drm/i915: INTEL_INFO->gen supercedes i8xx, i9xx, i965g
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
31169714
CW
61static LIST_HEAD(shrink_list);
62static DEFINE_SPINLOCK(shrink_list_lock);
63
7d1c4804
CW
64static inline bool
65i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
66{
67 return obj_priv->gtt_space &&
68 !obj_priv->active &&
69 obj_priv->pin_count == 0;
70}
71
79e53945
JB
72int i915_gem_do_init(struct drm_device *dev, unsigned long start,
73 unsigned long end)
673a394b
EA
74{
75 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 76
79e53945
JB
77 if (start >= end ||
78 (start & (PAGE_SIZE - 1)) != 0 ||
79 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
80 return -EINVAL;
81 }
82
79e53945
JB
83 drm_mm_init(&dev_priv->mm.gtt_space, start,
84 end - start);
673a394b 85
79e53945
JB
86 dev->gtt_total = (uint32_t) (end - start);
87
88 return 0;
89}
673a394b 90
79e53945
JB
91int
92i915_gem_init_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
95 struct drm_i915_gem_init *args = data;
96 int ret;
97
98 mutex_lock(&dev->struct_mutex);
99 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
100 mutex_unlock(&dev->struct_mutex);
101
79e53945 102 return ret;
673a394b
EA
103}
104
5a125c3c
EA
105int
106i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
107 struct drm_file *file_priv)
108{
5a125c3c 109 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
110
111 if (!(dev->driver->driver_features & DRIVER_GEM))
112 return -ENODEV;
113
114 args->aper_size = dev->gtt_total;
2678d9d6
KP
115 args->aper_available_size = (args->aper_size -
116 atomic_read(&dev->pin_memory));
5a125c3c
EA
117
118 return 0;
119}
120
673a394b
EA
121
122/**
123 * Creates a new mm object and returns a handle to it.
124 */
125int
126i915_gem_create_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file_priv)
128{
129 struct drm_i915_gem_create *args = data;
130 struct drm_gem_object *obj;
a1a2d1d3
PP
131 int ret;
132 u32 handle;
673a394b
EA
133
134 args->size = roundup(args->size, PAGE_SIZE);
135
136 /* Allocate the new object */
ac52bc56 137 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
138 if (obj == NULL)
139 return -ENOMEM;
140
141 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
142 if (ret) {
143 drm_gem_object_unreference_unlocked(obj);
673a394b 144 return ret;
1dfd9754 145 }
673a394b 146
1dfd9754
CW
147 /* Sink the floating reference from kref_init(handlecount) */
148 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 149
1dfd9754 150 args->handle = handle;
673a394b
EA
151 return 0;
152}
153
eb01459f
EA
154static inline int
155fast_shmem_read(struct page **pages,
156 loff_t page_base, int page_offset,
157 char __user *data,
158 int length)
159{
160 char __iomem *vaddr;
2bc43b5c 161 int unwritten;
eb01459f
EA
162
163 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
164 if (vaddr == NULL)
165 return -ENOMEM;
2bc43b5c 166 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
167 kunmap_atomic(vaddr, KM_USER0);
168
2bc43b5c
FM
169 if (unwritten)
170 return -EFAULT;
171
172 return 0;
eb01459f
EA
173}
174
280b713b
EA
175static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
176{
177 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
179
180 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
181 obj_priv->tiling_mode != I915_TILING_NONE;
182}
183
99a03df5 184static inline void
40123c1f
EA
185slow_shmem_copy(struct page *dst_page,
186 int dst_offset,
187 struct page *src_page,
188 int src_offset,
189 int length)
190{
191 char *dst_vaddr, *src_vaddr;
192
99a03df5
CW
193 dst_vaddr = kmap(dst_page);
194 src_vaddr = kmap(src_page);
40123c1f
EA
195
196 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
197
99a03df5
CW
198 kunmap(src_page);
199 kunmap(dst_page);
40123c1f
EA
200}
201
99a03df5 202static inline void
280b713b
EA
203slow_shmem_bit17_copy(struct page *gpu_page,
204 int gpu_offset,
205 struct page *cpu_page,
206 int cpu_offset,
207 int length,
208 int is_read)
209{
210 char *gpu_vaddr, *cpu_vaddr;
211
212 /* Use the unswizzled path if this page isn't affected. */
213 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
214 if (is_read)
215 return slow_shmem_copy(cpu_page, cpu_offset,
216 gpu_page, gpu_offset, length);
217 else
218 return slow_shmem_copy(gpu_page, gpu_offset,
219 cpu_page, cpu_offset, length);
220 }
221
99a03df5
CW
222 gpu_vaddr = kmap(gpu_page);
223 cpu_vaddr = kmap(cpu_page);
280b713b
EA
224
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 */
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
241 }
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
245 }
246
99a03df5
CW
247 kunmap(cpu_page);
248 kunmap(gpu_page);
280b713b
EA
249}
250
eb01459f
EA
251/**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256static int
257i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
23010e43 261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
4bdadb97 273 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
23010e43 282 obj_priv = to_intel_bo(obj);
eb01459f
EA
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309fail_put_pages:
310 i915_gem_object_put_pages(obj);
311fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315}
316
07f73f69
CW
317static int
318i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
319{
320 int ret;
321
4bdadb97 322 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
323
324 /* If we've insufficient memory to map in the pages, attempt
325 * to make some space by throwing out some old buffers.
326 */
327 if (ret == -ENOMEM) {
328 struct drm_device *dev = obj->dev;
07f73f69 329
0108a3ed
DV
330 ret = i915_gem_evict_something(dev, obj->size,
331 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
332 if (ret)
333 return ret;
334
4bdadb97 335 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
336 }
337
338 return ret;
339}
340
eb01459f
EA
341/**
342 * This is the fallback shmem pread path, which allocates temporary storage
343 * in kernel space to copy_to_user into outside of the struct_mutex, so we
344 * can copy out of the object's backing pages while holding the struct mutex
345 * and not take page faults.
346 */
347static int
348i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
349 struct drm_i915_gem_pread *args,
350 struct drm_file *file_priv)
351{
23010e43 352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
353 struct mm_struct *mm = current->mm;
354 struct page **user_pages;
355 ssize_t remain;
356 loff_t offset, pinned_pages, i;
357 loff_t first_data_page, last_data_page, num_pages;
358 int shmem_page_index, shmem_page_offset;
359 int data_page_index, data_page_offset;
360 int page_length;
361 int ret;
362 uint64_t data_ptr = args->data_ptr;
280b713b 363 int do_bit17_swizzling;
eb01459f
EA
364
365 remain = args->size;
366
367 /* Pin the user pages containing the data. We can't fault while
368 * holding the struct mutex, yet we want to hold it while
369 * dereferencing the user data.
370 */
371 first_data_page = data_ptr / PAGE_SIZE;
372 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
373 num_pages = last_data_page - first_data_page + 1;
374
8e7d2b2c 375 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
376 if (user_pages == NULL)
377 return -ENOMEM;
378
379 down_read(&mm->mmap_sem);
380 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 381 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
382 up_read(&mm->mmap_sem);
383 if (pinned_pages < num_pages) {
384 ret = -EFAULT;
385 goto fail_put_user_pages;
386 }
387
280b713b
EA
388 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
389
eb01459f
EA
390 mutex_lock(&dev->struct_mutex);
391
07f73f69
CW
392 ret = i915_gem_object_get_pages_or_evict(obj);
393 if (ret)
eb01459f
EA
394 goto fail_unlock;
395
396 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
397 args->size);
398 if (ret != 0)
399 goto fail_put_pages;
400
23010e43 401 obj_priv = to_intel_bo(obj);
eb01459f
EA
402 offset = args->offset;
403
404 while (remain > 0) {
405 /* Operation in this page
406 *
407 * shmem_page_index = page number within shmem file
408 * shmem_page_offset = offset within page in shmem file
409 * data_page_index = page number in get_user_pages return
410 * data_page_offset = offset with data_page_index page.
411 * page_length = bytes to copy for this page
412 */
413 shmem_page_index = offset / PAGE_SIZE;
414 shmem_page_offset = offset & ~PAGE_MASK;
415 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
416 data_page_offset = data_ptr & ~PAGE_MASK;
417
418 page_length = remain;
419 if ((shmem_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - shmem_page_offset;
421 if ((data_page_offset + page_length) > PAGE_SIZE)
422 page_length = PAGE_SIZE - data_page_offset;
423
280b713b 424 if (do_bit17_swizzling) {
99a03df5 425 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 426 shmem_page_offset,
99a03df5
CW
427 user_pages[data_page_index],
428 data_page_offset,
429 page_length,
430 1);
431 } else {
432 slow_shmem_copy(user_pages[data_page_index],
433 data_page_offset,
434 obj_priv->pages[shmem_page_index],
435 shmem_page_offset,
436 page_length);
280b713b 437 }
eb01459f
EA
438
439 remain -= page_length;
440 data_ptr += page_length;
441 offset += page_length;
442 }
443
444fail_put_pages:
445 i915_gem_object_put_pages(obj);
446fail_unlock:
447 mutex_unlock(&dev->struct_mutex);
448fail_put_user_pages:
449 for (i = 0; i < pinned_pages; i++) {
450 SetPageDirty(user_pages[i]);
451 page_cache_release(user_pages[i]);
452 }
8e7d2b2c 453 drm_free_large(user_pages);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file_priv)
466{
467 struct drm_i915_gem_pread *args = data;
468 struct drm_gem_object *obj;
469 struct drm_i915_gem_object *obj_priv;
673a394b
EA
470 int ret;
471
472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
473 if (obj == NULL)
bf79cb91 474 return -ENOENT;
23010e43 475 obj_priv = to_intel_bo(obj);
673a394b
EA
476
477 /* Bounds check source.
478 *
479 * XXX: This could use review for overflow issues...
480 */
481 if (args->offset > obj->size || args->size > obj->size ||
482 args->offset + args->size > obj->size) {
bc9025bd 483 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
484 return -EINVAL;
485 }
486
280b713b 487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
494 }
673a394b 495
bc9025bd 496 drm_gem_object_unreference_unlocked(obj);
673a394b 497
eb01459f 498 return ret;
673a394b
EA
499}
500
0839ccb8
KP
501/* This is the fast write path which cannot handle
502 * page faults in the source data
9b7530cc 503 */
0839ccb8
KP
504
505static inline int
506fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
9b7530cc 510{
9b7530cc 511 char *vaddr_atomic;
0839ccb8 512 unsigned long unwritten;
9b7530cc 513
fca3ec01 514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
fca3ec01 517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
518 if (unwritten)
519 return -EFAULT;
520 return 0;
521}
522
523/* Here's the write path which can sleep for
524 * page faults
525 */
526
ab34c226 527static inline void
3de09aa3
EA
528slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
0839ccb8 532{
ab34c226
CW
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
0839ccb8 535
ab34c226
CW
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
538
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
542
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
545}
546
40123c1f
EA
547static inline int
548fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
552{
553 char __iomem *vaddr;
d0088775 554 unsigned long unwritten;
40123c1f
EA
555
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
d0088775 559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
560 kunmap_atomic(vaddr, KM_USER0);
561
d0088775
DA
562 if (unwritten)
563 return -EFAULT;
40123c1f
EA
564 return 0;
565}
566
3de09aa3
EA
567/**
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
570 */
673a394b 571static int
3de09aa3
EA
572i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
673a394b 575{
23010e43 576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 578 ssize_t remain;
0839ccb8 579 loff_t offset, page_base;
673a394b 580 char __user *user_data;
0839ccb8
KP
581 int page_offset, page_length;
582 int ret;
673a394b
EA
583
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
586 if (!access_ok(VERIFY_READ, user_data, remain))
587 return -EFAULT;
588
589
590 mutex_lock(&dev->struct_mutex);
591 ret = i915_gem_object_pin(obj, 0);
592 if (ret) {
593 mutex_unlock(&dev->struct_mutex);
594 return ret;
595 }
2ef7eeaa 596 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
597 if (ret)
598 goto fail;
599
23010e43 600 obj_priv = to_intel_bo(obj);
673a394b 601 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
602
603 while (remain > 0) {
604 /* Operation in this page
605 *
0839ccb8
KP
606 * page_base = page offset within aperture
607 * page_offset = offset within page
608 * page_length = bytes to copy for this page
673a394b 609 */
0839ccb8
KP
610 page_base = (offset & ~(PAGE_SIZE-1));
611 page_offset = offset & (PAGE_SIZE-1);
612 page_length = remain;
613 if ((page_offset + remain) > PAGE_SIZE)
614 page_length = PAGE_SIZE - page_offset;
615
616 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
617 page_offset, user_data, page_length);
618
619 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
0839ccb8 622 */
3de09aa3
EA
623 if (ret)
624 goto fail;
673a394b 625
0839ccb8
KP
626 remain -= page_length;
627 user_data += page_length;
628 offset += page_length;
673a394b 629 }
673a394b
EA
630
631fail:
632 i915_gem_object_unpin(obj);
633 mutex_unlock(&dev->struct_mutex);
634
635 return ret;
636}
637
3de09aa3
EA
638/**
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
641 *
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 */
3043c60c 645static int
3de09aa3
EA
646i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file_priv)
673a394b 649{
23010e43 650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 659 int ret;
3de09aa3
EA
660 uint64_t data_ptr = args->data_ptr;
661
662 remain = args->size;
663
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
667 */
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
671
8e7d2b2c 672 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
673 if (user_pages == NULL)
674 return -ENOMEM;
675
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 if (pinned_pages < num_pages) {
681 ret = -EFAULT;
682 goto out_unpin_pages;
683 }
673a394b
EA
684
685 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
686 ret = i915_gem_object_pin(obj, 0);
687 if (ret)
688 goto out_unlock;
689
690 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
691 if (ret)
692 goto out_unpin_object;
693
23010e43 694 obj_priv = to_intel_bo(obj);
3de09aa3
EA
695 offset = obj_priv->gtt_offset + args->offset;
696
697 while (remain > 0) {
698 /* Operation in this page
699 *
700 * gtt_page_base = page offset within aperture
701 * gtt_page_offset = offset within page in aperture
702 * data_page_index = page number in get_user_pages return
703 * data_page_offset = offset with data_page_index page.
704 * page_length = bytes to copy for this page
705 */
706 gtt_page_base = offset & PAGE_MASK;
707 gtt_page_offset = offset & ~PAGE_MASK;
708 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
709 data_page_offset = data_ptr & ~PAGE_MASK;
710
711 page_length = remain;
712 if ((gtt_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - gtt_page_offset;
714 if ((data_page_offset + page_length) > PAGE_SIZE)
715 page_length = PAGE_SIZE - data_page_offset;
716
ab34c226
CW
717 slow_kernel_write(dev_priv->mm.gtt_mapping,
718 gtt_page_base, gtt_page_offset,
719 user_pages[data_page_index],
720 data_page_offset,
721 page_length);
3de09aa3
EA
722
723 remain -= page_length;
724 offset += page_length;
725 data_ptr += page_length;
726 }
727
728out_unpin_object:
729 i915_gem_object_unpin(obj);
730out_unlock:
731 mutex_unlock(&dev->struct_mutex);
732out_unpin_pages:
733 for (i = 0; i < pinned_pages; i++)
734 page_cache_release(user_pages[i]);
8e7d2b2c 735 drm_free_large(user_pages);
3de09aa3
EA
736
737 return ret;
738}
739
40123c1f
EA
740/**
741 * This is the fast shmem pwrite path, which attempts to directly
742 * copy_from_user into the kmapped pages backing the object.
743 */
3043c60c 744static int
40123c1f
EA
745i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
746 struct drm_i915_gem_pwrite *args,
747 struct drm_file *file_priv)
673a394b 748{
23010e43 749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
750 ssize_t remain;
751 loff_t offset, page_base;
752 char __user *user_data;
753 int page_offset, page_length;
673a394b 754 int ret;
40123c1f
EA
755
756 user_data = (char __user *) (uintptr_t) args->data_ptr;
757 remain = args->size;
673a394b
EA
758
759 mutex_lock(&dev->struct_mutex);
760
4bdadb97 761 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
762 if (ret != 0)
763 goto fail_unlock;
673a394b 764
e47c68e9 765 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
766 if (ret != 0)
767 goto fail_put_pages;
768
23010e43 769 obj_priv = to_intel_bo(obj);
40123c1f
EA
770 offset = args->offset;
771 obj_priv->dirty = 1;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * page_base = page offset within aperture
777 * page_offset = offset within page
778 * page_length = bytes to copy for this page
779 */
780 page_base = (offset & ~(PAGE_SIZE-1));
781 page_offset = offset & (PAGE_SIZE-1);
782 page_length = remain;
783 if ((page_offset + remain) > PAGE_SIZE)
784 page_length = PAGE_SIZE - page_offset;
785
786 ret = fast_shmem_write(obj_priv->pages,
787 page_base, page_offset,
788 user_data, page_length);
789 if (ret)
790 goto fail_put_pages;
791
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
795 }
796
797fail_put_pages:
798 i915_gem_object_put_pages(obj);
799fail_unlock:
800 mutex_unlock(&dev->struct_mutex);
801
802 return ret;
803}
804
805/**
806 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
807 * the memory and maps it using kmap_atomic for copying.
808 *
809 * This avoids taking mmap_sem for faulting on the user's address while the
810 * struct_mutex is held.
811 */
812static int
813i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
816{
23010e43 817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_index, shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
280b713b 828 int do_bit17_swizzling;
40123c1f
EA
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
8e7d2b2c 840 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
841 if (user_pages == NULL)
842 return -ENOMEM;
843
844 down_read(&mm->mmap_sem);
845 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
846 num_pages, 0, 0, user_pages, NULL);
847 up_read(&mm->mmap_sem);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto fail_put_user_pages;
673a394b
EA
851 }
852
280b713b
EA
853 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
854
40123c1f
EA
855 mutex_lock(&dev->struct_mutex);
856
07f73f69
CW
857 ret = i915_gem_object_get_pages_or_evict(obj);
858 if (ret)
40123c1f
EA
859 goto fail_unlock;
860
861 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
862 if (ret != 0)
863 goto fail_put_pages;
864
23010e43 865 obj_priv = to_intel_bo(obj);
673a394b 866 offset = args->offset;
40123c1f 867 obj_priv->dirty = 1;
673a394b 868
40123c1f
EA
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * shmem_page_index = page number within shmem file
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
878 shmem_page_index = offset / PAGE_SIZE;
879 shmem_page_offset = offset & ~PAGE_MASK;
880 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
881 data_page_offset = data_ptr & ~PAGE_MASK;
882
883 page_length = remain;
884 if ((shmem_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - shmem_page_offset;
886 if ((data_page_offset + page_length) > PAGE_SIZE)
887 page_length = PAGE_SIZE - data_page_offset;
888
280b713b 889 if (do_bit17_swizzling) {
99a03df5 890 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
99a03df5
CW
894 page_length,
895 0);
896 } else {
897 slow_shmem_copy(obj_priv->pages[shmem_page_index],
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
280b713b 902 }
40123c1f
EA
903
904 remain -= page_length;
905 data_ptr += page_length;
906 offset += page_length;
673a394b
EA
907 }
908
40123c1f
EA
909fail_put_pages:
910 i915_gem_object_put_pages(obj);
911fail_unlock:
673a394b 912 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
913fail_put_user_pages:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
8e7d2b2c 916 drm_free_large(user_pages);
673a394b 917
40123c1f 918 return ret;
673a394b
EA
919}
920
921/**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926int
927i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file_priv)
929{
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_gem_object *obj;
932 struct drm_i915_gem_object *obj_priv;
933 int ret = 0;
934
935 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
936 if (obj == NULL)
bf79cb91 937 return -ENOENT;
23010e43 938 obj_priv = to_intel_bo(obj);
673a394b
EA
939
940 /* Bounds check destination.
941 *
942 * XXX: This could use review for overflow issues...
943 */
944 if (args->offset > obj->size || args->size > obj->size ||
945 args->offset + args->size > obj->size) {
bc9025bd 946 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
947 return -EINVAL;
948 }
949
950 /* We can only do the GTT pwrite on untiled buffers, as otherwise
951 * it would end up going through the fenced access, and we'll get
952 * different detiling behavior between reading and writing.
953 * pread/pwrite currently are reading and writing from the CPU
954 * perspective, requiring manual detiling by the client.
955 */
71acb5eb
DA
956 if (obj_priv->phys_obj)
957 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
958 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
959 dev->gtt_total != 0 &&
960 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
961 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
962 if (ret == -EFAULT) {
963 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
964 file_priv);
965 }
280b713b
EA
966 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
967 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
968 } else {
969 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
970 if (ret == -EFAULT) {
971 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
972 file_priv);
973 }
974 }
673a394b
EA
975
976#if WATCH_PWRITE
977 if (ret)
978 DRM_INFO("pwrite failed %d\n", ret);
979#endif
980
bc9025bd 981 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
982
983 return ret;
984}
985
986/**
2ef7eeaa
EA
987 * Called when user space prepares to use an object with the CPU, either
988 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
989 */
990int
991i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
993{
a09ba7fa 994 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
995 struct drm_i915_gem_set_domain *args = data;
996 struct drm_gem_object *obj;
652c393a 997 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
998 uint32_t read_domains = args->read_domains;
999 uint32_t write_domain = args->write_domain;
673a394b
EA
1000 int ret;
1001
1002 if (!(dev->driver->driver_features & DRIVER_GEM))
1003 return -ENODEV;
1004
2ef7eeaa 1005 /* Only handle setting domains to types used by the CPU. */
21d509e3 1006 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1007 return -EINVAL;
1008
21d509e3 1009 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1010 return -EINVAL;
1011
1012 /* Having something in the write domain implies it's in the read
1013 * domain, and only that read domain. Enforce that in the request.
1014 */
1015 if (write_domain != 0 && read_domains != write_domain)
1016 return -EINVAL;
1017
673a394b
EA
1018 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1019 if (obj == NULL)
bf79cb91 1020 return -ENOENT;
23010e43 1021 obj_priv = to_intel_bo(obj);
673a394b
EA
1022
1023 mutex_lock(&dev->struct_mutex);
652c393a
JB
1024
1025 intel_mark_busy(dev, obj);
1026
673a394b 1027#if WATCH_BUF
cfd43c02 1028 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1029 obj, obj->size, read_domains, write_domain);
673a394b 1030#endif
2ef7eeaa
EA
1031 if (read_domains & I915_GEM_DOMAIN_GTT) {
1032 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1033
a09ba7fa
EA
1034 /* Update the LRU on the fence for the CPU access that's
1035 * about to occur.
1036 */
1037 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1038 struct drm_i915_fence_reg *reg =
1039 &dev_priv->fence_regs[obj_priv->fence_reg];
1040 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1041 &dev_priv->mm.fence_list);
1042 }
1043
02354392
EA
1044 /* Silently promote "you're not bound, there was nothing to do"
1045 * to success, since the client was just asking us to
1046 * make sure everything was done.
1047 */
1048 if (ret == -EINVAL)
1049 ret = 0;
2ef7eeaa 1050 } else {
e47c68e9 1051 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1052 }
1053
7d1c4804
CW
1054
1055 /* Maintain LRU order of "inactive" objects */
1056 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1057 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1058
673a394b
EA
1059 drm_gem_object_unreference(obj);
1060 mutex_unlock(&dev->struct_mutex);
1061 return ret;
1062}
1063
1064/**
1065 * Called when user space has done writes to this buffer
1066 */
1067int
1068i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1069 struct drm_file *file_priv)
1070{
1071 struct drm_i915_gem_sw_finish *args = data;
1072 struct drm_gem_object *obj;
1073 struct drm_i915_gem_object *obj_priv;
1074 int ret = 0;
1075
1076 if (!(dev->driver->driver_features & DRIVER_GEM))
1077 return -ENODEV;
1078
1079 mutex_lock(&dev->struct_mutex);
1080 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1081 if (obj == NULL) {
1082 mutex_unlock(&dev->struct_mutex);
bf79cb91 1083 return -ENOENT;
673a394b
EA
1084 }
1085
1086#if WATCH_BUF
cfd43c02 1087 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1088 __func__, args->handle, obj, obj->size);
1089#endif
23010e43 1090 obj_priv = to_intel_bo(obj);
673a394b
EA
1091
1092 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1093 if (obj_priv->pin_count)
1094 i915_gem_object_flush_cpu_write_domain(obj);
1095
673a394b
EA
1096 drm_gem_object_unreference(obj);
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099}
1100
1101/**
1102 * Maps the contents of an object, returning the address it is mapped
1103 * into.
1104 *
1105 * While the mapping holds a reference on the contents of the object, it doesn't
1106 * imply a ref on the object itself.
1107 */
1108int
1109i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1110 struct drm_file *file_priv)
1111{
1112 struct drm_i915_gem_mmap *args = data;
1113 struct drm_gem_object *obj;
1114 loff_t offset;
1115 unsigned long addr;
1116
1117 if (!(dev->driver->driver_features & DRIVER_GEM))
1118 return -ENODEV;
1119
1120 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1121 if (obj == NULL)
bf79cb91 1122 return -ENOENT;
673a394b
EA
1123
1124 offset = args->offset;
1125
1126 down_write(&current->mm->mmap_sem);
1127 addr = do_mmap(obj->filp, 0, args->size,
1128 PROT_READ | PROT_WRITE, MAP_SHARED,
1129 args->offset);
1130 up_write(&current->mm->mmap_sem);
bc9025bd 1131 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1132 if (IS_ERR((void *)addr))
1133 return addr;
1134
1135 args->addr_ptr = (uint64_t) addr;
1136
1137 return 0;
1138}
1139
de151cf6
JB
1140/**
1141 * i915_gem_fault - fault a page into the GTT
1142 * vma: VMA in question
1143 * vmf: fault info
1144 *
1145 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1146 * from userspace. The fault handler takes care of binding the object to
1147 * the GTT (if needed), allocating and programming a fence register (again,
1148 * only if needed based on whether the old reg is still valid or the object
1149 * is tiled) and inserting a new PTE into the faulting process.
1150 *
1151 * Note that the faulting process may involve evicting existing objects
1152 * from the GTT and/or fence registers to make room. So performance may
1153 * suffer if the GTT working set is large or there are few fence registers
1154 * left.
1155 */
1156int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1157{
1158 struct drm_gem_object *obj = vma->vm_private_data;
1159 struct drm_device *dev = obj->dev;
7d1c4804 1160 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1162 pgoff_t page_offset;
1163 unsigned long pfn;
1164 int ret = 0;
0f973f27 1165 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1166
1167 /* We don't use vmf->pgoff since that has the fake offset */
1168 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1169 PAGE_SHIFT;
1170
1171 /* Now bind it into the GTT if needed */
1172 mutex_lock(&dev->struct_mutex);
1173 if (!obj_priv->gtt_space) {
e67b8ce1 1174 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1175 if (ret)
1176 goto unlock;
07f4f3e8 1177
07f4f3e8 1178 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1179 if (ret)
1180 goto unlock;
de151cf6
JB
1181 }
1182
1183 /* Need a new fence register? */
a09ba7fa 1184 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1185 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1186 if (ret)
1187 goto unlock;
d9ddcb96 1188 }
de151cf6 1189
7d1c4804
CW
1190 if (i915_gem_object_is_inactive(obj_priv))
1191 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1192
de151cf6
JB
1193 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1194 page_offset;
1195
1196 /* Finally, remap it using the new GTT offset */
1197 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1198unlock:
de151cf6
JB
1199 mutex_unlock(&dev->struct_mutex);
1200
1201 switch (ret) {
c715089f
CW
1202 case 0:
1203 case -ERESTARTSYS:
1204 return VM_FAULT_NOPAGE;
de151cf6
JB
1205 case -ENOMEM:
1206 case -EAGAIN:
1207 return VM_FAULT_OOM;
de151cf6 1208 default:
c715089f 1209 return VM_FAULT_SIGBUS;
de151cf6
JB
1210 }
1211}
1212
1213/**
1214 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1215 * @obj: obj in question
1216 *
1217 * GEM memory mapping works by handing back to userspace a fake mmap offset
1218 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1219 * up the object based on the offset and sets up the various memory mapping
1220 * structures.
1221 *
1222 * This routine allocates and attaches a fake offset for @obj.
1223 */
1224static int
1225i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1226{
1227 struct drm_device *dev = obj->dev;
1228 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1229 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1230 struct drm_map_list *list;
f77d390c 1231 struct drm_local_map *map;
de151cf6
JB
1232 int ret = 0;
1233
1234 /* Set the object up for mmap'ing */
1235 list = &obj->map_list;
9a298b2a 1236 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1237 if (!list->map)
1238 return -ENOMEM;
1239
1240 map = list->map;
1241 map->type = _DRM_GEM;
1242 map->size = obj->size;
1243 map->handle = obj;
1244
1245 /* Get a DRM GEM mmap offset allocated... */
1246 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1247 obj->size / PAGE_SIZE, 0, 0);
1248 if (!list->file_offset_node) {
1249 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1250 ret = -ENOMEM;
1251 goto out_free_list;
1252 }
1253
1254 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1255 obj->size / PAGE_SIZE, 0);
1256 if (!list->file_offset_node) {
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->hash.key = list->file_offset_node->start;
1262 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1263 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1264 ret = -ENOMEM;
de151cf6
JB
1265 goto out_free_mm;
1266 }
1267
1268 /* By now we should be all set, any drm_mmap request on the offset
1269 * below will get to our mmap & fault handler */
1270 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1271
1272 return 0;
1273
1274out_free_mm:
1275 drm_mm_put_block(list->file_offset_node);
1276out_free_list:
9a298b2a 1277 kfree(list->map);
de151cf6
JB
1278
1279 return ret;
1280}
1281
901782b2
CW
1282/**
1283 * i915_gem_release_mmap - remove physical page mappings
1284 * @obj: obj in question
1285 *
af901ca1 1286 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1287 * relinquish ownership of the pages back to the system.
1288 *
1289 * It is vital that we remove the page mapping if we have mapped a tiled
1290 * object through the GTT and then lose the fence register due to
1291 * resource pressure. Similarly if the object has been moved out of the
1292 * aperture, than pages mapped into userspace must be revoked. Removing the
1293 * mapping will then trigger a page fault on the next user access, allowing
1294 * fixup by i915_gem_fault().
1295 */
d05ca301 1296void
901782b2
CW
1297i915_gem_release_mmap(struct drm_gem_object *obj)
1298{
1299 struct drm_device *dev = obj->dev;
23010e43 1300 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1301
1302 if (dev->dev_mapping)
1303 unmap_mapping_range(dev->dev_mapping,
1304 obj_priv->mmap_offset, obj->size, 1);
1305}
1306
ab00b3e5
JB
1307static void
1308i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1309{
1310 struct drm_device *dev = obj->dev;
23010e43 1311 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1312 struct drm_gem_mm *mm = dev->mm_private;
1313 struct drm_map_list *list;
1314
1315 list = &obj->map_list;
1316 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1317
1318 if (list->file_offset_node) {
1319 drm_mm_put_block(list->file_offset_node);
1320 list->file_offset_node = NULL;
1321 }
1322
1323 if (list->map) {
9a298b2a 1324 kfree(list->map);
ab00b3e5
JB
1325 list->map = NULL;
1326 }
1327
1328 obj_priv->mmap_offset = 0;
1329}
1330
de151cf6
JB
1331/**
1332 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1333 * @obj: object to check
1334 *
1335 * Return the required GTT alignment for an object, taking into account
1336 * potential fence register mapping if needed.
1337 */
1338static uint32_t
1339i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1340{
1341 struct drm_device *dev = obj->dev;
23010e43 1342 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1343 int start, i;
1344
1345 /*
1346 * Minimum alignment is 4k (GTT page size), but might be greater
1347 * if a fence register is needed for the object.
1348 */
a6c45cf0 1349 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1350 return 4096;
1351
1352 /*
1353 * Previous chips need to be aligned to the size of the smallest
1354 * fence register that can contain the object.
1355 */
a6c45cf0 1356 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1357 start = 1024*1024;
1358 else
1359 start = 512*1024;
1360
1361 for (i = start; i < obj->size; i <<= 1)
1362 ;
1363
1364 return i;
1365}
1366
1367/**
1368 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1369 * @dev: DRM device
1370 * @data: GTT mapping ioctl data
1371 * @file_priv: GEM object info
1372 *
1373 * Simply returns the fake offset to userspace so it can mmap it.
1374 * The mmap call will end up in drm_gem_mmap(), which will set things
1375 * up so we can get faults in the handler above.
1376 *
1377 * The fault handler will take care of binding the object into the GTT
1378 * (since it may have been evicted to make room for something), allocating
1379 * a fence register, and mapping the appropriate aperture address into
1380 * userspace.
1381 */
1382int
1383i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1384 struct drm_file *file_priv)
1385{
1386 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1387 struct drm_gem_object *obj;
1388 struct drm_i915_gem_object *obj_priv;
1389 int ret;
1390
1391 if (!(dev->driver->driver_features & DRIVER_GEM))
1392 return -ENODEV;
1393
1394 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1395 if (obj == NULL)
bf79cb91 1396 return -ENOENT;
de151cf6
JB
1397
1398 mutex_lock(&dev->struct_mutex);
1399
23010e43 1400 obj_priv = to_intel_bo(obj);
de151cf6 1401
ab18282d
CW
1402 if (obj_priv->madv != I915_MADV_WILLNEED) {
1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 drm_gem_object_unreference(obj);
1405 mutex_unlock(&dev->struct_mutex);
1406 return -EINVAL;
1407 }
1408
1409
de151cf6
JB
1410 if (!obj_priv->mmap_offset) {
1411 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1412 if (ret) {
1413 drm_gem_object_unreference(obj);
1414 mutex_unlock(&dev->struct_mutex);
de151cf6 1415 return ret;
13af1062 1416 }
de151cf6
JB
1417 }
1418
1419 args->offset = obj_priv->mmap_offset;
1420
de151cf6
JB
1421 /*
1422 * Pull it into the GTT so that we have a page list (makes the
1423 * initial fault faster and any subsequent flushing possible).
1424 */
1425 if (!obj_priv->agp_mem) {
e67b8ce1 1426 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1427 if (ret) {
1428 drm_gem_object_unreference(obj);
1429 mutex_unlock(&dev->struct_mutex);
1430 return ret;
1431 }
de151cf6
JB
1432 }
1433
1434 drm_gem_object_unreference(obj);
1435 mutex_unlock(&dev->struct_mutex);
1436
1437 return 0;
1438}
1439
6911a9b8 1440void
856fa198 1441i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1442{
23010e43 1443 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1444 int page_count = obj->size / PAGE_SIZE;
1445 int i;
1446
856fa198 1447 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1448 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1449
856fa198
EA
1450 if (--obj_priv->pages_refcount != 0)
1451 return;
673a394b 1452
280b713b
EA
1453 if (obj_priv->tiling_mode != I915_TILING_NONE)
1454 i915_gem_object_save_bit_17_swizzle(obj);
1455
3ef94daa 1456 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1457 obj_priv->dirty = 0;
3ef94daa
CW
1458
1459 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1460 if (obj_priv->dirty)
1461 set_page_dirty(obj_priv->pages[i]);
1462
1463 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1464 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1465
1466 page_cache_release(obj_priv->pages[i]);
1467 }
673a394b
EA
1468 obj_priv->dirty = 0;
1469
8e7d2b2c 1470 drm_free_large(obj_priv->pages);
856fa198 1471 obj_priv->pages = NULL;
673a394b
EA
1472}
1473
e35a41de 1474static uint32_t
a6910434
DV
1475i915_gem_next_request_seqno(struct drm_device *dev,
1476 struct intel_ring_buffer *ring)
e35a41de
DV
1477{
1478 drm_i915_private_t *dev_priv = dev->dev_private;
1479
a6910434
DV
1480 ring->outstanding_lazy_request = true;
1481
e35a41de
DV
1482 return dev_priv->next_seqno;
1483}
1484
673a394b 1485static void
617dbe27 1486i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1487 struct intel_ring_buffer *ring)
673a394b
EA
1488{
1489 struct drm_device *dev = obj->dev;
23010e43 1490 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27
DV
1491 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1492
852835f3
ZN
1493 BUG_ON(ring == NULL);
1494 obj_priv->ring = ring;
673a394b
EA
1495
1496 /* Add a reference if we're newly entering the active list. */
1497 if (!obj_priv->active) {
1498 drm_gem_object_reference(obj);
1499 obj_priv->active = 1;
1500 }
e35a41de 1501
673a394b 1502 /* Move from whatever list we were on to the tail of execution. */
852835f3 1503 list_move_tail(&obj_priv->list, &ring->active_list);
ce44b0ea 1504 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1505}
1506
ce44b0ea
EA
1507static void
1508i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509{
1510 struct drm_device *dev = obj->dev;
1511 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1513
1514 BUG_ON(!obj_priv->active);
1515 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516 obj_priv->last_rendering_seqno = 0;
1517}
673a394b 1518
963b4836
CW
1519/* Immediately discard the backing storage */
1520static void
1521i915_gem_object_truncate(struct drm_gem_object *obj)
1522{
23010e43 1523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1524 struct inode *inode;
963b4836 1525
ae9fed6b
CW
1526 /* Our goal here is to return as much of the memory as
1527 * is possible back to the system as we are called from OOM.
1528 * To do this we must instruct the shmfs to drop all of its
1529 * backing pages, *now*. Here we mirror the actions taken
1530 * when by shmem_delete_inode() to release the backing store.
1531 */
bb6baf76 1532 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1533 truncate_inode_pages(inode->i_mapping, 0);
1534 if (inode->i_op->truncate_range)
1535 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1536
1537 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1538}
1539
1540static inline int
1541i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1542{
1543 return obj_priv->madv == I915_MADV_DONTNEED;
1544}
1545
673a394b
EA
1546static void
1547i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1548{
1549 struct drm_device *dev = obj->dev;
1550 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1551 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1552
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554 if (obj_priv->pin_count != 0)
1555 list_del_init(&obj_priv->list);
1556 else
1557 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1558
99fcb766
DV
1559 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1560
ce44b0ea 1561 obj_priv->last_rendering_seqno = 0;
852835f3 1562 obj_priv->ring = NULL;
673a394b
EA
1563 if (obj_priv->active) {
1564 obj_priv->active = 0;
1565 drm_gem_object_unreference(obj);
1566 }
1567 i915_verify_inactive(dev, __FILE__, __LINE__);
1568}
1569
8a1a49f9 1570void
63560396 1571i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1572 uint32_t flush_domains,
852835f3 1573 struct intel_ring_buffer *ring)
63560396
DV
1574{
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1576 struct drm_i915_gem_object *obj_priv, *next;
1577
1578 list_for_each_entry_safe(obj_priv, next,
1579 &dev_priv->mm.gpu_write_list,
1580 gpu_write_list) {
a8089e84 1581 struct drm_gem_object *obj = &obj_priv->base;
63560396 1582
2b6efaa4
CW
1583 if (obj->write_domain & flush_domains &&
1584 obj_priv->ring == ring) {
63560396
DV
1585 uint32_t old_write_domain = obj->write_domain;
1586
1587 obj->write_domain = 0;
1588 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1589 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1590
1591 /* update the fence lru list */
007cc8ac
DV
1592 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1593 struct drm_i915_fence_reg *reg =
1594 &dev_priv->fence_regs[obj_priv->fence_reg];
1595 list_move_tail(&reg->lru_list,
63560396 1596 &dev_priv->mm.fence_list);
007cc8ac 1597 }
63560396
DV
1598
1599 trace_i915_gem_object_change_domain(obj,
1600 obj->read_domains,
1601 old_write_domain);
1602 }
1603 }
1604}
8187a2b7 1605
5a5a0c64 1606uint32_t
8a1a49f9
DV
1607i915_add_request(struct drm_device *dev,
1608 struct drm_file *file_priv,
8dc5d147 1609 struct drm_i915_gem_request *request,
8a1a49f9 1610 struct intel_ring_buffer *ring)
673a394b
EA
1611{
1612 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1613 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1614 uint32_t seqno;
1615 int was_empty;
673a394b 1616
b962442e
EA
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1619
8dc5d147
CW
1620 if (request == NULL) {
1621 request = kzalloc(sizeof(*request), GFP_KERNEL);
1622 if (request == NULL)
1623 return 0;
1624 }
673a394b 1625
8a1a49f9 1626 seqno = ring->add_request(dev, ring, file_priv, 0);
673a394b
EA
1627
1628 request->seqno = seqno;
852835f3 1629 request->ring = ring;
673a394b 1630 request->emitted_jiffies = jiffies;
852835f3
ZN
1631 was_empty = list_empty(&ring->request_list);
1632 list_add_tail(&request->list, &ring->request_list);
1633
b962442e
EA
1634 if (i915_file_priv) {
1635 list_add_tail(&request->client_list,
1636 &i915_file_priv->mm.request_list);
1637 } else {
1638 INIT_LIST_HEAD(&request->client_list);
1639 }
673a394b 1640
f65d9421 1641 if (!dev_priv->mm.suspended) {
b3b079db
CW
1642 mod_timer(&dev_priv->hangcheck_timer,
1643 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1644 if (was_empty)
b3b079db
CW
1645 queue_delayed_work(dev_priv->wq,
1646 &dev_priv->mm.retire_work, HZ);
f65d9421 1647 }
673a394b
EA
1648 return seqno;
1649}
1650
1651/**
1652 * Command execution barrier
1653 *
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1656 */
8a1a49f9 1657static void
852835f3 1658i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1659{
673a394b 1660 uint32_t flush_domains = 0;
673a394b
EA
1661
1662 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1663 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1664 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1665
1666 ring->flush(dev, ring,
1667 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1668}
1669
1670/**
1671 * Moves buffers associated only with the given active seqno from the active
1672 * to inactive list, potentially freeing them.
1673 */
1674static void
1675i915_gem_retire_request(struct drm_device *dev,
1676 struct drm_i915_gem_request *request)
1677{
1c5d22f7
CW
1678 trace_i915_gem_request_retire(dev, request->seqno);
1679
673a394b
EA
1680 /* Move any buffers on the active list that are no longer referenced
1681 * by the ringbuffer to the flushing/inactive lists as appropriate.
1682 */
852835f3 1683 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1684 struct drm_gem_object *obj;
1685 struct drm_i915_gem_object *obj_priv;
1686
852835f3 1687 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1688 struct drm_i915_gem_object,
1689 list);
a8089e84 1690 obj = &obj_priv->base;
673a394b
EA
1691
1692 /* If the seqno being retired doesn't match the oldest in the
1693 * list, then the oldest in the list must still be newer than
1694 * this seqno.
1695 */
1696 if (obj_priv->last_rendering_seqno != request->seqno)
de227ef0 1697 return;
de151cf6 1698
673a394b
EA
1699#if WATCH_LRU
1700 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1701 __func__, request->seqno, obj);
1702#endif
1703
ce44b0ea
EA
1704 if (obj->write_domain != 0)
1705 i915_gem_object_move_to_flushing(obj);
de227ef0 1706 else
673a394b 1707 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1708 }
1709}
1710
1711/**
1712 * Returns true if seq1 is later than seq2.
1713 */
22be1724 1714bool
673a394b
EA
1715i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1716{
1717 return (int32_t)(seq1 - seq2) >= 0;
1718}
1719
1720uint32_t
852835f3 1721i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1722 struct intel_ring_buffer *ring)
673a394b 1723{
852835f3 1724 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1725}
1726
1727/**
1728 * This function clears the request list as sequence numbers are passed.
1729 */
b09a1fec
CW
1730static void
1731i915_gem_retire_requests_ring(struct drm_device *dev,
1732 struct intel_ring_buffer *ring)
673a394b
EA
1733{
1734 drm_i915_private_t *dev_priv = dev->dev_private;
1735 uint32_t seqno;
1736
8187a2b7 1737 if (!ring->status_page.page_addr
852835f3 1738 || list_empty(&ring->request_list))
6c0594a3
KW
1739 return;
1740
852835f3 1741 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1742
852835f3 1743 while (!list_empty(&ring->request_list)) {
673a394b
EA
1744 struct drm_i915_gem_request *request;
1745 uint32_t retiring_seqno;
1746
852835f3 1747 request = list_first_entry(&ring->request_list,
673a394b
EA
1748 struct drm_i915_gem_request,
1749 list);
1750 retiring_seqno = request->seqno;
1751
1752 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1753 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1754 i915_gem_retire_request(dev, request);
1755
1756 list_del(&request->list);
b962442e 1757 list_del(&request->client_list);
9a298b2a 1758 kfree(request);
673a394b
EA
1759 } else
1760 break;
1761 }
9d34e5db
CW
1762
1763 if (unlikely (dev_priv->trace_irq_seqno &&
1764 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1765
1766 ring->user_irq_put(dev, ring);
9d34e5db
CW
1767 dev_priv->trace_irq_seqno = 0;
1768 }
673a394b
EA
1769}
1770
b09a1fec
CW
1771void
1772i915_gem_retire_requests(struct drm_device *dev)
1773{
1774 drm_i915_private_t *dev_priv = dev->dev_private;
1775
be72615b
CW
1776 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1777 struct drm_i915_gem_object *obj_priv, *tmp;
1778
1779 /* We must be careful that during unbind() we do not
1780 * accidentally infinitely recurse into retire requests.
1781 * Currently:
1782 * retire -> free -> unbind -> wait -> retire_ring
1783 */
1784 list_for_each_entry_safe(obj_priv, tmp,
1785 &dev_priv->mm.deferred_free_list,
1786 list)
1787 i915_gem_free_object_tail(&obj_priv->base);
1788 }
1789
b09a1fec
CW
1790 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1791 if (HAS_BSD(dev))
1792 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1793}
1794
75ef9da2 1795static void
673a394b
EA
1796i915_gem_retire_work_handler(struct work_struct *work)
1797{
1798 drm_i915_private_t *dev_priv;
1799 struct drm_device *dev;
1800
1801 dev_priv = container_of(work, drm_i915_private_t,
1802 mm.retire_work.work);
1803 dev = dev_priv->dev;
1804
1805 mutex_lock(&dev->struct_mutex);
b09a1fec 1806 i915_gem_retire_requests(dev);
d1b851fc 1807
6dbe2772 1808 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1809 (!list_empty(&dev_priv->render_ring.request_list) ||
1810 (HAS_BSD(dev) &&
1811 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1812 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1813 mutex_unlock(&dev->struct_mutex);
1814}
1815
5a5a0c64 1816int
852835f3 1817i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1818 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1819{
1820 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1821 u32 ier;
673a394b
EA
1822 int ret = 0;
1823
1824 BUG_ON(seqno == 0);
1825
e35a41de 1826 if (seqno == dev_priv->next_seqno) {
8dc5d147 1827 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1828 if (seqno == 0)
1829 return -ENOMEM;
1830 }
1831
ba1234d1 1832 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1833 return -EIO;
1834
852835f3 1835 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1836 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1837 ier = I915_READ(DEIER) | I915_READ(GTIER);
1838 else
1839 ier = I915_READ(IER);
802c7eb6
JB
1840 if (!ier) {
1841 DRM_ERROR("something (likely vbetool) disabled "
1842 "interrupts, re-enabling\n");
1843 i915_driver_irq_preinstall(dev);
1844 i915_driver_irq_postinstall(dev);
1845 }
1846
1c5d22f7
CW
1847 trace_i915_gem_request_wait_begin(dev, seqno);
1848
852835f3 1849 ring->waiting_gem_seqno = seqno;
8187a2b7 1850 ring->user_irq_get(dev, ring);
48764bf4 1851 if (interruptible)
852835f3
ZN
1852 ret = wait_event_interruptible(ring->irq_queue,
1853 i915_seqno_passed(
1854 ring->get_gem_seqno(dev, ring), seqno)
1855 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1856 else
852835f3
ZN
1857 wait_event(ring->irq_queue,
1858 i915_seqno_passed(
1859 ring->get_gem_seqno(dev, ring), seqno)
1860 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1861
8187a2b7 1862 ring->user_irq_put(dev, ring);
852835f3 1863 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1864
1865 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1866 }
ba1234d1 1867 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1868 ret = -EIO;
1869
1870 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1871 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1872 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1873 dev_priv->next_seqno);
673a394b
EA
1874
1875 /* Directly dispatch request retiring. While we have the work queue
1876 * to handle this, the waiter on a request often wants an associated
1877 * buffer to have made it to the inactive list, and we would need
1878 * a separate wait queue to handle that.
1879 */
1880 if (ret == 0)
b09a1fec 1881 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1882
1883 return ret;
1884}
1885
48764bf4
DV
1886/**
1887 * Waits for a sequence number to be signaled, and cleans up the
1888 * request and object lists appropriately for that event.
1889 */
1890static int
852835f3
ZN
1891i915_wait_request(struct drm_device *dev, uint32_t seqno,
1892 struct intel_ring_buffer *ring)
48764bf4 1893{
852835f3 1894 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1895}
1896
8187a2b7
ZN
1897static void
1898i915_gem_flush(struct drm_device *dev,
1899 uint32_t invalidate_domains,
1900 uint32_t flush_domains)
1901{
1902 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1903
8187a2b7
ZN
1904 if (flush_domains & I915_GEM_DOMAIN_CPU)
1905 drm_agp_chipset_flush(dev);
8bff917c 1906
8187a2b7
ZN
1907 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1908 invalidate_domains,
1909 flush_domains);
d1b851fc
ZN
1910
1911 if (HAS_BSD(dev))
1912 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1913 invalidate_domains,
1914 flush_domains);
8187a2b7
ZN
1915}
1916
673a394b
EA
1917/**
1918 * Ensures that all rendering to the object has completed and the object is
1919 * safe to unbind from the GTT or access from the CPU.
1920 */
1921static int
2cf34d7b
CW
1922i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1923 bool interruptible)
673a394b
EA
1924{
1925 struct drm_device *dev = obj->dev;
23010e43 1926 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1927 int ret;
1928
e47c68e9
EA
1929 /* This function only exists to support waiting for existing rendering,
1930 * not for emitting required flushes.
673a394b 1931 */
e47c68e9 1932 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1933
1934 /* If there is rendering queued on the buffer being evicted, wait for
1935 * it.
1936 */
1937 if (obj_priv->active) {
1938#if WATCH_BUF
1939 DRM_INFO("%s: object %p wait for seqno %08x\n",
1940 __func__, obj, obj_priv->last_rendering_seqno);
1941#endif
2cf34d7b
CW
1942 ret = i915_do_wait_request(dev,
1943 obj_priv->last_rendering_seqno,
1944 interruptible,
1945 obj_priv->ring);
1946 if (ret)
673a394b
EA
1947 return ret;
1948 }
1949
1950 return 0;
1951}
1952
1953/**
1954 * Unbinds an object from the GTT aperture.
1955 */
0f973f27 1956int
673a394b
EA
1957i915_gem_object_unbind(struct drm_gem_object *obj)
1958{
1959 struct drm_device *dev = obj->dev;
23010e43 1960 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1961 int ret = 0;
1962
1963#if WATCH_BUF
1964 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1965 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1966#endif
1967 if (obj_priv->gtt_space == NULL)
1968 return 0;
1969
1970 if (obj_priv->pin_count != 0) {
1971 DRM_ERROR("Attempting to unbind pinned buffer\n");
1972 return -EINVAL;
1973 }
1974
5323fd04
EA
1975 /* blow away mappings if mapped through GTT */
1976 i915_gem_release_mmap(obj);
1977
673a394b
EA
1978 /* Move the object to the CPU domain to ensure that
1979 * any possible CPU writes while it's not in the GTT
1980 * are flushed when we go to remap it. This will
1981 * also ensure that all pending GPU writes are finished
1982 * before we unbind.
1983 */
e47c68e9 1984 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1985 if (ret == -ERESTARTSYS)
673a394b 1986 return ret;
8dc1775d
CW
1987 /* Continue on if we fail due to EIO, the GPU is hung so we
1988 * should be safe and we need to cleanup or else we might
1989 * cause memory corruption through use-after-free.
1990 */
673a394b 1991
96b47b65
DV
1992 /* release the fence reg _after_ flushing */
1993 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1994 i915_gem_clear_fence_reg(obj);
1995
673a394b
EA
1996 if (obj_priv->agp_mem != NULL) {
1997 drm_unbind_agp(obj_priv->agp_mem);
1998 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1999 obj_priv->agp_mem = NULL;
2000 }
2001
856fa198 2002 i915_gem_object_put_pages(obj);
a32808c0 2003 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2004
2005 if (obj_priv->gtt_space) {
2006 atomic_dec(&dev->gtt_count);
2007 atomic_sub(obj->size, &dev->gtt_memory);
2008
2009 drm_mm_put_block(obj_priv->gtt_space);
2010 obj_priv->gtt_space = NULL;
2011 }
2012
2013 /* Remove ourselves from the LRU list if present. */
2014 if (!list_empty(&obj_priv->list))
2015 list_del_init(&obj_priv->list);
2016
963b4836
CW
2017 if (i915_gem_object_is_purgeable(obj_priv))
2018 i915_gem_object_truncate(obj);
2019
1c5d22f7
CW
2020 trace_i915_gem_object_unbind(obj);
2021
8dc1775d 2022 return ret;
673a394b
EA
2023}
2024
b47eb4a2 2025int
4df2faf4
DV
2026i915_gpu_idle(struct drm_device *dev)
2027{
2028 drm_i915_private_t *dev_priv = dev->dev_private;
2029 bool lists_empty;
852835f3 2030 int ret;
4df2faf4 2031
d1b851fc
ZN
2032 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2033 list_empty(&dev_priv->render_ring.active_list) &&
2034 (!HAS_BSD(dev) ||
2035 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2036 if (lists_empty)
2037 return 0;
2038
2039 /* Flush everything onto the inactive list. */
2040 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4fc6ee76
DV
2041
2042 ret = i915_wait_request(dev,
2043 i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
2044 &dev_priv->render_ring);
8a1a49f9
DV
2045 if (ret)
2046 return ret;
d1b851fc
ZN
2047
2048 if (HAS_BSD(dev)) {
4fc6ee76
DV
2049 ret = i915_wait_request(dev,
2050 i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
2051 &dev_priv->bsd_ring);
d1b851fc
ZN
2052 if (ret)
2053 return ret;
2054 }
2055
8a1a49f9 2056 return 0;
4df2faf4
DV
2057}
2058
6911a9b8 2059int
4bdadb97
CW
2060i915_gem_object_get_pages(struct drm_gem_object *obj,
2061 gfp_t gfpmask)
673a394b 2062{
23010e43 2063 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2064 int page_count, i;
2065 struct address_space *mapping;
2066 struct inode *inode;
2067 struct page *page;
673a394b 2068
778c3544
DV
2069 BUG_ON(obj_priv->pages_refcount
2070 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2071
856fa198 2072 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2073 return 0;
2074
2075 /* Get the list of pages out of our struct file. They'll be pinned
2076 * at this point until we release them.
2077 */
2078 page_count = obj->size / PAGE_SIZE;
856fa198 2079 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2080 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2081 if (obj_priv->pages == NULL) {
856fa198 2082 obj_priv->pages_refcount--;
673a394b
EA
2083 return -ENOMEM;
2084 }
2085
2086 inode = obj->filp->f_path.dentry->d_inode;
2087 mapping = inode->i_mapping;
2088 for (i = 0; i < page_count; i++) {
4bdadb97 2089 page = read_cache_page_gfp(mapping, i,
985b823b 2090 GFP_HIGHUSER |
4bdadb97 2091 __GFP_COLD |
cd9f040d 2092 __GFP_RECLAIMABLE |
4bdadb97 2093 gfpmask);
1f2b1013
CW
2094 if (IS_ERR(page))
2095 goto err_pages;
2096
856fa198 2097 obj_priv->pages[i] = page;
673a394b 2098 }
280b713b
EA
2099
2100 if (obj_priv->tiling_mode != I915_TILING_NONE)
2101 i915_gem_object_do_bit_17_swizzle(obj);
2102
673a394b 2103 return 0;
1f2b1013
CW
2104
2105err_pages:
2106 while (i--)
2107 page_cache_release(obj_priv->pages[i]);
2108
2109 drm_free_large(obj_priv->pages);
2110 obj_priv->pages = NULL;
2111 obj_priv->pages_refcount--;
2112 return PTR_ERR(page);
673a394b
EA
2113}
2114
4e901fdc
EA
2115static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2116{
2117 struct drm_gem_object *obj = reg->obj;
2118 struct drm_device *dev = obj->dev;
2119 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2120 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2121 int regnum = obj_priv->fence_reg;
2122 uint64_t val;
2123
2124 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2125 0xfffff000) << 32;
2126 val |= obj_priv->gtt_offset & 0xfffff000;
2127 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2128 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2129
2130 if (obj_priv->tiling_mode == I915_TILING_Y)
2131 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2132 val |= I965_FENCE_REG_VALID;
2133
2134 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2135}
2136
de151cf6
JB
2137static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2138{
2139 struct drm_gem_object *obj = reg->obj;
2140 struct drm_device *dev = obj->dev;
2141 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2142 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2143 int regnum = obj_priv->fence_reg;
2144 uint64_t val;
2145
2146 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2147 0xfffff000) << 32;
2148 val |= obj_priv->gtt_offset & 0xfffff000;
2149 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2150 if (obj_priv->tiling_mode == I915_TILING_Y)
2151 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2152 val |= I965_FENCE_REG_VALID;
2153
2154 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2155}
2156
2157static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2158{
2159 struct drm_gem_object *obj = reg->obj;
2160 struct drm_device *dev = obj->dev;
2161 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2162 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2163 int regnum = obj_priv->fence_reg;
0f973f27 2164 int tile_width;
dc529a4f 2165 uint32_t fence_reg, val;
de151cf6
JB
2166 uint32_t pitch_val;
2167
2168 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2169 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2170 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2171 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2172 return;
2173 }
2174
0f973f27
JB
2175 if (obj_priv->tiling_mode == I915_TILING_Y &&
2176 HAS_128_BYTE_Y_TILING(dev))
2177 tile_width = 128;
de151cf6 2178 else
0f973f27
JB
2179 tile_width = 512;
2180
2181 /* Note: pitch better be a power of two tile widths */
2182 pitch_val = obj_priv->stride / tile_width;
2183 pitch_val = ffs(pitch_val) - 1;
de151cf6 2184
c36a2a6d
DV
2185 if (obj_priv->tiling_mode == I915_TILING_Y &&
2186 HAS_128_BYTE_Y_TILING(dev))
2187 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2188 else
2189 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2190
de151cf6
JB
2191 val = obj_priv->gtt_offset;
2192 if (obj_priv->tiling_mode == I915_TILING_Y)
2193 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2194 val |= I915_FENCE_SIZE_BITS(obj->size);
2195 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2196 val |= I830_FENCE_REG_VALID;
2197
dc529a4f
EA
2198 if (regnum < 8)
2199 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2200 else
2201 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2202 I915_WRITE(fence_reg, val);
de151cf6
JB
2203}
2204
2205static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2206{
2207 struct drm_gem_object *obj = reg->obj;
2208 struct drm_device *dev = obj->dev;
2209 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2210 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2211 int regnum = obj_priv->fence_reg;
2212 uint32_t val;
2213 uint32_t pitch_val;
8d7773a3 2214 uint32_t fence_size_bits;
de151cf6 2215
8d7773a3 2216 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2217 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2218 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2219 __func__, obj_priv->gtt_offset);
de151cf6
JB
2220 return;
2221 }
2222
e76a16de
EA
2223 pitch_val = obj_priv->stride / 128;
2224 pitch_val = ffs(pitch_val) - 1;
2225 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2226
de151cf6
JB
2227 val = obj_priv->gtt_offset;
2228 if (obj_priv->tiling_mode == I915_TILING_Y)
2229 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2230 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2231 WARN_ON(fence_size_bits & ~0x00000f00);
2232 val |= fence_size_bits;
de151cf6
JB
2233 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2234 val |= I830_FENCE_REG_VALID;
2235
2236 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2237}
2238
2cf34d7b
CW
2239static int i915_find_fence_reg(struct drm_device *dev,
2240 bool interruptible)
ae3db24a
DV
2241{
2242 struct drm_i915_fence_reg *reg = NULL;
2243 struct drm_i915_gem_object *obj_priv = NULL;
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 struct drm_gem_object *obj = NULL;
2246 int i, avail, ret;
2247
2248 /* First try to find a free reg */
2249 avail = 0;
2250 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2251 reg = &dev_priv->fence_regs[i];
2252 if (!reg->obj)
2253 return i;
2254
23010e43 2255 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2256 if (!obj_priv->pin_count)
2257 avail++;
2258 }
2259
2260 if (avail == 0)
2261 return -ENOSPC;
2262
2263 /* None available, try to steal one or wait for a user to finish */
2264 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2265 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2266 lru_list) {
2267 obj = reg->obj;
2268 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2269
2270 if (obj_priv->pin_count)
2271 continue;
2272
2273 /* found one! */
2274 i = obj_priv->fence_reg;
2275 break;
2276 }
2277
2278 BUG_ON(i == I915_FENCE_REG_NONE);
2279
2280 /* We only have a reference on obj from the active list. put_fence_reg
2281 * might drop that one, causing a use-after-free in it. So hold a
2282 * private reference to obj like the other callers of put_fence_reg
2283 * (set_tiling ioctl) do. */
2284 drm_gem_object_reference(obj);
2cf34d7b 2285 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2286 drm_gem_object_unreference(obj);
2287 if (ret != 0)
2288 return ret;
2289
2290 return i;
2291}
2292
de151cf6
JB
2293/**
2294 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2295 * @obj: object to map through a fence reg
2296 *
2297 * When mapping objects through the GTT, userspace wants to be able to write
2298 * to them without having to worry about swizzling if the object is tiled.
2299 *
2300 * This function walks the fence regs looking for a free one for @obj,
2301 * stealing one if it can't find any.
2302 *
2303 * It then sets up the reg based on the object's properties: address, pitch
2304 * and tiling format.
2305 */
8c4b8c3f 2306int
2cf34d7b
CW
2307i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2308 bool interruptible)
de151cf6
JB
2309{
2310 struct drm_device *dev = obj->dev;
79e53945 2311 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2313 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2314 int ret;
de151cf6 2315
a09ba7fa
EA
2316 /* Just update our place in the LRU if our fence is getting used. */
2317 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2318 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2319 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2320 return 0;
2321 }
2322
de151cf6
JB
2323 switch (obj_priv->tiling_mode) {
2324 case I915_TILING_NONE:
2325 WARN(1, "allocating a fence for non-tiled object?\n");
2326 break;
2327 case I915_TILING_X:
0f973f27
JB
2328 if (!obj_priv->stride)
2329 return -EINVAL;
2330 WARN((obj_priv->stride & (512 - 1)),
2331 "object 0x%08x is X tiled but has non-512B pitch\n",
2332 obj_priv->gtt_offset);
de151cf6
JB
2333 break;
2334 case I915_TILING_Y:
0f973f27
JB
2335 if (!obj_priv->stride)
2336 return -EINVAL;
2337 WARN((obj_priv->stride & (128 - 1)),
2338 "object 0x%08x is Y tiled but has non-128B pitch\n",
2339 obj_priv->gtt_offset);
de151cf6
JB
2340 break;
2341 }
2342
2cf34d7b 2343 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2344 if (ret < 0)
2345 return ret;
de151cf6 2346
ae3db24a
DV
2347 obj_priv->fence_reg = ret;
2348 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2349 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2350
de151cf6
JB
2351 reg->obj = obj;
2352
e259befd
CW
2353 switch (INTEL_INFO(dev)->gen) {
2354 case 6:
4e901fdc 2355 sandybridge_write_fence_reg(reg);
e259befd
CW
2356 break;
2357 case 5:
2358 case 4:
de151cf6 2359 i965_write_fence_reg(reg);
e259befd
CW
2360 break;
2361 case 3:
de151cf6 2362 i915_write_fence_reg(reg);
e259befd
CW
2363 break;
2364 case 2:
de151cf6 2365 i830_write_fence_reg(reg);
e259befd
CW
2366 break;
2367 }
d9ddcb96 2368
ae3db24a
DV
2369 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2370 obj_priv->tiling_mode);
1c5d22f7 2371
d9ddcb96 2372 return 0;
de151cf6
JB
2373}
2374
2375/**
2376 * i915_gem_clear_fence_reg - clear out fence register info
2377 * @obj: object to clear
2378 *
2379 * Zeroes out the fence register itself and clears out the associated
2380 * data structures in dev_priv and obj_priv.
2381 */
2382static void
2383i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2384{
2385 struct drm_device *dev = obj->dev;
79e53945 2386 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2387 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2388 struct drm_i915_fence_reg *reg =
2389 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2390 uint32_t fence_reg;
de151cf6 2391
e259befd
CW
2392 switch (INTEL_INFO(dev)->gen) {
2393 case 6:
4e901fdc
EA
2394 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2395 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2396 break;
2397 case 5:
2398 case 4:
de151cf6 2399 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2400 break;
2401 case 3:
2402 if (obj_priv->fence_reg > 8)
2403 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2404 else
e259befd
CW
2405 case 2:
2406 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2407
2408 I915_WRITE(fence_reg, 0);
e259befd 2409 break;
dc529a4f 2410 }
de151cf6 2411
007cc8ac 2412 reg->obj = NULL;
de151cf6 2413 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2414 list_del_init(&reg->lru_list);
de151cf6
JB
2415}
2416
52dc7d32
CW
2417/**
2418 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2419 * to the buffer to finish, and then resets the fence register.
2420 * @obj: tiled object holding a fence register.
2cf34d7b 2421 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2422 *
2423 * Zeroes out the fence register itself and clears out the associated
2424 * data structures in dev_priv and obj_priv.
2425 */
2426int
2cf34d7b
CW
2427i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2428 bool interruptible)
52dc7d32
CW
2429{
2430 struct drm_device *dev = obj->dev;
23010e43 2431 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2432
2433 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2434 return 0;
2435
10ae9bd2
DV
2436 /* If we've changed tiling, GTT-mappings of the object
2437 * need to re-fault to ensure that the correct fence register
2438 * setup is in place.
2439 */
2440 i915_gem_release_mmap(obj);
2441
52dc7d32
CW
2442 /* On the i915, GPU access to tiled buffers is via a fence,
2443 * therefore we must wait for any outstanding access to complete
2444 * before clearing the fence.
2445 */
a6c45cf0 2446 if (INTEL_INFO(dev)->gen < 4) {
52dc7d32
CW
2447 int ret;
2448
2cf34d7b 2449 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2450 if (ret)
2451 return ret;
2452
2cf34d7b 2453 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2454 if (ret)
52dc7d32
CW
2455 return ret;
2456 }
2457
4a726612 2458 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2459 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2460
2461 return 0;
2462}
2463
673a394b
EA
2464/**
2465 * Finds free space in the GTT aperture and binds the object there.
2466 */
2467static int
2468i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2469{
2470 struct drm_device *dev = obj->dev;
2471 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2472 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2473 struct drm_mm_node *free_space;
4bdadb97 2474 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2475 int ret;
673a394b 2476
bb6baf76 2477 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2478 DRM_ERROR("Attempting to bind a purgeable object\n");
2479 return -EINVAL;
2480 }
2481
673a394b 2482 if (alignment == 0)
0f973f27 2483 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2484 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2485 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2486 return -EINVAL;
2487 }
2488
654fc607
CW
2489 /* If the object is bigger than the entire aperture, reject it early
2490 * before evicting everything in a vain attempt to find space.
2491 */
2492 if (obj->size > dev->gtt_total) {
2493 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2494 return -E2BIG;
2495 }
2496
673a394b
EA
2497 search_free:
2498 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2499 obj->size, alignment, 0);
2500 if (free_space != NULL) {
2501 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2502 alignment);
db3307a9 2503 if (obj_priv->gtt_space != NULL)
673a394b 2504 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2505 }
2506 if (obj_priv->gtt_space == NULL) {
2507 /* If the gtt is empty and we're still having trouble
2508 * fitting our object in, we're out of memory.
2509 */
2510#if WATCH_LRU
2511 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2512#endif
0108a3ed 2513 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2514 if (ret)
673a394b 2515 return ret;
9731129c 2516
673a394b
EA
2517 goto search_free;
2518 }
2519
2520#if WATCH_BUF
cfd43c02 2521 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2522 obj->size, obj_priv->gtt_offset);
2523#endif
4bdadb97 2524 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2525 if (ret) {
2526 drm_mm_put_block(obj_priv->gtt_space);
2527 obj_priv->gtt_space = NULL;
07f73f69
CW
2528
2529 if (ret == -ENOMEM) {
2530 /* first try to clear up some space from the GTT */
0108a3ed
DV
2531 ret = i915_gem_evict_something(dev, obj->size,
2532 alignment);
07f73f69 2533 if (ret) {
07f73f69 2534 /* now try to shrink everyone else */
4bdadb97
CW
2535 if (gfpmask) {
2536 gfpmask = 0;
2537 goto search_free;
07f73f69
CW
2538 }
2539
2540 return ret;
2541 }
2542
2543 goto search_free;
2544 }
2545
673a394b
EA
2546 return ret;
2547 }
2548
673a394b
EA
2549 /* Create an AGP memory structure pointing at our pages, and bind it
2550 * into the GTT.
2551 */
2552 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2553 obj_priv->pages,
07f73f69 2554 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2555 obj_priv->gtt_offset,
2556 obj_priv->agp_type);
673a394b 2557 if (obj_priv->agp_mem == NULL) {
856fa198 2558 i915_gem_object_put_pages(obj);
673a394b
EA
2559 drm_mm_put_block(obj_priv->gtt_space);
2560 obj_priv->gtt_space = NULL;
07f73f69 2561
0108a3ed 2562 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2563 if (ret)
07f73f69 2564 return ret;
07f73f69
CW
2565
2566 goto search_free;
673a394b
EA
2567 }
2568 atomic_inc(&dev->gtt_count);
2569 atomic_add(obj->size, &dev->gtt_memory);
2570
bf1a1092
CW
2571 /* keep track of bounds object by adding it to the inactive list */
2572 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2573
673a394b
EA
2574 /* Assert that the object is not currently in any GPU domain. As it
2575 * wasn't in the GTT, there shouldn't be any way it could have been in
2576 * a GPU cache
2577 */
21d509e3
CW
2578 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2579 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2580
1c5d22f7
CW
2581 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2582
673a394b
EA
2583 return 0;
2584}
2585
2586void
2587i915_gem_clflush_object(struct drm_gem_object *obj)
2588{
23010e43 2589 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2590
2591 /* If we don't have a page list set up, then we're not pinned
2592 * to GPU, and we can ignore the cache flush because it'll happen
2593 * again at bind time.
2594 */
856fa198 2595 if (obj_priv->pages == NULL)
673a394b
EA
2596 return;
2597
1c5d22f7 2598 trace_i915_gem_object_clflush(obj);
cfa16a0d 2599
856fa198 2600 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2601}
2602
e47c68e9 2603/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2604static int
ba3d8d74
DV
2605i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2606 bool pipelined)
e47c68e9
EA
2607{
2608 struct drm_device *dev = obj->dev;
1c5d22f7 2609 uint32_t old_write_domain;
e47c68e9
EA
2610
2611 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2612 return 0;
e47c68e9
EA
2613
2614 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2615 old_write_domain = obj->write_domain;
e47c68e9 2616 i915_gem_flush(dev, 0, obj->write_domain);
48b956c5 2617 BUG_ON(obj->write_domain);
1c5d22f7
CW
2618
2619 trace_i915_gem_object_change_domain(obj,
2620 obj->read_domains,
2621 old_write_domain);
ba3d8d74
DV
2622
2623 if (pipelined)
2624 return 0;
2625
2cf34d7b 2626 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2627}
2628
2629/** Flushes the GTT write domain for the object if it's dirty. */
2630static void
2631i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2632{
1c5d22f7
CW
2633 uint32_t old_write_domain;
2634
e47c68e9
EA
2635 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2636 return;
2637
2638 /* No actual flushing is required for the GTT write domain. Writes
2639 * to it immediately go to main memory as far as we know, so there's
2640 * no chipset flush. It also doesn't land in render cache.
2641 */
1c5d22f7 2642 old_write_domain = obj->write_domain;
e47c68e9 2643 obj->write_domain = 0;
1c5d22f7
CW
2644
2645 trace_i915_gem_object_change_domain(obj,
2646 obj->read_domains,
2647 old_write_domain);
e47c68e9
EA
2648}
2649
2650/** Flushes the CPU write domain for the object if it's dirty. */
2651static void
2652i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2653{
2654 struct drm_device *dev = obj->dev;
1c5d22f7 2655 uint32_t old_write_domain;
e47c68e9
EA
2656
2657 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2658 return;
2659
2660 i915_gem_clflush_object(obj);
2661 drm_agp_chipset_flush(dev);
1c5d22f7 2662 old_write_domain = obj->write_domain;
e47c68e9 2663 obj->write_domain = 0;
1c5d22f7
CW
2664
2665 trace_i915_gem_object_change_domain(obj,
2666 obj->read_domains,
2667 old_write_domain);
e47c68e9
EA
2668}
2669
2ef7eeaa
EA
2670/**
2671 * Moves a single object to the GTT read, and possibly write domain.
2672 *
2673 * This function returns when the move is complete, including waiting on
2674 * flushes to occur.
2675 */
79e53945 2676int
2ef7eeaa
EA
2677i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2678{
23010e43 2679 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2680 uint32_t old_write_domain, old_read_domains;
e47c68e9 2681 int ret;
2ef7eeaa 2682
02354392
EA
2683 /* Not valid to be called on unbound objects. */
2684 if (obj_priv->gtt_space == NULL)
2685 return -EINVAL;
2686
ba3d8d74 2687 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2688 if (ret != 0)
2689 return ret;
2690
7213342d 2691 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2692
ba3d8d74 2693 if (write) {
2cf34d7b 2694 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2695 if (ret)
2696 return ret;
ba3d8d74 2697 }
2ef7eeaa 2698
7213342d
CW
2699 old_write_domain = obj->write_domain;
2700 old_read_domains = obj->read_domains;
2ef7eeaa 2701
e47c68e9
EA
2702 /* It should now be out of any other write domains, and we can update
2703 * the domain values for our changes.
2704 */
2705 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2706 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2707 if (write) {
7213342d 2708 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2709 obj->write_domain = I915_GEM_DOMAIN_GTT;
2710 obj_priv->dirty = 1;
2ef7eeaa
EA
2711 }
2712
1c5d22f7
CW
2713 trace_i915_gem_object_change_domain(obj,
2714 old_read_domains,
2715 old_write_domain);
2716
e47c68e9
EA
2717 return 0;
2718}
2719
b9241ea3
ZW
2720/*
2721 * Prepare buffer for display plane. Use uninterruptible for possible flush
2722 * wait, as in modesetting process we're not supposed to be interrupted.
2723 */
2724int
48b956c5
CW
2725i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2726 bool pipelined)
b9241ea3 2727{
23010e43 2728 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2729 uint32_t old_read_domains;
b9241ea3
ZW
2730 int ret;
2731
2732 /* Not valid to be called on unbound objects. */
2733 if (obj_priv->gtt_space == NULL)
2734 return -EINVAL;
2735
48b956c5
CW
2736 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2737 if (ret)
e35a41de 2738 return ret;
b9241ea3 2739
b118c1e3
CW
2740 i915_gem_object_flush_cpu_write_domain(obj);
2741
b9241ea3 2742 old_read_domains = obj->read_domains;
b118c1e3 2743 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2744
2745 trace_i915_gem_object_change_domain(obj,
2746 old_read_domains,
ba3d8d74 2747 obj->write_domain);
b9241ea3
ZW
2748
2749 return 0;
2750}
2751
e47c68e9
EA
2752/**
2753 * Moves a single object to the CPU read, and possibly write domain.
2754 *
2755 * This function returns when the move is complete, including waiting on
2756 * flushes to occur.
2757 */
2758static int
2759i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2760{
1c5d22f7 2761 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2762 int ret;
2763
ba3d8d74 2764 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2765 if (ret != 0)
2766 return ret;
2ef7eeaa 2767
e47c68e9 2768 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2769
e47c68e9
EA
2770 /* If we have a partially-valid cache of the object in the CPU,
2771 * finish invalidating it and free the per-page flags.
2ef7eeaa 2772 */
e47c68e9 2773 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2774
7213342d 2775 if (write) {
2cf34d7b 2776 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2777 if (ret)
2778 return ret;
2779 }
2780
1c5d22f7
CW
2781 old_write_domain = obj->write_domain;
2782 old_read_domains = obj->read_domains;
2783
e47c68e9
EA
2784 /* Flush the CPU cache if it's still invalid. */
2785 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2786 i915_gem_clflush_object(obj);
2ef7eeaa 2787
e47c68e9 2788 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2789 }
2790
2791 /* It should now be out of any other write domains, and we can update
2792 * the domain values for our changes.
2793 */
e47c68e9
EA
2794 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2795
2796 /* If we're writing through the CPU, then the GPU read domains will
2797 * need to be invalidated at next use.
2798 */
2799 if (write) {
2800 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2801 obj->write_domain = I915_GEM_DOMAIN_CPU;
2802 }
2ef7eeaa 2803
1c5d22f7
CW
2804 trace_i915_gem_object_change_domain(obj,
2805 old_read_domains,
2806 old_write_domain);
2807
2ef7eeaa
EA
2808 return 0;
2809}
2810
673a394b
EA
2811/*
2812 * Set the next domain for the specified object. This
2813 * may not actually perform the necessary flushing/invaliding though,
2814 * as that may want to be batched with other set_domain operations
2815 *
2816 * This is (we hope) the only really tricky part of gem. The goal
2817 * is fairly simple -- track which caches hold bits of the object
2818 * and make sure they remain coherent. A few concrete examples may
2819 * help to explain how it works. For shorthand, we use the notation
2820 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2821 * a pair of read and write domain masks.
2822 *
2823 * Case 1: the batch buffer
2824 *
2825 * 1. Allocated
2826 * 2. Written by CPU
2827 * 3. Mapped to GTT
2828 * 4. Read by GPU
2829 * 5. Unmapped from GTT
2830 * 6. Freed
2831 *
2832 * Let's take these a step at a time
2833 *
2834 * 1. Allocated
2835 * Pages allocated from the kernel may still have
2836 * cache contents, so we set them to (CPU, CPU) always.
2837 * 2. Written by CPU (using pwrite)
2838 * The pwrite function calls set_domain (CPU, CPU) and
2839 * this function does nothing (as nothing changes)
2840 * 3. Mapped by GTT
2841 * This function asserts that the object is not
2842 * currently in any GPU-based read or write domains
2843 * 4. Read by GPU
2844 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2845 * As write_domain is zero, this function adds in the
2846 * current read domains (CPU+COMMAND, 0).
2847 * flush_domains is set to CPU.
2848 * invalidate_domains is set to COMMAND
2849 * clflush is run to get data out of the CPU caches
2850 * then i915_dev_set_domain calls i915_gem_flush to
2851 * emit an MI_FLUSH and drm_agp_chipset_flush
2852 * 5. Unmapped from GTT
2853 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2854 * flush_domains and invalidate_domains end up both zero
2855 * so no flushing/invalidating happens
2856 * 6. Freed
2857 * yay, done
2858 *
2859 * Case 2: The shared render buffer
2860 *
2861 * 1. Allocated
2862 * 2. Mapped to GTT
2863 * 3. Read/written by GPU
2864 * 4. set_domain to (CPU,CPU)
2865 * 5. Read/written by CPU
2866 * 6. Read/written by GPU
2867 *
2868 * 1. Allocated
2869 * Same as last example, (CPU, CPU)
2870 * 2. Mapped to GTT
2871 * Nothing changes (assertions find that it is not in the GPU)
2872 * 3. Read/written by GPU
2873 * execbuffer calls set_domain (RENDER, RENDER)
2874 * flush_domains gets CPU
2875 * invalidate_domains gets GPU
2876 * clflush (obj)
2877 * MI_FLUSH and drm_agp_chipset_flush
2878 * 4. set_domain (CPU, CPU)
2879 * flush_domains gets GPU
2880 * invalidate_domains gets CPU
2881 * wait_rendering (obj) to make sure all drawing is complete.
2882 * This will include an MI_FLUSH to get the data from GPU
2883 * to memory
2884 * clflush (obj) to invalidate the CPU cache
2885 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2886 * 5. Read/written by CPU
2887 * cache lines are loaded and dirtied
2888 * 6. Read written by GPU
2889 * Same as last GPU access
2890 *
2891 * Case 3: The constant buffer
2892 *
2893 * 1. Allocated
2894 * 2. Written by CPU
2895 * 3. Read by GPU
2896 * 4. Updated (written) by CPU again
2897 * 5. Read by GPU
2898 *
2899 * 1. Allocated
2900 * (CPU, CPU)
2901 * 2. Written by CPU
2902 * (CPU, CPU)
2903 * 3. Read by GPU
2904 * (CPU+RENDER, 0)
2905 * flush_domains = CPU
2906 * invalidate_domains = RENDER
2907 * clflush (obj)
2908 * MI_FLUSH
2909 * drm_agp_chipset_flush
2910 * 4. Updated (written) by CPU again
2911 * (CPU, CPU)
2912 * flush_domains = 0 (no previous write domain)
2913 * invalidate_domains = 0 (no new read domains)
2914 * 5. Read by GPU
2915 * (CPU+RENDER, 0)
2916 * flush_domains = CPU
2917 * invalidate_domains = RENDER
2918 * clflush (obj)
2919 * MI_FLUSH
2920 * drm_agp_chipset_flush
2921 */
c0d90829 2922static void
8b0e378a 2923i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2924{
2925 struct drm_device *dev = obj->dev;
23010e43 2926 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2927 uint32_t invalidate_domains = 0;
2928 uint32_t flush_domains = 0;
1c5d22f7 2929 uint32_t old_read_domains;
e47c68e9 2930
8b0e378a
EA
2931 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2932 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2933
652c393a
JB
2934 intel_mark_busy(dev, obj);
2935
673a394b
EA
2936#if WATCH_BUF
2937 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2938 __func__, obj,
8b0e378a
EA
2939 obj->read_domains, obj->pending_read_domains,
2940 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2941#endif
2942 /*
2943 * If the object isn't moving to a new write domain,
2944 * let the object stay in multiple read domains
2945 */
8b0e378a
EA
2946 if (obj->pending_write_domain == 0)
2947 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2948 else
2949 obj_priv->dirty = 1;
2950
2951 /*
2952 * Flush the current write domain if
2953 * the new read domains don't match. Invalidate
2954 * any read domains which differ from the old
2955 * write domain
2956 */
8b0e378a
EA
2957 if (obj->write_domain &&
2958 obj->write_domain != obj->pending_read_domains) {
673a394b 2959 flush_domains |= obj->write_domain;
8b0e378a
EA
2960 invalidate_domains |=
2961 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2962 }
2963 /*
2964 * Invalidate any read caches which may have
2965 * stale data. That is, any new read domains.
2966 */
8b0e378a 2967 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2968 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2969#if WATCH_BUF
2970 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2971 __func__, flush_domains, invalidate_domains);
2972#endif
673a394b
EA
2973 i915_gem_clflush_object(obj);
2974 }
2975
1c5d22f7
CW
2976 old_read_domains = obj->read_domains;
2977
efbeed96
EA
2978 /* The actual obj->write_domain will be updated with
2979 * pending_write_domain after we emit the accumulated flush for all
2980 * of our domain changes in execbuffers (which clears objects'
2981 * write_domains). So if we have a current write domain that we
2982 * aren't changing, set pending_write_domain to that.
2983 */
2984 if (flush_domains == 0 && obj->pending_write_domain == 0)
2985 obj->pending_write_domain = obj->write_domain;
8b0e378a 2986 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2987
2988 dev->invalidate_domains |= invalidate_domains;
2989 dev->flush_domains |= flush_domains;
2990#if WATCH_BUF
2991 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2992 __func__,
2993 obj->read_domains, obj->write_domain,
2994 dev->invalidate_domains, dev->flush_domains);
2995#endif
1c5d22f7
CW
2996
2997 trace_i915_gem_object_change_domain(obj,
2998 old_read_domains,
2999 obj->write_domain);
673a394b
EA
3000}
3001
3002/**
e47c68e9 3003 * Moves the object from a partially CPU read to a full one.
673a394b 3004 *
e47c68e9
EA
3005 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3006 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3007 */
e47c68e9
EA
3008static void
3009i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3010{
23010e43 3011 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3012
e47c68e9
EA
3013 if (!obj_priv->page_cpu_valid)
3014 return;
3015
3016 /* If we're partially in the CPU read domain, finish moving it in.
3017 */
3018 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3019 int i;
3020
3021 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3022 if (obj_priv->page_cpu_valid[i])
3023 continue;
856fa198 3024 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3025 }
e47c68e9
EA
3026 }
3027
3028 /* Free the page_cpu_valid mappings which are now stale, whether
3029 * or not we've got I915_GEM_DOMAIN_CPU.
3030 */
9a298b2a 3031 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3032 obj_priv->page_cpu_valid = NULL;
3033}
3034
3035/**
3036 * Set the CPU read domain on a range of the object.
3037 *
3038 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3039 * not entirely valid. The page_cpu_valid member of the object flags which
3040 * pages have been flushed, and will be respected by
3041 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3042 * of the whole object.
3043 *
3044 * This function returns when the move is complete, including waiting on
3045 * flushes to occur.
3046 */
3047static int
3048i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3049 uint64_t offset, uint64_t size)
3050{
23010e43 3051 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3052 uint32_t old_read_domains;
e47c68e9 3053 int i, ret;
673a394b 3054
e47c68e9
EA
3055 if (offset == 0 && size == obj->size)
3056 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3057
ba3d8d74 3058 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3059 if (ret != 0)
6a47baa6 3060 return ret;
e47c68e9
EA
3061 i915_gem_object_flush_gtt_write_domain(obj);
3062
3063 /* If we're already fully in the CPU read domain, we're done. */
3064 if (obj_priv->page_cpu_valid == NULL &&
3065 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3066 return 0;
673a394b 3067
e47c68e9
EA
3068 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3069 * newly adding I915_GEM_DOMAIN_CPU
3070 */
673a394b 3071 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3072 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3073 GFP_KERNEL);
e47c68e9
EA
3074 if (obj_priv->page_cpu_valid == NULL)
3075 return -ENOMEM;
3076 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3077 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3078
3079 /* Flush the cache on any pages that are still invalid from the CPU's
3080 * perspective.
3081 */
e47c68e9
EA
3082 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3083 i++) {
673a394b
EA
3084 if (obj_priv->page_cpu_valid[i])
3085 continue;
3086
856fa198 3087 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3088
3089 obj_priv->page_cpu_valid[i] = 1;
3090 }
3091
e47c68e9
EA
3092 /* It should now be out of any other write domains, and we can update
3093 * the domain values for our changes.
3094 */
3095 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3096
1c5d22f7 3097 old_read_domains = obj->read_domains;
e47c68e9
EA
3098 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3099
1c5d22f7
CW
3100 trace_i915_gem_object_change_domain(obj,
3101 old_read_domains,
3102 obj->write_domain);
3103
673a394b
EA
3104 return 0;
3105}
3106
673a394b
EA
3107/**
3108 * Pin an object to the GTT and evaluate the relocations landing in it.
3109 */
3110static int
3111i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3112 struct drm_file *file_priv,
76446cac 3113 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3114 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3115{
3116 struct drm_device *dev = obj->dev;
0839ccb8 3117 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3118 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3119 int i, ret;
0839ccb8 3120 void __iomem *reloc_page;
76446cac
JB
3121 bool need_fence;
3122
3123 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3124 obj_priv->tiling_mode != I915_TILING_NONE;
3125
3126 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3127 if (need_fence &&
3128 !i915_gem_object_fence_offset_ok(obj,
3129 obj_priv->tiling_mode)) {
3130 ret = i915_gem_object_unbind(obj);
3131 if (ret)
3132 return ret;
3133 }
673a394b
EA
3134
3135 /* Choose the GTT offset for our buffer and put it there. */
3136 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3137 if (ret)
3138 return ret;
3139
76446cac
JB
3140 /*
3141 * Pre-965 chips need a fence register set up in order to
3142 * properly handle blits to/from tiled surfaces.
3143 */
3144 if (need_fence) {
2cf34d7b 3145 ret = i915_gem_object_get_fence_reg(obj, false);
76446cac 3146 if (ret != 0) {
76446cac
JB
3147 i915_gem_object_unpin(obj);
3148 return ret;
3149 }
3150 }
3151
673a394b
EA
3152 entry->offset = obj_priv->gtt_offset;
3153
673a394b
EA
3154 /* Apply the relocations, using the GTT aperture to avoid cache
3155 * flushing requirements.
3156 */
3157 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3158 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3159 struct drm_gem_object *target_obj;
3160 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3161 uint32_t reloc_val, reloc_offset;
3162 uint32_t __iomem *reloc_entry;
673a394b 3163
673a394b 3164 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3165 reloc->target_handle);
673a394b
EA
3166 if (target_obj == NULL) {
3167 i915_gem_object_unpin(obj);
bf79cb91 3168 return -ENOENT;
673a394b 3169 }
23010e43 3170 target_obj_priv = to_intel_bo(target_obj);
673a394b 3171
8542a0bb
CW
3172#if WATCH_RELOC
3173 DRM_INFO("%s: obj %p offset %08x target %d "
3174 "read %08x write %08x gtt %08x "
3175 "presumed %08x delta %08x\n",
3176 __func__,
3177 obj,
3178 (int) reloc->offset,
3179 (int) reloc->target_handle,
3180 (int) reloc->read_domains,
3181 (int) reloc->write_domain,
3182 (int) target_obj_priv->gtt_offset,
3183 (int) reloc->presumed_offset,
3184 reloc->delta);
3185#endif
3186
673a394b
EA
3187 /* The target buffer should have appeared before us in the
3188 * exec_object list, so it should have a GTT space bound by now.
3189 */
3190 if (target_obj_priv->gtt_space == NULL) {
3191 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3192 reloc->target_handle);
673a394b
EA
3193 drm_gem_object_unreference(target_obj);
3194 i915_gem_object_unpin(obj);
3195 return -EINVAL;
3196 }
3197
8542a0bb 3198 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3199 if (reloc->write_domain & (reloc->write_domain - 1)) {
3200 DRM_ERROR("reloc with multiple write domains: "
3201 "obj %p target %d offset %d "
3202 "read %08x write %08x",
3203 obj, reloc->target_handle,
3204 (int) reloc->offset,
3205 reloc->read_domains,
3206 reloc->write_domain);
3207 return -EINVAL;
3208 }
40a5f0de
EA
3209 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3210 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3211 DRM_ERROR("reloc with read/write CPU domains: "
3212 "obj %p target %d offset %d "
3213 "read %08x write %08x",
40a5f0de
EA
3214 obj, reloc->target_handle,
3215 (int) reloc->offset,
3216 reloc->read_domains,
3217 reloc->write_domain);
491152b8
CW
3218 drm_gem_object_unreference(target_obj);
3219 i915_gem_object_unpin(obj);
e47c68e9
EA
3220 return -EINVAL;
3221 }
40a5f0de
EA
3222 if (reloc->write_domain && target_obj->pending_write_domain &&
3223 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3224 DRM_ERROR("Write domain conflict: "
3225 "obj %p target %d offset %d "
3226 "new %08x old %08x\n",
40a5f0de
EA
3227 obj, reloc->target_handle,
3228 (int) reloc->offset,
3229 reloc->write_domain,
673a394b
EA
3230 target_obj->pending_write_domain);
3231 drm_gem_object_unreference(target_obj);
3232 i915_gem_object_unpin(obj);
3233 return -EINVAL;
3234 }
3235
40a5f0de
EA
3236 target_obj->pending_read_domains |= reloc->read_domains;
3237 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3238
3239 /* If the relocation already has the right value in it, no
3240 * more work needs to be done.
3241 */
40a5f0de 3242 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3243 drm_gem_object_unreference(target_obj);
3244 continue;
3245 }
3246
8542a0bb
CW
3247 /* Check that the relocation address is valid... */
3248 if (reloc->offset > obj->size - 4) {
3249 DRM_ERROR("Relocation beyond object bounds: "
3250 "obj %p target %d offset %d size %d.\n",
3251 obj, reloc->target_handle,
3252 (int) reloc->offset, (int) obj->size);
3253 drm_gem_object_unreference(target_obj);
3254 i915_gem_object_unpin(obj);
3255 return -EINVAL;
3256 }
3257 if (reloc->offset & 3) {
3258 DRM_ERROR("Relocation not 4-byte aligned: "
3259 "obj %p target %d offset %d.\n",
3260 obj, reloc->target_handle,
3261 (int) reloc->offset);
3262 drm_gem_object_unreference(target_obj);
3263 i915_gem_object_unpin(obj);
3264 return -EINVAL;
3265 }
3266
3267 /* and points to somewhere within the target object. */
3268 if (reloc->delta >= target_obj->size) {
3269 DRM_ERROR("Relocation beyond target object bounds: "
3270 "obj %p target %d delta %d size %d.\n",
3271 obj, reloc->target_handle,
3272 (int) reloc->delta, (int) target_obj->size);
3273 drm_gem_object_unreference(target_obj);
3274 i915_gem_object_unpin(obj);
3275 return -EINVAL;
3276 }
3277
2ef7eeaa
EA
3278 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3279 if (ret != 0) {
3280 drm_gem_object_unreference(target_obj);
3281 i915_gem_object_unpin(obj);
3282 return -EINVAL;
673a394b
EA
3283 }
3284
3285 /* Map the page containing the relocation we're going to
3286 * perform.
3287 */
40a5f0de 3288 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3289 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3290 (reloc_offset &
fca3ec01
CW
3291 ~(PAGE_SIZE - 1)),
3292 KM_USER0);
3043c60c 3293 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3294 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3295 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3296
3297#if WATCH_BUF
3298 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3299 obj, (unsigned int) reloc->offset,
673a394b
EA
3300 readl(reloc_entry), reloc_val);
3301#endif
3302 writel(reloc_val, reloc_entry);
fca3ec01 3303 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3304
40a5f0de
EA
3305 /* The updated presumed offset for this entry will be
3306 * copied back out to the user.
673a394b 3307 */
40a5f0de 3308 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3309
3310 drm_gem_object_unreference(target_obj);
3311 }
3312
673a394b
EA
3313#if WATCH_BUF
3314 if (0)
3315 i915_gem_dump_object(obj, 128, __func__, ~0);
3316#endif
3317 return 0;
3318}
3319
673a394b
EA
3320/* Throttle our rendering by waiting until the ring has completed our requests
3321 * emitted over 20 msec ago.
3322 *
b962442e
EA
3323 * Note that if we were to use the current jiffies each time around the loop,
3324 * we wouldn't escape the function with any frames outstanding if the time to
3325 * render a frame was over 20ms.
3326 *
673a394b
EA
3327 * This should get us reasonable parallelism between CPU and GPU but also
3328 * relatively low latency when blocking on a particular request to finish.
3329 */
3330static int
3331i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3332{
3333 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3334 int ret = 0;
b962442e 3335 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3336
3337 mutex_lock(&dev->struct_mutex);
b962442e
EA
3338 while (!list_empty(&i915_file_priv->mm.request_list)) {
3339 struct drm_i915_gem_request *request;
3340
3341 request = list_first_entry(&i915_file_priv->mm.request_list,
3342 struct drm_i915_gem_request,
3343 client_list);
3344
3345 if (time_after_eq(request->emitted_jiffies, recent_enough))
3346 break;
3347
852835f3 3348 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3349 if (ret != 0)
3350 break;
3351 }
673a394b 3352 mutex_unlock(&dev->struct_mutex);
b962442e 3353
673a394b
EA
3354 return ret;
3355}
3356
40a5f0de 3357static int
76446cac 3358i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3359 uint32_t buffer_count,
3360 struct drm_i915_gem_relocation_entry **relocs)
3361{
3362 uint32_t reloc_count = 0, reloc_index = 0, i;
3363 int ret;
3364
3365 *relocs = NULL;
3366 for (i = 0; i < buffer_count; i++) {
3367 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3368 return -EINVAL;
3369 reloc_count += exec_list[i].relocation_count;
3370 }
3371
8e7d2b2c 3372 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3373 if (*relocs == NULL) {
3374 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3375 return -ENOMEM;
76446cac 3376 }
40a5f0de
EA
3377
3378 for (i = 0; i < buffer_count; i++) {
3379 struct drm_i915_gem_relocation_entry __user *user_relocs;
3380
3381 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3382
3383 ret = copy_from_user(&(*relocs)[reloc_index],
3384 user_relocs,
3385 exec_list[i].relocation_count *
3386 sizeof(**relocs));
3387 if (ret != 0) {
8e7d2b2c 3388 drm_free_large(*relocs);
40a5f0de 3389 *relocs = NULL;
2bc43b5c 3390 return -EFAULT;
40a5f0de
EA
3391 }
3392
3393 reloc_index += exec_list[i].relocation_count;
3394 }
3395
2bc43b5c 3396 return 0;
40a5f0de
EA
3397}
3398
3399static int
76446cac 3400i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3401 uint32_t buffer_count,
3402 struct drm_i915_gem_relocation_entry *relocs)
3403{
3404 uint32_t reloc_count = 0, i;
2bc43b5c 3405 int ret = 0;
40a5f0de 3406
93533c29
CW
3407 if (relocs == NULL)
3408 return 0;
3409
40a5f0de
EA
3410 for (i = 0; i < buffer_count; i++) {
3411 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3412 int unwritten;
40a5f0de
EA
3413
3414 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3415
2bc43b5c
FM
3416 unwritten = copy_to_user(user_relocs,
3417 &relocs[reloc_count],
3418 exec_list[i].relocation_count *
3419 sizeof(*relocs));
3420
3421 if (unwritten) {
3422 ret = -EFAULT;
3423 goto err;
40a5f0de
EA
3424 }
3425
3426 reloc_count += exec_list[i].relocation_count;
3427 }
3428
2bc43b5c 3429err:
8e7d2b2c 3430 drm_free_large(relocs);
40a5f0de
EA
3431
3432 return ret;
3433}
3434
83d60795 3435static int
76446cac 3436i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3437 uint64_t exec_offset)
3438{
3439 uint32_t exec_start, exec_len;
3440
3441 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3442 exec_len = (uint32_t) exec->batch_len;
3443
3444 if ((exec_start | exec_len) & 0x7)
3445 return -EINVAL;
3446
3447 if (!exec_start)
3448 return -EINVAL;
3449
3450 return 0;
3451}
3452
6b95a207
KH
3453static int
3454i915_gem_wait_for_pending_flip(struct drm_device *dev,
3455 struct drm_gem_object **object_list,
3456 int count)
3457{
3458 drm_i915_private_t *dev_priv = dev->dev_private;
3459 struct drm_i915_gem_object *obj_priv;
3460 DEFINE_WAIT(wait);
3461 int i, ret = 0;
3462
3463 for (;;) {
3464 prepare_to_wait(&dev_priv->pending_flip_queue,
3465 &wait, TASK_INTERRUPTIBLE);
3466 for (i = 0; i < count; i++) {
23010e43 3467 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3468 if (atomic_read(&obj_priv->pending_flip) > 0)
3469 break;
3470 }
3471 if (i == count)
3472 break;
3473
3474 if (!signal_pending(current)) {
3475 mutex_unlock(&dev->struct_mutex);
3476 schedule();
3477 mutex_lock(&dev->struct_mutex);
3478 continue;
3479 }
3480 ret = -ERESTARTSYS;
3481 break;
3482 }
3483 finish_wait(&dev_priv->pending_flip_queue, &wait);
3484
3485 return ret;
3486}
3487
8dc5d147 3488static int
76446cac
JB
3489i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3490 struct drm_file *file_priv,
3491 struct drm_i915_gem_execbuffer2 *args,
3492 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3493{
3494 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3495 struct drm_gem_object **object_list = NULL;
3496 struct drm_gem_object *batch_obj;
b70d11da 3497 struct drm_i915_gem_object *obj_priv;
201361a5 3498 struct drm_clip_rect *cliprects = NULL;
93533c29 3499 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3500 struct drm_i915_gem_request *request = NULL;
76446cac 3501 int ret = 0, ret2, i, pinned = 0;
673a394b 3502 uint64_t exec_offset;
8a1a49f9 3503 uint32_t seqno, reloc_index;
6b95a207 3504 int pin_tries, flips;
673a394b 3505
852835f3
ZN
3506 struct intel_ring_buffer *ring = NULL;
3507
673a394b
EA
3508#if WATCH_EXEC
3509 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3510 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3511#endif
d1b851fc
ZN
3512 if (args->flags & I915_EXEC_BSD) {
3513 if (!HAS_BSD(dev)) {
3514 DRM_ERROR("execbuf with wrong flag\n");
3515 return -EINVAL;
3516 }
3517 ring = &dev_priv->bsd_ring;
3518 } else {
3519 ring = &dev_priv->render_ring;
3520 }
3521
4f481ed2
EA
3522 if (args->buffer_count < 1) {
3523 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3524 return -EINVAL;
3525 }
c8e0f93a 3526 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3527 if (object_list == NULL) {
3528 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3529 args->buffer_count);
3530 ret = -ENOMEM;
3531 goto pre_mutex_err;
3532 }
673a394b 3533
201361a5 3534 if (args->num_cliprects != 0) {
9a298b2a
EA
3535 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3536 GFP_KERNEL);
a40e8d31
OA
3537 if (cliprects == NULL) {
3538 ret = -ENOMEM;
201361a5 3539 goto pre_mutex_err;
a40e8d31 3540 }
201361a5
EA
3541
3542 ret = copy_from_user(cliprects,
3543 (struct drm_clip_rect __user *)
3544 (uintptr_t) args->cliprects_ptr,
3545 sizeof(*cliprects) * args->num_cliprects);
3546 if (ret != 0) {
3547 DRM_ERROR("copy %d cliprects failed: %d\n",
3548 args->num_cliprects, ret);
c877cdce 3549 ret = -EFAULT;
201361a5
EA
3550 goto pre_mutex_err;
3551 }
3552 }
3553
8dc5d147
CW
3554 request = kzalloc(sizeof(*request), GFP_KERNEL);
3555 if (request == NULL) {
3556 ret = -ENOMEM;
3557 goto pre_mutex_err;
3558 }
3559
40a5f0de
EA
3560 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3561 &relocs);
3562 if (ret != 0)
3563 goto pre_mutex_err;
3564
673a394b
EA
3565 mutex_lock(&dev->struct_mutex);
3566
3567 i915_verify_inactive(dev, __FILE__, __LINE__);
3568
ba1234d1 3569 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3570 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3571 ret = -EIO;
3572 goto pre_mutex_err;
673a394b
EA
3573 }
3574
3575 if (dev_priv->mm.suspended) {
673a394b 3576 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3577 ret = -EBUSY;
3578 goto pre_mutex_err;
673a394b
EA
3579 }
3580
ac94a962 3581 /* Look up object handles */
6b95a207 3582 flips = 0;
673a394b
EA
3583 for (i = 0; i < args->buffer_count; i++) {
3584 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3585 exec_list[i].handle);
3586 if (object_list[i] == NULL) {
3587 DRM_ERROR("Invalid object handle %d at index %d\n",
3588 exec_list[i].handle, i);
0ce907f8
CW
3589 /* prevent error path from reading uninitialized data */
3590 args->buffer_count = i + 1;
bf79cb91 3591 ret = -ENOENT;
673a394b
EA
3592 goto err;
3593 }
b70d11da 3594
23010e43 3595 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3596 if (obj_priv->in_execbuffer) {
3597 DRM_ERROR("Object %p appears more than once in object list\n",
3598 object_list[i]);
0ce907f8
CW
3599 /* prevent error path from reading uninitialized data */
3600 args->buffer_count = i + 1;
bf79cb91 3601 ret = -EINVAL;
b70d11da
KH
3602 goto err;
3603 }
3604 obj_priv->in_execbuffer = true;
6b95a207
KH
3605 flips += atomic_read(&obj_priv->pending_flip);
3606 }
3607
3608 if (flips > 0) {
3609 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3610 args->buffer_count);
3611 if (ret)
3612 goto err;
ac94a962 3613 }
673a394b 3614
ac94a962
KP
3615 /* Pin and relocate */
3616 for (pin_tries = 0; ; pin_tries++) {
3617 ret = 0;
40a5f0de
EA
3618 reloc_index = 0;
3619
ac94a962
KP
3620 for (i = 0; i < args->buffer_count; i++) {
3621 object_list[i]->pending_read_domains = 0;
3622 object_list[i]->pending_write_domain = 0;
3623 ret = i915_gem_object_pin_and_relocate(object_list[i],
3624 file_priv,
40a5f0de
EA
3625 &exec_list[i],
3626 &relocs[reloc_index]);
ac94a962
KP
3627 if (ret)
3628 break;
3629 pinned = i + 1;
40a5f0de 3630 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3631 }
3632 /* success */
3633 if (ret == 0)
3634 break;
3635
3636 /* error other than GTT full, or we've already tried again */
2939e1f5 3637 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3638 if (ret != -ERESTARTSYS) {
3639 unsigned long long total_size = 0;
3d1cc470
CW
3640 int num_fences = 0;
3641 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3642 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3643
07f73f69 3644 total_size += object_list[i]->size;
3d1cc470
CW
3645 num_fences +=
3646 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3647 obj_priv->tiling_mode != I915_TILING_NONE;
3648 }
3649 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3650 pinned+1, args->buffer_count,
3d1cc470
CW
3651 total_size, num_fences,
3652 ret);
07f73f69
CW
3653 DRM_ERROR("%d objects [%d pinned], "
3654 "%d object bytes [%d pinned], "
3655 "%d/%d gtt bytes\n",
3656 atomic_read(&dev->object_count),
3657 atomic_read(&dev->pin_count),
3658 atomic_read(&dev->object_memory),
3659 atomic_read(&dev->pin_memory),
3660 atomic_read(&dev->gtt_memory),
3661 dev->gtt_total);
3662 }
673a394b
EA
3663 goto err;
3664 }
ac94a962
KP
3665
3666 /* unpin all of our buffers */
3667 for (i = 0; i < pinned; i++)
3668 i915_gem_object_unpin(object_list[i]);
b1177636 3669 pinned = 0;
ac94a962
KP
3670
3671 /* evict everyone we can from the aperture */
3672 ret = i915_gem_evict_everything(dev);
07f73f69 3673 if (ret && ret != -ENOSPC)
ac94a962 3674 goto err;
673a394b
EA
3675 }
3676
3677 /* Set the pending read domains for the batch buffer to COMMAND */
3678 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3679 if (batch_obj->pending_write_domain) {
3680 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3681 ret = -EINVAL;
3682 goto err;
3683 }
3684 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3685
83d60795
CW
3686 /* Sanity check the batch buffer, prior to moving objects */
3687 exec_offset = exec_list[args->buffer_count - 1].offset;
3688 ret = i915_gem_check_execbuffer (args, exec_offset);
3689 if (ret != 0) {
3690 DRM_ERROR("execbuf with invalid offset/length\n");
3691 goto err;
3692 }
3693
673a394b
EA
3694 i915_verify_inactive(dev, __FILE__, __LINE__);
3695
646f0f6e
KP
3696 /* Zero the global flush/invalidate flags. These
3697 * will be modified as new domains are computed
3698 * for each object
3699 */
3700 dev->invalidate_domains = 0;
3701 dev->flush_domains = 0;
3702
673a394b
EA
3703 for (i = 0; i < args->buffer_count; i++) {
3704 struct drm_gem_object *obj = object_list[i];
673a394b 3705
646f0f6e 3706 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3707 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3708 }
3709
3710 i915_verify_inactive(dev, __FILE__, __LINE__);
3711
646f0f6e
KP
3712 if (dev->invalidate_domains | dev->flush_domains) {
3713#if WATCH_EXEC
3714 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3715 __func__,
3716 dev->invalidate_domains,
3717 dev->flush_domains);
3718#endif
3719 i915_gem_flush(dev,
3720 dev->invalidate_domains,
3721 dev->flush_domains);
a6910434
DV
3722 }
3723
3724 if (dev_priv->render_ring.outstanding_lazy_request) {
8dc5d147 3725 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
a6910434
DV
3726 dev_priv->render_ring.outstanding_lazy_request = false;
3727 }
3728 if (dev_priv->bsd_ring.outstanding_lazy_request) {
8dc5d147 3729 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
a6910434 3730 dev_priv->bsd_ring.outstanding_lazy_request = false;
646f0f6e 3731 }
673a394b 3732
efbeed96
EA
3733 for (i = 0; i < args->buffer_count; i++) {
3734 struct drm_gem_object *obj = object_list[i];
23010e43 3735 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3736 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3737
3738 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3739 if (obj->write_domain)
3740 list_move_tail(&obj_priv->gpu_write_list,
3741 &dev_priv->mm.gpu_write_list);
3742 else
3743 list_del_init(&obj_priv->gpu_write_list);
3744
1c5d22f7
CW
3745 trace_i915_gem_object_change_domain(obj,
3746 obj->read_domains,
3747 old_write_domain);
efbeed96
EA
3748 }
3749
673a394b
EA
3750 i915_verify_inactive(dev, __FILE__, __LINE__);
3751
3752#if WATCH_COHERENCY
3753 for (i = 0; i < args->buffer_count; i++) {
3754 i915_gem_object_check_coherency(object_list[i],
3755 exec_list[i].handle);
3756 }
3757#endif
3758
673a394b 3759#if WATCH_EXEC
6911a9b8 3760 i915_gem_dump_object(batch_obj,
673a394b
EA
3761 args->batch_len,
3762 __func__,
3763 ~0);
3764#endif
3765
673a394b 3766 /* Exec the batchbuffer */
852835f3
ZN
3767 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3768 cliprects, exec_offset);
673a394b
EA
3769 if (ret) {
3770 DRM_ERROR("dispatch failed %d\n", ret);
3771 goto err;
3772 }
3773
3774 /*
3775 * Ensure that the commands in the batch buffer are
3776 * finished before the interrupt fires
3777 */
8a1a49f9 3778 i915_retire_commands(dev, ring);
673a394b
EA
3779
3780 i915_verify_inactive(dev, __FILE__, __LINE__);
3781
617dbe27
DV
3782 for (i = 0; i < args->buffer_count; i++) {
3783 struct drm_gem_object *obj = object_list[i];
3784 obj_priv = to_intel_bo(obj);
3785
3786 i915_gem_object_move_to_active(obj, ring);
3787#if WATCH_LRU
3788 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3789#endif
3790 }
3791
673a394b
EA
3792 /*
3793 * Get a seqno representing the execution of the current buffer,
3794 * which we can wait on. We would like to mitigate these interrupts,
3795 * likely by only creating seqnos occasionally (so that we have
3796 * *some* interrupts representing completion of buffers that we can
3797 * wait on when trying to clear up gtt space).
3798 */
8dc5d147
CW
3799 seqno = i915_add_request(dev, file_priv, request, ring);
3800 request = NULL;
673a394b 3801
673a394b
EA
3802#if WATCH_LRU
3803 i915_dump_lru(dev, __func__);
3804#endif
3805
3806 i915_verify_inactive(dev, __FILE__, __LINE__);
3807
673a394b 3808err:
aad87dff
JL
3809 for (i = 0; i < pinned; i++)
3810 i915_gem_object_unpin(object_list[i]);
3811
b70d11da
KH
3812 for (i = 0; i < args->buffer_count; i++) {
3813 if (object_list[i]) {
23010e43 3814 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3815 obj_priv->in_execbuffer = false;
3816 }
aad87dff 3817 drm_gem_object_unreference(object_list[i]);
b70d11da 3818 }
673a394b 3819
673a394b
EA
3820 mutex_unlock(&dev->struct_mutex);
3821
93533c29 3822pre_mutex_err:
40a5f0de
EA
3823 /* Copy the updated relocations out regardless of current error
3824 * state. Failure to update the relocs would mean that the next
3825 * time userland calls execbuf, it would do so with presumed offset
3826 * state that didn't match the actual object state.
3827 */
3828 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3829 relocs);
3830 if (ret2 != 0) {
3831 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3832
3833 if (ret == 0)
3834 ret = ret2;
3835 }
3836
8e7d2b2c 3837 drm_free_large(object_list);
9a298b2a 3838 kfree(cliprects);
8dc5d147 3839 kfree(request);
673a394b
EA
3840
3841 return ret;
3842}
3843
76446cac
JB
3844/*
3845 * Legacy execbuffer just creates an exec2 list from the original exec object
3846 * list array and passes it to the real function.
3847 */
3848int
3849i915_gem_execbuffer(struct drm_device *dev, void *data,
3850 struct drm_file *file_priv)
3851{
3852 struct drm_i915_gem_execbuffer *args = data;
3853 struct drm_i915_gem_execbuffer2 exec2;
3854 struct drm_i915_gem_exec_object *exec_list = NULL;
3855 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3856 int ret, i;
3857
3858#if WATCH_EXEC
3859 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3860 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3861#endif
3862
3863 if (args->buffer_count < 1) {
3864 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3865 return -EINVAL;
3866 }
3867
3868 /* Copy in the exec list from userland */
3869 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3870 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3871 if (exec_list == NULL || exec2_list == NULL) {
3872 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3873 args->buffer_count);
3874 drm_free_large(exec_list);
3875 drm_free_large(exec2_list);
3876 return -ENOMEM;
3877 }
3878 ret = copy_from_user(exec_list,
3879 (struct drm_i915_relocation_entry __user *)
3880 (uintptr_t) args->buffers_ptr,
3881 sizeof(*exec_list) * args->buffer_count);
3882 if (ret != 0) {
3883 DRM_ERROR("copy %d exec entries failed %d\n",
3884 args->buffer_count, ret);
3885 drm_free_large(exec_list);
3886 drm_free_large(exec2_list);
3887 return -EFAULT;
3888 }
3889
3890 for (i = 0; i < args->buffer_count; i++) {
3891 exec2_list[i].handle = exec_list[i].handle;
3892 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3893 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3894 exec2_list[i].alignment = exec_list[i].alignment;
3895 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3896 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3897 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3898 else
3899 exec2_list[i].flags = 0;
3900 }
3901
3902 exec2.buffers_ptr = args->buffers_ptr;
3903 exec2.buffer_count = args->buffer_count;
3904 exec2.batch_start_offset = args->batch_start_offset;
3905 exec2.batch_len = args->batch_len;
3906 exec2.DR1 = args->DR1;
3907 exec2.DR4 = args->DR4;
3908 exec2.num_cliprects = args->num_cliprects;
3909 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3910 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3911
3912 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3913 if (!ret) {
3914 /* Copy the new buffer offsets back to the user's exec list. */
3915 for (i = 0; i < args->buffer_count; i++)
3916 exec_list[i].offset = exec2_list[i].offset;
3917 /* ... and back out to userspace */
3918 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3919 (uintptr_t) args->buffers_ptr,
3920 exec_list,
3921 sizeof(*exec_list) * args->buffer_count);
3922 if (ret) {
3923 ret = -EFAULT;
3924 DRM_ERROR("failed to copy %d exec entries "
3925 "back to user (%d)\n",
3926 args->buffer_count, ret);
3927 }
76446cac
JB
3928 }
3929
3930 drm_free_large(exec_list);
3931 drm_free_large(exec2_list);
3932 return ret;
3933}
3934
3935int
3936i915_gem_execbuffer2(struct drm_device *dev, void *data,
3937 struct drm_file *file_priv)
3938{
3939 struct drm_i915_gem_execbuffer2 *args = data;
3940 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3941 int ret;
3942
3943#if WATCH_EXEC
3944 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3945 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3946#endif
3947
3948 if (args->buffer_count < 1) {
3949 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3950 return -EINVAL;
3951 }
3952
3953 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3954 if (exec2_list == NULL) {
3955 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3956 args->buffer_count);
3957 return -ENOMEM;
3958 }
3959 ret = copy_from_user(exec2_list,
3960 (struct drm_i915_relocation_entry __user *)
3961 (uintptr_t) args->buffers_ptr,
3962 sizeof(*exec2_list) * args->buffer_count);
3963 if (ret != 0) {
3964 DRM_ERROR("copy %d exec entries failed %d\n",
3965 args->buffer_count, ret);
3966 drm_free_large(exec2_list);
3967 return -EFAULT;
3968 }
3969
3970 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3971 if (!ret) {
3972 /* Copy the new buffer offsets back to the user's exec list. */
3973 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3974 (uintptr_t) args->buffers_ptr,
3975 exec2_list,
3976 sizeof(*exec2_list) * args->buffer_count);
3977 if (ret) {
3978 ret = -EFAULT;
3979 DRM_ERROR("failed to copy %d exec entries "
3980 "back to user (%d)\n",
3981 args->buffer_count, ret);
3982 }
3983 }
3984
3985 drm_free_large(exec2_list);
3986 return ret;
3987}
3988
673a394b
EA
3989int
3990i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3991{
3992 struct drm_device *dev = obj->dev;
23010e43 3993 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3994 int ret;
3995
778c3544
DV
3996 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3997
673a394b 3998 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
3999
4000 if (obj_priv->gtt_space != NULL) {
4001 if (alignment == 0)
4002 alignment = i915_gem_get_gtt_alignment(obj);
4003 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4004 WARN(obj_priv->pin_count,
4005 "bo is already pinned with incorrect alignment:"
4006 " offset=%x, req.alignment=%x\n",
4007 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4008 ret = i915_gem_object_unbind(obj);
4009 if (ret)
4010 return ret;
4011 }
4012 }
4013
673a394b
EA
4014 if (obj_priv->gtt_space == NULL) {
4015 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4016 if (ret)
673a394b 4017 return ret;
22c344e9 4018 }
76446cac 4019
673a394b
EA
4020 obj_priv->pin_count++;
4021
4022 /* If the object is not active and not pending a flush,
4023 * remove it from the inactive list
4024 */
4025 if (obj_priv->pin_count == 1) {
4026 atomic_inc(&dev->pin_count);
4027 atomic_add(obj->size, &dev->pin_memory);
4028 if (!obj_priv->active &&
bf1a1092 4029 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4030 list_del_init(&obj_priv->list);
4031 }
4032 i915_verify_inactive(dev, __FILE__, __LINE__);
4033
4034 return 0;
4035}
4036
4037void
4038i915_gem_object_unpin(struct drm_gem_object *obj)
4039{
4040 struct drm_device *dev = obj->dev;
4041 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4042 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4043
4044 i915_verify_inactive(dev, __FILE__, __LINE__);
4045 obj_priv->pin_count--;
4046 BUG_ON(obj_priv->pin_count < 0);
4047 BUG_ON(obj_priv->gtt_space == NULL);
4048
4049 /* If the object is no longer pinned, and is
4050 * neither active nor being flushed, then stick it on
4051 * the inactive list
4052 */
4053 if (obj_priv->pin_count == 0) {
4054 if (!obj_priv->active &&
21d509e3 4055 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4056 list_move_tail(&obj_priv->list,
4057 &dev_priv->mm.inactive_list);
4058 atomic_dec(&dev->pin_count);
4059 atomic_sub(obj->size, &dev->pin_memory);
4060 }
4061 i915_verify_inactive(dev, __FILE__, __LINE__);
4062}
4063
4064int
4065i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4066 struct drm_file *file_priv)
4067{
4068 struct drm_i915_gem_pin *args = data;
4069 struct drm_gem_object *obj;
4070 struct drm_i915_gem_object *obj_priv;
4071 int ret;
4072
4073 mutex_lock(&dev->struct_mutex);
4074
4075 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4076 if (obj == NULL) {
4077 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4078 args->handle);
4079 mutex_unlock(&dev->struct_mutex);
bf79cb91 4080 return -ENOENT;
673a394b 4081 }
23010e43 4082 obj_priv = to_intel_bo(obj);
673a394b 4083
bb6baf76
CW
4084 if (obj_priv->madv != I915_MADV_WILLNEED) {
4085 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4086 drm_gem_object_unreference(obj);
4087 mutex_unlock(&dev->struct_mutex);
4088 return -EINVAL;
4089 }
4090
79e53945
JB
4091 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4092 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4093 args->handle);
96dec61d 4094 drm_gem_object_unreference(obj);
673a394b 4095 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4096 return -EINVAL;
4097 }
4098
4099 obj_priv->user_pin_count++;
4100 obj_priv->pin_filp = file_priv;
4101 if (obj_priv->user_pin_count == 1) {
4102 ret = i915_gem_object_pin(obj, args->alignment);
4103 if (ret != 0) {
4104 drm_gem_object_unreference(obj);
4105 mutex_unlock(&dev->struct_mutex);
4106 return ret;
4107 }
673a394b
EA
4108 }
4109
4110 /* XXX - flush the CPU caches for pinned objects
4111 * as the X server doesn't manage domains yet
4112 */
e47c68e9 4113 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4114 args->offset = obj_priv->gtt_offset;
4115 drm_gem_object_unreference(obj);
4116 mutex_unlock(&dev->struct_mutex);
4117
4118 return 0;
4119}
4120
4121int
4122i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4123 struct drm_file *file_priv)
4124{
4125 struct drm_i915_gem_pin *args = data;
4126 struct drm_gem_object *obj;
79e53945 4127 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4128
4129 mutex_lock(&dev->struct_mutex);
4130
4131 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4132 if (obj == NULL) {
4133 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4134 args->handle);
4135 mutex_unlock(&dev->struct_mutex);
bf79cb91 4136 return -ENOENT;
673a394b
EA
4137 }
4138
23010e43 4139 obj_priv = to_intel_bo(obj);
79e53945
JB
4140 if (obj_priv->pin_filp != file_priv) {
4141 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4142 args->handle);
4143 drm_gem_object_unreference(obj);
4144 mutex_unlock(&dev->struct_mutex);
4145 return -EINVAL;
4146 }
4147 obj_priv->user_pin_count--;
4148 if (obj_priv->user_pin_count == 0) {
4149 obj_priv->pin_filp = NULL;
4150 i915_gem_object_unpin(obj);
4151 }
673a394b
EA
4152
4153 drm_gem_object_unreference(obj);
4154 mutex_unlock(&dev->struct_mutex);
4155 return 0;
4156}
4157
4158int
4159i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4160 struct drm_file *file_priv)
4161{
4162 struct drm_i915_gem_busy *args = data;
4163 struct drm_gem_object *obj;
4164 struct drm_i915_gem_object *obj_priv;
4165
673a394b
EA
4166 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4167 if (obj == NULL) {
4168 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4169 args->handle);
bf79cb91 4170 return -ENOENT;
673a394b
EA
4171 }
4172
b1ce786c 4173 mutex_lock(&dev->struct_mutex);
d1b851fc 4174
0be555b6
CW
4175 /* Count all active objects as busy, even if they are currently not used
4176 * by the gpu. Users of this interface expect objects to eventually
4177 * become non-busy without any further actions, therefore emit any
4178 * necessary flushes here.
c4de0a5d 4179 */
0be555b6
CW
4180 obj_priv = to_intel_bo(obj);
4181 args->busy = obj_priv->active;
4182 if (args->busy) {
4183 /* Unconditionally flush objects, even when the gpu still uses this
4184 * object. Userspace calling this function indicates that it wants to
4185 * use this buffer rather sooner than later, so issuing the required
4186 * flush earlier is beneficial.
4187 */
4188 if (obj->write_domain) {
4189 i915_gem_flush(dev, 0, obj->write_domain);
8dc5d147 4190 (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
0be555b6
CW
4191 }
4192
4193 /* Update the active list for the hardware's current position.
4194 * Otherwise this only updates on a delayed timer or when irqs
4195 * are actually unmasked, and our working set ends up being
4196 * larger than required.
4197 */
4198 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4199
4200 args->busy = obj_priv->active;
4201 }
673a394b
EA
4202
4203 drm_gem_object_unreference(obj);
4204 mutex_unlock(&dev->struct_mutex);
4205 return 0;
4206}
4207
4208int
4209i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4210 struct drm_file *file_priv)
4211{
4212 return i915_gem_ring_throttle(dev, file_priv);
4213}
4214
3ef94daa
CW
4215int
4216i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4217 struct drm_file *file_priv)
4218{
4219 struct drm_i915_gem_madvise *args = data;
4220 struct drm_gem_object *obj;
4221 struct drm_i915_gem_object *obj_priv;
4222
4223 switch (args->madv) {
4224 case I915_MADV_DONTNEED:
4225 case I915_MADV_WILLNEED:
4226 break;
4227 default:
4228 return -EINVAL;
4229 }
4230
4231 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4232 if (obj == NULL) {
4233 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4234 args->handle);
bf79cb91 4235 return -ENOENT;
3ef94daa
CW
4236 }
4237
4238 mutex_lock(&dev->struct_mutex);
23010e43 4239 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4240
4241 if (obj_priv->pin_count) {
4242 drm_gem_object_unreference(obj);
4243 mutex_unlock(&dev->struct_mutex);
4244
4245 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4246 return -EINVAL;
4247 }
4248
bb6baf76
CW
4249 if (obj_priv->madv != __I915_MADV_PURGED)
4250 obj_priv->madv = args->madv;
3ef94daa 4251
2d7ef395
CW
4252 /* if the object is no longer bound, discard its backing storage */
4253 if (i915_gem_object_is_purgeable(obj_priv) &&
4254 obj_priv->gtt_space == NULL)
4255 i915_gem_object_truncate(obj);
4256
bb6baf76
CW
4257 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4258
3ef94daa
CW
4259 drm_gem_object_unreference(obj);
4260 mutex_unlock(&dev->struct_mutex);
4261
4262 return 0;
4263}
4264
ac52bc56
DV
4265struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4266 size_t size)
4267{
c397b908 4268 struct drm_i915_gem_object *obj;
ac52bc56 4269
c397b908
DV
4270 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4271 if (obj == NULL)
4272 return NULL;
673a394b 4273
c397b908
DV
4274 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4275 kfree(obj);
4276 return NULL;
4277 }
673a394b 4278
c397b908
DV
4279 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4280 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4281
c397b908 4282 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4283 obj->base.driver_private = NULL;
c397b908
DV
4284 obj->fence_reg = I915_FENCE_REG_NONE;
4285 INIT_LIST_HEAD(&obj->list);
4286 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4287 obj->madv = I915_MADV_WILLNEED;
de151cf6 4288
c397b908
DV
4289 trace_i915_gem_object_create(&obj->base);
4290
4291 return &obj->base;
4292}
4293
4294int i915_gem_init_object(struct drm_gem_object *obj)
4295{
4296 BUG();
de151cf6 4297
673a394b
EA
4298 return 0;
4299}
4300
be72615b 4301static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4302{
de151cf6 4303 struct drm_device *dev = obj->dev;
be72615b 4304 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4305 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4306 int ret;
673a394b 4307
be72615b
CW
4308 ret = i915_gem_object_unbind(obj);
4309 if (ret == -ERESTARTSYS) {
4310 list_move(&obj_priv->list,
4311 &dev_priv->mm.deferred_free_list);
4312 return;
4313 }
673a394b 4314
7e616158
CW
4315 if (obj_priv->mmap_offset)
4316 i915_gem_free_mmap_offset(obj);
de151cf6 4317
c397b908
DV
4318 drm_gem_object_release(obj);
4319
9a298b2a 4320 kfree(obj_priv->page_cpu_valid);
280b713b 4321 kfree(obj_priv->bit_17);
c397b908 4322 kfree(obj_priv);
673a394b
EA
4323}
4324
be72615b
CW
4325void i915_gem_free_object(struct drm_gem_object *obj)
4326{
4327 struct drm_device *dev = obj->dev;
4328 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4329
4330 trace_i915_gem_object_destroy(obj);
4331
4332 while (obj_priv->pin_count > 0)
4333 i915_gem_object_unpin(obj);
4334
4335 if (obj_priv->phys_obj)
4336 i915_gem_detach_phys_object(dev, obj);
4337
4338 i915_gem_free_object_tail(obj);
4339}
4340
29105ccc
CW
4341int
4342i915_gem_idle(struct drm_device *dev)
4343{
4344 drm_i915_private_t *dev_priv = dev->dev_private;
4345 int ret;
28dfe52a 4346
29105ccc 4347 mutex_lock(&dev->struct_mutex);
1c5d22f7 4348
8187a2b7 4349 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4350 (dev_priv->render_ring.gem_object == NULL) ||
4351 (HAS_BSD(dev) &&
4352 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4353 mutex_unlock(&dev->struct_mutex);
4354 return 0;
28dfe52a
EA
4355 }
4356
29105ccc 4357 ret = i915_gpu_idle(dev);
6dbe2772
KP
4358 if (ret) {
4359 mutex_unlock(&dev->struct_mutex);
673a394b 4360 return ret;
6dbe2772 4361 }
673a394b 4362
29105ccc
CW
4363 /* Under UMS, be paranoid and evict. */
4364 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4365 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4366 if (ret) {
4367 mutex_unlock(&dev->struct_mutex);
4368 return ret;
4369 }
4370 }
4371
4372 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4373 * We need to replace this with a semaphore, or something.
4374 * And not confound mm.suspended!
4375 */
4376 dev_priv->mm.suspended = 1;
bc0c7f14 4377 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4378
4379 i915_kernel_lost_context(dev);
6dbe2772 4380 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4381
6dbe2772
KP
4382 mutex_unlock(&dev->struct_mutex);
4383
29105ccc
CW
4384 /* Cancel the retire work handler, which should be idle now. */
4385 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4386
673a394b
EA
4387 return 0;
4388}
4389
e552eb70
JB
4390/*
4391 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4392 * over cache flushing.
4393 */
8187a2b7 4394static int
e552eb70
JB
4395i915_gem_init_pipe_control(struct drm_device *dev)
4396{
4397 drm_i915_private_t *dev_priv = dev->dev_private;
4398 struct drm_gem_object *obj;
4399 struct drm_i915_gem_object *obj_priv;
4400 int ret;
4401
34dc4d44 4402 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4403 if (obj == NULL) {
4404 DRM_ERROR("Failed to allocate seqno page\n");
4405 ret = -ENOMEM;
4406 goto err;
4407 }
4408 obj_priv = to_intel_bo(obj);
4409 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4410
4411 ret = i915_gem_object_pin(obj, 4096);
4412 if (ret)
4413 goto err_unref;
4414
4415 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4416 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4417 if (dev_priv->seqno_page == NULL)
4418 goto err_unpin;
4419
4420 dev_priv->seqno_obj = obj;
4421 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4422
4423 return 0;
4424
4425err_unpin:
4426 i915_gem_object_unpin(obj);
4427err_unref:
4428 drm_gem_object_unreference(obj);
4429err:
4430 return ret;
4431}
4432
8187a2b7
ZN
4433
4434static void
e552eb70
JB
4435i915_gem_cleanup_pipe_control(struct drm_device *dev)
4436{
4437 drm_i915_private_t *dev_priv = dev->dev_private;
4438 struct drm_gem_object *obj;
4439 struct drm_i915_gem_object *obj_priv;
4440
4441 obj = dev_priv->seqno_obj;
4442 obj_priv = to_intel_bo(obj);
4443 kunmap(obj_priv->pages[0]);
4444 i915_gem_object_unpin(obj);
4445 drm_gem_object_unreference(obj);
4446 dev_priv->seqno_obj = NULL;
4447
4448 dev_priv->seqno_page = NULL;
673a394b
EA
4449}
4450
8187a2b7
ZN
4451int
4452i915_gem_init_ringbuffer(struct drm_device *dev)
4453{
4454 drm_i915_private_t *dev_priv = dev->dev_private;
4455 int ret;
68f95ba9 4456
8187a2b7 4457 dev_priv->render_ring = render_ring;
68f95ba9 4458
8187a2b7
ZN
4459 if (!I915_NEED_GFX_HWS(dev)) {
4460 dev_priv->render_ring.status_page.page_addr
4461 = dev_priv->status_page_dmah->vaddr;
4462 memset(dev_priv->render_ring.status_page.page_addr,
4463 0, PAGE_SIZE);
4464 }
68f95ba9 4465
8187a2b7
ZN
4466 if (HAS_PIPE_CONTROL(dev)) {
4467 ret = i915_gem_init_pipe_control(dev);
4468 if (ret)
4469 return ret;
4470 }
68f95ba9 4471
8187a2b7 4472 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4473 if (ret)
4474 goto cleanup_pipe_control;
4475
4476 if (HAS_BSD(dev)) {
d1b851fc
ZN
4477 dev_priv->bsd_ring = bsd_ring;
4478 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4479 if (ret)
4480 goto cleanup_render_ring;
d1b851fc 4481 }
68f95ba9 4482
6f392d54
CW
4483 dev_priv->next_seqno = 1;
4484
68f95ba9
CW
4485 return 0;
4486
4487cleanup_render_ring:
4488 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4489cleanup_pipe_control:
4490 if (HAS_PIPE_CONTROL(dev))
4491 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4492 return ret;
4493}
4494
4495void
4496i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4497{
4498 drm_i915_private_t *dev_priv = dev->dev_private;
4499
4500 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4501 if (HAS_BSD(dev))
4502 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4503 if (HAS_PIPE_CONTROL(dev))
4504 i915_gem_cleanup_pipe_control(dev);
4505}
4506
673a394b
EA
4507int
4508i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4509 struct drm_file *file_priv)
4510{
4511 drm_i915_private_t *dev_priv = dev->dev_private;
4512 int ret;
4513
79e53945
JB
4514 if (drm_core_check_feature(dev, DRIVER_MODESET))
4515 return 0;
4516
ba1234d1 4517 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4518 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4519 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4520 }
4521
673a394b 4522 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4523 dev_priv->mm.suspended = 0;
4524
4525 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4526 if (ret != 0) {
4527 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4528 return ret;
d816f6ac 4529 }
9bb2d6f9 4530
852835f3 4531 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4532 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4533 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4534 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4535 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4536 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4537 mutex_unlock(&dev->struct_mutex);
dbb19d30 4538
5f35308b
CW
4539 ret = drm_irq_install(dev);
4540 if (ret)
4541 goto cleanup_ringbuffer;
dbb19d30 4542
673a394b 4543 return 0;
5f35308b
CW
4544
4545cleanup_ringbuffer:
4546 mutex_lock(&dev->struct_mutex);
4547 i915_gem_cleanup_ringbuffer(dev);
4548 dev_priv->mm.suspended = 1;
4549 mutex_unlock(&dev->struct_mutex);
4550
4551 return ret;
673a394b
EA
4552}
4553
4554int
4555i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4556 struct drm_file *file_priv)
4557{
79e53945
JB
4558 if (drm_core_check_feature(dev, DRIVER_MODESET))
4559 return 0;
4560
dbb19d30 4561 drm_irq_uninstall(dev);
e6890f6f 4562 return i915_gem_idle(dev);
673a394b
EA
4563}
4564
4565void
4566i915_gem_lastclose(struct drm_device *dev)
4567{
4568 int ret;
673a394b 4569
e806b495
EA
4570 if (drm_core_check_feature(dev, DRIVER_MODESET))
4571 return;
4572
6dbe2772
KP
4573 ret = i915_gem_idle(dev);
4574 if (ret)
4575 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4576}
4577
4578void
4579i915_gem_load(struct drm_device *dev)
4580{
b5aa8a0f 4581 int i;
673a394b
EA
4582 drm_i915_private_t *dev_priv = dev->dev_private;
4583
673a394b 4584 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4585 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4586 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4587 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4588 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4589 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4590 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4591 if (HAS_BSD(dev)) {
4592 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4593 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4594 }
007cc8ac
DV
4595 for (i = 0; i < 16; i++)
4596 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4597 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4598 i915_gem_retire_work_handler);
31169714
CW
4599 spin_lock(&shrink_list_lock);
4600 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4601 spin_unlock(&shrink_list_lock);
4602
94400120
DA
4603 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4604 if (IS_GEN3(dev)) {
4605 u32 tmp = I915_READ(MI_ARB_STATE);
4606 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4607 /* arb state is a masked write, so set bit + bit in mask */
4608 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4609 I915_WRITE(MI_ARB_STATE, tmp);
4610 }
4611 }
4612
de151cf6 4613 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4614 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4615 dev_priv->fence_reg_start = 3;
de151cf6 4616
a6c45cf0 4617 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4618 dev_priv->num_fence_regs = 16;
4619 else
4620 dev_priv->num_fence_regs = 8;
4621
b5aa8a0f 4622 /* Initialize fence registers to zero */
a6c45cf0
CW
4623 switch (INTEL_INFO(dev)->gen) {
4624 case 6:
4625 for (i = 0; i < 16; i++)
4626 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4627 break;
4628 case 5:
4629 case 4:
b5aa8a0f
GH
4630 for (i = 0; i < 16; i++)
4631 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4632 break;
4633 case 3:
b5aa8a0f
GH
4634 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4635 for (i = 0; i < 8; i++)
4636 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4637 case 2:
4638 for (i = 0; i < 8; i++)
4639 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4640 break;
b5aa8a0f 4641 }
673a394b 4642 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4643 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4644}
71acb5eb
DA
4645
4646/*
4647 * Create a physically contiguous memory object for this object
4648 * e.g. for cursor + overlay regs
4649 */
995b6762
CW
4650static int i915_gem_init_phys_object(struct drm_device *dev,
4651 int id, int size, int align)
71acb5eb
DA
4652{
4653 drm_i915_private_t *dev_priv = dev->dev_private;
4654 struct drm_i915_gem_phys_object *phys_obj;
4655 int ret;
4656
4657 if (dev_priv->mm.phys_objs[id - 1] || !size)
4658 return 0;
4659
9a298b2a 4660 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4661 if (!phys_obj)
4662 return -ENOMEM;
4663
4664 phys_obj->id = id;
4665
6eeefaf3 4666 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4667 if (!phys_obj->handle) {
4668 ret = -ENOMEM;
4669 goto kfree_obj;
4670 }
4671#ifdef CONFIG_X86
4672 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4673#endif
4674
4675 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4676
4677 return 0;
4678kfree_obj:
9a298b2a 4679 kfree(phys_obj);
71acb5eb
DA
4680 return ret;
4681}
4682
995b6762 4683static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4684{
4685 drm_i915_private_t *dev_priv = dev->dev_private;
4686 struct drm_i915_gem_phys_object *phys_obj;
4687
4688 if (!dev_priv->mm.phys_objs[id - 1])
4689 return;
4690
4691 phys_obj = dev_priv->mm.phys_objs[id - 1];
4692 if (phys_obj->cur_obj) {
4693 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4694 }
4695
4696#ifdef CONFIG_X86
4697 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4698#endif
4699 drm_pci_free(dev, phys_obj->handle);
4700 kfree(phys_obj);
4701 dev_priv->mm.phys_objs[id - 1] = NULL;
4702}
4703
4704void i915_gem_free_all_phys_object(struct drm_device *dev)
4705{
4706 int i;
4707
260883c8 4708 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4709 i915_gem_free_phys_object(dev, i);
4710}
4711
4712void i915_gem_detach_phys_object(struct drm_device *dev,
4713 struct drm_gem_object *obj)
4714{
4715 struct drm_i915_gem_object *obj_priv;
4716 int i;
4717 int ret;
4718 int page_count;
4719
23010e43 4720 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4721 if (!obj_priv->phys_obj)
4722 return;
4723
4bdadb97 4724 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4725 if (ret)
4726 goto out;
4727
4728 page_count = obj->size / PAGE_SIZE;
4729
4730 for (i = 0; i < page_count; i++) {
856fa198 4731 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4732 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4733
4734 memcpy(dst, src, PAGE_SIZE);
4735 kunmap_atomic(dst, KM_USER0);
4736 }
856fa198 4737 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4738 drm_agp_chipset_flush(dev);
d78b47b9
CW
4739
4740 i915_gem_object_put_pages(obj);
71acb5eb
DA
4741out:
4742 obj_priv->phys_obj->cur_obj = NULL;
4743 obj_priv->phys_obj = NULL;
4744}
4745
4746int
4747i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4748 struct drm_gem_object *obj,
4749 int id,
4750 int align)
71acb5eb
DA
4751{
4752 drm_i915_private_t *dev_priv = dev->dev_private;
4753 struct drm_i915_gem_object *obj_priv;
4754 int ret = 0;
4755 int page_count;
4756 int i;
4757
4758 if (id > I915_MAX_PHYS_OBJECT)
4759 return -EINVAL;
4760
23010e43 4761 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4762
4763 if (obj_priv->phys_obj) {
4764 if (obj_priv->phys_obj->id == id)
4765 return 0;
4766 i915_gem_detach_phys_object(dev, obj);
4767 }
4768
71acb5eb
DA
4769 /* create a new object */
4770 if (!dev_priv->mm.phys_objs[id - 1]) {
4771 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4772 obj->size, align);
71acb5eb 4773 if (ret) {
aeb565df 4774 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4775 goto out;
4776 }
4777 }
4778
4779 /* bind to the object */
4780 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4781 obj_priv->phys_obj->cur_obj = obj;
4782
4bdadb97 4783 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4784 if (ret) {
4785 DRM_ERROR("failed to get page list\n");
4786 goto out;
4787 }
4788
4789 page_count = obj->size / PAGE_SIZE;
4790
4791 for (i = 0; i < page_count; i++) {
856fa198 4792 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4793 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4794
4795 memcpy(dst, src, PAGE_SIZE);
4796 kunmap_atomic(src, KM_USER0);
4797 }
4798
d78b47b9
CW
4799 i915_gem_object_put_pages(obj);
4800
71acb5eb
DA
4801 return 0;
4802out:
4803 return ret;
4804}
4805
4806static int
4807i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4808 struct drm_i915_gem_pwrite *args,
4809 struct drm_file *file_priv)
4810{
23010e43 4811 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4812 void *obj_addr;
4813 int ret;
4814 char __user *user_data;
4815
4816 user_data = (char __user *) (uintptr_t) args->data_ptr;
4817 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4818
44d98a61 4819 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4820 ret = copy_from_user(obj_addr, user_data, args->size);
4821 if (ret)
4822 return -EFAULT;
4823
4824 drm_agp_chipset_flush(dev);
4825 return 0;
4826}
b962442e
EA
4827
4828void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4829{
4830 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4831
4832 /* Clean up our request list when the client is going away, so that
4833 * later retire_requests won't dereference our soon-to-be-gone
4834 * file_priv.
4835 */
4836 mutex_lock(&dev->struct_mutex);
4837 while (!list_empty(&i915_file_priv->mm.request_list))
4838 list_del_init(i915_file_priv->mm.request_list.next);
4839 mutex_unlock(&dev->struct_mutex);
4840}
31169714 4841
1637ef41
CW
4842static int
4843i915_gpu_is_active(struct drm_device *dev)
4844{
4845 drm_i915_private_t *dev_priv = dev->dev_private;
4846 int lists_empty;
4847
1637ef41 4848 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4849 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4850 if (HAS_BSD(dev))
4851 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4852
4853 return !lists_empty;
4854}
4855
31169714 4856static int
7f8275d0 4857i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4858{
4859 drm_i915_private_t *dev_priv, *next_dev;
4860 struct drm_i915_gem_object *obj_priv, *next_obj;
4861 int cnt = 0;
4862 int would_deadlock = 1;
4863
4864 /* "fast-path" to count number of available objects */
4865 if (nr_to_scan == 0) {
4866 spin_lock(&shrink_list_lock);
4867 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4868 struct drm_device *dev = dev_priv->dev;
4869
4870 if (mutex_trylock(&dev->struct_mutex)) {
4871 list_for_each_entry(obj_priv,
4872 &dev_priv->mm.inactive_list,
4873 list)
4874 cnt++;
4875 mutex_unlock(&dev->struct_mutex);
4876 }
4877 }
4878 spin_unlock(&shrink_list_lock);
4879
4880 return (cnt / 100) * sysctl_vfs_cache_pressure;
4881 }
4882
4883 spin_lock(&shrink_list_lock);
4884
1637ef41 4885rescan:
31169714
CW
4886 /* first scan for clean buffers */
4887 list_for_each_entry_safe(dev_priv, next_dev,
4888 &shrink_list, mm.shrink_list) {
4889 struct drm_device *dev = dev_priv->dev;
4890
4891 if (! mutex_trylock(&dev->struct_mutex))
4892 continue;
4893
4894 spin_unlock(&shrink_list_lock);
b09a1fec 4895 i915_gem_retire_requests(dev);
31169714
CW
4896
4897 list_for_each_entry_safe(obj_priv, next_obj,
4898 &dev_priv->mm.inactive_list,
4899 list) {
4900 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4901 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4902 if (--nr_to_scan <= 0)
4903 break;
4904 }
4905 }
4906
4907 spin_lock(&shrink_list_lock);
4908 mutex_unlock(&dev->struct_mutex);
4909
963b4836
CW
4910 would_deadlock = 0;
4911
31169714
CW
4912 if (nr_to_scan <= 0)
4913 break;
4914 }
4915
4916 /* second pass, evict/count anything still on the inactive list */
4917 list_for_each_entry_safe(dev_priv, next_dev,
4918 &shrink_list, mm.shrink_list) {
4919 struct drm_device *dev = dev_priv->dev;
4920
4921 if (! mutex_trylock(&dev->struct_mutex))
4922 continue;
4923
4924 spin_unlock(&shrink_list_lock);
4925
4926 list_for_each_entry_safe(obj_priv, next_obj,
4927 &dev_priv->mm.inactive_list,
4928 list) {
4929 if (nr_to_scan > 0) {
a8089e84 4930 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4931 nr_to_scan--;
4932 } else
4933 cnt++;
4934 }
4935
4936 spin_lock(&shrink_list_lock);
4937 mutex_unlock(&dev->struct_mutex);
4938
4939 would_deadlock = 0;
4940 }
4941
1637ef41
CW
4942 if (nr_to_scan) {
4943 int active = 0;
4944
4945 /*
4946 * We are desperate for pages, so as a last resort, wait
4947 * for the GPU to finish and discard whatever we can.
4948 * This has a dramatic impact to reduce the number of
4949 * OOM-killer events whilst running the GPU aggressively.
4950 */
4951 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4952 struct drm_device *dev = dev_priv->dev;
4953
4954 if (!mutex_trylock(&dev->struct_mutex))
4955 continue;
4956
4957 spin_unlock(&shrink_list_lock);
4958
4959 if (i915_gpu_is_active(dev)) {
4960 i915_gpu_idle(dev);
4961 active++;
4962 }
4963
4964 spin_lock(&shrink_list_lock);
4965 mutex_unlock(&dev->struct_mutex);
4966 }
4967
4968 if (active)
4969 goto rescan;
4970 }
4971
31169714
CW
4972 spin_unlock(&shrink_list_lock);
4973
4974 if (would_deadlock)
4975 return -1;
4976 else if (cnt > 0)
4977 return (cnt / 100) * sysctl_vfs_cache_pressure;
4978 else
4979 return 0;
4980}
4981
4982static struct shrinker shrinker = {
4983 .shrink = i915_gem_shrink,
4984 .seeks = DEFAULT_SEEKS,
4985};
4986
4987__init void
4988i915_gem_shrinker_init(void)
4989{
4990 register_shrinker(&shrinker);
4991}
4992
4993__exit void
4994i915_gem_shrinker_exit(void)
4995{
4996 unregister_shrinker(&shrinker);
4997}
This page took 0.652348 seconds and 5 git commands to generate.