Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
e47c68e9
EA
37static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 46static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
47static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
0f973f27 49static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
de151cf6
JB
50static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
52static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
673a394b 55
79e53945
JB
56int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57 unsigned long end)
673a394b
EA
58{
59 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 60
79e53945
JB
61 if (start >= end ||
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
64 return -EINVAL;
65 }
66
79e53945
JB
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
68 end - start);
673a394b 69
79e53945
JB
70 dev->gtt_total = (uint32_t) (end - start);
71
72 return 0;
73}
673a394b 74
79e53945
JB
75int
76i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
78{
79 struct drm_i915_gem_init *args = data;
80 int ret;
81
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
84 mutex_unlock(&dev->struct_mutex);
85
79e53945 86 return ret;
673a394b
EA
87}
88
5a125c3c
EA
89int
90i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
92{
5a125c3c 93 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
94
95 if (!(dev->driver->driver_features & DRIVER_GEM))
96 return -ENODEV;
97
98 args->aper_size = dev->gtt_total;
2678d9d6
KP
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
5a125c3c
EA
101
102 return 0;
103}
104
673a394b
EA
105
106/**
107 * Creates a new mm object and returns a handle to it.
108 */
109int
110i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
112{
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
115 int handle, ret;
116
117 args->size = roundup(args->size, PAGE_SIZE);
118
119 /* Allocate the new object */
120 obj = drm_gem_object_alloc(dev, args->size);
121 if (obj == NULL)
122 return -ENOMEM;
123
124 ret = drm_gem_handle_create(file_priv, obj, &handle);
125 mutex_lock(&dev->struct_mutex);
126 drm_gem_object_handle_unreference(obj);
127 mutex_unlock(&dev->struct_mutex);
128
129 if (ret)
130 return ret;
131
132 args->handle = handle;
133
134 return 0;
135}
136
eb01459f
EA
137static inline int
138fast_shmem_read(struct page **pages,
139 loff_t page_base, int page_offset,
140 char __user *data,
141 int length)
142{
143 char __iomem *vaddr;
2bc43b5c 144 int unwritten;
eb01459f
EA
145
146 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147 if (vaddr == NULL)
148 return -ENOMEM;
2bc43b5c 149 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
150 kunmap_atomic(vaddr, KM_USER0);
151
2bc43b5c
FM
152 if (unwritten)
153 return -EFAULT;
154
155 return 0;
eb01459f
EA
156}
157
280b713b
EA
158static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159{
160 drm_i915_private_t *dev_priv = obj->dev->dev_private;
161 struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164 obj_priv->tiling_mode != I915_TILING_NONE;
165}
166
40123c1f
EA
167static inline int
168slow_shmem_copy(struct page *dst_page,
169 int dst_offset,
170 struct page *src_page,
171 int src_offset,
172 int length)
173{
174 char *dst_vaddr, *src_vaddr;
175
176 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177 if (dst_vaddr == NULL)
178 return -ENOMEM;
179
180 src_vaddr = kmap_atomic(src_page, KM_USER1);
181 if (src_vaddr == NULL) {
182 kunmap_atomic(dst_vaddr, KM_USER0);
183 return -ENOMEM;
184 }
185
186 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188 kunmap_atomic(src_vaddr, KM_USER1);
189 kunmap_atomic(dst_vaddr, KM_USER0);
190
191 return 0;
192}
193
280b713b
EA
194static inline int
195slow_shmem_bit17_copy(struct page *gpu_page,
196 int gpu_offset,
197 struct page *cpu_page,
198 int cpu_offset,
199 int length,
200 int is_read)
201{
202 char *gpu_vaddr, *cpu_vaddr;
203
204 /* Use the unswizzled path if this page isn't affected. */
205 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206 if (is_read)
207 return slow_shmem_copy(cpu_page, cpu_offset,
208 gpu_page, gpu_offset, length);
209 else
210 return slow_shmem_copy(gpu_page, gpu_offset,
211 cpu_page, cpu_offset, length);
212 }
213
214 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215 if (gpu_vaddr == NULL)
216 return -ENOMEM;
217
218 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219 if (cpu_vaddr == NULL) {
220 kunmap_atomic(gpu_vaddr, KM_USER0);
221 return -ENOMEM;
222 }
223
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
226 */
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
240 }
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
244 }
245
246 kunmap_atomic(cpu_vaddr, KM_USER1);
247 kunmap_atomic(gpu_vaddr, KM_USER0);
248
249 return 0;
250}
251
eb01459f
EA
252/**
253 * This is the fast shmem pread path, which attempts to copy_from_user directly
254 * from the backing pages of the object to the user's address space. On a
255 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256 */
257static int
258i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259 struct drm_i915_gem_pread *args,
260 struct drm_file *file_priv)
261{
262 struct drm_i915_gem_object *obj_priv = obj->driver_private;
263 ssize_t remain;
264 loff_t offset, page_base;
265 char __user *user_data;
266 int page_offset, page_length;
267 int ret;
268
269 user_data = (char __user *) (uintptr_t) args->data_ptr;
270 remain = args->size;
271
272 mutex_lock(&dev->struct_mutex);
273
274 ret = i915_gem_object_get_pages(obj);
275 if (ret != 0)
276 goto fail_unlock;
277
278 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279 args->size);
280 if (ret != 0)
281 goto fail_put_pages;
282
283 obj_priv = obj->driver_private;
284 offset = args->offset;
285
286 while (remain > 0) {
287 /* Operation in this page
288 *
289 * page_base = page offset within aperture
290 * page_offset = offset within page
291 * page_length = bytes to copy for this page
292 */
293 page_base = (offset & ~(PAGE_SIZE-1));
294 page_offset = offset & (PAGE_SIZE-1);
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
299 ret = fast_shmem_read(obj_priv->pages,
300 page_base, page_offset,
301 user_data, page_length);
302 if (ret)
303 goto fail_put_pages;
304
305 remain -= page_length;
306 user_data += page_length;
307 offset += page_length;
308 }
309
310fail_put_pages:
311 i915_gem_object_put_pages(obj);
312fail_unlock:
313 mutex_unlock(&dev->struct_mutex);
314
315 return ret;
316}
317
318/**
319 * This is the fallback shmem pread path, which allocates temporary storage
320 * in kernel space to copy_to_user into outside of the struct_mutex, so we
321 * can copy out of the object's backing pages while holding the struct mutex
322 * and not take page faults.
323 */
324static int
325i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326 struct drm_i915_gem_pread *args,
327 struct drm_file *file_priv)
328{
329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
330 struct mm_struct *mm = current->mm;
331 struct page **user_pages;
332 ssize_t remain;
333 loff_t offset, pinned_pages, i;
334 loff_t first_data_page, last_data_page, num_pages;
335 int shmem_page_index, shmem_page_offset;
336 int data_page_index, data_page_offset;
337 int page_length;
338 int ret;
339 uint64_t data_ptr = args->data_ptr;
280b713b 340 int do_bit17_swizzling;
eb01459f
EA
341
342 remain = args->size;
343
344 /* Pin the user pages containing the data. We can't fault while
345 * holding the struct mutex, yet we want to hold it while
346 * dereferencing the user data.
347 */
348 first_data_page = data_ptr / PAGE_SIZE;
349 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350 num_pages = last_data_page - first_data_page + 1;
351
352 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
353 if (user_pages == NULL)
354 return -ENOMEM;
355
356 down_read(&mm->mmap_sem);
357 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 358 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
359 up_read(&mm->mmap_sem);
360 if (pinned_pages < num_pages) {
361 ret = -EFAULT;
362 goto fail_put_user_pages;
363 }
364
280b713b
EA
365 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
eb01459f
EA
367 mutex_lock(&dev->struct_mutex);
368
369 ret = i915_gem_object_get_pages(obj);
370 if (ret != 0)
371 goto fail_unlock;
372
373 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374 args->size);
375 if (ret != 0)
376 goto fail_put_pages;
377
378 obj_priv = obj->driver_private;
379 offset = args->offset;
380
381 while (remain > 0) {
382 /* Operation in this page
383 *
384 * shmem_page_index = page number within shmem file
385 * shmem_page_offset = offset within page in shmem file
386 * data_page_index = page number in get_user_pages return
387 * data_page_offset = offset with data_page_index page.
388 * page_length = bytes to copy for this page
389 */
390 shmem_page_index = offset / PAGE_SIZE;
391 shmem_page_offset = offset & ~PAGE_MASK;
392 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393 data_page_offset = data_ptr & ~PAGE_MASK;
394
395 page_length = remain;
396 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397 page_length = PAGE_SIZE - shmem_page_offset;
398 if ((data_page_offset + page_length) > PAGE_SIZE)
399 page_length = PAGE_SIZE - data_page_offset;
400
280b713b
EA
401 if (do_bit17_swizzling) {
402 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403 shmem_page_offset,
404 user_pages[data_page_index],
405 data_page_offset,
406 page_length,
407 1);
408 } else {
409 ret = slow_shmem_copy(user_pages[data_page_index],
410 data_page_offset,
411 obj_priv->pages[shmem_page_index],
412 shmem_page_offset,
413 page_length);
414 }
eb01459f
EA
415 if (ret)
416 goto fail_put_pages;
417
418 remain -= page_length;
419 data_ptr += page_length;
420 offset += page_length;
421 }
422
423fail_put_pages:
424 i915_gem_object_put_pages(obj);
425fail_unlock:
426 mutex_unlock(&dev->struct_mutex);
427fail_put_user_pages:
428 for (i = 0; i < pinned_pages; i++) {
429 SetPageDirty(user_pages[i]);
430 page_cache_release(user_pages[i]);
431 }
432 kfree(user_pages);
433
434 return ret;
435}
436
673a394b
EA
437/**
438 * Reads data from the object referenced by handle.
439 *
440 * On error, the contents of *data are undefined.
441 */
442int
443i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444 struct drm_file *file_priv)
445{
446 struct drm_i915_gem_pread *args = data;
447 struct drm_gem_object *obj;
448 struct drm_i915_gem_object *obj_priv;
673a394b
EA
449 int ret;
450
451 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452 if (obj == NULL)
453 return -EBADF;
454 obj_priv = obj->driver_private;
455
456 /* Bounds check source.
457 *
458 * XXX: This could use review for overflow issues...
459 */
460 if (args->offset > obj->size || args->size > obj->size ||
461 args->offset + args->size > obj->size) {
462 drm_gem_object_unreference(obj);
463 return -EINVAL;
464 }
465
280b713b 466 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 467 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
468 } else {
469 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470 if (ret != 0)
471 ret = i915_gem_shmem_pread_slow(dev, obj, args,
472 file_priv);
473 }
673a394b
EA
474
475 drm_gem_object_unreference(obj);
673a394b 476
eb01459f 477 return ret;
673a394b
EA
478}
479
0839ccb8
KP
480/* This is the fast write path which cannot handle
481 * page faults in the source data
9b7530cc 482 */
0839ccb8
KP
483
484static inline int
485fast_user_write(struct io_mapping *mapping,
486 loff_t page_base, int page_offset,
487 char __user *user_data,
488 int length)
9b7530cc 489{
9b7530cc 490 char *vaddr_atomic;
0839ccb8 491 unsigned long unwritten;
9b7530cc 492
0839ccb8
KP
493 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495 user_data, length);
496 io_mapping_unmap_atomic(vaddr_atomic);
497 if (unwritten)
498 return -EFAULT;
499 return 0;
500}
501
502/* Here's the write path which can sleep for
503 * page faults
504 */
505
506static inline int
3de09aa3
EA
507slow_kernel_write(struct io_mapping *mapping,
508 loff_t gtt_base, int gtt_offset,
509 struct page *user_page, int user_offset,
510 int length)
0839ccb8 511{
3de09aa3 512 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
513 unsigned long unwritten;
514
3de09aa3
EA
515 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516 src_vaddr = kmap_atomic(user_page, KM_USER1);
517 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518 src_vaddr + user_offset,
519 length);
520 kunmap_atomic(src_vaddr, KM_USER1);
521 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
522 if (unwritten)
523 return -EFAULT;
9b7530cc 524 return 0;
9b7530cc
LT
525}
526
40123c1f
EA
527static inline int
528fast_shmem_write(struct page **pages,
529 loff_t page_base, int page_offset,
530 char __user *data,
531 int length)
532{
533 char __iomem *vaddr;
d0088775 534 unsigned long unwritten;
40123c1f
EA
535
536 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537 if (vaddr == NULL)
538 return -ENOMEM;
d0088775 539 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
540 kunmap_atomic(vaddr, KM_USER0);
541
d0088775
DA
542 if (unwritten)
543 return -EFAULT;
40123c1f
EA
544 return 0;
545}
546
3de09aa3
EA
547/**
548 * This is the fast pwrite path, where we copy the data directly from the
549 * user into the GTT, uncached.
550 */
673a394b 551static int
3de09aa3
EA
552i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553 struct drm_i915_gem_pwrite *args,
554 struct drm_file *file_priv)
673a394b
EA
555{
556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 557 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 558 ssize_t remain;
0839ccb8 559 loff_t offset, page_base;
673a394b 560 char __user *user_data;
0839ccb8
KP
561 int page_offset, page_length;
562 int ret;
673a394b
EA
563
564 user_data = (char __user *) (uintptr_t) args->data_ptr;
565 remain = args->size;
566 if (!access_ok(VERIFY_READ, user_data, remain))
567 return -EFAULT;
568
569
570 mutex_lock(&dev->struct_mutex);
571 ret = i915_gem_object_pin(obj, 0);
572 if (ret) {
573 mutex_unlock(&dev->struct_mutex);
574 return ret;
575 }
2ef7eeaa 576 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
577 if (ret)
578 goto fail;
579
580 obj_priv = obj->driver_private;
581 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
582
583 while (remain > 0) {
584 /* Operation in this page
585 *
0839ccb8
KP
586 * page_base = page offset within aperture
587 * page_offset = offset within page
588 * page_length = bytes to copy for this page
673a394b 589 */
0839ccb8
KP
590 page_base = (offset & ~(PAGE_SIZE-1));
591 page_offset = offset & (PAGE_SIZE-1);
592 page_length = remain;
593 if ((page_offset + remain) > PAGE_SIZE)
594 page_length = PAGE_SIZE - page_offset;
595
596 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597 page_offset, user_data, page_length);
598
599 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
600 * source page isn't available. Return the error and we'll
601 * retry in the slow path.
0839ccb8 602 */
3de09aa3
EA
603 if (ret)
604 goto fail;
673a394b 605
0839ccb8
KP
606 remain -= page_length;
607 user_data += page_length;
608 offset += page_length;
673a394b 609 }
673a394b
EA
610
611fail:
612 i915_gem_object_unpin(obj);
613 mutex_unlock(&dev->struct_mutex);
614
615 return ret;
616}
617
3de09aa3
EA
618/**
619 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620 * the memory and maps it using kmap_atomic for copying.
621 *
622 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624 */
3043c60c 625static int
3de09aa3
EA
626i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627 struct drm_i915_gem_pwrite *args,
628 struct drm_file *file_priv)
673a394b 629{
3de09aa3
EA
630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
631 drm_i915_private_t *dev_priv = dev->dev_private;
632 ssize_t remain;
633 loff_t gtt_page_base, offset;
634 loff_t first_data_page, last_data_page, num_pages;
635 loff_t pinned_pages, i;
636 struct page **user_pages;
637 struct mm_struct *mm = current->mm;
638 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 639 int ret;
3de09aa3
EA
640 uint64_t data_ptr = args->data_ptr;
641
642 remain = args->size;
643
644 /* Pin the user pages containing the data. We can't fault while
645 * holding the struct mutex, and all of the pwrite implementations
646 * want to hold it while dereferencing the user data.
647 */
648 first_data_page = data_ptr / PAGE_SIZE;
649 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650 num_pages = last_data_page - first_data_page + 1;
651
652 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
653 if (user_pages == NULL)
654 return -ENOMEM;
655
656 down_read(&mm->mmap_sem);
657 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658 num_pages, 0, 0, user_pages, NULL);
659 up_read(&mm->mmap_sem);
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
673a394b
EA
664
665 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
666 ret = i915_gem_object_pin(obj, 0);
667 if (ret)
668 goto out_unlock;
669
670 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671 if (ret)
672 goto out_unpin_object;
673
674 obj_priv = obj->driver_private;
675 offset = obj_priv->gtt_offset + args->offset;
676
677 while (remain > 0) {
678 /* Operation in this page
679 *
680 * gtt_page_base = page offset within aperture
681 * gtt_page_offset = offset within page in aperture
682 * data_page_index = page number in get_user_pages return
683 * data_page_offset = offset with data_page_index page.
684 * page_length = bytes to copy for this page
685 */
686 gtt_page_base = offset & PAGE_MASK;
687 gtt_page_offset = offset & ~PAGE_MASK;
688 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689 data_page_offset = data_ptr & ~PAGE_MASK;
690
691 page_length = remain;
692 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - gtt_page_offset;
694 if ((data_page_offset + page_length) > PAGE_SIZE)
695 page_length = PAGE_SIZE - data_page_offset;
696
697 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698 gtt_page_base, gtt_page_offset,
699 user_pages[data_page_index],
700 data_page_offset,
701 page_length);
702
703 /* If we get a fault while copying data, then (presumably) our
704 * source page isn't available. Return the error and we'll
705 * retry in the slow path.
706 */
707 if (ret)
708 goto out_unpin_object;
709
710 remain -= page_length;
711 offset += page_length;
712 data_ptr += page_length;
713 }
714
715out_unpin_object:
716 i915_gem_object_unpin(obj);
717out_unlock:
718 mutex_unlock(&dev->struct_mutex);
719out_unpin_pages:
720 for (i = 0; i < pinned_pages; i++)
721 page_cache_release(user_pages[i]);
722 kfree(user_pages);
723
724 return ret;
725}
726
40123c1f
EA
727/**
728 * This is the fast shmem pwrite path, which attempts to directly
729 * copy_from_user into the kmapped pages backing the object.
730 */
3043c60c 731static int
40123c1f
EA
732i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file_priv)
673a394b 735{
40123c1f
EA
736 struct drm_i915_gem_object *obj_priv = obj->driver_private;
737 ssize_t remain;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length;
673a394b 741 int ret;
40123c1f
EA
742
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
744 remain = args->size;
673a394b
EA
745
746 mutex_lock(&dev->struct_mutex);
747
40123c1f
EA
748 ret = i915_gem_object_get_pages(obj);
749 if (ret != 0)
750 goto fail_unlock;
673a394b 751
e47c68e9 752 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
753 if (ret != 0)
754 goto fail_put_pages;
755
756 obj_priv = obj->driver_private;
757 offset = args->offset;
758 obj_priv->dirty = 1;
759
760 while (remain > 0) {
761 /* Operation in this page
762 *
763 * page_base = page offset within aperture
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
766 */
767 page_base = (offset & ~(PAGE_SIZE-1));
768 page_offset = offset & (PAGE_SIZE-1);
769 page_length = remain;
770 if ((page_offset + remain) > PAGE_SIZE)
771 page_length = PAGE_SIZE - page_offset;
772
773 ret = fast_shmem_write(obj_priv->pages,
774 page_base, page_offset,
775 user_data, page_length);
776 if (ret)
777 goto fail_put_pages;
778
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
782 }
783
784fail_put_pages:
785 i915_gem_object_put_pages(obj);
786fail_unlock:
787 mutex_unlock(&dev->struct_mutex);
788
789 return ret;
790}
791
792/**
793 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794 * the memory and maps it using kmap_atomic for copying.
795 *
796 * This avoids taking mmap_sem for faulting on the user's address while the
797 * struct_mutex is held.
798 */
799static int
800i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801 struct drm_i915_gem_pwrite *args,
802 struct drm_file *file_priv)
803{
804 struct drm_i915_gem_object *obj_priv = obj->driver_private;
805 struct mm_struct *mm = current->mm;
806 struct page **user_pages;
807 ssize_t remain;
808 loff_t offset, pinned_pages, i;
809 loff_t first_data_page, last_data_page, num_pages;
810 int shmem_page_index, shmem_page_offset;
811 int data_page_index, data_page_offset;
812 int page_length;
813 int ret;
814 uint64_t data_ptr = args->data_ptr;
280b713b 815 int do_bit17_swizzling;
40123c1f
EA
816
817 remain = args->size;
818
819 /* Pin the user pages containing the data. We can't fault while
820 * holding the struct mutex, and all of the pwrite implementations
821 * want to hold it while dereferencing the user data.
822 */
823 first_data_page = data_ptr / PAGE_SIZE;
824 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825 num_pages = last_data_page - first_data_page + 1;
826
827 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
828 if (user_pages == NULL)
829 return -ENOMEM;
830
831 down_read(&mm->mmap_sem);
832 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833 num_pages, 0, 0, user_pages, NULL);
834 up_read(&mm->mmap_sem);
835 if (pinned_pages < num_pages) {
836 ret = -EFAULT;
837 goto fail_put_user_pages;
673a394b
EA
838 }
839
280b713b
EA
840 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
40123c1f
EA
842 mutex_lock(&dev->struct_mutex);
843
844 ret = i915_gem_object_get_pages(obj);
845 if (ret != 0)
846 goto fail_unlock;
847
848 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849 if (ret != 0)
850 goto fail_put_pages;
851
852 obj_priv = obj->driver_private;
673a394b 853 offset = args->offset;
40123c1f 854 obj_priv->dirty = 1;
673a394b 855
40123c1f
EA
856 while (remain > 0) {
857 /* Operation in this page
858 *
859 * shmem_page_index = page number within shmem file
860 * shmem_page_offset = offset within page in shmem file
861 * data_page_index = page number in get_user_pages return
862 * data_page_offset = offset with data_page_index page.
863 * page_length = bytes to copy for this page
864 */
865 shmem_page_index = offset / PAGE_SIZE;
866 shmem_page_offset = offset & ~PAGE_MASK;
867 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868 data_page_offset = data_ptr & ~PAGE_MASK;
869
870 page_length = remain;
871 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - shmem_page_offset;
873 if ((data_page_offset + page_length) > PAGE_SIZE)
874 page_length = PAGE_SIZE - data_page_offset;
875
280b713b
EA
876 if (do_bit17_swizzling) {
877 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878 shmem_page_offset,
879 user_pages[data_page_index],
880 data_page_offset,
881 page_length,
882 0);
883 } else {
884 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885 shmem_page_offset,
886 user_pages[data_page_index],
887 data_page_offset,
888 page_length);
889 }
40123c1f
EA
890 if (ret)
891 goto fail_put_pages;
892
893 remain -= page_length;
894 data_ptr += page_length;
895 offset += page_length;
673a394b
EA
896 }
897
40123c1f
EA
898fail_put_pages:
899 i915_gem_object_put_pages(obj);
900fail_unlock:
673a394b 901 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
902fail_put_user_pages:
903 for (i = 0; i < pinned_pages; i++)
904 page_cache_release(user_pages[i]);
905 kfree(user_pages);
673a394b 906
40123c1f 907 return ret;
673a394b
EA
908}
909
910/**
911 * Writes data to the object referenced by handle.
912 *
913 * On error, the contents of the buffer that were to be modified are undefined.
914 */
915int
916i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917 struct drm_file *file_priv)
918{
919 struct drm_i915_gem_pwrite *args = data;
920 struct drm_gem_object *obj;
921 struct drm_i915_gem_object *obj_priv;
922 int ret = 0;
923
924 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925 if (obj == NULL)
926 return -EBADF;
927 obj_priv = obj->driver_private;
928
929 /* Bounds check destination.
930 *
931 * XXX: This could use review for overflow issues...
932 */
933 if (args->offset > obj->size || args->size > obj->size ||
934 args->offset + args->size > obj->size) {
935 drm_gem_object_unreference(obj);
936 return -EINVAL;
937 }
938
939 /* We can only do the GTT pwrite on untiled buffers, as otherwise
940 * it would end up going through the fenced access, and we'll get
941 * different detiling behavior between reading and writing.
942 * pread/pwrite currently are reading and writing from the CPU
943 * perspective, requiring manual detiling by the client.
944 */
71acb5eb
DA
945 if (obj_priv->phys_obj)
946 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
948 dev->gtt_total != 0) {
949 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950 if (ret == -EFAULT) {
951 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952 file_priv);
953 }
280b713b
EA
954 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
956 } else {
957 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958 if (ret == -EFAULT) {
959 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960 file_priv);
961 }
962 }
673a394b
EA
963
964#if WATCH_PWRITE
965 if (ret)
966 DRM_INFO("pwrite failed %d\n", ret);
967#endif
968
969 drm_gem_object_unreference(obj);
970
971 return ret;
972}
973
974/**
2ef7eeaa
EA
975 * Called when user space prepares to use an object with the CPU, either
976 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
977 */
978int
979i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980 struct drm_file *file_priv)
981{
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
2ef7eeaa
EA
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
673a394b
EA
986 int ret;
987
988 if (!(dev->driver->driver_features & DRIVER_GEM))
989 return -ENODEV;
990
2ef7eeaa
EA
991 /* Only handle setting domains to types used by the CPU. */
992 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
993 return -EINVAL;
994
995 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
996 return -EINVAL;
997
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1000 */
1001 if (write_domain != 0 && read_domains != write_domain)
1002 return -EINVAL;
1003
673a394b
EA
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005 if (obj == NULL)
1006 return -EBADF;
1007
1008 mutex_lock(&dev->struct_mutex);
1009#if WATCH_BUF
1010 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
2ef7eeaa 1011 obj, obj->size, read_domains, write_domain);
673a394b 1012#endif
2ef7eeaa
EA
1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1015
1016 /* Silently promote "you're not bound, there was nothing to do"
1017 * to success, since the client was just asking us to
1018 * make sure everything was done.
1019 */
1020 if (ret == -EINVAL)
1021 ret = 0;
2ef7eeaa 1022 } else {
e47c68e9 1023 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1024 }
1025
673a394b
EA
1026 drm_gem_object_unreference(obj);
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029}
1030
1031/**
1032 * Called when user space has done writes to this buffer
1033 */
1034int
1035i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036 struct drm_file *file_priv)
1037{
1038 struct drm_i915_gem_sw_finish *args = data;
1039 struct drm_gem_object *obj;
1040 struct drm_i915_gem_object *obj_priv;
1041 int ret = 0;
1042
1043 if (!(dev->driver->driver_features & DRIVER_GEM))
1044 return -ENODEV;
1045
1046 mutex_lock(&dev->struct_mutex);
1047 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048 if (obj == NULL) {
1049 mutex_unlock(&dev->struct_mutex);
1050 return -EBADF;
1051 }
1052
1053#if WATCH_BUF
1054 DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055 __func__, args->handle, obj, obj->size);
1056#endif
1057 obj_priv = obj->driver_private;
1058
1059 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1060 if (obj_priv->pin_count)
1061 i915_gem_object_flush_cpu_write_domain(obj);
1062
673a394b
EA
1063 drm_gem_object_unreference(obj);
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066}
1067
1068/**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075int
1076i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078{
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
1081 loff_t offset;
1082 unsigned long addr;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1088 if (obj == NULL)
1089 return -EBADF;
1090
1091 offset = args->offset;
1092
1093 down_write(&current->mm->mmap_sem);
1094 addr = do_mmap(obj->filp, 0, args->size,
1095 PROT_READ | PROT_WRITE, MAP_SHARED,
1096 args->offset);
1097 up_write(&current->mm->mmap_sem);
1098 mutex_lock(&dev->struct_mutex);
1099 drm_gem_object_unreference(obj);
1100 mutex_unlock(&dev->struct_mutex);
1101 if (IS_ERR((void *)addr))
1102 return addr;
1103
1104 args->addr_ptr = (uint64_t) addr;
1105
1106 return 0;
1107}
1108
de151cf6
JB
1109/**
1110 * i915_gem_fault - fault a page into the GTT
1111 * vma: VMA in question
1112 * vmf: fault info
1113 *
1114 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115 * from userspace. The fault handler takes care of binding the object to
1116 * the GTT (if needed), allocating and programming a fence register (again,
1117 * only if needed based on whether the old reg is still valid or the object
1118 * is tiled) and inserting a new PTE into the faulting process.
1119 *
1120 * Note that the faulting process may involve evicting existing objects
1121 * from the GTT and/or fence registers to make room. So performance may
1122 * suffer if the GTT working set is large or there are few fence registers
1123 * left.
1124 */
1125int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126{
1127 struct drm_gem_object *obj = vma->vm_private_data;
1128 struct drm_device *dev = obj->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131 pgoff_t page_offset;
1132 unsigned long pfn;
1133 int ret = 0;
0f973f27 1134 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1135
1136 /* We don't use vmf->pgoff since that has the fake offset */
1137 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1138 PAGE_SHIFT;
1139
1140 /* Now bind it into the GTT if needed */
1141 mutex_lock(&dev->struct_mutex);
1142 if (!obj_priv->gtt_space) {
1143 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144 if (ret) {
1145 mutex_unlock(&dev->struct_mutex);
1146 return VM_FAULT_SIGBUS;
1147 }
1148 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1149 }
1150
1151 /* Need a new fence register? */
1152 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
d9ddcb96 1153 obj_priv->tiling_mode != I915_TILING_NONE) {
0f973f27 1154 ret = i915_gem_object_get_fence_reg(obj, write);
7d8d58b2
CW
1155 if (ret) {
1156 mutex_unlock(&dev->struct_mutex);
d9ddcb96 1157 return VM_FAULT_SIGBUS;
7d8d58b2 1158 }
d9ddcb96 1159 }
de151cf6
JB
1160
1161 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1162 page_offset;
1163
1164 /* Finally, remap it using the new GTT offset */
1165 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1166
1167 mutex_unlock(&dev->struct_mutex);
1168
1169 switch (ret) {
1170 case -ENOMEM:
1171 case -EAGAIN:
1172 return VM_FAULT_OOM;
1173 case -EFAULT:
959b887c 1174 case -EINVAL:
de151cf6
JB
1175 return VM_FAULT_SIGBUS;
1176 default:
1177 return VM_FAULT_NOPAGE;
1178 }
1179}
1180
1181/**
1182 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1183 * @obj: obj in question
1184 *
1185 * GEM memory mapping works by handing back to userspace a fake mmap offset
1186 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1187 * up the object based on the offset and sets up the various memory mapping
1188 * structures.
1189 *
1190 * This routine allocates and attaches a fake offset for @obj.
1191 */
1192static int
1193i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1194{
1195 struct drm_device *dev = obj->dev;
1196 struct drm_gem_mm *mm = dev->mm_private;
1197 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1198 struct drm_map_list *list;
f77d390c 1199 struct drm_local_map *map;
de151cf6
JB
1200 int ret = 0;
1201
1202 /* Set the object up for mmap'ing */
1203 list = &obj->map_list;
1204 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1205 DRM_MEM_DRIVER);
1206 if (!list->map)
1207 return -ENOMEM;
1208
1209 map = list->map;
1210 map->type = _DRM_GEM;
1211 map->size = obj->size;
1212 map->handle = obj;
1213
1214 /* Get a DRM GEM mmap offset allocated... */
1215 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1216 obj->size / PAGE_SIZE, 0, 0);
1217 if (!list->file_offset_node) {
1218 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1219 ret = -ENOMEM;
1220 goto out_free_list;
1221 }
1222
1223 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1224 obj->size / PAGE_SIZE, 0);
1225 if (!list->file_offset_node) {
1226 ret = -ENOMEM;
1227 goto out_free_list;
1228 }
1229
1230 list->hash.key = list->file_offset_node->start;
1231 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1232 DRM_ERROR("failed to add to map hash\n");
1233 goto out_free_mm;
1234 }
1235
1236 /* By now we should be all set, any drm_mmap request on the offset
1237 * below will get to our mmap & fault handler */
1238 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1239
1240 return 0;
1241
1242out_free_mm:
1243 drm_mm_put_block(list->file_offset_node);
1244out_free_list:
1245 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1246
1247 return ret;
1248}
1249
ab00b3e5
JB
1250static void
1251i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1252{
1253 struct drm_device *dev = obj->dev;
1254 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1255 struct drm_gem_mm *mm = dev->mm_private;
1256 struct drm_map_list *list;
1257
1258 list = &obj->map_list;
1259 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1260
1261 if (list->file_offset_node) {
1262 drm_mm_put_block(list->file_offset_node);
1263 list->file_offset_node = NULL;
1264 }
1265
1266 if (list->map) {
1267 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1268 list->map = NULL;
1269 }
1270
1271 obj_priv->mmap_offset = 0;
1272}
1273
de151cf6
JB
1274/**
1275 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1276 * @obj: object to check
1277 *
1278 * Return the required GTT alignment for an object, taking into account
1279 * potential fence register mapping if needed.
1280 */
1281static uint32_t
1282i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1283{
1284 struct drm_device *dev = obj->dev;
1285 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1286 int start, i;
1287
1288 /*
1289 * Minimum alignment is 4k (GTT page size), but might be greater
1290 * if a fence register is needed for the object.
1291 */
1292 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1293 return 4096;
1294
1295 /*
1296 * Previous chips need to be aligned to the size of the smallest
1297 * fence register that can contain the object.
1298 */
1299 if (IS_I9XX(dev))
1300 start = 1024*1024;
1301 else
1302 start = 512*1024;
1303
1304 for (i = start; i < obj->size; i <<= 1)
1305 ;
1306
1307 return i;
1308}
1309
1310/**
1311 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1312 * @dev: DRM device
1313 * @data: GTT mapping ioctl data
1314 * @file_priv: GEM object info
1315 *
1316 * Simply returns the fake offset to userspace so it can mmap it.
1317 * The mmap call will end up in drm_gem_mmap(), which will set things
1318 * up so we can get faults in the handler above.
1319 *
1320 * The fault handler will take care of binding the object into the GTT
1321 * (since it may have been evicted to make room for something), allocating
1322 * a fence register, and mapping the appropriate aperture address into
1323 * userspace.
1324 */
1325int
1326i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file_priv)
1328{
1329 struct drm_i915_gem_mmap_gtt *args = data;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 struct drm_gem_object *obj;
1332 struct drm_i915_gem_object *obj_priv;
1333 int ret;
1334
1335 if (!(dev->driver->driver_features & DRIVER_GEM))
1336 return -ENODEV;
1337
1338 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1339 if (obj == NULL)
1340 return -EBADF;
1341
1342 mutex_lock(&dev->struct_mutex);
1343
1344 obj_priv = obj->driver_private;
1345
1346 if (!obj_priv->mmap_offset) {
1347 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1348 if (ret) {
1349 drm_gem_object_unreference(obj);
1350 mutex_unlock(&dev->struct_mutex);
de151cf6 1351 return ret;
13af1062 1352 }
de151cf6
JB
1353 }
1354
1355 args->offset = obj_priv->mmap_offset;
1356
1357 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1358
1359 /* Make sure the alignment is correct for fence regs etc */
1360 if (obj_priv->agp_mem &&
1361 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1362 drm_gem_object_unreference(obj);
1363 mutex_unlock(&dev->struct_mutex);
1364 return -EINVAL;
1365 }
1366
1367 /*
1368 * Pull it into the GTT so that we have a page list (makes the
1369 * initial fault faster and any subsequent flushing possible).
1370 */
1371 if (!obj_priv->agp_mem) {
1372 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1373 if (ret) {
1374 drm_gem_object_unreference(obj);
1375 mutex_unlock(&dev->struct_mutex);
1376 return ret;
1377 }
1378 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1379 }
1380
1381 drm_gem_object_unreference(obj);
1382 mutex_unlock(&dev->struct_mutex);
1383
1384 return 0;
1385}
1386
6911a9b8 1387void
856fa198 1388i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1389{
1390 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1391 int page_count = obj->size / PAGE_SIZE;
1392 int i;
1393
856fa198 1394 BUG_ON(obj_priv->pages_refcount == 0);
673a394b 1395
856fa198
EA
1396 if (--obj_priv->pages_refcount != 0)
1397 return;
673a394b 1398
280b713b
EA
1399 if (obj_priv->tiling_mode != I915_TILING_NONE)
1400 i915_gem_object_save_bit_17_swizzle(obj);
1401
673a394b 1402 for (i = 0; i < page_count; i++)
856fa198 1403 if (obj_priv->pages[i] != NULL) {
673a394b 1404 if (obj_priv->dirty)
856fa198
EA
1405 set_page_dirty(obj_priv->pages[i]);
1406 mark_page_accessed(obj_priv->pages[i]);
1407 page_cache_release(obj_priv->pages[i]);
673a394b
EA
1408 }
1409 obj_priv->dirty = 0;
1410
856fa198 1411 drm_free(obj_priv->pages,
673a394b
EA
1412 page_count * sizeof(struct page *),
1413 DRM_MEM_DRIVER);
856fa198 1414 obj_priv->pages = NULL;
673a394b
EA
1415}
1416
1417static void
ce44b0ea 1418i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1419{
1420 struct drm_device *dev = obj->dev;
1421 drm_i915_private_t *dev_priv = dev->dev_private;
1422 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1423
1424 /* Add a reference if we're newly entering the active list. */
1425 if (!obj_priv->active) {
1426 drm_gem_object_reference(obj);
1427 obj_priv->active = 1;
1428 }
1429 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1430 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1431 list_move_tail(&obj_priv->list,
1432 &dev_priv->mm.active_list);
5e118f41 1433 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1434 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1435}
1436
ce44b0ea
EA
1437static void
1438i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1439{
1440 struct drm_device *dev = obj->dev;
1441 drm_i915_private_t *dev_priv = dev->dev_private;
1442 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1443
1444 BUG_ON(!obj_priv->active);
1445 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1446 obj_priv->last_rendering_seqno = 0;
1447}
673a394b
EA
1448
1449static void
1450i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1451{
1452 struct drm_device *dev = obj->dev;
1453 drm_i915_private_t *dev_priv = dev->dev_private;
1454 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1455
1456 i915_verify_inactive(dev, __FILE__, __LINE__);
1457 if (obj_priv->pin_count != 0)
1458 list_del_init(&obj_priv->list);
1459 else
1460 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1461
ce44b0ea 1462 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1463 if (obj_priv->active) {
1464 obj_priv->active = 0;
1465 drm_gem_object_unreference(obj);
1466 }
1467 i915_verify_inactive(dev, __FILE__, __LINE__);
1468}
1469
1470/**
1471 * Creates a new sequence number, emitting a write of it to the status page
1472 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1473 *
1474 * Must be called with struct_lock held.
1475 *
1476 * Returned sequence numbers are nonzero on success.
1477 */
1478static uint32_t
1479i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1480{
1481 drm_i915_private_t *dev_priv = dev->dev_private;
1482 struct drm_i915_gem_request *request;
1483 uint32_t seqno;
1484 int was_empty;
1485 RING_LOCALS;
1486
1487 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1488 if (request == NULL)
1489 return 0;
1490
1491 /* Grab the seqno we're going to make this request be, and bump the
1492 * next (skipping 0 so it can be the reserved no-seqno value).
1493 */
1494 seqno = dev_priv->mm.next_gem_seqno;
1495 dev_priv->mm.next_gem_seqno++;
1496 if (dev_priv->mm.next_gem_seqno == 0)
1497 dev_priv->mm.next_gem_seqno++;
1498
1499 BEGIN_LP_RING(4);
1500 OUT_RING(MI_STORE_DWORD_INDEX);
1501 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1502 OUT_RING(seqno);
1503
1504 OUT_RING(MI_USER_INTERRUPT);
1505 ADVANCE_LP_RING();
1506
1507 DRM_DEBUG("%d\n", seqno);
1508
1509 request->seqno = seqno;
1510 request->emitted_jiffies = jiffies;
673a394b
EA
1511 was_empty = list_empty(&dev_priv->mm.request_list);
1512 list_add_tail(&request->list, &dev_priv->mm.request_list);
1513
ce44b0ea
EA
1514 /* Associate any objects on the flushing list matching the write
1515 * domain we're flushing with our flush.
1516 */
1517 if (flush_domains != 0) {
1518 struct drm_i915_gem_object *obj_priv, *next;
1519
1520 list_for_each_entry_safe(obj_priv, next,
1521 &dev_priv->mm.flushing_list, list) {
1522 struct drm_gem_object *obj = obj_priv->obj;
1523
1524 if ((obj->write_domain & flush_domains) ==
1525 obj->write_domain) {
1526 obj->write_domain = 0;
1527 i915_gem_object_move_to_active(obj, seqno);
1528 }
1529 }
1530
1531 }
1532
6dbe2772 1533 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
1534 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1535 return seqno;
1536}
1537
1538/**
1539 * Command execution barrier
1540 *
1541 * Ensures that all commands in the ring are finished
1542 * before signalling the CPU
1543 */
3043c60c 1544static uint32_t
673a394b
EA
1545i915_retire_commands(struct drm_device *dev)
1546{
1547 drm_i915_private_t *dev_priv = dev->dev_private;
1548 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1549 uint32_t flush_domains = 0;
1550 RING_LOCALS;
1551
1552 /* The sampler always gets flushed on i965 (sigh) */
1553 if (IS_I965G(dev))
1554 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1555 BEGIN_LP_RING(2);
1556 OUT_RING(cmd);
1557 OUT_RING(0); /* noop */
1558 ADVANCE_LP_RING();
1559 return flush_domains;
1560}
1561
1562/**
1563 * Moves buffers associated only with the given active seqno from the active
1564 * to inactive list, potentially freeing them.
1565 */
1566static void
1567i915_gem_retire_request(struct drm_device *dev,
1568 struct drm_i915_gem_request *request)
1569{
1570 drm_i915_private_t *dev_priv = dev->dev_private;
1571
1572 /* Move any buffers on the active list that are no longer referenced
1573 * by the ringbuffer to the flushing/inactive lists as appropriate.
1574 */
5e118f41 1575 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1576 while (!list_empty(&dev_priv->mm.active_list)) {
1577 struct drm_gem_object *obj;
1578 struct drm_i915_gem_object *obj_priv;
1579
1580 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1581 struct drm_i915_gem_object,
1582 list);
1583 obj = obj_priv->obj;
1584
1585 /* If the seqno being retired doesn't match the oldest in the
1586 * list, then the oldest in the list must still be newer than
1587 * this seqno.
1588 */
1589 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1590 goto out;
de151cf6 1591
673a394b
EA
1592#if WATCH_LRU
1593 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1594 __func__, request->seqno, obj);
1595#endif
1596
ce44b0ea
EA
1597 if (obj->write_domain != 0)
1598 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1599 else {
1600 /* Take a reference on the object so it won't be
1601 * freed while the spinlock is held. The list
1602 * protection for this spinlock is safe when breaking
1603 * the lock like this since the next thing we do
1604 * is just get the head of the list again.
1605 */
1606 drm_gem_object_reference(obj);
673a394b 1607 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1608 spin_unlock(&dev_priv->mm.active_list_lock);
1609 drm_gem_object_unreference(obj);
1610 spin_lock(&dev_priv->mm.active_list_lock);
1611 }
673a394b 1612 }
5e118f41
CW
1613out:
1614 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1615}
1616
1617/**
1618 * Returns true if seq1 is later than seq2.
1619 */
1620static int
1621i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1622{
1623 return (int32_t)(seq1 - seq2) >= 0;
1624}
1625
1626uint32_t
1627i915_get_gem_seqno(struct drm_device *dev)
1628{
1629 drm_i915_private_t *dev_priv = dev->dev_private;
1630
1631 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1632}
1633
1634/**
1635 * This function clears the request list as sequence numbers are passed.
1636 */
1637void
1638i915_gem_retire_requests(struct drm_device *dev)
1639{
1640 drm_i915_private_t *dev_priv = dev->dev_private;
1641 uint32_t seqno;
1642
6c0594a3
KW
1643 if (!dev_priv->hw_status_page)
1644 return;
1645
673a394b
EA
1646 seqno = i915_get_gem_seqno(dev);
1647
1648 while (!list_empty(&dev_priv->mm.request_list)) {
1649 struct drm_i915_gem_request *request;
1650 uint32_t retiring_seqno;
1651
1652 request = list_first_entry(&dev_priv->mm.request_list,
1653 struct drm_i915_gem_request,
1654 list);
1655 retiring_seqno = request->seqno;
1656
1657 if (i915_seqno_passed(seqno, retiring_seqno) ||
1658 dev_priv->mm.wedged) {
1659 i915_gem_retire_request(dev, request);
1660
1661 list_del(&request->list);
1662 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1663 } else
1664 break;
1665 }
1666}
1667
1668void
1669i915_gem_retire_work_handler(struct work_struct *work)
1670{
1671 drm_i915_private_t *dev_priv;
1672 struct drm_device *dev;
1673
1674 dev_priv = container_of(work, drm_i915_private_t,
1675 mm.retire_work.work);
1676 dev = dev_priv->dev;
1677
1678 mutex_lock(&dev->struct_mutex);
1679 i915_gem_retire_requests(dev);
6dbe2772
KP
1680 if (!dev_priv->mm.suspended &&
1681 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
1682 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1683 mutex_unlock(&dev->struct_mutex);
1684}
1685
1686/**
1687 * Waits for a sequence number to be signaled, and cleans up the
1688 * request and object lists appropriately for that event.
1689 */
3043c60c 1690static int
673a394b
EA
1691i915_wait_request(struct drm_device *dev, uint32_t seqno)
1692{
1693 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1694 u32 ier;
673a394b
EA
1695 int ret = 0;
1696
1697 BUG_ON(seqno == 0);
1698
1699 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
802c7eb6
JB
1700 ier = I915_READ(IER);
1701 if (!ier) {
1702 DRM_ERROR("something (likely vbetool) disabled "
1703 "interrupts, re-enabling\n");
1704 i915_driver_irq_preinstall(dev);
1705 i915_driver_irq_postinstall(dev);
1706 }
1707
673a394b
EA
1708 dev_priv->mm.waiting_gem_seqno = seqno;
1709 i915_user_irq_get(dev);
1710 ret = wait_event_interruptible(dev_priv->irq_queue,
1711 i915_seqno_passed(i915_get_gem_seqno(dev),
1712 seqno) ||
1713 dev_priv->mm.wedged);
1714 i915_user_irq_put(dev);
1715 dev_priv->mm.waiting_gem_seqno = 0;
1716 }
1717 if (dev_priv->mm.wedged)
1718 ret = -EIO;
1719
1720 if (ret && ret != -ERESTARTSYS)
1721 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1722 __func__, ret, seqno, i915_get_gem_seqno(dev));
1723
1724 /* Directly dispatch request retiring. While we have the work queue
1725 * to handle this, the waiter on a request often wants an associated
1726 * buffer to have made it to the inactive list, and we would need
1727 * a separate wait queue to handle that.
1728 */
1729 if (ret == 0)
1730 i915_gem_retire_requests(dev);
1731
1732 return ret;
1733}
1734
1735static void
1736i915_gem_flush(struct drm_device *dev,
1737 uint32_t invalidate_domains,
1738 uint32_t flush_domains)
1739{
1740 drm_i915_private_t *dev_priv = dev->dev_private;
1741 uint32_t cmd;
1742 RING_LOCALS;
1743
1744#if WATCH_EXEC
1745 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1746 invalidate_domains, flush_domains);
1747#endif
1748
1749 if (flush_domains & I915_GEM_DOMAIN_CPU)
1750 drm_agp_chipset_flush(dev);
1751
1752 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1753 I915_GEM_DOMAIN_GTT)) {
1754 /*
1755 * read/write caches:
1756 *
1757 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1758 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1759 * also flushed at 2d versus 3d pipeline switches.
1760 *
1761 * read-only caches:
1762 *
1763 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1764 * MI_READ_FLUSH is set, and is always flushed on 965.
1765 *
1766 * I915_GEM_DOMAIN_COMMAND may not exist?
1767 *
1768 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1769 * invalidated when MI_EXE_FLUSH is set.
1770 *
1771 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1772 * invalidated with every MI_FLUSH.
1773 *
1774 * TLBs:
1775 *
1776 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1777 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1778 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1779 * are flushed at any MI_FLUSH.
1780 */
1781
1782 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1783 if ((invalidate_domains|flush_domains) &
1784 I915_GEM_DOMAIN_RENDER)
1785 cmd &= ~MI_NO_WRITE_FLUSH;
1786 if (!IS_I965G(dev)) {
1787 /*
1788 * On the 965, the sampler cache always gets flushed
1789 * and this bit is reserved.
1790 */
1791 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1792 cmd |= MI_READ_FLUSH;
1793 }
1794 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1795 cmd |= MI_EXE_FLUSH;
1796
1797#if WATCH_EXEC
1798 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1799#endif
1800 BEGIN_LP_RING(2);
1801 OUT_RING(cmd);
1802 OUT_RING(0); /* noop */
1803 ADVANCE_LP_RING();
1804 }
1805}
1806
1807/**
1808 * Ensures that all rendering to the object has completed and the object is
1809 * safe to unbind from the GTT or access from the CPU.
1810 */
1811static int
1812i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1813{
1814 struct drm_device *dev = obj->dev;
1815 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1816 int ret;
1817
e47c68e9
EA
1818 /* This function only exists to support waiting for existing rendering,
1819 * not for emitting required flushes.
673a394b 1820 */
e47c68e9 1821 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1822
1823 /* If there is rendering queued on the buffer being evicted, wait for
1824 * it.
1825 */
1826 if (obj_priv->active) {
1827#if WATCH_BUF
1828 DRM_INFO("%s: object %p wait for seqno %08x\n",
1829 __func__, obj, obj_priv->last_rendering_seqno);
1830#endif
1831 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1832 if (ret != 0)
1833 return ret;
1834 }
1835
1836 return 0;
1837}
1838
1839/**
1840 * Unbinds an object from the GTT aperture.
1841 */
0f973f27 1842int
673a394b
EA
1843i915_gem_object_unbind(struct drm_gem_object *obj)
1844{
1845 struct drm_device *dev = obj->dev;
1846 struct drm_i915_gem_object *obj_priv = obj->driver_private;
de151cf6 1847 loff_t offset;
673a394b
EA
1848 int ret = 0;
1849
1850#if WATCH_BUF
1851 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1852 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1853#endif
1854 if (obj_priv->gtt_space == NULL)
1855 return 0;
1856
1857 if (obj_priv->pin_count != 0) {
1858 DRM_ERROR("Attempting to unbind pinned buffer\n");
1859 return -EINVAL;
1860 }
1861
673a394b
EA
1862 /* Move the object to the CPU domain to ensure that
1863 * any possible CPU writes while it's not in the GTT
1864 * are flushed when we go to remap it. This will
1865 * also ensure that all pending GPU writes are finished
1866 * before we unbind.
1867 */
e47c68e9 1868 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1869 if (ret) {
e47c68e9
EA
1870 if (ret != -ERESTARTSYS)
1871 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1872 return ret;
1873 }
1874
1875 if (obj_priv->agp_mem != NULL) {
1876 drm_unbind_agp(obj_priv->agp_mem);
1877 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1878 obj_priv->agp_mem = NULL;
1879 }
1880
1881 BUG_ON(obj_priv->active);
1882
de151cf6
JB
1883 /* blow away mappings if mapped through GTT */
1884 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1885 if (dev->dev_mapping)
1886 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
de151cf6
JB
1887
1888 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1889 i915_gem_clear_fence_reg(obj);
1890
856fa198 1891 i915_gem_object_put_pages(obj);
673a394b
EA
1892
1893 if (obj_priv->gtt_space) {
1894 atomic_dec(&dev->gtt_count);
1895 atomic_sub(obj->size, &dev->gtt_memory);
1896
1897 drm_mm_put_block(obj_priv->gtt_space);
1898 obj_priv->gtt_space = NULL;
1899 }
1900
1901 /* Remove ourselves from the LRU list if present. */
1902 if (!list_empty(&obj_priv->list))
1903 list_del_init(&obj_priv->list);
1904
1905 return 0;
1906}
1907
1908static int
1909i915_gem_evict_something(struct drm_device *dev)
1910{
1911 drm_i915_private_t *dev_priv = dev->dev_private;
1912 struct drm_gem_object *obj;
1913 struct drm_i915_gem_object *obj_priv;
1914 int ret = 0;
1915
1916 for (;;) {
1917 /* If there's an inactive buffer available now, grab it
1918 * and be done.
1919 */
1920 if (!list_empty(&dev_priv->mm.inactive_list)) {
1921 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1922 struct drm_i915_gem_object,
1923 list);
1924 obj = obj_priv->obj;
1925 BUG_ON(obj_priv->pin_count != 0);
1926#if WATCH_LRU
1927 DRM_INFO("%s: evicting %p\n", __func__, obj);
1928#endif
1929 BUG_ON(obj_priv->active);
1930
1931 /* Wait on the rendering and unbind the buffer. */
1932 ret = i915_gem_object_unbind(obj);
1933 break;
1934 }
1935
1936 /* If we didn't get anything, but the ring is still processing
1937 * things, wait for one of those things to finish and hopefully
1938 * leave us a buffer to evict.
1939 */
1940 if (!list_empty(&dev_priv->mm.request_list)) {
1941 struct drm_i915_gem_request *request;
1942
1943 request = list_first_entry(&dev_priv->mm.request_list,
1944 struct drm_i915_gem_request,
1945 list);
1946
1947 ret = i915_wait_request(dev, request->seqno);
1948 if (ret)
1949 break;
1950
1951 /* if waiting caused an object to become inactive,
1952 * then loop around and wait for it. Otherwise, we
1953 * assume that waiting freed and unbound something,
1954 * so there should now be some space in the GTT
1955 */
1956 if (!list_empty(&dev_priv->mm.inactive_list))
1957 continue;
1958 break;
1959 }
1960
1961 /* If we didn't have anything on the request list but there
1962 * are buffers awaiting a flush, emit one and try again.
1963 * When we wait on it, those buffers waiting for that flush
1964 * will get moved to inactive.
1965 */
1966 if (!list_empty(&dev_priv->mm.flushing_list)) {
1967 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1968 struct drm_i915_gem_object,
1969 list);
1970 obj = obj_priv->obj;
1971
1972 i915_gem_flush(dev,
1973 obj->write_domain,
1974 obj->write_domain);
1975 i915_add_request(dev, obj->write_domain);
1976
1977 obj = NULL;
1978 continue;
1979 }
1980
1981 DRM_ERROR("inactive empty %d request empty %d "
1982 "flushing empty %d\n",
1983 list_empty(&dev_priv->mm.inactive_list),
1984 list_empty(&dev_priv->mm.request_list),
1985 list_empty(&dev_priv->mm.flushing_list));
1986 /* If we didn't do any of the above, there's nothing to be done
1987 * and we just can't fit it in.
1988 */
1989 return -ENOMEM;
1990 }
1991 return ret;
1992}
1993
ac94a962
KP
1994static int
1995i915_gem_evict_everything(struct drm_device *dev)
1996{
1997 int ret;
1998
1999 for (;;) {
2000 ret = i915_gem_evict_something(dev);
2001 if (ret != 0)
2002 break;
2003 }
15c35334
OA
2004 if (ret == -ENOMEM)
2005 return 0;
ac94a962
KP
2006 return ret;
2007}
2008
6911a9b8 2009int
856fa198 2010i915_gem_object_get_pages(struct drm_gem_object *obj)
673a394b
EA
2011{
2012 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2013 int page_count, i;
2014 struct address_space *mapping;
2015 struct inode *inode;
2016 struct page *page;
2017 int ret;
2018
856fa198 2019 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2020 return 0;
2021
2022 /* Get the list of pages out of our struct file. They'll be pinned
2023 * at this point until we release them.
2024 */
2025 page_count = obj->size / PAGE_SIZE;
856fa198
EA
2026 BUG_ON(obj_priv->pages != NULL);
2027 obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
2028 DRM_MEM_DRIVER);
2029 if (obj_priv->pages == NULL) {
673a394b 2030 DRM_ERROR("Faled to allocate page list\n");
856fa198 2031 obj_priv->pages_refcount--;
673a394b
EA
2032 return -ENOMEM;
2033 }
2034
2035 inode = obj->filp->f_path.dentry->d_inode;
2036 mapping = inode->i_mapping;
2037 for (i = 0; i < page_count; i++) {
2038 page = read_mapping_page(mapping, i, NULL);
2039 if (IS_ERR(page)) {
2040 ret = PTR_ERR(page);
2041 DRM_ERROR("read_mapping_page failed: %d\n", ret);
856fa198 2042 i915_gem_object_put_pages(obj);
673a394b
EA
2043 return ret;
2044 }
856fa198 2045 obj_priv->pages[i] = page;
673a394b 2046 }
280b713b
EA
2047
2048 if (obj_priv->tiling_mode != I915_TILING_NONE)
2049 i915_gem_object_do_bit_17_swizzle(obj);
2050
673a394b
EA
2051 return 0;
2052}
2053
de151cf6
JB
2054static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2055{
2056 struct drm_gem_object *obj = reg->obj;
2057 struct drm_device *dev = obj->dev;
2058 drm_i915_private_t *dev_priv = dev->dev_private;
2059 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2060 int regnum = obj_priv->fence_reg;
2061 uint64_t val;
2062
2063 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2064 0xfffff000) << 32;
2065 val |= obj_priv->gtt_offset & 0xfffff000;
2066 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2067 if (obj_priv->tiling_mode == I915_TILING_Y)
2068 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2069 val |= I965_FENCE_REG_VALID;
2070
2071 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2072}
2073
2074static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2075{
2076 struct drm_gem_object *obj = reg->obj;
2077 struct drm_device *dev = obj->dev;
2078 drm_i915_private_t *dev_priv = dev->dev_private;
2079 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2080 int regnum = obj_priv->fence_reg;
0f973f27 2081 int tile_width;
dc529a4f 2082 uint32_t fence_reg, val;
de151cf6
JB
2083 uint32_t pitch_val;
2084
2085 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2086 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2087 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2088 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2089 return;
2090 }
2091
0f973f27
JB
2092 if (obj_priv->tiling_mode == I915_TILING_Y &&
2093 HAS_128_BYTE_Y_TILING(dev))
2094 tile_width = 128;
de151cf6 2095 else
0f973f27
JB
2096 tile_width = 512;
2097
2098 /* Note: pitch better be a power of two tile widths */
2099 pitch_val = obj_priv->stride / tile_width;
2100 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
2101
2102 val = obj_priv->gtt_offset;
2103 if (obj_priv->tiling_mode == I915_TILING_Y)
2104 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2105 val |= I915_FENCE_SIZE_BITS(obj->size);
2106 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2107 val |= I830_FENCE_REG_VALID;
2108
dc529a4f
EA
2109 if (regnum < 8)
2110 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2111 else
2112 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2113 I915_WRITE(fence_reg, val);
de151cf6
JB
2114}
2115
2116static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2117{
2118 struct drm_gem_object *obj = reg->obj;
2119 struct drm_device *dev = obj->dev;
2120 drm_i915_private_t *dev_priv = dev->dev_private;
2121 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2122 int regnum = obj_priv->fence_reg;
2123 uint32_t val;
2124 uint32_t pitch_val;
8d7773a3 2125 uint32_t fence_size_bits;
de151cf6 2126
8d7773a3 2127 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2128 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2129 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2130 __func__, obj_priv->gtt_offset);
de151cf6
JB
2131 return;
2132 }
2133
2134 pitch_val = (obj_priv->stride / 128) - 1;
8d7773a3 2135 WARN_ON(pitch_val & ~0x0000000f);
de151cf6
JB
2136 val = obj_priv->gtt_offset;
2137 if (obj_priv->tiling_mode == I915_TILING_Y)
2138 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2139 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2140 WARN_ON(fence_size_bits & ~0x00000f00);
2141 val |= fence_size_bits;
de151cf6
JB
2142 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2143 val |= I830_FENCE_REG_VALID;
2144
2145 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2146
2147}
2148
2149/**
2150 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2151 * @obj: object to map through a fence reg
0f973f27 2152 * @write: object is about to be written
de151cf6
JB
2153 *
2154 * When mapping objects through the GTT, userspace wants to be able to write
2155 * to them without having to worry about swizzling if the object is tiled.
2156 *
2157 * This function walks the fence regs looking for a free one for @obj,
2158 * stealing one if it can't find any.
2159 *
2160 * It then sets up the reg based on the object's properties: address, pitch
2161 * and tiling format.
2162 */
d9ddcb96 2163static int
0f973f27 2164i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
de151cf6
JB
2165{
2166 struct drm_device *dev = obj->dev;
79e53945 2167 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2168 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2169 struct drm_i915_fence_reg *reg = NULL;
fc7170ba
CW
2170 struct drm_i915_gem_object *old_obj_priv = NULL;
2171 int i, ret, avail;
de151cf6
JB
2172
2173 switch (obj_priv->tiling_mode) {
2174 case I915_TILING_NONE:
2175 WARN(1, "allocating a fence for non-tiled object?\n");
2176 break;
2177 case I915_TILING_X:
0f973f27
JB
2178 if (!obj_priv->stride)
2179 return -EINVAL;
2180 WARN((obj_priv->stride & (512 - 1)),
2181 "object 0x%08x is X tiled but has non-512B pitch\n",
2182 obj_priv->gtt_offset);
de151cf6
JB
2183 break;
2184 case I915_TILING_Y:
0f973f27
JB
2185 if (!obj_priv->stride)
2186 return -EINVAL;
2187 WARN((obj_priv->stride & (128 - 1)),
2188 "object 0x%08x is Y tiled but has non-128B pitch\n",
2189 obj_priv->gtt_offset);
de151cf6
JB
2190 break;
2191 }
2192
2193 /* First try to find a free reg */
9b2412f9 2194try_again:
fc7170ba 2195 avail = 0;
de151cf6
JB
2196 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2197 reg = &dev_priv->fence_regs[i];
2198 if (!reg->obj)
2199 break;
fc7170ba
CW
2200
2201 old_obj_priv = reg->obj->driver_private;
2202 if (!old_obj_priv->pin_count)
2203 avail++;
de151cf6
JB
2204 }
2205
2206 /* None available, try to steal one or wait for a user to finish */
2207 if (i == dev_priv->num_fence_regs) {
d7619c4b 2208 uint32_t seqno = dev_priv->mm.next_gem_seqno;
de151cf6
JB
2209 loff_t offset;
2210
fc7170ba
CW
2211 if (avail == 0)
2212 return -ENOMEM;
2213
de151cf6
JB
2214 for (i = dev_priv->fence_reg_start;
2215 i < dev_priv->num_fence_regs; i++) {
d7619c4b
CW
2216 uint32_t this_seqno;
2217
de151cf6
JB
2218 reg = &dev_priv->fence_regs[i];
2219 old_obj_priv = reg->obj->driver_private;
d7619c4b
CW
2220
2221 if (old_obj_priv->pin_count)
2222 continue;
2223
2224 /* i915 uses fences for GPU access to tiled buffers */
2225 if (IS_I965G(dev) || !old_obj_priv->active)
de151cf6 2226 break;
d7619c4b
CW
2227
2228 /* find the seqno of the first available fence */
2229 this_seqno = old_obj_priv->last_rendering_seqno;
2230 if (this_seqno != 0 &&
2231 reg->obj->write_domain == 0 &&
2232 i915_seqno_passed(seqno, this_seqno))
2233 seqno = this_seqno;
de151cf6
JB
2234 }
2235
2236 /*
2237 * Now things get ugly... we have to wait for one of the
2238 * objects to finish before trying again.
2239 */
2240 if (i == dev_priv->num_fence_regs) {
d7619c4b
CW
2241 if (seqno == dev_priv->mm.next_gem_seqno) {
2242 i915_gem_flush(dev,
2243 I915_GEM_GPU_DOMAINS,
2244 I915_GEM_GPU_DOMAINS);
2245 seqno = i915_add_request(dev,
2246 I915_GEM_GPU_DOMAINS);
2247 if (seqno == 0)
2248 return -ENOMEM;
de151cf6 2249 }
d7619c4b
CW
2250
2251 ret = i915_wait_request(dev, seqno);
2252 if (ret)
2253 return ret;
de151cf6
JB
2254 goto try_again;
2255 }
2256
d7619c4b
CW
2257 BUG_ON(old_obj_priv->active ||
2258 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2259
de151cf6
JB
2260 /*
2261 * Zap this virtual mapping so we can set up a fence again
2262 * for this object next time we need it.
2263 */
2264 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
2265 if (dev->dev_mapping)
2266 unmap_mapping_range(dev->dev_mapping, offset,
2267 reg->obj->size, 1);
de151cf6
JB
2268 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2269 }
2270
2271 obj_priv->fence_reg = i;
2272 reg->obj = obj;
2273
2274 if (IS_I965G(dev))
2275 i965_write_fence_reg(reg);
2276 else if (IS_I9XX(dev))
2277 i915_write_fence_reg(reg);
2278 else
2279 i830_write_fence_reg(reg);
d9ddcb96
EA
2280
2281 return 0;
de151cf6
JB
2282}
2283
2284/**
2285 * i915_gem_clear_fence_reg - clear out fence register info
2286 * @obj: object to clear
2287 *
2288 * Zeroes out the fence register itself and clears out the associated
2289 * data structures in dev_priv and obj_priv.
2290 */
2291static void
2292i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2293{
2294 struct drm_device *dev = obj->dev;
79e53945 2295 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2296 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2297
2298 if (IS_I965G(dev))
2299 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
dc529a4f
EA
2300 else {
2301 uint32_t fence_reg;
2302
2303 if (obj_priv->fence_reg < 8)
2304 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2305 else
2306 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2307 8) * 4;
2308
2309 I915_WRITE(fence_reg, 0);
2310 }
de151cf6
JB
2311
2312 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2313 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2314}
2315
673a394b
EA
2316/**
2317 * Finds free space in the GTT aperture and binds the object there.
2318 */
2319static int
2320i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2321{
2322 struct drm_device *dev = obj->dev;
2323 drm_i915_private_t *dev_priv = dev->dev_private;
2324 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2325 struct drm_mm_node *free_space;
2326 int page_count, ret;
2327
9bb2d6f9
EA
2328 if (dev_priv->mm.suspended)
2329 return -EBUSY;
673a394b 2330 if (alignment == 0)
0f973f27 2331 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2332 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2333 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2334 return -EINVAL;
2335 }
2336
2337 search_free:
2338 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2339 obj->size, alignment, 0);
2340 if (free_space != NULL) {
2341 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2342 alignment);
2343 if (obj_priv->gtt_space != NULL) {
2344 obj_priv->gtt_space->private = obj;
2345 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2346 }
2347 }
2348 if (obj_priv->gtt_space == NULL) {
5e118f41
CW
2349 bool lists_empty;
2350
673a394b
EA
2351 /* If the gtt is empty and we're still having trouble
2352 * fitting our object in, we're out of memory.
2353 */
2354#if WATCH_LRU
2355 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2356#endif
5e118f41
CW
2357 spin_lock(&dev_priv->mm.active_list_lock);
2358 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2359 list_empty(&dev_priv->mm.flushing_list) &&
2360 list_empty(&dev_priv->mm.active_list));
2361 spin_unlock(&dev_priv->mm.active_list_lock);
2362 if (lists_empty) {
673a394b
EA
2363 DRM_ERROR("GTT full, but LRU list empty\n");
2364 return -ENOMEM;
2365 }
2366
2367 ret = i915_gem_evict_something(dev);
2368 if (ret != 0) {
ac94a962
KP
2369 if (ret != -ERESTARTSYS)
2370 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
2371 return ret;
2372 }
2373 goto search_free;
2374 }
2375
2376#if WATCH_BUF
2377 DRM_INFO("Binding object of size %d at 0x%08x\n",
2378 obj->size, obj_priv->gtt_offset);
2379#endif
856fa198 2380 ret = i915_gem_object_get_pages(obj);
673a394b
EA
2381 if (ret) {
2382 drm_mm_put_block(obj_priv->gtt_space);
2383 obj_priv->gtt_space = NULL;
2384 return ret;
2385 }
2386
2387 page_count = obj->size / PAGE_SIZE;
2388 /* Create an AGP memory structure pointing at our pages, and bind it
2389 * into the GTT.
2390 */
2391 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2392 obj_priv->pages,
673a394b 2393 page_count,
ba1eb1d8
KP
2394 obj_priv->gtt_offset,
2395 obj_priv->agp_type);
673a394b 2396 if (obj_priv->agp_mem == NULL) {
856fa198 2397 i915_gem_object_put_pages(obj);
673a394b
EA
2398 drm_mm_put_block(obj_priv->gtt_space);
2399 obj_priv->gtt_space = NULL;
2400 return -ENOMEM;
2401 }
2402 atomic_inc(&dev->gtt_count);
2403 atomic_add(obj->size, &dev->gtt_memory);
2404
2405 /* Assert that the object is not currently in any GPU domain. As it
2406 * wasn't in the GTT, there shouldn't be any way it could have been in
2407 * a GPU cache
2408 */
2409 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2410 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2411
2412 return 0;
2413}
2414
2415void
2416i915_gem_clflush_object(struct drm_gem_object *obj)
2417{
2418 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2419
2420 /* If we don't have a page list set up, then we're not pinned
2421 * to GPU, and we can ignore the cache flush because it'll happen
2422 * again at bind time.
2423 */
856fa198 2424 if (obj_priv->pages == NULL)
673a394b
EA
2425 return;
2426
856fa198 2427 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2428}
2429
e47c68e9
EA
2430/** Flushes any GPU write domain for the object if it's dirty. */
2431static void
2432i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2433{
2434 struct drm_device *dev = obj->dev;
2435 uint32_t seqno;
2436
2437 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2438 return;
2439
2440 /* Queue the GPU write cache flushing we need. */
2441 i915_gem_flush(dev, 0, obj->write_domain);
2442 seqno = i915_add_request(dev, obj->write_domain);
2443 obj->write_domain = 0;
2444 i915_gem_object_move_to_active(obj, seqno);
2445}
2446
2447/** Flushes the GTT write domain for the object if it's dirty. */
2448static void
2449i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2450{
2451 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2452 return;
2453
2454 /* No actual flushing is required for the GTT write domain. Writes
2455 * to it immediately go to main memory as far as we know, so there's
2456 * no chipset flush. It also doesn't land in render cache.
2457 */
2458 obj->write_domain = 0;
2459}
2460
2461/** Flushes the CPU write domain for the object if it's dirty. */
2462static void
2463i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2464{
2465 struct drm_device *dev = obj->dev;
2466
2467 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2468 return;
2469
2470 i915_gem_clflush_object(obj);
2471 drm_agp_chipset_flush(dev);
2472 obj->write_domain = 0;
2473}
2474
2ef7eeaa
EA
2475/**
2476 * Moves a single object to the GTT read, and possibly write domain.
2477 *
2478 * This function returns when the move is complete, including waiting on
2479 * flushes to occur.
2480 */
79e53945 2481int
2ef7eeaa
EA
2482i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2483{
2ef7eeaa 2484 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 2485 int ret;
2ef7eeaa 2486
02354392
EA
2487 /* Not valid to be called on unbound objects. */
2488 if (obj_priv->gtt_space == NULL)
2489 return -EINVAL;
2490
e47c68e9
EA
2491 i915_gem_object_flush_gpu_write_domain(obj);
2492 /* Wait on any GPU rendering and flushing to occur. */
2493 ret = i915_gem_object_wait_rendering(obj);
2494 if (ret != 0)
2495 return ret;
2496
2497 /* If we're writing through the GTT domain, then CPU and GPU caches
2498 * will need to be invalidated at next use.
2ef7eeaa 2499 */
e47c68e9
EA
2500 if (write)
2501 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2502
e47c68e9 2503 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2504
e47c68e9
EA
2505 /* It should now be out of any other write domains, and we can update
2506 * the domain values for our changes.
2507 */
2508 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2509 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2510 if (write) {
2511 obj->write_domain = I915_GEM_DOMAIN_GTT;
2512 obj_priv->dirty = 1;
2ef7eeaa
EA
2513 }
2514
e47c68e9
EA
2515 return 0;
2516}
2517
2518/**
2519 * Moves a single object to the CPU read, and possibly write domain.
2520 *
2521 * This function returns when the move is complete, including waiting on
2522 * flushes to occur.
2523 */
2524static int
2525i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2526{
e47c68e9
EA
2527 int ret;
2528
2529 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2530 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2531 ret = i915_gem_object_wait_rendering(obj);
2532 if (ret != 0)
2533 return ret;
2ef7eeaa 2534
e47c68e9 2535 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2536
e47c68e9
EA
2537 /* If we have a partially-valid cache of the object in the CPU,
2538 * finish invalidating it and free the per-page flags.
2ef7eeaa 2539 */
e47c68e9 2540 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2541
e47c68e9
EA
2542 /* Flush the CPU cache if it's still invalid. */
2543 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2544 i915_gem_clflush_object(obj);
2ef7eeaa 2545
e47c68e9 2546 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2547 }
2548
2549 /* It should now be out of any other write domains, and we can update
2550 * the domain values for our changes.
2551 */
e47c68e9
EA
2552 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2553
2554 /* If we're writing through the CPU, then the GPU read domains will
2555 * need to be invalidated at next use.
2556 */
2557 if (write) {
2558 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2559 obj->write_domain = I915_GEM_DOMAIN_CPU;
2560 }
2ef7eeaa
EA
2561
2562 return 0;
2563}
2564
673a394b
EA
2565/*
2566 * Set the next domain for the specified object. This
2567 * may not actually perform the necessary flushing/invaliding though,
2568 * as that may want to be batched with other set_domain operations
2569 *
2570 * This is (we hope) the only really tricky part of gem. The goal
2571 * is fairly simple -- track which caches hold bits of the object
2572 * and make sure they remain coherent. A few concrete examples may
2573 * help to explain how it works. For shorthand, we use the notation
2574 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2575 * a pair of read and write domain masks.
2576 *
2577 * Case 1: the batch buffer
2578 *
2579 * 1. Allocated
2580 * 2. Written by CPU
2581 * 3. Mapped to GTT
2582 * 4. Read by GPU
2583 * 5. Unmapped from GTT
2584 * 6. Freed
2585 *
2586 * Let's take these a step at a time
2587 *
2588 * 1. Allocated
2589 * Pages allocated from the kernel may still have
2590 * cache contents, so we set them to (CPU, CPU) always.
2591 * 2. Written by CPU (using pwrite)
2592 * The pwrite function calls set_domain (CPU, CPU) and
2593 * this function does nothing (as nothing changes)
2594 * 3. Mapped by GTT
2595 * This function asserts that the object is not
2596 * currently in any GPU-based read or write domains
2597 * 4. Read by GPU
2598 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2599 * As write_domain is zero, this function adds in the
2600 * current read domains (CPU+COMMAND, 0).
2601 * flush_domains is set to CPU.
2602 * invalidate_domains is set to COMMAND
2603 * clflush is run to get data out of the CPU caches
2604 * then i915_dev_set_domain calls i915_gem_flush to
2605 * emit an MI_FLUSH and drm_agp_chipset_flush
2606 * 5. Unmapped from GTT
2607 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2608 * flush_domains and invalidate_domains end up both zero
2609 * so no flushing/invalidating happens
2610 * 6. Freed
2611 * yay, done
2612 *
2613 * Case 2: The shared render buffer
2614 *
2615 * 1. Allocated
2616 * 2. Mapped to GTT
2617 * 3. Read/written by GPU
2618 * 4. set_domain to (CPU,CPU)
2619 * 5. Read/written by CPU
2620 * 6. Read/written by GPU
2621 *
2622 * 1. Allocated
2623 * Same as last example, (CPU, CPU)
2624 * 2. Mapped to GTT
2625 * Nothing changes (assertions find that it is not in the GPU)
2626 * 3. Read/written by GPU
2627 * execbuffer calls set_domain (RENDER, RENDER)
2628 * flush_domains gets CPU
2629 * invalidate_domains gets GPU
2630 * clflush (obj)
2631 * MI_FLUSH and drm_agp_chipset_flush
2632 * 4. set_domain (CPU, CPU)
2633 * flush_domains gets GPU
2634 * invalidate_domains gets CPU
2635 * wait_rendering (obj) to make sure all drawing is complete.
2636 * This will include an MI_FLUSH to get the data from GPU
2637 * to memory
2638 * clflush (obj) to invalidate the CPU cache
2639 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2640 * 5. Read/written by CPU
2641 * cache lines are loaded and dirtied
2642 * 6. Read written by GPU
2643 * Same as last GPU access
2644 *
2645 * Case 3: The constant buffer
2646 *
2647 * 1. Allocated
2648 * 2. Written by CPU
2649 * 3. Read by GPU
2650 * 4. Updated (written) by CPU again
2651 * 5. Read by GPU
2652 *
2653 * 1. Allocated
2654 * (CPU, CPU)
2655 * 2. Written by CPU
2656 * (CPU, CPU)
2657 * 3. Read by GPU
2658 * (CPU+RENDER, 0)
2659 * flush_domains = CPU
2660 * invalidate_domains = RENDER
2661 * clflush (obj)
2662 * MI_FLUSH
2663 * drm_agp_chipset_flush
2664 * 4. Updated (written) by CPU again
2665 * (CPU, CPU)
2666 * flush_domains = 0 (no previous write domain)
2667 * invalidate_domains = 0 (no new read domains)
2668 * 5. Read by GPU
2669 * (CPU+RENDER, 0)
2670 * flush_domains = CPU
2671 * invalidate_domains = RENDER
2672 * clflush (obj)
2673 * MI_FLUSH
2674 * drm_agp_chipset_flush
2675 */
c0d90829 2676static void
8b0e378a 2677i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2678{
2679 struct drm_device *dev = obj->dev;
2680 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2681 uint32_t invalidate_domains = 0;
2682 uint32_t flush_domains = 0;
e47c68e9 2683
8b0e378a
EA
2684 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2685 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
2686
2687#if WATCH_BUF
2688 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2689 __func__, obj,
8b0e378a
EA
2690 obj->read_domains, obj->pending_read_domains,
2691 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2692#endif
2693 /*
2694 * If the object isn't moving to a new write domain,
2695 * let the object stay in multiple read domains
2696 */
8b0e378a
EA
2697 if (obj->pending_write_domain == 0)
2698 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2699 else
2700 obj_priv->dirty = 1;
2701
2702 /*
2703 * Flush the current write domain if
2704 * the new read domains don't match. Invalidate
2705 * any read domains which differ from the old
2706 * write domain
2707 */
8b0e378a
EA
2708 if (obj->write_domain &&
2709 obj->write_domain != obj->pending_read_domains) {
673a394b 2710 flush_domains |= obj->write_domain;
8b0e378a
EA
2711 invalidate_domains |=
2712 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2713 }
2714 /*
2715 * Invalidate any read caches which may have
2716 * stale data. That is, any new read domains.
2717 */
8b0e378a 2718 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2719 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2720#if WATCH_BUF
2721 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2722 __func__, flush_domains, invalidate_domains);
2723#endif
673a394b
EA
2724 i915_gem_clflush_object(obj);
2725 }
2726
efbeed96
EA
2727 /* The actual obj->write_domain will be updated with
2728 * pending_write_domain after we emit the accumulated flush for all
2729 * of our domain changes in execbuffers (which clears objects'
2730 * write_domains). So if we have a current write domain that we
2731 * aren't changing, set pending_write_domain to that.
2732 */
2733 if (flush_domains == 0 && obj->pending_write_domain == 0)
2734 obj->pending_write_domain = obj->write_domain;
8b0e378a 2735 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2736
2737 dev->invalidate_domains |= invalidate_domains;
2738 dev->flush_domains |= flush_domains;
2739#if WATCH_BUF
2740 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2741 __func__,
2742 obj->read_domains, obj->write_domain,
2743 dev->invalidate_domains, dev->flush_domains);
2744#endif
673a394b
EA
2745}
2746
2747/**
e47c68e9 2748 * Moves the object from a partially CPU read to a full one.
673a394b 2749 *
e47c68e9
EA
2750 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2751 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2752 */
e47c68e9
EA
2753static void
2754i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
2755{
2756 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2757
e47c68e9
EA
2758 if (!obj_priv->page_cpu_valid)
2759 return;
2760
2761 /* If we're partially in the CPU read domain, finish moving it in.
2762 */
2763 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2764 int i;
2765
2766 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2767 if (obj_priv->page_cpu_valid[i])
2768 continue;
856fa198 2769 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 2770 }
e47c68e9
EA
2771 }
2772
2773 /* Free the page_cpu_valid mappings which are now stale, whether
2774 * or not we've got I915_GEM_DOMAIN_CPU.
2775 */
2776 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2777 DRM_MEM_DRIVER);
2778 obj_priv->page_cpu_valid = NULL;
2779}
2780
2781/**
2782 * Set the CPU read domain on a range of the object.
2783 *
2784 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2785 * not entirely valid. The page_cpu_valid member of the object flags which
2786 * pages have been flushed, and will be respected by
2787 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2788 * of the whole object.
2789 *
2790 * This function returns when the move is complete, including waiting on
2791 * flushes to occur.
2792 */
2793static int
2794i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2795 uint64_t offset, uint64_t size)
2796{
2797 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2798 int i, ret;
673a394b 2799
e47c68e9
EA
2800 if (offset == 0 && size == obj->size)
2801 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2802
e47c68e9
EA
2803 i915_gem_object_flush_gpu_write_domain(obj);
2804 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2805 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2806 if (ret != 0)
6a47baa6 2807 return ret;
e47c68e9
EA
2808 i915_gem_object_flush_gtt_write_domain(obj);
2809
2810 /* If we're already fully in the CPU read domain, we're done. */
2811 if (obj_priv->page_cpu_valid == NULL &&
2812 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2813 return 0;
673a394b 2814
e47c68e9
EA
2815 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2816 * newly adding I915_GEM_DOMAIN_CPU
2817 */
673a394b
EA
2818 if (obj_priv->page_cpu_valid == NULL) {
2819 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2820 DRM_MEM_DRIVER);
e47c68e9
EA
2821 if (obj_priv->page_cpu_valid == NULL)
2822 return -ENOMEM;
2823 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2824 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2825
2826 /* Flush the cache on any pages that are still invalid from the CPU's
2827 * perspective.
2828 */
e47c68e9
EA
2829 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2830 i++) {
673a394b
EA
2831 if (obj_priv->page_cpu_valid[i])
2832 continue;
2833
856fa198 2834 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
2835
2836 obj_priv->page_cpu_valid[i] = 1;
2837 }
2838
e47c68e9
EA
2839 /* It should now be out of any other write domains, and we can update
2840 * the domain values for our changes.
2841 */
2842 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2843
2844 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2845
673a394b
EA
2846 return 0;
2847}
2848
673a394b
EA
2849/**
2850 * Pin an object to the GTT and evaluate the relocations landing in it.
2851 */
2852static int
2853i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2854 struct drm_file *file_priv,
40a5f0de
EA
2855 struct drm_i915_gem_exec_object *entry,
2856 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
2857{
2858 struct drm_device *dev = obj->dev;
0839ccb8 2859 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2860 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2861 int i, ret;
0839ccb8 2862 void __iomem *reloc_page;
673a394b
EA
2863
2864 /* Choose the GTT offset for our buffer and put it there. */
2865 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2866 if (ret)
2867 return ret;
2868
2869 entry->offset = obj_priv->gtt_offset;
2870
673a394b
EA
2871 /* Apply the relocations, using the GTT aperture to avoid cache
2872 * flushing requirements.
2873 */
2874 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 2875 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
2876 struct drm_gem_object *target_obj;
2877 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2878 uint32_t reloc_val, reloc_offset;
2879 uint32_t __iomem *reloc_entry;
673a394b 2880
673a394b 2881 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 2882 reloc->target_handle);
673a394b
EA
2883 if (target_obj == NULL) {
2884 i915_gem_object_unpin(obj);
2885 return -EBADF;
2886 }
2887 target_obj_priv = target_obj->driver_private;
2888
2889 /* The target buffer should have appeared before us in the
2890 * exec_object list, so it should have a GTT space bound by now.
2891 */
2892 if (target_obj_priv->gtt_space == NULL) {
2893 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 2894 reloc->target_handle);
673a394b
EA
2895 drm_gem_object_unreference(target_obj);
2896 i915_gem_object_unpin(obj);
2897 return -EINVAL;
2898 }
2899
40a5f0de 2900 if (reloc->offset > obj->size - 4) {
673a394b
EA
2901 DRM_ERROR("Relocation beyond object bounds: "
2902 "obj %p target %d offset %d size %d.\n",
40a5f0de
EA
2903 obj, reloc->target_handle,
2904 (int) reloc->offset, (int) obj->size);
673a394b
EA
2905 drm_gem_object_unreference(target_obj);
2906 i915_gem_object_unpin(obj);
2907 return -EINVAL;
2908 }
40a5f0de 2909 if (reloc->offset & 3) {
673a394b
EA
2910 DRM_ERROR("Relocation not 4-byte aligned: "
2911 "obj %p target %d offset %d.\n",
40a5f0de
EA
2912 obj, reloc->target_handle,
2913 (int) reloc->offset);
673a394b
EA
2914 drm_gem_object_unreference(target_obj);
2915 i915_gem_object_unpin(obj);
2916 return -EINVAL;
2917 }
2918
40a5f0de
EA
2919 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2920 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
2921 DRM_ERROR("reloc with read/write CPU domains: "
2922 "obj %p target %d offset %d "
2923 "read %08x write %08x",
40a5f0de
EA
2924 obj, reloc->target_handle,
2925 (int) reloc->offset,
2926 reloc->read_domains,
2927 reloc->write_domain);
491152b8
CW
2928 drm_gem_object_unreference(target_obj);
2929 i915_gem_object_unpin(obj);
e47c68e9
EA
2930 return -EINVAL;
2931 }
2932
40a5f0de
EA
2933 if (reloc->write_domain && target_obj->pending_write_domain &&
2934 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
2935 DRM_ERROR("Write domain conflict: "
2936 "obj %p target %d offset %d "
2937 "new %08x old %08x\n",
40a5f0de
EA
2938 obj, reloc->target_handle,
2939 (int) reloc->offset,
2940 reloc->write_domain,
673a394b
EA
2941 target_obj->pending_write_domain);
2942 drm_gem_object_unreference(target_obj);
2943 i915_gem_object_unpin(obj);
2944 return -EINVAL;
2945 }
2946
2947#if WATCH_RELOC
2948 DRM_INFO("%s: obj %p offset %08x target %d "
2949 "read %08x write %08x gtt %08x "
2950 "presumed %08x delta %08x\n",
2951 __func__,
2952 obj,
40a5f0de
EA
2953 (int) reloc->offset,
2954 (int) reloc->target_handle,
2955 (int) reloc->read_domains,
2956 (int) reloc->write_domain,
673a394b 2957 (int) target_obj_priv->gtt_offset,
40a5f0de
EA
2958 (int) reloc->presumed_offset,
2959 reloc->delta);
673a394b
EA
2960#endif
2961
40a5f0de
EA
2962 target_obj->pending_read_domains |= reloc->read_domains;
2963 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
2964
2965 /* If the relocation already has the right value in it, no
2966 * more work needs to be done.
2967 */
40a5f0de 2968 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
2969 drm_gem_object_unreference(target_obj);
2970 continue;
2971 }
2972
2ef7eeaa
EA
2973 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2974 if (ret != 0) {
2975 drm_gem_object_unreference(target_obj);
2976 i915_gem_object_unpin(obj);
2977 return -EINVAL;
673a394b
EA
2978 }
2979
2980 /* Map the page containing the relocation we're going to
2981 * perform.
2982 */
40a5f0de 2983 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
2984 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2985 (reloc_offset &
2986 ~(PAGE_SIZE - 1)));
3043c60c 2987 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 2988 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 2989 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
2990
2991#if WATCH_BUF
2992 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 2993 obj, (unsigned int) reloc->offset,
673a394b
EA
2994 readl(reloc_entry), reloc_val);
2995#endif
2996 writel(reloc_val, reloc_entry);
0839ccb8 2997 io_mapping_unmap_atomic(reloc_page);
673a394b 2998
40a5f0de
EA
2999 /* The updated presumed offset for this entry will be
3000 * copied back out to the user.
673a394b 3001 */
40a5f0de 3002 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3003
3004 drm_gem_object_unreference(target_obj);
3005 }
3006
673a394b
EA
3007#if WATCH_BUF
3008 if (0)
3009 i915_gem_dump_object(obj, 128, __func__, ~0);
3010#endif
3011 return 0;
3012}
3013
3014/** Dispatch a batchbuffer to the ring
3015 */
3016static int
3017i915_dispatch_gem_execbuffer(struct drm_device *dev,
3018 struct drm_i915_gem_execbuffer *exec,
201361a5 3019 struct drm_clip_rect *cliprects,
673a394b
EA
3020 uint64_t exec_offset)
3021{
3022 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3023 int nbox = exec->num_cliprects;
3024 int i = 0, count;
3025 uint32_t exec_start, exec_len;
3026 RING_LOCALS;
3027
3028 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3029 exec_len = (uint32_t) exec->batch_len;
3030
3031 if ((exec_start | exec_len) & 0x7) {
3032 DRM_ERROR("alignment\n");
3033 return -EINVAL;
3034 }
3035
3036 if (!exec_start)
3037 return -EINVAL;
3038
3039 count = nbox ? nbox : 1;
3040
3041 for (i = 0; i < count; i++) {
3042 if (i < nbox) {
201361a5 3043 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
3044 exec->DR1, exec->DR4);
3045 if (ret)
3046 return ret;
3047 }
3048
3049 if (IS_I830(dev) || IS_845G(dev)) {
3050 BEGIN_LP_RING(4);
3051 OUT_RING(MI_BATCH_BUFFER);
3052 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3053 OUT_RING(exec_start + exec_len - 4);
3054 OUT_RING(0);
3055 ADVANCE_LP_RING();
3056 } else {
3057 BEGIN_LP_RING(2);
3058 if (IS_I965G(dev)) {
3059 OUT_RING(MI_BATCH_BUFFER_START |
3060 (2 << 6) |
3061 MI_BATCH_NON_SECURE_I965);
3062 OUT_RING(exec_start);
3063 } else {
3064 OUT_RING(MI_BATCH_BUFFER_START |
3065 (2 << 6));
3066 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3067 }
3068 ADVANCE_LP_RING();
3069 }
3070 }
3071
3072 /* XXX breadcrumb */
3073 return 0;
3074}
3075
3076/* Throttle our rendering by waiting until the ring has completed our requests
3077 * emitted over 20 msec ago.
3078 *
3079 * This should get us reasonable parallelism between CPU and GPU but also
3080 * relatively low latency when blocking on a particular request to finish.
3081 */
3082static int
3083i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3084{
3085 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3086 int ret = 0;
3087 uint32_t seqno;
3088
3089 mutex_lock(&dev->struct_mutex);
3090 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
3091 i915_file_priv->mm.last_gem_throttle_seqno =
3092 i915_file_priv->mm.last_gem_seqno;
3093 if (seqno)
3094 ret = i915_wait_request(dev, seqno);
3095 mutex_unlock(&dev->struct_mutex);
3096 return ret;
3097}
3098
40a5f0de
EA
3099static int
3100i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3101 uint32_t buffer_count,
3102 struct drm_i915_gem_relocation_entry **relocs)
3103{
3104 uint32_t reloc_count = 0, reloc_index = 0, i;
3105 int ret;
3106
3107 *relocs = NULL;
3108 for (i = 0; i < buffer_count; i++) {
3109 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3110 return -EINVAL;
3111 reloc_count += exec_list[i].relocation_count;
3112 }
3113
3114 *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
3115 if (*relocs == NULL)
3116 return -ENOMEM;
3117
3118 for (i = 0; i < buffer_count; i++) {
3119 struct drm_i915_gem_relocation_entry __user *user_relocs;
3120
3121 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3122
3123 ret = copy_from_user(&(*relocs)[reloc_index],
3124 user_relocs,
3125 exec_list[i].relocation_count *
3126 sizeof(**relocs));
3127 if (ret != 0) {
3128 drm_free(*relocs, reloc_count * sizeof(**relocs),
3129 DRM_MEM_DRIVER);
3130 *relocs = NULL;
2bc43b5c 3131 return -EFAULT;
40a5f0de
EA
3132 }
3133
3134 reloc_index += exec_list[i].relocation_count;
3135 }
3136
2bc43b5c 3137 return 0;
40a5f0de
EA
3138}
3139
3140static int
3141i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3142 uint32_t buffer_count,
3143 struct drm_i915_gem_relocation_entry *relocs)
3144{
3145 uint32_t reloc_count = 0, i;
2bc43b5c 3146 int ret = 0;
40a5f0de
EA
3147
3148 for (i = 0; i < buffer_count; i++) {
3149 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3150 int unwritten;
40a5f0de
EA
3151
3152 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3153
2bc43b5c
FM
3154 unwritten = copy_to_user(user_relocs,
3155 &relocs[reloc_count],
3156 exec_list[i].relocation_count *
3157 sizeof(*relocs));
3158
3159 if (unwritten) {
3160 ret = -EFAULT;
3161 goto err;
40a5f0de
EA
3162 }
3163
3164 reloc_count += exec_list[i].relocation_count;
3165 }
3166
2bc43b5c 3167err:
40a5f0de
EA
3168 drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
3169
3170 return ret;
3171}
3172
673a394b
EA
3173int
3174i915_gem_execbuffer(struct drm_device *dev, void *data,
3175 struct drm_file *file_priv)
3176{
3177 drm_i915_private_t *dev_priv = dev->dev_private;
3178 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3179 struct drm_i915_gem_execbuffer *args = data;
3180 struct drm_i915_gem_exec_object *exec_list = NULL;
3181 struct drm_gem_object **object_list = NULL;
3182 struct drm_gem_object *batch_obj;
b70d11da 3183 struct drm_i915_gem_object *obj_priv;
201361a5 3184 struct drm_clip_rect *cliprects = NULL;
40a5f0de
EA
3185 struct drm_i915_gem_relocation_entry *relocs;
3186 int ret, ret2, i, pinned = 0;
673a394b 3187 uint64_t exec_offset;
40a5f0de 3188 uint32_t seqno, flush_domains, reloc_index;
ac94a962 3189 int pin_tries;
673a394b
EA
3190
3191#if WATCH_EXEC
3192 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3193 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3194#endif
3195
4f481ed2
EA
3196 if (args->buffer_count < 1) {
3197 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3198 return -EINVAL;
3199 }
673a394b
EA
3200 /* Copy in the exec list from userland */
3201 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
3202 DRM_MEM_DRIVER);
3203 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
3204 DRM_MEM_DRIVER);
3205 if (exec_list == NULL || object_list == NULL) {
3206 DRM_ERROR("Failed to allocate exec or object list "
3207 "for %d buffers\n",
3208 args->buffer_count);
3209 ret = -ENOMEM;
3210 goto pre_mutex_err;
3211 }
3212 ret = copy_from_user(exec_list,
3213 (struct drm_i915_relocation_entry __user *)
3214 (uintptr_t) args->buffers_ptr,
3215 sizeof(*exec_list) * args->buffer_count);
3216 if (ret != 0) {
3217 DRM_ERROR("copy %d exec entries failed %d\n",
3218 args->buffer_count, ret);
3219 goto pre_mutex_err;
3220 }
3221
201361a5
EA
3222 if (args->num_cliprects != 0) {
3223 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3224 DRM_MEM_DRIVER);
3225 if (cliprects == NULL)
3226 goto pre_mutex_err;
3227
3228 ret = copy_from_user(cliprects,
3229 (struct drm_clip_rect __user *)
3230 (uintptr_t) args->cliprects_ptr,
3231 sizeof(*cliprects) * args->num_cliprects);
3232 if (ret != 0) {
3233 DRM_ERROR("copy %d cliprects failed: %d\n",
3234 args->num_cliprects, ret);
3235 goto pre_mutex_err;
3236 }
3237 }
3238
40a5f0de
EA
3239 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3240 &relocs);
3241 if (ret != 0)
3242 goto pre_mutex_err;
3243
673a394b
EA
3244 mutex_lock(&dev->struct_mutex);
3245
3246 i915_verify_inactive(dev, __FILE__, __LINE__);
3247
3248 if (dev_priv->mm.wedged) {
3249 DRM_ERROR("Execbuf while wedged\n");
3250 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3251 ret = -EIO;
3252 goto pre_mutex_err;
673a394b
EA
3253 }
3254
3255 if (dev_priv->mm.suspended) {
3256 DRM_ERROR("Execbuf while VT-switched.\n");
3257 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3258 ret = -EBUSY;
3259 goto pre_mutex_err;
673a394b
EA
3260 }
3261
ac94a962 3262 /* Look up object handles */
673a394b
EA
3263 for (i = 0; i < args->buffer_count; i++) {
3264 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3265 exec_list[i].handle);
3266 if (object_list[i] == NULL) {
3267 DRM_ERROR("Invalid object handle %d at index %d\n",
3268 exec_list[i].handle, i);
3269 ret = -EBADF;
3270 goto err;
3271 }
b70d11da
KH
3272
3273 obj_priv = object_list[i]->driver_private;
3274 if (obj_priv->in_execbuffer) {
3275 DRM_ERROR("Object %p appears more than once in object list\n",
3276 object_list[i]);
3277 ret = -EBADF;
3278 goto err;
3279 }
3280 obj_priv->in_execbuffer = true;
ac94a962 3281 }
673a394b 3282
ac94a962
KP
3283 /* Pin and relocate */
3284 for (pin_tries = 0; ; pin_tries++) {
3285 ret = 0;
40a5f0de
EA
3286 reloc_index = 0;
3287
ac94a962
KP
3288 for (i = 0; i < args->buffer_count; i++) {
3289 object_list[i]->pending_read_domains = 0;
3290 object_list[i]->pending_write_domain = 0;
3291 ret = i915_gem_object_pin_and_relocate(object_list[i],
3292 file_priv,
40a5f0de
EA
3293 &exec_list[i],
3294 &relocs[reloc_index]);
ac94a962
KP
3295 if (ret)
3296 break;
3297 pinned = i + 1;
40a5f0de 3298 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3299 }
3300 /* success */
3301 if (ret == 0)
3302 break;
3303
3304 /* error other than GTT full, or we've already tried again */
3305 if (ret != -ENOMEM || pin_tries >= 1) {
f1acec93
EA
3306 if (ret != -ERESTARTSYS)
3307 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
3308 goto err;
3309 }
ac94a962
KP
3310
3311 /* unpin all of our buffers */
3312 for (i = 0; i < pinned; i++)
3313 i915_gem_object_unpin(object_list[i]);
b1177636 3314 pinned = 0;
ac94a962
KP
3315
3316 /* evict everyone we can from the aperture */
3317 ret = i915_gem_evict_everything(dev);
3318 if (ret)
3319 goto err;
673a394b
EA
3320 }
3321
3322 /* Set the pending read domains for the batch buffer to COMMAND */
3323 batch_obj = object_list[args->buffer_count-1];
3324 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3325 batch_obj->pending_write_domain = 0;
3326
3327 i915_verify_inactive(dev, __FILE__, __LINE__);
3328
646f0f6e
KP
3329 /* Zero the global flush/invalidate flags. These
3330 * will be modified as new domains are computed
3331 * for each object
3332 */
3333 dev->invalidate_domains = 0;
3334 dev->flush_domains = 0;
3335
673a394b
EA
3336 for (i = 0; i < args->buffer_count; i++) {
3337 struct drm_gem_object *obj = object_list[i];
673a394b 3338
646f0f6e 3339 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3340 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3341 }
3342
3343 i915_verify_inactive(dev, __FILE__, __LINE__);
3344
646f0f6e
KP
3345 if (dev->invalidate_domains | dev->flush_domains) {
3346#if WATCH_EXEC
3347 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3348 __func__,
3349 dev->invalidate_domains,
3350 dev->flush_domains);
3351#endif
3352 i915_gem_flush(dev,
3353 dev->invalidate_domains,
3354 dev->flush_domains);
3355 if (dev->flush_domains)
3356 (void)i915_add_request(dev, dev->flush_domains);
3357 }
673a394b 3358
efbeed96
EA
3359 for (i = 0; i < args->buffer_count; i++) {
3360 struct drm_gem_object *obj = object_list[i];
3361
3362 obj->write_domain = obj->pending_write_domain;
3363 }
3364
673a394b
EA
3365 i915_verify_inactive(dev, __FILE__, __LINE__);
3366
3367#if WATCH_COHERENCY
3368 for (i = 0; i < args->buffer_count; i++) {
3369 i915_gem_object_check_coherency(object_list[i],
3370 exec_list[i].handle);
3371 }
3372#endif
3373
3374 exec_offset = exec_list[args->buffer_count - 1].offset;
3375
3376#if WATCH_EXEC
6911a9b8 3377 i915_gem_dump_object(batch_obj,
673a394b
EA
3378 args->batch_len,
3379 __func__,
3380 ~0);
3381#endif
3382
673a394b 3383 /* Exec the batchbuffer */
201361a5 3384 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3385 if (ret) {
3386 DRM_ERROR("dispatch failed %d\n", ret);
3387 goto err;
3388 }
3389
3390 /*
3391 * Ensure that the commands in the batch buffer are
3392 * finished before the interrupt fires
3393 */
3394 flush_domains = i915_retire_commands(dev);
3395
3396 i915_verify_inactive(dev, __FILE__, __LINE__);
3397
3398 /*
3399 * Get a seqno representing the execution of the current buffer,
3400 * which we can wait on. We would like to mitigate these interrupts,
3401 * likely by only creating seqnos occasionally (so that we have
3402 * *some* interrupts representing completion of buffers that we can
3403 * wait on when trying to clear up gtt space).
3404 */
3405 seqno = i915_add_request(dev, flush_domains);
3406 BUG_ON(seqno == 0);
3407 i915_file_priv->mm.last_gem_seqno = seqno;
3408 for (i = 0; i < args->buffer_count; i++) {
3409 struct drm_gem_object *obj = object_list[i];
673a394b 3410
ce44b0ea 3411 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3412#if WATCH_LRU
3413 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3414#endif
3415 }
3416#if WATCH_LRU
3417 i915_dump_lru(dev, __func__);
3418#endif
3419
3420 i915_verify_inactive(dev, __FILE__, __LINE__);
3421
673a394b 3422err:
aad87dff
JL
3423 for (i = 0; i < pinned; i++)
3424 i915_gem_object_unpin(object_list[i]);
3425
b70d11da
KH
3426 for (i = 0; i < args->buffer_count; i++) {
3427 if (object_list[i]) {
3428 obj_priv = object_list[i]->driver_private;
3429 obj_priv->in_execbuffer = false;
3430 }
aad87dff 3431 drm_gem_object_unreference(object_list[i]);
b70d11da 3432 }
673a394b 3433
673a394b
EA
3434 mutex_unlock(&dev->struct_mutex);
3435
a35f2e2b
RD
3436 if (!ret) {
3437 /* Copy the new buffer offsets back to the user's exec list. */
3438 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3439 (uintptr_t) args->buffers_ptr,
3440 exec_list,
3441 sizeof(*exec_list) * args->buffer_count);
2bc43b5c
FM
3442 if (ret) {
3443 ret = -EFAULT;
a35f2e2b
RD
3444 DRM_ERROR("failed to copy %d exec entries "
3445 "back to user (%d)\n",
3446 args->buffer_count, ret);
2bc43b5c 3447 }
a35f2e2b
RD
3448 }
3449
40a5f0de
EA
3450 /* Copy the updated relocations out regardless of current error
3451 * state. Failure to update the relocs would mean that the next
3452 * time userland calls execbuf, it would do so with presumed offset
3453 * state that didn't match the actual object state.
3454 */
3455 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3456 relocs);
3457 if (ret2 != 0) {
3458 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3459
3460 if (ret == 0)
3461 ret = ret2;
3462 }
3463
673a394b
EA
3464pre_mutex_err:
3465 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
3466 DRM_MEM_DRIVER);
3467 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
3468 DRM_MEM_DRIVER);
201361a5
EA
3469 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3470 DRM_MEM_DRIVER);
673a394b
EA
3471
3472 return ret;
3473}
3474
3475int
3476i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3477{
3478 struct drm_device *dev = obj->dev;
3479 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3480 int ret;
3481
3482 i915_verify_inactive(dev, __FILE__, __LINE__);
3483 if (obj_priv->gtt_space == NULL) {
3484 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3485 if (ret != 0) {
9bb2d6f9 3486 if (ret != -EBUSY && ret != -ERESTARTSYS)
0fce81e3 3487 DRM_ERROR("Failure to bind: %d\n", ret);
673a394b
EA
3488 return ret;
3489 }
22c344e9
CW
3490 }
3491 /*
3492 * Pre-965 chips need a fence register set up in order to
3493 * properly handle tiled surfaces.
3494 */
3495 if (!IS_I965G(dev) &&
3496 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3497 obj_priv->tiling_mode != I915_TILING_NONE) {
3498 ret = i915_gem_object_get_fence_reg(obj, true);
3499 if (ret != 0) {
3500 if (ret != -EBUSY && ret != -ERESTARTSYS)
3501 DRM_ERROR("Failure to install fence: %d\n",
3502 ret);
3503 return ret;
3504 }
673a394b
EA
3505 }
3506 obj_priv->pin_count++;
3507
3508 /* If the object is not active and not pending a flush,
3509 * remove it from the inactive list
3510 */
3511 if (obj_priv->pin_count == 1) {
3512 atomic_inc(&dev->pin_count);
3513 atomic_add(obj->size, &dev->pin_memory);
3514 if (!obj_priv->active &&
3515 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3516 I915_GEM_DOMAIN_GTT)) == 0 &&
3517 !list_empty(&obj_priv->list))
3518 list_del_init(&obj_priv->list);
3519 }
3520 i915_verify_inactive(dev, __FILE__, __LINE__);
3521
3522 return 0;
3523}
3524
3525void
3526i915_gem_object_unpin(struct drm_gem_object *obj)
3527{
3528 struct drm_device *dev = obj->dev;
3529 drm_i915_private_t *dev_priv = dev->dev_private;
3530 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3531
3532 i915_verify_inactive(dev, __FILE__, __LINE__);
3533 obj_priv->pin_count--;
3534 BUG_ON(obj_priv->pin_count < 0);
3535 BUG_ON(obj_priv->gtt_space == NULL);
3536
3537 /* If the object is no longer pinned, and is
3538 * neither active nor being flushed, then stick it on
3539 * the inactive list
3540 */
3541 if (obj_priv->pin_count == 0) {
3542 if (!obj_priv->active &&
3543 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3544 I915_GEM_DOMAIN_GTT)) == 0)
3545 list_move_tail(&obj_priv->list,
3546 &dev_priv->mm.inactive_list);
3547 atomic_dec(&dev->pin_count);
3548 atomic_sub(obj->size, &dev->pin_memory);
3549 }
3550 i915_verify_inactive(dev, __FILE__, __LINE__);
3551}
3552
3553int
3554i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3555 struct drm_file *file_priv)
3556{
3557 struct drm_i915_gem_pin *args = data;
3558 struct drm_gem_object *obj;
3559 struct drm_i915_gem_object *obj_priv;
3560 int ret;
3561
3562 mutex_lock(&dev->struct_mutex);
3563
3564 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3565 if (obj == NULL) {
3566 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3567 args->handle);
3568 mutex_unlock(&dev->struct_mutex);
3569 return -EBADF;
3570 }
3571 obj_priv = obj->driver_private;
3572
79e53945
JB
3573 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3574 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3575 args->handle);
96dec61d 3576 drm_gem_object_unreference(obj);
673a394b 3577 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3578 return -EINVAL;
3579 }
3580
3581 obj_priv->user_pin_count++;
3582 obj_priv->pin_filp = file_priv;
3583 if (obj_priv->user_pin_count == 1) {
3584 ret = i915_gem_object_pin(obj, args->alignment);
3585 if (ret != 0) {
3586 drm_gem_object_unreference(obj);
3587 mutex_unlock(&dev->struct_mutex);
3588 return ret;
3589 }
673a394b
EA
3590 }
3591
3592 /* XXX - flush the CPU caches for pinned objects
3593 * as the X server doesn't manage domains yet
3594 */
e47c68e9 3595 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
3596 args->offset = obj_priv->gtt_offset;
3597 drm_gem_object_unreference(obj);
3598 mutex_unlock(&dev->struct_mutex);
3599
3600 return 0;
3601}
3602
3603int
3604i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3605 struct drm_file *file_priv)
3606{
3607 struct drm_i915_gem_pin *args = data;
3608 struct drm_gem_object *obj;
79e53945 3609 struct drm_i915_gem_object *obj_priv;
673a394b
EA
3610
3611 mutex_lock(&dev->struct_mutex);
3612
3613 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3614 if (obj == NULL) {
3615 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3616 args->handle);
3617 mutex_unlock(&dev->struct_mutex);
3618 return -EBADF;
3619 }
3620
79e53945
JB
3621 obj_priv = obj->driver_private;
3622 if (obj_priv->pin_filp != file_priv) {
3623 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3624 args->handle);
3625 drm_gem_object_unreference(obj);
3626 mutex_unlock(&dev->struct_mutex);
3627 return -EINVAL;
3628 }
3629 obj_priv->user_pin_count--;
3630 if (obj_priv->user_pin_count == 0) {
3631 obj_priv->pin_filp = NULL;
3632 i915_gem_object_unpin(obj);
3633 }
673a394b
EA
3634
3635 drm_gem_object_unreference(obj);
3636 mutex_unlock(&dev->struct_mutex);
3637 return 0;
3638}
3639
3640int
3641i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3642 struct drm_file *file_priv)
3643{
3644 struct drm_i915_gem_busy *args = data;
3645 struct drm_gem_object *obj;
3646 struct drm_i915_gem_object *obj_priv;
3647
3648 mutex_lock(&dev->struct_mutex);
3649 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3650 if (obj == NULL) {
3651 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3652 args->handle);
3653 mutex_unlock(&dev->struct_mutex);
3654 return -EBADF;
3655 }
3656
f21289b3
EA
3657 /* Update the active list for the hardware's current position.
3658 * Otherwise this only updates on a delayed timer or when irqs are
3659 * actually unmasked, and our working set ends up being larger than
3660 * required.
3661 */
3662 i915_gem_retire_requests(dev);
3663
673a394b 3664 obj_priv = obj->driver_private;
c4de0a5d
EA
3665 /* Don't count being on the flushing list against the object being
3666 * done. Otherwise, a buffer left on the flushing list but not getting
3667 * flushed (because nobody's flushing that domain) won't ever return
3668 * unbusy and get reused by libdrm's bo cache. The other expected
3669 * consumer of this interface, OpenGL's occlusion queries, also specs
3670 * that the objects get unbusy "eventually" without any interference.
3671 */
3672 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
3673
3674 drm_gem_object_unreference(obj);
3675 mutex_unlock(&dev->struct_mutex);
3676 return 0;
3677}
3678
3679int
3680i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3681 struct drm_file *file_priv)
3682{
3683 return i915_gem_ring_throttle(dev, file_priv);
3684}
3685
3686int i915_gem_init_object(struct drm_gem_object *obj)
3687{
3688 struct drm_i915_gem_object *obj_priv;
3689
3690 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3691 if (obj_priv == NULL)
3692 return -ENOMEM;
3693
3694 /*
3695 * We've just allocated pages from the kernel,
3696 * so they've just been written by the CPU with
3697 * zeros. They'll need to be clflushed before we
3698 * use them with the GPU.
3699 */
3700 obj->write_domain = I915_GEM_DOMAIN_CPU;
3701 obj->read_domains = I915_GEM_DOMAIN_CPU;
3702
ba1eb1d8
KP
3703 obj_priv->agp_type = AGP_USER_MEMORY;
3704
673a394b
EA
3705 obj->driver_private = obj_priv;
3706 obj_priv->obj = obj;
de151cf6 3707 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 3708 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 3709
673a394b
EA
3710 return 0;
3711}
3712
3713void i915_gem_free_object(struct drm_gem_object *obj)
3714{
de151cf6 3715 struct drm_device *dev = obj->dev;
673a394b
EA
3716 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3717
3718 while (obj_priv->pin_count > 0)
3719 i915_gem_object_unpin(obj);
3720
71acb5eb
DA
3721 if (obj_priv->phys_obj)
3722 i915_gem_detach_phys_object(dev, obj);
3723
673a394b
EA
3724 i915_gem_object_unbind(obj);
3725
ab00b3e5 3726 i915_gem_free_mmap_offset(obj);
de151cf6 3727
673a394b 3728 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
280b713b 3729 kfree(obj_priv->bit_17);
673a394b
EA
3730 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3731}
3732
673a394b
EA
3733/** Unbinds all objects that are on the given buffer list. */
3734static int
3735i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3736{
3737 struct drm_gem_object *obj;
3738 struct drm_i915_gem_object *obj_priv;
3739 int ret;
3740
3741 while (!list_empty(head)) {
3742 obj_priv = list_first_entry(head,
3743 struct drm_i915_gem_object,
3744 list);
3745 obj = obj_priv->obj;
3746
3747 if (obj_priv->pin_count != 0) {
3748 DRM_ERROR("Pinned object in unbind list\n");
3749 mutex_unlock(&dev->struct_mutex);
3750 return -EINVAL;
3751 }
3752
3753 ret = i915_gem_object_unbind(obj);
3754 if (ret != 0) {
3755 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3756 ret);
3757 mutex_unlock(&dev->struct_mutex);
3758 return ret;
3759 }
3760 }
3761
3762
3763 return 0;
3764}
3765
5669fcac 3766int
673a394b
EA
3767i915_gem_idle(struct drm_device *dev)
3768{
3769 drm_i915_private_t *dev_priv = dev->dev_private;
3770 uint32_t seqno, cur_seqno, last_seqno;
3771 int stuck, ret;
3772
6dbe2772
KP
3773 mutex_lock(&dev->struct_mutex);
3774
3775 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3776 mutex_unlock(&dev->struct_mutex);
673a394b 3777 return 0;
6dbe2772 3778 }
673a394b
EA
3779
3780 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3781 * We need to replace this with a semaphore, or something.
3782 */
3783 dev_priv->mm.suspended = 1;
3784
6dbe2772
KP
3785 /* Cancel the retire work handler, wait for it to finish if running
3786 */
3787 mutex_unlock(&dev->struct_mutex);
3788 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3789 mutex_lock(&dev->struct_mutex);
3790
673a394b
EA
3791 i915_kernel_lost_context(dev);
3792
3793 /* Flush the GPU along with all non-CPU write domains
3794 */
3795 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3796 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
de151cf6 3797 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
673a394b
EA
3798
3799 if (seqno == 0) {
3800 mutex_unlock(&dev->struct_mutex);
3801 return -ENOMEM;
3802 }
3803
3804 dev_priv->mm.waiting_gem_seqno = seqno;
3805 last_seqno = 0;
3806 stuck = 0;
3807 for (;;) {
3808 cur_seqno = i915_get_gem_seqno(dev);
3809 if (i915_seqno_passed(cur_seqno, seqno))
3810 break;
3811 if (last_seqno == cur_seqno) {
3812 if (stuck++ > 100) {
3813 DRM_ERROR("hardware wedged\n");
3814 dev_priv->mm.wedged = 1;
3815 DRM_WAKEUP(&dev_priv->irq_queue);
3816 break;
3817 }
3818 }
3819 msleep(10);
3820 last_seqno = cur_seqno;
3821 }
3822 dev_priv->mm.waiting_gem_seqno = 0;
3823
3824 i915_gem_retire_requests(dev);
3825
5e118f41 3826 spin_lock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3827 if (!dev_priv->mm.wedged) {
3828 /* Active and flushing should now be empty as we've
3829 * waited for a sequence higher than any pending execbuffer
3830 */
3831 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3832 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3833 /* Request should now be empty as we've also waited
3834 * for the last request in the list
3835 */
3836 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3837 }
673a394b 3838
28dfe52a
EA
3839 /* Empty the active and flushing lists to inactive. If there's
3840 * anything left at this point, it means that we're wedged and
3841 * nothing good's going to happen by leaving them there. So strip
3842 * the GPU domains and just stuff them onto inactive.
673a394b 3843 */
28dfe52a
EA
3844 while (!list_empty(&dev_priv->mm.active_list)) {
3845 struct drm_i915_gem_object *obj_priv;
673a394b 3846
28dfe52a
EA
3847 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3848 struct drm_i915_gem_object,
3849 list);
3850 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3851 i915_gem_object_move_to_inactive(obj_priv->obj);
3852 }
5e118f41 3853 spin_unlock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3854
3855 while (!list_empty(&dev_priv->mm.flushing_list)) {
3856 struct drm_i915_gem_object *obj_priv;
3857
151903d5 3858 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3859 struct drm_i915_gem_object,
3860 list);
3861 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3862 i915_gem_object_move_to_inactive(obj_priv->obj);
3863 }
3864
3865
3866 /* Move all inactive buffers out of the GTT. */
673a394b 3867 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3868 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3869 if (ret) {
3870 mutex_unlock(&dev->struct_mutex);
673a394b 3871 return ret;
6dbe2772 3872 }
673a394b 3873
6dbe2772
KP
3874 i915_gem_cleanup_ringbuffer(dev);
3875 mutex_unlock(&dev->struct_mutex);
3876
673a394b
EA
3877 return 0;
3878}
3879
3880static int
3881i915_gem_init_hws(struct drm_device *dev)
3882{
3883 drm_i915_private_t *dev_priv = dev->dev_private;
3884 struct drm_gem_object *obj;
3885 struct drm_i915_gem_object *obj_priv;
3886 int ret;
3887
3888 /* If we need a physical address for the status page, it's already
3889 * initialized at driver load time.
3890 */
3891 if (!I915_NEED_GFX_HWS(dev))
3892 return 0;
3893
3894 obj = drm_gem_object_alloc(dev, 4096);
3895 if (obj == NULL) {
3896 DRM_ERROR("Failed to allocate status page\n");
3897 return -ENOMEM;
3898 }
3899 obj_priv = obj->driver_private;
ba1eb1d8 3900 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
3901
3902 ret = i915_gem_object_pin(obj, 4096);
3903 if (ret != 0) {
3904 drm_gem_object_unreference(obj);
3905 return ret;
3906 }
3907
3908 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 3909
856fa198 3910 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 3911 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
3912 DRM_ERROR("Failed to map status page.\n");
3913 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 3914 i915_gem_object_unpin(obj);
673a394b
EA
3915 drm_gem_object_unreference(obj);
3916 return -EINVAL;
3917 }
3918 dev_priv->hws_obj = obj;
673a394b
EA
3919 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3920 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 3921 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
3922 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3923
3924 return 0;
3925}
3926
85a7bb98
CW
3927static void
3928i915_gem_cleanup_hws(struct drm_device *dev)
3929{
3930 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
3931 struct drm_gem_object *obj;
3932 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
3933
3934 if (dev_priv->hws_obj == NULL)
3935 return;
3936
bab2d1f6
CW
3937 obj = dev_priv->hws_obj;
3938 obj_priv = obj->driver_private;
3939
856fa198 3940 kunmap(obj_priv->pages[0]);
85a7bb98
CW
3941 i915_gem_object_unpin(obj);
3942 drm_gem_object_unreference(obj);
3943 dev_priv->hws_obj = NULL;
bab2d1f6 3944
85a7bb98
CW
3945 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3946 dev_priv->hw_status_page = NULL;
3947
3948 /* Write high address into HWS_PGA when disabling. */
3949 I915_WRITE(HWS_PGA, 0x1ffff000);
3950}
3951
79e53945 3952int
673a394b
EA
3953i915_gem_init_ringbuffer(struct drm_device *dev)
3954{
3955 drm_i915_private_t *dev_priv = dev->dev_private;
3956 struct drm_gem_object *obj;
3957 struct drm_i915_gem_object *obj_priv;
79e53945 3958 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 3959 int ret;
50aa253d 3960 u32 head;
673a394b
EA
3961
3962 ret = i915_gem_init_hws(dev);
3963 if (ret != 0)
3964 return ret;
3965
3966 obj = drm_gem_object_alloc(dev, 128 * 1024);
3967 if (obj == NULL) {
3968 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 3969 i915_gem_cleanup_hws(dev);
673a394b
EA
3970 return -ENOMEM;
3971 }
3972 obj_priv = obj->driver_private;
3973
3974 ret = i915_gem_object_pin(obj, 4096);
3975 if (ret != 0) {
3976 drm_gem_object_unreference(obj);
85a7bb98 3977 i915_gem_cleanup_hws(dev);
673a394b
EA
3978 return ret;
3979 }
3980
3981 /* Set up the kernel mapping for the ring. */
79e53945
JB
3982 ring->Size = obj->size;
3983 ring->tail_mask = obj->size - 1;
673a394b 3984
79e53945
JB
3985 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3986 ring->map.size = obj->size;
3987 ring->map.type = 0;
3988 ring->map.flags = 0;
3989 ring->map.mtrr = 0;
673a394b 3990
79e53945
JB
3991 drm_core_ioremap_wc(&ring->map, dev);
3992 if (ring->map.handle == NULL) {
673a394b
EA
3993 DRM_ERROR("Failed to map ringbuffer.\n");
3994 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 3995 i915_gem_object_unpin(obj);
673a394b 3996 drm_gem_object_unreference(obj);
85a7bb98 3997 i915_gem_cleanup_hws(dev);
673a394b
EA
3998 return -EINVAL;
3999 }
79e53945
JB
4000 ring->ring_obj = obj;
4001 ring->virtual_start = ring->map.handle;
673a394b
EA
4002
4003 /* Stop the ring if it's running. */
4004 I915_WRITE(PRB0_CTL, 0);
673a394b 4005 I915_WRITE(PRB0_TAIL, 0);
50aa253d 4006 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
4007
4008 /* Initialize the ring. */
4009 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
4010 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4011
4012 /* G45 ring initialization fails to reset head to zero */
4013 if (head != 0) {
4014 DRM_ERROR("Ring head not reset to zero "
4015 "ctl %08x head %08x tail %08x start %08x\n",
4016 I915_READ(PRB0_CTL),
4017 I915_READ(PRB0_HEAD),
4018 I915_READ(PRB0_TAIL),
4019 I915_READ(PRB0_START));
4020 I915_WRITE(PRB0_HEAD, 0);
4021
4022 DRM_ERROR("Ring head forced to zero "
4023 "ctl %08x head %08x tail %08x start %08x\n",
4024 I915_READ(PRB0_CTL),
4025 I915_READ(PRB0_HEAD),
4026 I915_READ(PRB0_TAIL),
4027 I915_READ(PRB0_START));
4028 }
4029
673a394b
EA
4030 I915_WRITE(PRB0_CTL,
4031 ((obj->size - 4096) & RING_NR_PAGES) |
4032 RING_NO_REPORT |
4033 RING_VALID);
4034
50aa253d
KP
4035 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4036
4037 /* If the head is still not zero, the ring is dead */
4038 if (head != 0) {
4039 DRM_ERROR("Ring initialization failed "
4040 "ctl %08x head %08x tail %08x start %08x\n",
4041 I915_READ(PRB0_CTL),
4042 I915_READ(PRB0_HEAD),
4043 I915_READ(PRB0_TAIL),
4044 I915_READ(PRB0_START));
4045 return -EIO;
4046 }
4047
673a394b 4048 /* Update our cache of the ring state */
79e53945
JB
4049 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4050 i915_kernel_lost_context(dev);
4051 else {
4052 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4053 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4054 ring->space = ring->head - (ring->tail + 8);
4055 if (ring->space < 0)
4056 ring->space += ring->Size;
4057 }
673a394b
EA
4058
4059 return 0;
4060}
4061
79e53945 4062void
673a394b
EA
4063i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4064{
4065 drm_i915_private_t *dev_priv = dev->dev_private;
4066
4067 if (dev_priv->ring.ring_obj == NULL)
4068 return;
4069
4070 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4071
4072 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4073 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4074 dev_priv->ring.ring_obj = NULL;
4075 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4076
85a7bb98 4077 i915_gem_cleanup_hws(dev);
673a394b
EA
4078}
4079
4080int
4081i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4082 struct drm_file *file_priv)
4083{
4084 drm_i915_private_t *dev_priv = dev->dev_private;
4085 int ret;
4086
79e53945
JB
4087 if (drm_core_check_feature(dev, DRIVER_MODESET))
4088 return 0;
4089
673a394b
EA
4090 if (dev_priv->mm.wedged) {
4091 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4092 dev_priv->mm.wedged = 0;
4093 }
4094
673a394b 4095 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4096 dev_priv->mm.suspended = 0;
4097
4098 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4099 if (ret != 0) {
4100 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4101 return ret;
d816f6ac 4102 }
9bb2d6f9 4103
5e118f41 4104 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 4105 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
4106 spin_unlock(&dev_priv->mm.active_list_lock);
4107
673a394b
EA
4108 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4109 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4110 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 4111 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4112
4113 drm_irq_install(dev);
4114
673a394b
EA
4115 return 0;
4116}
4117
4118int
4119i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4120 struct drm_file *file_priv)
4121{
4122 int ret;
4123
79e53945
JB
4124 if (drm_core_check_feature(dev, DRIVER_MODESET))
4125 return 0;
4126
673a394b 4127 ret = i915_gem_idle(dev);
dbb19d30
KH
4128 drm_irq_uninstall(dev);
4129
6dbe2772 4130 return ret;
673a394b
EA
4131}
4132
4133void
4134i915_gem_lastclose(struct drm_device *dev)
4135{
4136 int ret;
673a394b 4137
e806b495
EA
4138 if (drm_core_check_feature(dev, DRIVER_MODESET))
4139 return;
4140
6dbe2772
KP
4141 ret = i915_gem_idle(dev);
4142 if (ret)
4143 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4144}
4145
4146void
4147i915_gem_load(struct drm_device *dev)
4148{
4149 drm_i915_private_t *dev_priv = dev->dev_private;
4150
5e118f41 4151 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4152 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4153 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4154 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4155 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4156 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4157 i915_gem_retire_work_handler);
4158 dev_priv->mm.next_gem_seqno = 1;
4159
de151cf6
JB
4160 /* Old X drivers will take 0-2 for front, back, depth buffers */
4161 dev_priv->fence_reg_start = 3;
4162
0f973f27 4163 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4164 dev_priv->num_fence_regs = 16;
4165 else
4166 dev_priv->num_fence_regs = 8;
4167
673a394b
EA
4168 i915_gem_detect_bit_6_swizzle(dev);
4169}
71acb5eb
DA
4170
4171/*
4172 * Create a physically contiguous memory object for this object
4173 * e.g. for cursor + overlay regs
4174 */
4175int i915_gem_init_phys_object(struct drm_device *dev,
4176 int id, int size)
4177{
4178 drm_i915_private_t *dev_priv = dev->dev_private;
4179 struct drm_i915_gem_phys_object *phys_obj;
4180 int ret;
4181
4182 if (dev_priv->mm.phys_objs[id - 1] || !size)
4183 return 0;
4184
4185 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4186 if (!phys_obj)
4187 return -ENOMEM;
4188
4189 phys_obj->id = id;
4190
4191 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4192 if (!phys_obj->handle) {
4193 ret = -ENOMEM;
4194 goto kfree_obj;
4195 }
4196#ifdef CONFIG_X86
4197 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4198#endif
4199
4200 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4201
4202 return 0;
4203kfree_obj:
4204 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4205 return ret;
4206}
4207
4208void i915_gem_free_phys_object(struct drm_device *dev, int id)
4209{
4210 drm_i915_private_t *dev_priv = dev->dev_private;
4211 struct drm_i915_gem_phys_object *phys_obj;
4212
4213 if (!dev_priv->mm.phys_objs[id - 1])
4214 return;
4215
4216 phys_obj = dev_priv->mm.phys_objs[id - 1];
4217 if (phys_obj->cur_obj) {
4218 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4219 }
4220
4221#ifdef CONFIG_X86
4222 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4223#endif
4224 drm_pci_free(dev, phys_obj->handle);
4225 kfree(phys_obj);
4226 dev_priv->mm.phys_objs[id - 1] = NULL;
4227}
4228
4229void i915_gem_free_all_phys_object(struct drm_device *dev)
4230{
4231 int i;
4232
260883c8 4233 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4234 i915_gem_free_phys_object(dev, i);
4235}
4236
4237void i915_gem_detach_phys_object(struct drm_device *dev,
4238 struct drm_gem_object *obj)
4239{
4240 struct drm_i915_gem_object *obj_priv;
4241 int i;
4242 int ret;
4243 int page_count;
4244
4245 obj_priv = obj->driver_private;
4246 if (!obj_priv->phys_obj)
4247 return;
4248
856fa198 4249 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4250 if (ret)
4251 goto out;
4252
4253 page_count = obj->size / PAGE_SIZE;
4254
4255 for (i = 0; i < page_count; i++) {
856fa198 4256 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4257 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4258
4259 memcpy(dst, src, PAGE_SIZE);
4260 kunmap_atomic(dst, KM_USER0);
4261 }
856fa198 4262 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb
DA
4263 drm_agp_chipset_flush(dev);
4264out:
4265 obj_priv->phys_obj->cur_obj = NULL;
4266 obj_priv->phys_obj = NULL;
4267}
4268
4269int
4270i915_gem_attach_phys_object(struct drm_device *dev,
4271 struct drm_gem_object *obj, int id)
4272{
4273 drm_i915_private_t *dev_priv = dev->dev_private;
4274 struct drm_i915_gem_object *obj_priv;
4275 int ret = 0;
4276 int page_count;
4277 int i;
4278
4279 if (id > I915_MAX_PHYS_OBJECT)
4280 return -EINVAL;
4281
4282 obj_priv = obj->driver_private;
4283
4284 if (obj_priv->phys_obj) {
4285 if (obj_priv->phys_obj->id == id)
4286 return 0;
4287 i915_gem_detach_phys_object(dev, obj);
4288 }
4289
4290
4291 /* create a new object */
4292 if (!dev_priv->mm.phys_objs[id - 1]) {
4293 ret = i915_gem_init_phys_object(dev, id,
4294 obj->size);
4295 if (ret) {
aeb565df 4296 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4297 goto out;
4298 }
4299 }
4300
4301 /* bind to the object */
4302 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4303 obj_priv->phys_obj->cur_obj = obj;
4304
856fa198 4305 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4306 if (ret) {
4307 DRM_ERROR("failed to get page list\n");
4308 goto out;
4309 }
4310
4311 page_count = obj->size / PAGE_SIZE;
4312
4313 for (i = 0; i < page_count; i++) {
856fa198 4314 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4315 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4316
4317 memcpy(dst, src, PAGE_SIZE);
4318 kunmap_atomic(src, KM_USER0);
4319 }
4320
4321 return 0;
4322out:
4323 return ret;
4324}
4325
4326static int
4327i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4328 struct drm_i915_gem_pwrite *args,
4329 struct drm_file *file_priv)
4330{
4331 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4332 void *obj_addr;
4333 int ret;
4334 char __user *user_data;
4335
4336 user_data = (char __user *) (uintptr_t) args->data_ptr;
4337 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4338
e08fb4f6 4339 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4340 ret = copy_from_user(obj_addr, user_data, args->size);
4341 if (ret)
4342 return -EFAULT;
4343
4344 drm_agp_chipset_flush(dev);
4345 return 0;
4346}
This page took 0.4626 seconds and 5 git commands to generate.