Merge tag 'staging-4.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppevvmath.h
CommitLineData
770911a3
EH
1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <asm/div64.h>
24
25#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
26
27#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */
28
29#define SHIFTED_2 (2 << SHIFT_AMOUNT)
30#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */
31
32/* -------------------------------------------------------------------------------
33 * NEW TYPE - fINT
34 * -------------------------------------------------------------------------------
35 * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
36 * fInt A;
37 * A.full => The full number as it is. Generally not easy to read
38 * A.partial.real => Only the integer portion
39 * A.partial.decimal => Only the fractional portion
40 */
41typedef union _fInt {
42 int full;
43 struct _partial {
44 unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
45 int real: 32 - SHIFT_AMOUNT;
46 } partial;
47} fInt;
48
49/* -------------------------------------------------------------------------------
50 * Function Declarations
51 * -------------------------------------------------------------------------------
52 */
53fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */
54fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */
55fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */
56int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
57
58fInt fNegate(fInt); /* Returns -1 * input fInt value */
59fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */
60fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */
61fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */
62fInt fDivide (fInt A, fInt B); /* Returns A/B */
63fInt fGetSquare(fInt); /* Returns the square of a fInt number */
64fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
65
66int uAbs(int); /* Returns the Absolute value of the Int */
67fInt fAbs(fInt); /* Returns the Absolute value of the fInt */
68int uPow(int base, int exponent); /* Returns base^exponent an INT */
69
70void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
71bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */
72bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
73
74fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */
75fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */
76
77/* Fuse decoding functions
78 * -------------------------------------------------------------------------------------
79 */
80fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
81fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
82fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
83
84/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
85 * -------------------------------------------------------------------------------------
86 * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
87 */
88fInt Add (int, int); /* Add two INTs and return Sum as FINT */
89fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */
90fInt Divide (int, int); /* You get the idea... */
91fInt fNegate(fInt);
92
93int uGetScaledDecimal (fInt); /* Internal function */
94int GetReal (fInt A); /* Internal function */
95
96/* Future Additions and Incomplete Functions
97 * -------------------------------------------------------------------------------------
98 */
99int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */
100 /* Let us say we have 2.126 but can only handle 2 decimal points. We could */
101 /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */
102
103/* -------------------------------------------------------------------------------------
104 * TROUBLESHOOTING INFORMATION
105 * -------------------------------------------------------------------------------------
106 * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
107 * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
108 * 3) fMultiply - OutputOutOfRangeException:
109 * 4) fGetSquare - OutputOutOfRangeException:
110 * 5) fDivide - DivideByZeroException
111 * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
112 */
113
114/* -------------------------------------------------------------------------------------
115 * START OF CODE
116 * -------------------------------------------------------------------------------------
117 */
118fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
119{
75ac63db
RZ
120 uint32_t i;
121 bool bNegated = false;
770911a3 122
75ac63db
RZ
123 fInt fPositiveOne = ConvertToFraction(1);
124 fInt fZERO = ConvertToFraction(0);
770911a3 125
75ac63db
RZ
126 fInt lower_bound = Divide(78, 10000);
127 fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
128 fInt error_term;
770911a3 129
75ac63db
RZ
130 uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
131 uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
770911a3 132
75ac63db
RZ
133 if (GreaterThan(fZERO, exponent)) {
134 exponent = fNegate(exponent);
135 bNegated = true;
136 }
770911a3 137
75ac63db
RZ
138 while (GreaterThan(exponent, lower_bound)) {
139 for (i = 0; i < 11; i++) {
140 if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
141 exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
142 solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
143 }
144 }
145 }
770911a3 146
75ac63db 147 error_term = fAdd(fPositiveOne, exponent);
770911a3 148
75ac63db 149 solution = fMultiply(solution, error_term);
770911a3 150
75ac63db
RZ
151 if (bNegated)
152 solution = fDivide(fPositiveOne, solution);
770911a3 153
75ac63db 154 return solution;
770911a3
EH
155}
156
157fInt fNaturalLog(fInt value)
158{
75ac63db
RZ
159 uint32_t i;
160 fInt upper_bound = Divide(8, 1000);
161 fInt fNegativeOne = ConvertToFraction(-1);
162 fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
163 fInt error_term;
164
165 uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
166 uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
167
168 while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
169 for (i = 0; i < 10; i++) {
170 if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
171 value = fDivide(value, GetScaledFraction(k_array[i], 10000));
172 solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
173 }
174 }
175 }
176
177 error_term = fAdd(fNegativeOne, value);
178
179 return (fAdd(solution, error_term));
770911a3
EH
180}
181
182fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
183{
75ac63db
RZ
184 fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
185 fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
770911a3 186
75ac63db 187 fInt f_decoded_value;
770911a3 188
75ac63db
RZ
189 f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
190 f_decoded_value = fMultiply(f_decoded_value, f_range);
191 f_decoded_value = fAdd(f_decoded_value, f_min);
770911a3 192
75ac63db 193 return f_decoded_value;
770911a3
EH
194}
195
196
197fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
198{
75ac63db
RZ
199 fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
200 fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
770911a3 201
75ac63db
RZ
202 fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
203 fInt f_CONSTANT1 = ConvertToFraction(1);
770911a3 204
75ac63db 205 fInt f_decoded_value;
770911a3 206
75ac63db
RZ
207 f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
208 f_decoded_value = fNaturalLog(f_decoded_value);
209 f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
210 f_decoded_value = fAdd(f_decoded_value, f_average);
770911a3 211
75ac63db 212 return f_decoded_value;
770911a3
EH
213}
214
215fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
216{
75ac63db
RZ
217 fInt fLeakage;
218 fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
770911a3 219
75ac63db
RZ
220 fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
221 fLeakage = fDivide(fLeakage, f_bit_max_value);
222 fLeakage = fExponential(fLeakage);
223 fLeakage = fMultiply(fLeakage, f_min);
770911a3 224
75ac63db 225 return fLeakage;
770911a3
EH
226}
227
228fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
229{
75ac63db 230 fInt temp;
770911a3 231
75ac63db
RZ
232 if (X <= MAX)
233 temp.full = (X << SHIFT_AMOUNT);
234 else
235 temp.full = 0;
770911a3 236
75ac63db 237 return temp;
770911a3
EH
238}
239
240fInt fNegate(fInt X)
241{
75ac63db
RZ
242 fInt CONSTANT_NEGONE = ConvertToFraction(-1);
243 return (fMultiply(X, CONSTANT_NEGONE));
770911a3
EH
244}
245
246fInt Convert_ULONG_ToFraction(uint32_t X)
247{
75ac63db 248 fInt temp;
770911a3 249
75ac63db
RZ
250 if (X <= MAX)
251 temp.full = (X << SHIFT_AMOUNT);
252 else
253 temp.full = 0;
770911a3 254
75ac63db 255 return temp;
770911a3
EH
256}
257
258fInt GetScaledFraction(int X, int factor)
259{
75ac63db
RZ
260 int times_shifted, factor_shifted;
261 bool bNEGATED;
262 fInt fValue;
263
264 times_shifted = 0;
265 factor_shifted = 0;
266 bNEGATED = false;
267
268 if (X < 0) {
269 X = -1*X;
270 bNEGATED = true;
271 }
272
273 if (factor < 0) {
274 factor = -1*factor;
275 bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
276 }
277
278 if ((X > MAX) || factor > MAX) {
279 if ((X/factor) <= MAX) {
280 while (X > MAX) {
281 X = X >> 1;
282 times_shifted++;
283 }
284
285 while (factor > MAX) {
286 factor = factor >> 1;
287 factor_shifted++;
288 }
289 } else {
290 fValue.full = 0;
291 return fValue;
292 }
293 }
294
295 if (factor == 1)
296 return (ConvertToFraction(X));
297
298 fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
299
300 fValue.full = fValue.full << times_shifted;
301 fValue.full = fValue.full >> factor_shifted;
302
303 return fValue;
770911a3
EH
304}
305
306/* Addition using two fInts */
307fInt fAdd (fInt X, fInt Y)
308{
75ac63db 309 fInt Sum;
770911a3 310
75ac63db 311 Sum.full = X.full + Y.full;
770911a3 312
75ac63db 313 return Sum;
770911a3
EH
314}
315
316/* Addition using two fInts */
317fInt fSubtract (fInt X, fInt Y)
318{
75ac63db 319 fInt Difference;
770911a3 320
75ac63db 321 Difference.full = X.full - Y.full;
770911a3 322
75ac63db 323 return Difference;
770911a3
EH
324}
325
326bool Equal(fInt A, fInt B)
327{
75ac63db
RZ
328 if (A.full == B.full)
329 return true;
330 else
331 return false;
770911a3
EH
332}
333
334bool GreaterThan(fInt A, fInt B)
335{
75ac63db
RZ
336 if (A.full > B.full)
337 return true;
338 else
339 return false;
770911a3
EH
340}
341
342fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
343{
75ac63db
RZ
344 fInt Product;
345 int64_t tempProduct;
346 bool X_LessThanOne, Y_LessThanOne;
770911a3 347
75ac63db
RZ
348 X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
349 Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
770911a3 350
75ac63db
RZ
351 /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
352 /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
770911a3 353
75ac63db
RZ
354 if (X_LessThanOne && Y_LessThanOne) {
355 Product.full = X.full * Y.full;
356 return Product
357 }*/
770911a3 358
75ac63db
RZ
359 tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
360 tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
361 Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
770911a3 362
75ac63db 363 return Product;
770911a3
EH
364}
365
366fInt fDivide (fInt X, fInt Y)
367{
75ac63db
RZ
368 fInt fZERO, fQuotient;
369 int64_t longlongX, longlongY;
770911a3 370
75ac63db 371 fZERO = ConvertToFraction(0);
770911a3 372
75ac63db
RZ
373 if (Equal(Y, fZERO))
374 return fZERO;
770911a3 375
75ac63db
RZ
376 longlongX = (int64_t)X.full;
377 longlongY = (int64_t)Y.full;
770911a3 378
75ac63db 379 longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
770911a3 380
75ac63db 381 div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
770911a3 382
75ac63db
RZ
383 fQuotient.full = (int)longlongX;
384 return fQuotient;
770911a3
EH
385}
386
387int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
388{
75ac63db 389 fInt fullNumber, scaledDecimal, scaledReal;
770911a3 390
75ac63db 391 scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
770911a3 392
75ac63db 393 scaledDecimal.full = uGetScaledDecimal(A);
770911a3 394
75ac63db 395 fullNumber = fAdd(scaledDecimal,scaledReal);
770911a3 396
75ac63db 397 return fullNumber.full;
770911a3
EH
398}
399
400fInt fGetSquare(fInt A)
401{
75ac63db 402 return fMultiply(A,A);
770911a3
EH
403}
404
405/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
406fInt fSqrt(fInt num)
407{
75ac63db
RZ
408 fInt F_divide_Fprime, Fprime;
409 fInt test;
410 fInt twoShifted;
411 int seed, counter, error;
412 fInt x_new, x_old, C, y;
770911a3 413
75ac63db 414 fInt fZERO = ConvertToFraction(0);
770911a3 415
75ac63db 416 /* (0 > num) is the same as (num < 0), i.e., num is negative */
770911a3 417
75ac63db
RZ
418 if (GreaterThan(fZERO, num) || Equal(fZERO, num))
419 return fZERO;
770911a3 420
75ac63db 421 C = num;
770911a3 422
75ac63db
RZ
423 if (num.partial.real > 3000)
424 seed = 60;
425 else if (num.partial.real > 1000)
426 seed = 30;
427 else if (num.partial.real > 100)
428 seed = 10;
429 else
430 seed = 2;
431
432 counter = 0;
770911a3 433
75ac63db
RZ
434 if (Equal(num, fZERO)) /*Square Root of Zero is zero */
435 return fZERO;
770911a3 436
75ac63db
RZ
437 twoShifted = ConvertToFraction(2);
438 x_new = ConvertToFraction(seed);
770911a3 439
75ac63db
RZ
440 do {
441 counter++;
770911a3 442
75ac63db 443 x_old.full = x_new.full;
770911a3 444
75ac63db
RZ
445 test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
446 y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
770911a3 447
75ac63db
RZ
448 Fprime = fMultiply(twoShifted, x_old);
449 F_divide_Fprime = fDivide(y, Fprime);
770911a3 450
75ac63db 451 x_new = fSubtract(x_old, F_divide_Fprime);
770911a3 452
75ac63db 453 error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
770911a3 454
75ac63db
RZ
455 if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
456 return x_new;
770911a3 457
75ac63db
RZ
458 } while (uAbs(error) > 0);
459
460 return (x_new);
770911a3
EH
461}
462
463void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
464{
75ac63db
RZ
465 fInt *pRoots = &Roots[0];
466 fInt temp, root_first, root_second;
467 fInt f_CONSTANT10, f_CONSTANT100;
770911a3 468
75ac63db
RZ
469 f_CONSTANT100 = ConvertToFraction(100);
470 f_CONSTANT10 = ConvertToFraction(10);
770911a3 471
75ac63db
RZ
472 while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
473 A = fDivide(A, f_CONSTANT10);
474 B = fDivide(B, f_CONSTANT10);
475 C = fDivide(C, f_CONSTANT10);
476 }
770911a3 477
75ac63db
RZ
478 temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
479 temp = fMultiply(temp, C); /* root = 4*A*C */
480 temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
481 temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
770911a3 482
75ac63db
RZ
483 root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
484 root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
770911a3 485
75ac63db
RZ
486 root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
487 root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
770911a3 488
75ac63db
RZ
489 root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
490 root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
770911a3 491
75ac63db
RZ
492 *(pRoots + 0) = root_first;
493 *(pRoots + 1) = root_second;
770911a3
EH
494}
495
496/* -----------------------------------------------------------------------------
497 * SUPPORT FUNCTIONS
498 * -----------------------------------------------------------------------------
499 */
500
501/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
502fInt Add (int X, int Y)
503{
75ac63db 504 fInt A, B, Sum;
770911a3 505
75ac63db
RZ
506 A.full = (X << SHIFT_AMOUNT);
507 B.full = (Y << SHIFT_AMOUNT);
770911a3 508
75ac63db 509 Sum.full = A.full + B.full;
770911a3 510
75ac63db 511 return Sum;
770911a3
EH
512}
513
514/* Conversion Functions */
515int GetReal (fInt A)
516{
75ac63db 517 return (A.full >> SHIFT_AMOUNT);
770911a3
EH
518}
519
520/* Temporarily Disabled */
521int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
522{
75ac63db
RZ
523 /* ROUNDING TEMPORARLY DISABLED
524 int temp = A.full;
525 int decimal_cutoff, decimal_mask = 0x000001FF;
526 decimal_cutoff = temp & decimal_mask;
527 if (decimal_cutoff > 0x147) {
528 temp += 673;
529 }*/
530
531 return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
770911a3
EH
532}
533
534fInt Multiply (int X, int Y)
535{
75ac63db 536 fInt A, B, Product;
770911a3 537
75ac63db
RZ
538 A.full = X << SHIFT_AMOUNT;
539 B.full = Y << SHIFT_AMOUNT;
770911a3 540
75ac63db 541 Product = fMultiply(A, B);
770911a3 542
75ac63db 543 return Product;
770911a3 544}
75ac63db 545
770911a3
EH
546fInt Divide (int X, int Y)
547{
75ac63db 548 fInt A, B, Quotient;
770911a3 549
75ac63db
RZ
550 A.full = X << SHIFT_AMOUNT;
551 B.full = Y << SHIFT_AMOUNT;
770911a3 552
75ac63db 553 Quotient = fDivide(A, B);
770911a3 554
75ac63db 555 return Quotient;
770911a3
EH
556}
557
558int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
559{
560 int dec[PRECISION];
561 int i, scaledDecimal = 0, tmp = A.partial.decimal;
562
563 for (i = 0; i < PRECISION; i++) {
75ac63db
RZ
564 dec[i] = tmp / (1 << SHIFT_AMOUNT);
565 tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
566 tmp *= 10;
567 scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
568 }
770911a3 569
75ac63db 570 return scaledDecimal;
770911a3
EH
571}
572
573int uPow(int base, int power)
574{
575 if (power == 0)
576 return 1;
577 else
578 return (base)*uPow(base, power - 1);
579}
580
581fInt fAbs(fInt A)
582{
583 if (A.partial.real < 0)
584 return (fMultiply(A, ConvertToFraction(-1)));
585 else
586 return A;
587}
588
589int uAbs(int X)
590{
591 if (X < 0)
592 return (X * -1);
593 else
594 return X;
595}
596
597fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
598{
75ac63db 599 fInt solution;
770911a3 600
75ac63db
RZ
601 solution = fDivide(A, fStepSize);
602 solution.partial.decimal = 0; /*All fractional digits changes to 0 */
770911a3 603
75ac63db
RZ
604 if (error_term)
605 solution.partial.real += 1; /*Error term of 1 added */
770911a3 606
75ac63db
RZ
607 solution = fMultiply(solution, fStepSize);
608 solution = fAdd(solution, fStepSize);
770911a3 609
75ac63db 610 return solution;
770911a3
EH
611}
612
This page took 0.068325 seconds and 5 git commands to generate.