drm/intel: Fix initialization if startup happens in interlaced mode [v2]
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
05394f39 47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
d9e86c0e
CW
51static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
05394f39
CW
53static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
71acb5eb 55 struct drm_i915_gem_pwrite *args,
05394f39
CW
56 struct drm_file *file);
57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 58
17250b71 59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 60 struct shrink_control *sc);
31169714 61
73aa808f
CW
62/* some bookkeeping */
63static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 size_t size)
65{
66 dev_priv->mm.object_count++;
67 dev_priv->mm.object_memory += size;
68}
69
70static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
71 size_t size)
72{
73 dev_priv->mm.object_count--;
74 dev_priv->mm.object_memory -= size;
75}
76
21dd3734
CW
77static int
78i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
79{
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct completion *x = &dev_priv->error_completion;
82 unsigned long flags;
83 int ret;
84
85 if (!atomic_read(&dev_priv->mm.wedged))
86 return 0;
87
88 ret = wait_for_completion_interruptible(x);
89 if (ret)
90 return ret;
91
21dd3734
CW
92 if (atomic_read(&dev_priv->mm.wedged)) {
93 /* GPU is hung, bump the completion count to account for
94 * the token we just consumed so that we never hit zero and
95 * end up waiting upon a subsequent completion event that
96 * will never happen.
97 */
98 spin_lock_irqsave(&x->wait.lock, flags);
99 x->done++;
100 spin_unlock_irqrestore(&x->wait.lock, flags);
101 }
102 return 0;
30dbf0c0
CW
103}
104
54cf91dc 105int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 106{
76c1dec1
CW
107 int ret;
108
21dd3734 109 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
110 if (ret)
111 return ret;
112
113 ret = mutex_lock_interruptible(&dev->struct_mutex);
114 if (ret)
115 return ret;
116
23bc5982 117 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
118 return 0;
119}
30dbf0c0 120
7d1c4804 121static inline bool
05394f39 122i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 123{
05394f39 124 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
125}
126
2021746e
CW
127void i915_gem_do_init(struct drm_device *dev,
128 unsigned long start,
129 unsigned long mappable_end,
130 unsigned long end)
673a394b
EA
131{
132 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 133
bee4a186 134 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 135
bee4a186
CW
136 dev_priv->mm.gtt_start = start;
137 dev_priv->mm.gtt_mappable_end = mappable_end;
138 dev_priv->mm.gtt_end = end;
73aa808f 139 dev_priv->mm.gtt_total = end - start;
fb7d516a 140 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
141
142 /* Take over this portion of the GTT */
143 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 144}
673a394b 145
79e53945
JB
146int
147i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
79e53945
JB
149{
150 struct drm_i915_gem_init *args = data;
2021746e
CW
151
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154 return -EINVAL;
79e53945
JB
155
156 mutex_lock(&dev->struct_mutex);
2021746e 157 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
158 mutex_unlock(&dev->struct_mutex);
159
2021746e 160 return 0;
673a394b
EA
161}
162
5a125c3c
EA
163int
164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
5a125c3c 166{
73aa808f 167 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 168 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
5a125c3c
EA
171
172 if (!(dev->driver->driver_features & DRIVER_GEM))
173 return -ENODEV;
174
6299f992 175 pinned = 0;
73aa808f 176 mutex_lock(&dev->struct_mutex);
6299f992
CW
177 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
178 pinned += obj->gtt_space->size;
73aa808f 179 mutex_unlock(&dev->struct_mutex);
5a125c3c 180
6299f992 181 args->aper_size = dev_priv->mm.gtt_total;
0206e353 182 args->aper_available_size = args->aper_size - pinned;
6299f992 183
5a125c3c
EA
184 return 0;
185}
186
ff72145b
DA
187static int
188i915_gem_create(struct drm_file *file,
189 struct drm_device *dev,
190 uint64_t size,
191 uint32_t *handle_p)
673a394b 192{
05394f39 193 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
194 int ret;
195 u32 handle;
673a394b 196
ff72145b 197 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
198 if (size == 0)
199 return -EINVAL;
673a394b
EA
200
201 /* Allocate the new object */
ff72145b 202 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
203 if (obj == NULL)
204 return -ENOMEM;
205
05394f39 206 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 207 if (ret) {
05394f39
CW
208 drm_gem_object_release(&obj->base);
209 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 210 kfree(obj);
673a394b 211 return ret;
1dfd9754 212 }
673a394b 213
202f2fef 214 /* drop reference from allocate - handle holds it now */
05394f39 215 drm_gem_object_unreference(&obj->base);
202f2fef
CW
216 trace_i915_gem_object_create(obj);
217
ff72145b 218 *handle_p = handle;
673a394b
EA
219 return 0;
220}
221
ff72145b
DA
222int
223i915_gem_dumb_create(struct drm_file *file,
224 struct drm_device *dev,
225 struct drm_mode_create_dumb *args)
226{
227 /* have to work out size/pitch and return them */
ed0291fd 228 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
229 args->size = args->pitch * args->height;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
232}
233
234int i915_gem_dumb_destroy(struct drm_file *file,
235 struct drm_device *dev,
236 uint32_t handle)
237{
238 return drm_gem_handle_delete(file, handle);
239}
240
241/**
242 * Creates a new mm object and returns a handle to it.
243 */
244int
245i915_gem_create_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file)
247{
248 struct drm_i915_gem_create *args = data;
249 return i915_gem_create(file, dev,
250 args->size, &args->handle);
251}
252
05394f39 253static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 254{
05394f39 255 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
256
257 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 258 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
259}
260
99a03df5 261static inline void
40123c1f
EA
262slow_shmem_copy(struct page *dst_page,
263 int dst_offset,
264 struct page *src_page,
265 int src_offset,
266 int length)
267{
268 char *dst_vaddr, *src_vaddr;
269
99a03df5
CW
270 dst_vaddr = kmap(dst_page);
271 src_vaddr = kmap(src_page);
40123c1f
EA
272
273 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
274
99a03df5
CW
275 kunmap(src_page);
276 kunmap(dst_page);
40123c1f
EA
277}
278
99a03df5 279static inline void
280b713b
EA
280slow_shmem_bit17_copy(struct page *gpu_page,
281 int gpu_offset,
282 struct page *cpu_page,
283 int cpu_offset,
284 int length,
285 int is_read)
286{
287 char *gpu_vaddr, *cpu_vaddr;
288
289 /* Use the unswizzled path if this page isn't affected. */
290 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
291 if (is_read)
292 return slow_shmem_copy(cpu_page, cpu_offset,
293 gpu_page, gpu_offset, length);
294 else
295 return slow_shmem_copy(gpu_page, gpu_offset,
296 cpu_page, cpu_offset, length);
297 }
298
99a03df5
CW
299 gpu_vaddr = kmap(gpu_page);
300 cpu_vaddr = kmap(cpu_page);
280b713b
EA
301
302 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
303 * XORing with the other bits (A9 for Y, A9 and A10 for X)
304 */
305 while (length > 0) {
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310 if (is_read) {
311 memcpy(cpu_vaddr + cpu_offset,
312 gpu_vaddr + swizzled_gpu_offset,
313 this_length);
314 } else {
315 memcpy(gpu_vaddr + swizzled_gpu_offset,
316 cpu_vaddr + cpu_offset,
317 this_length);
318 }
319 cpu_offset += this_length;
320 gpu_offset += this_length;
321 length -= this_length;
322 }
323
99a03df5
CW
324 kunmap(cpu_page);
325 kunmap(gpu_page);
280b713b
EA
326}
327
eb01459f
EA
328/**
329 * This is the fast shmem pread path, which attempts to copy_from_user directly
330 * from the backing pages of the object to the user's address space. On a
331 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
332 */
333static int
05394f39
CW
334i915_gem_shmem_pread_fast(struct drm_device *dev,
335 struct drm_i915_gem_object *obj,
eb01459f 336 struct drm_i915_gem_pread *args,
05394f39 337 struct drm_file *file)
eb01459f 338{
05394f39 339 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 340 ssize_t remain;
e5281ccd 341 loff_t offset;
eb01459f
EA
342 char __user *user_data;
343 int page_offset, page_length;
eb01459f
EA
344
345 user_data = (char __user *) (uintptr_t) args->data_ptr;
346 remain = args->size;
347
eb01459f
EA
348 offset = args->offset;
349
350 while (remain > 0) {
e5281ccd
CW
351 struct page *page;
352 char *vaddr;
353 int ret;
354
eb01459f
EA
355 /* Operation in this page
356 *
eb01459f
EA
357 * page_offset = offset within page
358 * page_length = bytes to copy for this page
359 */
c8cbbb8b 360 page_offset = offset_in_page(offset);
eb01459f
EA
361 page_length = remain;
362 if ((page_offset + remain) > PAGE_SIZE)
363 page_length = PAGE_SIZE - page_offset;
364
5949eac4 365 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
366 if (IS_ERR(page))
367 return PTR_ERR(page);
368
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
374
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
4f27b75d 378 return -EFAULT;
eb01459f
EA
379
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
383 }
384
4f27b75d 385 return 0;
eb01459f
EA
386}
387
388/**
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
393 */
394static int
05394f39
CW
395i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
eb01459f 397 struct drm_i915_gem_pread *args,
05394f39 398 struct drm_file *file)
eb01459f 399{
05394f39 400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
eb01459f
EA
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
280b713b 411 int do_bit17_swizzling;
eb01459f
EA
412
413 remain = args->size;
414
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
418 */
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
422
4f27b75d 423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
424 if (user_pages == NULL)
425 return -ENOMEM;
426
4f27b75d 427 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 430 num_pages, 1, 0, user_pages, NULL);
eb01459f 431 up_read(&mm->mmap_sem);
4f27b75d 432 mutex_lock(&dev->struct_mutex);
eb01459f
EA
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
4f27b75d 435 goto out;
eb01459f
EA
436 }
437
4f27b75d
CW
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
07f73f69 441 if (ret)
4f27b75d 442 goto out;
eb01459f 443
4f27b75d 444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 445
eb01459f
EA
446 offset = args->offset;
447
448 while (remain > 0) {
e5281ccd
CW
449 struct page *page;
450
eb01459f
EA
451 /* Operation in this page
452 *
eb01459f
EA
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
457 */
c8cbbb8b 458 shmem_page_offset = offset_in_page(offset);
eb01459f 459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 460 data_page_offset = offset_in_page(data_ptr);
eb01459f
EA
461
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
467
5949eac4 468 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
b65552f0
JJ
469 if (IS_ERR(page)) {
470 ret = PTR_ERR(page);
471 goto out;
472 }
e5281ccd 473
280b713b 474 if (do_bit17_swizzling) {
e5281ccd 475 slow_shmem_bit17_copy(page,
280b713b 476 shmem_page_offset,
99a03df5
CW
477 user_pages[data_page_index],
478 data_page_offset,
479 page_length,
480 1);
481 } else {
482 slow_shmem_copy(user_pages[data_page_index],
483 data_page_offset,
e5281ccd 484 page,
99a03df5
CW
485 shmem_page_offset,
486 page_length);
280b713b 487 }
eb01459f 488
e5281ccd
CW
489 mark_page_accessed(page);
490 page_cache_release(page);
491
eb01459f
EA
492 remain -= page_length;
493 data_ptr += page_length;
494 offset += page_length;
495 }
496
4f27b75d 497out:
eb01459f
EA
498 for (i = 0; i < pinned_pages; i++) {
499 SetPageDirty(user_pages[i]);
e5281ccd 500 mark_page_accessed(user_pages[i]);
eb01459f
EA
501 page_cache_release(user_pages[i]);
502 }
8e7d2b2c 503 drm_free_large(user_pages);
eb01459f
EA
504
505 return ret;
506}
507
673a394b
EA
508/**
509 * Reads data from the object referenced by handle.
510 *
511 * On error, the contents of *data are undefined.
512 */
513int
514i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 515 struct drm_file *file)
673a394b
EA
516{
517 struct drm_i915_gem_pread *args = data;
05394f39 518 struct drm_i915_gem_object *obj;
35b62a89 519 int ret = 0;
673a394b 520
51311d0a
CW
521 if (args->size == 0)
522 return 0;
523
524 if (!access_ok(VERIFY_WRITE,
525 (char __user *)(uintptr_t)args->data_ptr,
526 args->size))
527 return -EFAULT;
528
529 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
530 args->size);
531 if (ret)
532 return -EFAULT;
533
4f27b75d 534 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 535 if (ret)
4f27b75d 536 return ret;
673a394b 537
05394f39 538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 539 if (&obj->base == NULL) {
1d7cfea1
CW
540 ret = -ENOENT;
541 goto unlock;
4f27b75d 542 }
673a394b 543
7dcd2499 544 /* Bounds check source. */
05394f39
CW
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
ce9d419d 547 ret = -EINVAL;
35b62a89 548 goto out;
ce9d419d
CW
549 }
550
db53a302
CW
551 trace_i915_gem_object_pread(obj, args->offset, args->size);
552
4f27b75d
CW
553 ret = i915_gem_object_set_cpu_read_domain_range(obj,
554 args->offset,
555 args->size);
556 if (ret)
e5281ccd 557 goto out;
4f27b75d
CW
558
559 ret = -EFAULT;
560 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 561 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 562 if (ret == -EFAULT)
05394f39 563 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 564
35b62a89 565out:
05394f39 566 drm_gem_object_unreference(&obj->base);
1d7cfea1 567unlock:
4f27b75d 568 mutex_unlock(&dev->struct_mutex);
eb01459f 569 return ret;
673a394b
EA
570}
571
0839ccb8
KP
572/* This is the fast write path which cannot handle
573 * page faults in the source data
9b7530cc 574 */
0839ccb8
KP
575
576static inline int
577fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
9b7530cc 581{
9b7530cc 582 char *vaddr_atomic;
0839ccb8 583 unsigned long unwritten;
9b7530cc 584
3e4d3af5 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
586 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
592/* Here's the write path which can sleep for
593 * page faults
594 */
595
ab34c226 596static inline void
3de09aa3
EA
597slow_kernel_write(struct io_mapping *mapping,
598 loff_t gtt_base, int gtt_offset,
599 struct page *user_page, int user_offset,
600 int length)
0839ccb8 601{
ab34c226
CW
602 char __iomem *dst_vaddr;
603 char *src_vaddr;
0839ccb8 604
ab34c226
CW
605 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
606 src_vaddr = kmap(user_page);
607
608 memcpy_toio(dst_vaddr + gtt_offset,
609 src_vaddr + user_offset,
610 length);
611
612 kunmap(user_page);
613 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
614}
615
3de09aa3
EA
616/**
617 * This is the fast pwrite path, where we copy the data directly from the
618 * user into the GTT, uncached.
619 */
673a394b 620static int
05394f39
CW
621i915_gem_gtt_pwrite_fast(struct drm_device *dev,
622 struct drm_i915_gem_object *obj,
3de09aa3 623 struct drm_i915_gem_pwrite *args,
05394f39 624 struct drm_file *file)
673a394b 625{
0839ccb8 626 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 627 ssize_t remain;
0839ccb8 628 loff_t offset, page_base;
673a394b 629 char __user *user_data;
0839ccb8 630 int page_offset, page_length;
673a394b
EA
631
632 user_data = (char __user *) (uintptr_t) args->data_ptr;
633 remain = args->size;
673a394b 634
05394f39 635 offset = obj->gtt_offset + args->offset;
673a394b
EA
636
637 while (remain > 0) {
638 /* Operation in this page
639 *
0839ccb8
KP
640 * page_base = page offset within aperture
641 * page_offset = offset within page
642 * page_length = bytes to copy for this page
673a394b 643 */
c8cbbb8b
CW
644 page_base = offset & PAGE_MASK;
645 page_offset = offset_in_page(offset);
0839ccb8
KP
646 page_length = remain;
647 if ((page_offset + remain) > PAGE_SIZE)
648 page_length = PAGE_SIZE - page_offset;
649
0839ccb8 650 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
651 * source page isn't available. Return the error and we'll
652 * retry in the slow path.
0839ccb8 653 */
fbd5a26d
CW
654 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
655 page_offset, user_data, page_length))
fbd5a26d 656 return -EFAULT;
673a394b 657
0839ccb8
KP
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
673a394b 661 }
673a394b 662
fbd5a26d 663 return 0;
673a394b
EA
664}
665
3de09aa3
EA
666/**
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
669 *
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
672 */
3043c60c 673static int
05394f39
CW
674i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
3de09aa3 676 struct drm_i915_gem_pwrite *args,
05394f39 677 struct drm_file *file)
673a394b 678{
3de09aa3
EA
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 687 int ret;
3de09aa3
EA
688 uint64_t data_ptr = args->data_ptr;
689
690 remain = args->size;
691
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
695 */
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
699
fbd5a26d 700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
701 if (user_pages == NULL)
702 return -ENOMEM;
703
fbd5a26d 704 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
fbd5a26d 709 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
713 }
673a394b 714
d9e86c0e
CW
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
718
719 ret = i915_gem_object_put_fence(obj);
3de09aa3 720 if (ret)
fbd5a26d 721 goto out_unpin_pages;
3de09aa3 722
05394f39 723 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
733 */
734 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 735 gtt_page_offset = offset_in_page(offset);
3de09aa3 736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 737 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
738
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
744
ab34c226
CW
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
3de09aa3
EA
750
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
754 }
755
3de09aa3
EA
756out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
8e7d2b2c 759 drm_free_large(user_pages);
3de09aa3
EA
760
761 return ret;
762}
763
40123c1f
EA
764/**
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
767 */
3043c60c 768static int
05394f39
CW
769i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
40123c1f 771 struct drm_i915_gem_pwrite *args,
05394f39 772 struct drm_file *file)
673a394b 773{
05394f39 774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 775 ssize_t remain;
e5281ccd 776 loff_t offset;
40123c1f
EA
777 char __user *user_data;
778 int page_offset, page_length;
40123c1f
EA
779
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
673a394b 782
40123c1f 783 offset = args->offset;
05394f39 784 obj->dirty = 1;
40123c1f
EA
785
786 while (remain > 0) {
e5281ccd
CW
787 struct page *page;
788 char *vaddr;
789 int ret;
790
40123c1f
EA
791 /* Operation in this page
792 *
40123c1f
EA
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
c8cbbb8b 796 page_offset = offset_in_page(offset);
40123c1f
EA
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
800
5949eac4 801 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
802 if (IS_ERR(page))
803 return PTR_ERR(page);
804
130c2561 805 vaddr = kmap_atomic(page);
e5281ccd
CW
806 ret = __copy_from_user_inatomic(vaddr + page_offset,
807 user_data,
808 page_length);
130c2561 809 kunmap_atomic(vaddr);
e5281ccd
CW
810
811 set_page_dirty(page);
812 mark_page_accessed(page);
813 page_cache_release(page);
814
815 /* If we get a fault while copying data, then (presumably) our
816 * source page isn't available. Return the error and we'll
817 * retry in the slow path.
818 */
819 if (ret)
fbd5a26d 820 return -EFAULT;
40123c1f
EA
821
822 remain -= page_length;
823 user_data += page_length;
824 offset += page_length;
825 }
826
fbd5a26d 827 return 0;
40123c1f
EA
828}
829
830/**
831 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
832 * the memory and maps it using kmap_atomic for copying.
833 *
834 * This avoids taking mmap_sem for faulting on the user's address while the
835 * struct_mutex is held.
836 */
837static int
05394f39
CW
838i915_gem_shmem_pwrite_slow(struct drm_device *dev,
839 struct drm_i915_gem_object *obj,
40123c1f 840 struct drm_i915_gem_pwrite *args,
05394f39 841 struct drm_file *file)
40123c1f 842{
05394f39 843 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
844 struct mm_struct *mm = current->mm;
845 struct page **user_pages;
846 ssize_t remain;
847 loff_t offset, pinned_pages, i;
848 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 849 int shmem_page_offset;
40123c1f
EA
850 int data_page_index, data_page_offset;
851 int page_length;
852 int ret;
853 uint64_t data_ptr = args->data_ptr;
280b713b 854 int do_bit17_swizzling;
40123c1f
EA
855
856 remain = args->size;
857
858 /* Pin the user pages containing the data. We can't fault while
859 * holding the struct mutex, and all of the pwrite implementations
860 * want to hold it while dereferencing the user data.
861 */
862 first_data_page = data_ptr / PAGE_SIZE;
863 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
864 num_pages = last_data_page - first_data_page + 1;
865
4f27b75d 866 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
867 if (user_pages == NULL)
868 return -ENOMEM;
869
fbd5a26d 870 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
871 down_read(&mm->mmap_sem);
872 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
873 num_pages, 0, 0, user_pages, NULL);
874 up_read(&mm->mmap_sem);
fbd5a26d 875 mutex_lock(&dev->struct_mutex);
40123c1f
EA
876 if (pinned_pages < num_pages) {
877 ret = -EFAULT;
fbd5a26d 878 goto out;
673a394b
EA
879 }
880
fbd5a26d 881 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 882 if (ret)
fbd5a26d 883 goto out;
40123c1f 884
fbd5a26d 885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 886
673a394b 887 offset = args->offset;
05394f39 888 obj->dirty = 1;
673a394b 889
40123c1f 890 while (remain > 0) {
e5281ccd
CW
891 struct page *page;
892
40123c1f
EA
893 /* Operation in this page
894 *
40123c1f
EA
895 * shmem_page_offset = offset within page in shmem file
896 * data_page_index = page number in get_user_pages return
897 * data_page_offset = offset with data_page_index page.
898 * page_length = bytes to copy for this page
899 */
c8cbbb8b 900 shmem_page_offset = offset_in_page(offset);
40123c1f 901 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 902 data_page_offset = offset_in_page(data_ptr);
40123c1f
EA
903
904 page_length = remain;
905 if ((shmem_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - shmem_page_offset;
907 if ((data_page_offset + page_length) > PAGE_SIZE)
908 page_length = PAGE_SIZE - data_page_offset;
909
5949eac4 910 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
911 if (IS_ERR(page)) {
912 ret = PTR_ERR(page);
913 goto out;
914 }
915
280b713b 916 if (do_bit17_swizzling) {
e5281ccd 917 slow_shmem_bit17_copy(page,
280b713b
EA
918 shmem_page_offset,
919 user_pages[data_page_index],
920 data_page_offset,
99a03df5
CW
921 page_length,
922 0);
923 } else {
e5281ccd 924 slow_shmem_copy(page,
99a03df5
CW
925 shmem_page_offset,
926 user_pages[data_page_index],
927 data_page_offset,
928 page_length);
280b713b 929 }
40123c1f 930
e5281ccd
CW
931 set_page_dirty(page);
932 mark_page_accessed(page);
933 page_cache_release(page);
934
40123c1f
EA
935 remain -= page_length;
936 data_ptr += page_length;
937 offset += page_length;
673a394b
EA
938 }
939
fbd5a26d 940out:
40123c1f
EA
941 for (i = 0; i < pinned_pages; i++)
942 page_cache_release(user_pages[i]);
8e7d2b2c 943 drm_free_large(user_pages);
673a394b 944
40123c1f 945 return ret;
673a394b
EA
946}
947
948/**
949 * Writes data to the object referenced by handle.
950 *
951 * On error, the contents of the buffer that were to be modified are undefined.
952 */
953int
954i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 955 struct drm_file *file)
673a394b
EA
956{
957 struct drm_i915_gem_pwrite *args = data;
05394f39 958 struct drm_i915_gem_object *obj;
51311d0a
CW
959 int ret;
960
961 if (args->size == 0)
962 return 0;
963
964 if (!access_ok(VERIFY_READ,
965 (char __user *)(uintptr_t)args->data_ptr,
966 args->size))
967 return -EFAULT;
968
969 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
970 args->size);
971 if (ret)
972 return -EFAULT;
673a394b 973
fbd5a26d 974 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 975 if (ret)
fbd5a26d 976 return ret;
1d7cfea1 977
05394f39 978 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 979 if (&obj->base == NULL) {
1d7cfea1
CW
980 ret = -ENOENT;
981 goto unlock;
fbd5a26d 982 }
673a394b 983
7dcd2499 984 /* Bounds check destination. */
05394f39
CW
985 if (args->offset > obj->base.size ||
986 args->size > obj->base.size - args->offset) {
ce9d419d 987 ret = -EINVAL;
35b62a89 988 goto out;
ce9d419d
CW
989 }
990
db53a302
CW
991 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
992
673a394b
EA
993 /* We can only do the GTT pwrite on untiled buffers, as otherwise
994 * it would end up going through the fenced access, and we'll get
995 * different detiling behavior between reading and writing.
996 * pread/pwrite currently are reading and writing from the CPU
997 * perspective, requiring manual detiling by the client.
998 */
05394f39 999 if (obj->phys_obj)
fbd5a26d 1000 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 1001 else if (obj->gtt_space &&
05394f39 1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1003 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1004 if (ret)
1005 goto out;
1006
d9e86c0e
CW
1007 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1008 if (ret)
1009 goto out_unpin;
1010
1011 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
1012 if (ret)
1013 goto out_unpin;
1014
1015 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1016 if (ret == -EFAULT)
1017 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1018
1019out_unpin:
1020 i915_gem_object_unpin(obj);
40123c1f 1021 } else {
fbd5a26d
CW
1022 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1023 if (ret)
e5281ccd 1024 goto out;
673a394b 1025
fbd5a26d
CW
1026 ret = -EFAULT;
1027 if (!i915_gem_object_needs_bit17_swizzle(obj))
1028 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1029 if (ret == -EFAULT)
1030 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1031 }
673a394b 1032
35b62a89 1033out:
05394f39 1034 drm_gem_object_unreference(&obj->base);
1d7cfea1 1035unlock:
fbd5a26d 1036 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1037 return ret;
1038}
1039
1040/**
2ef7eeaa
EA
1041 * Called when user space prepares to use an object with the CPU, either
1042 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1043 */
1044int
1045i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1046 struct drm_file *file)
673a394b
EA
1047{
1048 struct drm_i915_gem_set_domain *args = data;
05394f39 1049 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1050 uint32_t read_domains = args->read_domains;
1051 uint32_t write_domain = args->write_domain;
673a394b
EA
1052 int ret;
1053
1054 if (!(dev->driver->driver_features & DRIVER_GEM))
1055 return -ENODEV;
1056
2ef7eeaa 1057 /* Only handle setting domains to types used by the CPU. */
21d509e3 1058 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1059 return -EINVAL;
1060
21d509e3 1061 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1062 return -EINVAL;
1063
1064 /* Having something in the write domain implies it's in the read
1065 * domain, and only that read domain. Enforce that in the request.
1066 */
1067 if (write_domain != 0 && read_domains != write_domain)
1068 return -EINVAL;
1069
76c1dec1 1070 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1071 if (ret)
76c1dec1 1072 return ret;
1d7cfea1 1073
05394f39 1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1075 if (&obj->base == NULL) {
1d7cfea1
CW
1076 ret = -ENOENT;
1077 goto unlock;
76c1dec1 1078 }
673a394b 1079
2ef7eeaa
EA
1080 if (read_domains & I915_GEM_DOMAIN_GTT) {
1081 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1082
1083 /* Silently promote "you're not bound, there was nothing to do"
1084 * to success, since the client was just asking us to
1085 * make sure everything was done.
1086 */
1087 if (ret == -EINVAL)
1088 ret = 0;
2ef7eeaa 1089 } else {
e47c68e9 1090 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1091 }
1092
05394f39 1093 drm_gem_object_unreference(&obj->base);
1d7cfea1 1094unlock:
673a394b
EA
1095 mutex_unlock(&dev->struct_mutex);
1096 return ret;
1097}
1098
1099/**
1100 * Called when user space has done writes to this buffer
1101 */
1102int
1103i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1104 struct drm_file *file)
673a394b
EA
1105{
1106 struct drm_i915_gem_sw_finish *args = data;
05394f39 1107 struct drm_i915_gem_object *obj;
673a394b
EA
1108 int ret = 0;
1109
1110 if (!(dev->driver->driver_features & DRIVER_GEM))
1111 return -ENODEV;
1112
76c1dec1 1113 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1114 if (ret)
76c1dec1 1115 return ret;
1d7cfea1 1116
05394f39 1117 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1118 if (&obj->base == NULL) {
1d7cfea1
CW
1119 ret = -ENOENT;
1120 goto unlock;
673a394b
EA
1121 }
1122
673a394b 1123 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1124 if (obj->pin_count)
e47c68e9
EA
1125 i915_gem_object_flush_cpu_write_domain(obj);
1126
05394f39 1127 drm_gem_object_unreference(&obj->base);
1d7cfea1 1128unlock:
673a394b
EA
1129 mutex_unlock(&dev->struct_mutex);
1130 return ret;
1131}
1132
1133/**
1134 * Maps the contents of an object, returning the address it is mapped
1135 * into.
1136 *
1137 * While the mapping holds a reference on the contents of the object, it doesn't
1138 * imply a ref on the object itself.
1139 */
1140int
1141i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1142 struct drm_file *file)
673a394b 1143{
da761a6e 1144 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1145 struct drm_i915_gem_mmap *args = data;
1146 struct drm_gem_object *obj;
673a394b
EA
1147 unsigned long addr;
1148
1149 if (!(dev->driver->driver_features & DRIVER_GEM))
1150 return -ENODEV;
1151
05394f39 1152 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1153 if (obj == NULL)
bf79cb91 1154 return -ENOENT;
673a394b 1155
da761a6e
CW
1156 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1157 drm_gem_object_unreference_unlocked(obj);
1158 return -E2BIG;
1159 }
1160
673a394b
EA
1161 down_write(&current->mm->mmap_sem);
1162 addr = do_mmap(obj->filp, 0, args->size,
1163 PROT_READ | PROT_WRITE, MAP_SHARED,
1164 args->offset);
1165 up_write(&current->mm->mmap_sem);
bc9025bd 1166 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1167 if (IS_ERR((void *)addr))
1168 return addr;
1169
1170 args->addr_ptr = (uint64_t) addr;
1171
1172 return 0;
1173}
1174
de151cf6
JB
1175/**
1176 * i915_gem_fault - fault a page into the GTT
1177 * vma: VMA in question
1178 * vmf: fault info
1179 *
1180 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1181 * from userspace. The fault handler takes care of binding the object to
1182 * the GTT (if needed), allocating and programming a fence register (again,
1183 * only if needed based on whether the old reg is still valid or the object
1184 * is tiled) and inserting a new PTE into the faulting process.
1185 *
1186 * Note that the faulting process may involve evicting existing objects
1187 * from the GTT and/or fence registers to make room. So performance may
1188 * suffer if the GTT working set is large or there are few fence registers
1189 * left.
1190 */
1191int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1192{
05394f39
CW
1193 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1194 struct drm_device *dev = obj->base.dev;
7d1c4804 1195 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1196 pgoff_t page_offset;
1197 unsigned long pfn;
1198 int ret = 0;
0f973f27 1199 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1200
1201 /* We don't use vmf->pgoff since that has the fake offset */
1202 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1203 PAGE_SHIFT;
1204
d9bc7e9f
CW
1205 ret = i915_mutex_lock_interruptible(dev);
1206 if (ret)
1207 goto out;
a00b10c3 1208
db53a302
CW
1209 trace_i915_gem_object_fault(obj, page_offset, true, write);
1210
d9bc7e9f 1211 /* Now bind it into the GTT if needed */
919926ae
CW
1212 if (!obj->map_and_fenceable) {
1213 ret = i915_gem_object_unbind(obj);
1214 if (ret)
1215 goto unlock;
a00b10c3 1216 }
05394f39 1217 if (!obj->gtt_space) {
75e9e915 1218 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1219 if (ret)
1220 goto unlock;
de151cf6 1221
e92d03bf
EA
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1223 if (ret)
1224 goto unlock;
1225 }
4a684a41 1226
d9e86c0e
CW
1227 if (obj->tiling_mode == I915_TILING_NONE)
1228 ret = i915_gem_object_put_fence(obj);
1229 else
ce453d81 1230 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1231 if (ret)
1232 goto unlock;
de151cf6 1233
05394f39
CW
1234 if (i915_gem_object_is_inactive(obj))
1235 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1236
6299f992
CW
1237 obj->fault_mappable = true;
1238
05394f39 1239 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1240 page_offset;
1241
1242 /* Finally, remap it using the new GTT offset */
1243 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1244unlock:
de151cf6 1245 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1246out:
de151cf6 1247 switch (ret) {
d9bc7e9f 1248 case -EIO:
045e769a 1249 case -EAGAIN:
d9bc7e9f
CW
1250 /* Give the error handler a chance to run and move the
1251 * objects off the GPU active list. Next time we service the
1252 * fault, we should be able to transition the page into the
1253 * GTT without touching the GPU (and so avoid further
1254 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1255 * with coherency, just lost writes.
1256 */
045e769a 1257 set_need_resched();
c715089f
CW
1258 case 0:
1259 case -ERESTARTSYS:
bed636ab 1260 case -EINTR:
c715089f 1261 return VM_FAULT_NOPAGE;
de151cf6 1262 case -ENOMEM:
de151cf6 1263 return VM_FAULT_OOM;
de151cf6 1264 default:
c715089f 1265 return VM_FAULT_SIGBUS;
de151cf6
JB
1266 }
1267}
1268
901782b2
CW
1269/**
1270 * i915_gem_release_mmap - remove physical page mappings
1271 * @obj: obj in question
1272 *
af901ca1 1273 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1274 * relinquish ownership of the pages back to the system.
1275 *
1276 * It is vital that we remove the page mapping if we have mapped a tiled
1277 * object through the GTT and then lose the fence register due to
1278 * resource pressure. Similarly if the object has been moved out of the
1279 * aperture, than pages mapped into userspace must be revoked. Removing the
1280 * mapping will then trigger a page fault on the next user access, allowing
1281 * fixup by i915_gem_fault().
1282 */
d05ca301 1283void
05394f39 1284i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1285{
6299f992
CW
1286 if (!obj->fault_mappable)
1287 return;
901782b2 1288
f6e47884
CW
1289 if (obj->base.dev->dev_mapping)
1290 unmap_mapping_range(obj->base.dev->dev_mapping,
1291 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1292 obj->base.size, 1);
fb7d516a 1293
6299f992 1294 obj->fault_mappable = false;
901782b2
CW
1295}
1296
92b88aeb 1297static uint32_t
e28f8711 1298i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1299{
e28f8711 1300 uint32_t gtt_size;
92b88aeb
CW
1301
1302 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1303 tiling_mode == I915_TILING_NONE)
1304 return size;
92b88aeb
CW
1305
1306 /* Previous chips need a power-of-two fence region when tiling */
1307 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1308 gtt_size = 1024*1024;
92b88aeb 1309 else
e28f8711 1310 gtt_size = 512*1024;
92b88aeb 1311
e28f8711
CW
1312 while (gtt_size < size)
1313 gtt_size <<= 1;
92b88aeb 1314
e28f8711 1315 return gtt_size;
92b88aeb
CW
1316}
1317
de151cf6
JB
1318/**
1319 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320 * @obj: object to check
1321 *
1322 * Return the required GTT alignment for an object, taking into account
5e783301 1323 * potential fence register mapping.
de151cf6
JB
1324 */
1325static uint32_t
e28f8711
CW
1326i915_gem_get_gtt_alignment(struct drm_device *dev,
1327 uint32_t size,
1328 int tiling_mode)
de151cf6 1329{
de151cf6
JB
1330 /*
1331 * Minimum alignment is 4k (GTT page size), but might be greater
1332 * if a fence register is needed for the object.
1333 */
a00b10c3 1334 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1335 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1336 return 4096;
1337
a00b10c3
CW
1338 /*
1339 * Previous chips need to be aligned to the size of the smallest
1340 * fence register that can contain the object.
1341 */
e28f8711 1342 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1343}
1344
5e783301
DV
1345/**
1346 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1347 * unfenced object
e28f8711
CW
1348 * @dev: the device
1349 * @size: size of the object
1350 * @tiling_mode: tiling mode of the object
5e783301
DV
1351 *
1352 * Return the required GTT alignment for an object, only taking into account
1353 * unfenced tiled surface requirements.
1354 */
467cffba 1355uint32_t
e28f8711
CW
1356i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1357 uint32_t size,
1358 int tiling_mode)
5e783301 1359{
5e783301
DV
1360 /*
1361 * Minimum alignment is 4k (GTT page size) for sane hw.
1362 */
1363 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1364 tiling_mode == I915_TILING_NONE)
5e783301
DV
1365 return 4096;
1366
e28f8711
CW
1367 /* Previous hardware however needs to be aligned to a power-of-two
1368 * tile height. The simplest method for determining this is to reuse
1369 * the power-of-tile object size.
5e783301 1370 */
e28f8711 1371 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1372}
1373
de151cf6 1374int
ff72145b
DA
1375i915_gem_mmap_gtt(struct drm_file *file,
1376 struct drm_device *dev,
1377 uint32_t handle,
1378 uint64_t *offset)
de151cf6 1379{
da761a6e 1380 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1381 struct drm_i915_gem_object *obj;
de151cf6
JB
1382 int ret;
1383
1384 if (!(dev->driver->driver_features & DRIVER_GEM))
1385 return -ENODEV;
1386
76c1dec1 1387 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1388 if (ret)
76c1dec1 1389 return ret;
de151cf6 1390
ff72145b 1391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1392 if (&obj->base == NULL) {
1d7cfea1
CW
1393 ret = -ENOENT;
1394 goto unlock;
1395 }
de151cf6 1396
05394f39 1397 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1398 ret = -E2BIG;
1399 goto unlock;
1400 }
1401
05394f39 1402 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1404 ret = -EINVAL;
1405 goto out;
ab18282d
CW
1406 }
1407
05394f39 1408 if (!obj->base.map_list.map) {
b464e9a2 1409 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1410 if (ret)
1411 goto out;
de151cf6
JB
1412 }
1413
ff72145b 1414 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1415
1d7cfea1 1416out:
05394f39 1417 drm_gem_object_unreference(&obj->base);
1d7cfea1 1418unlock:
de151cf6 1419 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1420 return ret;
de151cf6
JB
1421}
1422
ff72145b
DA
1423/**
1424 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1425 * @dev: DRM device
1426 * @data: GTT mapping ioctl data
1427 * @file: GEM object info
1428 *
1429 * Simply returns the fake offset to userspace so it can mmap it.
1430 * The mmap call will end up in drm_gem_mmap(), which will set things
1431 * up so we can get faults in the handler above.
1432 *
1433 * The fault handler will take care of binding the object into the GTT
1434 * (since it may have been evicted to make room for something), allocating
1435 * a fence register, and mapping the appropriate aperture address into
1436 * userspace.
1437 */
1438int
1439i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1440 struct drm_file *file)
1441{
1442 struct drm_i915_gem_mmap_gtt *args = data;
1443
1444 if (!(dev->driver->driver_features & DRIVER_GEM))
1445 return -ENODEV;
1446
1447 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1448}
1449
1450
e5281ccd 1451static int
05394f39 1452i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1453 gfp_t gfpmask)
1454{
e5281ccd
CW
1455 int page_count, i;
1456 struct address_space *mapping;
1457 struct inode *inode;
1458 struct page *page;
1459
1460 /* Get the list of pages out of our struct file. They'll be pinned
1461 * at this point until we release them.
1462 */
05394f39
CW
1463 page_count = obj->base.size / PAGE_SIZE;
1464 BUG_ON(obj->pages != NULL);
1465 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1466 if (obj->pages == NULL)
e5281ccd
CW
1467 return -ENOMEM;
1468
05394f39 1469 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1470 mapping = inode->i_mapping;
5949eac4
HD
1471 gfpmask |= mapping_gfp_mask(mapping);
1472
e5281ccd 1473 for (i = 0; i < page_count; i++) {
5949eac4 1474 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1475 if (IS_ERR(page))
1476 goto err_pages;
1477
05394f39 1478 obj->pages[i] = page;
e5281ccd
CW
1479 }
1480
6dacfd2f 1481 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1482 i915_gem_object_do_bit_17_swizzle(obj);
1483
1484 return 0;
1485
1486err_pages:
1487 while (i--)
05394f39 1488 page_cache_release(obj->pages[i]);
e5281ccd 1489
05394f39
CW
1490 drm_free_large(obj->pages);
1491 obj->pages = NULL;
e5281ccd
CW
1492 return PTR_ERR(page);
1493}
1494
5cdf5881 1495static void
05394f39 1496i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1497{
05394f39 1498 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1499 int i;
1500
05394f39 1501 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1502
6dacfd2f 1503 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1504 i915_gem_object_save_bit_17_swizzle(obj);
1505
05394f39
CW
1506 if (obj->madv == I915_MADV_DONTNEED)
1507 obj->dirty = 0;
3ef94daa
CW
1508
1509 for (i = 0; i < page_count; i++) {
05394f39
CW
1510 if (obj->dirty)
1511 set_page_dirty(obj->pages[i]);
3ef94daa 1512
05394f39
CW
1513 if (obj->madv == I915_MADV_WILLNEED)
1514 mark_page_accessed(obj->pages[i]);
3ef94daa 1515
05394f39 1516 page_cache_release(obj->pages[i]);
3ef94daa 1517 }
05394f39 1518 obj->dirty = 0;
673a394b 1519
05394f39
CW
1520 drm_free_large(obj->pages);
1521 obj->pages = NULL;
673a394b
EA
1522}
1523
54cf91dc 1524void
05394f39 1525i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1526 struct intel_ring_buffer *ring,
1527 u32 seqno)
673a394b 1528{
05394f39 1529 struct drm_device *dev = obj->base.dev;
69dc4987 1530 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1531
852835f3 1532 BUG_ON(ring == NULL);
05394f39 1533 obj->ring = ring;
673a394b
EA
1534
1535 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1536 if (!obj->active) {
1537 drm_gem_object_reference(&obj->base);
1538 obj->active = 1;
673a394b 1539 }
e35a41de 1540
673a394b 1541 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1542 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1543 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1544
05394f39 1545 obj->last_rendering_seqno = seqno;
caea7476
CW
1546 if (obj->fenced_gpu_access) {
1547 struct drm_i915_fence_reg *reg;
1548
1549 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1550
1551 obj->last_fenced_seqno = seqno;
1552 obj->last_fenced_ring = ring;
1553
1554 reg = &dev_priv->fence_regs[obj->fence_reg];
1555 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1556 }
1557}
1558
1559static void
1560i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1561{
1562 list_del_init(&obj->ring_list);
1563 obj->last_rendering_seqno = 0;
673a394b
EA
1564}
1565
ce44b0ea 1566static void
05394f39 1567i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1568{
05394f39 1569 struct drm_device *dev = obj->base.dev;
ce44b0ea 1570 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1571
05394f39
CW
1572 BUG_ON(!obj->active);
1573 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1574
1575 i915_gem_object_move_off_active(obj);
1576}
1577
1578static void
1579i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1580{
1581 struct drm_device *dev = obj->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583
1584 if (obj->pin_count != 0)
1585 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1586 else
1587 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1588
1589 BUG_ON(!list_empty(&obj->gpu_write_list));
1590 BUG_ON(!obj->active);
1591 obj->ring = NULL;
1592
1593 i915_gem_object_move_off_active(obj);
1594 obj->fenced_gpu_access = false;
caea7476
CW
1595
1596 obj->active = 0;
87ca9c8a 1597 obj->pending_gpu_write = false;
caea7476
CW
1598 drm_gem_object_unreference(&obj->base);
1599
1600 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1601}
673a394b 1602
963b4836
CW
1603/* Immediately discard the backing storage */
1604static void
05394f39 1605i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1606{
bb6baf76 1607 struct inode *inode;
963b4836 1608
ae9fed6b
CW
1609 /* Our goal here is to return as much of the memory as
1610 * is possible back to the system as we are called from OOM.
1611 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1612 * backing pages, *now*.
ae9fed6b 1613 */
05394f39 1614 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1615 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1616
05394f39 1617 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1618}
1619
1620static inline int
05394f39 1621i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1622{
05394f39 1623 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1624}
1625
63560396 1626static void
db53a302
CW
1627i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1628 uint32_t flush_domains)
63560396 1629{
05394f39 1630 struct drm_i915_gem_object *obj, *next;
63560396 1631
05394f39 1632 list_for_each_entry_safe(obj, next,
64193406 1633 &ring->gpu_write_list,
63560396 1634 gpu_write_list) {
05394f39
CW
1635 if (obj->base.write_domain & flush_domains) {
1636 uint32_t old_write_domain = obj->base.write_domain;
63560396 1637
05394f39
CW
1638 obj->base.write_domain = 0;
1639 list_del_init(&obj->gpu_write_list);
1ec14ad3 1640 i915_gem_object_move_to_active(obj, ring,
db53a302 1641 i915_gem_next_request_seqno(ring));
63560396 1642
63560396 1643 trace_i915_gem_object_change_domain(obj,
05394f39 1644 obj->base.read_domains,
63560396
DV
1645 old_write_domain);
1646 }
1647 }
1648}
8187a2b7 1649
3cce469c 1650int
db53a302 1651i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1652 struct drm_file *file,
db53a302 1653 struct drm_i915_gem_request *request)
673a394b 1654{
db53a302 1655 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1656 uint32_t seqno;
1657 int was_empty;
3cce469c
CW
1658 int ret;
1659
1660 BUG_ON(request == NULL);
673a394b 1661
3cce469c
CW
1662 ret = ring->add_request(ring, &seqno);
1663 if (ret)
1664 return ret;
673a394b 1665
db53a302 1666 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1667
1668 request->seqno = seqno;
852835f3 1669 request->ring = ring;
673a394b 1670 request->emitted_jiffies = jiffies;
852835f3
ZN
1671 was_empty = list_empty(&ring->request_list);
1672 list_add_tail(&request->list, &ring->request_list);
1673
db53a302
CW
1674 if (file) {
1675 struct drm_i915_file_private *file_priv = file->driver_priv;
1676
1c25595f 1677 spin_lock(&file_priv->mm.lock);
f787a5f5 1678 request->file_priv = file_priv;
b962442e 1679 list_add_tail(&request->client_list,
f787a5f5 1680 &file_priv->mm.request_list);
1c25595f 1681 spin_unlock(&file_priv->mm.lock);
b962442e 1682 }
673a394b 1683
db53a302
CW
1684 ring->outstanding_lazy_request = false;
1685
f65d9421 1686 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1687 if (i915_enable_hangcheck) {
1688 mod_timer(&dev_priv->hangcheck_timer,
1689 jiffies +
1690 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1691 }
f65d9421 1692 if (was_empty)
b3b079db
CW
1693 queue_delayed_work(dev_priv->wq,
1694 &dev_priv->mm.retire_work, HZ);
f65d9421 1695 }
3cce469c 1696 return 0;
673a394b
EA
1697}
1698
f787a5f5
CW
1699static inline void
1700i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1701{
1c25595f 1702 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1703
1c25595f
CW
1704 if (!file_priv)
1705 return;
1c5d22f7 1706
1c25595f 1707 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1708 if (request->file_priv) {
1709 list_del(&request->client_list);
1710 request->file_priv = NULL;
1711 }
1c25595f 1712 spin_unlock(&file_priv->mm.lock);
673a394b 1713}
673a394b 1714
dfaae392
CW
1715static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1716 struct intel_ring_buffer *ring)
9375e446 1717{
dfaae392
CW
1718 while (!list_empty(&ring->request_list)) {
1719 struct drm_i915_gem_request *request;
673a394b 1720
dfaae392
CW
1721 request = list_first_entry(&ring->request_list,
1722 struct drm_i915_gem_request,
1723 list);
de151cf6 1724
dfaae392 1725 list_del(&request->list);
f787a5f5 1726 i915_gem_request_remove_from_client(request);
dfaae392
CW
1727 kfree(request);
1728 }
673a394b 1729
dfaae392 1730 while (!list_empty(&ring->active_list)) {
05394f39 1731 struct drm_i915_gem_object *obj;
9375e446 1732
05394f39
CW
1733 obj = list_first_entry(&ring->active_list,
1734 struct drm_i915_gem_object,
1735 ring_list);
9375e446 1736
05394f39
CW
1737 obj->base.write_domain = 0;
1738 list_del_init(&obj->gpu_write_list);
1739 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1740 }
1741}
1742
312817a3
CW
1743static void i915_gem_reset_fences(struct drm_device *dev)
1744{
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 int i;
1747
1748 for (i = 0; i < 16; i++) {
1749 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1750 struct drm_i915_gem_object *obj = reg->obj;
1751
1752 if (!obj)
1753 continue;
1754
1755 if (obj->tiling_mode)
1756 i915_gem_release_mmap(obj);
1757
d9e86c0e
CW
1758 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1759 reg->obj->fenced_gpu_access = false;
1760 reg->obj->last_fenced_seqno = 0;
1761 reg->obj->last_fenced_ring = NULL;
1762 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1763 }
1764}
1765
069efc1d 1766void i915_gem_reset(struct drm_device *dev)
673a394b 1767{
77f01230 1768 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1769 struct drm_i915_gem_object *obj;
1ec14ad3 1770 int i;
673a394b 1771
1ec14ad3
CW
1772 for (i = 0; i < I915_NUM_RINGS; i++)
1773 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1774
1775 /* Remove anything from the flushing lists. The GPU cache is likely
1776 * to be lost on reset along with the data, so simply move the
1777 * lost bo to the inactive list.
1778 */
1779 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1780 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1781 struct drm_i915_gem_object,
1782 mm_list);
dfaae392 1783
05394f39
CW
1784 obj->base.write_domain = 0;
1785 list_del_init(&obj->gpu_write_list);
1786 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1787 }
1788
1789 /* Move everything out of the GPU domains to ensure we do any
1790 * necessary invalidation upon reuse.
1791 */
05394f39 1792 list_for_each_entry(obj,
77f01230 1793 &dev_priv->mm.inactive_list,
69dc4987 1794 mm_list)
77f01230 1795 {
05394f39 1796 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1797 }
069efc1d
CW
1798
1799 /* The fence registers are invalidated so clear them out */
312817a3 1800 i915_gem_reset_fences(dev);
673a394b
EA
1801}
1802
1803/**
1804 * This function clears the request list as sequence numbers are passed.
1805 */
b09a1fec 1806static void
db53a302 1807i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1808{
673a394b 1809 uint32_t seqno;
1ec14ad3 1810 int i;
673a394b 1811
db53a302 1812 if (list_empty(&ring->request_list))
6c0594a3
KW
1813 return;
1814
db53a302 1815 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1816
78501eac 1817 seqno = ring->get_seqno(ring);
1ec14ad3 1818
076e2c0e 1819 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1820 if (seqno >= ring->sync_seqno[i])
1821 ring->sync_seqno[i] = 0;
1822
852835f3 1823 while (!list_empty(&ring->request_list)) {
673a394b 1824 struct drm_i915_gem_request *request;
673a394b 1825
852835f3 1826 request = list_first_entry(&ring->request_list,
673a394b
EA
1827 struct drm_i915_gem_request,
1828 list);
673a394b 1829
dfaae392 1830 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1831 break;
1832
db53a302 1833 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1834
1835 list_del(&request->list);
f787a5f5 1836 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1837 kfree(request);
1838 }
673a394b 1839
b84d5f0c
CW
1840 /* Move any buffers on the active list that are no longer referenced
1841 * by the ringbuffer to the flushing/inactive lists as appropriate.
1842 */
1843 while (!list_empty(&ring->active_list)) {
05394f39 1844 struct drm_i915_gem_object *obj;
b84d5f0c 1845
0206e353 1846 obj = list_first_entry(&ring->active_list,
05394f39
CW
1847 struct drm_i915_gem_object,
1848 ring_list);
673a394b 1849
05394f39 1850 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1851 break;
b84d5f0c 1852
05394f39 1853 if (obj->base.write_domain != 0)
b84d5f0c
CW
1854 i915_gem_object_move_to_flushing(obj);
1855 else
1856 i915_gem_object_move_to_inactive(obj);
673a394b 1857 }
9d34e5db 1858
db53a302
CW
1859 if (unlikely(ring->trace_irq_seqno &&
1860 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1861 ring->irq_put(ring);
db53a302 1862 ring->trace_irq_seqno = 0;
9d34e5db 1863 }
23bc5982 1864
db53a302 1865 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1866}
1867
b09a1fec
CW
1868void
1869i915_gem_retire_requests(struct drm_device *dev)
1870{
1871 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1872 int i;
b09a1fec 1873
be72615b 1874 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1875 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1876
1877 /* We must be careful that during unbind() we do not
1878 * accidentally infinitely recurse into retire requests.
1879 * Currently:
1880 * retire -> free -> unbind -> wait -> retire_ring
1881 */
05394f39 1882 list_for_each_entry_safe(obj, next,
be72615b 1883 &dev_priv->mm.deferred_free_list,
69dc4987 1884 mm_list)
05394f39 1885 i915_gem_free_object_tail(obj);
be72615b
CW
1886 }
1887
1ec14ad3 1888 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1889 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1890}
1891
75ef9da2 1892static void
673a394b
EA
1893i915_gem_retire_work_handler(struct work_struct *work)
1894{
1895 drm_i915_private_t *dev_priv;
1896 struct drm_device *dev;
0a58705b
CW
1897 bool idle;
1898 int i;
673a394b
EA
1899
1900 dev_priv = container_of(work, drm_i915_private_t,
1901 mm.retire_work.work);
1902 dev = dev_priv->dev;
1903
891b48cf
CW
1904 /* Come back later if the device is busy... */
1905 if (!mutex_trylock(&dev->struct_mutex)) {
1906 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1907 return;
1908 }
1909
b09a1fec 1910 i915_gem_retire_requests(dev);
d1b851fc 1911
0a58705b
CW
1912 /* Send a periodic flush down the ring so we don't hold onto GEM
1913 * objects indefinitely.
1914 */
1915 idle = true;
1916 for (i = 0; i < I915_NUM_RINGS; i++) {
1917 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1918
1919 if (!list_empty(&ring->gpu_write_list)) {
1920 struct drm_i915_gem_request *request;
1921 int ret;
1922
db53a302
CW
1923 ret = i915_gem_flush_ring(ring,
1924 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1925 request = kzalloc(sizeof(*request), GFP_KERNEL);
1926 if (ret || request == NULL ||
db53a302 1927 i915_add_request(ring, NULL, request))
0a58705b
CW
1928 kfree(request);
1929 }
1930
1931 idle &= list_empty(&ring->request_list);
1932 }
1933
1934 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1935 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1936
673a394b
EA
1937 mutex_unlock(&dev->struct_mutex);
1938}
1939
db53a302
CW
1940/**
1941 * Waits for a sequence number to be signaled, and cleans up the
1942 * request and object lists appropriately for that event.
1943 */
5a5a0c64 1944int
db53a302 1945i915_wait_request(struct intel_ring_buffer *ring,
ce453d81 1946 uint32_t seqno)
673a394b 1947{
db53a302 1948 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1949 u32 ier;
673a394b
EA
1950 int ret = 0;
1951
1952 BUG_ON(seqno == 0);
1953
d9bc7e9f
CW
1954 if (atomic_read(&dev_priv->mm.wedged)) {
1955 struct completion *x = &dev_priv->error_completion;
1956 bool recovery_complete;
1957 unsigned long flags;
1958
1959 /* Give the error handler a chance to run. */
1960 spin_lock_irqsave(&x->wait.lock, flags);
1961 recovery_complete = x->done > 0;
1962 spin_unlock_irqrestore(&x->wait.lock, flags);
1963
1964 return recovery_complete ? -EIO : -EAGAIN;
1965 }
30dbf0c0 1966
5d97eb69 1967 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1968 struct drm_i915_gem_request *request;
1969
1970 request = kzalloc(sizeof(*request), GFP_KERNEL);
1971 if (request == NULL)
e35a41de 1972 return -ENOMEM;
3cce469c 1973
db53a302 1974 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1975 if (ret) {
1976 kfree(request);
1977 return ret;
1978 }
1979
1980 seqno = request->seqno;
e35a41de 1981 }
ffed1d09 1982
78501eac 1983 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1984 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
1985 ier = I915_READ(DEIER) | I915_READ(GTIER);
1986 else
1987 ier = I915_READ(IER);
802c7eb6
JB
1988 if (!ier) {
1989 DRM_ERROR("something (likely vbetool) disabled "
1990 "interrupts, re-enabling\n");
f01c22fd
CW
1991 ring->dev->driver->irq_preinstall(ring->dev);
1992 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1993 }
1994
db53a302 1995 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1996
b2223497 1997 ring->waiting_seqno = seqno;
b13c2b96 1998 if (ring->irq_get(ring)) {
ce453d81 1999 if (dev_priv->mm.interruptible)
b13c2b96
CW
2000 ret = wait_event_interruptible(ring->irq_queue,
2001 i915_seqno_passed(ring->get_seqno(ring), seqno)
2002 || atomic_read(&dev_priv->mm.wedged));
2003 else
2004 wait_event(ring->irq_queue,
2005 i915_seqno_passed(ring->get_seqno(ring), seqno)
2006 || atomic_read(&dev_priv->mm.wedged));
2007
2008 ring->irq_put(ring);
b5ba177d
CW
2009 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2010 seqno) ||
2011 atomic_read(&dev_priv->mm.wedged), 3000))
2012 ret = -EBUSY;
b2223497 2013 ring->waiting_seqno = 0;
1c5d22f7 2014
db53a302 2015 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2016 }
ba1234d1 2017 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2018 ret = -EAGAIN;
673a394b
EA
2019
2020 if (ret && ret != -ERESTARTSYS)
8bff917c 2021 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2022 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2023 dev_priv->next_seqno);
673a394b
EA
2024
2025 /* Directly dispatch request retiring. While we have the work queue
2026 * to handle this, the waiter on a request often wants an associated
2027 * buffer to have made it to the inactive list, and we would need
2028 * a separate wait queue to handle that.
2029 */
2030 if (ret == 0)
db53a302 2031 i915_gem_retire_requests_ring(ring);
673a394b
EA
2032
2033 return ret;
2034}
2035
673a394b
EA
2036/**
2037 * Ensures that all rendering to the object has completed and the object is
2038 * safe to unbind from the GTT or access from the CPU.
2039 */
54cf91dc 2040int
ce453d81 2041i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2042{
673a394b
EA
2043 int ret;
2044
e47c68e9
EA
2045 /* This function only exists to support waiting for existing rendering,
2046 * not for emitting required flushes.
673a394b 2047 */
05394f39 2048 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2049
2050 /* If there is rendering queued on the buffer being evicted, wait for
2051 * it.
2052 */
05394f39 2053 if (obj->active) {
ce453d81 2054 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2055 if (ret)
673a394b
EA
2056 return ret;
2057 }
2058
2059 return 0;
2060}
2061
b5ffc9bc
CW
2062static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2063{
2064 u32 old_write_domain, old_read_domains;
2065
b5ffc9bc
CW
2066 /* Act a barrier for all accesses through the GTT */
2067 mb();
2068
2069 /* Force a pagefault for domain tracking on next user access */
2070 i915_gem_release_mmap(obj);
2071
b97c3d9c
KP
2072 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2073 return;
2074
b5ffc9bc
CW
2075 old_read_domains = obj->base.read_domains;
2076 old_write_domain = obj->base.write_domain;
2077
2078 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2079 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2080
2081 trace_i915_gem_object_change_domain(obj,
2082 old_read_domains,
2083 old_write_domain);
2084}
2085
673a394b
EA
2086/**
2087 * Unbinds an object from the GTT aperture.
2088 */
0f973f27 2089int
05394f39 2090i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2091{
673a394b
EA
2092 int ret = 0;
2093
05394f39 2094 if (obj->gtt_space == NULL)
673a394b
EA
2095 return 0;
2096
05394f39 2097 if (obj->pin_count != 0) {
673a394b
EA
2098 DRM_ERROR("Attempting to unbind pinned buffer\n");
2099 return -EINVAL;
2100 }
2101
a8198eea
CW
2102 ret = i915_gem_object_finish_gpu(obj);
2103 if (ret == -ERESTARTSYS)
2104 return ret;
2105 /* Continue on if we fail due to EIO, the GPU is hung so we
2106 * should be safe and we need to cleanup or else we might
2107 * cause memory corruption through use-after-free.
2108 */
2109
b5ffc9bc 2110 i915_gem_object_finish_gtt(obj);
5323fd04 2111
673a394b
EA
2112 /* Move the object to the CPU domain to ensure that
2113 * any possible CPU writes while it's not in the GTT
a8198eea 2114 * are flushed when we go to remap it.
673a394b 2115 */
a8198eea
CW
2116 if (ret == 0)
2117 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2118 if (ret == -ERESTARTSYS)
673a394b 2119 return ret;
812ed492 2120 if (ret) {
a8198eea
CW
2121 /* In the event of a disaster, abandon all caches and
2122 * hope for the best.
2123 */
812ed492 2124 i915_gem_clflush_object(obj);
05394f39 2125 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2126 }
673a394b 2127
96b47b65 2128 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2129 ret = i915_gem_object_put_fence(obj);
2130 if (ret == -ERESTARTSYS)
2131 return ret;
96b47b65 2132
db53a302
CW
2133 trace_i915_gem_object_unbind(obj);
2134
7c2e6fdf 2135 i915_gem_gtt_unbind_object(obj);
e5281ccd 2136 i915_gem_object_put_pages_gtt(obj);
673a394b 2137
6299f992 2138 list_del_init(&obj->gtt_list);
05394f39 2139 list_del_init(&obj->mm_list);
75e9e915 2140 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2141 obj->map_and_fenceable = true;
673a394b 2142
05394f39
CW
2143 drm_mm_put_block(obj->gtt_space);
2144 obj->gtt_space = NULL;
2145 obj->gtt_offset = 0;
673a394b 2146
05394f39 2147 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2148 i915_gem_object_truncate(obj);
2149
8dc1775d 2150 return ret;
673a394b
EA
2151}
2152
88241785 2153int
db53a302 2154i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2155 uint32_t invalidate_domains,
2156 uint32_t flush_domains)
2157{
88241785
CW
2158 int ret;
2159
36d527de
CW
2160 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2161 return 0;
2162
db53a302
CW
2163 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2164
88241785
CW
2165 ret = ring->flush(ring, invalidate_domains, flush_domains);
2166 if (ret)
2167 return ret;
2168
36d527de
CW
2169 if (flush_domains & I915_GEM_GPU_DOMAINS)
2170 i915_gem_process_flushing_list(ring, flush_domains);
2171
88241785 2172 return 0;
54cf91dc
CW
2173}
2174
db53a302 2175static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2176{
88241785
CW
2177 int ret;
2178
395b70be 2179 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2180 return 0;
2181
88241785 2182 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2183 ret = i915_gem_flush_ring(ring,
0ac74c6b 2184 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2185 if (ret)
2186 return ret;
2187 }
2188
ce453d81 2189 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2190}
2191
b47eb4a2 2192int
4df2faf4
DV
2193i915_gpu_idle(struct drm_device *dev)
2194{
2195 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2196 int ret, i;
4df2faf4 2197
4df2faf4 2198 /* Flush everything onto the inactive list. */
1ec14ad3 2199 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2200 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2201 if (ret)
2202 return ret;
2203 }
4df2faf4 2204
8a1a49f9 2205 return 0;
4df2faf4
DV
2206}
2207
c6642782
DV
2208static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2209 struct intel_ring_buffer *pipelined)
4e901fdc 2210{
05394f39 2211 struct drm_device *dev = obj->base.dev;
4e901fdc 2212 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2213 u32 size = obj->gtt_space->size;
2214 int regnum = obj->fence_reg;
4e901fdc
EA
2215 uint64_t val;
2216
05394f39 2217 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2218 0xfffff000) << 32;
05394f39
CW
2219 val |= obj->gtt_offset & 0xfffff000;
2220 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2221 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2222
05394f39 2223 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2224 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2225 val |= I965_FENCE_REG_VALID;
2226
c6642782
DV
2227 if (pipelined) {
2228 int ret = intel_ring_begin(pipelined, 6);
2229 if (ret)
2230 return ret;
2231
2232 intel_ring_emit(pipelined, MI_NOOP);
2233 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2234 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2235 intel_ring_emit(pipelined, (u32)val);
2236 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2237 intel_ring_emit(pipelined, (u32)(val >> 32));
2238 intel_ring_advance(pipelined);
2239 } else
2240 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2241
2242 return 0;
4e901fdc
EA
2243}
2244
c6642782
DV
2245static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2246 struct intel_ring_buffer *pipelined)
de151cf6 2247{
05394f39 2248 struct drm_device *dev = obj->base.dev;
de151cf6 2249 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2250 u32 size = obj->gtt_space->size;
2251 int regnum = obj->fence_reg;
de151cf6
JB
2252 uint64_t val;
2253
05394f39 2254 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2255 0xfffff000) << 32;
05394f39
CW
2256 val |= obj->gtt_offset & 0xfffff000;
2257 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2258 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2259 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2260 val |= I965_FENCE_REG_VALID;
2261
c6642782
DV
2262 if (pipelined) {
2263 int ret = intel_ring_begin(pipelined, 6);
2264 if (ret)
2265 return ret;
2266
2267 intel_ring_emit(pipelined, MI_NOOP);
2268 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2269 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2270 intel_ring_emit(pipelined, (u32)val);
2271 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2272 intel_ring_emit(pipelined, (u32)(val >> 32));
2273 intel_ring_advance(pipelined);
2274 } else
2275 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2276
2277 return 0;
de151cf6
JB
2278}
2279
c6642782
DV
2280static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2281 struct intel_ring_buffer *pipelined)
de151cf6 2282{
05394f39 2283 struct drm_device *dev = obj->base.dev;
de151cf6 2284 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2285 u32 size = obj->gtt_space->size;
c6642782 2286 u32 fence_reg, val, pitch_val;
0f973f27 2287 int tile_width;
de151cf6 2288
c6642782
DV
2289 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2290 (size & -size) != size ||
2291 (obj->gtt_offset & (size - 1)),
2292 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2293 obj->gtt_offset, obj->map_and_fenceable, size))
2294 return -EINVAL;
de151cf6 2295
c6642782 2296 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2297 tile_width = 128;
de151cf6 2298 else
0f973f27
JB
2299 tile_width = 512;
2300
2301 /* Note: pitch better be a power of two tile widths */
05394f39 2302 pitch_val = obj->stride / tile_width;
0f973f27 2303 pitch_val = ffs(pitch_val) - 1;
de151cf6 2304
05394f39
CW
2305 val = obj->gtt_offset;
2306 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2307 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2308 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2309 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2310 val |= I830_FENCE_REG_VALID;
2311
05394f39 2312 fence_reg = obj->fence_reg;
a00b10c3
CW
2313 if (fence_reg < 8)
2314 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2315 else
a00b10c3 2316 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2317
2318 if (pipelined) {
2319 int ret = intel_ring_begin(pipelined, 4);
2320 if (ret)
2321 return ret;
2322
2323 intel_ring_emit(pipelined, MI_NOOP);
2324 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2325 intel_ring_emit(pipelined, fence_reg);
2326 intel_ring_emit(pipelined, val);
2327 intel_ring_advance(pipelined);
2328 } else
2329 I915_WRITE(fence_reg, val);
2330
2331 return 0;
de151cf6
JB
2332}
2333
c6642782
DV
2334static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2335 struct intel_ring_buffer *pipelined)
de151cf6 2336{
05394f39 2337 struct drm_device *dev = obj->base.dev;
de151cf6 2338 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2339 u32 size = obj->gtt_space->size;
2340 int regnum = obj->fence_reg;
de151cf6
JB
2341 uint32_t val;
2342 uint32_t pitch_val;
2343
c6642782
DV
2344 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2345 (size & -size) != size ||
2346 (obj->gtt_offset & (size - 1)),
2347 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2348 obj->gtt_offset, size))
2349 return -EINVAL;
de151cf6 2350
05394f39 2351 pitch_val = obj->stride / 128;
e76a16de 2352 pitch_val = ffs(pitch_val) - 1;
e76a16de 2353
05394f39
CW
2354 val = obj->gtt_offset;
2355 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2356 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2357 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2358 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2359 val |= I830_FENCE_REG_VALID;
2360
c6642782
DV
2361 if (pipelined) {
2362 int ret = intel_ring_begin(pipelined, 4);
2363 if (ret)
2364 return ret;
2365
2366 intel_ring_emit(pipelined, MI_NOOP);
2367 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2368 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2369 intel_ring_emit(pipelined, val);
2370 intel_ring_advance(pipelined);
2371 } else
2372 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2373
2374 return 0;
de151cf6
JB
2375}
2376
d9e86c0e
CW
2377static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2378{
2379 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2380}
2381
2382static int
2383i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2384 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2385{
2386 int ret;
2387
2388 if (obj->fenced_gpu_access) {
88241785 2389 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2390 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2391 0, obj->base.write_domain);
2392 if (ret)
2393 return ret;
2394 }
d9e86c0e
CW
2395
2396 obj->fenced_gpu_access = false;
2397 }
2398
2399 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2400 if (!ring_passed_seqno(obj->last_fenced_ring,
2401 obj->last_fenced_seqno)) {
db53a302 2402 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2403 obj->last_fenced_seqno);
d9e86c0e
CW
2404 if (ret)
2405 return ret;
2406 }
2407
2408 obj->last_fenced_seqno = 0;
2409 obj->last_fenced_ring = NULL;
2410 }
2411
63256ec5
CW
2412 /* Ensure that all CPU reads are completed before installing a fence
2413 * and all writes before removing the fence.
2414 */
2415 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2416 mb();
2417
d9e86c0e
CW
2418 return 0;
2419}
2420
2421int
2422i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2423{
2424 int ret;
2425
2426 if (obj->tiling_mode)
2427 i915_gem_release_mmap(obj);
2428
ce453d81 2429 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2430 if (ret)
2431 return ret;
2432
2433 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2434 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2435 i915_gem_clear_fence_reg(obj->base.dev,
2436 &dev_priv->fence_regs[obj->fence_reg]);
2437
2438 obj->fence_reg = I915_FENCE_REG_NONE;
2439 }
2440
2441 return 0;
2442}
2443
2444static struct drm_i915_fence_reg *
2445i915_find_fence_reg(struct drm_device *dev,
2446 struct intel_ring_buffer *pipelined)
ae3db24a 2447{
ae3db24a 2448 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2449 struct drm_i915_fence_reg *reg, *first, *avail;
2450 int i;
ae3db24a
DV
2451
2452 /* First try to find a free reg */
d9e86c0e 2453 avail = NULL;
ae3db24a
DV
2454 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2455 reg = &dev_priv->fence_regs[i];
2456 if (!reg->obj)
d9e86c0e 2457 return reg;
ae3db24a 2458
05394f39 2459 if (!reg->obj->pin_count)
d9e86c0e 2460 avail = reg;
ae3db24a
DV
2461 }
2462
d9e86c0e
CW
2463 if (avail == NULL)
2464 return NULL;
ae3db24a
DV
2465
2466 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2467 avail = first = NULL;
2468 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2469 if (reg->obj->pin_count)
ae3db24a
DV
2470 continue;
2471
d9e86c0e
CW
2472 if (first == NULL)
2473 first = reg;
2474
2475 if (!pipelined ||
2476 !reg->obj->last_fenced_ring ||
2477 reg->obj->last_fenced_ring == pipelined) {
2478 avail = reg;
2479 break;
2480 }
ae3db24a
DV
2481 }
2482
d9e86c0e
CW
2483 if (avail == NULL)
2484 avail = first;
ae3db24a 2485
a00b10c3 2486 return avail;
ae3db24a
DV
2487}
2488
de151cf6 2489/**
d9e86c0e 2490 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2491 * @obj: object to map through a fence reg
d9e86c0e
CW
2492 * @pipelined: ring on which to queue the change, or NULL for CPU access
2493 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2494 *
2495 * When mapping objects through the GTT, userspace wants to be able to write
2496 * to them without having to worry about swizzling if the object is tiled.
2497 *
2498 * This function walks the fence regs looking for a free one for @obj,
2499 * stealing one if it can't find any.
2500 *
2501 * It then sets up the reg based on the object's properties: address, pitch
2502 * and tiling format.
2503 */
8c4b8c3f 2504int
d9e86c0e 2505i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2506 struct intel_ring_buffer *pipelined)
de151cf6 2507{
05394f39 2508 struct drm_device *dev = obj->base.dev;
79e53945 2509 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2510 struct drm_i915_fence_reg *reg;
ae3db24a 2511 int ret;
de151cf6 2512
6bda10d1
CW
2513 /* XXX disable pipelining. There are bugs. Shocking. */
2514 pipelined = NULL;
2515
d9e86c0e 2516 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2517 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2518 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2519 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2520
29c5a587
CW
2521 if (obj->tiling_changed) {
2522 ret = i915_gem_object_flush_fence(obj, pipelined);
2523 if (ret)
2524 return ret;
2525
2526 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2527 pipelined = NULL;
2528
2529 if (pipelined) {
2530 reg->setup_seqno =
2531 i915_gem_next_request_seqno(pipelined);
2532 obj->last_fenced_seqno = reg->setup_seqno;
2533 obj->last_fenced_ring = pipelined;
2534 }
2535
2536 goto update;
2537 }
d9e86c0e
CW
2538
2539 if (!pipelined) {
2540 if (reg->setup_seqno) {
2541 if (!ring_passed_seqno(obj->last_fenced_ring,
2542 reg->setup_seqno)) {
db53a302 2543 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2544 reg->setup_seqno);
d9e86c0e
CW
2545 if (ret)
2546 return ret;
2547 }
2548
2549 reg->setup_seqno = 0;
2550 }
2551 } else if (obj->last_fenced_ring &&
2552 obj->last_fenced_ring != pipelined) {
ce453d81 2553 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2554 if (ret)
2555 return ret;
d9e86c0e
CW
2556 }
2557
a09ba7fa
EA
2558 return 0;
2559 }
2560
d9e86c0e
CW
2561 reg = i915_find_fence_reg(dev, pipelined);
2562 if (reg == NULL)
2563 return -ENOSPC;
de151cf6 2564
ce453d81 2565 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2566 if (ret)
ae3db24a 2567 return ret;
de151cf6 2568
d9e86c0e
CW
2569 if (reg->obj) {
2570 struct drm_i915_gem_object *old = reg->obj;
2571
2572 drm_gem_object_reference(&old->base);
2573
2574 if (old->tiling_mode)
2575 i915_gem_release_mmap(old);
2576
ce453d81 2577 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2578 if (ret) {
2579 drm_gem_object_unreference(&old->base);
2580 return ret;
2581 }
2582
2583 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2584 pipelined = NULL;
2585
2586 old->fence_reg = I915_FENCE_REG_NONE;
2587 old->last_fenced_ring = pipelined;
2588 old->last_fenced_seqno =
db53a302 2589 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2590
2591 drm_gem_object_unreference(&old->base);
2592 } else if (obj->last_fenced_seqno == 0)
2593 pipelined = NULL;
a09ba7fa 2594
de151cf6 2595 reg->obj = obj;
d9e86c0e
CW
2596 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2597 obj->fence_reg = reg - dev_priv->fence_regs;
2598 obj->last_fenced_ring = pipelined;
de151cf6 2599
d9e86c0e 2600 reg->setup_seqno =
db53a302 2601 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2602 obj->last_fenced_seqno = reg->setup_seqno;
2603
2604update:
2605 obj->tiling_changed = false;
e259befd 2606 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2607 case 7:
e259befd 2608 case 6:
c6642782 2609 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2610 break;
2611 case 5:
2612 case 4:
c6642782 2613 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2614 break;
2615 case 3:
c6642782 2616 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2617 break;
2618 case 2:
c6642782 2619 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2620 break;
2621 }
d9ddcb96 2622
c6642782 2623 return ret;
de151cf6
JB
2624}
2625
2626/**
2627 * i915_gem_clear_fence_reg - clear out fence register info
2628 * @obj: object to clear
2629 *
2630 * Zeroes out the fence register itself and clears out the associated
05394f39 2631 * data structures in dev_priv and obj.
de151cf6
JB
2632 */
2633static void
d9e86c0e
CW
2634i915_gem_clear_fence_reg(struct drm_device *dev,
2635 struct drm_i915_fence_reg *reg)
de151cf6 2636{
79e53945 2637 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2638 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2639
e259befd 2640 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2641 case 7:
e259befd 2642 case 6:
d9e86c0e 2643 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2644 break;
2645 case 5:
2646 case 4:
d9e86c0e 2647 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2648 break;
2649 case 3:
d9e86c0e
CW
2650 if (fence_reg >= 8)
2651 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2652 else
e259befd 2653 case 2:
d9e86c0e 2654 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2655
2656 I915_WRITE(fence_reg, 0);
e259befd 2657 break;
dc529a4f 2658 }
de151cf6 2659
007cc8ac 2660 list_del_init(&reg->lru_list);
d9e86c0e
CW
2661 reg->obj = NULL;
2662 reg->setup_seqno = 0;
52dc7d32
CW
2663}
2664
673a394b
EA
2665/**
2666 * Finds free space in the GTT aperture and binds the object there.
2667 */
2668static int
05394f39 2669i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2670 unsigned alignment,
75e9e915 2671 bool map_and_fenceable)
673a394b 2672{
05394f39 2673 struct drm_device *dev = obj->base.dev;
673a394b 2674 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2675 struct drm_mm_node *free_space;
a00b10c3 2676 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2677 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2678 bool mappable, fenceable;
07f73f69 2679 int ret;
673a394b 2680
05394f39 2681 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2682 DRM_ERROR("Attempting to bind a purgeable object\n");
2683 return -EINVAL;
2684 }
2685
e28f8711
CW
2686 fence_size = i915_gem_get_gtt_size(dev,
2687 obj->base.size,
2688 obj->tiling_mode);
2689 fence_alignment = i915_gem_get_gtt_alignment(dev,
2690 obj->base.size,
2691 obj->tiling_mode);
2692 unfenced_alignment =
2693 i915_gem_get_unfenced_gtt_alignment(dev,
2694 obj->base.size,
2695 obj->tiling_mode);
a00b10c3 2696
673a394b 2697 if (alignment == 0)
5e783301
DV
2698 alignment = map_and_fenceable ? fence_alignment :
2699 unfenced_alignment;
75e9e915 2700 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2701 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2702 return -EINVAL;
2703 }
2704
05394f39 2705 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2706
654fc607
CW
2707 /* If the object is bigger than the entire aperture, reject it early
2708 * before evicting everything in a vain attempt to find space.
2709 */
05394f39 2710 if (obj->base.size >
75e9e915 2711 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2712 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2713 return -E2BIG;
2714 }
2715
673a394b 2716 search_free:
75e9e915 2717 if (map_and_fenceable)
920afa77
DV
2718 free_space =
2719 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2720 size, alignment, 0,
920afa77
DV
2721 dev_priv->mm.gtt_mappable_end,
2722 0);
2723 else
2724 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2725 size, alignment, 0);
920afa77
DV
2726
2727 if (free_space != NULL) {
75e9e915 2728 if (map_and_fenceable)
05394f39 2729 obj->gtt_space =
920afa77 2730 drm_mm_get_block_range_generic(free_space,
a00b10c3 2731 size, alignment, 0,
920afa77
DV
2732 dev_priv->mm.gtt_mappable_end,
2733 0);
2734 else
05394f39 2735 obj->gtt_space =
a00b10c3 2736 drm_mm_get_block(free_space, size, alignment);
920afa77 2737 }
05394f39 2738 if (obj->gtt_space == NULL) {
673a394b
EA
2739 /* If the gtt is empty and we're still having trouble
2740 * fitting our object in, we're out of memory.
2741 */
75e9e915
DV
2742 ret = i915_gem_evict_something(dev, size, alignment,
2743 map_and_fenceable);
9731129c 2744 if (ret)
673a394b 2745 return ret;
9731129c 2746
673a394b
EA
2747 goto search_free;
2748 }
2749
e5281ccd 2750 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2751 if (ret) {
05394f39
CW
2752 drm_mm_put_block(obj->gtt_space);
2753 obj->gtt_space = NULL;
07f73f69
CW
2754
2755 if (ret == -ENOMEM) {
809b6334
CW
2756 /* first try to reclaim some memory by clearing the GTT */
2757 ret = i915_gem_evict_everything(dev, false);
07f73f69 2758 if (ret) {
07f73f69 2759 /* now try to shrink everyone else */
4bdadb97
CW
2760 if (gfpmask) {
2761 gfpmask = 0;
2762 goto search_free;
07f73f69
CW
2763 }
2764
809b6334 2765 return -ENOMEM;
07f73f69
CW
2766 }
2767
2768 goto search_free;
2769 }
2770
673a394b
EA
2771 return ret;
2772 }
2773
7c2e6fdf
DV
2774 ret = i915_gem_gtt_bind_object(obj);
2775 if (ret) {
e5281ccd 2776 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2777 drm_mm_put_block(obj->gtt_space);
2778 obj->gtt_space = NULL;
07f73f69 2779
809b6334 2780 if (i915_gem_evict_everything(dev, false))
07f73f69 2781 return ret;
07f73f69
CW
2782
2783 goto search_free;
673a394b 2784 }
673a394b 2785
6299f992 2786 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2787 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2788
673a394b
EA
2789 /* Assert that the object is not currently in any GPU domain. As it
2790 * wasn't in the GTT, there shouldn't be any way it could have been in
2791 * a GPU cache
2792 */
05394f39
CW
2793 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2794 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2795
6299f992 2796 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2797
75e9e915 2798 fenceable =
05394f39 2799 obj->gtt_space->size == fence_size &&
0206e353 2800 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2801
75e9e915 2802 mappable =
05394f39 2803 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2804
05394f39 2805 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2806
db53a302 2807 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2808 return 0;
2809}
2810
2811void
05394f39 2812i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2813{
673a394b
EA
2814 /* If we don't have a page list set up, then we're not pinned
2815 * to GPU, and we can ignore the cache flush because it'll happen
2816 * again at bind time.
2817 */
05394f39 2818 if (obj->pages == NULL)
673a394b
EA
2819 return;
2820
9c23f7fc
CW
2821 /* If the GPU is snooping the contents of the CPU cache,
2822 * we do not need to manually clear the CPU cache lines. However,
2823 * the caches are only snooped when the render cache is
2824 * flushed/invalidated. As we always have to emit invalidations
2825 * and flushes when moving into and out of the RENDER domain, correct
2826 * snooping behaviour occurs naturally as the result of our domain
2827 * tracking.
2828 */
2829 if (obj->cache_level != I915_CACHE_NONE)
2830 return;
2831
1c5d22f7 2832 trace_i915_gem_object_clflush(obj);
cfa16a0d 2833
05394f39 2834 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2835}
2836
e47c68e9 2837/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2838static int
3619df03 2839i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2840{
05394f39 2841 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2842 return 0;
e47c68e9
EA
2843
2844 /* Queue the GPU write cache flushing we need. */
db53a302 2845 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2846}
2847
2848/** Flushes the GTT write domain for the object if it's dirty. */
2849static void
05394f39 2850i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2851{
1c5d22f7
CW
2852 uint32_t old_write_domain;
2853
05394f39 2854 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2855 return;
2856
63256ec5 2857 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2858 * to it immediately go to main memory as far as we know, so there's
2859 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2860 *
2861 * However, we do have to enforce the order so that all writes through
2862 * the GTT land before any writes to the device, such as updates to
2863 * the GATT itself.
e47c68e9 2864 */
63256ec5
CW
2865 wmb();
2866
05394f39
CW
2867 old_write_domain = obj->base.write_domain;
2868 obj->base.write_domain = 0;
1c5d22f7
CW
2869
2870 trace_i915_gem_object_change_domain(obj,
05394f39 2871 obj->base.read_domains,
1c5d22f7 2872 old_write_domain);
e47c68e9
EA
2873}
2874
2875/** Flushes the CPU write domain for the object if it's dirty. */
2876static void
05394f39 2877i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2878{
1c5d22f7 2879 uint32_t old_write_domain;
e47c68e9 2880
05394f39 2881 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2882 return;
2883
2884 i915_gem_clflush_object(obj);
40ce6575 2885 intel_gtt_chipset_flush();
05394f39
CW
2886 old_write_domain = obj->base.write_domain;
2887 obj->base.write_domain = 0;
1c5d22f7
CW
2888
2889 trace_i915_gem_object_change_domain(obj,
05394f39 2890 obj->base.read_domains,
1c5d22f7 2891 old_write_domain);
e47c68e9
EA
2892}
2893
2ef7eeaa
EA
2894/**
2895 * Moves a single object to the GTT read, and possibly write domain.
2896 *
2897 * This function returns when the move is complete, including waiting on
2898 * flushes to occur.
2899 */
79e53945 2900int
2021746e 2901i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2902{
1c5d22f7 2903 uint32_t old_write_domain, old_read_domains;
e47c68e9 2904 int ret;
2ef7eeaa 2905
02354392 2906 /* Not valid to be called on unbound objects. */
05394f39 2907 if (obj->gtt_space == NULL)
02354392
EA
2908 return -EINVAL;
2909
8d7e3de1
CW
2910 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2911 return 0;
2912
88241785
CW
2913 ret = i915_gem_object_flush_gpu_write_domain(obj);
2914 if (ret)
2915 return ret;
2916
87ca9c8a 2917 if (obj->pending_gpu_write || write) {
ce453d81 2918 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2919 if (ret)
2920 return ret;
2921 }
2dafb1e0 2922
7213342d 2923 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2924
05394f39
CW
2925 old_write_domain = obj->base.write_domain;
2926 old_read_domains = obj->base.read_domains;
1c5d22f7 2927
e47c68e9
EA
2928 /* It should now be out of any other write domains, and we can update
2929 * the domain values for our changes.
2930 */
05394f39
CW
2931 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2932 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2933 if (write) {
05394f39
CW
2934 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2935 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2936 obj->dirty = 1;
2ef7eeaa
EA
2937 }
2938
1c5d22f7
CW
2939 trace_i915_gem_object_change_domain(obj,
2940 old_read_domains,
2941 old_write_domain);
2942
e47c68e9
EA
2943 return 0;
2944}
2945
e4ffd173
CW
2946int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2947 enum i915_cache_level cache_level)
2948{
2949 int ret;
2950
2951 if (obj->cache_level == cache_level)
2952 return 0;
2953
2954 if (obj->pin_count) {
2955 DRM_DEBUG("can not change the cache level of pinned objects\n");
2956 return -EBUSY;
2957 }
2958
2959 if (obj->gtt_space) {
2960 ret = i915_gem_object_finish_gpu(obj);
2961 if (ret)
2962 return ret;
2963
2964 i915_gem_object_finish_gtt(obj);
2965
2966 /* Before SandyBridge, you could not use tiling or fence
2967 * registers with snooped memory, so relinquish any fences
2968 * currently pointing to our region in the aperture.
2969 */
2970 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2971 ret = i915_gem_object_put_fence(obj);
2972 if (ret)
2973 return ret;
2974 }
2975
2976 i915_gem_gtt_rebind_object(obj, cache_level);
2977 }
2978
2979 if (cache_level == I915_CACHE_NONE) {
2980 u32 old_read_domains, old_write_domain;
2981
2982 /* If we're coming from LLC cached, then we haven't
2983 * actually been tracking whether the data is in the
2984 * CPU cache or not, since we only allow one bit set
2985 * in obj->write_domain and have been skipping the clflushes.
2986 * Just set it to the CPU cache for now.
2987 */
2988 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2989 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2990
2991 old_read_domains = obj->base.read_domains;
2992 old_write_domain = obj->base.write_domain;
2993
2994 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2995 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2996
2997 trace_i915_gem_object_change_domain(obj,
2998 old_read_domains,
2999 old_write_domain);
3000 }
3001
3002 obj->cache_level = cache_level;
3003 return 0;
3004}
3005
b9241ea3 3006/*
2da3b9b9
CW
3007 * Prepare buffer for display plane (scanout, cursors, etc).
3008 * Can be called from an uninterruptible phase (modesetting) and allows
3009 * any flushes to be pipelined (for pageflips).
3010 *
3011 * For the display plane, we want to be in the GTT but out of any write
3012 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3013 * ability to pipeline the waits, pinning and any additional subtleties
3014 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
3015 */
3016int
2da3b9b9
CW
3017i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3018 u32 alignment,
919926ae 3019 struct intel_ring_buffer *pipelined)
b9241ea3 3020{
2da3b9b9 3021 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3022 int ret;
3023
88241785
CW
3024 ret = i915_gem_object_flush_gpu_write_domain(obj);
3025 if (ret)
3026 return ret;
3027
0be73284 3028 if (pipelined != obj->ring) {
ce453d81 3029 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 3030 if (ret == -ERESTARTSYS)
b9241ea3
ZW
3031 return ret;
3032 }
3033
a7ef0640
EA
3034 /* The display engine is not coherent with the LLC cache on gen6. As
3035 * a result, we make sure that the pinning that is about to occur is
3036 * done with uncached PTEs. This is lowest common denominator for all
3037 * chipsets.
3038 *
3039 * However for gen6+, we could do better by using the GFDT bit instead
3040 * of uncaching, which would allow us to flush all the LLC-cached data
3041 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3042 */
3043 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3044 if (ret)
3045 return ret;
3046
2da3b9b9
CW
3047 /* As the user may map the buffer once pinned in the display plane
3048 * (e.g. libkms for the bootup splash), we have to ensure that we
3049 * always use map_and_fenceable for all scanout buffers.
3050 */
3051 ret = i915_gem_object_pin(obj, alignment, true);
3052 if (ret)
3053 return ret;
3054
b118c1e3
CW
3055 i915_gem_object_flush_cpu_write_domain(obj);
3056
2da3b9b9 3057 old_write_domain = obj->base.write_domain;
05394f39 3058 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3059
3060 /* It should now be out of any other write domains, and we can update
3061 * the domain values for our changes.
3062 */
3063 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3064 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3065
3066 trace_i915_gem_object_change_domain(obj,
3067 old_read_domains,
2da3b9b9 3068 old_write_domain);
b9241ea3
ZW
3069
3070 return 0;
3071}
3072
85345517 3073int
a8198eea 3074i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3075{
88241785
CW
3076 int ret;
3077
a8198eea 3078 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3079 return 0;
3080
88241785 3081 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3082 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3083 if (ret)
3084 return ret;
3085 }
85345517 3086
a8198eea
CW
3087 /* Ensure that we invalidate the GPU's caches and TLBs. */
3088 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3089
ce453d81 3090 return i915_gem_object_wait_rendering(obj);
85345517
CW
3091}
3092
e47c68e9
EA
3093/**
3094 * Moves a single object to the CPU read, and possibly write domain.
3095 *
3096 * This function returns when the move is complete, including waiting on
3097 * flushes to occur.
3098 */
3099static int
919926ae 3100i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3101{
1c5d22f7 3102 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3103 int ret;
3104
8d7e3de1
CW
3105 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3106 return 0;
3107
88241785
CW
3108 ret = i915_gem_object_flush_gpu_write_domain(obj);
3109 if (ret)
3110 return ret;
3111
ce453d81 3112 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3113 if (ret)
e47c68e9 3114 return ret;
2ef7eeaa 3115
e47c68e9 3116 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3117
e47c68e9
EA
3118 /* If we have a partially-valid cache of the object in the CPU,
3119 * finish invalidating it and free the per-page flags.
2ef7eeaa 3120 */
e47c68e9 3121 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3122
05394f39
CW
3123 old_write_domain = obj->base.write_domain;
3124 old_read_domains = obj->base.read_domains;
1c5d22f7 3125
e47c68e9 3126 /* Flush the CPU cache if it's still invalid. */
05394f39 3127 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3128 i915_gem_clflush_object(obj);
2ef7eeaa 3129
05394f39 3130 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3131 }
3132
3133 /* It should now be out of any other write domains, and we can update
3134 * the domain values for our changes.
3135 */
05394f39 3136 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3137
3138 /* If we're writing through the CPU, then the GPU read domains will
3139 * need to be invalidated at next use.
3140 */
3141 if (write) {
05394f39
CW
3142 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3143 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3144 }
2ef7eeaa 3145
1c5d22f7
CW
3146 trace_i915_gem_object_change_domain(obj,
3147 old_read_domains,
3148 old_write_domain);
3149
2ef7eeaa
EA
3150 return 0;
3151}
3152
673a394b 3153/**
e47c68e9 3154 * Moves the object from a partially CPU read to a full one.
673a394b 3155 *
e47c68e9
EA
3156 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3157 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3158 */
e47c68e9 3159static void
05394f39 3160i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3161{
05394f39 3162 if (!obj->page_cpu_valid)
e47c68e9
EA
3163 return;
3164
3165 /* If we're partially in the CPU read domain, finish moving it in.
3166 */
05394f39 3167 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3168 int i;
3169
05394f39
CW
3170 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3171 if (obj->page_cpu_valid[i])
e47c68e9 3172 continue;
05394f39 3173 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3174 }
e47c68e9
EA
3175 }
3176
3177 /* Free the page_cpu_valid mappings which are now stale, whether
3178 * or not we've got I915_GEM_DOMAIN_CPU.
3179 */
05394f39
CW
3180 kfree(obj->page_cpu_valid);
3181 obj->page_cpu_valid = NULL;
e47c68e9
EA
3182}
3183
3184/**
3185 * Set the CPU read domain on a range of the object.
3186 *
3187 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3188 * not entirely valid. The page_cpu_valid member of the object flags which
3189 * pages have been flushed, and will be respected by
3190 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3191 * of the whole object.
3192 *
3193 * This function returns when the move is complete, including waiting on
3194 * flushes to occur.
3195 */
3196static int
05394f39 3197i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3198 uint64_t offset, uint64_t size)
3199{
1c5d22f7 3200 uint32_t old_read_domains;
e47c68e9 3201 int i, ret;
673a394b 3202
05394f39 3203 if (offset == 0 && size == obj->base.size)
e47c68e9 3204 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3205
88241785
CW
3206 ret = i915_gem_object_flush_gpu_write_domain(obj);
3207 if (ret)
3208 return ret;
3209
ce453d81 3210 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3211 if (ret)
6a47baa6 3212 return ret;
de18a29e 3213
e47c68e9
EA
3214 i915_gem_object_flush_gtt_write_domain(obj);
3215
3216 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3217 if (obj->page_cpu_valid == NULL &&
3218 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3219 return 0;
673a394b 3220
e47c68e9
EA
3221 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3222 * newly adding I915_GEM_DOMAIN_CPU
3223 */
05394f39
CW
3224 if (obj->page_cpu_valid == NULL) {
3225 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3226 GFP_KERNEL);
3227 if (obj->page_cpu_valid == NULL)
e47c68e9 3228 return -ENOMEM;
05394f39
CW
3229 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3230 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3231
3232 /* Flush the cache on any pages that are still invalid from the CPU's
3233 * perspective.
3234 */
e47c68e9
EA
3235 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3236 i++) {
05394f39 3237 if (obj->page_cpu_valid[i])
673a394b
EA
3238 continue;
3239
05394f39 3240 drm_clflush_pages(obj->pages + i, 1);
673a394b 3241
05394f39 3242 obj->page_cpu_valid[i] = 1;
673a394b
EA
3243 }
3244
e47c68e9
EA
3245 /* It should now be out of any other write domains, and we can update
3246 * the domain values for our changes.
3247 */
05394f39 3248 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3249
05394f39
CW
3250 old_read_domains = obj->base.read_domains;
3251 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3252
1c5d22f7
CW
3253 trace_i915_gem_object_change_domain(obj,
3254 old_read_domains,
05394f39 3255 obj->base.write_domain);
1c5d22f7 3256
673a394b
EA
3257 return 0;
3258}
3259
673a394b
EA
3260/* Throttle our rendering by waiting until the ring has completed our requests
3261 * emitted over 20 msec ago.
3262 *
b962442e
EA
3263 * Note that if we were to use the current jiffies each time around the loop,
3264 * we wouldn't escape the function with any frames outstanding if the time to
3265 * render a frame was over 20ms.
3266 *
673a394b
EA
3267 * This should get us reasonable parallelism between CPU and GPU but also
3268 * relatively low latency when blocking on a particular request to finish.
3269 */
40a5f0de 3270static int
f787a5f5 3271i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3272{
f787a5f5
CW
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3275 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3276 struct drm_i915_gem_request *request;
3277 struct intel_ring_buffer *ring = NULL;
3278 u32 seqno = 0;
3279 int ret;
93533c29 3280
e110e8d6
CW
3281 if (atomic_read(&dev_priv->mm.wedged))
3282 return -EIO;
3283
1c25595f 3284 spin_lock(&file_priv->mm.lock);
f787a5f5 3285 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3286 if (time_after_eq(request->emitted_jiffies, recent_enough))
3287 break;
40a5f0de 3288
f787a5f5
CW
3289 ring = request->ring;
3290 seqno = request->seqno;
b962442e 3291 }
1c25595f 3292 spin_unlock(&file_priv->mm.lock);
40a5f0de 3293
f787a5f5
CW
3294 if (seqno == 0)
3295 return 0;
2bc43b5c 3296
f787a5f5 3297 ret = 0;
78501eac 3298 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3299 /* And wait for the seqno passing without holding any locks and
3300 * causing extra latency for others. This is safe as the irq
3301 * generation is designed to be run atomically and so is
3302 * lockless.
3303 */
b13c2b96
CW
3304 if (ring->irq_get(ring)) {
3305 ret = wait_event_interruptible(ring->irq_queue,
3306 i915_seqno_passed(ring->get_seqno(ring), seqno)
3307 || atomic_read(&dev_priv->mm.wedged));
3308 ring->irq_put(ring);
40a5f0de 3309
b13c2b96
CW
3310 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3311 ret = -EIO;
3312 }
40a5f0de
EA
3313 }
3314
f787a5f5
CW
3315 if (ret == 0)
3316 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3317
3318 return ret;
3319}
3320
673a394b 3321int
05394f39
CW
3322i915_gem_object_pin(struct drm_i915_gem_object *obj,
3323 uint32_t alignment,
75e9e915 3324 bool map_and_fenceable)
673a394b 3325{
05394f39 3326 struct drm_device *dev = obj->base.dev;
f13d3f73 3327 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3328 int ret;
3329
05394f39 3330 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3331 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3332
05394f39
CW
3333 if (obj->gtt_space != NULL) {
3334 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3335 (map_and_fenceable && !obj->map_and_fenceable)) {
3336 WARN(obj->pin_count,
ae7d49d8 3337 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3338 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3339 " obj->map_and_fenceable=%d\n",
05394f39 3340 obj->gtt_offset, alignment,
75e9e915 3341 map_and_fenceable,
05394f39 3342 obj->map_and_fenceable);
ac0c6b5a
CW
3343 ret = i915_gem_object_unbind(obj);
3344 if (ret)
3345 return ret;
3346 }
3347 }
3348
05394f39 3349 if (obj->gtt_space == NULL) {
a00b10c3 3350 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3351 map_and_fenceable);
9731129c 3352 if (ret)
673a394b 3353 return ret;
22c344e9 3354 }
76446cac 3355
05394f39 3356 if (obj->pin_count++ == 0) {
05394f39
CW
3357 if (!obj->active)
3358 list_move_tail(&obj->mm_list,
f13d3f73 3359 &dev_priv->mm.pinned_list);
673a394b 3360 }
6299f992 3361 obj->pin_mappable |= map_and_fenceable;
673a394b 3362
23bc5982 3363 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3364 return 0;
3365}
3366
3367void
05394f39 3368i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3369{
05394f39 3370 struct drm_device *dev = obj->base.dev;
673a394b 3371 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3372
23bc5982 3373 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3374 BUG_ON(obj->pin_count == 0);
3375 BUG_ON(obj->gtt_space == NULL);
673a394b 3376
05394f39
CW
3377 if (--obj->pin_count == 0) {
3378 if (!obj->active)
3379 list_move_tail(&obj->mm_list,
673a394b 3380 &dev_priv->mm.inactive_list);
6299f992 3381 obj->pin_mappable = false;
673a394b 3382 }
23bc5982 3383 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3384}
3385
3386int
3387i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3388 struct drm_file *file)
673a394b
EA
3389{
3390 struct drm_i915_gem_pin *args = data;
05394f39 3391 struct drm_i915_gem_object *obj;
673a394b
EA
3392 int ret;
3393
1d7cfea1
CW
3394 ret = i915_mutex_lock_interruptible(dev);
3395 if (ret)
3396 return ret;
673a394b 3397
05394f39 3398 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3399 if (&obj->base == NULL) {
1d7cfea1
CW
3400 ret = -ENOENT;
3401 goto unlock;
673a394b 3402 }
673a394b 3403
05394f39 3404 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3405 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3406 ret = -EINVAL;
3407 goto out;
3ef94daa
CW
3408 }
3409
05394f39 3410 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3411 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3412 args->handle);
1d7cfea1
CW
3413 ret = -EINVAL;
3414 goto out;
79e53945
JB
3415 }
3416
05394f39
CW
3417 obj->user_pin_count++;
3418 obj->pin_filp = file;
3419 if (obj->user_pin_count == 1) {
75e9e915 3420 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3421 if (ret)
3422 goto out;
673a394b
EA
3423 }
3424
3425 /* XXX - flush the CPU caches for pinned objects
3426 * as the X server doesn't manage domains yet
3427 */
e47c68e9 3428 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3429 args->offset = obj->gtt_offset;
1d7cfea1 3430out:
05394f39 3431 drm_gem_object_unreference(&obj->base);
1d7cfea1 3432unlock:
673a394b 3433 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3434 return ret;
673a394b
EA
3435}
3436
3437int
3438i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3439 struct drm_file *file)
673a394b
EA
3440{
3441 struct drm_i915_gem_pin *args = data;
05394f39 3442 struct drm_i915_gem_object *obj;
76c1dec1 3443 int ret;
673a394b 3444
1d7cfea1
CW
3445 ret = i915_mutex_lock_interruptible(dev);
3446 if (ret)
3447 return ret;
673a394b 3448
05394f39 3449 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3450 if (&obj->base == NULL) {
1d7cfea1
CW
3451 ret = -ENOENT;
3452 goto unlock;
673a394b 3453 }
76c1dec1 3454
05394f39 3455 if (obj->pin_filp != file) {
79e53945
JB
3456 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3457 args->handle);
1d7cfea1
CW
3458 ret = -EINVAL;
3459 goto out;
79e53945 3460 }
05394f39
CW
3461 obj->user_pin_count--;
3462 if (obj->user_pin_count == 0) {
3463 obj->pin_filp = NULL;
79e53945
JB
3464 i915_gem_object_unpin(obj);
3465 }
673a394b 3466
1d7cfea1 3467out:
05394f39 3468 drm_gem_object_unreference(&obj->base);
1d7cfea1 3469unlock:
673a394b 3470 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3471 return ret;
673a394b
EA
3472}
3473
3474int
3475i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3476 struct drm_file *file)
673a394b
EA
3477{
3478 struct drm_i915_gem_busy *args = data;
05394f39 3479 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3480 int ret;
3481
76c1dec1 3482 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3483 if (ret)
76c1dec1 3484 return ret;
673a394b 3485
05394f39 3486 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3487 if (&obj->base == NULL) {
1d7cfea1
CW
3488 ret = -ENOENT;
3489 goto unlock;
673a394b 3490 }
d1b851fc 3491
0be555b6
CW
3492 /* Count all active objects as busy, even if they are currently not used
3493 * by the gpu. Users of this interface expect objects to eventually
3494 * become non-busy without any further actions, therefore emit any
3495 * necessary flushes here.
c4de0a5d 3496 */
05394f39 3497 args->busy = obj->active;
0be555b6
CW
3498 if (args->busy) {
3499 /* Unconditionally flush objects, even when the gpu still uses this
3500 * object. Userspace calling this function indicates that it wants to
3501 * use this buffer rather sooner than later, so issuing the required
3502 * flush earlier is beneficial.
3503 */
1a1c6976 3504 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3505 ret = i915_gem_flush_ring(obj->ring,
88241785 3506 0, obj->base.write_domain);
1a1c6976
CW
3507 } else if (obj->ring->outstanding_lazy_request ==
3508 obj->last_rendering_seqno) {
3509 struct drm_i915_gem_request *request;
3510
7a194876
CW
3511 /* This ring is not being cleared by active usage,
3512 * so emit a request to do so.
3513 */
1a1c6976
CW
3514 request = kzalloc(sizeof(*request), GFP_KERNEL);
3515 if (request)
0206e353 3516 ret = i915_add_request(obj->ring, NULL, request);
1a1c6976 3517 else
7a194876
CW
3518 ret = -ENOMEM;
3519 }
0be555b6
CW
3520
3521 /* Update the active list for the hardware's current position.
3522 * Otherwise this only updates on a delayed timer or when irqs
3523 * are actually unmasked, and our working set ends up being
3524 * larger than required.
3525 */
db53a302 3526 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3527
05394f39 3528 args->busy = obj->active;
0be555b6 3529 }
673a394b 3530
05394f39 3531 drm_gem_object_unreference(&obj->base);
1d7cfea1 3532unlock:
673a394b 3533 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3534 return ret;
673a394b
EA
3535}
3536
3537int
3538i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3539 struct drm_file *file_priv)
3540{
0206e353 3541 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3542}
3543
3ef94daa
CW
3544int
3545i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3546 struct drm_file *file_priv)
3547{
3548 struct drm_i915_gem_madvise *args = data;
05394f39 3549 struct drm_i915_gem_object *obj;
76c1dec1 3550 int ret;
3ef94daa
CW
3551
3552 switch (args->madv) {
3553 case I915_MADV_DONTNEED:
3554 case I915_MADV_WILLNEED:
3555 break;
3556 default:
3557 return -EINVAL;
3558 }
3559
1d7cfea1
CW
3560 ret = i915_mutex_lock_interruptible(dev);
3561 if (ret)
3562 return ret;
3563
05394f39 3564 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3565 if (&obj->base == NULL) {
1d7cfea1
CW
3566 ret = -ENOENT;
3567 goto unlock;
3ef94daa 3568 }
3ef94daa 3569
05394f39 3570 if (obj->pin_count) {
1d7cfea1
CW
3571 ret = -EINVAL;
3572 goto out;
3ef94daa
CW
3573 }
3574
05394f39
CW
3575 if (obj->madv != __I915_MADV_PURGED)
3576 obj->madv = args->madv;
3ef94daa 3577
2d7ef395 3578 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3579 if (i915_gem_object_is_purgeable(obj) &&
3580 obj->gtt_space == NULL)
2d7ef395
CW
3581 i915_gem_object_truncate(obj);
3582
05394f39 3583 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3584
1d7cfea1 3585out:
05394f39 3586 drm_gem_object_unreference(&obj->base);
1d7cfea1 3587unlock:
3ef94daa 3588 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3589 return ret;
3ef94daa
CW
3590}
3591
05394f39
CW
3592struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3593 size_t size)
ac52bc56 3594{
73aa808f 3595 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3596 struct drm_i915_gem_object *obj;
5949eac4 3597 struct address_space *mapping;
ac52bc56 3598
c397b908
DV
3599 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3600 if (obj == NULL)
3601 return NULL;
673a394b 3602
c397b908
DV
3603 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3604 kfree(obj);
3605 return NULL;
3606 }
673a394b 3607
5949eac4
HD
3608 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3609 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3610
73aa808f
CW
3611 i915_gem_info_add_obj(dev_priv, size);
3612
c397b908
DV
3613 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3614 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3615
a1871112
EA
3616 if (IS_GEN6(dev)) {
3617 /* On Gen6, we can have the GPU use the LLC (the CPU
3618 * cache) for about a 10% performance improvement
3619 * compared to uncached. Graphics requests other than
3620 * display scanout are coherent with the CPU in
3621 * accessing this cache. This means in this mode we
3622 * don't need to clflush on the CPU side, and on the
3623 * GPU side we only need to flush internal caches to
3624 * get data visible to the CPU.
3625 *
3626 * However, we maintain the display planes as UC, and so
3627 * need to rebind when first used as such.
3628 */
3629 obj->cache_level = I915_CACHE_LLC;
3630 } else
3631 obj->cache_level = I915_CACHE_NONE;
3632
62b8b215 3633 obj->base.driver_private = NULL;
c397b908 3634 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3635 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3636 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3637 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3638 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3639 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3640 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3641 /* Avoid an unnecessary call to unbind on the first bind. */
3642 obj->map_and_fenceable = true;
de151cf6 3643
05394f39 3644 return obj;
c397b908
DV
3645}
3646
3647int i915_gem_init_object(struct drm_gem_object *obj)
3648{
3649 BUG();
de151cf6 3650
673a394b
EA
3651 return 0;
3652}
3653
05394f39 3654static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3655{
05394f39 3656 struct drm_device *dev = obj->base.dev;
be72615b 3657 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3658 int ret;
673a394b 3659
be72615b
CW
3660 ret = i915_gem_object_unbind(obj);
3661 if (ret == -ERESTARTSYS) {
05394f39 3662 list_move(&obj->mm_list,
be72615b
CW
3663 &dev_priv->mm.deferred_free_list);
3664 return;
3665 }
673a394b 3666
26e12f89
CW
3667 trace_i915_gem_object_destroy(obj);
3668
05394f39 3669 if (obj->base.map_list.map)
b464e9a2 3670 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3671
05394f39
CW
3672 drm_gem_object_release(&obj->base);
3673 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3674
05394f39
CW
3675 kfree(obj->page_cpu_valid);
3676 kfree(obj->bit_17);
3677 kfree(obj);
673a394b
EA
3678}
3679
05394f39 3680void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3681{
05394f39
CW
3682 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3683 struct drm_device *dev = obj->base.dev;
be72615b 3684
05394f39 3685 while (obj->pin_count > 0)
be72615b
CW
3686 i915_gem_object_unpin(obj);
3687
05394f39 3688 if (obj->phys_obj)
be72615b
CW
3689 i915_gem_detach_phys_object(dev, obj);
3690
3691 i915_gem_free_object_tail(obj);
3692}
3693
29105ccc
CW
3694int
3695i915_gem_idle(struct drm_device *dev)
3696{
3697 drm_i915_private_t *dev_priv = dev->dev_private;
3698 int ret;
28dfe52a 3699
29105ccc 3700 mutex_lock(&dev->struct_mutex);
1c5d22f7 3701
87acb0a5 3702 if (dev_priv->mm.suspended) {
29105ccc
CW
3703 mutex_unlock(&dev->struct_mutex);
3704 return 0;
28dfe52a
EA
3705 }
3706
29105ccc 3707 ret = i915_gpu_idle(dev);
6dbe2772
KP
3708 if (ret) {
3709 mutex_unlock(&dev->struct_mutex);
673a394b 3710 return ret;
6dbe2772 3711 }
673a394b 3712
29105ccc
CW
3713 /* Under UMS, be paranoid and evict. */
3714 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3715 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3716 if (ret) {
3717 mutex_unlock(&dev->struct_mutex);
3718 return ret;
3719 }
3720 }
3721
312817a3
CW
3722 i915_gem_reset_fences(dev);
3723
29105ccc
CW
3724 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3725 * We need to replace this with a semaphore, or something.
3726 * And not confound mm.suspended!
3727 */
3728 dev_priv->mm.suspended = 1;
bc0c7f14 3729 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3730
3731 i915_kernel_lost_context(dev);
6dbe2772 3732 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3733
6dbe2772
KP
3734 mutex_unlock(&dev->struct_mutex);
3735
29105ccc
CW
3736 /* Cancel the retire work handler, which should be idle now. */
3737 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3738
673a394b
EA
3739 return 0;
3740}
3741
8187a2b7
ZN
3742int
3743i915_gem_init_ringbuffer(struct drm_device *dev)
3744{
3745 drm_i915_private_t *dev_priv = dev->dev_private;
3746 int ret;
68f95ba9 3747
5c1143bb 3748 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3749 if (ret)
b6913e4b 3750 return ret;
68f95ba9
CW
3751
3752 if (HAS_BSD(dev)) {
5c1143bb 3753 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3754 if (ret)
3755 goto cleanup_render_ring;
d1b851fc 3756 }
68f95ba9 3757
549f7365
CW
3758 if (HAS_BLT(dev)) {
3759 ret = intel_init_blt_ring_buffer(dev);
3760 if (ret)
3761 goto cleanup_bsd_ring;
3762 }
3763
6f392d54
CW
3764 dev_priv->next_seqno = 1;
3765
68f95ba9
CW
3766 return 0;
3767
549f7365 3768cleanup_bsd_ring:
1ec14ad3 3769 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3770cleanup_render_ring:
1ec14ad3 3771 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3772 return ret;
3773}
3774
3775void
3776i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3777{
3778 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3779 int i;
8187a2b7 3780
1ec14ad3
CW
3781 for (i = 0; i < I915_NUM_RINGS; i++)
3782 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3783}
3784
673a394b
EA
3785int
3786i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3787 struct drm_file *file_priv)
3788{
3789 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3790 int ret, i;
673a394b 3791
79e53945
JB
3792 if (drm_core_check_feature(dev, DRIVER_MODESET))
3793 return 0;
3794
ba1234d1 3795 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3796 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3797 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3798 }
3799
673a394b 3800 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3801 dev_priv->mm.suspended = 0;
3802
3803 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3804 if (ret != 0) {
3805 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3806 return ret;
d816f6ac 3807 }
9bb2d6f9 3808
69dc4987 3809 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3810 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3811 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3812 for (i = 0; i < I915_NUM_RINGS; i++) {
3813 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3814 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3815 }
673a394b 3816 mutex_unlock(&dev->struct_mutex);
dbb19d30 3817
5f35308b
CW
3818 ret = drm_irq_install(dev);
3819 if (ret)
3820 goto cleanup_ringbuffer;
dbb19d30 3821
673a394b 3822 return 0;
5f35308b
CW
3823
3824cleanup_ringbuffer:
3825 mutex_lock(&dev->struct_mutex);
3826 i915_gem_cleanup_ringbuffer(dev);
3827 dev_priv->mm.suspended = 1;
3828 mutex_unlock(&dev->struct_mutex);
3829
3830 return ret;
673a394b
EA
3831}
3832
3833int
3834i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3835 struct drm_file *file_priv)
3836{
79e53945
JB
3837 if (drm_core_check_feature(dev, DRIVER_MODESET))
3838 return 0;
3839
dbb19d30 3840 drm_irq_uninstall(dev);
e6890f6f 3841 return i915_gem_idle(dev);
673a394b
EA
3842}
3843
3844void
3845i915_gem_lastclose(struct drm_device *dev)
3846{
3847 int ret;
673a394b 3848
e806b495
EA
3849 if (drm_core_check_feature(dev, DRIVER_MODESET))
3850 return;
3851
6dbe2772
KP
3852 ret = i915_gem_idle(dev);
3853 if (ret)
3854 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3855}
3856
64193406
CW
3857static void
3858init_ring_lists(struct intel_ring_buffer *ring)
3859{
3860 INIT_LIST_HEAD(&ring->active_list);
3861 INIT_LIST_HEAD(&ring->request_list);
3862 INIT_LIST_HEAD(&ring->gpu_write_list);
3863}
3864
673a394b
EA
3865void
3866i915_gem_load(struct drm_device *dev)
3867{
b5aa8a0f 3868 int i;
673a394b
EA
3869 drm_i915_private_t *dev_priv = dev->dev_private;
3870
69dc4987 3871 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3872 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3873 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3874 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3875 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3876 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3877 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3878 for (i = 0; i < I915_NUM_RINGS; i++)
3879 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3880 for (i = 0; i < 16; i++)
3881 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3882 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3883 i915_gem_retire_work_handler);
30dbf0c0 3884 init_completion(&dev_priv->error_completion);
31169714 3885
94400120
DA
3886 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3887 if (IS_GEN3(dev)) {
3888 u32 tmp = I915_READ(MI_ARB_STATE);
3889 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3890 /* arb state is a masked write, so set bit + bit in mask */
3891 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3892 I915_WRITE(MI_ARB_STATE, tmp);
3893 }
3894 }
3895
72bfa19c
CW
3896 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3897
de151cf6 3898 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3899 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3900 dev_priv->fence_reg_start = 3;
de151cf6 3901
a6c45cf0 3902 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3903 dev_priv->num_fence_regs = 16;
3904 else
3905 dev_priv->num_fence_regs = 8;
3906
b5aa8a0f 3907 /* Initialize fence registers to zero */
10ed13e4
EA
3908 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3909 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3910 }
10ed13e4 3911
673a394b 3912 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3913 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3914
ce453d81
CW
3915 dev_priv->mm.interruptible = true;
3916
17250b71
CW
3917 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3918 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3919 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3920}
71acb5eb
DA
3921
3922/*
3923 * Create a physically contiguous memory object for this object
3924 * e.g. for cursor + overlay regs
3925 */
995b6762
CW
3926static int i915_gem_init_phys_object(struct drm_device *dev,
3927 int id, int size, int align)
71acb5eb
DA
3928{
3929 drm_i915_private_t *dev_priv = dev->dev_private;
3930 struct drm_i915_gem_phys_object *phys_obj;
3931 int ret;
3932
3933 if (dev_priv->mm.phys_objs[id - 1] || !size)
3934 return 0;
3935
9a298b2a 3936 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3937 if (!phys_obj)
3938 return -ENOMEM;
3939
3940 phys_obj->id = id;
3941
6eeefaf3 3942 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3943 if (!phys_obj->handle) {
3944 ret = -ENOMEM;
3945 goto kfree_obj;
3946 }
3947#ifdef CONFIG_X86
3948 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3949#endif
3950
3951 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3952
3953 return 0;
3954kfree_obj:
9a298b2a 3955 kfree(phys_obj);
71acb5eb
DA
3956 return ret;
3957}
3958
995b6762 3959static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3960{
3961 drm_i915_private_t *dev_priv = dev->dev_private;
3962 struct drm_i915_gem_phys_object *phys_obj;
3963
3964 if (!dev_priv->mm.phys_objs[id - 1])
3965 return;
3966
3967 phys_obj = dev_priv->mm.phys_objs[id - 1];
3968 if (phys_obj->cur_obj) {
3969 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3970 }
3971
3972#ifdef CONFIG_X86
3973 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3974#endif
3975 drm_pci_free(dev, phys_obj->handle);
3976 kfree(phys_obj);
3977 dev_priv->mm.phys_objs[id - 1] = NULL;
3978}
3979
3980void i915_gem_free_all_phys_object(struct drm_device *dev)
3981{
3982 int i;
3983
260883c8 3984 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3985 i915_gem_free_phys_object(dev, i);
3986}
3987
3988void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3989 struct drm_i915_gem_object *obj)
71acb5eb 3990{
05394f39 3991 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3992 char *vaddr;
71acb5eb 3993 int i;
71acb5eb
DA
3994 int page_count;
3995
05394f39 3996 if (!obj->phys_obj)
71acb5eb 3997 return;
05394f39 3998 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3999
05394f39 4000 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4001 for (i = 0; i < page_count; i++) {
5949eac4 4002 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4003 if (!IS_ERR(page)) {
4004 char *dst = kmap_atomic(page);
4005 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4006 kunmap_atomic(dst);
4007
4008 drm_clflush_pages(&page, 1);
4009
4010 set_page_dirty(page);
4011 mark_page_accessed(page);
4012 page_cache_release(page);
4013 }
71acb5eb 4014 }
40ce6575 4015 intel_gtt_chipset_flush();
d78b47b9 4016
05394f39
CW
4017 obj->phys_obj->cur_obj = NULL;
4018 obj->phys_obj = NULL;
71acb5eb
DA
4019}
4020
4021int
4022i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4023 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4024 int id,
4025 int align)
71acb5eb 4026{
05394f39 4027 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4028 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4029 int ret = 0;
4030 int page_count;
4031 int i;
4032
4033 if (id > I915_MAX_PHYS_OBJECT)
4034 return -EINVAL;
4035
05394f39
CW
4036 if (obj->phys_obj) {
4037 if (obj->phys_obj->id == id)
71acb5eb
DA
4038 return 0;
4039 i915_gem_detach_phys_object(dev, obj);
4040 }
4041
71acb5eb
DA
4042 /* create a new object */
4043 if (!dev_priv->mm.phys_objs[id - 1]) {
4044 ret = i915_gem_init_phys_object(dev, id,
05394f39 4045 obj->base.size, align);
71acb5eb 4046 if (ret) {
05394f39
CW
4047 DRM_ERROR("failed to init phys object %d size: %zu\n",
4048 id, obj->base.size);
e5281ccd 4049 return ret;
71acb5eb
DA
4050 }
4051 }
4052
4053 /* bind to the object */
05394f39
CW
4054 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4055 obj->phys_obj->cur_obj = obj;
71acb5eb 4056
05394f39 4057 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4058
4059 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4060 struct page *page;
4061 char *dst, *src;
4062
5949eac4 4063 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4064 if (IS_ERR(page))
4065 return PTR_ERR(page);
71acb5eb 4066
ff75b9bc 4067 src = kmap_atomic(page);
05394f39 4068 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4069 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4070 kunmap_atomic(src);
71acb5eb 4071
e5281ccd
CW
4072 mark_page_accessed(page);
4073 page_cache_release(page);
4074 }
d78b47b9 4075
71acb5eb 4076 return 0;
71acb5eb
DA
4077}
4078
4079static int
05394f39
CW
4080i915_gem_phys_pwrite(struct drm_device *dev,
4081 struct drm_i915_gem_object *obj,
71acb5eb
DA
4082 struct drm_i915_gem_pwrite *args,
4083 struct drm_file *file_priv)
4084{
05394f39 4085 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4086 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4087
b47b30cc
CW
4088 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4089 unsigned long unwritten;
4090
4091 /* The physical object once assigned is fixed for the lifetime
4092 * of the obj, so we can safely drop the lock and continue
4093 * to access vaddr.
4094 */
4095 mutex_unlock(&dev->struct_mutex);
4096 unwritten = copy_from_user(vaddr, user_data, args->size);
4097 mutex_lock(&dev->struct_mutex);
4098 if (unwritten)
4099 return -EFAULT;
4100 }
71acb5eb 4101
40ce6575 4102 intel_gtt_chipset_flush();
71acb5eb
DA
4103 return 0;
4104}
b962442e 4105
f787a5f5 4106void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4107{
f787a5f5 4108 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4109
4110 /* Clean up our request list when the client is going away, so that
4111 * later retire_requests won't dereference our soon-to-be-gone
4112 * file_priv.
4113 */
1c25595f 4114 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4115 while (!list_empty(&file_priv->mm.request_list)) {
4116 struct drm_i915_gem_request *request;
4117
4118 request = list_first_entry(&file_priv->mm.request_list,
4119 struct drm_i915_gem_request,
4120 client_list);
4121 list_del(&request->client_list);
4122 request->file_priv = NULL;
4123 }
1c25595f 4124 spin_unlock(&file_priv->mm.lock);
b962442e 4125}
31169714 4126
1637ef41
CW
4127static int
4128i915_gpu_is_active(struct drm_device *dev)
4129{
4130 drm_i915_private_t *dev_priv = dev->dev_private;
4131 int lists_empty;
4132
1637ef41 4133 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4134 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4135
4136 return !lists_empty;
4137}
4138
31169714 4139static int
1495f230 4140i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4141{
17250b71
CW
4142 struct drm_i915_private *dev_priv =
4143 container_of(shrinker,
4144 struct drm_i915_private,
4145 mm.inactive_shrinker);
4146 struct drm_device *dev = dev_priv->dev;
4147 struct drm_i915_gem_object *obj, *next;
1495f230 4148 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4149 int cnt;
4150
4151 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4152 return 0;
31169714
CW
4153
4154 /* "fast-path" to count number of available objects */
4155 if (nr_to_scan == 0) {
17250b71
CW
4156 cnt = 0;
4157 list_for_each_entry(obj,
4158 &dev_priv->mm.inactive_list,
4159 mm_list)
4160 cnt++;
4161 mutex_unlock(&dev->struct_mutex);
4162 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4163 }
4164
1637ef41 4165rescan:
31169714 4166 /* first scan for clean buffers */
17250b71 4167 i915_gem_retire_requests(dev);
31169714 4168
17250b71
CW
4169 list_for_each_entry_safe(obj, next,
4170 &dev_priv->mm.inactive_list,
4171 mm_list) {
4172 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4173 if (i915_gem_object_unbind(obj) == 0 &&
4174 --nr_to_scan == 0)
17250b71 4175 break;
31169714 4176 }
31169714
CW
4177 }
4178
4179 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4180 cnt = 0;
4181 list_for_each_entry_safe(obj, next,
4182 &dev_priv->mm.inactive_list,
4183 mm_list) {
2021746e
CW
4184 if (nr_to_scan &&
4185 i915_gem_object_unbind(obj) == 0)
17250b71 4186 nr_to_scan--;
2021746e 4187 else
17250b71
CW
4188 cnt++;
4189 }
4190
4191 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4192 /*
4193 * We are desperate for pages, so as a last resort, wait
4194 * for the GPU to finish and discard whatever we can.
4195 * This has a dramatic impact to reduce the number of
4196 * OOM-killer events whilst running the GPU aggressively.
4197 */
17250b71 4198 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4199 goto rescan;
4200 }
17250b71
CW
4201 mutex_unlock(&dev->struct_mutex);
4202 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4203}
This page took 0.791262 seconds and 5 git commands to generate.