Update broken web addresses in the kernel.
[deliverable/linux.git] / drivers / gpu / drm / drm_modes.c
CommitLineData
f453ba04 1/*
f453ba04
DA
2 * Copyright © 1997-2003 by The XFree86 Project, Inc.
3 * Copyright © 2007 Dave Airlie
4 * Copyright © 2007-2008 Intel Corporation
5 * Jesse Barnes <jesse.barnes@intel.com>
d782c3f9 6 * Copyright 2005-2006 Luc Verhaegen
26bbdada 7 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com
f453ba04
DA
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
23 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25 * OTHER DEALINGS IN THE SOFTWARE.
26 *
27 * Except as contained in this notice, the name of the copyright holder(s)
28 * and author(s) shall not be used in advertising or otherwise to promote
29 * the sale, use or other dealings in this Software without prior written
30 * authorization from the copyright holder(s) and author(s).
31 */
32
33#include <linux/list.h>
2c761270 34#include <linux/list_sort.h>
f453ba04
DA
35#include "drmP.h"
36#include "drm.h"
37#include "drm_crtc.h"
38
39/**
40 * drm_mode_debug_printmodeline - debug print a mode
41 * @dev: DRM device
42 * @mode: mode to print
43 *
44 * LOCKING:
45 * None.
46 *
47 * Describe @mode using DRM_DEBUG.
48 */
49void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
50{
f940f37f 51 DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
8a4c47f3 52 "0x%x 0x%x\n",
f0531859 53 mode->base.id, mode->name, mode->vrefresh, mode->clock,
54 mode->hdisplay, mode->hsync_start,
55 mode->hsync_end, mode->htotal,
56 mode->vdisplay, mode->vsync_start,
57 mode->vsync_end, mode->vtotal, mode->type, mode->flags);
f453ba04
DA
58}
59EXPORT_SYMBOL(drm_mode_debug_printmodeline);
60
d782c3f9
ZY
61/**
62 * drm_cvt_mode -create a modeline based on CVT algorithm
63 * @dev: DRM device
64 * @hdisplay: hdisplay size
65 * @vdisplay: vdisplay size
66 * @vrefresh : vrefresh rate
67 * @reduced : Whether the GTF calculation is simplified
68 * @interlaced:Whether the interlace is supported
69 *
70 * LOCKING:
71 * none.
72 *
73 * return the modeline based on CVT algorithm
74 *
75 * This function is called to generate the modeline based on CVT algorithm
76 * according to the hdisplay, vdisplay, vrefresh.
77 * It is based from the VESA(TM) Coordinated Video Timing Generator by
78 * Graham Loveridge April 9, 2003 available at
631dd1a8 79 * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
d782c3f9
ZY
80 *
81 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
82 * What I have done is to translate it by using integer calculation.
83 */
84#define HV_FACTOR 1000
85struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
86 int vdisplay, int vrefresh,
d50ba256 87 bool reduced, bool interlaced, bool margins)
d782c3f9
ZY
88{
89 /* 1) top/bottom margin size (% of height) - default: 1.8, */
90#define CVT_MARGIN_PERCENTAGE 18
91 /* 2) character cell horizontal granularity (pixels) - default 8 */
92#define CVT_H_GRANULARITY 8
93 /* 3) Minimum vertical porch (lines) - default 3 */
94#define CVT_MIN_V_PORCH 3
95 /* 4) Minimum number of vertical back porch lines - default 6 */
96#define CVT_MIN_V_BPORCH 6
97 /* Pixel Clock step (kHz) */
98#define CVT_CLOCK_STEP 250
99 struct drm_display_mode *drm_mode;
d782c3f9
ZY
100 unsigned int vfieldrate, hperiod;
101 int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
102 int interlace;
103
104 /* allocate the drm_display_mode structure. If failure, we will
105 * return directly
106 */
107 drm_mode = drm_mode_create(dev);
108 if (!drm_mode)
109 return NULL;
110
111 /* the CVT default refresh rate is 60Hz */
112 if (!vrefresh)
113 vrefresh = 60;
114
115 /* the required field fresh rate */
116 if (interlaced)
117 vfieldrate = vrefresh * 2;
118 else
119 vfieldrate = vrefresh;
120
121 /* horizontal pixels */
122 hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
123
124 /* determine the left&right borders */
125 hmargin = 0;
126 if (margins) {
127 hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
128 hmargin -= hmargin % CVT_H_GRANULARITY;
129 }
130 /* find the total active pixels */
131 drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
132
133 /* find the number of lines per field */
134 if (interlaced)
135 vdisplay_rnd = vdisplay / 2;
136 else
137 vdisplay_rnd = vdisplay;
138
139 /* find the top & bottom borders */
140 vmargin = 0;
141 if (margins)
142 vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
143
841b4117 144 drm_mode->vdisplay = vdisplay + 2 * vmargin;
d782c3f9
ZY
145
146 /* Interlaced */
147 if (interlaced)
148 interlace = 1;
149 else
150 interlace = 0;
151
152 /* Determine VSync Width from aspect ratio */
153 if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
154 vsync = 4;
155 else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
156 vsync = 5;
157 else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
158 vsync = 6;
159 else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
160 vsync = 7;
161 else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
162 vsync = 7;
163 else /* custom */
164 vsync = 10;
165
166 if (!reduced) {
167 /* simplify the GTF calculation */
168 /* 4) Minimum time of vertical sync + back porch interval (µs)
169 * default 550.0
170 */
171 int tmp1, tmp2;
172#define CVT_MIN_VSYNC_BP 550
173 /* 3) Nominal HSync width (% of line period) - default 8 */
174#define CVT_HSYNC_PERCENTAGE 8
175 unsigned int hblank_percentage;
176 int vsyncandback_porch, vback_porch, hblank;
177
178 /* estimated the horizontal period */
179 tmp1 = HV_FACTOR * 1000000 -
180 CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
181 tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
182 interlace;
183 hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
184
185 tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
186 /* 9. Find number of lines in sync + backporch */
187 if (tmp1 < (vsync + CVT_MIN_V_PORCH))
188 vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
189 else
190 vsyncandback_porch = tmp1;
191 /* 10. Find number of lines in back porch */
192 vback_porch = vsyncandback_porch - vsync;
193 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
194 vsyncandback_porch + CVT_MIN_V_PORCH;
195 /* 5) Definition of Horizontal blanking time limitation */
196 /* Gradient (%/kHz) - default 600 */
197#define CVT_M_FACTOR 600
198 /* Offset (%) - default 40 */
199#define CVT_C_FACTOR 40
200 /* Blanking time scaling factor - default 128 */
201#define CVT_K_FACTOR 128
202 /* Scaling factor weighting - default 20 */
203#define CVT_J_FACTOR 20
204#define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256)
205#define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
206 CVT_J_FACTOR)
207 /* 12. Find ideal blanking duty cycle from formula */
208 hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
209 hperiod / 1000;
210 /* 13. Blanking time */
211 if (hblank_percentage < 20 * HV_FACTOR)
212 hblank_percentage = 20 * HV_FACTOR;
213 hblank = drm_mode->hdisplay * hblank_percentage /
214 (100 * HV_FACTOR - hblank_percentage);
215 hblank -= hblank % (2 * CVT_H_GRANULARITY);
216 /* 14. find the total pixes per line */
217 drm_mode->htotal = drm_mode->hdisplay + hblank;
218 drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
219 drm_mode->hsync_start = drm_mode->hsync_end -
220 (drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
221 drm_mode->hsync_start += CVT_H_GRANULARITY -
222 drm_mode->hsync_start % CVT_H_GRANULARITY;
223 /* fill the Vsync values */
224 drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
225 drm_mode->vsync_end = drm_mode->vsync_start + vsync;
226 } else {
227 /* Reduced blanking */
228 /* Minimum vertical blanking interval time (µs)- default 460 */
229#define CVT_RB_MIN_VBLANK 460
230 /* Fixed number of clocks for horizontal sync */
231#define CVT_RB_H_SYNC 32
232 /* Fixed number of clocks for horizontal blanking */
233#define CVT_RB_H_BLANK 160
234 /* Fixed number of lines for vertical front porch - default 3*/
235#define CVT_RB_VFPORCH 3
236 int vbilines;
237 int tmp1, tmp2;
238 /* 8. Estimate Horizontal period. */
239 tmp1 = HV_FACTOR * 1000000 -
240 CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
241 tmp2 = vdisplay_rnd + 2 * vmargin;
242 hperiod = tmp1 / (tmp2 * vfieldrate);
243 /* 9. Find number of lines in vertical blanking */
244 vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
245 /* 10. Check if vertical blanking is sufficient */
246 if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
247 vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
248 /* 11. Find total number of lines in vertical field */
249 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
250 /* 12. Find total number of pixels in a line */
251 drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
252 /* Fill in HSync values */
253 drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
254 drm_mode->hsync_start = drm_mode->hsync_end = CVT_RB_H_SYNC;
255 }
256 /* 15/13. Find pixel clock frequency (kHz for xf86) */
257 drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
258 drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
259 /* 18/16. Find actual vertical frame frequency */
260 /* ignore - just set the mode flag for interlaced */
171fdd89 261 if (interlaced) {
d782c3f9 262 drm_mode->vtotal *= 2;
171fdd89
AJ
263 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
264 }
d782c3f9
ZY
265 /* Fill the mode line name */
266 drm_mode_set_name(drm_mode);
267 if (reduced)
268 drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
269 DRM_MODE_FLAG_NVSYNC);
270 else
271 drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
272 DRM_MODE_FLAG_NHSYNC);
d782c3f9 273
171fdd89 274 return drm_mode;
d782c3f9
ZY
275}
276EXPORT_SYMBOL(drm_cvt_mode);
277
26bbdada 278/**
7a374350 279 * drm_gtf_mode_complex - create the modeline based on full GTF algorithm
26bbdada
ZY
280 *
281 * @dev :drm device
282 * @hdisplay :hdisplay size
283 * @vdisplay :vdisplay size
284 * @vrefresh :vrefresh rate.
285 * @interlaced :whether the interlace is supported
7a374350
AJ
286 * @margins :desired margin size
287 * @GTF_[MCKJ] :extended GTF formula parameters
26bbdada
ZY
288 *
289 * LOCKING.
290 * none.
291 *
7a374350 292 * return the modeline based on full GTF algorithm.
26bbdada 293 *
7a374350
AJ
294 * GTF feature blocks specify C and J in multiples of 0.5, so we pass them
295 * in here multiplied by two. For a C of 40, pass in 80.
26bbdada 296 */
7a374350
AJ
297struct drm_display_mode *
298drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay,
299 int vrefresh, bool interlaced, int margins,
300 int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
301{ /* 1) top/bottom margin size (% of height) - default: 1.8, */
26bbdada
ZY
302#define GTF_MARGIN_PERCENTAGE 18
303 /* 2) character cell horizontal granularity (pixels) - default 8 */
304#define GTF_CELL_GRAN 8
305 /* 3) Minimum vertical porch (lines) - default 3 */
306#define GTF_MIN_V_PORCH 1
307 /* width of vsync in lines */
308#define V_SYNC_RQD 3
309 /* width of hsync as % of total line */
310#define H_SYNC_PERCENT 8
311 /* min time of vsync + back porch (microsec) */
312#define MIN_VSYNC_PLUS_BP 550
26bbdada 313 /* C' and M' are part of the Blanking Duty Cycle computation */
7a374350
AJ
314#define GTF_C_PRIME ((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
315#define GTF_M_PRIME (GTF_K * GTF_M / 256)
26bbdada
ZY
316 struct drm_display_mode *drm_mode;
317 unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
318 int top_margin, bottom_margin;
319 int interlace;
320 unsigned int hfreq_est;
321 int vsync_plus_bp, vback_porch;
322 unsigned int vtotal_lines, vfieldrate_est, hperiod;
323 unsigned int vfield_rate, vframe_rate;
324 int left_margin, right_margin;
325 unsigned int total_active_pixels, ideal_duty_cycle;
326 unsigned int hblank, total_pixels, pixel_freq;
327 int hsync, hfront_porch, vodd_front_porch_lines;
328 unsigned int tmp1, tmp2;
329
330 drm_mode = drm_mode_create(dev);
331 if (!drm_mode)
332 return NULL;
333
334 /* 1. In order to give correct results, the number of horizontal
335 * pixels requested is first processed to ensure that it is divisible
336 * by the character size, by rounding it to the nearest character
337 * cell boundary:
338 */
339 hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
340 hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
341
342 /* 2. If interlace is requested, the number of vertical lines assumed
343 * by the calculation must be halved, as the computation calculates
344 * the number of vertical lines per field.
345 */
346 if (interlaced)
347 vdisplay_rnd = vdisplay / 2;
348 else
349 vdisplay_rnd = vdisplay;
350
351 /* 3. Find the frame rate required: */
352 if (interlaced)
353 vfieldrate_rqd = vrefresh * 2;
354 else
355 vfieldrate_rqd = vrefresh;
356
357 /* 4. Find number of lines in Top margin: */
358 top_margin = 0;
359 if (margins)
360 top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
361 1000;
362 /* 5. Find number of lines in bottom margin: */
363 bottom_margin = top_margin;
364
365 /* 6. If interlace is required, then set variable interlace: */
366 if (interlaced)
367 interlace = 1;
368 else
369 interlace = 0;
370
371 /* 7. Estimate the Horizontal frequency */
372 {
373 tmp1 = (1000000 - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
374 tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
375 2 + interlace;
376 hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
377 }
378
379 /* 8. Find the number of lines in V sync + back porch */
380 /* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
381 vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
382 vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
383 /* 9. Find the number of lines in V back porch alone: */
384 vback_porch = vsync_plus_bp - V_SYNC_RQD;
385 /* 10. Find the total number of lines in Vertical field period: */
386 vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
387 vsync_plus_bp + GTF_MIN_V_PORCH;
388 /* 11. Estimate the Vertical field frequency: */
389 vfieldrate_est = hfreq_est / vtotal_lines;
390 /* 12. Find the actual horizontal period: */
391 hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
392
393 /* 13. Find the actual Vertical field frequency: */
394 vfield_rate = hfreq_est / vtotal_lines;
395 /* 14. Find the Vertical frame frequency: */
396 if (interlaced)
397 vframe_rate = vfield_rate / 2;
398 else
399 vframe_rate = vfield_rate;
400 /* 15. Find number of pixels in left margin: */
401 if (margins)
402 left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
403 1000;
404 else
405 left_margin = 0;
406
407 /* 16.Find number of pixels in right margin: */
408 right_margin = left_margin;
409 /* 17.Find total number of active pixels in image and left and right */
410 total_active_pixels = hdisplay_rnd + left_margin + right_margin;
411 /* 18.Find the ideal blanking duty cycle from blanking duty cycle */
412 ideal_duty_cycle = GTF_C_PRIME * 1000 -
413 (GTF_M_PRIME * 1000000 / hfreq_est);
414 /* 19.Find the number of pixels in the blanking time to the nearest
415 * double character cell: */
416 hblank = total_active_pixels * ideal_duty_cycle /
417 (100000 - ideal_duty_cycle);
418 hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
419 hblank = hblank * 2 * GTF_CELL_GRAN;
420 /* 20.Find total number of pixels: */
421 total_pixels = total_active_pixels + hblank;
422 /* 21.Find pixel clock frequency: */
423 pixel_freq = total_pixels * hfreq_est / 1000;
424 /* Stage 1 computations are now complete; I should really pass
425 * the results to another function and do the Stage 2 computations,
426 * but I only need a few more values so I'll just append the
427 * computations here for now */
428 /* 17. Find the number of pixels in the horizontal sync period: */
429 hsync = H_SYNC_PERCENT * total_pixels / 100;
430 hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
431 hsync = hsync * GTF_CELL_GRAN;
432 /* 18. Find the number of pixels in horizontal front porch period */
433 hfront_porch = hblank / 2 - hsync;
434 /* 36. Find the number of lines in the odd front porch period: */
435 vodd_front_porch_lines = GTF_MIN_V_PORCH ;
436
437 /* finally, pack the results in the mode struct */
438 drm_mode->hdisplay = hdisplay_rnd;
439 drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
440 drm_mode->hsync_end = drm_mode->hsync_start + hsync;
441 drm_mode->htotal = total_pixels;
442 drm_mode->vdisplay = vdisplay_rnd;
443 drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
444 drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
445 drm_mode->vtotal = vtotal_lines;
446
447 drm_mode->clock = pixel_freq;
448
26bbdada
ZY
449 if (interlaced) {
450 drm_mode->vtotal *= 2;
451 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
452 }
453
171fdd89 454 drm_mode_set_name(drm_mode);
c385e50c
AJ
455 if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
456 drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
457 else
458 drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
171fdd89 459
26bbdada
ZY
460 return drm_mode;
461}
7a374350
AJ
462EXPORT_SYMBOL(drm_gtf_mode_complex);
463
464/**
465 * drm_gtf_mode - create the modeline based on GTF algorithm
466 *
467 * @dev :drm device
468 * @hdisplay :hdisplay size
469 * @vdisplay :vdisplay size
470 * @vrefresh :vrefresh rate.
471 * @interlaced :whether the interlace is supported
472 * @margins :whether the margin is supported
473 *
474 * LOCKING.
475 * none.
476 *
477 * return the modeline based on GTF algorithm
478 *
479 * This function is to create the modeline based on the GTF algorithm.
480 * Generalized Timing Formula is derived from:
481 * GTF Spreadsheet by Andy Morrish (1/5/97)
482 * available at http://www.vesa.org
483 *
484 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
485 * What I have done is to translate it by using integer calculation.
486 * I also refer to the function of fb_get_mode in the file of
487 * drivers/video/fbmon.c
488 *
489 * Standard GTF parameters:
490 * M = 600
491 * C = 40
492 * K = 128
493 * J = 20
494 */
495struct drm_display_mode *
496drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh,
497 bool lace, int margins)
498{
499 return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, lace,
500 margins, 600, 40 * 2, 128, 20 * 2);
501}
26bbdada 502EXPORT_SYMBOL(drm_gtf_mode);
7a374350 503
f453ba04
DA
504/**
505 * drm_mode_set_name - set the name on a mode
506 * @mode: name will be set in this mode
507 *
508 * LOCKING:
509 * None.
510 *
511 * Set the name of @mode to a standard format.
512 */
513void drm_mode_set_name(struct drm_display_mode *mode)
514{
171fdd89
AJ
515 bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
516
517 snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s",
518 mode->hdisplay, mode->vdisplay,
519 interlaced ? "i" : "");
f453ba04
DA
520}
521EXPORT_SYMBOL(drm_mode_set_name);
522
523/**
524 * drm_mode_list_concat - move modes from one list to another
525 * @head: source list
526 * @new: dst list
527 *
528 * LOCKING:
529 * Caller must ensure both lists are locked.
530 *
531 * Move all the modes from @head to @new.
532 */
533void drm_mode_list_concat(struct list_head *head, struct list_head *new)
534{
535
536 struct list_head *entry, *tmp;
537
538 list_for_each_safe(entry, tmp, head) {
539 list_move_tail(entry, new);
540 }
541}
542EXPORT_SYMBOL(drm_mode_list_concat);
543
544/**
545 * drm_mode_width - get the width of a mode
546 * @mode: mode
547 *
548 * LOCKING:
549 * None.
550 *
551 * Return @mode's width (hdisplay) value.
552 *
553 * FIXME: is this needed?
554 *
555 * RETURNS:
556 * @mode->hdisplay
557 */
558int drm_mode_width(struct drm_display_mode *mode)
559{
560 return mode->hdisplay;
561
562}
563EXPORT_SYMBOL(drm_mode_width);
564
565/**
566 * drm_mode_height - get the height of a mode
567 * @mode: mode
568 *
569 * LOCKING:
570 * None.
571 *
572 * Return @mode's height (vdisplay) value.
573 *
574 * FIXME: is this needed?
575 *
576 * RETURNS:
577 * @mode->vdisplay
578 */
579int drm_mode_height(struct drm_display_mode *mode)
580{
581 return mode->vdisplay;
582}
583EXPORT_SYMBOL(drm_mode_height);
584
7ac96a9c
AJ
585/** drm_mode_hsync - get the hsync of a mode
586 * @mode: mode
587 *
588 * LOCKING:
589 * None.
590 *
591 * Return @modes's hsync rate in kHz, rounded to the nearest int.
592 */
593int drm_mode_hsync(struct drm_display_mode *mode)
594{
595 unsigned int calc_val;
596
597 if (mode->hsync)
598 return mode->hsync;
599
600 if (mode->htotal < 0)
601 return 0;
602
603 calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
604 calc_val += 500; /* round to 1000Hz */
605 calc_val /= 1000; /* truncate to kHz */
606
607 return calc_val;
608}
609EXPORT_SYMBOL(drm_mode_hsync);
610
f453ba04
DA
611/**
612 * drm_mode_vrefresh - get the vrefresh of a mode
613 * @mode: mode
614 *
615 * LOCKING:
616 * None.
617 *
7ac96a9c 618 * Return @mode's vrefresh rate in Hz or calculate it if necessary.
f453ba04
DA
619 *
620 * FIXME: why is this needed? shouldn't vrefresh be set already?
621 *
622 * RETURNS:
559ee21d
ZY
623 * Vertical refresh rate. It will be the result of actual value plus 0.5.
624 * If it is 70.288, it will return 70Hz.
625 * If it is 59.6, it will return 60Hz.
f453ba04
DA
626 */
627int drm_mode_vrefresh(struct drm_display_mode *mode)
628{
629 int refresh = 0;
630 unsigned int calc_val;
631
632 if (mode->vrefresh > 0)
633 refresh = mode->vrefresh;
634 else if (mode->htotal > 0 && mode->vtotal > 0) {
559ee21d
ZY
635 int vtotal;
636 vtotal = mode->vtotal;
f453ba04
DA
637 /* work out vrefresh the value will be x1000 */
638 calc_val = (mode->clock * 1000);
f453ba04 639 calc_val /= mode->htotal;
559ee21d 640 refresh = (calc_val + vtotal / 2) / vtotal;
f453ba04 641
f453ba04
DA
642 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
643 refresh *= 2;
644 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
645 refresh /= 2;
646 if (mode->vscan > 1)
647 refresh /= mode->vscan;
648 }
649 return refresh;
650}
651EXPORT_SYMBOL(drm_mode_vrefresh);
652
653/**
654 * drm_mode_set_crtcinfo - set CRTC modesetting parameters
655 * @p: mode
656 * @adjust_flags: unused? (FIXME)
657 *
658 * LOCKING:
659 * None.
660 *
661 * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
662 */
663void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
664{
665 if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
666 return;
667
668 p->crtc_hdisplay = p->hdisplay;
669 p->crtc_hsync_start = p->hsync_start;
670 p->crtc_hsync_end = p->hsync_end;
671 p->crtc_htotal = p->htotal;
672 p->crtc_hskew = p->hskew;
673 p->crtc_vdisplay = p->vdisplay;
674 p->crtc_vsync_start = p->vsync_start;
675 p->crtc_vsync_end = p->vsync_end;
676 p->crtc_vtotal = p->vtotal;
677
678 if (p->flags & DRM_MODE_FLAG_INTERLACE) {
679 if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
680 p->crtc_vdisplay /= 2;
681 p->crtc_vsync_start /= 2;
682 p->crtc_vsync_end /= 2;
683 p->crtc_vtotal /= 2;
684 }
685
686 p->crtc_vtotal |= 1;
687 }
688
689 if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
690 p->crtc_vdisplay *= 2;
691 p->crtc_vsync_start *= 2;
692 p->crtc_vsync_end *= 2;
693 p->crtc_vtotal *= 2;
694 }
695
696 if (p->vscan > 1) {
697 p->crtc_vdisplay *= p->vscan;
698 p->crtc_vsync_start *= p->vscan;
699 p->crtc_vsync_end *= p->vscan;
700 p->crtc_vtotal *= p->vscan;
701 }
702
703 p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
704 p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
705 p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
706 p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
707
708 p->crtc_hadjusted = false;
709 p->crtc_vadjusted = false;
710}
711EXPORT_SYMBOL(drm_mode_set_crtcinfo);
712
713
714/**
715 * drm_mode_duplicate - allocate and duplicate an existing mode
716 * @m: mode to duplicate
717 *
718 * LOCKING:
719 * None.
720 *
721 * Just allocate a new mode, copy the existing mode into it, and return
722 * a pointer to it. Used to create new instances of established modes.
723 */
724struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
725 struct drm_display_mode *mode)
726{
727 struct drm_display_mode *nmode;
728 int new_id;
729
730 nmode = drm_mode_create(dev);
731 if (!nmode)
732 return NULL;
733
734 new_id = nmode->base.id;
735 *nmode = *mode;
736 nmode->base.id = new_id;
737 INIT_LIST_HEAD(&nmode->head);
738 return nmode;
739}
740EXPORT_SYMBOL(drm_mode_duplicate);
741
742/**
743 * drm_mode_equal - test modes for equality
744 * @mode1: first mode
745 * @mode2: second mode
746 *
747 * LOCKING:
748 * None.
749 *
750 * Check to see if @mode1 and @mode2 are equivalent.
751 *
752 * RETURNS:
753 * True if the modes are equal, false otherwise.
754 */
755bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
756{
757 /* do clock check convert to PICOS so fb modes get matched
758 * the same */
759 if (mode1->clock && mode2->clock) {
760 if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
761 return false;
762 } else if (mode1->clock != mode2->clock)
763 return false;
764
765 if (mode1->hdisplay == mode2->hdisplay &&
766 mode1->hsync_start == mode2->hsync_start &&
767 mode1->hsync_end == mode2->hsync_end &&
768 mode1->htotal == mode2->htotal &&
769 mode1->hskew == mode2->hskew &&
770 mode1->vdisplay == mode2->vdisplay &&
771 mode1->vsync_start == mode2->vsync_start &&
772 mode1->vsync_end == mode2->vsync_end &&
773 mode1->vtotal == mode2->vtotal &&
774 mode1->vscan == mode2->vscan &&
775 mode1->flags == mode2->flags)
776 return true;
777
778 return false;
779}
780EXPORT_SYMBOL(drm_mode_equal);
781
782/**
783 * drm_mode_validate_size - make sure modes adhere to size constraints
784 * @dev: DRM device
785 * @mode_list: list of modes to check
786 * @maxX: maximum width
787 * @maxY: maximum height
788 * @maxPitch: max pitch
789 *
790 * LOCKING:
791 * Caller must hold a lock protecting @mode_list.
792 *
793 * The DRM device (@dev) has size and pitch limits. Here we validate the
794 * modes we probed for @dev against those limits and set their status as
795 * necessary.
796 */
797void drm_mode_validate_size(struct drm_device *dev,
798 struct list_head *mode_list,
799 int maxX, int maxY, int maxPitch)
800{
801 struct drm_display_mode *mode;
802
803 list_for_each_entry(mode, mode_list, head) {
804 if (maxPitch > 0 && mode->hdisplay > maxPitch)
805 mode->status = MODE_BAD_WIDTH;
806
807 if (maxX > 0 && mode->hdisplay > maxX)
808 mode->status = MODE_VIRTUAL_X;
809
810 if (maxY > 0 && mode->vdisplay > maxY)
811 mode->status = MODE_VIRTUAL_Y;
812 }
813}
814EXPORT_SYMBOL(drm_mode_validate_size);
815
816/**
817 * drm_mode_validate_clocks - validate modes against clock limits
818 * @dev: DRM device
819 * @mode_list: list of modes to check
820 * @min: minimum clock rate array
821 * @max: maximum clock rate array
822 * @n_ranges: number of clock ranges (size of arrays)
823 *
824 * LOCKING:
825 * Caller must hold a lock protecting @mode_list.
826 *
827 * Some code may need to check a mode list against the clock limits of the
828 * device in question. This function walks the mode list, testing to make
829 * sure each mode falls within a given range (defined by @min and @max
830 * arrays) and sets @mode->status as needed.
831 */
832void drm_mode_validate_clocks(struct drm_device *dev,
833 struct list_head *mode_list,
834 int *min, int *max, int n_ranges)
835{
836 struct drm_display_mode *mode;
837 int i;
838
839 list_for_each_entry(mode, mode_list, head) {
840 bool good = false;
841 for (i = 0; i < n_ranges; i++) {
842 if (mode->clock >= min[i] && mode->clock <= max[i]) {
843 good = true;
844 break;
845 }
846 }
847 if (!good)
848 mode->status = MODE_CLOCK_RANGE;
849 }
850}
851EXPORT_SYMBOL(drm_mode_validate_clocks);
852
853/**
854 * drm_mode_prune_invalid - remove invalid modes from mode list
855 * @dev: DRM device
856 * @mode_list: list of modes to check
857 * @verbose: be verbose about it
858 *
859 * LOCKING:
860 * Caller must hold a lock protecting @mode_list.
861 *
862 * Once mode list generation is complete, a caller can use this routine to
863 * remove invalid modes from a mode list. If any of the modes have a
864 * status other than %MODE_OK, they are removed from @mode_list and freed.
865 */
866void drm_mode_prune_invalid(struct drm_device *dev,
867 struct list_head *mode_list, bool verbose)
868{
869 struct drm_display_mode *mode, *t;
870
871 list_for_each_entry_safe(mode, t, mode_list, head) {
872 if (mode->status != MODE_OK) {
873 list_del(&mode->head);
874 if (verbose) {
875 drm_mode_debug_printmodeline(mode);
f940f37f 876 DRM_DEBUG_KMS("Not using %s mode %d\n",
f0531859 877 mode->name, mode->status);
f453ba04
DA
878 }
879 drm_mode_destroy(dev, mode);
880 }
881 }
882}
883EXPORT_SYMBOL(drm_mode_prune_invalid);
884
885/**
886 * drm_mode_compare - compare modes for favorability
2c761270 887 * @priv: unused
f453ba04
DA
888 * @lh_a: list_head for first mode
889 * @lh_b: list_head for second mode
890 *
891 * LOCKING:
892 * None.
893 *
894 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
895 * which is better.
896 *
897 * RETURNS:
898 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
899 * positive if @lh_b is better than @lh_a.
900 */
2c761270 901static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
f453ba04
DA
902{
903 struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
904 struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
905 int diff;
906
907 diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
908 ((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
909 if (diff)
910 return diff;
911 diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
912 if (diff)
913 return diff;
914 diff = b->clock - a->clock;
915 return diff;
916}
917
f453ba04
DA
918/**
919 * drm_mode_sort - sort mode list
920 * @mode_list: list to sort
921 *
922 * LOCKING:
923 * Caller must hold a lock protecting @mode_list.
924 *
925 * Sort @mode_list by favorability, putting good modes first.
926 */
927void drm_mode_sort(struct list_head *mode_list)
928{
2c761270 929 list_sort(NULL, mode_list, drm_mode_compare);
f453ba04
DA
930}
931EXPORT_SYMBOL(drm_mode_sort);
932
933/**
934 * drm_mode_connector_list_update - update the mode list for the connector
935 * @connector: the connector to update
936 *
937 * LOCKING:
938 * Caller must hold a lock protecting @mode_list.
939 *
940 * This moves the modes from the @connector probed_modes list
941 * to the actual mode list. It compares the probed mode against the current
942 * list and only adds different modes. All modes unverified after this point
943 * will be removed by the prune invalid modes.
944 */
945void drm_mode_connector_list_update(struct drm_connector *connector)
946{
947 struct drm_display_mode *mode;
948 struct drm_display_mode *pmode, *pt;
949 int found_it;
950
951 list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
952 head) {
953 found_it = 0;
954 /* go through current modes checking for the new probed mode */
955 list_for_each_entry(mode, &connector->modes, head) {
956 if (drm_mode_equal(pmode, mode)) {
957 found_it = 1;
958 /* if equal delete the probed mode */
959 mode->status = pmode->status;
38d5487d
KP
960 /* Merge type bits together */
961 mode->type |= pmode->type;
f453ba04
DA
962 list_del(&pmode->head);
963 drm_mode_destroy(connector->dev, pmode);
964 break;
965 }
966 }
967
968 if (!found_it) {
969 list_move_tail(&pmode->head, &connector->modes);
970 }
971 }
972}
973EXPORT_SYMBOL(drm_mode_connector_list_update);
This page took 0.194019 seconds and 5 git commands to generate.