohci->card, packet->ack);
1200 }
93c4cceb 1201}
e636fe25 1202
53dca511 1203static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
ed568912 1204{
ed568912 1205 unsigned long flags;
2dbd7d7e 1206 int ret;
ed568912
KH
1207
1208 spin_lock_irqsave(&ctx->ohci->lock, flags);
1209
a77754a7 1210 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
e636fe25 1211 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
1212 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1213 handle_local_request(ctx, packet);
1214 return;
e636fe25 1215 }
ed568912 1216
2dbd7d7e 1217 ret = at_context_queue_packet(ctx, packet);
ed568912
KH
1218 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1219
2dbd7d7e 1220 if (ret < 0)
f319b6a0 1221 packet->callback(packet, &ctx->ohci->card, packet->ack);
a186b4a6 1222
ed568912
KH
1223}
1224
1225static void bus_reset_tasklet(unsigned long data)
1226{
1227 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 1228 int self_id_count, i, j, reg;
ed568912
KH
1229 int generation, new_generation;
1230 unsigned long flags;
4eaff7d6
SR
1231 void *free_rom = NULL;
1232 dma_addr_t free_rom_bus = 0;
ed568912
KH
1233
1234 reg = reg_read(ohci, OHCI1394_NodeID);
1235 if (!(reg & OHCI1394_NodeID_idValid)) {
02ff8f8e 1236 fw_notify("node ID not valid, new bus reset in progress\n");
ed568912
KH
1237 return;
1238 }
02ff8f8e
SR
1239 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1240 fw_notify("malconfigured bus\n");
1241 return;
1242 }
1243 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1244 OHCI1394_NodeID_nodeNumber);
ed568912 1245
c8a9a498
SR
1246 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1247 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1248 fw_notify("inconsistent self IDs\n");
1249 return;
1250 }
c781c06d
KH
1251 /*
1252 * The count in the SelfIDCount register is the number of
ed568912
KH
1253 * bytes in the self ID receive buffer. Since we also receive
1254 * the inverted quadlets and a header quadlet, we shift one
c781c06d
KH
1255 * bit extra to get the actual number of self IDs.
1256 */
c8a9a498 1257 self_id_count = (reg >> 3) & 0x3ff;
016bf3df
SR
1258 if (self_id_count == 0) {
1259 fw_notify("inconsistent self IDs\n");
1260 return;
1261 }
11bf20ad 1262 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
ee71c2f9 1263 rmb();
ed568912
KH
1264
1265 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
c8a9a498
SR
1266 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1267 fw_notify("inconsistent self IDs\n");
1268 return;
1269 }
11bf20ad
SR
1270 ohci->self_id_buffer[j] =
1271 cond_le32_to_cpu(ohci->self_id_cpu[i]);
ed568912 1272 }
ee71c2f9 1273 rmb();
ed568912 1274
c781c06d
KH
1275 /*
1276 * Check the consistency of the self IDs we just read. The
ed568912
KH
1277 * problem we face is that a new bus reset can start while we
1278 * read out the self IDs from the DMA buffer. If this happens,
1279 * the DMA buffer will be overwritten with new self IDs and we
1280 * will read out inconsistent data. The OHCI specification
1281 * (section 11.2) recommends a technique similar to
1282 * linux/seqlock.h, where we remember the generation of the
1283 * self IDs in the buffer before reading them out and compare
1284 * it to the current generation after reading them out. If
1285 * the two generations match we know we have a consistent set
c781c06d
KH
1286 * of self IDs.
1287 */
ed568912
KH
1288
1289 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1290 if (new_generation != generation) {
1291 fw_notify("recursive bus reset detected, "
1292 "discarding self ids\n");
1293 return;
1294 }
1295
1296 /* FIXME: Document how the locking works. */
1297 spin_lock_irqsave(&ohci->lock, flags);
1298
1299 ohci->generation = generation;
f319b6a0
KH
1300 context_stop(&ohci->at_request_ctx);
1301 context_stop(&ohci->at_response_ctx);
ed568912
KH
1302 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1303
d34316a4
SR
1304 if (ohci->bus_reset_packet_quirk)
1305 ohci->request_generation = generation;
1306
c781c06d
KH
1307 /*
1308 * This next bit is unrelated to the AT context stuff but we
ed568912
KH
1309 * have to do it under the spinlock also. If a new config rom
1310 * was set up before this reset, the old one is now no longer
1311 * in use and we can free it. Update the config rom pointers
1312 * to point to the current config rom and clear the
c781c06d
KH
1313 * next_config_rom pointer so a new udpate can take place.
1314 */
ed568912
KH
1315
1316 if (ohci->next_config_rom != NULL) {
0bd243c4
KH
1317 if (ohci->next_config_rom != ohci->config_rom) {
1318 free_rom = ohci->config_rom;
1319 free_rom_bus = ohci->config_rom_bus;
1320 }
ed568912
KH
1321 ohci->config_rom = ohci->next_config_rom;
1322 ohci->config_rom_bus = ohci->next_config_rom_bus;
1323 ohci->next_config_rom = NULL;
1324
c781c06d
KH
1325 /*
1326 * Restore config_rom image and manually update
ed568912
KH
1327 * config_rom registers. Writing the header quadlet
1328 * will indicate that the config rom is ready, so we
c781c06d
KH
1329 * do that last.
1330 */
ed568912
KH
1331 reg_write(ohci, OHCI1394_BusOptions,
1332 be32_to_cpu(ohci->config_rom[2]));
1333 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1334 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1335 }
1336
080de8c2
SR
1337#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1338 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1339 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1340#endif
1341
ed568912
KH
1342 spin_unlock_irqrestore(&ohci->lock, flags);
1343
4eaff7d6
SR
1344 if (free_rom)
1345 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1346 free_rom, free_rom_bus);
1347
08ddb2f4
SR
1348 log_selfids(ohci->node_id, generation,
1349 self_id_count, ohci->self_id_buffer);
ad3c0fe8 1350
e636fe25 1351 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
1352 self_id_count, ohci->self_id_buffer);
1353}
1354
1355static irqreturn_t irq_handler(int irq, void *data)
1356{
1357 struct fw_ohci *ohci = data;
d60d7f1d 1358 u32 event, iso_event, cycle_time;
ed568912
KH
1359 int i;
1360
1361 event = reg_read(ohci, OHCI1394_IntEventClear);
1362
a515958d 1363 if (!event || !~event)
ed568912
KH
1364 return IRQ_NONE;
1365
a007bb85
SR
1366 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1367 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
ad3c0fe8 1368 log_irqs(event);
ed568912
KH
1369
1370 if (event & OHCI1394_selfIDComplete)
1371 tasklet_schedule(&ohci->bus_reset_tasklet);
1372
1373 if (event & OHCI1394_RQPkt)
1374 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1375
1376 if (event & OHCI1394_RSPkt)
1377 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1378
1379 if (event & OHCI1394_reqTxComplete)
1380 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1381
1382 if (event & OHCI1394_respTxComplete)
1383 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1384
c889475f 1385 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
ed568912
KH
1386 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1387
1388 while (iso_event) {
1389 i = ffs(iso_event) - 1;
30200739 1390 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
ed568912
KH
1391 iso_event &= ~(1 << i);
1392 }
1393
c889475f 1394 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
ed568912
KH
1395 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1396
1397 while (iso_event) {
1398 i = ffs(iso_event) - 1;
30200739 1399 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
ed568912
KH
1400 iso_event &= ~(1 << i);
1401 }
1402
75f7832e
JW
1403 if (unlikely(event & OHCI1394_regAccessFail))
1404 fw_error("Register access failure - "
1405 "please notify linux1394-devel@lists.sf.net\n");
1406
e524f616
SR
1407 if (unlikely(event & OHCI1394_postedWriteErr))
1408 fw_error("PCI posted write error\n");
1409
bb9f2206
SR
1410 if (unlikely(event & OHCI1394_cycleTooLong)) {
1411 if (printk_ratelimit())
1412 fw_notify("isochronous cycle too long\n");
1413 reg_write(ohci, OHCI1394_LinkControlSet,
1414 OHCI1394_LinkControl_cycleMaster);
1415 }
1416
d60d7f1d
KH
1417 if (event & OHCI1394_cycle64Seconds) {
1418 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1419 if ((cycle_time & 0x80000000) == 0)
1420 ohci->bus_seconds++;
1421 }
1422
ed568912
KH
1423 return IRQ_HANDLED;
1424}
1425
2aef469a
KH
1426static int software_reset(struct fw_ohci *ohci)
1427{
1428 int i;
1429
1430 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1431
1432 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1433 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1434 OHCI1394_HCControl_softReset) == 0)
1435 return 0;
1436 msleep(1);
1437 }
1438
1439 return -EBUSY;
1440}
1441
ed568912
KH
1442static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1443{
1444 struct fw_ohci *ohci = fw_ohci(card);
1445 struct pci_dev *dev = to_pci_dev(card->device);
02214724
JW
1446 u32 lps;
1447 int i;
ed568912 1448
2aef469a
KH
1449 if (software_reset(ohci)) {
1450 fw_error("Failed to reset ohci card.\n");
1451 return -EBUSY;
1452 }
1453
1454 /*
1455 * Now enable LPS, which we need in order to start accessing
1456 * most of the registers. In fact, on some cards (ALI M5251),
1457 * accessing registers in the SClk domain without LPS enabled
1458 * will lock up the machine. Wait 50msec to make sure we have
02214724
JW
1459 * full link enabled. However, with some cards (well, at least
1460 * a JMicron PCIe card), we have to try again sometimes.
2aef469a
KH
1461 */
1462 reg_write(ohci, OHCI1394_HCControlSet,
1463 OHCI1394_HCControl_LPS |
1464 OHCI1394_HCControl_postedWriteEnable);
1465 flush_writes(ohci);
02214724
JW
1466
1467 for (lps = 0, i = 0; !lps && i < 3; i++) {
1468 msleep(50);
1469 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1470 OHCI1394_HCControl_LPS;
1471 }
1472
1473 if (!lps) {
1474 fw_error("Failed to set Link Power Status\n");
1475 return -EIO;
1476 }
2aef469a
KH
1477
1478 reg_write(ohci, OHCI1394_HCControlClear,
1479 OHCI1394_HCControl_noByteSwapData);
1480
affc9c24 1481 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
e896ec43
SR
1482 reg_write(ohci, OHCI1394_LinkControlClear,
1483 OHCI1394_LinkControl_rcvPhyPkt);
2aef469a
KH
1484 reg_write(ohci, OHCI1394_LinkControlSet,
1485 OHCI1394_LinkControl_rcvSelfID |
1486 OHCI1394_LinkControl_cycleTimerEnable |
1487 OHCI1394_LinkControl_cycleMaster);
1488
1489 reg_write(ohci, OHCI1394_ATRetries,
1490 OHCI1394_MAX_AT_REQ_RETRIES |
1491 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1492 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1493
1494 ar_context_run(&ohci->ar_request_ctx);
1495 ar_context_run(&ohci->ar_response_ctx);
1496
2aef469a
KH
1497 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1498 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1499 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1500 reg_write(ohci, OHCI1394_IntMaskSet,
1501 OHCI1394_selfIDComplete |
1502 OHCI1394_RQPkt | OHCI1394_RSPkt |
1503 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1504 OHCI1394_isochRx | OHCI1394_isochTx |
bb9f2206 1505 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
75f7832e
JW
1506 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1507 OHCI1394_masterIntEnable);
a007bb85
SR
1508 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1509 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2aef469a
KH
1510
1511 /* Activate link_on bit and contender bit in our self ID packets.*/
1512 if (ohci_update_phy_reg(card, 4, 0,
1513 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1514 return -EIO;
1515
c781c06d
KH
1516 /*
1517 * When the link is not yet enabled, the atomic config rom
ed568912
KH
1518 * update mechanism described below in ohci_set_config_rom()
1519 * is not active. We have to update ConfigRomHeader and
1520 * BusOptions manually, and the write to ConfigROMmap takes
1521 * effect immediately. We tie this to the enabling of the
1522 * link, so we have a valid config rom before enabling - the
1523 * OHCI requires that ConfigROMhdr and BusOptions have valid
1524 * values before enabling.
1525 *
1526 * However, when the ConfigROMmap is written, some controllers
1527 * always read back quadlets 0 and 2 from the config rom to
1528 * the ConfigRomHeader and BusOptions registers on bus reset.
1529 * They shouldn't do that in this initial case where the link
1530 * isn't enabled. This means we have to use the same
1531 * workaround here, setting the bus header to 0 and then write
1532 * the right values in the bus reset tasklet.
1533 */
1534
0bd243c4
KH
1535 if (config_rom) {
1536 ohci->next_config_rom =
1537 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1538 &ohci->next_config_rom_bus,
1539 GFP_KERNEL);
1540 if (ohci->next_config_rom == NULL)
1541 return -ENOMEM;
ed568912 1542
0bd243c4
KH
1543 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1544 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1545 } else {
1546 /*
1547 * In the suspend case, config_rom is NULL, which
1548 * means that we just reuse the old config rom.
1549 */
1550 ohci->next_config_rom = ohci->config_rom;
1551 ohci->next_config_rom_bus = ohci->config_rom_bus;
1552 }
ed568912 1553
0bd243c4 1554 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
ed568912
KH
1555 ohci->next_config_rom[0] = 0;
1556 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
0bd243c4
KH
1557 reg_write(ohci, OHCI1394_BusOptions,
1558 be32_to_cpu(ohci->next_config_rom[2]));
ed568912
KH
1559 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1560
1561 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1562
1563 if (request_irq(dev->irq, irq_handler,
65efffa8 1564 IRQF_SHARED, ohci_driver_name, ohci)) {
ed568912
KH
1565 fw_error("Failed to allocate shared interrupt %d.\n",
1566 dev->irq);
1567 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1568 ohci->config_rom, ohci->config_rom_bus);
1569 return -EIO;
1570 }
1571
1572 reg_write(ohci, OHCI1394_HCControlSet,
1573 OHCI1394_HCControl_linkEnable |
1574 OHCI1394_HCControl_BIBimageValid);
1575 flush_writes(ohci);
1576
c781c06d
KH
1577 /*
1578 * We are ready to go, initiate bus reset to finish the
1579 * initialization.
1580 */
ed568912
KH
1581
1582 fw_core_initiate_bus_reset(&ohci->card, 1);
1583
1584 return 0;
1585}
1586
53dca511
SR
1587static int ohci_set_config_rom(struct fw_card *card,
1588 u32 *config_rom, size_t length)
ed568912
KH
1589{
1590 struct fw_ohci *ohci;
1591 unsigned long flags;
2dbd7d7e 1592 int ret = -EBUSY;
ed568912 1593 __be32 *next_config_rom;
f5101d58 1594 dma_addr_t uninitialized_var(next_config_rom_bus);
ed568912
KH
1595
1596 ohci = fw_ohci(card);
1597
c781c06d
KH
1598 /*
1599 * When the OHCI controller is enabled, the config rom update
ed568912
KH
1600 * mechanism is a bit tricky, but easy enough to use. See
1601 * section 5.5.6 in the OHCI specification.
1602 *
1603 * The OHCI controller caches the new config rom address in a
1604 * shadow register (ConfigROMmapNext) and needs a bus reset
1605 * for the changes to take place. When the bus reset is
1606 * detected, the controller loads the new values for the
1607 * ConfigRomHeader and BusOptions registers from the specified
1608 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1609 * shadow register. All automatically and atomically.
1610 *
1611 * Now, there's a twist to this story. The automatic load of
1612 * ConfigRomHeader and BusOptions doesn't honor the
1613 * noByteSwapData bit, so with a be32 config rom, the
1614 * controller will load be32 values in to these registers
1615 * during the atomic update, even on litte endian
1616 * architectures. The workaround we use is to put a 0 in the
1617 * header quadlet; 0 is endian agnostic and means that the
1618 * config rom isn't ready yet. In the bus reset tasklet we
1619 * then set up the real values for the two registers.
1620 *
1621 * We use ohci->lock to avoid racing with the code that sets
1622 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1623 */
1624
1625 next_config_rom =
1626 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1627 &next_config_rom_bus, GFP_KERNEL);
1628 if (next_config_rom == NULL)
1629 return -ENOMEM;
1630
1631 spin_lock_irqsave(&ohci->lock, flags);
1632
1633 if (ohci->next_config_rom == NULL) {
1634 ohci->next_config_rom = next_config_rom;
1635 ohci->next_config_rom_bus = next_config_rom_bus;
1636
1637 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1638 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1639 length * 4);
1640
1641 ohci->next_header = config_rom[0];
1642 ohci->next_config_rom[0] = 0;
1643
1644 reg_write(ohci, OHCI1394_ConfigROMmap,
1645 ohci->next_config_rom_bus);
2dbd7d7e 1646 ret = 0;
ed568912
KH
1647 }
1648
1649 spin_unlock_irqrestore(&ohci->lock, flags);
1650
c781c06d
KH
1651 /*
1652 * Now initiate a bus reset to have the changes take
ed568912
KH
1653 * effect. We clean up the old config rom memory and DMA
1654 * mappings in the bus reset tasklet, since the OHCI
1655 * controller could need to access it before the bus reset
c781c06d
KH
1656 * takes effect.
1657 */
2dbd7d7e 1658 if (ret == 0)
ed568912 1659 fw_core_initiate_bus_reset(&ohci->card, 1);
4eaff7d6
SR
1660 else
1661 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1662 next_config_rom, next_config_rom_bus);
ed568912 1663
2dbd7d7e 1664 return ret;
ed568912
KH
1665}
1666
1667static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1668{
1669 struct fw_ohci *ohci = fw_ohci(card);
1670
1671 at_context_transmit(&ohci->at_request_ctx, packet);
1672}
1673
1674static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1675{
1676 struct fw_ohci *ohci = fw_ohci(card);
1677
1678 at_context_transmit(&ohci->at_response_ctx, packet);
1679}
1680
730c32f5
KH
1681static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1682{
1683 struct fw_ohci *ohci = fw_ohci(card);
f319b6a0
KH
1684 struct context *ctx = &ohci->at_request_ctx;
1685 struct driver_data *driver_data = packet->driver_data;
2dbd7d7e 1686 int ret = -ENOENT;
730c32f5 1687
f319b6a0 1688 tasklet_disable(&ctx->tasklet);
730c32f5 1689
f319b6a0
KH
1690 if (packet->ack != 0)
1691 goto out;
730c32f5 1692
1d1dc5e8
SR
1693 if (packet->payload_bus)
1694 dma_unmap_single(ohci->card.device, packet->payload_bus,
1695 packet->payload_length, DMA_TO_DEVICE);
1696
ad3c0fe8 1697 log_ar_at_event('T', packet->speed, packet->header, 0x20);
f319b6a0
KH
1698 driver_data->packet = NULL;
1699 packet->ack = RCODE_CANCELLED;
1700 packet->callback(packet, &ohci->card, packet->ack);
2dbd7d7e 1701 ret = 0;
f319b6a0
KH
1702 out:
1703 tasklet_enable(&ctx->tasklet);
730c32f5 1704
2dbd7d7e 1705 return ret;
730c32f5
KH
1706}
1707
53dca511
SR
1708static int ohci_enable_phys_dma(struct fw_card *card,
1709 int node_id, int generation)
ed568912 1710{
080de8c2
SR
1711#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1712 return 0;
1713#else
ed568912
KH
1714 struct fw_ohci *ohci = fw_ohci(card);
1715 unsigned long flags;
2dbd7d7e 1716 int n, ret = 0;
ed568912 1717
c781c06d
KH
1718 /*
1719 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1720 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1721 */
ed568912
KH
1722
1723 spin_lock_irqsave(&ohci->lock, flags);
1724
1725 if (ohci->generation != generation) {
2dbd7d7e 1726 ret = -ESTALE;
ed568912
KH
1727 goto out;
1728 }
1729
c781c06d
KH
1730 /*
1731 * Note, if the node ID contains a non-local bus ID, physical DMA is
1732 * enabled for _all_ nodes on remote buses.
1733 */
907293d7
SR
1734
1735 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1736 if (n < 32)
1737 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1738 else
1739 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1740
ed568912 1741 flush_writes(ohci);
ed568912 1742 out:
6cad95fe 1743 spin_unlock_irqrestore(&ohci->lock, flags);
2dbd7d7e
SR
1744
1745 return ret;
080de8c2 1746#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
ed568912 1747}
373b2edd 1748
53dca511 1749static u64 ohci_get_bus_time(struct fw_card *card)
d60d7f1d
KH
1750{
1751 struct fw_ohci *ohci = fw_ohci(card);
1752 u32 cycle_time;
1753 u64 bus_time;
1754
1755 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1756 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1757
1758 return bus_time;
1759}
1760
1aa292bb
DM
1761static void copy_iso_headers(struct iso_context *ctx, void *p)
1762{
1763 int i = ctx->header_length;
1764
1765 if (i + ctx->base.header_size > PAGE_SIZE)
1766 return;
1767
1768 /*
1769 * The iso header is byteswapped to little endian by
1770 * the controller, but the remaining header quadlets
1771 * are big endian. We want to present all the headers
1772 * as big endian, so we have to swap the first quadlet.
1773 */
1774 if (ctx->base.header_size > 0)
1775 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1776 if (ctx->base.header_size > 4)
1777 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1778 if (ctx->base.header_size > 8)
1779 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1780 ctx->header_length += ctx->base.header_size;
1781}
1782
d2746dc1
KH
1783static int handle_ir_dualbuffer_packet(struct context *context,
1784 struct descriptor *d,
1785 struct descriptor *last)
ed568912 1786{
295e3feb
KH
1787 struct iso_context *ctx =
1788 container_of(context, struct iso_context, context);
1789 struct db_descriptor *db = (struct db_descriptor *) d;
c70dc788 1790 __le32 *ir_header;
9b32d5f3 1791 size_t header_length;
c70dc788 1792 void *p, *end;
d2746dc1 1793
efbf390a 1794 if (db->first_res_count != 0 && db->second_res_count != 0) {
0642b657
DM
1795 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1796 /* This descriptor isn't done yet, stop iteration. */
1797 return 0;
1798 }
1799 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1800 }
295e3feb 1801
c70dc788
KH
1802 header_length = le16_to_cpu(db->first_req_count) -
1803 le16_to_cpu(db->first_res_count);
1804
c70dc788
KH
1805 p = db + 1;
1806 end = p + header_length;
1aa292bb
DM
1807 while (p < end) {
1808 copy_iso_headers(ctx, p);
0642b657 1809 ctx->excess_bytes +=
efbf390a 1810 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1aa292bb 1811 p += max(ctx->base.header_size, (size_t)8);
c70dc788 1812 }
9b32d5f3 1813
0642b657
DM
1814 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1815 le16_to_cpu(db->second_res_count);
1816
a77754a7 1817 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
c70dc788
KH
1818 ir_header = (__le32 *) (db + 1);
1819 ctx->base.callback(&ctx->base,
1820 le32_to_cpu(ir_header[0]) & 0xffff,
9b32d5f3 1821 ctx->header_length, ctx->header,
295e3feb 1822 ctx->base.callback_data);
9b32d5f3
KH
1823 ctx->header_length = 0;
1824 }
ed568912 1825
295e3feb 1826 return 1;
ed568912
KH
1827}
1828
a186b4a6
JW
1829static int handle_ir_packet_per_buffer(struct context *context,
1830 struct descriptor *d,
1831 struct descriptor *last)
1832{
1833 struct iso_context *ctx =
1834 container_of(context, struct iso_context, context);
bcee893c 1835 struct descriptor *pd;
a186b4a6 1836 __le32 *ir_header;
bcee893c 1837 void *p;
a186b4a6 1838
bcee893c
DM
1839 for (pd = d; pd <= last; pd++) {
1840 if (pd->transfer_status)
1841 break;
1842 }
1843 if (pd > last)
a186b4a6
JW
1844 /* Descriptor(s) not done yet, stop iteration */
1845 return 0;
1846
1aa292bb
DM
1847 p = last + 1;
1848 copy_iso_headers(ctx, p);
a186b4a6 1849
bcee893c
DM
1850 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1851 ir_header = (__le32 *) p;
a186b4a6
JW
1852 ctx->base.callback(&ctx->base,
1853 le32_to_cpu(ir_header[0]) & 0xffff,
1854 ctx->header_length, ctx->header,
1855 ctx->base.callback_data);
1856 ctx->header_length = 0;
1857 }
1858
a186b4a6
JW
1859 return 1;
1860}
1861
30200739
KH
1862static int handle_it_packet(struct context *context,
1863 struct descriptor *d,
1864 struct descriptor *last)
ed568912 1865{
30200739
KH
1866 struct iso_context *ctx =
1867 container_of(context, struct iso_context, context);
373b2edd 1868
30200739
KH
1869 if (last->transfer_status == 0)
1870 /* This descriptor isn't done yet, stop iteration. */
1871 return 0;
1872
a77754a7 1873 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
9b32d5f3
KH
1874 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1875 0, NULL, ctx->base.callback_data);
30200739
KH
1876
1877 return 1;
ed568912
KH
1878}
1879
53dca511 1880static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
4817ed24 1881 int type, int channel, size_t header_size)
ed568912
KH
1882{
1883 struct fw_ohci *ohci = fw_ohci(card);
1884 struct iso_context *ctx, *list;
30200739 1885 descriptor_callback_t callback;
4817ed24 1886 u64 *channels, dont_care = ~0ULL;
295e3feb 1887 u32 *mask, regs;
ed568912 1888 unsigned long flags;
2dbd7d7e 1889 int index, ret = -ENOMEM;
ed568912
KH
1890
1891 if (type == FW_ISO_CONTEXT_TRANSMIT) {
4817ed24 1892 channels = &dont_care;
ed568912
KH
1893 mask = &ohci->it_context_mask;
1894 list = ohci->it_context_list;
30200739 1895 callback = handle_it_packet;
ed568912 1896 } else {
4817ed24 1897 channels = &ohci->ir_context_channels;
373b2edd
SR
1898 mask = &ohci->ir_context_mask;
1899 list = ohci->ir_context_list;
95984f62 1900 if (ohci->use_dualbuffer)
a186b4a6
JW
1901 callback = handle_ir_dualbuffer_packet;
1902 else
1903 callback = handle_ir_packet_per_buffer;
ed568912
KH
1904 }
1905
1906 spin_lock_irqsave(&ohci->lock, flags);
4817ed24
SR
1907 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1908 if (index >= 0) {
1909 *channels &= ~(1ULL << channel);
ed568912 1910 *mask &= ~(1 << index);
4817ed24 1911 }
ed568912
KH
1912 spin_unlock_irqrestore(&ohci->lock, flags);
1913
1914 if (index < 0)
1915 return ERR_PTR(-EBUSY);
1916
373b2edd
SR
1917 if (type == FW_ISO_CONTEXT_TRANSMIT)
1918 regs = OHCI1394_IsoXmitContextBase(index);
1919 else
1920 regs = OHCI1394_IsoRcvContextBase(index);
1921
ed568912 1922 ctx = &list[index];
2d826cc5 1923 memset(ctx, 0, sizeof(*ctx));
9b32d5f3
KH
1924 ctx->header_length = 0;
1925 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1926 if (ctx->header == NULL)
1927 goto out;
1928
2dbd7d7e
SR
1929 ret = context_init(&ctx->context, ohci, regs, callback);
1930 if (ret < 0)
9b32d5f3 1931 goto out_with_header;
ed568912
KH
1932
1933 return &ctx->base;
9b32d5f3
KH
1934
1935 out_with_header:
1936 free_page((unsigned long)ctx->header);
1937 out:
1938 spin_lock_irqsave(&ohci->lock, flags);
1939 *mask |= 1 << index;
1940 spin_unlock_irqrestore(&ohci->lock, flags);
1941
2dbd7d7e 1942 return ERR_PTR(ret);
ed568912
KH
1943}
1944
eb0306ea
KH
1945static int ohci_start_iso(struct fw_iso_context *base,
1946 s32 cycle, u32 sync, u32 tags)
ed568912 1947{
373b2edd 1948 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1949 struct fw_ohci *ohci = ctx->context.ohci;
8a2f7d93 1950 u32 control, match;
ed568912
KH
1951 int index;
1952
295e3feb
KH
1953 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1954 index = ctx - ohci->it_context_list;
8a2f7d93
KH
1955 match = 0;
1956 if (cycle >= 0)
1957 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
295e3feb 1958 (cycle & 0x7fff) << 16;
21efb3cf 1959
295e3feb
KH
1960 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1961 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
8a2f7d93 1962 context_run(&ctx->context, match);
295e3feb
KH
1963 } else {
1964 index = ctx - ohci->ir_context_list;
a186b4a6 1965 control = IR_CONTEXT_ISOCH_HEADER;
95984f62 1966 if (ohci->use_dualbuffer)
a186b4a6 1967 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
8a2f7d93
KH
1968 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1969 if (cycle >= 0) {
1970 match |= (cycle & 0x07fff) << 12;
1971 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1972 }
ed568912 1973
295e3feb
KH
1974 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1975 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
a77754a7 1976 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
8a2f7d93 1977 context_run(&ctx->context, control);
295e3feb 1978 }
ed568912
KH
1979
1980 return 0;
1981}
1982
b8295668
KH
1983static int ohci_stop_iso(struct fw_iso_context *base)
1984{
1985 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1986 struct iso_context *ctx = container_of(base, struct iso_context, base);
b8295668
KH
1987 int index;
1988
1989 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1990 index = ctx - ohci->it_context_list;
1991 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1992 } else {
1993 index = ctx - ohci->ir_context_list;
1994 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1995 }
1996 flush_writes(ohci);
1997 context_stop(&ctx->context);
1998
1999 return 0;
2000}
2001
ed568912
KH
2002static void ohci_free_iso_context(struct fw_iso_context *base)
2003{
2004 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 2005 struct iso_context *ctx = container_of(base, struct iso_context, base);
ed568912
KH
2006 unsigned long flags;
2007 int index;
2008
b8295668
KH
2009 ohci_stop_iso(base);
2010 context_release(&ctx->context);
9b32d5f3 2011 free_page((unsigned long)ctx->header);
b8295668 2012
ed568912
KH
2013 spin_lock_irqsave(&ohci->lock, flags);
2014
2015 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2016 index = ctx - ohci->it_context_list;
ed568912
KH
2017 ohci->it_context_mask |= 1 << index;
2018 } else {
2019 index = ctx - ohci->ir_context_list;
ed568912 2020 ohci->ir_context_mask |= 1 << index;
4817ed24 2021 ohci->ir_context_channels |= 1ULL << base->channel;
ed568912 2022 }
ed568912
KH
2023
2024 spin_unlock_irqrestore(&ohci->lock, flags);
2025}
2026
53dca511
SR
2027static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2028 struct fw_iso_packet *packet,
2029 struct fw_iso_buffer *buffer,
2030 unsigned long payload)
ed568912 2031{
373b2edd 2032 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 2033 struct descriptor *d, *last, *pd;
ed568912
KH
2034 struct fw_iso_packet *p;
2035 __le32 *header;
9aad8125 2036 dma_addr_t d_bus, page_bus;
ed568912
KH
2037 u32 z, header_z, payload_z, irq;
2038 u32 payload_index, payload_end_index, next_page_index;
30200739 2039 int page, end_page, i, length, offset;
ed568912 2040
c781c06d
KH
2041 /*
2042 * FIXME: Cycle lost behavior should be configurable: lose
2043 * packet, retransmit or terminate..
2044 */
ed568912
KH
2045
2046 p = packet;
9aad8125 2047 payload_index = payload;
ed568912
KH
2048
2049 if (p->skip)
2050 z = 1;
2051 else
2052 z = 2;
2053 if (p->header_length > 0)
2054 z++;
2055
2056 /* Determine the first page the payload isn't contained in. */
2057 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2058 if (p->payload_length > 0)
2059 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2060 else
2061 payload_z = 0;
2062
2063 z += payload_z;
2064
2065 /* Get header size in number of descriptors. */
2d826cc5 2066 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
ed568912 2067
30200739
KH
2068 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2069 if (d == NULL)
2070 return -ENOMEM;
ed568912
KH
2071
2072 if (!p->skip) {
a77754a7 2073 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
ed568912
KH
2074 d[0].req_count = cpu_to_le16(8);
2075
2076 header = (__le32 *) &d[1];
a77754a7
KH
2077 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2078 IT_HEADER_TAG(p->tag) |
2079 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2080 IT_HEADER_CHANNEL(ctx->base.channel) |
2081 IT_HEADER_SPEED(ctx->base.speed));
ed568912 2082 header[1] =
a77754a7 2083 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
ed568912
KH
2084 p->payload_length));
2085 }
2086
2087 if (p->header_length > 0) {
2088 d[2].req_count = cpu_to_le16(p->header_length);
2d826cc5 2089 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
ed568912
KH
2090 memcpy(&d[z], p->header, p->header_length);
2091 }
2092
2093 pd = d + z - payload_z;
2094 payload_end_index = payload_index + p->payload_length;
2095 for (i = 0; i < payload_z; i++) {
2096 page = payload_index >> PAGE_SHIFT;
2097 offset = payload_index & ~PAGE_MASK;
2098 next_page_index = (page + 1) << PAGE_SHIFT;
2099 length =
2100 min(next_page_index, payload_end_index) - payload_index;
2101 pd[i].req_count = cpu_to_le16(length);
9aad8125
KH
2102
2103 page_bus = page_private(buffer->pages[page]);
2104 pd[i].data_address = cpu_to_le32(page_bus + offset);
ed568912
KH
2105
2106 payload_index += length;
2107 }
2108
ed568912 2109 if (p->interrupt)
a77754a7 2110 irq = DESCRIPTOR_IRQ_ALWAYS;
ed568912 2111 else
a77754a7 2112 irq = DESCRIPTOR_NO_IRQ;
ed568912 2113
30200739 2114 last = z == 2 ? d : d + z - 1;
a77754a7
KH
2115 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2116 DESCRIPTOR_STATUS |
2117 DESCRIPTOR_BRANCH_ALWAYS |
cbb59da7 2118 irq);
ed568912 2119
30200739 2120 context_append(&ctx->context, d, z, header_z);
ed568912
KH
2121
2122 return 0;
2123}
373b2edd 2124
53dca511
SR
2125static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2126 struct fw_iso_packet *packet,
2127 struct fw_iso_buffer *buffer,
2128 unsigned long payload)
295e3feb
KH
2129{
2130 struct iso_context *ctx = container_of(base, struct iso_context, base);
2131 struct db_descriptor *db = NULL;
2132 struct descriptor *d;
2133 struct fw_iso_packet *p;
2134 dma_addr_t d_bus, page_bus;
2135 u32 z, header_z, length, rest;
c70dc788 2136 int page, offset, packet_count, header_size;
373b2edd 2137
c781c06d
KH
2138 /*
2139 * FIXME: Cycle lost behavior should be configurable: lose
2140 * packet, retransmit or terminate..
2141 */
295e3feb
KH
2142
2143 p = packet;
2144 z = 2;
2145
c781c06d 2146 /*
1aa292bb
DM
2147 * The OHCI controller puts the isochronous header and trailer in the
2148 * buffer, so we need at least 8 bytes.
c781c06d 2149 */
c70dc788 2150 packet_count = p->header_length / ctx->base.header_size;
1aa292bb 2151 header_size = packet_count * max(ctx->base.header_size, (size_t)8);
c70dc788 2152
295e3feb 2153 /* Get header size in number of descriptors. */
2d826cc5 2154 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
295e3feb
KH
2155 page = payload >> PAGE_SHIFT;
2156 offset = payload & ~PAGE_MASK;
2157 rest = p->payload_length;
2158
295e3feb
KH
2159 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2160 while (rest > 0) {
2161 d = context_get_descriptors(&ctx->context,
2162 z + header_z, &d_bus);
2163 if (d == NULL)
2164 return -ENOMEM;
2165
2166 db = (struct db_descriptor *) d;
a77754a7
KH
2167 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2168 DESCRIPTOR_BRANCH_ALWAYS);
1aa292bb
DM
2169 db->first_size =
2170 cpu_to_le16(max(ctx->base.header_size, (size_t)8));
0642b657
DM
2171 if (p->skip && rest == p->payload_length) {
2172 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2173 db->first_req_count = db->first_size;
2174 } else {
2175 db->first_req_count = cpu_to_le16(header_size);
2176 }
1e1d196b 2177 db->first_res_count = db->first_req_count;
2d826cc5 2178 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
373b2edd 2179
0642b657
DM
2180 if (p->skip && rest == p->payload_length)
2181 length = 4;
2182 else if (offset + rest < PAGE_SIZE)
295e3feb
KH
2183 length = rest;
2184 else
2185 length = PAGE_SIZE - offset;
2186
1e1d196b
KH
2187 db->second_req_count = cpu_to_le16(length);
2188 db->second_res_count = db->second_req_count;
295e3feb
KH
2189 page_bus = page_private(buffer->pages[page]);
2190 db->second_buffer = cpu_to_le32(page_bus + offset);
2191
cb2d2cdb 2192 if (p->interrupt && length == rest)
a77754a7 2193 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
cb2d2cdb 2194
295e3feb
KH
2195 context_append(&ctx->context, d, z, header_z);
2196 offset = (offset + length) & ~PAGE_MASK;
2197 rest -= length;
0642b657
DM
2198 if (offset == 0)
2199 page++;
295e3feb
KH
2200 }
2201
d2746dc1
KH
2202 return 0;
2203}
21efb3cf 2204
53dca511
SR
2205static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2206 struct fw_iso_packet *packet,
2207 struct fw_iso_buffer *buffer,
2208 unsigned long payload)
a186b4a6
JW
2209{
2210 struct iso_context *ctx = container_of(base, struct iso_context, base);
2211 struct descriptor *d = NULL, *pd = NULL;
bcee893c 2212 struct fw_iso_packet *p = packet;
a186b4a6
JW
2213 dma_addr_t d_bus, page_bus;
2214 u32 z, header_z, rest;
bcee893c
DM
2215 int i, j, length;
2216 int page, offset, packet_count, header_size, payload_per_buffer;
a186b4a6
JW
2217
2218 /*
1aa292bb
DM
2219 * The OHCI controller puts the isochronous header and trailer in the
2220 * buffer, so we need at least 8 bytes.
a186b4a6
JW
2221 */
2222 packet_count = p->header_length / ctx->base.header_size;
1aa292bb 2223 header_size = max(ctx->base.header_size, (size_t)8);
a186b4a6
JW
2224
2225 /* Get header size in number of descriptors. */
2226 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2227 page = payload >> PAGE_SHIFT;
2228 offset = payload & ~PAGE_MASK;
bcee893c 2229 payload_per_buffer = p->payload_length / packet_count;
a186b4a6
JW
2230
2231 for (i = 0; i < packet_count; i++) {
2232 /* d points to the header descriptor */
bcee893c 2233 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
a186b4a6 2234 d = context_get_descriptors(&ctx->context,
bcee893c 2235 z + header_z, &d_bus);
a186b4a6
JW
2236 if (d == NULL)
2237 return -ENOMEM;
2238
bcee893c
DM
2239 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2240 DESCRIPTOR_INPUT_MORE);
2241 if (p->skip && i == 0)
2242 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
a186b4a6
JW
2243 d->req_count = cpu_to_le16(header_size);
2244 d->res_count = d->req_count;
bcee893c 2245 d->transfer_status = 0;
a186b4a6
JW
2246 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2247
bcee893c
DM
2248 rest = payload_per_buffer;
2249 for (j = 1; j < z; j++) {
2250 pd = d + j;
2251 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2252 DESCRIPTOR_INPUT_MORE);
2253
2254 if (offset + rest < PAGE_SIZE)
2255 length = rest;
2256 else
2257 length = PAGE_SIZE - offset;
2258 pd->req_count = cpu_to_le16(length);
2259 pd->res_count = pd->req_count;
2260 pd->transfer_status = 0;
2261
2262 page_bus = page_private(buffer->pages[page]);
2263 pd->data_address = cpu_to_le32(page_bus + offset);
2264
2265 offset = (offset + length) & ~PAGE_MASK;
2266 rest -= length;
2267 if (offset == 0)
2268 page++;
2269 }
a186b4a6
JW
2270 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2271 DESCRIPTOR_INPUT_LAST |
2272 DESCRIPTOR_BRANCH_ALWAYS);
bcee893c 2273 if (p->interrupt && i == packet_count - 1)
a186b4a6
JW
2274 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2275
a186b4a6
JW
2276 context_append(&ctx->context, d, z, header_z);
2277 }
2278
2279 return 0;
2280}
2281
53dca511
SR
2282static int ohci_queue_iso(struct fw_iso_context *base,
2283 struct fw_iso_packet *packet,
2284 struct fw_iso_buffer *buffer,
2285 unsigned long payload)
295e3feb 2286{
e364cf4e 2287 struct iso_context *ctx = container_of(base, struct iso_context, base);
fe5ca634 2288 unsigned long flags;
2dbd7d7e 2289 int ret;
e364cf4e 2290
fe5ca634 2291 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
295e3feb 2292 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2dbd7d7e 2293 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
95984f62 2294 else if (ctx->context.ohci->use_dualbuffer)
2dbd7d7e
SR
2295 ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2296 buffer, payload);
e364cf4e 2297 else
2dbd7d7e
SR
2298 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2299 buffer, payload);
fe5ca634
DM
2300 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2301
2dbd7d7e 2302 return ret;
295e3feb
KH
2303}
2304
21ebcd12 2305static const struct fw_card_driver ohci_driver = {
ed568912
KH
2306 .enable = ohci_enable,
2307 .update_phy_reg = ohci_update_phy_reg,
2308 .set_config_rom = ohci_set_config_rom,
2309 .send_request = ohci_send_request,
2310 .send_response = ohci_send_response,
730c32f5 2311 .cancel_packet = ohci_cancel_packet,
ed568912 2312 .enable_phys_dma = ohci_enable_phys_dma,
d60d7f1d 2313 .get_bus_time = ohci_get_bus_time,
ed568912
KH
2314
2315 .allocate_iso_context = ohci_allocate_iso_context,
2316 .free_iso_context = ohci_free_iso_context,
2317 .queue_iso = ohci_queue_iso,
69cdb726 2318 .start_iso = ohci_start_iso,
b8295668 2319 .stop_iso = ohci_stop_iso,
ed568912
KH
2320};
2321
ea8d006b 2322#ifdef CONFIG_PPC_PMAC
2ed0f181
SR
2323static void ohci_pmac_on(struct pci_dev *dev)
2324{
ea8d006b
SR
2325 if (machine_is(powermac)) {
2326 struct device_node *ofn = pci_device_to_OF_node(dev);
2327
2328 if (ofn) {
2329 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2330 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2331 }
2332 }
2ed0f181
SR
2333}
2334
2335static void ohci_pmac_off(struct pci_dev *dev)
2336{
2337 if (machine_is(powermac)) {
2338 struct device_node *ofn = pci_device_to_OF_node(dev);
2339
2340 if (ofn) {
2341 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2342 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2343 }
2344 }
2345}
2346#else
2347#define ohci_pmac_on(dev)
2348#define ohci_pmac_off(dev)
ea8d006b
SR
2349#endif /* CONFIG_PPC_PMAC */
2350
53dca511
SR
2351static int __devinit pci_probe(struct pci_dev *dev,
2352 const struct pci_device_id *ent)
2ed0f181
SR
2353{
2354 struct fw_ohci *ohci;
95984f62 2355 u32 bus_options, max_receive, link_speed, version;
2ed0f181
SR
2356 u64 guid;
2357 int err;
2358 size_t size;
2359
2d826cc5 2360 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
ed568912 2361 if (ohci == NULL) {
7007a076
SR
2362 err = -ENOMEM;
2363 goto fail;
ed568912
KH
2364 }
2365
2366 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2367
130d5496
SR
2368 ohci_pmac_on(dev);
2369
d79406dd
KH
2370 err = pci_enable_device(dev);
2371 if (err) {
7007a076 2372 fw_error("Failed to enable OHCI hardware\n");
bd7dee63 2373 goto fail_free;
ed568912
KH
2374 }
2375
2376 pci_set_master(dev);
2377 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2378 pci_set_drvdata(dev, ohci);
2379
2380 spin_lock_init(&ohci->lock);
2381
2382 tasklet_init(&ohci->bus_reset_tasklet,
2383 bus_reset_tasklet, (unsigned long)ohci);
2384
d79406dd
KH
2385 err = pci_request_region(dev, 0, ohci_driver_name);
2386 if (err) {
ed568912 2387 fw_error("MMIO resource unavailable\n");
d79406dd 2388 goto fail_disable;
ed568912
KH
2389 }
2390
2391 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2392 if (ohci->registers == NULL) {
2393 fw_error("Failed to remap registers\n");
d79406dd
KH
2394 err = -ENXIO;
2395 goto fail_iomem;
ed568912
KH
2396 }
2397
95984f62
SR
2398 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2399 ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2400
2401/* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2402#if !defined(CONFIG_X86_32)
2403 /* dual-buffer mode is broken with descriptor addresses above 2G */
2404 if (dev->vendor == PCI_VENDOR_ID_TI &&
2405 dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2406 ohci->use_dualbuffer = false;
2407#endif
2408
2409#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2410 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2411 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2412#endif
2413 ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2414
ed568912
KH
2415 ar_context_init(&ohci->ar_request_ctx, ohci,
2416 OHCI1394_AsReqRcvContextControlSet);
2417
2418 ar_context_init(&ohci->ar_response_ctx, ohci,
2419 OHCI1394_AsRspRcvContextControlSet);
2420
fe5ca634 2421 context_init(&ohci->at_request_ctx, ohci,
f319b6a0 2422 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
ed568912 2423
fe5ca634 2424 context_init(&ohci->at_response_ctx, ohci,
f319b6a0 2425 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
ed568912 2426
ed568912
KH
2427 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2428 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2429 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2430 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2431 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2432
2433 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
4817ed24 2434 ohci->ir_context_channels = ~0ULL;
ed568912
KH
2435 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2436 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2437 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2438 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2439
2440 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
d79406dd 2441 err = -ENOMEM;
7007a076 2442 goto fail_contexts;
ed568912
KH
2443 }
2444
2445 /* self-id dma buffer allocation */
2446 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2447 SELF_ID_BUF_SIZE,
2448 &ohci->self_id_bus,
2449 GFP_KERNEL);
2450 if (ohci->self_id_cpu == NULL) {
d79406dd 2451 err = -ENOMEM;
7007a076 2452 goto fail_contexts;
ed568912
KH
2453 }
2454
ed568912
KH
2455 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2456 max_receive = (bus_options >> 12) & 0xf;
2457 link_speed = bus_options & 0x7;
2458 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2459 reg_read(ohci, OHCI1394_GUIDLo);
2460
d79406dd 2461 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
e1eff7a3 2462 if (err)
d79406dd 2463 goto fail_self_id;
ed568912 2464
500be725 2465 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
a1f64819 2466 dev_name(&dev->dev), version >> 16, version & 0xff);
e1eff7a3 2467
ed568912 2468 return 0;
d79406dd
KH
2469
2470 fail_self_id:
2471 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2472 ohci->self_id_cpu, ohci->self_id_bus);
7007a076 2473 fail_contexts:
d79406dd 2474 kfree(ohci->ir_context_list);
7007a076
SR
2475 kfree(ohci->it_context_list);
2476 context_release(&ohci->at_response_ctx);
2477 context_release(&ohci->at_request_ctx);
2478 ar_context_release(&ohci->ar_response_ctx);
2479 ar_context_release(&ohci->ar_request_ctx);
d79406dd
KH
2480 pci_iounmap(dev, ohci->registers);
2481 fail_iomem:
2482 pci_release_region(dev, 0);
2483 fail_disable:
2484 pci_disable_device(dev);
bd7dee63
SR
2485 fail_free:
2486 kfree(&ohci->card);
130d5496 2487 ohci_pmac_off(dev);
7007a076
SR
2488 fail:
2489 if (err == -ENOMEM)
2490 fw_error("Out of memory\n");
d79406dd
KH
2491
2492 return err;
ed568912
KH
2493}
2494
2495static void pci_remove(struct pci_dev *dev)
2496{
2497 struct fw_ohci *ohci;
2498
2499 ohci = pci_get_drvdata(dev);
e254a4b4
KH
2500 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2501 flush_writes(ohci);
ed568912
KH
2502 fw_core_remove_card(&ohci->card);
2503
c781c06d
KH
2504 /*
2505 * FIXME: Fail all pending packets here, now that the upper
2506 * layers can't queue any more.
2507 */
ed568912
KH
2508
2509 software_reset(ohci);
2510 free_irq(dev->irq, ohci);
a55709ba
JF
2511
2512 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2513 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2514 ohci->next_config_rom, ohci->next_config_rom_bus);
2515 if (ohci->config_rom)
2516 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2517 ohci->config_rom, ohci->config_rom_bus);
d79406dd
KH
2518 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2519 ohci->self_id_cpu, ohci->self_id_bus);
a55709ba
JF
2520 ar_context_release(&ohci->ar_request_ctx);
2521 ar_context_release(&ohci->ar_response_ctx);
2522 context_release(&ohci->at_request_ctx);
2523 context_release(&ohci->at_response_ctx);
d79406dd
KH
2524 kfree(ohci->it_context_list);
2525 kfree(ohci->ir_context_list);
2526 pci_iounmap(dev, ohci->registers);
2527 pci_release_region(dev, 0);
2528 pci_disable_device(dev);
bd7dee63 2529 kfree(&ohci->card);
2ed0f181 2530 ohci_pmac_off(dev);
ea8d006b 2531
ed568912
KH
2532 fw_notify("Removed fw-ohci device.\n");
2533}
2534
2aef469a 2535#ifdef CONFIG_PM
2ed0f181 2536static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2aef469a 2537{
2ed0f181 2538 struct fw_ohci *ohci = pci_get_drvdata(dev);
2aef469a
KH
2539 int err;
2540
2541 software_reset(ohci);
2ed0f181
SR
2542 free_irq(dev->irq, ohci);
2543 err = pci_save_state(dev);
2aef469a 2544 if (err) {
8a8cea27 2545 fw_error("pci_save_state failed\n");
2aef469a
KH
2546 return err;
2547 }
2ed0f181 2548 err = pci_set_power_state(dev, pci_choose_state(dev, state));
55111428
SR
2549 if (err)
2550 fw_error("pci_set_power_state failed with %d\n", err);
2ed0f181 2551 ohci_pmac_off(dev);
ea8d006b 2552
2aef469a
KH
2553 return 0;
2554}
2555
2ed0f181 2556static int pci_resume(struct pci_dev *dev)
2aef469a 2557{
2ed0f181 2558 struct fw_ohci *ohci = pci_get_drvdata(dev);
2aef469a
KH
2559 int err;
2560
2ed0f181
SR
2561 ohci_pmac_on(dev);
2562 pci_set_power_state(dev, PCI_D0);
2563 pci_restore_state(dev);
2564 err = pci_enable_device(dev);
2aef469a 2565 if (err) {
8a8cea27 2566 fw_error("pci_enable_device failed\n");
2aef469a
KH
2567 return err;
2568 }
2569
0bd243c4 2570 return ohci_enable(&ohci->card, NULL, 0);
2aef469a
KH
2571}
2572#endif
2573
ed568912
KH
2574static struct pci_device_id pci_table[] = {
2575 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2576 { }
2577};
2578
2579MODULE_DEVICE_TABLE(pci, pci_table);
2580
2581static struct pci_driver fw_ohci_pci_driver = {
2582 .name = ohci_driver_name,
2583 .id_table = pci_table,
2584 .probe = pci_probe,
2585 .remove = pci_remove,
2aef469a
KH
2586#ifdef CONFIG_PM
2587 .resume = pci_resume,
2588 .suspend = pci_suspend,
2589#endif
ed568912
KH
2590};
2591
2592MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2593MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2594MODULE_LICENSE("GPL");
2595
1e4c7b0d
OH
2596/* Provide a module alias so root-on-sbp2 initrds don't break. */
2597#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2598MODULE_ALIAS("ohci1394");
2599#endif
2600
ed568912
KH
2601static int __init fw_ohci_init(void)
2602{
2603 return pci_register_driver(&fw_ohci_pci_driver);
2604}
2605
2606static void __exit fw_ohci_cleanup(void)
2607{
2608 pci_unregister_driver(&fw_ohci_pci_driver);
2609}
2610
2611module_init(fw_ohci_init);
2612module_exit(fw_ohci_cleanup);
This page took 0.382826 seconds and 5 git commands to generate.