drm/i915: Hook up pfit for DSI
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61}
62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
c20e8355 67 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
c20e8355 70 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
71}
72
73static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
c20e8355 76 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
c20e8355 79 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
80}
81
21dd3734 82static int
33196ded 83i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 84{
30dbf0c0
CW
85 int ret;
86
d98c52cf 87 if (!i915_reset_in_progress(error))
30dbf0c0
CW
88 return 0;
89
0a6759c6
DV
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
1f83fee0 95 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 96 !i915_reset_in_progress(error),
1f83fee0 97 10*HZ);
0a6759c6
DV
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
30dbf0c0 102 return ret;
d98c52cf
CW
103 } else {
104 return 0;
0a6759c6 105 }
30dbf0c0
CW
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 109{
33196ded 110 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
111 int ret;
112
33196ded 113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
23bc5982 121 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
122 return 0;
123}
30dbf0c0 124
5a125c3c
EA
125int
126i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 127 struct drm_file *file)
5a125c3c 128{
72e96d64 129 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 131 struct drm_i915_gem_get_aperture *args = data;
ca1543be 132 struct i915_vma *vma;
6299f992 133 size_t pinned;
5a125c3c 134
6299f992 135 pinned = 0;
73aa808f 136 mutex_lock(&dev->struct_mutex);
1c7f4bca 137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
138 if (vma->pin_count)
139 pinned += vma->node.size;
1c7f4bca 140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
141 if (vma->pin_count)
142 pinned += vma->node.size;
73aa808f 143 mutex_unlock(&dev->struct_mutex);
5a125c3c 144
72e96d64 145 args->aper_size = ggtt->base.total;
0206e353 146 args->aper_available_size = args->aper_size - pinned;
6299f992 147
5a125c3c
EA
148 return 0;
149}
150
6a2c4232
CW
151static int
152i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 153{
6a2c4232
CW
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
00731155 159
6a2c4232
CW
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
09cbfeaf 176 put_page(page);
6a2c4232
CW
177 vaddr += PAGE_SIZE;
178 }
179
180 i915_gem_chipset_flush(obj->base.dev);
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
00731155 194
6a2c4232
CW
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
6a2c4232
CW
199 return 0;
200}
201
202static void
203i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204{
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 208
6a2c4232 209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 210 if (WARN_ON(ret)) {
6a2c4232
CW
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
6a2c4232
CW
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
00731155 221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 222 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
00731155 240 mark_page_accessed(page);
09cbfeaf 241 put_page(page);
00731155
CW
242 vaddr += PAGE_SIZE;
243 }
6a2c4232 244 obj->dirty = 0;
00731155
CW
245 }
246
6a2c4232
CW
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
6a2c4232
CW
249}
250
251static void
252i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253{
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255}
256
257static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261};
262
263static int
264drop_pages(struct drm_i915_gem_object *obj)
265{
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
1c7f4bca 270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
00731155
CW
278}
279
280int
281i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283{
284 drm_dma_handle_t *phys;
6a2c4232 285 int ret;
00731155
CW
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
6a2c4232
CW
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
00731155
CW
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
00731155 309 obj->phys_handle = phys;
6a2c4232
CW
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
00731155
CW
313}
314
315static int
316i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319{
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 323 int ret = 0;
6a2c4232
CW
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
00731155 331
77a0d1ca 332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
00731155
CW
347 }
348
6a2c4232 349 drm_clflush_virt_range(vaddr, args->size);
00731155 350 i915_gem_chipset_flush(dev);
063e4e6b
PZ
351
352out:
de152b62 353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 354 return ret;
00731155
CW
355}
356
42dcedd4
CW
357void *i915_gem_object_alloc(struct drm_device *dev)
358{
359 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
361}
362
363void i915_gem_object_free(struct drm_i915_gem_object *obj)
364{
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 366 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
367}
368
ff72145b
DA
369static int
370i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
673a394b 374{
05394f39 375 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
376 int ret;
377 u32 handle;
673a394b 378
ff72145b 379 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
380 if (size == 0)
381 return -EINVAL;
673a394b
EA
382
383 /* Allocate the new object */
ff72145b 384 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
385 if (obj == NULL)
386 return -ENOMEM;
387
05394f39 388 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 389 /* drop reference from allocate - handle holds it now */
d861e338
DV
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
202f2fef 393
ff72145b 394 *handle_p = handle;
673a394b
EA
395 return 0;
396}
397
ff72145b
DA
398int
399i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402{
403 /* have to work out size/pitch and return them */
de45eaf7 404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
da6b51d0 407 args->size, &args->handle);
ff72145b
DA
408}
409
ff72145b
DA
410/**
411 * Creates a new mm object and returns a handle to it.
412 */
413int
414i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416{
417 struct drm_i915_gem_create *args = data;
63ed2cb2 418
ff72145b 419 return i915_gem_create(file, dev,
da6b51d0 420 args->size, &args->handle);
ff72145b
DA
421}
422
8461d226
DV
423static inline int
424__copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427{
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447}
448
8c59967c 449static inline int
4f0c7cfb
BW
450__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
8c59967c
DV
452 int length)
453{
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473}
474
4c914c0c
BV
475/*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482{
483 int ret;
484
485 *needs_clflush = 0;
486
1db6e2e7 487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509}
510
d174bd64
DV
511/* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
eb01459f 514static int
d174bd64
DV
515shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518{
519 char *vaddr;
520 int ret;
521
e7e58eb5 522 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
f60d7f0c 534 return ret ? -EFAULT : 0;
d174bd64
DV
535}
536
23c18c71
DV
537static void
538shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540{
e7e58eb5 541 if (unlikely(swizzled)) {
23c18c71
DV
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557}
558
d174bd64
DV
559/* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561static int
562shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565{
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
23c18c71
DV
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
d174bd64
DV
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
f60d7f0c 585 return ret ? - EFAULT : 0;
d174bd64
DV
586}
587
eb01459f 588static int
dbf7bff0
DV
589i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
eb01459f 593{
8461d226 594 char __user *user_data;
eb01459f 595 ssize_t remain;
8461d226 596 loff_t offset;
eb2c0c81 597 int shmem_page_offset, page_length, ret = 0;
8461d226 598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 599 int prefaulted = 0;
8489731c 600 int needs_clflush = 0;
67d5a50c 601 struct sg_page_iter sg_iter;
eb01459f 602
2bb4629a 603 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
604 remain = args->size;
605
8461d226 606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 607
4c914c0c 608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
609 if (ret)
610 return ret;
611
8461d226 612 offset = args->offset;
eb01459f 613
67d5a50c
ID
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
2db76d7c 616 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
617
618 if (remain <= 0)
619 break;
620
eb01459f
EA
621 /* Operation in this page
622 *
eb01459f 623 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
624 * page_length = bytes to copy for this page
625 */
c8cbbb8b 626 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 630
8461d226
DV
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
d174bd64
DV
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
dbf7bff0 639
dbf7bff0
DV
640 mutex_unlock(&dev->struct_mutex);
641
d330a953 642 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 643 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
eb01459f 651
d174bd64
DV
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
eb01459f 655
dbf7bff0 656 mutex_lock(&dev->struct_mutex);
f60d7f0c 657
f60d7f0c 658 if (ret)
8461d226 659 goto out;
8461d226 660
17793c9a 661next_page:
eb01459f 662 remain -= page_length;
8461d226 663 user_data += page_length;
eb01459f
EA
664 offset += page_length;
665 }
666
4f27b75d 667out:
f60d7f0c
CW
668 i915_gem_object_unpin_pages(obj);
669
eb01459f
EA
670 return ret;
671}
672
673a394b
EA
673/**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678int
679i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 680 struct drm_file *file)
673a394b
EA
681{
682 struct drm_i915_gem_pread *args = data;
05394f39 683 struct drm_i915_gem_object *obj;
35b62a89 684 int ret = 0;
673a394b 685
51311d0a
CW
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
2bb4629a 690 to_user_ptr(args->data_ptr),
51311d0a
CW
691 args->size))
692 return -EFAULT;
693
4f27b75d 694 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 695 if (ret)
4f27b75d 696 return ret;
673a394b 697
05394f39 698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 699 if (&obj->base == NULL) {
1d7cfea1
CW
700 ret = -ENOENT;
701 goto unlock;
4f27b75d 702 }
673a394b 703
7dcd2499 704 /* Bounds check source. */
05394f39
CW
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
ce9d419d 707 ret = -EINVAL;
35b62a89 708 goto out;
ce9d419d
CW
709 }
710
1286ff73
DV
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
db53a302
CW
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
dbf7bff0 721 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 722
35b62a89 723out:
05394f39 724 drm_gem_object_unreference(&obj->base);
1d7cfea1 725unlock:
4f27b75d 726 mutex_unlock(&dev->struct_mutex);
eb01459f 727 return ret;
673a394b
EA
728}
729
0839ccb8
KP
730/* This is the fast write path which cannot handle
731 * page faults in the source data
9b7530cc 732 */
0839ccb8
KP
733
734static inline int
735fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
9b7530cc 739{
4f0c7cfb
BW
740 void __iomem *vaddr_atomic;
741 void *vaddr;
0839ccb8 742 unsigned long unwritten;
9b7530cc 743
3e4d3af5 744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 748 user_data, length);
3e4d3af5 749 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 750 return unwritten;
0839ccb8
KP
751}
752
3de09aa3
EA
753/**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
673a394b 757static int
05394f39
CW
758i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
3de09aa3 760 struct drm_i915_gem_pwrite *args,
05394f39 761 struct drm_file *file)
673a394b 762{
72e96d64
JL
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
673a394b 765 ssize_t remain;
0839ccb8 766 loff_t offset, page_base;
673a394b 767 char __user *user_data;
935aaa69
DV
768 int page_offset, page_length, ret;
769
1ec9e26d 770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
673a394b 781
2bb4629a 782 user_data = to_user_ptr(args->data_ptr);
673a394b 783 remain = args->size;
673a394b 784
f343c5f6 785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 786
77a0d1ca 787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 788
673a394b
EA
789 while (remain > 0) {
790 /* Operation in this page
791 *
0839ccb8
KP
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
673a394b 795 */
c8cbbb8b
CW
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
0839ccb8
KP
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
0839ccb8 802 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
0839ccb8 805 */
72e96d64 806 if (fast_user_write(ggtt->mappable, page_base,
935aaa69
DV
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
063e4e6b 809 goto out_flush;
935aaa69 810 }
673a394b 811
0839ccb8
KP
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
673a394b 815 }
673a394b 816
063e4e6b 817out_flush:
de152b62 818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 819out_unpin:
d7f46fc4 820 i915_gem_object_ggtt_unpin(obj);
935aaa69 821out:
3de09aa3 822 return ret;
673a394b
EA
823}
824
d174bd64
DV
825/* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
3043c60c 829static int
d174bd64
DV
830shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
673a394b 835{
d174bd64 836 char *vaddr;
673a394b 837 int ret;
3de09aa3 838
e7e58eb5 839 if (unlikely(page_do_bit17_swizzling))
d174bd64 840 return -EINVAL;
3de09aa3 841
d174bd64
DV
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
c2831a94
CW
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
d174bd64
DV
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
3de09aa3 852
755d2218 853 return ret ? -EFAULT : 0;
3de09aa3
EA
854}
855
d174bd64
DV
856/* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
3043c60c 858static int
d174bd64
DV
859shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
673a394b 864{
d174bd64
DV
865 char *vaddr;
866 int ret;
e5281ccd 867
d174bd64 868 vaddr = kmap(page);
e7e58eb5 869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
d174bd64
DV
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
875 user_data,
876 page_length);
d174bd64
DV
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
23c18c71
DV
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
d174bd64 885 kunmap(page);
40123c1f 886
755d2218 887 return ret ? -EFAULT : 0;
40123c1f
EA
888}
889
40123c1f 890static int
e244a443
DV
891i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
40123c1f 895{
40123c1f 896 ssize_t remain;
8c59967c
DV
897 loff_t offset;
898 char __user *user_data;
eb2c0c81 899 int shmem_page_offset, page_length, ret = 0;
8c59967c 900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 901 int hit_slowpath = 0;
58642885
DV
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
67d5a50c 904 struct sg_page_iter sg_iter;
40123c1f 905
2bb4629a 906 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
907 remain = args->size;
908
8c59967c 909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 910
58642885
DV
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
2c22569b 916 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
58642885 920 }
c76ce038
CW
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 926
755d2218
CW
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
77a0d1ca 931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 932
755d2218
CW
933 i915_gem_object_pin_pages(obj);
934
673a394b 935 offset = args->offset;
05394f39 936 obj->dirty = 1;
673a394b 937
67d5a50c
ID
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
2db76d7c 940 struct page *page = sg_page_iter_page(&sg_iter);
58642885 941 int partial_cacheline_write;
e5281ccd 942
9da3da66
CW
943 if (remain <= 0)
944 break;
945
40123c1f
EA
946 /* Operation in this page
947 *
40123c1f 948 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
949 * page_length = bytes to copy for this page
950 */
c8cbbb8b 951 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 956
58642885
DV
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
8c59967c
DV
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
d174bd64
DV
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
e244a443
DV
973
974 hit_slowpath = 1;
e244a443 975 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
40123c1f 980
e244a443 981 mutex_lock(&dev->struct_mutex);
755d2218 982
755d2218 983 if (ret)
8c59967c 984 goto out;
8c59967c 985
17793c9a 986next_page:
40123c1f 987 remain -= page_length;
8c59967c 988 user_data += page_length;
40123c1f 989 offset += page_length;
673a394b
EA
990 }
991
fbd5a26d 992out:
755d2218
CW
993 i915_gem_object_unpin_pages(obj);
994
e244a443 995 if (hit_slowpath) {
8dcf015e
DV
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1003 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1004 needs_clflush_after = true;
e244a443 1005 }
8c59967c 1006 }
673a394b 1007
58642885 1008 if (needs_clflush_after)
e76e9aeb 1009 i915_gem_chipset_flush(dev);
ed75a55b
VS
1010 else
1011 obj->cache_dirty = true;
58642885 1012
de152b62 1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1014 return ret;
673a394b
EA
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1024 struct drm_file *file)
673a394b 1025{
5d77d9c5 1026 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1027 struct drm_i915_gem_pwrite *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
51311d0a
CW
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
2bb4629a 1035 to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
d330a953 1039 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1040 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
673a394b 1045
5d77d9c5
ID
1046 intel_runtime_pm_get(dev_priv);
1047
fbd5a26d 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
5d77d9c5 1050 goto put_rpm;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
fbd5a26d 1056 }
673a394b 1057
7dcd2499 1058 /* Bounds check destination. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
35b62a89 1062 goto out;
ce9d419d
CW
1063 }
1064
1286ff73
DV
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
db53a302
CW
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
935aaa69 1075 ret = -EFAULT;
673a394b
EA
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
2c22569b
CW
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
fbd5a26d 1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1089 }
673a394b 1090
6a2c4232
CW
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
5c0480f2 1097
35b62a89 1098out:
05394f39 1099 drm_gem_object_unreference(&obj->base);
1d7cfea1 1100unlock:
fbd5a26d 1101 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1102put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
673a394b
EA
1105 return ret;
1106}
1107
f4457ae7
CW
1108static int
1109i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1110{
f4457ae7
CW
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
d98c52cf 1113
f4457ae7 1114 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
d98c52cf 1120 return -EAGAIN;
b361237b
CW
1121 }
1122
1123 return 0;
1124}
1125
094f9a54
CW
1126static void fake_irq(unsigned long data)
1127{
1128 wake_up_process((struct task_struct *)data);
1129}
1130
1131static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1132 struct intel_engine_cs *engine)
094f9a54 1133{
0bc40be8 1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1135}
1136
ca5b721e
CW
1137static unsigned long local_clock_us(unsigned *cpu)
1138{
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157}
1158
1159static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160{
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167}
1168
91b0c352 1169static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1170{
2def4ad9 1171 unsigned long timeout;
ca5b721e
CW
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
2def4ad9 1183
4a570db5 1184 if (req->engine->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
821485dc
CW
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
ca5b721e 1191 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1192 while (!need_resched()) {
eed29a5b 1193 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1194 return 0;
1195
91b0c352
CW
1196 if (signal_pending_state(state, current))
1197 break;
1198
ca5b721e 1199 if (busywait_stop(timeout, cpu))
2def4ad9 1200 break;
b29c19b6 1201
2def4ad9
CW
1202 cpu_relax_lowlatency();
1203 }
821485dc 1204
eed29a5b 1205 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1206 return 0;
1207
1208 return -EAGAIN;
b29c19b6
CW
1209}
1210
b361237b 1211/**
9c654818
JH
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
b361237b
CW
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
f69061be
DV
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
9c654818 1224 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1225 * errno with remaining time filled in timeout argument.
1226 */
9c654818 1227int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1228 bool interruptible,
5ed0bdf2 1229 s64 *timeout,
2e1b8730 1230 struct intel_rps_client *rps)
b361237b 1231{
666796da 1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
e2f80391 1233 struct drm_device *dev = engine->dev;
3e31c6c0 1234 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21 1235 const bool irq_test_in_progress =
666796da 1236 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1237 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1238 DEFINE_WAIT(wait);
47e9766d 1239 unsigned long timeout_expire;
e0313db0 1240 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1241 int ret;
1242
9df7575f 1243 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1244
b4716185
CW
1245 if (list_empty(&req->list))
1246 return 0;
1247
1b5a433a 1248 if (i915_gem_request_completed(req, true))
b361237b
CW
1249 return 0;
1250
bb6d1984
CW
1251 timeout_expire = 0;
1252 if (timeout) {
1253 if (WARN_ON(*timeout < 0))
1254 return -EINVAL;
1255
1256 if (*timeout == 0)
1257 return -ETIME;
1258
1259 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1260
1261 /*
1262 * Record current time in case interrupted by signal, or wedged.
1263 */
1264 before = ktime_get_raw_ns();
bb6d1984 1265 }
b361237b 1266
2e1b8730 1267 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1268 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1269
74328ee5 1270 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1271
1272 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1273 ret = __i915_spin_request(req, state);
2def4ad9
CW
1274 if (ret == 0)
1275 goto out;
1276
e2f80391 1277 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1278 ret = -ENODEV;
1279 goto out;
1280 }
1281
094f9a54
CW
1282 for (;;) {
1283 struct timer_list timer;
b361237b 1284
e2f80391 1285 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1286
f69061be 1287 /* We need to check whether any gpu reset happened in between
f4457ae7
CW
1288 * the request being submitted and now. If a reset has occurred,
1289 * the request is effectively complete (we either are in the
1290 * process of or have discarded the rendering and completely
1291 * reset the GPU. The results of the request are lost and we
1292 * are free to continue on with the original operation.
1293 */
299259a3 1294 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
f4457ae7 1295 ret = 0;
094f9a54
CW
1296 break;
1297 }
f69061be 1298
1b5a433a 1299 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1300 ret = 0;
1301 break;
1302 }
b361237b 1303
91b0c352 1304 if (signal_pending_state(state, current)) {
094f9a54
CW
1305 ret = -ERESTARTSYS;
1306 break;
1307 }
1308
47e9766d 1309 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1310 ret = -ETIME;
1311 break;
1312 }
1313
1314 timer.function = NULL;
e2f80391 1315 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1316 unsigned long expire;
1317
094f9a54 1318 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1319 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1320 mod_timer(&timer, expire);
1321 }
1322
5035c275 1323 io_schedule();
094f9a54 1324
094f9a54
CW
1325 if (timer.function) {
1326 del_singleshot_timer_sync(&timer);
1327 destroy_timer_on_stack(&timer);
1328 }
1329 }
168c3f21 1330 if (!irq_test_in_progress)
e2f80391 1331 engine->irq_put(engine);
094f9a54 1332
e2f80391 1333 finish_wait(&engine->irq_queue, &wait);
b361237b 1334
2def4ad9 1335out:
2def4ad9
CW
1336 trace_i915_gem_request_wait_end(req);
1337
b361237b 1338 if (timeout) {
e0313db0 1339 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1340
1341 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1342
1343 /*
1344 * Apparently ktime isn't accurate enough and occasionally has a
1345 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346 * things up to make the test happy. We allow up to 1 jiffy.
1347 *
1348 * This is a regrssion from the timespec->ktime conversion.
1349 */
1350 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351 *timeout = 0;
b361237b
CW
1352 }
1353
094f9a54 1354 return ret;
b361237b
CW
1355}
1356
fcfa423c
JH
1357int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358 struct drm_file *file)
1359{
fcfa423c
JH
1360 struct drm_i915_file_private *file_priv;
1361
1362 WARN_ON(!req || !file || req->file_priv);
1363
1364 if (!req || !file)
1365 return -EINVAL;
1366
1367 if (req->file_priv)
1368 return -EINVAL;
1369
fcfa423c
JH
1370 file_priv = file->driver_priv;
1371
1372 spin_lock(&file_priv->mm.lock);
1373 req->file_priv = file_priv;
1374 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375 spin_unlock(&file_priv->mm.lock);
1376
1377 req->pid = get_pid(task_pid(current));
1378
1379 return 0;
1380}
1381
b4716185
CW
1382static inline void
1383i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384{
1385 struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387 if (!file_priv)
1388 return;
1389
1390 spin_lock(&file_priv->mm.lock);
1391 list_del(&request->client_list);
1392 request->file_priv = NULL;
1393 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1394
1395 put_pid(request->pid);
1396 request->pid = NULL;
b4716185
CW
1397}
1398
1399static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400{
1401 trace_i915_gem_request_retire(request);
1402
1403 /* We know the GPU must have read the request to have
1404 * sent us the seqno + interrupt, so use the position
1405 * of tail of the request to update the last known position
1406 * of the GPU head.
1407 *
1408 * Note this requires that we are always called in request
1409 * completion order.
1410 */
1411 request->ringbuf->last_retired_head = request->postfix;
1412
1413 list_del_init(&request->list);
1414 i915_gem_request_remove_from_client(request);
1415
b4716185
CW
1416 i915_gem_request_unreference(request);
1417}
1418
1419static void
1420__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1421{
4a570db5 1422 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1423 struct drm_i915_gem_request *tmp;
1424
1425 lockdep_assert_held(&engine->dev->struct_mutex);
1426
1427 if (list_empty(&req->list))
1428 return;
1429
1430 do {
1431 tmp = list_first_entry(&engine->request_list,
1432 typeof(*tmp), list);
1433
1434 i915_gem_request_retire(tmp);
1435 } while (tmp != req);
1436
1437 WARN_ON(i915_verify_lists(engine->dev));
1438}
1439
b361237b 1440/**
a4b3a571 1441 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1442 * request and object lists appropriately for that event.
1443 */
1444int
a4b3a571 1445i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1446{
a4b3a571
DV
1447 struct drm_device *dev;
1448 struct drm_i915_private *dev_priv;
1449 bool interruptible;
b361237b
CW
1450 int ret;
1451
a4b3a571
DV
1452 BUG_ON(req == NULL);
1453
4a570db5 1454 dev = req->engine->dev;
a4b3a571
DV
1455 dev_priv = dev->dev_private;
1456 interruptible = dev_priv->mm.interruptible;
1457
b361237b 1458 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1459
299259a3 1460 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1461 if (ret)
1462 return ret;
d26e3af8 1463
b4716185 1464 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1465 return 0;
1466}
1467
b361237b
CW
1468/**
1469 * Ensures that all rendering to the object has completed and the object is
1470 * safe to unbind from the GTT or access from the CPU.
1471 */
2e2f351d 1472int
b361237b
CW
1473i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1474 bool readonly)
1475{
b4716185 1476 int ret, i;
b361237b 1477
b4716185 1478 if (!obj->active)
b361237b
CW
1479 return 0;
1480
b4716185
CW
1481 if (readonly) {
1482 if (obj->last_write_req != NULL) {
1483 ret = i915_wait_request(obj->last_write_req);
1484 if (ret)
1485 return ret;
b361237b 1486
4a570db5 1487 i = obj->last_write_req->engine->id;
b4716185
CW
1488 if (obj->last_read_req[i] == obj->last_write_req)
1489 i915_gem_object_retire__read(obj, i);
1490 else
1491 i915_gem_object_retire__write(obj);
1492 }
1493 } else {
666796da 1494 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1495 if (obj->last_read_req[i] == NULL)
1496 continue;
1497
1498 ret = i915_wait_request(obj->last_read_req[i]);
1499 if (ret)
1500 return ret;
1501
1502 i915_gem_object_retire__read(obj, i);
1503 }
d501b1d2 1504 GEM_BUG_ON(obj->active);
b4716185
CW
1505 }
1506
1507 return 0;
1508}
1509
1510static void
1511i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1512 struct drm_i915_gem_request *req)
1513{
4a570db5 1514 int ring = req->engine->id;
b4716185
CW
1515
1516 if (obj->last_read_req[ring] == req)
1517 i915_gem_object_retire__read(obj, ring);
1518 else if (obj->last_write_req == req)
1519 i915_gem_object_retire__write(obj);
1520
1521 __i915_gem_request_retire__upto(req);
b361237b
CW
1522}
1523
3236f57a
CW
1524/* A nonblocking variant of the above wait. This is a highly dangerous routine
1525 * as the object state may change during this call.
1526 */
1527static __must_check int
1528i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1529 struct intel_rps_client *rps,
3236f57a
CW
1530 bool readonly)
1531{
1532 struct drm_device *dev = obj->base.dev;
1533 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1534 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1535 int ret, i, n = 0;
3236f57a
CW
1536
1537 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1538 BUG_ON(!dev_priv->mm.interruptible);
1539
b4716185 1540 if (!obj->active)
3236f57a
CW
1541 return 0;
1542
b4716185
CW
1543 if (readonly) {
1544 struct drm_i915_gem_request *req;
1545
1546 req = obj->last_write_req;
1547 if (req == NULL)
1548 return 0;
1549
b4716185
CW
1550 requests[n++] = i915_gem_request_reference(req);
1551 } else {
666796da 1552 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1553 struct drm_i915_gem_request *req;
1554
1555 req = obj->last_read_req[i];
1556 if (req == NULL)
1557 continue;
1558
b4716185
CW
1559 requests[n++] = i915_gem_request_reference(req);
1560 }
1561 }
1562
3236f57a 1563 mutex_unlock(&dev->struct_mutex);
299259a3 1564 ret = 0;
b4716185 1565 for (i = 0; ret == 0 && i < n; i++)
299259a3 1566 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1567 mutex_lock(&dev->struct_mutex);
1568
b4716185
CW
1569 for (i = 0; i < n; i++) {
1570 if (ret == 0)
1571 i915_gem_object_retire_request(obj, requests[i]);
1572 i915_gem_request_unreference(requests[i]);
1573 }
1574
1575 return ret;
3236f57a
CW
1576}
1577
2e1b8730
CW
1578static struct intel_rps_client *to_rps_client(struct drm_file *file)
1579{
1580 struct drm_i915_file_private *fpriv = file->driver_priv;
1581 return &fpriv->rps;
1582}
1583
673a394b 1584/**
2ef7eeaa
EA
1585 * Called when user space prepares to use an object with the CPU, either
1586 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1587 */
1588int
1589i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1590 struct drm_file *file)
673a394b
EA
1591{
1592 struct drm_i915_gem_set_domain *args = data;
05394f39 1593 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1594 uint32_t read_domains = args->read_domains;
1595 uint32_t write_domain = args->write_domain;
673a394b
EA
1596 int ret;
1597
2ef7eeaa 1598 /* Only handle setting domains to types used by the CPU. */
21d509e3 1599 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1600 return -EINVAL;
1601
21d509e3 1602 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1603 return -EINVAL;
1604
1605 /* Having something in the write domain implies it's in the read
1606 * domain, and only that read domain. Enforce that in the request.
1607 */
1608 if (write_domain != 0 && read_domains != write_domain)
1609 return -EINVAL;
1610
76c1dec1 1611 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1612 if (ret)
76c1dec1 1613 return ret;
1d7cfea1 1614
05394f39 1615 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1616 if (&obj->base == NULL) {
1d7cfea1
CW
1617 ret = -ENOENT;
1618 goto unlock;
76c1dec1 1619 }
673a394b 1620
3236f57a
CW
1621 /* Try to flush the object off the GPU without holding the lock.
1622 * We will repeat the flush holding the lock in the normal manner
1623 * to catch cases where we are gazumped.
1624 */
6e4930f6 1625 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1626 to_rps_client(file),
6e4930f6 1627 !write_domain);
3236f57a
CW
1628 if (ret)
1629 goto unref;
1630
43566ded 1631 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1632 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1633 else
e47c68e9 1634 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1635
031b698a
DV
1636 if (write_domain != 0)
1637 intel_fb_obj_invalidate(obj,
1638 write_domain == I915_GEM_DOMAIN_GTT ?
1639 ORIGIN_GTT : ORIGIN_CPU);
1640
3236f57a 1641unref:
05394f39 1642 drm_gem_object_unreference(&obj->base);
1d7cfea1 1643unlock:
673a394b
EA
1644 mutex_unlock(&dev->struct_mutex);
1645 return ret;
1646}
1647
1648/**
1649 * Called when user space has done writes to this buffer
1650 */
1651int
1652i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1653 struct drm_file *file)
673a394b
EA
1654{
1655 struct drm_i915_gem_sw_finish *args = data;
05394f39 1656 struct drm_i915_gem_object *obj;
673a394b
EA
1657 int ret = 0;
1658
76c1dec1 1659 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1660 if (ret)
76c1dec1 1661 return ret;
1d7cfea1 1662
05394f39 1663 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1664 if (&obj->base == NULL) {
1d7cfea1
CW
1665 ret = -ENOENT;
1666 goto unlock;
673a394b
EA
1667 }
1668
673a394b 1669 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1670 if (obj->pin_display)
e62b59e4 1671 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1672
05394f39 1673 drm_gem_object_unreference(&obj->base);
1d7cfea1 1674unlock:
673a394b
EA
1675 mutex_unlock(&dev->struct_mutex);
1676 return ret;
1677}
1678
1679/**
1680 * Maps the contents of an object, returning the address it is mapped
1681 * into.
1682 *
1683 * While the mapping holds a reference on the contents of the object, it doesn't
1684 * imply a ref on the object itself.
34367381
DV
1685 *
1686 * IMPORTANT:
1687 *
1688 * DRM driver writers who look a this function as an example for how to do GEM
1689 * mmap support, please don't implement mmap support like here. The modern way
1690 * to implement DRM mmap support is with an mmap offset ioctl (like
1691 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1692 * That way debug tooling like valgrind will understand what's going on, hiding
1693 * the mmap call in a driver private ioctl will break that. The i915 driver only
1694 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1695 */
1696int
1697i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1698 struct drm_file *file)
673a394b
EA
1699{
1700 struct drm_i915_gem_mmap *args = data;
1701 struct drm_gem_object *obj;
673a394b
EA
1702 unsigned long addr;
1703
1816f923
AG
1704 if (args->flags & ~(I915_MMAP_WC))
1705 return -EINVAL;
1706
1707 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1708 return -ENODEV;
1709
05394f39 1710 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1711 if (obj == NULL)
bf79cb91 1712 return -ENOENT;
673a394b 1713
1286ff73
DV
1714 /* prime objects have no backing filp to GEM mmap
1715 * pages from.
1716 */
1717 if (!obj->filp) {
1718 drm_gem_object_unreference_unlocked(obj);
1719 return -EINVAL;
1720 }
1721
6be5ceb0 1722 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1723 PROT_READ | PROT_WRITE, MAP_SHARED,
1724 args->offset);
1816f923
AG
1725 if (args->flags & I915_MMAP_WC) {
1726 struct mm_struct *mm = current->mm;
1727 struct vm_area_struct *vma;
1728
1729 down_write(&mm->mmap_sem);
1730 vma = find_vma(mm, addr);
1731 if (vma)
1732 vma->vm_page_prot =
1733 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1734 else
1735 addr = -ENOMEM;
1736 up_write(&mm->mmap_sem);
1737 }
bc9025bd 1738 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1739 if (IS_ERR((void *)addr))
1740 return addr;
1741
1742 args->addr_ptr = (uint64_t) addr;
1743
1744 return 0;
1745}
1746
de151cf6
JB
1747/**
1748 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1749 * @vma: VMA in question
1750 * @vmf: fault info
de151cf6
JB
1751 *
1752 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1753 * from userspace. The fault handler takes care of binding the object to
1754 * the GTT (if needed), allocating and programming a fence register (again,
1755 * only if needed based on whether the old reg is still valid or the object
1756 * is tiled) and inserting a new PTE into the faulting process.
1757 *
1758 * Note that the faulting process may involve evicting existing objects
1759 * from the GTT and/or fence registers to make room. So performance may
1760 * suffer if the GTT working set is large or there are few fence registers
1761 * left.
1762 */
1763int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1764{
05394f39
CW
1765 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1766 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1767 struct drm_i915_private *dev_priv = to_i915(dev);
1768 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1769 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1770 pgoff_t page_offset;
1771 unsigned long pfn;
1772 int ret = 0;
0f973f27 1773 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1774
f65c9168
PZ
1775 intel_runtime_pm_get(dev_priv);
1776
de151cf6
JB
1777 /* We don't use vmf->pgoff since that has the fake offset */
1778 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1779 PAGE_SHIFT;
1780
d9bc7e9f
CW
1781 ret = i915_mutex_lock_interruptible(dev);
1782 if (ret)
1783 goto out;
a00b10c3 1784
db53a302
CW
1785 trace_i915_gem_object_fault(obj, page_offset, true, write);
1786
6e4930f6
CW
1787 /* Try to flush the object off the GPU first without holding the lock.
1788 * Upon reacquiring the lock, we will perform our sanity checks and then
1789 * repeat the flush holding the lock in the normal manner to catch cases
1790 * where we are gazumped.
1791 */
1792 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1793 if (ret)
1794 goto unlock;
1795
eb119bd6
CW
1796 /* Access to snoopable pages through the GTT is incoherent. */
1797 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1798 ret = -EFAULT;
eb119bd6
CW
1799 goto unlock;
1800 }
1801
c5ad54cf 1802 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1803 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1804 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1805 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1806
c5ad54cf
JL
1807 memset(&view, 0, sizeof(view));
1808 view.type = I915_GGTT_VIEW_PARTIAL;
1809 view.params.partial.offset = rounddown(page_offset, chunk_size);
1810 view.params.partial.size =
1811 min_t(unsigned int,
1812 chunk_size,
1813 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1814 view.params.partial.offset);
1815 }
1816
1817 /* Now pin it into the GTT if needed */
1818 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1819 if (ret)
1820 goto unlock;
4a684a41 1821
c9839303
CW
1822 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1823 if (ret)
1824 goto unpin;
74898d7e 1825
06d98131 1826 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1827 if (ret)
c9839303 1828 goto unpin;
7d1c4804 1829
b90b91d8 1830 /* Finally, remap it using the new GTT offset */
72e96d64 1831 pfn = ggtt->mappable_base +
c5ad54cf 1832 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1833 pfn >>= PAGE_SHIFT;
de151cf6 1834
c5ad54cf
JL
1835 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1836 /* Overriding existing pages in partial view does not cause
1837 * us any trouble as TLBs are still valid because the fault
1838 * is due to userspace losing part of the mapping or never
1839 * having accessed it before (at this partials' range).
1840 */
1841 unsigned long base = vma->vm_start +
1842 (view.params.partial.offset << PAGE_SHIFT);
1843 unsigned int i;
b90b91d8 1844
c5ad54cf
JL
1845 for (i = 0; i < view.params.partial.size; i++) {
1846 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1847 if (ret)
1848 break;
1849 }
1850
1851 obj->fault_mappable = true;
c5ad54cf
JL
1852 } else {
1853 if (!obj->fault_mappable) {
1854 unsigned long size = min_t(unsigned long,
1855 vma->vm_end - vma->vm_start,
1856 obj->base.size);
1857 int i;
1858
1859 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1860 ret = vm_insert_pfn(vma,
1861 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1862 pfn + i);
1863 if (ret)
1864 break;
1865 }
1866
1867 obj->fault_mappable = true;
1868 } else
1869 ret = vm_insert_pfn(vma,
1870 (unsigned long)vmf->virtual_address,
1871 pfn + page_offset);
1872 }
c9839303 1873unpin:
c5ad54cf 1874 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1875unlock:
de151cf6 1876 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1877out:
de151cf6 1878 switch (ret) {
d9bc7e9f 1879 case -EIO:
2232f031
DV
1880 /*
1881 * We eat errors when the gpu is terminally wedged to avoid
1882 * userspace unduly crashing (gl has no provisions for mmaps to
1883 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1884 * and so needs to be reported.
1885 */
1886 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1887 ret = VM_FAULT_SIGBUS;
1888 break;
1889 }
045e769a 1890 case -EAGAIN:
571c608d
DV
1891 /*
1892 * EAGAIN means the gpu is hung and we'll wait for the error
1893 * handler to reset everything when re-faulting in
1894 * i915_mutex_lock_interruptible.
d9bc7e9f 1895 */
c715089f
CW
1896 case 0:
1897 case -ERESTARTSYS:
bed636ab 1898 case -EINTR:
e79e0fe3
DR
1899 case -EBUSY:
1900 /*
1901 * EBUSY is ok: this just means that another thread
1902 * already did the job.
1903 */
f65c9168
PZ
1904 ret = VM_FAULT_NOPAGE;
1905 break;
de151cf6 1906 case -ENOMEM:
f65c9168
PZ
1907 ret = VM_FAULT_OOM;
1908 break;
a7c2e1aa 1909 case -ENOSPC:
45d67817 1910 case -EFAULT:
f65c9168
PZ
1911 ret = VM_FAULT_SIGBUS;
1912 break;
de151cf6 1913 default:
a7c2e1aa 1914 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1915 ret = VM_FAULT_SIGBUS;
1916 break;
de151cf6 1917 }
f65c9168
PZ
1918
1919 intel_runtime_pm_put(dev_priv);
1920 return ret;
de151cf6
JB
1921}
1922
901782b2
CW
1923/**
1924 * i915_gem_release_mmap - remove physical page mappings
1925 * @obj: obj in question
1926 *
af901ca1 1927 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1928 * relinquish ownership of the pages back to the system.
1929 *
1930 * It is vital that we remove the page mapping if we have mapped a tiled
1931 * object through the GTT and then lose the fence register due to
1932 * resource pressure. Similarly if the object has been moved out of the
1933 * aperture, than pages mapped into userspace must be revoked. Removing the
1934 * mapping will then trigger a page fault on the next user access, allowing
1935 * fixup by i915_gem_fault().
1936 */
d05ca301 1937void
05394f39 1938i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1939{
349f2ccf
CW
1940 /* Serialisation between user GTT access and our code depends upon
1941 * revoking the CPU's PTE whilst the mutex is held. The next user
1942 * pagefault then has to wait until we release the mutex.
1943 */
1944 lockdep_assert_held(&obj->base.dev->struct_mutex);
1945
6299f992
CW
1946 if (!obj->fault_mappable)
1947 return;
901782b2 1948
6796cb16
DH
1949 drm_vma_node_unmap(&obj->base.vma_node,
1950 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1951
1952 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1953 * memory transactions from userspace before we return. The TLB
1954 * flushing implied above by changing the PTE above *should* be
1955 * sufficient, an extra barrier here just provides us with a bit
1956 * of paranoid documentation about our requirement to serialise
1957 * memory writes before touching registers / GSM.
1958 */
1959 wmb();
1960
6299f992 1961 obj->fault_mappable = false;
901782b2
CW
1962}
1963
eedd10f4
CW
1964void
1965i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1966{
1967 struct drm_i915_gem_object *obj;
1968
1969 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1970 i915_gem_release_mmap(obj);
1971}
1972
0fa87796 1973uint32_t
e28f8711 1974i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1975{
e28f8711 1976 uint32_t gtt_size;
92b88aeb
CW
1977
1978 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1979 tiling_mode == I915_TILING_NONE)
1980 return size;
92b88aeb
CW
1981
1982 /* Previous chips need a power-of-two fence region when tiling */
1983 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1984 gtt_size = 1024*1024;
92b88aeb 1985 else
e28f8711 1986 gtt_size = 512*1024;
92b88aeb 1987
e28f8711
CW
1988 while (gtt_size < size)
1989 gtt_size <<= 1;
92b88aeb 1990
e28f8711 1991 return gtt_size;
92b88aeb
CW
1992}
1993
de151cf6
JB
1994/**
1995 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1996 * @obj: object to check
1997 *
1998 * Return the required GTT alignment for an object, taking into account
5e783301 1999 * potential fence register mapping.
de151cf6 2000 */
d865110c
ID
2001uint32_t
2002i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2003 int tiling_mode, bool fenced)
de151cf6 2004{
de151cf6
JB
2005 /*
2006 * Minimum alignment is 4k (GTT page size), but might be greater
2007 * if a fence register is needed for the object.
2008 */
d865110c 2009 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2010 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2011 return 4096;
2012
a00b10c3
CW
2013 /*
2014 * Previous chips need to be aligned to the size of the smallest
2015 * fence register that can contain the object.
2016 */
e28f8711 2017 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2018}
2019
d8cb5086
CW
2020static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2021{
2022 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2023 int ret;
2024
0de23977 2025 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2026 return 0;
2027
da494d7c
DV
2028 dev_priv->mm.shrinker_no_lock_stealing = true;
2029
d8cb5086
CW
2030 ret = drm_gem_create_mmap_offset(&obj->base);
2031 if (ret != -ENOSPC)
da494d7c 2032 goto out;
d8cb5086
CW
2033
2034 /* Badly fragmented mmap space? The only way we can recover
2035 * space is by destroying unwanted objects. We can't randomly release
2036 * mmap_offsets as userspace expects them to be persistent for the
2037 * lifetime of the objects. The closest we can is to release the
2038 * offsets on purgeable objects by truncating it and marking it purged,
2039 * which prevents userspace from ever using that object again.
2040 */
21ab4e74
CW
2041 i915_gem_shrink(dev_priv,
2042 obj->base.size >> PAGE_SHIFT,
2043 I915_SHRINK_BOUND |
2044 I915_SHRINK_UNBOUND |
2045 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2046 ret = drm_gem_create_mmap_offset(&obj->base);
2047 if (ret != -ENOSPC)
da494d7c 2048 goto out;
d8cb5086
CW
2049
2050 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2051 ret = drm_gem_create_mmap_offset(&obj->base);
2052out:
2053 dev_priv->mm.shrinker_no_lock_stealing = false;
2054
2055 return ret;
d8cb5086
CW
2056}
2057
2058static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2059{
d8cb5086
CW
2060 drm_gem_free_mmap_offset(&obj->base);
2061}
2062
da6b51d0 2063int
ff72145b
DA
2064i915_gem_mmap_gtt(struct drm_file *file,
2065 struct drm_device *dev,
da6b51d0 2066 uint32_t handle,
ff72145b 2067 uint64_t *offset)
de151cf6 2068{
05394f39 2069 struct drm_i915_gem_object *obj;
de151cf6
JB
2070 int ret;
2071
76c1dec1 2072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2073 if (ret)
76c1dec1 2074 return ret;
de151cf6 2075
ff72145b 2076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2077 if (&obj->base == NULL) {
1d7cfea1
CW
2078 ret = -ENOENT;
2079 goto unlock;
2080 }
de151cf6 2081
05394f39 2082 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2083 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2084 ret = -EFAULT;
1d7cfea1 2085 goto out;
ab18282d
CW
2086 }
2087
d8cb5086
CW
2088 ret = i915_gem_object_create_mmap_offset(obj);
2089 if (ret)
2090 goto out;
de151cf6 2091
0de23977 2092 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2093
1d7cfea1 2094out:
05394f39 2095 drm_gem_object_unreference(&obj->base);
1d7cfea1 2096unlock:
de151cf6 2097 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2098 return ret;
de151cf6
JB
2099}
2100
ff72145b
DA
2101/**
2102 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2103 * @dev: DRM device
2104 * @data: GTT mapping ioctl data
2105 * @file: GEM object info
2106 *
2107 * Simply returns the fake offset to userspace so it can mmap it.
2108 * The mmap call will end up in drm_gem_mmap(), which will set things
2109 * up so we can get faults in the handler above.
2110 *
2111 * The fault handler will take care of binding the object into the GTT
2112 * (since it may have been evicted to make room for something), allocating
2113 * a fence register, and mapping the appropriate aperture address into
2114 * userspace.
2115 */
2116int
2117i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2118 struct drm_file *file)
2119{
2120 struct drm_i915_gem_mmap_gtt *args = data;
2121
da6b51d0 2122 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2123}
2124
225067ee
DV
2125/* Immediately discard the backing storage */
2126static void
2127i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2128{
4d6294bf 2129 i915_gem_object_free_mmap_offset(obj);
1286ff73 2130
4d6294bf
CW
2131 if (obj->base.filp == NULL)
2132 return;
e5281ccd 2133
225067ee
DV
2134 /* Our goal here is to return as much of the memory as
2135 * is possible back to the system as we are called from OOM.
2136 * To do this we must instruct the shmfs to drop all of its
2137 * backing pages, *now*.
2138 */
5537252b 2139 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2140 obj->madv = __I915_MADV_PURGED;
2141}
e5281ccd 2142
5537252b
CW
2143/* Try to discard unwanted pages */
2144static void
2145i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2146{
5537252b
CW
2147 struct address_space *mapping;
2148
2149 switch (obj->madv) {
2150 case I915_MADV_DONTNEED:
2151 i915_gem_object_truncate(obj);
2152 case __I915_MADV_PURGED:
2153 return;
2154 }
2155
2156 if (obj->base.filp == NULL)
2157 return;
2158
2159 mapping = file_inode(obj->base.filp)->i_mapping,
2160 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2161}
2162
5cdf5881 2163static void
05394f39 2164i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2165{
90797e6d
ID
2166 struct sg_page_iter sg_iter;
2167 int ret;
1286ff73 2168
05394f39 2169 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2170
6c085a72 2171 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2172 if (WARN_ON(ret)) {
6c085a72
CW
2173 /* In the event of a disaster, abandon all caches and
2174 * hope for the best.
2175 */
2c22569b 2176 i915_gem_clflush_object(obj, true);
6c085a72
CW
2177 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2178 }
2179
e2273302
ID
2180 i915_gem_gtt_finish_object(obj);
2181
6dacfd2f 2182 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2183 i915_gem_object_save_bit_17_swizzle(obj);
2184
05394f39
CW
2185 if (obj->madv == I915_MADV_DONTNEED)
2186 obj->dirty = 0;
3ef94daa 2187
90797e6d 2188 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2189 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2190
05394f39 2191 if (obj->dirty)
9da3da66 2192 set_page_dirty(page);
3ef94daa 2193
05394f39 2194 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2195 mark_page_accessed(page);
3ef94daa 2196
09cbfeaf 2197 put_page(page);
3ef94daa 2198 }
05394f39 2199 obj->dirty = 0;
673a394b 2200
9da3da66
CW
2201 sg_free_table(obj->pages);
2202 kfree(obj->pages);
37e680a1 2203}
6c085a72 2204
dd624afd 2205int
37e680a1
CW
2206i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2207{
2208 const struct drm_i915_gem_object_ops *ops = obj->ops;
2209
2f745ad3 2210 if (obj->pages == NULL)
37e680a1
CW
2211 return 0;
2212
a5570178
CW
2213 if (obj->pages_pin_count)
2214 return -EBUSY;
2215
9843877d 2216 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2217
a2165e31
CW
2218 /* ->put_pages might need to allocate memory for the bit17 swizzle
2219 * array, hence protect them from being reaped by removing them from gtt
2220 * lists early. */
35c20a60 2221 list_del(&obj->global_list);
a2165e31 2222
0a798eb9 2223 if (obj->mapping) {
fb8621d3
CW
2224 if (is_vmalloc_addr(obj->mapping))
2225 vunmap(obj->mapping);
2226 else
2227 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2228 obj->mapping = NULL;
2229 }
2230
37e680a1 2231 ops->put_pages(obj);
05394f39 2232 obj->pages = NULL;
37e680a1 2233
5537252b 2234 i915_gem_object_invalidate(obj);
6c085a72
CW
2235
2236 return 0;
2237}
2238
37e680a1 2239static int
6c085a72 2240i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2241{
6c085a72 2242 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2243 int page_count, i;
2244 struct address_space *mapping;
9da3da66
CW
2245 struct sg_table *st;
2246 struct scatterlist *sg;
90797e6d 2247 struct sg_page_iter sg_iter;
e5281ccd 2248 struct page *page;
90797e6d 2249 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2250 int ret;
6c085a72 2251 gfp_t gfp;
e5281ccd 2252
6c085a72
CW
2253 /* Assert that the object is not currently in any GPU domain. As it
2254 * wasn't in the GTT, there shouldn't be any way it could have been in
2255 * a GPU cache
2256 */
2257 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2258 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2259
9da3da66
CW
2260 st = kmalloc(sizeof(*st), GFP_KERNEL);
2261 if (st == NULL)
2262 return -ENOMEM;
2263
05394f39 2264 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2265 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2266 kfree(st);
e5281ccd 2267 return -ENOMEM;
9da3da66 2268 }
e5281ccd 2269
9da3da66
CW
2270 /* Get the list of pages out of our struct file. They'll be pinned
2271 * at this point until we release them.
2272 *
2273 * Fail silently without starting the shrinker
2274 */
496ad9aa 2275 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2276 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2277 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2278 sg = st->sgl;
2279 st->nents = 0;
2280 for (i = 0; i < page_count; i++) {
6c085a72
CW
2281 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2282 if (IS_ERR(page)) {
21ab4e74
CW
2283 i915_gem_shrink(dev_priv,
2284 page_count,
2285 I915_SHRINK_BOUND |
2286 I915_SHRINK_UNBOUND |
2287 I915_SHRINK_PURGEABLE);
6c085a72
CW
2288 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2289 }
2290 if (IS_ERR(page)) {
2291 /* We've tried hard to allocate the memory by reaping
2292 * our own buffer, now let the real VM do its job and
2293 * go down in flames if truly OOM.
2294 */
6c085a72 2295 i915_gem_shrink_all(dev_priv);
f461d1be 2296 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2297 if (IS_ERR(page)) {
2298 ret = PTR_ERR(page);
6c085a72 2299 goto err_pages;
e2273302 2300 }
6c085a72 2301 }
426729dc
KRW
2302#ifdef CONFIG_SWIOTLB
2303 if (swiotlb_nr_tbl()) {
2304 st->nents++;
2305 sg_set_page(sg, page, PAGE_SIZE, 0);
2306 sg = sg_next(sg);
2307 continue;
2308 }
2309#endif
90797e6d
ID
2310 if (!i || page_to_pfn(page) != last_pfn + 1) {
2311 if (i)
2312 sg = sg_next(sg);
2313 st->nents++;
2314 sg_set_page(sg, page, PAGE_SIZE, 0);
2315 } else {
2316 sg->length += PAGE_SIZE;
2317 }
2318 last_pfn = page_to_pfn(page);
3bbbe706
DV
2319
2320 /* Check that the i965g/gm workaround works. */
2321 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2322 }
426729dc
KRW
2323#ifdef CONFIG_SWIOTLB
2324 if (!swiotlb_nr_tbl())
2325#endif
2326 sg_mark_end(sg);
74ce6b6c
CW
2327 obj->pages = st;
2328
e2273302
ID
2329 ret = i915_gem_gtt_prepare_object(obj);
2330 if (ret)
2331 goto err_pages;
2332
6dacfd2f 2333 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2334 i915_gem_object_do_bit_17_swizzle(obj);
2335
656bfa3a
DV
2336 if (obj->tiling_mode != I915_TILING_NONE &&
2337 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2338 i915_gem_object_pin_pages(obj);
2339
e5281ccd
CW
2340 return 0;
2341
2342err_pages:
90797e6d
ID
2343 sg_mark_end(sg);
2344 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
09cbfeaf 2345 put_page(sg_page_iter_page(&sg_iter));
9da3da66
CW
2346 sg_free_table(st);
2347 kfree(st);
0820baf3
CW
2348
2349 /* shmemfs first checks if there is enough memory to allocate the page
2350 * and reports ENOSPC should there be insufficient, along with the usual
2351 * ENOMEM for a genuine allocation failure.
2352 *
2353 * We use ENOSPC in our driver to mean that we have run out of aperture
2354 * space and so want to translate the error from shmemfs back to our
2355 * usual understanding of ENOMEM.
2356 */
e2273302
ID
2357 if (ret == -ENOSPC)
2358 ret = -ENOMEM;
2359
2360 return ret;
673a394b
EA
2361}
2362
37e680a1
CW
2363/* Ensure that the associated pages are gathered from the backing storage
2364 * and pinned into our object. i915_gem_object_get_pages() may be called
2365 * multiple times before they are released by a single call to
2366 * i915_gem_object_put_pages() - once the pages are no longer referenced
2367 * either as a result of memory pressure (reaping pages under the shrinker)
2368 * or as the object is itself released.
2369 */
2370int
2371i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2372{
2373 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2374 const struct drm_i915_gem_object_ops *ops = obj->ops;
2375 int ret;
2376
2f745ad3 2377 if (obj->pages)
37e680a1
CW
2378 return 0;
2379
43e28f09 2380 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2381 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2382 return -EFAULT;
43e28f09
CW
2383 }
2384
a5570178
CW
2385 BUG_ON(obj->pages_pin_count);
2386
37e680a1
CW
2387 ret = ops->get_pages(obj);
2388 if (ret)
2389 return ret;
2390
35c20a60 2391 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2392
2393 obj->get_page.sg = obj->pages->sgl;
2394 obj->get_page.last = 0;
2395
37e680a1 2396 return 0;
673a394b
EA
2397}
2398
0a798eb9
CW
2399void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2400{
2401 int ret;
2402
2403 lockdep_assert_held(&obj->base.dev->struct_mutex);
2404
2405 ret = i915_gem_object_get_pages(obj);
2406 if (ret)
2407 return ERR_PTR(ret);
2408
2409 i915_gem_object_pin_pages(obj);
2410
2411 if (obj->mapping == NULL) {
0a798eb9 2412 struct page **pages;
0a798eb9 2413
fb8621d3
CW
2414 pages = NULL;
2415 if (obj->base.size == PAGE_SIZE)
2416 obj->mapping = kmap(sg_page(obj->pages->sgl));
2417 else
2418 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2419 sizeof(*pages),
2420 GFP_TEMPORARY);
0a798eb9 2421 if (pages != NULL) {
fb8621d3
CW
2422 struct sg_page_iter sg_iter;
2423 int n;
2424
0a798eb9
CW
2425 n = 0;
2426 for_each_sg_page(obj->pages->sgl, &sg_iter,
2427 obj->pages->nents, 0)
2428 pages[n++] = sg_page_iter_page(&sg_iter);
2429
2430 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2431 drm_free_large(pages);
2432 }
2433 if (obj->mapping == NULL) {
2434 i915_gem_object_unpin_pages(obj);
2435 return ERR_PTR(-ENOMEM);
2436 }
2437 }
2438
2439 return obj->mapping;
2440}
2441
b4716185 2442void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2443 struct drm_i915_gem_request *req)
673a394b 2444{
b4716185 2445 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2446 struct intel_engine_cs *engine;
b2af0376 2447
666796da 2448 engine = i915_gem_request_get_engine(req);
673a394b
EA
2449
2450 /* Add a reference if we're newly entering the active list. */
b4716185 2451 if (obj->active == 0)
05394f39 2452 drm_gem_object_reference(&obj->base);
666796da 2453 obj->active |= intel_engine_flag(engine);
e35a41de 2454
117897f4 2455 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2456 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2457
1c7f4bca 2458 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2459}
2460
b4716185
CW
2461static void
2462i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2463{
d501b1d2
CW
2464 GEM_BUG_ON(obj->last_write_req == NULL);
2465 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2466
2467 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2468 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2469}
2470
caea7476 2471static void
b4716185 2472i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2473{
feb822cf 2474 struct i915_vma *vma;
ce44b0ea 2475
d501b1d2
CW
2476 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2477 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2478
117897f4 2479 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2480 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2481
4a570db5 2482 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2483 i915_gem_object_retire__write(obj);
2484
2485 obj->active &= ~(1 << ring);
2486 if (obj->active)
2487 return;
caea7476 2488
6c246959
CW
2489 /* Bump our place on the bound list to keep it roughly in LRU order
2490 * so that we don't steal from recently used but inactive objects
2491 * (unless we are forced to ofc!)
2492 */
2493 list_move_tail(&obj->global_list,
2494 &to_i915(obj->base.dev)->mm.bound_list);
2495
1c7f4bca
CW
2496 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2497 if (!list_empty(&vma->vm_link))
2498 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2499 }
caea7476 2500
97b2a6a1 2501 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2502 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2503}
2504
9d773091 2505static int
fca26bb4 2506i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2507{
9d773091 2508 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2509 struct intel_engine_cs *engine;
29dcb570 2510 int ret;
53d227f2 2511
107f27a5 2512 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2513 for_each_engine(engine, dev_priv) {
666796da 2514 ret = intel_engine_idle(engine);
107f27a5
CW
2515 if (ret)
2516 return ret;
9d773091 2517 }
9d773091 2518 i915_gem_retire_requests(dev);
107f27a5
CW
2519
2520 /* Finally reset hw state */
29dcb570 2521 for_each_engine(engine, dev_priv)
e2f80391 2522 intel_ring_init_seqno(engine, seqno);
498d2ac1 2523
9d773091 2524 return 0;
53d227f2
DV
2525}
2526
fca26bb4
MK
2527int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2528{
2529 struct drm_i915_private *dev_priv = dev->dev_private;
2530 int ret;
2531
2532 if (seqno == 0)
2533 return -EINVAL;
2534
2535 /* HWS page needs to be set less than what we
2536 * will inject to ring
2537 */
2538 ret = i915_gem_init_seqno(dev, seqno - 1);
2539 if (ret)
2540 return ret;
2541
2542 /* Carefully set the last_seqno value so that wrap
2543 * detection still works
2544 */
2545 dev_priv->next_seqno = seqno;
2546 dev_priv->last_seqno = seqno - 1;
2547 if (dev_priv->last_seqno == 0)
2548 dev_priv->last_seqno--;
2549
2550 return 0;
2551}
2552
9d773091
CW
2553int
2554i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2555{
9d773091
CW
2556 struct drm_i915_private *dev_priv = dev->dev_private;
2557
2558 /* reserve 0 for non-seqno */
2559 if (dev_priv->next_seqno == 0) {
fca26bb4 2560 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2561 if (ret)
2562 return ret;
53d227f2 2563
9d773091
CW
2564 dev_priv->next_seqno = 1;
2565 }
53d227f2 2566
f72b3435 2567 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2568 return 0;
53d227f2
DV
2569}
2570
bf7dc5b7
JH
2571/*
2572 * NB: This function is not allowed to fail. Doing so would mean the the
2573 * request is not being tracked for completion but the work itself is
2574 * going to happen on the hardware. This would be a Bad Thing(tm).
2575 */
75289874 2576void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2577 struct drm_i915_gem_object *obj,
2578 bool flush_caches)
673a394b 2579{
e2f80391 2580 struct intel_engine_cs *engine;
75289874 2581 struct drm_i915_private *dev_priv;
48e29f55 2582 struct intel_ringbuffer *ringbuf;
6d3d8274 2583 u32 request_start;
3cce469c
CW
2584 int ret;
2585
48e29f55 2586 if (WARN_ON(request == NULL))
bf7dc5b7 2587 return;
48e29f55 2588
4a570db5 2589 engine = request->engine;
39dabecd 2590 dev_priv = request->i915;
75289874
JH
2591 ringbuf = request->ringbuf;
2592
29b1b415
JH
2593 /*
2594 * To ensure that this call will not fail, space for its emissions
2595 * should already have been reserved in the ring buffer. Let the ring
2596 * know that it is time to use that space up.
2597 */
2598 intel_ring_reserved_space_use(ringbuf);
2599
48e29f55 2600 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2601 /*
2602 * Emit any outstanding flushes - execbuf can fail to emit the flush
2603 * after having emitted the batchbuffer command. Hence we need to fix
2604 * things up similar to emitting the lazy request. The difference here
2605 * is that the flush _must_ happen before the next request, no matter
2606 * what.
2607 */
5b4a60c2
JH
2608 if (flush_caches) {
2609 if (i915.enable_execlists)
4866d729 2610 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2611 else
4866d729 2612 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2613 /* Not allowed to fail! */
2614 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2615 }
cc889e0f 2616
7c90b7de
CW
2617 trace_i915_gem_request_add(request);
2618
2619 request->head = request_start;
2620
2621 /* Whilst this request exists, batch_obj will be on the
2622 * active_list, and so will hold the active reference. Only when this
2623 * request is retired will the the batch_obj be moved onto the
2624 * inactive_list and lose its active reference. Hence we do not need
2625 * to explicitly hold another reference here.
2626 */
2627 request->batch_obj = obj;
2628
2629 /* Seal the request and mark it as pending execution. Note that
2630 * we may inspect this state, without holding any locks, during
2631 * hangcheck. Hence we apply the barrier to ensure that we do not
2632 * see a more recent value in the hws than we are tracking.
2633 */
2634 request->emitted_jiffies = jiffies;
2635 request->previous_seqno = engine->last_submitted_seqno;
2636 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2637 list_add_tail(&request->list, &engine->request_list);
2638
a71d8d94
CW
2639 /* Record the position of the start of the request so that
2640 * should we detect the updated seqno part-way through the
2641 * GPU processing the request, we never over-estimate the
2642 * position of the head.
2643 */
6d3d8274 2644 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2645
bf7dc5b7 2646 if (i915.enable_execlists)
e2f80391 2647 ret = engine->emit_request(request);
bf7dc5b7 2648 else {
e2f80391 2649 ret = engine->add_request(request);
53292cdb
MT
2650
2651 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2652 }
bf7dc5b7
JH
2653 /* Not allowed to fail! */
2654 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2655
e2f80391 2656 i915_queue_hangcheck(engine->dev);
10cd45b6 2657
87255483
DV
2658 queue_delayed_work(dev_priv->wq,
2659 &dev_priv->mm.retire_work,
2660 round_jiffies_up_relative(HZ));
2661 intel_mark_busy(dev_priv->dev);
cc889e0f 2662
29b1b415
JH
2663 /* Sanity check that the reserved size was large enough. */
2664 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2665}
2666
939fd762 2667static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2668 const struct intel_context *ctx)
be62acb4 2669{
44e2c070 2670 unsigned long elapsed;
be62acb4 2671
44e2c070
MK
2672 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2673
2674 if (ctx->hang_stats.banned)
be62acb4
MK
2675 return true;
2676
676fa572
CW
2677 if (ctx->hang_stats.ban_period_seconds &&
2678 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2679 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2680 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2681 return true;
88b4aa87
MK
2682 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2683 if (i915_stop_ring_allow_warn(dev_priv))
2684 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2685 return true;
3fac8978 2686 }
be62acb4
MK
2687 }
2688
2689 return false;
2690}
2691
939fd762 2692static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2693 struct intel_context *ctx,
b6b0fac0 2694 const bool guilty)
aa60c664 2695{
44e2c070
MK
2696 struct i915_ctx_hang_stats *hs;
2697
2698 if (WARN_ON(!ctx))
2699 return;
aa60c664 2700
44e2c070
MK
2701 hs = &ctx->hang_stats;
2702
2703 if (guilty) {
939fd762 2704 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2705 hs->batch_active++;
2706 hs->guilty_ts = get_seconds();
2707 } else {
2708 hs->batch_pending++;
aa60c664
MK
2709 }
2710}
2711
abfe262a
JH
2712void i915_gem_request_free(struct kref *req_ref)
2713{
2714 struct drm_i915_gem_request *req = container_of(req_ref,
2715 typeof(*req), ref);
2716 struct intel_context *ctx = req->ctx;
2717
fcfa423c
JH
2718 if (req->file_priv)
2719 i915_gem_request_remove_from_client(req);
2720
0794aed3 2721 if (ctx) {
e28e404c 2722 if (i915.enable_execlists && ctx != req->i915->kernel_context)
4a570db5 2723 intel_lr_context_unpin(ctx, req->engine);
abfe262a 2724
dcb4c12a
OM
2725 i915_gem_context_unreference(ctx);
2726 }
abfe262a 2727
efab6d8d 2728 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2729}
2730
26827088 2731static inline int
0bc40be8 2732__i915_gem_request_alloc(struct intel_engine_cs *engine,
26827088
DG
2733 struct intel_context *ctx,
2734 struct drm_i915_gem_request **req_out)
6689cb2b 2735{
0bc40be8 2736 struct drm_i915_private *dev_priv = to_i915(engine->dev);
299259a3 2737 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 2738 struct drm_i915_gem_request *req;
6689cb2b 2739 int ret;
6689cb2b 2740
217e46b5
JH
2741 if (!req_out)
2742 return -EINVAL;
2743
bccca494 2744 *req_out = NULL;
6689cb2b 2745
f4457ae7
CW
2746 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2747 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2748 * and restart.
2749 */
2750 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
2751 if (ret)
2752 return ret;
2753
eed29a5b
DV
2754 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2755 if (req == NULL)
6689cb2b
JH
2756 return -ENOMEM;
2757
0bc40be8 2758 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
9a0c1e27
CW
2759 if (ret)
2760 goto err;
6689cb2b 2761
40e895ce
JH
2762 kref_init(&req->ref);
2763 req->i915 = dev_priv;
4a570db5 2764 req->engine = engine;
299259a3 2765 req->reset_counter = reset_counter;
40e895ce
JH
2766 req->ctx = ctx;
2767 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2768
2769 if (i915.enable_execlists)
40e895ce 2770 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2771 else
eed29a5b 2772 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2773 if (ret) {
2774 i915_gem_context_unreference(req->ctx);
9a0c1e27 2775 goto err;
40e895ce 2776 }
6689cb2b 2777
29b1b415
JH
2778 /*
2779 * Reserve space in the ring buffer for all the commands required to
2780 * eventually emit this request. This is to guarantee that the
2781 * i915_add_request() call can't fail. Note that the reserve may need
2782 * to be redone if the request is not actually submitted straight
2783 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2784 */
ccd98fe4
JH
2785 if (i915.enable_execlists)
2786 ret = intel_logical_ring_reserve_space(req);
2787 else
2788 ret = intel_ring_reserve_space(req);
2789 if (ret) {
2790 /*
2791 * At this point, the request is fully allocated even if not
2792 * fully prepared. Thus it can be cleaned up using the proper
2793 * free code.
2794 */
aa9b7810
CW
2795 intel_ring_reserved_space_cancel(req->ringbuf);
2796 i915_gem_request_unreference(req);
ccd98fe4
JH
2797 return ret;
2798 }
29b1b415 2799
bccca494 2800 *req_out = req;
6689cb2b 2801 return 0;
9a0c1e27
CW
2802
2803err:
2804 kmem_cache_free(dev_priv->requests, req);
2805 return ret;
0e50e96b
MK
2806}
2807
26827088
DG
2808/**
2809 * i915_gem_request_alloc - allocate a request structure
2810 *
2811 * @engine: engine that we wish to issue the request on.
2812 * @ctx: context that the request will be associated with.
2813 * This can be NULL if the request is not directly related to
2814 * any specific user context, in which case this function will
2815 * choose an appropriate context to use.
2816 *
2817 * Returns a pointer to the allocated request if successful,
2818 * or an error code if not.
2819 */
2820struct drm_i915_gem_request *
2821i915_gem_request_alloc(struct intel_engine_cs *engine,
2822 struct intel_context *ctx)
2823{
2824 struct drm_i915_gem_request *req;
2825 int err;
2826
2827 if (ctx == NULL)
ed54c1a1 2828 ctx = to_i915(engine->dev)->kernel_context;
26827088
DG
2829 err = __i915_gem_request_alloc(engine, ctx, &req);
2830 return err ? ERR_PTR(err) : req;
2831}
2832
8d9fc7fd 2833struct drm_i915_gem_request *
0bc40be8 2834i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2835{
4db080f9
CW
2836 struct drm_i915_gem_request *request;
2837
0bc40be8 2838 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2839 if (i915_gem_request_completed(request, false))
4db080f9 2840 continue;
aa60c664 2841
b6b0fac0 2842 return request;
4db080f9 2843 }
b6b0fac0
MK
2844
2845 return NULL;
2846}
2847
666796da 2848static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2849 struct intel_engine_cs *engine)
b6b0fac0
MK
2850{
2851 struct drm_i915_gem_request *request;
2852 bool ring_hung;
2853
0bc40be8 2854 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2855
2856 if (request == NULL)
2857 return;
2858
0bc40be8 2859 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2860
939fd762 2861 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2862
0bc40be8 2863 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2864 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2865}
aa60c664 2866
666796da 2867static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2868 struct intel_engine_cs *engine)
4db080f9 2869{
608c1a52
CW
2870 struct intel_ringbuffer *buffer;
2871
0bc40be8 2872 while (!list_empty(&engine->active_list)) {
05394f39 2873 struct drm_i915_gem_object *obj;
9375e446 2874
0bc40be8 2875 obj = list_first_entry(&engine->active_list,
05394f39 2876 struct drm_i915_gem_object,
117897f4 2877 engine_list[engine->id]);
9375e446 2878
0bc40be8 2879 i915_gem_object_retire__read(obj, engine->id);
673a394b 2880 }
1d62beea 2881
dcb4c12a
OM
2882 /*
2883 * Clear the execlists queue up before freeing the requests, as those
2884 * are the ones that keep the context and ringbuffer backing objects
2885 * pinned in place.
2886 */
dcb4c12a 2887
7de1691a 2888 if (i915.enable_execlists) {
27af5eea
TU
2889 /* Ensure irq handler finishes or is cancelled. */
2890 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2891
27af5eea 2892 spin_lock_bh(&engine->execlist_lock);
c5baa566 2893 /* list_splice_tail_init checks for empty lists */
0bc40be8
TU
2894 list_splice_tail_init(&engine->execlist_queue,
2895 &engine->execlist_retired_req_list);
27af5eea 2896 spin_unlock_bh(&engine->execlist_lock);
1197b4f2 2897
0bc40be8 2898 intel_execlists_retire_requests(engine);
dcb4c12a
OM
2899 }
2900
1d62beea
BW
2901 /*
2902 * We must free the requests after all the corresponding objects have
2903 * been moved off active lists. Which is the same order as the normal
2904 * retire_requests function does. This is important if object hold
2905 * implicit references on things like e.g. ppgtt address spaces through
2906 * the request.
2907 */
0bc40be8 2908 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2909 struct drm_i915_gem_request *request;
2910
0bc40be8 2911 request = list_first_entry(&engine->request_list,
1d62beea
BW
2912 struct drm_i915_gem_request,
2913 list);
2914
b4716185 2915 i915_gem_request_retire(request);
1d62beea 2916 }
608c1a52
CW
2917
2918 /* Having flushed all requests from all queues, we know that all
2919 * ringbuffers must now be empty. However, since we do not reclaim
2920 * all space when retiring the request (to prevent HEADs colliding
2921 * with rapid ringbuffer wraparound) the amount of available space
2922 * upon reset is less than when we start. Do one more pass over
2923 * all the ringbuffers to reset last_retired_head.
2924 */
0bc40be8 2925 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2926 buffer->last_retired_head = buffer->tail;
2927 intel_ring_update_space(buffer);
2928 }
2ed53a94
CW
2929
2930 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
2931}
2932
069efc1d 2933void i915_gem_reset(struct drm_device *dev)
673a394b 2934{
77f01230 2935 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2936 struct intel_engine_cs *engine;
673a394b 2937
4db080f9
CW
2938 /*
2939 * Before we free the objects from the requests, we need to inspect
2940 * them for finding the guilty party. As the requests only borrow
2941 * their reference to the objects, the inspection must be done first.
2942 */
b4ac5afc 2943 for_each_engine(engine, dev_priv)
666796da 2944 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2945
b4ac5afc 2946 for_each_engine(engine, dev_priv)
666796da 2947 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2948
acce9ffa
BW
2949 i915_gem_context_reset(dev);
2950
19b2dbde 2951 i915_gem_restore_fences(dev);
b4716185
CW
2952
2953 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2954}
2955
2956/**
2957 * This function clears the request list as sequence numbers are passed.
2958 */
1cf0ba14 2959void
0bc40be8 2960i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2961{
0bc40be8 2962 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2963
832a3aad
CW
2964 /* Retire requests first as we use it above for the early return.
2965 * If we retire requests last, we may use a later seqno and so clear
2966 * the requests lists without clearing the active list, leading to
2967 * confusion.
e9103038 2968 */
0bc40be8 2969 while (!list_empty(&engine->request_list)) {
673a394b 2970 struct drm_i915_gem_request *request;
673a394b 2971
0bc40be8 2972 request = list_first_entry(&engine->request_list,
673a394b
EA
2973 struct drm_i915_gem_request,
2974 list);
673a394b 2975
1b5a433a 2976 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2977 break;
2978
b4716185 2979 i915_gem_request_retire(request);
b84d5f0c 2980 }
673a394b 2981
832a3aad
CW
2982 /* Move any buffers on the active list that are no longer referenced
2983 * by the ringbuffer to the flushing/inactive lists as appropriate,
2984 * before we free the context associated with the requests.
2985 */
0bc40be8 2986 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2987 struct drm_i915_gem_object *obj;
2988
0bc40be8
TU
2989 obj = list_first_entry(&engine->active_list,
2990 struct drm_i915_gem_object,
117897f4 2991 engine_list[engine->id]);
832a3aad 2992
0bc40be8 2993 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2994 break;
2995
0bc40be8 2996 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2997 }
2998
0bc40be8
TU
2999 if (unlikely(engine->trace_irq_req &&
3000 i915_gem_request_completed(engine->trace_irq_req, true))) {
3001 engine->irq_put(engine);
3002 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 3003 }
23bc5982 3004
0bc40be8 3005 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
3006}
3007
b29c19b6 3008bool
b09a1fec
CW
3009i915_gem_retire_requests(struct drm_device *dev)
3010{
3e31c6c0 3011 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3012 struct intel_engine_cs *engine;
b29c19b6 3013 bool idle = true;
b09a1fec 3014
b4ac5afc 3015 for_each_engine(engine, dev_priv) {
e2f80391
TU
3016 i915_gem_retire_requests_ring(engine);
3017 idle &= list_empty(&engine->request_list);
c86ee3a9 3018 if (i915.enable_execlists) {
27af5eea 3019 spin_lock_bh(&engine->execlist_lock);
e2f80391 3020 idle &= list_empty(&engine->execlist_queue);
27af5eea 3021 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3022
e2f80391 3023 intel_execlists_retire_requests(engine);
c86ee3a9 3024 }
b29c19b6
CW
3025 }
3026
3027 if (idle)
3028 mod_delayed_work(dev_priv->wq,
3029 &dev_priv->mm.idle_work,
3030 msecs_to_jiffies(100));
3031
3032 return idle;
b09a1fec
CW
3033}
3034
75ef9da2 3035static void
673a394b
EA
3036i915_gem_retire_work_handler(struct work_struct *work)
3037{
b29c19b6
CW
3038 struct drm_i915_private *dev_priv =
3039 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3040 struct drm_device *dev = dev_priv->dev;
0a58705b 3041 bool idle;
673a394b 3042
891b48cf 3043 /* Come back later if the device is busy... */
b29c19b6
CW
3044 idle = false;
3045 if (mutex_trylock(&dev->struct_mutex)) {
3046 idle = i915_gem_retire_requests(dev);
3047 mutex_unlock(&dev->struct_mutex);
673a394b 3048 }
b29c19b6 3049 if (!idle)
bcb45086
CW
3050 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3051 round_jiffies_up_relative(HZ));
b29c19b6 3052}
0a58705b 3053
b29c19b6
CW
3054static void
3055i915_gem_idle_work_handler(struct work_struct *work)
3056{
3057 struct drm_i915_private *dev_priv =
3058 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3059 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3060 struct intel_engine_cs *engine;
b29c19b6 3061
b4ac5afc
DG
3062 for_each_engine(engine, dev_priv)
3063 if (!list_empty(&engine->request_list))
423795cb 3064 return;
35c94185 3065
30ecad77 3066 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3067 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3068 * by dev->struct_mutex. */
3069
35c94185
CW
3070 intel_mark_idle(dev);
3071
3072 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3073 for_each_engine(engine, dev_priv)
e2f80391 3074 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3075
35c94185
CW
3076 mutex_unlock(&dev->struct_mutex);
3077 }
673a394b
EA
3078}
3079
30dfebf3
DV
3080/**
3081 * Ensures that an object will eventually get non-busy by flushing any required
3082 * write domains, emitting any outstanding lazy request and retiring and
3083 * completed requests.
3084 */
3085static int
3086i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3087{
a5ac0f90 3088 int i;
b4716185
CW
3089
3090 if (!obj->active)
3091 return 0;
30dfebf3 3092
666796da 3093 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3094 struct drm_i915_gem_request *req;
41c52415 3095
b4716185
CW
3096 req = obj->last_read_req[i];
3097 if (req == NULL)
3098 continue;
3099
3100 if (list_empty(&req->list))
3101 goto retire;
3102
b4716185
CW
3103 if (i915_gem_request_completed(req, true)) {
3104 __i915_gem_request_retire__upto(req);
3105retire:
3106 i915_gem_object_retire__read(obj, i);
3107 }
30dfebf3
DV
3108 }
3109
3110 return 0;
3111}
3112
23ba4fd0
BW
3113/**
3114 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3115 * @DRM_IOCTL_ARGS: standard ioctl arguments
3116 *
3117 * Returns 0 if successful, else an error is returned with the remaining time in
3118 * the timeout parameter.
3119 * -ETIME: object is still busy after timeout
3120 * -ERESTARTSYS: signal interrupted the wait
3121 * -ENONENT: object doesn't exist
3122 * Also possible, but rare:
3123 * -EAGAIN: GPU wedged
3124 * -ENOMEM: damn
3125 * -ENODEV: Internal IRQ fail
3126 * -E?: The add request failed
3127 *
3128 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3129 * non-zero timeout parameter the wait ioctl will wait for the given number of
3130 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3131 * without holding struct_mutex the object may become re-busied before this
3132 * function completes. A similar but shorter * race condition exists in the busy
3133 * ioctl
3134 */
3135int
3136i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3137{
3138 struct drm_i915_gem_wait *args = data;
3139 struct drm_i915_gem_object *obj;
666796da 3140 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3141 int i, n = 0;
3142 int ret;
23ba4fd0 3143
11b5d511
DV
3144 if (args->flags != 0)
3145 return -EINVAL;
3146
23ba4fd0
BW
3147 ret = i915_mutex_lock_interruptible(dev);
3148 if (ret)
3149 return ret;
3150
3151 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3152 if (&obj->base == NULL) {
3153 mutex_unlock(&dev->struct_mutex);
3154 return -ENOENT;
3155 }
3156
30dfebf3
DV
3157 /* Need to make sure the object gets inactive eventually. */
3158 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3159 if (ret)
3160 goto out;
3161
b4716185 3162 if (!obj->active)
97b2a6a1 3163 goto out;
23ba4fd0 3164
23ba4fd0 3165 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3166 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3167 */
762e4583 3168 if (args->timeout_ns == 0) {
23ba4fd0
BW
3169 ret = -ETIME;
3170 goto out;
3171 }
3172
3173 drm_gem_object_unreference(&obj->base);
b4716185 3174
666796da 3175 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3176 if (obj->last_read_req[i] == NULL)
3177 continue;
3178
3179 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3180 }
3181
23ba4fd0
BW
3182 mutex_unlock(&dev->struct_mutex);
3183
b4716185
CW
3184 for (i = 0; i < n; i++) {
3185 if (ret == 0)
299259a3 3186 ret = __i915_wait_request(req[i], true,
b4716185 3187 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3188 to_rps_client(file));
b4716185
CW
3189 i915_gem_request_unreference__unlocked(req[i]);
3190 }
ff865885 3191 return ret;
23ba4fd0
BW
3192
3193out:
3194 drm_gem_object_unreference(&obj->base);
3195 mutex_unlock(&dev->struct_mutex);
3196 return ret;
3197}
3198
b4716185
CW
3199static int
3200__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3201 struct intel_engine_cs *to,
91af127f
JH
3202 struct drm_i915_gem_request *from_req,
3203 struct drm_i915_gem_request **to_req)
b4716185
CW
3204{
3205 struct intel_engine_cs *from;
3206 int ret;
3207
666796da 3208 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3209 if (to == from)
3210 return 0;
3211
91af127f 3212 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3213 return 0;
3214
b4716185 3215 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3216 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3217 ret = __i915_wait_request(from_req,
a6f766f3
CW
3218 i915->mm.interruptible,
3219 NULL,
3220 &i915->rps.semaphores);
b4716185
CW
3221 if (ret)
3222 return ret;
3223
91af127f 3224 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3225 } else {
3226 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3227 u32 seqno = i915_gem_request_get_seqno(from_req);
3228
3229 WARN_ON(!to_req);
b4716185
CW
3230
3231 if (seqno <= from->semaphore.sync_seqno[idx])
3232 return 0;
3233
91af127f 3234 if (*to_req == NULL) {
26827088
DG
3235 struct drm_i915_gem_request *req;
3236
3237 req = i915_gem_request_alloc(to, NULL);
3238 if (IS_ERR(req))
3239 return PTR_ERR(req);
3240
3241 *to_req = req;
91af127f
JH
3242 }
3243
599d924c
JH
3244 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3245 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3246 if (ret)
3247 return ret;
3248
3249 /* We use last_read_req because sync_to()
3250 * might have just caused seqno wrap under
3251 * the radar.
3252 */
3253 from->semaphore.sync_seqno[idx] =
3254 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3255 }
3256
3257 return 0;
3258}
3259
5816d648
BW
3260/**
3261 * i915_gem_object_sync - sync an object to a ring.
3262 *
3263 * @obj: object which may be in use on another ring.
3264 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3265 * @to_req: request we wish to use the object for. See below.
3266 * This will be allocated and returned if a request is
3267 * required but not passed in.
5816d648
BW
3268 *
3269 * This code is meant to abstract object synchronization with the GPU.
3270 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3271 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3272 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3273 * into a buffer at any time, but multiple readers. To ensure each has
3274 * a coherent view of memory, we must:
3275 *
3276 * - If there is an outstanding write request to the object, the new
3277 * request must wait for it to complete (either CPU or in hw, requests
3278 * on the same ring will be naturally ordered).
3279 *
3280 * - If we are a write request (pending_write_domain is set), the new
3281 * request must wait for outstanding read requests to complete.
5816d648 3282 *
91af127f
JH
3283 * For CPU synchronisation (NULL to) no request is required. For syncing with
3284 * rings to_req must be non-NULL. However, a request does not have to be
3285 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3286 * request will be allocated automatically and returned through *to_req. Note
3287 * that it is not guaranteed that commands will be emitted (because the system
3288 * might already be idle). Hence there is no need to create a request that
3289 * might never have any work submitted. Note further that if a request is
3290 * returned in *to_req, it is the responsibility of the caller to submit
3291 * that request (after potentially adding more work to it).
3292 *
5816d648
BW
3293 * Returns 0 if successful, else propagates up the lower layer error.
3294 */
2911a35b
BW
3295int
3296i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3297 struct intel_engine_cs *to,
3298 struct drm_i915_gem_request **to_req)
2911a35b 3299{
b4716185 3300 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3301 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3302 int ret, i, n;
41c52415 3303
b4716185 3304 if (!obj->active)
2911a35b
BW
3305 return 0;
3306
b4716185
CW
3307 if (to == NULL)
3308 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3309
b4716185
CW
3310 n = 0;
3311 if (readonly) {
3312 if (obj->last_write_req)
3313 req[n++] = obj->last_write_req;
3314 } else {
666796da 3315 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3316 if (obj->last_read_req[i])
3317 req[n++] = obj->last_read_req[i];
3318 }
3319 for (i = 0; i < n; i++) {
91af127f 3320 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3321 if (ret)
3322 return ret;
3323 }
2911a35b 3324
b4716185 3325 return 0;
2911a35b
BW
3326}
3327
b5ffc9bc
CW
3328static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3329{
3330 u32 old_write_domain, old_read_domains;
3331
b5ffc9bc
CW
3332 /* Force a pagefault for domain tracking on next user access */
3333 i915_gem_release_mmap(obj);
3334
b97c3d9c
KP
3335 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3336 return;
3337
b5ffc9bc
CW
3338 old_read_domains = obj->base.read_domains;
3339 old_write_domain = obj->base.write_domain;
3340
3341 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3342 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3343
3344 trace_i915_gem_object_change_domain(obj,
3345 old_read_domains,
3346 old_write_domain);
3347}
3348
e9f24d5f 3349static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3350{
07fe0b12 3351 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3352 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3353 int ret;
673a394b 3354
1c7f4bca 3355 if (list_empty(&vma->obj_link))
673a394b
EA
3356 return 0;
3357
0ff501cb
DV
3358 if (!drm_mm_node_allocated(&vma->node)) {
3359 i915_gem_vma_destroy(vma);
0ff501cb
DV
3360 return 0;
3361 }
433544bd 3362
d7f46fc4 3363 if (vma->pin_count)
31d8d651 3364 return -EBUSY;
673a394b 3365
c4670ad0
CW
3366 BUG_ON(obj->pages == NULL);
3367
e9f24d5f
TU
3368 if (wait) {
3369 ret = i915_gem_object_wait_rendering(obj, false);
3370 if (ret)
3371 return ret;
3372 }
a8198eea 3373
596c5923 3374 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3375 i915_gem_object_finish_gtt(obj);
5323fd04 3376
8b1bc9b4
DV
3377 /* release the fence reg _after_ flushing */
3378 ret = i915_gem_object_put_fence(obj);
3379 if (ret)
3380 return ret;
3381 }
96b47b65 3382
07fe0b12 3383 trace_i915_vma_unbind(vma);
db53a302 3384
777dc5bb 3385 vma->vm->unbind_vma(vma);
5e562f1d 3386 vma->bound = 0;
6f65e29a 3387
1c7f4bca 3388 list_del_init(&vma->vm_link);
596c5923 3389 if (vma->is_ggtt) {
fe14d5f4
TU
3390 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3391 obj->map_and_fenceable = false;
3392 } else if (vma->ggtt_view.pages) {
3393 sg_free_table(vma->ggtt_view.pages);
3394 kfree(vma->ggtt_view.pages);
fe14d5f4 3395 }
016a65a3 3396 vma->ggtt_view.pages = NULL;
fe14d5f4 3397 }
673a394b 3398
2f633156
BW
3399 drm_mm_remove_node(&vma->node);
3400 i915_gem_vma_destroy(vma);
3401
3402 /* Since the unbound list is global, only move to that list if
b93dab6e 3403 * no more VMAs exist. */
e2273302 3404 if (list_empty(&obj->vma_list))
2f633156 3405 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3406
70903c3b
CW
3407 /* And finally now the object is completely decoupled from this vma,
3408 * we can drop its hold on the backing storage and allow it to be
3409 * reaped by the shrinker.
3410 */
3411 i915_gem_object_unpin_pages(obj);
3412
88241785 3413 return 0;
54cf91dc
CW
3414}
3415
e9f24d5f
TU
3416int i915_vma_unbind(struct i915_vma *vma)
3417{
3418 return __i915_vma_unbind(vma, true);
3419}
3420
3421int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3422{
3423 return __i915_vma_unbind(vma, false);
3424}
3425
b2da9fe5 3426int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3427{
3e31c6c0 3428 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3429 struct intel_engine_cs *engine;
b4ac5afc 3430 int ret;
4df2faf4 3431
4df2faf4 3432 /* Flush everything onto the inactive list. */
b4ac5afc 3433 for_each_engine(engine, dev_priv) {
ecdb5fd8 3434 if (!i915.enable_execlists) {
73cfa865
JH
3435 struct drm_i915_gem_request *req;
3436
e2f80391 3437 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3438 if (IS_ERR(req))
3439 return PTR_ERR(req);
73cfa865 3440
ba01cc93 3441 ret = i915_switch_context(req);
75289874 3442 i915_add_request_no_flush(req);
aa9b7810
CW
3443 if (ret)
3444 return ret;
ecdb5fd8 3445 }
b6c7488d 3446
666796da 3447 ret = intel_engine_idle(engine);
1ec14ad3
CW
3448 if (ret)
3449 return ret;
3450 }
4df2faf4 3451
b4716185 3452 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3453 return 0;
4df2faf4
DV
3454}
3455
4144f9b5 3456static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3457 unsigned long cache_level)
3458{
4144f9b5 3459 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3460 struct drm_mm_node *other;
3461
4144f9b5
CW
3462 /*
3463 * On some machines we have to be careful when putting differing types
3464 * of snoopable memory together to avoid the prefetcher crossing memory
3465 * domains and dying. During vm initialisation, we decide whether or not
3466 * these constraints apply and set the drm_mm.color_adjust
3467 * appropriately.
42d6ab48 3468 */
4144f9b5 3469 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3470 return true;
3471
c6cfb325 3472 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3473 return true;
3474
3475 if (list_empty(&gtt_space->node_list))
3476 return true;
3477
3478 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3479 if (other->allocated && !other->hole_follows && other->color != cache_level)
3480 return false;
3481
3482 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3483 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3484 return false;
3485
3486 return true;
3487}
3488
673a394b 3489/**
91e6711e
JL
3490 * Finds free space in the GTT aperture and binds the object or a view of it
3491 * there.
673a394b 3492 */
262de145 3493static struct i915_vma *
07fe0b12
BW
3494i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3495 struct i915_address_space *vm,
ec7adb6e 3496 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3497 unsigned alignment,
ec7adb6e 3498 uint64_t flags)
673a394b 3499{
05394f39 3500 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3501 struct drm_i915_private *dev_priv = to_i915(dev);
3502 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3503 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3504 u32 search_flag, alloc_flag;
3505 u64 start, end;
65bd342f 3506 u64 size, fence_size;
2f633156 3507 struct i915_vma *vma;
07f73f69 3508 int ret;
673a394b 3509
91e6711e
JL
3510 if (i915_is_ggtt(vm)) {
3511 u32 view_size;
3512
3513 if (WARN_ON(!ggtt_view))
3514 return ERR_PTR(-EINVAL);
ec7adb6e 3515
91e6711e
JL
3516 view_size = i915_ggtt_view_size(obj, ggtt_view);
3517
3518 fence_size = i915_gem_get_gtt_size(dev,
3519 view_size,
3520 obj->tiling_mode);
3521 fence_alignment = i915_gem_get_gtt_alignment(dev,
3522 view_size,
3523 obj->tiling_mode,
3524 true);
3525 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3526 view_size,
3527 obj->tiling_mode,
3528 false);
3529 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3530 } else {
3531 fence_size = i915_gem_get_gtt_size(dev,
3532 obj->base.size,
3533 obj->tiling_mode);
3534 fence_alignment = i915_gem_get_gtt_alignment(dev,
3535 obj->base.size,
3536 obj->tiling_mode,
3537 true);
3538 unfenced_alignment =
3539 i915_gem_get_gtt_alignment(dev,
3540 obj->base.size,
3541 obj->tiling_mode,
3542 false);
3543 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3544 }
a00b10c3 3545
101b506a
MT
3546 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3547 end = vm->total;
3548 if (flags & PIN_MAPPABLE)
72e96d64 3549 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3550 if (flags & PIN_ZONE_4G)
48ea1e32 3551 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3552
673a394b 3553 if (alignment == 0)
1ec9e26d 3554 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3555 unfenced_alignment;
1ec9e26d 3556 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3557 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3558 ggtt_view ? ggtt_view->type : 0,
3559 alignment);
262de145 3560 return ERR_PTR(-EINVAL);
673a394b
EA
3561 }
3562
91e6711e
JL
3563 /* If binding the object/GGTT view requires more space than the entire
3564 * aperture has, reject it early before evicting everything in a vain
3565 * attempt to find space.
654fc607 3566 */
91e6711e 3567 if (size > end) {
65bd342f 3568 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3569 ggtt_view ? ggtt_view->type : 0,
3570 size,
1ec9e26d 3571 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3572 end);
262de145 3573 return ERR_PTR(-E2BIG);
654fc607
CW
3574 }
3575
37e680a1 3576 ret = i915_gem_object_get_pages(obj);
6c085a72 3577 if (ret)
262de145 3578 return ERR_PTR(ret);
6c085a72 3579
fbdda6fb
CW
3580 i915_gem_object_pin_pages(obj);
3581
ec7adb6e
JL
3582 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3583 i915_gem_obj_lookup_or_create_vma(obj, vm);
3584
262de145 3585 if (IS_ERR(vma))
bc6bc15b 3586 goto err_unpin;
2f633156 3587
506a8e87
CW
3588 if (flags & PIN_OFFSET_FIXED) {
3589 uint64_t offset = flags & PIN_OFFSET_MASK;
3590
3591 if (offset & (alignment - 1) || offset + size > end) {
3592 ret = -EINVAL;
3593 goto err_free_vma;
3594 }
3595 vma->node.start = offset;
3596 vma->node.size = size;
3597 vma->node.color = obj->cache_level;
3598 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3599 if (ret) {
3600 ret = i915_gem_evict_for_vma(vma);
3601 if (ret == 0)
3602 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3603 }
3604 if (ret)
3605 goto err_free_vma;
101b506a 3606 } else {
506a8e87
CW
3607 if (flags & PIN_HIGH) {
3608 search_flag = DRM_MM_SEARCH_BELOW;
3609 alloc_flag = DRM_MM_CREATE_TOP;
3610 } else {
3611 search_flag = DRM_MM_SEARCH_DEFAULT;
3612 alloc_flag = DRM_MM_CREATE_DEFAULT;
3613 }
101b506a 3614
0a9ae0d7 3615search_free:
506a8e87
CW
3616 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3617 size, alignment,
3618 obj->cache_level,
3619 start, end,
3620 search_flag,
3621 alloc_flag);
3622 if (ret) {
3623 ret = i915_gem_evict_something(dev, vm, size, alignment,
3624 obj->cache_level,
3625 start, end,
3626 flags);
3627 if (ret == 0)
3628 goto search_free;
9731129c 3629
506a8e87
CW
3630 goto err_free_vma;
3631 }
673a394b 3632 }
4144f9b5 3633 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3634 ret = -EINVAL;
bc6bc15b 3635 goto err_remove_node;
673a394b
EA
3636 }
3637
fe14d5f4 3638 trace_i915_vma_bind(vma, flags);
0875546c 3639 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3640 if (ret)
e2273302 3641 goto err_remove_node;
fe14d5f4 3642
35c20a60 3643 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3644 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3645
262de145 3646 return vma;
2f633156 3647
bc6bc15b 3648err_remove_node:
6286ef9b 3649 drm_mm_remove_node(&vma->node);
bc6bc15b 3650err_free_vma:
2f633156 3651 i915_gem_vma_destroy(vma);
262de145 3652 vma = ERR_PTR(ret);
bc6bc15b 3653err_unpin:
2f633156 3654 i915_gem_object_unpin_pages(obj);
262de145 3655 return vma;
673a394b
EA
3656}
3657
000433b6 3658bool
2c22569b
CW
3659i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3660 bool force)
673a394b 3661{
673a394b
EA
3662 /* If we don't have a page list set up, then we're not pinned
3663 * to GPU, and we can ignore the cache flush because it'll happen
3664 * again at bind time.
3665 */
05394f39 3666 if (obj->pages == NULL)
000433b6 3667 return false;
673a394b 3668
769ce464
ID
3669 /*
3670 * Stolen memory is always coherent with the GPU as it is explicitly
3671 * marked as wc by the system, or the system is cache-coherent.
3672 */
6a2c4232 3673 if (obj->stolen || obj->phys_handle)
000433b6 3674 return false;
769ce464 3675
9c23f7fc
CW
3676 /* If the GPU is snooping the contents of the CPU cache,
3677 * we do not need to manually clear the CPU cache lines. However,
3678 * the caches are only snooped when the render cache is
3679 * flushed/invalidated. As we always have to emit invalidations
3680 * and flushes when moving into and out of the RENDER domain, correct
3681 * snooping behaviour occurs naturally as the result of our domain
3682 * tracking.
3683 */
0f71979a
CW
3684 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3685 obj->cache_dirty = true;
000433b6 3686 return false;
0f71979a 3687 }
9c23f7fc 3688
1c5d22f7 3689 trace_i915_gem_object_clflush(obj);
9da3da66 3690 drm_clflush_sg(obj->pages);
0f71979a 3691 obj->cache_dirty = false;
000433b6
CW
3692
3693 return true;
e47c68e9
EA
3694}
3695
3696/** Flushes the GTT write domain for the object if it's dirty. */
3697static void
05394f39 3698i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3699{
1c5d22f7
CW
3700 uint32_t old_write_domain;
3701
05394f39 3702 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3703 return;
3704
63256ec5 3705 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3706 * to it immediately go to main memory as far as we know, so there's
3707 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3708 *
3709 * However, we do have to enforce the order so that all writes through
3710 * the GTT land before any writes to the device, such as updates to
3711 * the GATT itself.
e47c68e9 3712 */
63256ec5
CW
3713 wmb();
3714
05394f39
CW
3715 old_write_domain = obj->base.write_domain;
3716 obj->base.write_domain = 0;
1c5d22f7 3717
de152b62 3718 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3719
1c5d22f7 3720 trace_i915_gem_object_change_domain(obj,
05394f39 3721 obj->base.read_domains,
1c5d22f7 3722 old_write_domain);
e47c68e9
EA
3723}
3724
3725/** Flushes the CPU write domain for the object if it's dirty. */
3726static void
e62b59e4 3727i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3728{
1c5d22f7 3729 uint32_t old_write_domain;
e47c68e9 3730
05394f39 3731 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3732 return;
3733
e62b59e4 3734 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3735 i915_gem_chipset_flush(obj->base.dev);
3736
05394f39
CW
3737 old_write_domain = obj->base.write_domain;
3738 obj->base.write_domain = 0;
1c5d22f7 3739
de152b62 3740 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3741
1c5d22f7 3742 trace_i915_gem_object_change_domain(obj,
05394f39 3743 obj->base.read_domains,
1c5d22f7 3744 old_write_domain);
e47c68e9
EA
3745}
3746
2ef7eeaa
EA
3747/**
3748 * Moves a single object to the GTT read, and possibly write domain.
3749 *
3750 * This function returns when the move is complete, including waiting on
3751 * flushes to occur.
3752 */
79e53945 3753int
2021746e 3754i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3755{
72e96d64
JL
3756 struct drm_device *dev = obj->base.dev;
3757 struct drm_i915_private *dev_priv = to_i915(dev);
3758 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 3759 uint32_t old_write_domain, old_read_domains;
43566ded 3760 struct i915_vma *vma;
e47c68e9 3761 int ret;
2ef7eeaa 3762
8d7e3de1
CW
3763 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3764 return 0;
3765
0201f1ec 3766 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3767 if (ret)
3768 return ret;
3769
43566ded
CW
3770 /* Flush and acquire obj->pages so that we are coherent through
3771 * direct access in memory with previous cached writes through
3772 * shmemfs and that our cache domain tracking remains valid.
3773 * For example, if the obj->filp was moved to swap without us
3774 * being notified and releasing the pages, we would mistakenly
3775 * continue to assume that the obj remained out of the CPU cached
3776 * domain.
3777 */
3778 ret = i915_gem_object_get_pages(obj);
3779 if (ret)
3780 return ret;
3781
e62b59e4 3782 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3783
d0a57789
CW
3784 /* Serialise direct access to this object with the barriers for
3785 * coherent writes from the GPU, by effectively invalidating the
3786 * GTT domain upon first access.
3787 */
3788 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3789 mb();
3790
05394f39
CW
3791 old_write_domain = obj->base.write_domain;
3792 old_read_domains = obj->base.read_domains;
1c5d22f7 3793
e47c68e9
EA
3794 /* It should now be out of any other write domains, and we can update
3795 * the domain values for our changes.
3796 */
05394f39
CW
3797 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3798 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3799 if (write) {
05394f39
CW
3800 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3801 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3802 obj->dirty = 1;
2ef7eeaa
EA
3803 }
3804
1c5d22f7
CW
3805 trace_i915_gem_object_change_domain(obj,
3806 old_read_domains,
3807 old_write_domain);
3808
8325a09d 3809 /* And bump the LRU for this access */
43566ded
CW
3810 vma = i915_gem_obj_to_ggtt(obj);
3811 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3812 list_move_tail(&vma->vm_link,
72e96d64 3813 &ggtt->base.inactive_list);
8325a09d 3814
e47c68e9
EA
3815 return 0;
3816}
3817
ef55f92a
CW
3818/**
3819 * Changes the cache-level of an object across all VMA.
3820 *
3821 * After this function returns, the object will be in the new cache-level
3822 * across all GTT and the contents of the backing storage will be coherent,
3823 * with respect to the new cache-level. In order to keep the backing storage
3824 * coherent for all users, we only allow a single cache level to be set
3825 * globally on the object and prevent it from being changed whilst the
3826 * hardware is reading from the object. That is if the object is currently
3827 * on the scanout it will be set to uncached (or equivalent display
3828 * cache coherency) and all non-MOCS GPU access will also be uncached so
3829 * that all direct access to the scanout remains coherent.
3830 */
e4ffd173
CW
3831int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3832 enum i915_cache_level cache_level)
3833{
7bddb01f 3834 struct drm_device *dev = obj->base.dev;
df6f783a 3835 struct i915_vma *vma, *next;
ef55f92a 3836 bool bound = false;
ed75a55b 3837 int ret = 0;
e4ffd173
CW
3838
3839 if (obj->cache_level == cache_level)
ed75a55b 3840 goto out;
e4ffd173 3841
ef55f92a
CW
3842 /* Inspect the list of currently bound VMA and unbind any that would
3843 * be invalid given the new cache-level. This is principally to
3844 * catch the issue of the CS prefetch crossing page boundaries and
3845 * reading an invalid PTE on older architectures.
3846 */
1c7f4bca 3847 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3848 if (!drm_mm_node_allocated(&vma->node))
3849 continue;
3850
3851 if (vma->pin_count) {
3852 DRM_DEBUG("can not change the cache level of pinned objects\n");
3853 return -EBUSY;
3854 }
3855
4144f9b5 3856 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3857 ret = i915_vma_unbind(vma);
3089c6f2
BW
3858 if (ret)
3859 return ret;
ef55f92a
CW
3860 } else
3861 bound = true;
42d6ab48
CW
3862 }
3863
ef55f92a
CW
3864 /* We can reuse the existing drm_mm nodes but need to change the
3865 * cache-level on the PTE. We could simply unbind them all and
3866 * rebind with the correct cache-level on next use. However since
3867 * we already have a valid slot, dma mapping, pages etc, we may as
3868 * rewrite the PTE in the belief that doing so tramples upon less
3869 * state and so involves less work.
3870 */
3871 if (bound) {
3872 /* Before we change the PTE, the GPU must not be accessing it.
3873 * If we wait upon the object, we know that all the bound
3874 * VMA are no longer active.
3875 */
2e2f351d 3876 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3877 if (ret)
3878 return ret;
3879
ef55f92a
CW
3880 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3881 /* Access to snoopable pages through the GTT is
3882 * incoherent and on some machines causes a hard
3883 * lockup. Relinquish the CPU mmaping to force
3884 * userspace to refault in the pages and we can
3885 * then double check if the GTT mapping is still
3886 * valid for that pointer access.
3887 */
3888 i915_gem_release_mmap(obj);
3889
3890 /* As we no longer need a fence for GTT access,
3891 * we can relinquish it now (and so prevent having
3892 * to steal a fence from someone else on the next
3893 * fence request). Note GPU activity would have
3894 * dropped the fence as all snoopable access is
3895 * supposed to be linear.
3896 */
e4ffd173
CW
3897 ret = i915_gem_object_put_fence(obj);
3898 if (ret)
3899 return ret;
ef55f92a
CW
3900 } else {
3901 /* We either have incoherent backing store and
3902 * so no GTT access or the architecture is fully
3903 * coherent. In such cases, existing GTT mmaps
3904 * ignore the cache bit in the PTE and we can
3905 * rewrite it without confusing the GPU or having
3906 * to force userspace to fault back in its mmaps.
3907 */
e4ffd173
CW
3908 }
3909
1c7f4bca 3910 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3911 if (!drm_mm_node_allocated(&vma->node))
3912 continue;
3913
3914 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3915 if (ret)
3916 return ret;
3917 }
e4ffd173
CW
3918 }
3919
1c7f4bca 3920 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3921 vma->node.color = cache_level;
3922 obj->cache_level = cache_level;
3923
ed75a55b 3924out:
ef55f92a
CW
3925 /* Flush the dirty CPU caches to the backing storage so that the
3926 * object is now coherent at its new cache level (with respect
3927 * to the access domain).
3928 */
0f71979a
CW
3929 if (obj->cache_dirty &&
3930 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3931 cpu_write_needs_clflush(obj)) {
3932 if (i915_gem_clflush_object(obj, true))
3933 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3934 }
3935
e4ffd173
CW
3936 return 0;
3937}
3938
199adf40
BW
3939int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3940 struct drm_file *file)
e6994aee 3941{
199adf40 3942 struct drm_i915_gem_caching *args = data;
e6994aee 3943 struct drm_i915_gem_object *obj;
e6994aee
CW
3944
3945 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3946 if (&obj->base == NULL)
3947 return -ENOENT;
e6994aee 3948
651d794f
CW
3949 switch (obj->cache_level) {
3950 case I915_CACHE_LLC:
3951 case I915_CACHE_L3_LLC:
3952 args->caching = I915_CACHING_CACHED;
3953 break;
3954
4257d3ba
CW
3955 case I915_CACHE_WT:
3956 args->caching = I915_CACHING_DISPLAY;
3957 break;
3958
651d794f
CW
3959 default:
3960 args->caching = I915_CACHING_NONE;
3961 break;
3962 }
e6994aee 3963
432be69d
CW
3964 drm_gem_object_unreference_unlocked(&obj->base);
3965 return 0;
e6994aee
CW
3966}
3967
199adf40
BW
3968int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3969 struct drm_file *file)
e6994aee 3970{
fd0fe6ac 3971 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3972 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3973 struct drm_i915_gem_object *obj;
3974 enum i915_cache_level level;
3975 int ret;
3976
199adf40
BW
3977 switch (args->caching) {
3978 case I915_CACHING_NONE:
e6994aee
CW
3979 level = I915_CACHE_NONE;
3980 break;
199adf40 3981 case I915_CACHING_CACHED:
e5756c10
ID
3982 /*
3983 * Due to a HW issue on BXT A stepping, GPU stores via a
3984 * snooped mapping may leave stale data in a corresponding CPU
3985 * cacheline, whereas normally such cachelines would get
3986 * invalidated.
3987 */
ca377809 3988 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3989 return -ENODEV;
3990
e6994aee
CW
3991 level = I915_CACHE_LLC;
3992 break;
4257d3ba
CW
3993 case I915_CACHING_DISPLAY:
3994 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3995 break;
e6994aee
CW
3996 default:
3997 return -EINVAL;
3998 }
3999
fd0fe6ac
ID
4000 intel_runtime_pm_get(dev_priv);
4001
3bc2913e
BW
4002 ret = i915_mutex_lock_interruptible(dev);
4003 if (ret)
fd0fe6ac 4004 goto rpm_put;
3bc2913e 4005
e6994aee
CW
4006 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4007 if (&obj->base == NULL) {
4008 ret = -ENOENT;
4009 goto unlock;
4010 }
4011
4012 ret = i915_gem_object_set_cache_level(obj, level);
4013
4014 drm_gem_object_unreference(&obj->base);
4015unlock:
4016 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4017rpm_put:
4018 intel_runtime_pm_put(dev_priv);
4019
e6994aee
CW
4020 return ret;
4021}
4022
b9241ea3 4023/*
2da3b9b9
CW
4024 * Prepare buffer for display plane (scanout, cursors, etc).
4025 * Can be called from an uninterruptible phase (modesetting) and allows
4026 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4027 */
4028int
2da3b9b9
CW
4029i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4030 u32 alignment,
e6617330 4031 const struct i915_ggtt_view *view)
b9241ea3 4032{
2da3b9b9 4033 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4034 int ret;
4035
cc98b413
CW
4036 /* Mark the pin_display early so that we account for the
4037 * display coherency whilst setting up the cache domains.
4038 */
8a0c39b1 4039 obj->pin_display++;
cc98b413 4040
a7ef0640
EA
4041 /* The display engine is not coherent with the LLC cache on gen6. As
4042 * a result, we make sure that the pinning that is about to occur is
4043 * done with uncached PTEs. This is lowest common denominator for all
4044 * chipsets.
4045 *
4046 * However for gen6+, we could do better by using the GFDT bit instead
4047 * of uncaching, which would allow us to flush all the LLC-cached data
4048 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4049 */
651d794f
CW
4050 ret = i915_gem_object_set_cache_level(obj,
4051 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4052 if (ret)
cc98b413 4053 goto err_unpin_display;
a7ef0640 4054
2da3b9b9
CW
4055 /* As the user may map the buffer once pinned in the display plane
4056 * (e.g. libkms for the bootup splash), we have to ensure that we
4057 * always use map_and_fenceable for all scanout buffers.
4058 */
50470bb0
TU
4059 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4060 view->type == I915_GGTT_VIEW_NORMAL ?
4061 PIN_MAPPABLE : 0);
2da3b9b9 4062 if (ret)
cc98b413 4063 goto err_unpin_display;
2da3b9b9 4064
e62b59e4 4065 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4066
2da3b9b9 4067 old_write_domain = obj->base.write_domain;
05394f39 4068 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4069
4070 /* It should now be out of any other write domains, and we can update
4071 * the domain values for our changes.
4072 */
e5f1d962 4073 obj->base.write_domain = 0;
05394f39 4074 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4075
4076 trace_i915_gem_object_change_domain(obj,
4077 old_read_domains,
2da3b9b9 4078 old_write_domain);
b9241ea3
ZW
4079
4080 return 0;
cc98b413
CW
4081
4082err_unpin_display:
8a0c39b1 4083 obj->pin_display--;
cc98b413
CW
4084 return ret;
4085}
4086
4087void
e6617330
TU
4088i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4089 const struct i915_ggtt_view *view)
cc98b413 4090{
8a0c39b1
TU
4091 if (WARN_ON(obj->pin_display == 0))
4092 return;
4093
e6617330
TU
4094 i915_gem_object_ggtt_unpin_view(obj, view);
4095
8a0c39b1 4096 obj->pin_display--;
b9241ea3
ZW
4097}
4098
e47c68e9
EA
4099/**
4100 * Moves a single object to the CPU read, and possibly write domain.
4101 *
4102 * This function returns when the move is complete, including waiting on
4103 * flushes to occur.
4104 */
dabdfe02 4105int
919926ae 4106i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4107{
1c5d22f7 4108 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4109 int ret;
4110
8d7e3de1
CW
4111 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4112 return 0;
4113
0201f1ec 4114 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4115 if (ret)
4116 return ret;
4117
e47c68e9 4118 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4119
05394f39
CW
4120 old_write_domain = obj->base.write_domain;
4121 old_read_domains = obj->base.read_domains;
1c5d22f7 4122
e47c68e9 4123 /* Flush the CPU cache if it's still invalid. */
05394f39 4124 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4125 i915_gem_clflush_object(obj, false);
2ef7eeaa 4126
05394f39 4127 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4128 }
4129
4130 /* It should now be out of any other write domains, and we can update
4131 * the domain values for our changes.
4132 */
05394f39 4133 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4134
4135 /* If we're writing through the CPU, then the GPU read domains will
4136 * need to be invalidated at next use.
4137 */
4138 if (write) {
05394f39
CW
4139 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4140 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4141 }
2ef7eeaa 4142
1c5d22f7
CW
4143 trace_i915_gem_object_change_domain(obj,
4144 old_read_domains,
4145 old_write_domain);
4146
2ef7eeaa
EA
4147 return 0;
4148}
4149
673a394b
EA
4150/* Throttle our rendering by waiting until the ring has completed our requests
4151 * emitted over 20 msec ago.
4152 *
b962442e
EA
4153 * Note that if we were to use the current jiffies each time around the loop,
4154 * we wouldn't escape the function with any frames outstanding if the time to
4155 * render a frame was over 20ms.
4156 *
673a394b
EA
4157 * This should get us reasonable parallelism between CPU and GPU but also
4158 * relatively low latency when blocking on a particular request to finish.
4159 */
40a5f0de 4160static int
f787a5f5 4161i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4162{
f787a5f5
CW
4163 struct drm_i915_private *dev_priv = dev->dev_private;
4164 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4165 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4166 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4167 int ret;
93533c29 4168
308887aa
DV
4169 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4170 if (ret)
4171 return ret;
4172
f4457ae7
CW
4173 /* ABI: return -EIO if already wedged */
4174 if (i915_terminally_wedged(&dev_priv->gpu_error))
4175 return -EIO;
e110e8d6 4176
1c25595f 4177 spin_lock(&file_priv->mm.lock);
f787a5f5 4178 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4179 if (time_after_eq(request->emitted_jiffies, recent_enough))
4180 break;
40a5f0de 4181
fcfa423c
JH
4182 /*
4183 * Note that the request might not have been submitted yet.
4184 * In which case emitted_jiffies will be zero.
4185 */
4186 if (!request->emitted_jiffies)
4187 continue;
4188
54fb2411 4189 target = request;
b962442e 4190 }
ff865885
JH
4191 if (target)
4192 i915_gem_request_reference(target);
1c25595f 4193 spin_unlock(&file_priv->mm.lock);
40a5f0de 4194
54fb2411 4195 if (target == NULL)
f787a5f5 4196 return 0;
2bc43b5c 4197
299259a3 4198 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4199 if (ret == 0)
4200 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4201
41037f9f 4202 i915_gem_request_unreference__unlocked(target);
ff865885 4203
40a5f0de
EA
4204 return ret;
4205}
4206
d23db88c
CW
4207static bool
4208i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4209{
4210 struct drm_i915_gem_object *obj = vma->obj;
4211
4212 if (alignment &&
4213 vma->node.start & (alignment - 1))
4214 return true;
4215
4216 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4217 return true;
4218
4219 if (flags & PIN_OFFSET_BIAS &&
4220 vma->node.start < (flags & PIN_OFFSET_MASK))
4221 return true;
4222
506a8e87
CW
4223 if (flags & PIN_OFFSET_FIXED &&
4224 vma->node.start != (flags & PIN_OFFSET_MASK))
4225 return true;
4226
d23db88c
CW
4227 return false;
4228}
4229
d0710abb
CW
4230void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4231{
4232 struct drm_i915_gem_object *obj = vma->obj;
4233 bool mappable, fenceable;
4234 u32 fence_size, fence_alignment;
4235
4236 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4237 obj->base.size,
4238 obj->tiling_mode);
4239 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4240 obj->base.size,
4241 obj->tiling_mode,
4242 true);
4243
4244 fenceable = (vma->node.size == fence_size &&
4245 (vma->node.start & (fence_alignment - 1)) == 0);
4246
4247 mappable = (vma->node.start + fence_size <=
62106b4f 4248 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4249
4250 obj->map_and_fenceable = mappable && fenceable;
4251}
4252
ec7adb6e
JL
4253static int
4254i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4255 struct i915_address_space *vm,
4256 const struct i915_ggtt_view *ggtt_view,
4257 uint32_t alignment,
4258 uint64_t flags)
673a394b 4259{
6e7186af 4260 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4261 struct i915_vma *vma;
ef79e17c 4262 unsigned bound;
673a394b
EA
4263 int ret;
4264
6e7186af
BW
4265 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4266 return -ENODEV;
4267
bf3d149b 4268 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4269 return -EINVAL;
07fe0b12 4270
c826c449
CW
4271 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4272 return -EINVAL;
4273
ec7adb6e
JL
4274 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4275 return -EINVAL;
4276
4277 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4278 i915_gem_obj_to_vma(obj, vm);
4279
07fe0b12 4280 if (vma) {
d7f46fc4
BW
4281 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4282 return -EBUSY;
4283
d23db88c 4284 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4285 WARN(vma->pin_count,
ec7adb6e 4286 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4287 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4288 " obj->map_and_fenceable=%d\n",
ec7adb6e 4289 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4290 upper_32_bits(vma->node.start),
4291 lower_32_bits(vma->node.start),
fe14d5f4 4292 alignment,
d23db88c 4293 !!(flags & PIN_MAPPABLE),
05394f39 4294 obj->map_and_fenceable);
07fe0b12 4295 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4296 if (ret)
4297 return ret;
8ea99c92
DV
4298
4299 vma = NULL;
ac0c6b5a
CW
4300 }
4301 }
4302
ef79e17c 4303 bound = vma ? vma->bound : 0;
8ea99c92 4304 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4305 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4306 flags);
262de145
DV
4307 if (IS_ERR(vma))
4308 return PTR_ERR(vma);
0875546c
DV
4309 } else {
4310 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4311 if (ret)
4312 return ret;
4313 }
74898d7e 4314
91e6711e
JL
4315 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4316 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4317 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4318 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4319 }
ef79e17c 4320
8ea99c92 4321 vma->pin_count++;
673a394b
EA
4322 return 0;
4323}
4324
ec7adb6e
JL
4325int
4326i915_gem_object_pin(struct drm_i915_gem_object *obj,
4327 struct i915_address_space *vm,
4328 uint32_t alignment,
4329 uint64_t flags)
4330{
4331 return i915_gem_object_do_pin(obj, vm,
4332 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4333 alignment, flags);
4334}
4335
4336int
4337i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4338 const struct i915_ggtt_view *view,
4339 uint32_t alignment,
4340 uint64_t flags)
4341{
72e96d64
JL
4342 struct drm_device *dev = obj->base.dev;
4343 struct drm_i915_private *dev_priv = to_i915(dev);
4344 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4345
ade7daa1 4346 BUG_ON(!view);
ec7adb6e 4347
72e96d64 4348 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4349 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4350}
4351
673a394b 4352void
e6617330
TU
4353i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4354 const struct i915_ggtt_view *view)
673a394b 4355{
e6617330 4356 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4357
d7f46fc4 4358 BUG_ON(!vma);
e6617330 4359 WARN_ON(vma->pin_count == 0);
9abc4648 4360 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4361
30154650 4362 --vma->pin_count;
673a394b
EA
4363}
4364
673a394b
EA
4365int
4366i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4367 struct drm_file *file)
673a394b
EA
4368{
4369 struct drm_i915_gem_busy *args = data;
05394f39 4370 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4371 int ret;
4372
76c1dec1 4373 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4374 if (ret)
76c1dec1 4375 return ret;
673a394b 4376
05394f39 4377 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4378 if (&obj->base == NULL) {
1d7cfea1
CW
4379 ret = -ENOENT;
4380 goto unlock;
673a394b 4381 }
d1b851fc 4382
0be555b6
CW
4383 /* Count all active objects as busy, even if they are currently not used
4384 * by the gpu. Users of this interface expect objects to eventually
4385 * become non-busy without any further actions, therefore emit any
4386 * necessary flushes here.
c4de0a5d 4387 */
30dfebf3 4388 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4389 if (ret)
4390 goto unref;
0be555b6 4391
426960be
CW
4392 args->busy = 0;
4393 if (obj->active) {
4394 int i;
4395
666796da 4396 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4397 struct drm_i915_gem_request *req;
4398
4399 req = obj->last_read_req[i];
4400 if (req)
4a570db5 4401 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4402 }
4403 if (obj->last_write_req)
4a570db5 4404 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4405 }
673a394b 4406
b4716185 4407unref:
05394f39 4408 drm_gem_object_unreference(&obj->base);
1d7cfea1 4409unlock:
673a394b 4410 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4411 return ret;
673a394b
EA
4412}
4413
4414int
4415i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4416 struct drm_file *file_priv)
4417{
0206e353 4418 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4419}
4420
3ef94daa
CW
4421int
4422i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4423 struct drm_file *file_priv)
4424{
656bfa3a 4425 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4426 struct drm_i915_gem_madvise *args = data;
05394f39 4427 struct drm_i915_gem_object *obj;
76c1dec1 4428 int ret;
3ef94daa
CW
4429
4430 switch (args->madv) {
4431 case I915_MADV_DONTNEED:
4432 case I915_MADV_WILLNEED:
4433 break;
4434 default:
4435 return -EINVAL;
4436 }
4437
1d7cfea1
CW
4438 ret = i915_mutex_lock_interruptible(dev);
4439 if (ret)
4440 return ret;
4441
05394f39 4442 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4443 if (&obj->base == NULL) {
1d7cfea1
CW
4444 ret = -ENOENT;
4445 goto unlock;
3ef94daa 4446 }
3ef94daa 4447
d7f46fc4 4448 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4449 ret = -EINVAL;
4450 goto out;
3ef94daa
CW
4451 }
4452
656bfa3a
DV
4453 if (obj->pages &&
4454 obj->tiling_mode != I915_TILING_NONE &&
4455 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4456 if (obj->madv == I915_MADV_WILLNEED)
4457 i915_gem_object_unpin_pages(obj);
4458 if (args->madv == I915_MADV_WILLNEED)
4459 i915_gem_object_pin_pages(obj);
4460 }
4461
05394f39
CW
4462 if (obj->madv != __I915_MADV_PURGED)
4463 obj->madv = args->madv;
3ef94daa 4464
6c085a72 4465 /* if the object is no longer attached, discard its backing storage */
be6a0376 4466 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4467 i915_gem_object_truncate(obj);
4468
05394f39 4469 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4470
1d7cfea1 4471out:
05394f39 4472 drm_gem_object_unreference(&obj->base);
1d7cfea1 4473unlock:
3ef94daa 4474 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4475 return ret;
3ef94daa
CW
4476}
4477
37e680a1
CW
4478void i915_gem_object_init(struct drm_i915_gem_object *obj,
4479 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4480{
b4716185
CW
4481 int i;
4482
35c20a60 4483 INIT_LIST_HEAD(&obj->global_list);
666796da 4484 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4485 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4486 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4487 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4488 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4489
37e680a1
CW
4490 obj->ops = ops;
4491
0327d6ba
CW
4492 obj->fence_reg = I915_FENCE_REG_NONE;
4493 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4494
4495 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4496}
4497
37e680a1 4498static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4499 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4500 .get_pages = i915_gem_object_get_pages_gtt,
4501 .put_pages = i915_gem_object_put_pages_gtt,
4502};
4503
05394f39
CW
4504struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4505 size_t size)
ac52bc56 4506{
c397b908 4507 struct drm_i915_gem_object *obj;
5949eac4 4508 struct address_space *mapping;
1a240d4d 4509 gfp_t mask;
ac52bc56 4510
42dcedd4 4511 obj = i915_gem_object_alloc(dev);
c397b908
DV
4512 if (obj == NULL)
4513 return NULL;
673a394b 4514
c397b908 4515 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4516 i915_gem_object_free(obj);
c397b908
DV
4517 return NULL;
4518 }
673a394b 4519
bed1ea95
CW
4520 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4521 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4522 /* 965gm cannot relocate objects above 4GiB. */
4523 mask &= ~__GFP_HIGHMEM;
4524 mask |= __GFP_DMA32;
4525 }
4526
496ad9aa 4527 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4528 mapping_set_gfp_mask(mapping, mask);
5949eac4 4529
37e680a1 4530 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4531
c397b908
DV
4532 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4533 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4534
3d29b842
ED
4535 if (HAS_LLC(dev)) {
4536 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4537 * cache) for about a 10% performance improvement
4538 * compared to uncached. Graphics requests other than
4539 * display scanout are coherent with the CPU in
4540 * accessing this cache. This means in this mode we
4541 * don't need to clflush on the CPU side, and on the
4542 * GPU side we only need to flush internal caches to
4543 * get data visible to the CPU.
4544 *
4545 * However, we maintain the display planes as UC, and so
4546 * need to rebind when first used as such.
4547 */
4548 obj->cache_level = I915_CACHE_LLC;
4549 } else
4550 obj->cache_level = I915_CACHE_NONE;
4551
d861e338
DV
4552 trace_i915_gem_object_create(obj);
4553
05394f39 4554 return obj;
c397b908
DV
4555}
4556
340fbd8c
CW
4557static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4558{
4559 /* If we are the last user of the backing storage (be it shmemfs
4560 * pages or stolen etc), we know that the pages are going to be
4561 * immediately released. In this case, we can then skip copying
4562 * back the contents from the GPU.
4563 */
4564
4565 if (obj->madv != I915_MADV_WILLNEED)
4566 return false;
4567
4568 if (obj->base.filp == NULL)
4569 return true;
4570
4571 /* At first glance, this looks racy, but then again so would be
4572 * userspace racing mmap against close. However, the first external
4573 * reference to the filp can only be obtained through the
4574 * i915_gem_mmap_ioctl() which safeguards us against the user
4575 * acquiring such a reference whilst we are in the middle of
4576 * freeing the object.
4577 */
4578 return atomic_long_read(&obj->base.filp->f_count) == 1;
4579}
4580
1488fc08 4581void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4582{
1488fc08 4583 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4584 struct drm_device *dev = obj->base.dev;
3e31c6c0 4585 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4586 struct i915_vma *vma, *next;
673a394b 4587
f65c9168
PZ
4588 intel_runtime_pm_get(dev_priv);
4589
26e12f89
CW
4590 trace_i915_gem_object_destroy(obj);
4591
1c7f4bca 4592 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4593 int ret;
4594
4595 vma->pin_count = 0;
4596 ret = i915_vma_unbind(vma);
07fe0b12
BW
4597 if (WARN_ON(ret == -ERESTARTSYS)) {
4598 bool was_interruptible;
1488fc08 4599
07fe0b12
BW
4600 was_interruptible = dev_priv->mm.interruptible;
4601 dev_priv->mm.interruptible = false;
1488fc08 4602
07fe0b12 4603 WARN_ON(i915_vma_unbind(vma));
1488fc08 4604
07fe0b12
BW
4605 dev_priv->mm.interruptible = was_interruptible;
4606 }
1488fc08
CW
4607 }
4608
1d64ae71
BW
4609 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4610 * before progressing. */
4611 if (obj->stolen)
4612 i915_gem_object_unpin_pages(obj);
4613
a071fa00
DV
4614 WARN_ON(obj->frontbuffer_bits);
4615
656bfa3a
DV
4616 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4617 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4618 obj->tiling_mode != I915_TILING_NONE)
4619 i915_gem_object_unpin_pages(obj);
4620
401c29f6
BW
4621 if (WARN_ON(obj->pages_pin_count))
4622 obj->pages_pin_count = 0;
340fbd8c 4623 if (discard_backing_storage(obj))
5537252b 4624 obj->madv = I915_MADV_DONTNEED;
37e680a1 4625 i915_gem_object_put_pages(obj);
d8cb5086 4626 i915_gem_object_free_mmap_offset(obj);
de151cf6 4627
9da3da66
CW
4628 BUG_ON(obj->pages);
4629
2f745ad3
CW
4630 if (obj->base.import_attach)
4631 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4632
5cc9ed4b
CW
4633 if (obj->ops->release)
4634 obj->ops->release(obj);
4635
05394f39
CW
4636 drm_gem_object_release(&obj->base);
4637 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4638
05394f39 4639 kfree(obj->bit_17);
42dcedd4 4640 i915_gem_object_free(obj);
f65c9168
PZ
4641
4642 intel_runtime_pm_put(dev_priv);
673a394b
EA
4643}
4644
ec7adb6e
JL
4645struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4646 struct i915_address_space *vm)
e656a6cb
DV
4647{
4648 struct i915_vma *vma;
1c7f4bca 4649 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4650 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4651 vma->vm == vm)
e656a6cb 4652 return vma;
ec7adb6e
JL
4653 }
4654 return NULL;
4655}
4656
4657struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4658 const struct i915_ggtt_view *view)
4659{
72e96d64
JL
4660 struct drm_device *dev = obj->base.dev;
4661 struct drm_i915_private *dev_priv = to_i915(dev);
4662 struct i915_ggtt *ggtt = &dev_priv->ggtt;
ec7adb6e 4663 struct i915_vma *vma;
e656a6cb 4664
ade7daa1 4665 BUG_ON(!view);
ec7adb6e 4666
1c7f4bca 4667 list_for_each_entry(vma, &obj->vma_list, obj_link)
72e96d64 4668 if (vma->vm == &ggtt->base &&
9abc4648 4669 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4670 return vma;
e656a6cb
DV
4671 return NULL;
4672}
4673
2f633156
BW
4674void i915_gem_vma_destroy(struct i915_vma *vma)
4675{
4676 WARN_ON(vma->node.allocated);
aaa05667
CW
4677
4678 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4679 if (!list_empty(&vma->exec_list))
4680 return;
4681
596c5923
CW
4682 if (!vma->is_ggtt)
4683 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4684
1c7f4bca 4685 list_del(&vma->obj_link);
b93dab6e 4686
e20d2ab7 4687 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4688}
4689
e3efda49 4690static void
117897f4 4691i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4692{
4693 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4694 struct intel_engine_cs *engine;
e3efda49 4695
b4ac5afc 4696 for_each_engine(engine, dev_priv)
117897f4 4697 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4698}
4699
29105ccc 4700int
45c5f202 4701i915_gem_suspend(struct drm_device *dev)
29105ccc 4702{
3e31c6c0 4703 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4704 int ret = 0;
28dfe52a 4705
45c5f202 4706 mutex_lock(&dev->struct_mutex);
b2da9fe5 4707 ret = i915_gpu_idle(dev);
f7403347 4708 if (ret)
45c5f202 4709 goto err;
f7403347 4710
b2da9fe5 4711 i915_gem_retire_requests(dev);
673a394b 4712
117897f4 4713 i915_gem_stop_engines(dev);
45c5f202
CW
4714 mutex_unlock(&dev->struct_mutex);
4715
737b1506 4716 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4717 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4718 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4719
bdcf120b
CW
4720 /* Assert that we sucessfully flushed all the work and
4721 * reset the GPU back to its idle, low power state.
4722 */
4723 WARN_ON(dev_priv->mm.busy);
4724
673a394b 4725 return 0;
45c5f202
CW
4726
4727err:
4728 mutex_unlock(&dev->struct_mutex);
4729 return ret;
673a394b
EA
4730}
4731
6909a666 4732int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4733{
4a570db5 4734 struct intel_engine_cs *engine = req->engine;
e2f80391 4735 struct drm_device *dev = engine->dev;
3e31c6c0 4736 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4737 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4738 int i, ret;
b9524a1e 4739
040d2baa 4740 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4741 return 0;
b9524a1e 4742
5fb9de1a 4743 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4744 if (ret)
4745 return ret;
b9524a1e 4746
c3787e2e
BW
4747 /*
4748 * Note: We do not worry about the concurrent register cacheline hang
4749 * here because no other code should access these registers other than
4750 * at initialization time.
4751 */
6fa1c5f1 4752 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
e2f80391
TU
4753 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4754 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4755 intel_ring_emit(engine, remap_info[i]);
b9524a1e
BW
4756 }
4757
e2f80391 4758 intel_ring_advance(engine);
b9524a1e 4759
c3787e2e 4760 return ret;
b9524a1e
BW
4761}
4762
f691e2f4
DV
4763void i915_gem_init_swizzling(struct drm_device *dev)
4764{
3e31c6c0 4765 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4766
11782b02 4767 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4768 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4769 return;
4770
4771 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4772 DISP_TILE_SURFACE_SWIZZLING);
4773
11782b02
DV
4774 if (IS_GEN5(dev))
4775 return;
4776
f691e2f4
DV
4777 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4778 if (IS_GEN6(dev))
6b26c86d 4779 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4780 else if (IS_GEN7(dev))
6b26c86d 4781 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4782 else if (IS_GEN8(dev))
4783 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4784 else
4785 BUG();
f691e2f4 4786}
e21af88d 4787
81e7f200
VS
4788static void init_unused_ring(struct drm_device *dev, u32 base)
4789{
4790 struct drm_i915_private *dev_priv = dev->dev_private;
4791
4792 I915_WRITE(RING_CTL(base), 0);
4793 I915_WRITE(RING_HEAD(base), 0);
4794 I915_WRITE(RING_TAIL(base), 0);
4795 I915_WRITE(RING_START(base), 0);
4796}
4797
4798static void init_unused_rings(struct drm_device *dev)
4799{
4800 if (IS_I830(dev)) {
4801 init_unused_ring(dev, PRB1_BASE);
4802 init_unused_ring(dev, SRB0_BASE);
4803 init_unused_ring(dev, SRB1_BASE);
4804 init_unused_ring(dev, SRB2_BASE);
4805 init_unused_ring(dev, SRB3_BASE);
4806 } else if (IS_GEN2(dev)) {
4807 init_unused_ring(dev, SRB0_BASE);
4808 init_unused_ring(dev, SRB1_BASE);
4809 } else if (IS_GEN3(dev)) {
4810 init_unused_ring(dev, PRB1_BASE);
4811 init_unused_ring(dev, PRB2_BASE);
4812 }
4813}
4814
117897f4 4815int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4816{
4fc7c971 4817 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4818 int ret;
68f95ba9 4819
5c1143bb 4820 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4821 if (ret)
b6913e4b 4822 return ret;
68f95ba9
CW
4823
4824 if (HAS_BSD(dev)) {
5c1143bb 4825 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4826 if (ret)
4827 goto cleanup_render_ring;
d1b851fc 4828 }
68f95ba9 4829
d39398f5 4830 if (HAS_BLT(dev)) {
549f7365
CW
4831 ret = intel_init_blt_ring_buffer(dev);
4832 if (ret)
4833 goto cleanup_bsd_ring;
4834 }
4835
9a8a2213
BW
4836 if (HAS_VEBOX(dev)) {
4837 ret = intel_init_vebox_ring_buffer(dev);
4838 if (ret)
4839 goto cleanup_blt_ring;
4840 }
4841
845f74a7
ZY
4842 if (HAS_BSD2(dev)) {
4843 ret = intel_init_bsd2_ring_buffer(dev);
4844 if (ret)
4845 goto cleanup_vebox_ring;
4846 }
9a8a2213 4847
4fc7c971
BW
4848 return 0;
4849
9a8a2213 4850cleanup_vebox_ring:
117897f4 4851 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4852cleanup_blt_ring:
117897f4 4853 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4854cleanup_bsd_ring:
117897f4 4855 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4856cleanup_render_ring:
117897f4 4857 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4858
4859 return ret;
4860}
4861
4862int
4863i915_gem_init_hw(struct drm_device *dev)
4864{
3e31c6c0 4865 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4866 struct intel_engine_cs *engine;
b4ac5afc 4867 int ret, j;
4fc7c971
BW
4868
4869 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4870 return -EIO;
4871
5e4f5189
CW
4872 /* Double layer security blanket, see i915_gem_init() */
4873 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4874
3accaf7e 4875 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4876 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4877
0bf21347
VS
4878 if (IS_HASWELL(dev))
4879 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4880 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4881
88a2b2a3 4882 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4883 if (IS_IVYBRIDGE(dev)) {
4884 u32 temp = I915_READ(GEN7_MSG_CTL);
4885 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4886 I915_WRITE(GEN7_MSG_CTL, temp);
4887 } else if (INTEL_INFO(dev)->gen >= 7) {
4888 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4889 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4890 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4891 }
88a2b2a3
BW
4892 }
4893
4fc7c971
BW
4894 i915_gem_init_swizzling(dev);
4895
d5abdfda
DV
4896 /*
4897 * At least 830 can leave some of the unused rings
4898 * "active" (ie. head != tail) after resume which
4899 * will prevent c3 entry. Makes sure all unused rings
4900 * are totally idle.
4901 */
4902 init_unused_rings(dev);
4903
ed54c1a1 4904 BUG_ON(!dev_priv->kernel_context);
90638cc1 4905
4ad2fd88
JH
4906 ret = i915_ppgtt_init_hw(dev);
4907 if (ret) {
4908 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4909 goto out;
4910 }
4911
4912 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4913 for_each_engine(engine, dev_priv) {
e2f80391 4914 ret = engine->init_hw(engine);
35a57ffb 4915 if (ret)
5e4f5189 4916 goto out;
35a57ffb 4917 }
99433931 4918
0ccdacf6
PA
4919 intel_mocs_init_l3cc_table(dev);
4920
33a732f4 4921 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4922 if (HAS_GUC_UCODE(dev)) {
4923 ret = intel_guc_ucode_load(dev);
4924 if (ret) {
9f9e539f
DV
4925 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4926 ret = -EIO;
4927 goto out;
87bcdd2e 4928 }
33a732f4
AD
4929 }
4930
e84fe803
NH
4931 /*
4932 * Increment the next seqno by 0x100 so we have a visible break
4933 * on re-initialisation
4934 */
4935 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4936 if (ret)
4937 goto out;
4938
4ad2fd88 4939 /* Now it is safe to go back round and do everything else: */
b4ac5afc 4940 for_each_engine(engine, dev_priv) {
dc4be607
JH
4941 struct drm_i915_gem_request *req;
4942
e2f80391 4943 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
4944 if (IS_ERR(req)) {
4945 ret = PTR_ERR(req);
aa9b7810 4946 break;
dc4be607
JH
4947 }
4948
e2f80391 4949 if (engine->id == RCS) {
aa9b7810
CW
4950 for (j = 0; j < NUM_L3_SLICES(dev); j++) {
4951 ret = i915_gem_l3_remap(req, j);
4952 if (ret)
4953 goto err_request;
4954 }
4ad2fd88 4955 }
c3787e2e 4956
b3dd6b96 4957 ret = i915_ppgtt_init_ring(req);
aa9b7810
CW
4958 if (ret)
4959 goto err_request;
82460d97 4960
b3dd6b96 4961 ret = i915_gem_context_enable(req);
aa9b7810
CW
4962 if (ret)
4963 goto err_request;
4964
4965err_request:
4966 i915_add_request_no_flush(req);
4967 if (ret) {
4968 DRM_ERROR("Failed to enable %s, error=%d\n",
b4ac5afc 4969 engine->name, ret);
117897f4 4970 i915_gem_cleanup_engines(dev);
aa9b7810 4971 break;
90638cc1 4972 }
b7c36d25 4973 }
e21af88d 4974
5e4f5189
CW
4975out:
4976 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4977 return ret;
8187a2b7
ZN
4978}
4979
1070a42b
CW
4980int i915_gem_init(struct drm_device *dev)
4981{
4982 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4983 int ret;
4984
127f1003
OM
4985 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4986 i915.enable_execlists);
4987
1070a42b 4988 mutex_lock(&dev->struct_mutex);
d62b4892 4989
a83014d3 4990 if (!i915.enable_execlists) {
f3dc74c0 4991 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4992 dev_priv->gt.init_engines = i915_gem_init_engines;
4993 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4994 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4995 } else {
f3dc74c0 4996 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4997 dev_priv->gt.init_engines = intel_logical_rings_init;
4998 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4999 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
5000 }
5001
5e4f5189
CW
5002 /* This is just a security blanket to placate dragons.
5003 * On some systems, we very sporadically observe that the first TLBs
5004 * used by the CS may be stale, despite us poking the TLB reset. If
5005 * we hold the forcewake during initialisation these problems
5006 * just magically go away.
5007 */
5008 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5009
6c5566a8 5010 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5011 if (ret)
5012 goto out_unlock;
6c5566a8 5013
d85489d3 5014 i915_gem_init_ggtt(dev);
d62b4892 5015
2fa48d8d 5016 ret = i915_gem_context_init(dev);
7bcc3777
JN
5017 if (ret)
5018 goto out_unlock;
2fa48d8d 5019
117897f4 5020 ret = dev_priv->gt.init_engines(dev);
35a57ffb 5021 if (ret)
7bcc3777 5022 goto out_unlock;
2fa48d8d 5023
1070a42b 5024 ret = i915_gem_init_hw(dev);
60990320
CW
5025 if (ret == -EIO) {
5026 /* Allow ring initialisation to fail by marking the GPU as
5027 * wedged. But we only want to do this where the GPU is angry,
5028 * for all other failure, such as an allocation failure, bail.
5029 */
5030 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 5031 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 5032 ret = 0;
1070a42b 5033 }
7bcc3777
JN
5034
5035out_unlock:
5e4f5189 5036 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5037 mutex_unlock(&dev->struct_mutex);
1070a42b 5038
60990320 5039 return ret;
1070a42b
CW
5040}
5041
8187a2b7 5042void
117897f4 5043i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 5044{
3e31c6c0 5045 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 5046 struct intel_engine_cs *engine;
8187a2b7 5047
b4ac5afc 5048 for_each_engine(engine, dev_priv)
117897f4 5049 dev_priv->gt.cleanup_engine(engine);
a647828a 5050
ee4b6faf
MK
5051 if (i915.enable_execlists)
5052 /*
5053 * Neither the BIOS, ourselves or any other kernel
5054 * expects the system to be in execlists mode on startup,
5055 * so we need to reset the GPU back to legacy mode.
5056 */
5057 intel_gpu_reset(dev, ALL_ENGINES);
8187a2b7
ZN
5058}
5059
64193406 5060static void
666796da 5061init_engine_lists(struct intel_engine_cs *engine)
64193406 5062{
0bc40be8
TU
5063 INIT_LIST_HEAD(&engine->active_list);
5064 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
5065}
5066
40ae4e16
ID
5067void
5068i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5069{
5070 struct drm_device *dev = dev_priv->dev;
5071
5072 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5073 !IS_CHERRYVIEW(dev_priv))
5074 dev_priv->num_fence_regs = 32;
5075 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5076 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5077 dev_priv->num_fence_regs = 16;
5078 else
5079 dev_priv->num_fence_regs = 8;
5080
5081 if (intel_vgpu_active(dev))
5082 dev_priv->num_fence_regs =
5083 I915_READ(vgtif_reg(avail_rs.fence_num));
5084
5085 /* Initialize fence registers to zero */
5086 i915_gem_restore_fences(dev);
5087
5088 i915_gem_detect_bit_6_swizzle(dev);
5089}
5090
673a394b 5091void
d64aa096 5092i915_gem_load_init(struct drm_device *dev)
673a394b 5093{
3e31c6c0 5094 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5095 int i;
5096
efab6d8d 5097 dev_priv->objects =
42dcedd4
CW
5098 kmem_cache_create("i915_gem_object",
5099 sizeof(struct drm_i915_gem_object), 0,
5100 SLAB_HWCACHE_ALIGN,
5101 NULL);
e20d2ab7
CW
5102 dev_priv->vmas =
5103 kmem_cache_create("i915_gem_vma",
5104 sizeof(struct i915_vma), 0,
5105 SLAB_HWCACHE_ALIGN,
5106 NULL);
efab6d8d
CW
5107 dev_priv->requests =
5108 kmem_cache_create("i915_gem_request",
5109 sizeof(struct drm_i915_gem_request), 0,
5110 SLAB_HWCACHE_ALIGN,
5111 NULL);
673a394b 5112
fc8c067e 5113 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5114 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5115 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5116 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5117 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5118 for (i = 0; i < I915_NUM_ENGINES; i++)
5119 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5120 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5121 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5122 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5123 i915_gem_retire_work_handler);
b29c19b6
CW
5124 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5125 i915_gem_idle_work_handler);
1f83fee0 5126 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5127
72bfa19c
CW
5128 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5129
e84fe803
NH
5130 /*
5131 * Set initial sequence number for requests.
5132 * Using this number allows the wraparound to happen early,
5133 * catching any obvious problems.
5134 */
5135 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5136 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5137
19b2dbde 5138 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5139
6b95a207 5140 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5141
ce453d81
CW
5142 dev_priv->mm.interruptible = true;
5143
f99d7069 5144 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5145}
71acb5eb 5146
d64aa096
ID
5147void i915_gem_load_cleanup(struct drm_device *dev)
5148{
5149 struct drm_i915_private *dev_priv = to_i915(dev);
5150
5151 kmem_cache_destroy(dev_priv->requests);
5152 kmem_cache_destroy(dev_priv->vmas);
5153 kmem_cache_destroy(dev_priv->objects);
5154}
5155
f787a5f5 5156void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5157{
f787a5f5 5158 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5159
5160 /* Clean up our request list when the client is going away, so that
5161 * later retire_requests won't dereference our soon-to-be-gone
5162 * file_priv.
5163 */
1c25595f 5164 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5165 while (!list_empty(&file_priv->mm.request_list)) {
5166 struct drm_i915_gem_request *request;
5167
5168 request = list_first_entry(&file_priv->mm.request_list,
5169 struct drm_i915_gem_request,
5170 client_list);
5171 list_del(&request->client_list);
5172 request->file_priv = NULL;
5173 }
1c25595f 5174 spin_unlock(&file_priv->mm.lock);
b29c19b6 5175
2e1b8730 5176 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5177 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5178 list_del(&file_priv->rps.link);
8d3afd7d 5179 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5180 }
b29c19b6
CW
5181}
5182
5183int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5184{
5185 struct drm_i915_file_private *file_priv;
e422b888 5186 int ret;
b29c19b6
CW
5187
5188 DRM_DEBUG_DRIVER("\n");
5189
5190 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5191 if (!file_priv)
5192 return -ENOMEM;
5193
5194 file->driver_priv = file_priv;
5195 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5196 file_priv->file = file;
2e1b8730 5197 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5198
5199 spin_lock_init(&file_priv->mm.lock);
5200 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5201
de1add36
TU
5202 file_priv->bsd_ring = -1;
5203
e422b888
BW
5204 ret = i915_gem_context_open(dev, file);
5205 if (ret)
5206 kfree(file_priv);
b29c19b6 5207
e422b888 5208 return ret;
b29c19b6
CW
5209}
5210
b680c37a
DV
5211/**
5212 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5213 * @old: current GEM buffer for the frontbuffer slots
5214 * @new: new GEM buffer for the frontbuffer slots
5215 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5216 *
5217 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5218 * from @old and setting them in @new. Both @old and @new can be NULL.
5219 */
a071fa00
DV
5220void i915_gem_track_fb(struct drm_i915_gem_object *old,
5221 struct drm_i915_gem_object *new,
5222 unsigned frontbuffer_bits)
5223{
5224 if (old) {
5225 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5226 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5227 old->frontbuffer_bits &= ~frontbuffer_bits;
5228 }
5229
5230 if (new) {
5231 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5232 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5233 new->frontbuffer_bits |= frontbuffer_bits;
5234 }
5235}
5236
a70a3148 5237/* All the new VM stuff */
088e0df4
MT
5238u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5239 struct i915_address_space *vm)
a70a3148
BW
5240{
5241 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5242 struct i915_vma *vma;
5243
896ab1a5 5244 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5245
1c7f4bca 5246 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5247 if (vma->is_ggtt &&
ec7adb6e
JL
5248 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5249 continue;
5250 if (vma->vm == vm)
a70a3148 5251 return vma->node.start;
a70a3148 5252 }
ec7adb6e 5253
f25748ea
DV
5254 WARN(1, "%s vma for this object not found.\n",
5255 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5256 return -1;
5257}
5258
088e0df4
MT
5259u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5260 const struct i915_ggtt_view *view)
a70a3148 5261{
72e96d64
JL
5262 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5263 struct i915_ggtt *ggtt = &dev_priv->ggtt;
a70a3148
BW
5264 struct i915_vma *vma;
5265
1c7f4bca 5266 list_for_each_entry(vma, &o->vma_list, obj_link)
72e96d64 5267 if (vma->vm == &ggtt->base &&
9abc4648 5268 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5269 return vma->node.start;
5270
5678ad73 5271 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5272 return -1;
5273}
5274
5275bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5276 struct i915_address_space *vm)
5277{
5278 struct i915_vma *vma;
5279
1c7f4bca 5280 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5281 if (vma->is_ggtt &&
ec7adb6e
JL
5282 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283 continue;
5284 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5285 return true;
5286 }
5287
5288 return false;
5289}
5290
5291bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5292 const struct i915_ggtt_view *view)
ec7adb6e 5293{
72e96d64
JL
5294 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5295 struct i915_ggtt *ggtt = &dev_priv->ggtt;
ec7adb6e
JL
5296 struct i915_vma *vma;
5297
1c7f4bca 5298 list_for_each_entry(vma, &o->vma_list, obj_link)
72e96d64 5299 if (vma->vm == &ggtt->base &&
9abc4648 5300 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5301 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5302 return true;
5303
5304 return false;
5305}
5306
5307bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5308{
5a1d5eb0 5309 struct i915_vma *vma;
a70a3148 5310
1c7f4bca 5311 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5312 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5313 return true;
5314
5315 return false;
5316}
5317
5318unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5319 struct i915_address_space *vm)
5320{
5321 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5322 struct i915_vma *vma;
5323
896ab1a5 5324 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5325
5326 BUG_ON(list_empty(&o->vma_list));
5327
1c7f4bca 5328 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5329 if (vma->is_ggtt &&
ec7adb6e
JL
5330 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5331 continue;
a70a3148
BW
5332 if (vma->vm == vm)
5333 return vma->node.size;
ec7adb6e 5334 }
a70a3148
BW
5335 return 0;
5336}
5337
ec7adb6e 5338bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5339{
5340 struct i915_vma *vma;
1c7f4bca 5341 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5342 if (vma->pin_count > 0)
5343 return true;
a6631ae1 5344
ec7adb6e 5345 return false;
5c2abbea 5346}
ea70299d 5347
033908ae
DG
5348/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5349struct page *
5350i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5351{
5352 struct page *page;
5353
5354 /* Only default objects have per-page dirty tracking */
de472664 5355 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5356 return NULL;
5357
5358 page = i915_gem_object_get_page(obj, n);
5359 set_page_dirty(page);
5360 return page;
5361}
5362
ea70299d
DG
5363/* Allocate a new GEM object and fill it with the supplied data */
5364struct drm_i915_gem_object *
5365i915_gem_object_create_from_data(struct drm_device *dev,
5366 const void *data, size_t size)
5367{
5368 struct drm_i915_gem_object *obj;
5369 struct sg_table *sg;
5370 size_t bytes;
5371 int ret;
5372
5373 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5374 if (IS_ERR_OR_NULL(obj))
5375 return obj;
5376
5377 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5378 if (ret)
5379 goto fail;
5380
5381 ret = i915_gem_object_get_pages(obj);
5382 if (ret)
5383 goto fail;
5384
5385 i915_gem_object_pin_pages(obj);
5386 sg = obj->pages;
5387 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5388 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5389 i915_gem_object_unpin_pages(obj);
5390
5391 if (WARN_ON(bytes != size)) {
5392 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5393 ret = -EFAULT;
5394 goto fail;
5395 }
5396
5397 return obj;
5398
5399fail:
5400 drm_gem_object_unreference(&obj->base);
5401 return ERR_PTR(ret);
5402}
This page took 2.093634 seconds and 5 git commands to generate.