drm/i915/dp/mst: Add source port info to debugfs output
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
62106b4f 135 struct i915_ggtt *ggtt = &dev_priv->ggtt;
ca1543be 136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
1c7f4bca 141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
142 if (vma->pin_count)
143 pinned += vma->node.size;
1c7f4bca 144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
62106b4f 149 args->aper_size = dev_priv->ggtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
1c7f4bca 275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
1db6e2e7 492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
62106b4f 810 if (fast_user_write(dev_priv->ggtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1144 struct intel_engine_cs *engine)
094f9a54 1145{
0bc40be8 1146 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1147}
1148
ca5b721e
CW
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
91b0c352 1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1182{
2def4ad9 1183 unsigned long timeout;
ca5b721e
CW
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
2def4ad9 1195
4a570db5 1196 if (req->engine->irq_refcount)
2def4ad9
CW
1197 return -EBUSY;
1198
821485dc
CW
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
ca5b721e 1203 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1204 while (!need_resched()) {
eed29a5b 1205 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1206 return 0;
1207
91b0c352
CW
1208 if (signal_pending_state(state, current))
1209 break;
1210
ca5b721e 1211 if (busywait_stop(timeout, cpu))
2def4ad9 1212 break;
b29c19b6 1213
2def4ad9
CW
1214 cpu_relax_lowlatency();
1215 }
821485dc 1216
eed29a5b 1217 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1218 return 0;
1219
1220 return -EAGAIN;
b29c19b6
CW
1221}
1222
b361237b 1223/**
9c654818
JH
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
f69061be
DV
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
9c654818 1237 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1238 * errno with remaining time filled in timeout argument.
1239 */
9c654818 1240int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1241 unsigned reset_counter,
b29c19b6 1242 bool interruptible,
5ed0bdf2 1243 s64 *timeout,
2e1b8730 1244 struct intel_rps_client *rps)
b361237b 1245{
666796da 1246 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
e2f80391 1247 struct drm_device *dev = engine->dev;
3e31c6c0 1248 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21 1249 const bool irq_test_in_progress =
666796da 1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1252 DEFINE_WAIT(wait);
47e9766d 1253 unsigned long timeout_expire;
e0313db0 1254 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1255 int ret;
1256
9df7575f 1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1258
b4716185
CW
1259 if (list_empty(&req->list))
1260 return 0;
1261
1b5a433a 1262 if (i915_gem_request_completed(req, true))
b361237b
CW
1263 return 0;
1264
bb6d1984
CW
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1274
1275 /*
1276 * Record current time in case interrupted by signal, or wedged.
1277 */
1278 before = ktime_get_raw_ns();
bb6d1984 1279 }
b361237b 1280
2e1b8730 1281 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1283
74328ee5 1284 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1285
1286 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1287 ret = __i915_spin_request(req, state);
2def4ad9
CW
1288 if (ret == 0)
1289 goto out;
1290
e2f80391 1291 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1292 ret = -ENODEV;
1293 goto out;
1294 }
1295
094f9a54
CW
1296 for (;;) {
1297 struct timer_list timer;
b361237b 1298
e2f80391 1299 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1300
f69061be
DV
1301 /* We need to check whether any gpu reset happened in between
1302 * the caller grabbing the seqno and now ... */
094f9a54
CW
1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 * is truely gone. */
1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 if (ret == 0)
1308 ret = -EAGAIN;
1309 break;
1310 }
f69061be 1311
1b5a433a 1312 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1313 ret = 0;
1314 break;
1315 }
b361237b 1316
91b0c352 1317 if (signal_pending_state(state, current)) {
094f9a54
CW
1318 ret = -ERESTARTSYS;
1319 break;
1320 }
1321
47e9766d 1322 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1323 ret = -ETIME;
1324 break;
1325 }
1326
1327 timer.function = NULL;
e2f80391 1328 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1329 unsigned long expire;
1330
094f9a54 1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1332 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1333 mod_timer(&timer, expire);
1334 }
1335
5035c275 1336 io_schedule();
094f9a54 1337
094f9a54
CW
1338 if (timer.function) {
1339 del_singleshot_timer_sync(&timer);
1340 destroy_timer_on_stack(&timer);
1341 }
1342 }
168c3f21 1343 if (!irq_test_in_progress)
e2f80391 1344 engine->irq_put(engine);
094f9a54 1345
e2f80391 1346 finish_wait(&engine->irq_queue, &wait);
b361237b 1347
2def4ad9 1348out:
2def4ad9
CW
1349 trace_i915_gem_request_wait_end(req);
1350
b361237b 1351 if (timeout) {
e0313db0 1352 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1353
1354 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1355
1356 /*
1357 * Apparently ktime isn't accurate enough and occasionally has a
1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 * things up to make the test happy. We allow up to 1 jiffy.
1360 *
1361 * This is a regrssion from the timespec->ktime conversion.
1362 */
1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 *timeout = 0;
b361237b
CW
1365 }
1366
094f9a54 1367 return ret;
b361237b
CW
1368}
1369
fcfa423c
JH
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 struct drm_file *file)
1372{
fcfa423c
JH
1373 struct drm_i915_file_private *file_priv;
1374
1375 WARN_ON(!req || !file || req->file_priv);
1376
1377 if (!req || !file)
1378 return -EINVAL;
1379
1380 if (req->file_priv)
1381 return -EINVAL;
1382
fcfa423c
JH
1383 file_priv = file->driver_priv;
1384
1385 spin_lock(&file_priv->mm.lock);
1386 req->file_priv = file_priv;
1387 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 spin_unlock(&file_priv->mm.lock);
1389
1390 req->pid = get_pid(task_pid(current));
1391
1392 return 0;
1393}
1394
b4716185
CW
1395static inline void
1396i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397{
1398 struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400 if (!file_priv)
1401 return;
1402
1403 spin_lock(&file_priv->mm.lock);
1404 list_del(&request->client_list);
1405 request->file_priv = NULL;
1406 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1407
1408 put_pid(request->pid);
1409 request->pid = NULL;
b4716185
CW
1410}
1411
1412static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413{
1414 trace_i915_gem_request_retire(request);
1415
1416 /* We know the GPU must have read the request to have
1417 * sent us the seqno + interrupt, so use the position
1418 * of tail of the request to update the last known position
1419 * of the GPU head.
1420 *
1421 * Note this requires that we are always called in request
1422 * completion order.
1423 */
1424 request->ringbuf->last_retired_head = request->postfix;
1425
1426 list_del_init(&request->list);
1427 i915_gem_request_remove_from_client(request);
1428
b4716185
CW
1429 i915_gem_request_unreference(request);
1430}
1431
1432static void
1433__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434{
4a570db5 1435 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1436 struct drm_i915_gem_request *tmp;
1437
1438 lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440 if (list_empty(&req->list))
1441 return;
1442
1443 do {
1444 tmp = list_first_entry(&engine->request_list,
1445 typeof(*tmp), list);
1446
1447 i915_gem_request_retire(tmp);
1448 } while (tmp != req);
1449
1450 WARN_ON(i915_verify_lists(engine->dev));
1451}
1452
b361237b 1453/**
a4b3a571 1454 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1455 * request and object lists appropriately for that event.
1456 */
1457int
a4b3a571 1458i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1459{
a4b3a571
DV
1460 struct drm_device *dev;
1461 struct drm_i915_private *dev_priv;
1462 bool interruptible;
b361237b
CW
1463 int ret;
1464
a4b3a571
DV
1465 BUG_ON(req == NULL);
1466
4a570db5 1467 dev = req->engine->dev;
a4b3a571
DV
1468 dev_priv = dev->dev_private;
1469 interruptible = dev_priv->mm.interruptible;
1470
b361237b 1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1472
33196ded 1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1474 if (ret)
1475 return ret;
1476
b4716185
CW
1477 ret = __i915_wait_request(req,
1478 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1479 interruptible, NULL, NULL);
b4716185
CW
1480 if (ret)
1481 return ret;
d26e3af8 1482
b4716185 1483 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1484 return 0;
1485}
1486
b361237b
CW
1487/**
1488 * Ensures that all rendering to the object has completed and the object is
1489 * safe to unbind from the GTT or access from the CPU.
1490 */
2e2f351d 1491int
b361237b
CW
1492i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 bool readonly)
1494{
b4716185 1495 int ret, i;
b361237b 1496
b4716185 1497 if (!obj->active)
b361237b
CW
1498 return 0;
1499
b4716185
CW
1500 if (readonly) {
1501 if (obj->last_write_req != NULL) {
1502 ret = i915_wait_request(obj->last_write_req);
1503 if (ret)
1504 return ret;
b361237b 1505
4a570db5 1506 i = obj->last_write_req->engine->id;
b4716185
CW
1507 if (obj->last_read_req[i] == obj->last_write_req)
1508 i915_gem_object_retire__read(obj, i);
1509 else
1510 i915_gem_object_retire__write(obj);
1511 }
1512 } else {
666796da 1513 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1514 if (obj->last_read_req[i] == NULL)
1515 continue;
1516
1517 ret = i915_wait_request(obj->last_read_req[i]);
1518 if (ret)
1519 return ret;
1520
1521 i915_gem_object_retire__read(obj, i);
1522 }
1523 RQ_BUG_ON(obj->active);
1524 }
1525
1526 return 0;
1527}
1528
1529static void
1530i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 struct drm_i915_gem_request *req)
1532{
4a570db5 1533 int ring = req->engine->id;
b4716185
CW
1534
1535 if (obj->last_read_req[ring] == req)
1536 i915_gem_object_retire__read(obj, ring);
1537 else if (obj->last_write_req == req)
1538 i915_gem_object_retire__write(obj);
1539
1540 __i915_gem_request_retire__upto(req);
b361237b
CW
1541}
1542
3236f57a
CW
1543/* A nonblocking variant of the above wait. This is a highly dangerous routine
1544 * as the object state may change during this call.
1545 */
1546static __must_check int
1547i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1548 struct intel_rps_client *rps,
3236f57a
CW
1549 bool readonly)
1550{
1551 struct drm_device *dev = obj->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1553 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
f69061be 1554 unsigned reset_counter;
b4716185 1555 int ret, i, n = 0;
3236f57a
CW
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(!dev_priv->mm.interruptible);
1559
b4716185 1560 if (!obj->active)
3236f57a
CW
1561 return 0;
1562
33196ded 1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1564 if (ret)
1565 return ret;
1566
f69061be 1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1568
1569 if (readonly) {
1570 struct drm_i915_gem_request *req;
1571
1572 req = obj->last_write_req;
1573 if (req == NULL)
1574 return 0;
1575
b4716185
CW
1576 requests[n++] = i915_gem_request_reference(req);
1577 } else {
666796da 1578 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1579 struct drm_i915_gem_request *req;
1580
1581 req = obj->last_read_req[i];
1582 if (req == NULL)
1583 continue;
1584
b4716185
CW
1585 requests[n++] = i915_gem_request_reference(req);
1586 }
1587 }
1588
3236f57a 1589 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1590 for (i = 0; ret == 0 && i < n; i++)
1591 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1592 NULL, rps);
3236f57a
CW
1593 mutex_lock(&dev->struct_mutex);
1594
b4716185
CW
1595 for (i = 0; i < n; i++) {
1596 if (ret == 0)
1597 i915_gem_object_retire_request(obj, requests[i]);
1598 i915_gem_request_unreference(requests[i]);
1599 }
1600
1601 return ret;
3236f57a
CW
1602}
1603
2e1b8730
CW
1604static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605{
1606 struct drm_i915_file_private *fpriv = file->driver_priv;
1607 return &fpriv->rps;
1608}
1609
673a394b 1610/**
2ef7eeaa
EA
1611 * Called when user space prepares to use an object with the CPU, either
1612 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1613 */
1614int
1615i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1616 struct drm_file *file)
673a394b
EA
1617{
1618 struct drm_i915_gem_set_domain *args = data;
05394f39 1619 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1620 uint32_t read_domains = args->read_domains;
1621 uint32_t write_domain = args->write_domain;
673a394b
EA
1622 int ret;
1623
2ef7eeaa 1624 /* Only handle setting domains to types used by the CPU. */
21d509e3 1625 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1626 return -EINVAL;
1627
21d509e3 1628 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1629 return -EINVAL;
1630
1631 /* Having something in the write domain implies it's in the read
1632 * domain, and only that read domain. Enforce that in the request.
1633 */
1634 if (write_domain != 0 && read_domains != write_domain)
1635 return -EINVAL;
1636
76c1dec1 1637 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1638 if (ret)
76c1dec1 1639 return ret;
1d7cfea1 1640
05394f39 1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1642 if (&obj->base == NULL) {
1d7cfea1
CW
1643 ret = -ENOENT;
1644 goto unlock;
76c1dec1 1645 }
673a394b 1646
3236f57a
CW
1647 /* Try to flush the object off the GPU without holding the lock.
1648 * We will repeat the flush holding the lock in the normal manner
1649 * to catch cases where we are gazumped.
1650 */
6e4930f6 1651 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1652 to_rps_client(file),
6e4930f6 1653 !write_domain);
3236f57a
CW
1654 if (ret)
1655 goto unref;
1656
43566ded 1657 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1659 else
e47c68e9 1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1661
031b698a
DV
1662 if (write_domain != 0)
1663 intel_fb_obj_invalidate(obj,
1664 write_domain == I915_GEM_DOMAIN_GTT ?
1665 ORIGIN_GTT : ORIGIN_CPU);
1666
3236f57a 1667unref:
05394f39 1668 drm_gem_object_unreference(&obj->base);
1d7cfea1 1669unlock:
673a394b
EA
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672}
1673
1674/**
1675 * Called when user space has done writes to this buffer
1676 */
1677int
1678i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1679 struct drm_file *file)
673a394b
EA
1680{
1681 struct drm_i915_gem_sw_finish *args = data;
05394f39 1682 struct drm_i915_gem_object *obj;
673a394b
EA
1683 int ret = 0;
1684
76c1dec1 1685 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1686 if (ret)
76c1dec1 1687 return ret;
1d7cfea1 1688
05394f39 1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1690 if (&obj->base == NULL) {
1d7cfea1
CW
1691 ret = -ENOENT;
1692 goto unlock;
673a394b
EA
1693 }
1694
673a394b 1695 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1696 if (obj->pin_display)
e62b59e4 1697 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1698
05394f39 1699 drm_gem_object_unreference(&obj->base);
1d7cfea1 1700unlock:
673a394b
EA
1701 mutex_unlock(&dev->struct_mutex);
1702 return ret;
1703}
1704
1705/**
1706 * Maps the contents of an object, returning the address it is mapped
1707 * into.
1708 *
1709 * While the mapping holds a reference on the contents of the object, it doesn't
1710 * imply a ref on the object itself.
34367381
DV
1711 *
1712 * IMPORTANT:
1713 *
1714 * DRM driver writers who look a this function as an example for how to do GEM
1715 * mmap support, please don't implement mmap support like here. The modern way
1716 * to implement DRM mmap support is with an mmap offset ioctl (like
1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718 * That way debug tooling like valgrind will understand what's going on, hiding
1719 * the mmap call in a driver private ioctl will break that. The i915 driver only
1720 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1721 */
1722int
1723i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1724 struct drm_file *file)
673a394b
EA
1725{
1726 struct drm_i915_gem_mmap *args = data;
1727 struct drm_gem_object *obj;
673a394b
EA
1728 unsigned long addr;
1729
1816f923
AG
1730 if (args->flags & ~(I915_MMAP_WC))
1731 return -EINVAL;
1732
1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 return -ENODEV;
1735
05394f39 1736 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1737 if (obj == NULL)
bf79cb91 1738 return -ENOENT;
673a394b 1739
1286ff73
DV
1740 /* prime objects have no backing filp to GEM mmap
1741 * pages from.
1742 */
1743 if (!obj->filp) {
1744 drm_gem_object_unreference_unlocked(obj);
1745 return -EINVAL;
1746 }
1747
6be5ceb0 1748 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1749 PROT_READ | PROT_WRITE, MAP_SHARED,
1750 args->offset);
1816f923
AG
1751 if (args->flags & I915_MMAP_WC) {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754
1755 down_write(&mm->mmap_sem);
1756 vma = find_vma(mm, addr);
1757 if (vma)
1758 vma->vm_page_prot =
1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 else
1761 addr = -ENOMEM;
1762 up_write(&mm->mmap_sem);
1763 }
bc9025bd 1764 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1765 if (IS_ERR((void *)addr))
1766 return addr;
1767
1768 args->addr_ptr = (uint64_t) addr;
1769
1770 return 0;
1771}
1772
de151cf6
JB
1773/**
1774 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1775 * @vma: VMA in question
1776 * @vmf: fault info
de151cf6
JB
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 */
1789int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790{
05394f39
CW
1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 struct drm_device *dev = obj->base.dev;
3e31c6c0 1793 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1794 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1795 pgoff_t page_offset;
1796 unsigned long pfn;
1797 int ret = 0;
0f973f27 1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1799
f65c9168
PZ
1800 intel_runtime_pm_get(dev_priv);
1801
de151cf6
JB
1802 /* We don't use vmf->pgoff since that has the fake offset */
1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 PAGE_SHIFT;
1805
d9bc7e9f
CW
1806 ret = i915_mutex_lock_interruptible(dev);
1807 if (ret)
1808 goto out;
a00b10c3 1809
db53a302
CW
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
6e4930f6
CW
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1816 */
1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 if (ret)
1819 goto unlock;
1820
eb119bd6
CW
1821 /* Access to snoopable pages through the GTT is incoherent. */
1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1823 ret = -EFAULT;
eb119bd6
CW
1824 goto unlock;
1825 }
1826
c5ad54cf 1827 /* Use a partial view if the object is bigger than the aperture. */
62106b4f 1828 if (obj->base.size >= dev_priv->ggtt.mappable_end &&
e7ded2d7 1829 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1830 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1831
c5ad54cf
JL
1832 memset(&view, 0, sizeof(view));
1833 view.type = I915_GGTT_VIEW_PARTIAL;
1834 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 view.params.partial.size =
1836 min_t(unsigned int,
1837 chunk_size,
1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 view.params.partial.offset);
1840 }
1841
1842 /* Now pin it into the GTT if needed */
1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1844 if (ret)
1845 goto unlock;
4a684a41 1846
c9839303
CW
1847 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 if (ret)
1849 goto unpin;
74898d7e 1850
06d98131 1851 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1852 if (ret)
c9839303 1853 goto unpin;
7d1c4804 1854
b90b91d8 1855 /* Finally, remap it using the new GTT offset */
62106b4f 1856 pfn = dev_priv->ggtt.mappable_base +
c5ad54cf 1857 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1858 pfn >>= PAGE_SHIFT;
de151cf6 1859
c5ad54cf
JL
1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 /* Overriding existing pages in partial view does not cause
1862 * us any trouble as TLBs are still valid because the fault
1863 * is due to userspace losing part of the mapping or never
1864 * having accessed it before (at this partials' range).
1865 */
1866 unsigned long base = vma->vm_start +
1867 (view.params.partial.offset << PAGE_SHIFT);
1868 unsigned int i;
b90b91d8 1869
c5ad54cf
JL
1870 for (i = 0; i < view.params.partial.size; i++) {
1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1872 if (ret)
1873 break;
1874 }
1875
1876 obj->fault_mappable = true;
c5ad54cf
JL
1877 } else {
1878 if (!obj->fault_mappable) {
1879 unsigned long size = min_t(unsigned long,
1880 vma->vm_end - vma->vm_start,
1881 obj->base.size);
1882 int i;
1883
1884 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 ret = vm_insert_pfn(vma,
1886 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 pfn + i);
1888 if (ret)
1889 break;
1890 }
1891
1892 obj->fault_mappable = true;
1893 } else
1894 ret = vm_insert_pfn(vma,
1895 (unsigned long)vmf->virtual_address,
1896 pfn + page_offset);
1897 }
c9839303 1898unpin:
c5ad54cf 1899 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1900unlock:
de151cf6 1901 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1902out:
de151cf6 1903 switch (ret) {
d9bc7e9f 1904 case -EIO:
2232f031
DV
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
045e769a 1915 case -EAGAIN:
571c608d
DV
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
d9bc7e9f 1920 */
c715089f
CW
1921 case 0:
1922 case -ERESTARTSYS:
bed636ab 1923 case -EINTR:
e79e0fe3
DR
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
f65c9168
PZ
1929 ret = VM_FAULT_NOPAGE;
1930 break;
de151cf6 1931 case -ENOMEM:
f65c9168
PZ
1932 ret = VM_FAULT_OOM;
1933 break;
a7c2e1aa 1934 case -ENOSPC:
45d67817 1935 case -EFAULT:
f65c9168
PZ
1936 ret = VM_FAULT_SIGBUS;
1937 break;
de151cf6 1938 default:
a7c2e1aa 1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1940 ret = VM_FAULT_SIGBUS;
1941 break;
de151cf6 1942 }
f65c9168
PZ
1943
1944 intel_runtime_pm_put(dev_priv);
1945 return ret;
de151cf6
JB
1946}
1947
901782b2
CW
1948/**
1949 * i915_gem_release_mmap - remove physical page mappings
1950 * @obj: obj in question
1951 *
af901ca1 1952 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1953 * relinquish ownership of the pages back to the system.
1954 *
1955 * It is vital that we remove the page mapping if we have mapped a tiled
1956 * object through the GTT and then lose the fence register due to
1957 * resource pressure. Similarly if the object has been moved out of the
1958 * aperture, than pages mapped into userspace must be revoked. Removing the
1959 * mapping will then trigger a page fault on the next user access, allowing
1960 * fixup by i915_gem_fault().
1961 */
d05ca301 1962void
05394f39 1963i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1964{
6299f992
CW
1965 if (!obj->fault_mappable)
1966 return;
901782b2 1967
6796cb16
DH
1968 drm_vma_node_unmap(&obj->base.vma_node,
1969 obj->base.dev->anon_inode->i_mapping);
6299f992 1970 obj->fault_mappable = false;
901782b2
CW
1971}
1972
eedd10f4
CW
1973void
1974i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975{
1976 struct drm_i915_gem_object *obj;
1977
1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 i915_gem_release_mmap(obj);
1980}
1981
0fa87796 1982uint32_t
e28f8711 1983i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1984{
e28f8711 1985 uint32_t gtt_size;
92b88aeb
CW
1986
1987 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1988 tiling_mode == I915_TILING_NONE)
1989 return size;
92b88aeb
CW
1990
1991 /* Previous chips need a power-of-two fence region when tiling */
1992 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1993 gtt_size = 1024*1024;
92b88aeb 1994 else
e28f8711 1995 gtt_size = 512*1024;
92b88aeb 1996
e28f8711
CW
1997 while (gtt_size < size)
1998 gtt_size <<= 1;
92b88aeb 1999
e28f8711 2000 return gtt_size;
92b88aeb
CW
2001}
2002
de151cf6
JB
2003/**
2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005 * @obj: object to check
2006 *
2007 * Return the required GTT alignment for an object, taking into account
5e783301 2008 * potential fence register mapping.
de151cf6 2009 */
d865110c
ID
2010uint32_t
2011i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 int tiling_mode, bool fenced)
de151cf6 2013{
de151cf6
JB
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
d865110c 2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2019 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2020 return 4096;
2021
a00b10c3
CW
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
e28f8711 2026 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2027}
2028
d8cb5086
CW
2029static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030{
2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 int ret;
2033
0de23977 2034 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2035 return 0;
2036
da494d7c
DV
2037 dev_priv->mm.shrinker_no_lock_stealing = true;
2038
d8cb5086
CW
2039 ret = drm_gem_create_mmap_offset(&obj->base);
2040 if (ret != -ENOSPC)
da494d7c 2041 goto out;
d8cb5086
CW
2042
2043 /* Badly fragmented mmap space? The only way we can recover
2044 * space is by destroying unwanted objects. We can't randomly release
2045 * mmap_offsets as userspace expects them to be persistent for the
2046 * lifetime of the objects. The closest we can is to release the
2047 * offsets on purgeable objects by truncating it and marking it purged,
2048 * which prevents userspace from ever using that object again.
2049 */
21ab4e74
CW
2050 i915_gem_shrink(dev_priv,
2051 obj->base.size >> PAGE_SHIFT,
2052 I915_SHRINK_BOUND |
2053 I915_SHRINK_UNBOUND |
2054 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2055 ret = drm_gem_create_mmap_offset(&obj->base);
2056 if (ret != -ENOSPC)
da494d7c 2057 goto out;
d8cb5086
CW
2058
2059 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061out:
2062 dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064 return ret;
d8cb5086
CW
2065}
2066
2067static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068{
d8cb5086
CW
2069 drm_gem_free_mmap_offset(&obj->base);
2070}
2071
da6b51d0 2072int
ff72145b
DA
2073i915_gem_mmap_gtt(struct drm_file *file,
2074 struct drm_device *dev,
da6b51d0 2075 uint32_t handle,
ff72145b 2076 uint64_t *offset)
de151cf6 2077{
05394f39 2078 struct drm_i915_gem_object *obj;
de151cf6
JB
2079 int ret;
2080
76c1dec1 2081 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2082 if (ret)
76c1dec1 2083 return ret;
de151cf6 2084
ff72145b 2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2086 if (&obj->base == NULL) {
1d7cfea1
CW
2087 ret = -ENOENT;
2088 goto unlock;
2089 }
de151cf6 2090
05394f39 2091 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2093 ret = -EFAULT;
1d7cfea1 2094 goto out;
ab18282d
CW
2095 }
2096
d8cb5086
CW
2097 ret = i915_gem_object_create_mmap_offset(obj);
2098 if (ret)
2099 goto out;
de151cf6 2100
0de23977 2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2102
1d7cfea1 2103out:
05394f39 2104 drm_gem_object_unreference(&obj->base);
1d7cfea1 2105unlock:
de151cf6 2106 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2107 return ret;
de151cf6
JB
2108}
2109
ff72145b
DA
2110/**
2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112 * @dev: DRM device
2113 * @data: GTT mapping ioctl data
2114 * @file: GEM object info
2115 *
2116 * Simply returns the fake offset to userspace so it can mmap it.
2117 * The mmap call will end up in drm_gem_mmap(), which will set things
2118 * up so we can get faults in the handler above.
2119 *
2120 * The fault handler will take care of binding the object into the GTT
2121 * (since it may have been evicted to make room for something), allocating
2122 * a fence register, and mapping the appropriate aperture address into
2123 * userspace.
2124 */
2125int
2126i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 struct drm_file *file)
2128{
2129 struct drm_i915_gem_mmap_gtt *args = data;
2130
da6b51d0 2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2132}
2133
225067ee
DV
2134/* Immediately discard the backing storage */
2135static void
2136i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2137{
4d6294bf 2138 i915_gem_object_free_mmap_offset(obj);
1286ff73 2139
4d6294bf
CW
2140 if (obj->base.filp == NULL)
2141 return;
e5281ccd 2142
225067ee
DV
2143 /* Our goal here is to return as much of the memory as
2144 * is possible back to the system as we are called from OOM.
2145 * To do this we must instruct the shmfs to drop all of its
2146 * backing pages, *now*.
2147 */
5537252b 2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2149 obj->madv = __I915_MADV_PURGED;
2150}
e5281ccd 2151
5537252b
CW
2152/* Try to discard unwanted pages */
2153static void
2154i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2155{
5537252b
CW
2156 struct address_space *mapping;
2157
2158 switch (obj->madv) {
2159 case I915_MADV_DONTNEED:
2160 i915_gem_object_truncate(obj);
2161 case __I915_MADV_PURGED:
2162 return;
2163 }
2164
2165 if (obj->base.filp == NULL)
2166 return;
2167
2168 mapping = file_inode(obj->base.filp)->i_mapping,
2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2170}
2171
5cdf5881 2172static void
05394f39 2173i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2174{
90797e6d
ID
2175 struct sg_page_iter sg_iter;
2176 int ret;
1286ff73 2177
05394f39 2178 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2179
6c085a72
CW
2180 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 if (ret) {
2182 /* In the event of a disaster, abandon all caches and
2183 * hope for the best.
2184 */
2185 WARN_ON(ret != -EIO);
2c22569b 2186 i915_gem_clflush_object(obj, true);
6c085a72
CW
2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 }
2189
e2273302
ID
2190 i915_gem_gtt_finish_object(obj);
2191
6dacfd2f 2192 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2193 i915_gem_object_save_bit_17_swizzle(obj);
2194
05394f39
CW
2195 if (obj->madv == I915_MADV_DONTNEED)
2196 obj->dirty = 0;
3ef94daa 2197
90797e6d 2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2199 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2200
05394f39 2201 if (obj->dirty)
9da3da66 2202 set_page_dirty(page);
3ef94daa 2203
05394f39 2204 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2205 mark_page_accessed(page);
3ef94daa 2206
9da3da66 2207 page_cache_release(page);
3ef94daa 2208 }
05394f39 2209 obj->dirty = 0;
673a394b 2210
9da3da66
CW
2211 sg_free_table(obj->pages);
2212 kfree(obj->pages);
37e680a1 2213}
6c085a72 2214
dd624afd 2215int
37e680a1
CW
2216i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217{
2218 const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2f745ad3 2220 if (obj->pages == NULL)
37e680a1
CW
2221 return 0;
2222
a5570178
CW
2223 if (obj->pages_pin_count)
2224 return -EBUSY;
2225
9843877d 2226 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2227
a2165e31
CW
2228 /* ->put_pages might need to allocate memory for the bit17 swizzle
2229 * array, hence protect them from being reaped by removing them from gtt
2230 * lists early. */
35c20a60 2231 list_del(&obj->global_list);
a2165e31 2232
37e680a1 2233 ops->put_pages(obj);
05394f39 2234 obj->pages = NULL;
37e680a1 2235
5537252b 2236 i915_gem_object_invalidate(obj);
6c085a72
CW
2237
2238 return 0;
2239}
2240
37e680a1 2241static int
6c085a72 2242i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2243{
6c085a72 2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2245 int page_count, i;
2246 struct address_space *mapping;
9da3da66
CW
2247 struct sg_table *st;
2248 struct scatterlist *sg;
90797e6d 2249 struct sg_page_iter sg_iter;
e5281ccd 2250 struct page *page;
90797e6d 2251 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2252 int ret;
6c085a72 2253 gfp_t gfp;
e5281ccd 2254
6c085a72
CW
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
9da3da66
CW
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
05394f39 2266 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2268 kfree(st);
e5281ccd 2269 return -ENOMEM;
9da3da66 2270 }
e5281ccd 2271
9da3da66
CW
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
496ad9aa 2277 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
6c085a72
CW
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
21ab4e74
CW
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
6c085a72
CW
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
6c085a72 2297 i915_gem_shrink_all(dev_priv);
f461d1be 2298 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
6c085a72 2301 goto err_pages;
e2273302 2302 }
6c085a72 2303 }
426729dc
KRW
2304#ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311#endif
90797e6d
ID
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
3bbbe706
DV
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2324 }
426729dc
KRW
2325#ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327#endif
2328 sg_mark_end(sg);
74ce6b6c
CW
2329 obj->pages = st;
2330
e2273302
ID
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
6dacfd2f 2335 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
656bfa3a
DV
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
e5281ccd
CW
2342 return 0;
2343
2344err_pages:
90797e6d
ID
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2347 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2348 sg_free_table(st);
2349 kfree(st);
0820baf3
CW
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
e2273302
ID
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
673a394b
EA
2363}
2364
37e680a1
CW
2365/* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372int
2373i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374{
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2f745ad3 2379 if (obj->pages)
37e680a1
CW
2380 return 0;
2381
43e28f09 2382 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2384 return -EFAULT;
43e28f09
CW
2385 }
2386
a5570178
CW
2387 BUG_ON(obj->pages_pin_count);
2388
37e680a1
CW
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
35c20a60 2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
37e680a1 2398 return 0;
673a394b
EA
2399}
2400
b4716185 2401void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2402 struct drm_i915_gem_request *req)
673a394b 2403{
b4716185 2404 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2405 struct intel_engine_cs *engine;
b2af0376 2406
666796da 2407 engine = i915_gem_request_get_engine(req);
673a394b
EA
2408
2409 /* Add a reference if we're newly entering the active list. */
b4716185 2410 if (obj->active == 0)
05394f39 2411 drm_gem_object_reference(&obj->base);
666796da 2412 obj->active |= intel_engine_flag(engine);
e35a41de 2413
117897f4 2414 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2415 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2416
1c7f4bca 2417 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2418}
2419
b4716185
CW
2420static void
2421i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2422{
b4716185 2423 RQ_BUG_ON(obj->last_write_req == NULL);
666796da 2424 RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2425
2426 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2427 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2428}
2429
caea7476 2430static void
b4716185 2431i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2432{
feb822cf 2433 struct i915_vma *vma;
ce44b0ea 2434
b4716185
CW
2435 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
117897f4 2438 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2439 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
4a570db5 2441 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2442 i915_gem_object_retire__write(obj);
2443
2444 obj->active &= ~(1 << ring);
2445 if (obj->active)
2446 return;
caea7476 2447
6c246959
CW
2448 /* Bump our place on the bound list to keep it roughly in LRU order
2449 * so that we don't steal from recently used but inactive objects
2450 * (unless we are forced to ofc!)
2451 */
2452 list_move_tail(&obj->global_list,
2453 &to_i915(obj->base.dev)->mm.bound_list);
2454
1c7f4bca
CW
2455 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2456 if (!list_empty(&vma->vm_link))
2457 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2458 }
caea7476 2459
97b2a6a1 2460 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2461 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2462}
2463
9d773091 2464static int
fca26bb4 2465i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2466{
9d773091 2467 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2468 struct intel_engine_cs *engine;
b4ac5afc 2469 int ret, j;
53d227f2 2470
107f27a5 2471 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2472 for_each_engine(engine, dev_priv) {
666796da 2473 ret = intel_engine_idle(engine);
107f27a5
CW
2474 if (ret)
2475 return ret;
9d773091 2476 }
9d773091 2477 i915_gem_retire_requests(dev);
107f27a5
CW
2478
2479 /* Finally reset hw state */
b4ac5afc 2480 for_each_engine(engine, dev_priv) {
e2f80391 2481 intel_ring_init_seqno(engine, seqno);
498d2ac1 2482
e2f80391
TU
2483 for (j = 0; j < ARRAY_SIZE(engine->semaphore.sync_seqno); j++)
2484 engine->semaphore.sync_seqno[j] = 0;
9d773091 2485 }
53d227f2 2486
9d773091 2487 return 0;
53d227f2
DV
2488}
2489
fca26bb4
MK
2490int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491{
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 int ret;
2494
2495 if (seqno == 0)
2496 return -EINVAL;
2497
2498 /* HWS page needs to be set less than what we
2499 * will inject to ring
2500 */
2501 ret = i915_gem_init_seqno(dev, seqno - 1);
2502 if (ret)
2503 return ret;
2504
2505 /* Carefully set the last_seqno value so that wrap
2506 * detection still works
2507 */
2508 dev_priv->next_seqno = seqno;
2509 dev_priv->last_seqno = seqno - 1;
2510 if (dev_priv->last_seqno == 0)
2511 dev_priv->last_seqno--;
2512
2513 return 0;
2514}
2515
9d773091
CW
2516int
2517i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2518{
9d773091
CW
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521 /* reserve 0 for non-seqno */
2522 if (dev_priv->next_seqno == 0) {
fca26bb4 2523 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2524 if (ret)
2525 return ret;
53d227f2 2526
9d773091
CW
2527 dev_priv->next_seqno = 1;
2528 }
53d227f2 2529
f72b3435 2530 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2531 return 0;
53d227f2
DV
2532}
2533
bf7dc5b7
JH
2534/*
2535 * NB: This function is not allowed to fail. Doing so would mean the the
2536 * request is not being tracked for completion but the work itself is
2537 * going to happen on the hardware. This would be a Bad Thing(tm).
2538 */
75289874 2539void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2540 struct drm_i915_gem_object *obj,
2541 bool flush_caches)
673a394b 2542{
e2f80391 2543 struct intel_engine_cs *engine;
75289874 2544 struct drm_i915_private *dev_priv;
48e29f55 2545 struct intel_ringbuffer *ringbuf;
6d3d8274 2546 u32 request_start;
3cce469c
CW
2547 int ret;
2548
48e29f55 2549 if (WARN_ON(request == NULL))
bf7dc5b7 2550 return;
48e29f55 2551
4a570db5 2552 engine = request->engine;
39dabecd 2553 dev_priv = request->i915;
75289874
JH
2554 ringbuf = request->ringbuf;
2555
29b1b415
JH
2556 /*
2557 * To ensure that this call will not fail, space for its emissions
2558 * should already have been reserved in the ring buffer. Let the ring
2559 * know that it is time to use that space up.
2560 */
2561 intel_ring_reserved_space_use(ringbuf);
2562
48e29f55 2563 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2564 /*
2565 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 * after having emitted the batchbuffer command. Hence we need to fix
2567 * things up similar to emitting the lazy request. The difference here
2568 * is that the flush _must_ happen before the next request, no matter
2569 * what.
2570 */
5b4a60c2
JH
2571 if (flush_caches) {
2572 if (i915.enable_execlists)
4866d729 2573 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2574 else
4866d729 2575 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2576 /* Not allowed to fail! */
2577 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 }
cc889e0f 2579
a71d8d94
CW
2580 /* Record the position of the start of the request so that
2581 * should we detect the updated seqno part-way through the
2582 * GPU processing the request, we never over-estimate the
2583 * position of the head.
2584 */
6d3d8274 2585 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2586
bf7dc5b7 2587 if (i915.enable_execlists)
e2f80391 2588 ret = engine->emit_request(request);
bf7dc5b7 2589 else {
e2f80391 2590 ret = engine->add_request(request);
53292cdb
MT
2591
2592 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2593 }
bf7dc5b7
JH
2594 /* Not allowed to fail! */
2595 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2596
7d736f4f 2597 request->head = request_start;
7d736f4f
MK
2598
2599 /* Whilst this request exists, batch_obj will be on the
2600 * active_list, and so will hold the active reference. Only when this
2601 * request is retired will the the batch_obj be moved onto the
2602 * inactive_list and lose its active reference. Hence we do not need
2603 * to explicitly hold another reference here.
2604 */
9a7e0c2a 2605 request->batch_obj = obj;
0e50e96b 2606
673a394b 2607 request->emitted_jiffies = jiffies;
e2f80391
TU
2608 request->previous_seqno = engine->last_submitted_seqno;
2609 engine->last_submitted_seqno = request->seqno;
2610 list_add_tail(&request->list, &engine->request_list);
673a394b 2611
74328ee5 2612 trace_i915_gem_request_add(request);
db53a302 2613
e2f80391 2614 i915_queue_hangcheck(engine->dev);
10cd45b6 2615
87255483
DV
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->mm.retire_work,
2618 round_jiffies_up_relative(HZ));
2619 intel_mark_busy(dev_priv->dev);
cc889e0f 2620
29b1b415
JH
2621 /* Sanity check that the reserved size was large enough. */
2622 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2623}
2624
939fd762 2625static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2626 const struct intel_context *ctx)
be62acb4 2627{
44e2c070 2628 unsigned long elapsed;
be62acb4 2629
44e2c070
MK
2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632 if (ctx->hang_stats.banned)
be62acb4
MK
2633 return true;
2634
676fa572
CW
2635 if (ctx->hang_stats.ban_period_seconds &&
2636 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2637 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2638 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2639 return true;
88b4aa87
MK
2640 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 if (i915_stop_ring_allow_warn(dev_priv))
2642 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2643 return true;
3fac8978 2644 }
be62acb4
MK
2645 }
2646
2647 return false;
2648}
2649
939fd762 2650static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2651 struct intel_context *ctx,
b6b0fac0 2652 const bool guilty)
aa60c664 2653{
44e2c070
MK
2654 struct i915_ctx_hang_stats *hs;
2655
2656 if (WARN_ON(!ctx))
2657 return;
aa60c664 2658
44e2c070
MK
2659 hs = &ctx->hang_stats;
2660
2661 if (guilty) {
939fd762 2662 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2663 hs->batch_active++;
2664 hs->guilty_ts = get_seconds();
2665 } else {
2666 hs->batch_pending++;
aa60c664
MK
2667 }
2668}
2669
abfe262a
JH
2670void i915_gem_request_free(struct kref *req_ref)
2671{
2672 struct drm_i915_gem_request *req = container_of(req_ref,
2673 typeof(*req), ref);
2674 struct intel_context *ctx = req->ctx;
2675
fcfa423c
JH
2676 if (req->file_priv)
2677 i915_gem_request_remove_from_client(req);
2678
0794aed3 2679 if (ctx) {
e28e404c 2680 if (i915.enable_execlists && ctx != req->i915->kernel_context)
4a570db5 2681 intel_lr_context_unpin(ctx, req->engine);
abfe262a 2682
dcb4c12a
OM
2683 i915_gem_context_unreference(ctx);
2684 }
abfe262a 2685
efab6d8d 2686 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2687}
2688
26827088 2689static inline int
0bc40be8 2690__i915_gem_request_alloc(struct intel_engine_cs *engine,
26827088
DG
2691 struct intel_context *ctx,
2692 struct drm_i915_gem_request **req_out)
6689cb2b 2693{
0bc40be8 2694 struct drm_i915_private *dev_priv = to_i915(engine->dev);
eed29a5b 2695 struct drm_i915_gem_request *req;
6689cb2b 2696 int ret;
6689cb2b 2697
217e46b5
JH
2698 if (!req_out)
2699 return -EINVAL;
2700
bccca494 2701 *req_out = NULL;
6689cb2b 2702
eed29a5b
DV
2703 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2704 if (req == NULL)
6689cb2b
JH
2705 return -ENOMEM;
2706
0bc40be8 2707 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
9a0c1e27
CW
2708 if (ret)
2709 goto err;
6689cb2b 2710
40e895ce
JH
2711 kref_init(&req->ref);
2712 req->i915 = dev_priv;
4a570db5 2713 req->engine = engine;
40e895ce
JH
2714 req->ctx = ctx;
2715 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2716
2717 if (i915.enable_execlists)
40e895ce 2718 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2719 else
eed29a5b 2720 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2721 if (ret) {
2722 i915_gem_context_unreference(req->ctx);
9a0c1e27 2723 goto err;
40e895ce 2724 }
6689cb2b 2725
29b1b415
JH
2726 /*
2727 * Reserve space in the ring buffer for all the commands required to
2728 * eventually emit this request. This is to guarantee that the
2729 * i915_add_request() call can't fail. Note that the reserve may need
2730 * to be redone if the request is not actually submitted straight
2731 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2732 */
ccd98fe4
JH
2733 if (i915.enable_execlists)
2734 ret = intel_logical_ring_reserve_space(req);
2735 else
2736 ret = intel_ring_reserve_space(req);
2737 if (ret) {
2738 /*
2739 * At this point, the request is fully allocated even if not
2740 * fully prepared. Thus it can be cleaned up using the proper
2741 * free code.
2742 */
2743 i915_gem_request_cancel(req);
2744 return ret;
2745 }
29b1b415 2746
bccca494 2747 *req_out = req;
6689cb2b 2748 return 0;
9a0c1e27
CW
2749
2750err:
2751 kmem_cache_free(dev_priv->requests, req);
2752 return ret;
0e50e96b
MK
2753}
2754
26827088
DG
2755/**
2756 * i915_gem_request_alloc - allocate a request structure
2757 *
2758 * @engine: engine that we wish to issue the request on.
2759 * @ctx: context that the request will be associated with.
2760 * This can be NULL if the request is not directly related to
2761 * any specific user context, in which case this function will
2762 * choose an appropriate context to use.
2763 *
2764 * Returns a pointer to the allocated request if successful,
2765 * or an error code if not.
2766 */
2767struct drm_i915_gem_request *
2768i915_gem_request_alloc(struct intel_engine_cs *engine,
2769 struct intel_context *ctx)
2770{
2771 struct drm_i915_gem_request *req;
2772 int err;
2773
2774 if (ctx == NULL)
ed54c1a1 2775 ctx = to_i915(engine->dev)->kernel_context;
26827088
DG
2776 err = __i915_gem_request_alloc(engine, ctx, &req);
2777 return err ? ERR_PTR(err) : req;
2778}
2779
29b1b415
JH
2780void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2781{
2782 intel_ring_reserved_space_cancel(req->ringbuf);
2783
2784 i915_gem_request_unreference(req);
2785}
2786
8d9fc7fd 2787struct drm_i915_gem_request *
0bc40be8 2788i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2789{
4db080f9
CW
2790 struct drm_i915_gem_request *request;
2791
0bc40be8 2792 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2793 if (i915_gem_request_completed(request, false))
4db080f9 2794 continue;
aa60c664 2795
b6b0fac0 2796 return request;
4db080f9 2797 }
b6b0fac0
MK
2798
2799 return NULL;
2800}
2801
666796da 2802static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2803 struct intel_engine_cs *engine)
b6b0fac0
MK
2804{
2805 struct drm_i915_gem_request *request;
2806 bool ring_hung;
2807
0bc40be8 2808 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2809
2810 if (request == NULL)
2811 return;
2812
0bc40be8 2813 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2814
939fd762 2815 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2816
0bc40be8 2817 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2818 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2819}
aa60c664 2820
666796da 2821static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2822 struct intel_engine_cs *engine)
4db080f9 2823{
608c1a52
CW
2824 struct intel_ringbuffer *buffer;
2825
0bc40be8 2826 while (!list_empty(&engine->active_list)) {
05394f39 2827 struct drm_i915_gem_object *obj;
9375e446 2828
0bc40be8 2829 obj = list_first_entry(&engine->active_list,
05394f39 2830 struct drm_i915_gem_object,
117897f4 2831 engine_list[engine->id]);
9375e446 2832
0bc40be8 2833 i915_gem_object_retire__read(obj, engine->id);
673a394b 2834 }
1d62beea 2835
dcb4c12a
OM
2836 /*
2837 * Clear the execlists queue up before freeing the requests, as those
2838 * are the ones that keep the context and ringbuffer backing objects
2839 * pinned in place.
2840 */
dcb4c12a 2841
7de1691a 2842 if (i915.enable_execlists) {
0bc40be8 2843 spin_lock_irq(&engine->execlist_lock);
1197b4f2 2844
c5baa566 2845 /* list_splice_tail_init checks for empty lists */
0bc40be8
TU
2846 list_splice_tail_init(&engine->execlist_queue,
2847 &engine->execlist_retired_req_list);
1197b4f2 2848
0bc40be8
TU
2849 spin_unlock_irq(&engine->execlist_lock);
2850 intel_execlists_retire_requests(engine);
dcb4c12a
OM
2851 }
2852
1d62beea
BW
2853 /*
2854 * We must free the requests after all the corresponding objects have
2855 * been moved off active lists. Which is the same order as the normal
2856 * retire_requests function does. This is important if object hold
2857 * implicit references on things like e.g. ppgtt address spaces through
2858 * the request.
2859 */
0bc40be8 2860 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2861 struct drm_i915_gem_request *request;
2862
0bc40be8 2863 request = list_first_entry(&engine->request_list,
1d62beea
BW
2864 struct drm_i915_gem_request,
2865 list);
2866
b4716185 2867 i915_gem_request_retire(request);
1d62beea 2868 }
608c1a52
CW
2869
2870 /* Having flushed all requests from all queues, we know that all
2871 * ringbuffers must now be empty. However, since we do not reclaim
2872 * all space when retiring the request (to prevent HEADs colliding
2873 * with rapid ringbuffer wraparound) the amount of available space
2874 * upon reset is less than when we start. Do one more pass over
2875 * all the ringbuffers to reset last_retired_head.
2876 */
0bc40be8 2877 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2878 buffer->last_retired_head = buffer->tail;
2879 intel_ring_update_space(buffer);
2880 }
673a394b
EA
2881}
2882
069efc1d 2883void i915_gem_reset(struct drm_device *dev)
673a394b 2884{
77f01230 2885 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2886 struct intel_engine_cs *engine;
673a394b 2887
4db080f9
CW
2888 /*
2889 * Before we free the objects from the requests, we need to inspect
2890 * them for finding the guilty party. As the requests only borrow
2891 * their reference to the objects, the inspection must be done first.
2892 */
b4ac5afc 2893 for_each_engine(engine, dev_priv)
666796da 2894 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2895
b4ac5afc 2896 for_each_engine(engine, dev_priv)
666796da 2897 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2898
acce9ffa
BW
2899 i915_gem_context_reset(dev);
2900
19b2dbde 2901 i915_gem_restore_fences(dev);
b4716185
CW
2902
2903 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2904}
2905
2906/**
2907 * This function clears the request list as sequence numbers are passed.
2908 */
1cf0ba14 2909void
0bc40be8 2910i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2911{
0bc40be8 2912 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2913
832a3aad
CW
2914 /* Retire requests first as we use it above for the early return.
2915 * If we retire requests last, we may use a later seqno and so clear
2916 * the requests lists without clearing the active list, leading to
2917 * confusion.
e9103038 2918 */
0bc40be8 2919 while (!list_empty(&engine->request_list)) {
673a394b 2920 struct drm_i915_gem_request *request;
673a394b 2921
0bc40be8 2922 request = list_first_entry(&engine->request_list,
673a394b
EA
2923 struct drm_i915_gem_request,
2924 list);
673a394b 2925
1b5a433a 2926 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2927 break;
2928
b4716185 2929 i915_gem_request_retire(request);
b84d5f0c 2930 }
673a394b 2931
832a3aad
CW
2932 /* Move any buffers on the active list that are no longer referenced
2933 * by the ringbuffer to the flushing/inactive lists as appropriate,
2934 * before we free the context associated with the requests.
2935 */
0bc40be8 2936 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2937 struct drm_i915_gem_object *obj;
2938
0bc40be8
TU
2939 obj = list_first_entry(&engine->active_list,
2940 struct drm_i915_gem_object,
117897f4 2941 engine_list[engine->id]);
832a3aad 2942
0bc40be8 2943 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2944 break;
2945
0bc40be8 2946 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2947 }
2948
0bc40be8
TU
2949 if (unlikely(engine->trace_irq_req &&
2950 i915_gem_request_completed(engine->trace_irq_req, true))) {
2951 engine->irq_put(engine);
2952 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 2953 }
23bc5982 2954
0bc40be8 2955 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
2956}
2957
b29c19b6 2958bool
b09a1fec
CW
2959i915_gem_retire_requests(struct drm_device *dev)
2960{
3e31c6c0 2961 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2962 struct intel_engine_cs *engine;
b29c19b6 2963 bool idle = true;
b09a1fec 2964
b4ac5afc 2965 for_each_engine(engine, dev_priv) {
e2f80391
TU
2966 i915_gem_retire_requests_ring(engine);
2967 idle &= list_empty(&engine->request_list);
c86ee3a9 2968 if (i915.enable_execlists) {
e2f80391
TU
2969 spin_lock_irq(&engine->execlist_lock);
2970 idle &= list_empty(&engine->execlist_queue);
2971 spin_unlock_irq(&engine->execlist_lock);
c86ee3a9 2972
e2f80391 2973 intel_execlists_retire_requests(engine);
c86ee3a9 2974 }
b29c19b6
CW
2975 }
2976
2977 if (idle)
2978 mod_delayed_work(dev_priv->wq,
2979 &dev_priv->mm.idle_work,
2980 msecs_to_jiffies(100));
2981
2982 return idle;
b09a1fec
CW
2983}
2984
75ef9da2 2985static void
673a394b
EA
2986i915_gem_retire_work_handler(struct work_struct *work)
2987{
b29c19b6
CW
2988 struct drm_i915_private *dev_priv =
2989 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2990 struct drm_device *dev = dev_priv->dev;
0a58705b 2991 bool idle;
673a394b 2992
891b48cf 2993 /* Come back later if the device is busy... */
b29c19b6
CW
2994 idle = false;
2995 if (mutex_trylock(&dev->struct_mutex)) {
2996 idle = i915_gem_retire_requests(dev);
2997 mutex_unlock(&dev->struct_mutex);
673a394b 2998 }
b29c19b6 2999 if (!idle)
bcb45086
CW
3000 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3001 round_jiffies_up_relative(HZ));
b29c19b6 3002}
0a58705b 3003
b29c19b6
CW
3004static void
3005i915_gem_idle_work_handler(struct work_struct *work)
3006{
3007 struct drm_i915_private *dev_priv =
3008 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3009 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3010 struct intel_engine_cs *engine;
b29c19b6 3011
b4ac5afc
DG
3012 for_each_engine(engine, dev_priv)
3013 if (!list_empty(&engine->request_list))
423795cb 3014 return;
35c94185 3015
30ecad77 3016 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3017 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3018 * by dev->struct_mutex. */
3019
35c94185
CW
3020 intel_mark_idle(dev);
3021
3022 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3023 for_each_engine(engine, dev_priv)
e2f80391 3024 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3025
35c94185
CW
3026 mutex_unlock(&dev->struct_mutex);
3027 }
673a394b
EA
3028}
3029
30dfebf3
DV
3030/**
3031 * Ensures that an object will eventually get non-busy by flushing any required
3032 * write domains, emitting any outstanding lazy request and retiring and
3033 * completed requests.
3034 */
3035static int
3036i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3037{
a5ac0f90 3038 int i;
b4716185
CW
3039
3040 if (!obj->active)
3041 return 0;
30dfebf3 3042
666796da 3043 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3044 struct drm_i915_gem_request *req;
41c52415 3045
b4716185
CW
3046 req = obj->last_read_req[i];
3047 if (req == NULL)
3048 continue;
3049
3050 if (list_empty(&req->list))
3051 goto retire;
3052
b4716185
CW
3053 if (i915_gem_request_completed(req, true)) {
3054 __i915_gem_request_retire__upto(req);
3055retire:
3056 i915_gem_object_retire__read(obj, i);
3057 }
30dfebf3
DV
3058 }
3059
3060 return 0;
3061}
3062
23ba4fd0
BW
3063/**
3064 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3065 * @DRM_IOCTL_ARGS: standard ioctl arguments
3066 *
3067 * Returns 0 if successful, else an error is returned with the remaining time in
3068 * the timeout parameter.
3069 * -ETIME: object is still busy after timeout
3070 * -ERESTARTSYS: signal interrupted the wait
3071 * -ENONENT: object doesn't exist
3072 * Also possible, but rare:
3073 * -EAGAIN: GPU wedged
3074 * -ENOMEM: damn
3075 * -ENODEV: Internal IRQ fail
3076 * -E?: The add request failed
3077 *
3078 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3079 * non-zero timeout parameter the wait ioctl will wait for the given number of
3080 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3081 * without holding struct_mutex the object may become re-busied before this
3082 * function completes. A similar but shorter * race condition exists in the busy
3083 * ioctl
3084 */
3085int
3086i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3087{
3e31c6c0 3088 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3089 struct drm_i915_gem_wait *args = data;
3090 struct drm_i915_gem_object *obj;
666796da 3091 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
f69061be 3092 unsigned reset_counter;
b4716185
CW
3093 int i, n = 0;
3094 int ret;
23ba4fd0 3095
11b5d511
DV
3096 if (args->flags != 0)
3097 return -EINVAL;
3098
23ba4fd0
BW
3099 ret = i915_mutex_lock_interruptible(dev);
3100 if (ret)
3101 return ret;
3102
3103 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3104 if (&obj->base == NULL) {
3105 mutex_unlock(&dev->struct_mutex);
3106 return -ENOENT;
3107 }
3108
30dfebf3
DV
3109 /* Need to make sure the object gets inactive eventually. */
3110 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3111 if (ret)
3112 goto out;
3113
b4716185 3114 if (!obj->active)
97b2a6a1 3115 goto out;
23ba4fd0 3116
23ba4fd0 3117 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3118 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3119 */
762e4583 3120 if (args->timeout_ns == 0) {
23ba4fd0
BW
3121 ret = -ETIME;
3122 goto out;
3123 }
3124
3125 drm_gem_object_unreference(&obj->base);
f69061be 3126 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185 3127
666796da 3128 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3129 if (obj->last_read_req[i] == NULL)
3130 continue;
3131
3132 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3133 }
3134
23ba4fd0
BW
3135 mutex_unlock(&dev->struct_mutex);
3136
b4716185
CW
3137 for (i = 0; i < n; i++) {
3138 if (ret == 0)
3139 ret = __i915_wait_request(req[i], reset_counter, true,
3140 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3141 to_rps_client(file));
b4716185
CW
3142 i915_gem_request_unreference__unlocked(req[i]);
3143 }
ff865885 3144 return ret;
23ba4fd0
BW
3145
3146out:
3147 drm_gem_object_unreference(&obj->base);
3148 mutex_unlock(&dev->struct_mutex);
3149 return ret;
3150}
3151
b4716185
CW
3152static int
3153__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3154 struct intel_engine_cs *to,
91af127f
JH
3155 struct drm_i915_gem_request *from_req,
3156 struct drm_i915_gem_request **to_req)
b4716185
CW
3157{
3158 struct intel_engine_cs *from;
3159 int ret;
3160
666796da 3161 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3162 if (to == from)
3163 return 0;
3164
91af127f 3165 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3166 return 0;
3167
b4716185 3168 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3169 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3170 ret = __i915_wait_request(from_req,
a6f766f3
CW
3171 atomic_read(&i915->gpu_error.reset_counter),
3172 i915->mm.interruptible,
3173 NULL,
3174 &i915->rps.semaphores);
b4716185
CW
3175 if (ret)
3176 return ret;
3177
91af127f 3178 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3179 } else {
3180 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3181 u32 seqno = i915_gem_request_get_seqno(from_req);
3182
3183 WARN_ON(!to_req);
b4716185
CW
3184
3185 if (seqno <= from->semaphore.sync_seqno[idx])
3186 return 0;
3187
91af127f 3188 if (*to_req == NULL) {
26827088
DG
3189 struct drm_i915_gem_request *req;
3190
3191 req = i915_gem_request_alloc(to, NULL);
3192 if (IS_ERR(req))
3193 return PTR_ERR(req);
3194
3195 *to_req = req;
91af127f
JH
3196 }
3197
599d924c
JH
3198 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3199 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3200 if (ret)
3201 return ret;
3202
3203 /* We use last_read_req because sync_to()
3204 * might have just caused seqno wrap under
3205 * the radar.
3206 */
3207 from->semaphore.sync_seqno[idx] =
3208 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3209 }
3210
3211 return 0;
3212}
3213
5816d648
BW
3214/**
3215 * i915_gem_object_sync - sync an object to a ring.
3216 *
3217 * @obj: object which may be in use on another ring.
3218 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3219 * @to_req: request we wish to use the object for. See below.
3220 * This will be allocated and returned if a request is
3221 * required but not passed in.
5816d648
BW
3222 *
3223 * This code is meant to abstract object synchronization with the GPU.
3224 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3225 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3226 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3227 * into a buffer at any time, but multiple readers. To ensure each has
3228 * a coherent view of memory, we must:
3229 *
3230 * - If there is an outstanding write request to the object, the new
3231 * request must wait for it to complete (either CPU or in hw, requests
3232 * on the same ring will be naturally ordered).
3233 *
3234 * - If we are a write request (pending_write_domain is set), the new
3235 * request must wait for outstanding read requests to complete.
5816d648 3236 *
91af127f
JH
3237 * For CPU synchronisation (NULL to) no request is required. For syncing with
3238 * rings to_req must be non-NULL. However, a request does not have to be
3239 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3240 * request will be allocated automatically and returned through *to_req. Note
3241 * that it is not guaranteed that commands will be emitted (because the system
3242 * might already be idle). Hence there is no need to create a request that
3243 * might never have any work submitted. Note further that if a request is
3244 * returned in *to_req, it is the responsibility of the caller to submit
3245 * that request (after potentially adding more work to it).
3246 *
5816d648
BW
3247 * Returns 0 if successful, else propagates up the lower layer error.
3248 */
2911a35b
BW
3249int
3250i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3251 struct intel_engine_cs *to,
3252 struct drm_i915_gem_request **to_req)
2911a35b 3253{
b4716185 3254 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3255 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3256 int ret, i, n;
41c52415 3257
b4716185 3258 if (!obj->active)
2911a35b
BW
3259 return 0;
3260
b4716185
CW
3261 if (to == NULL)
3262 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3263
b4716185
CW
3264 n = 0;
3265 if (readonly) {
3266 if (obj->last_write_req)
3267 req[n++] = obj->last_write_req;
3268 } else {
666796da 3269 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3270 if (obj->last_read_req[i])
3271 req[n++] = obj->last_read_req[i];
3272 }
3273 for (i = 0; i < n; i++) {
91af127f 3274 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3275 if (ret)
3276 return ret;
3277 }
2911a35b 3278
b4716185 3279 return 0;
2911a35b
BW
3280}
3281
b5ffc9bc
CW
3282static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3283{
3284 u32 old_write_domain, old_read_domains;
3285
b5ffc9bc
CW
3286 /* Force a pagefault for domain tracking on next user access */
3287 i915_gem_release_mmap(obj);
3288
b97c3d9c
KP
3289 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3290 return;
3291
97c809fd
CW
3292 /* Wait for any direct GTT access to complete */
3293 mb();
3294
b5ffc9bc
CW
3295 old_read_domains = obj->base.read_domains;
3296 old_write_domain = obj->base.write_domain;
3297
3298 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3299 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3300
3301 trace_i915_gem_object_change_domain(obj,
3302 old_read_domains,
3303 old_write_domain);
3304}
3305
e9f24d5f 3306static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3307{
07fe0b12 3308 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3309 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3310 int ret;
673a394b 3311
1c7f4bca 3312 if (list_empty(&vma->obj_link))
673a394b
EA
3313 return 0;
3314
0ff501cb
DV
3315 if (!drm_mm_node_allocated(&vma->node)) {
3316 i915_gem_vma_destroy(vma);
0ff501cb
DV
3317 return 0;
3318 }
433544bd 3319
d7f46fc4 3320 if (vma->pin_count)
31d8d651 3321 return -EBUSY;
673a394b 3322
c4670ad0
CW
3323 BUG_ON(obj->pages == NULL);
3324
e9f24d5f
TU
3325 if (wait) {
3326 ret = i915_gem_object_wait_rendering(obj, false);
3327 if (ret)
3328 return ret;
3329 }
a8198eea 3330
596c5923 3331 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3332 i915_gem_object_finish_gtt(obj);
5323fd04 3333
8b1bc9b4
DV
3334 /* release the fence reg _after_ flushing */
3335 ret = i915_gem_object_put_fence(obj);
3336 if (ret)
3337 return ret;
3338 }
96b47b65 3339
07fe0b12 3340 trace_i915_vma_unbind(vma);
db53a302 3341
777dc5bb 3342 vma->vm->unbind_vma(vma);
5e562f1d 3343 vma->bound = 0;
6f65e29a 3344
1c7f4bca 3345 list_del_init(&vma->vm_link);
596c5923 3346 if (vma->is_ggtt) {
fe14d5f4
TU
3347 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3348 obj->map_and_fenceable = false;
3349 } else if (vma->ggtt_view.pages) {
3350 sg_free_table(vma->ggtt_view.pages);
3351 kfree(vma->ggtt_view.pages);
fe14d5f4 3352 }
016a65a3 3353 vma->ggtt_view.pages = NULL;
fe14d5f4 3354 }
673a394b 3355
2f633156
BW
3356 drm_mm_remove_node(&vma->node);
3357 i915_gem_vma_destroy(vma);
3358
3359 /* Since the unbound list is global, only move to that list if
b93dab6e 3360 * no more VMAs exist. */
e2273302 3361 if (list_empty(&obj->vma_list))
2f633156 3362 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3363
70903c3b
CW
3364 /* And finally now the object is completely decoupled from this vma,
3365 * we can drop its hold on the backing storage and allow it to be
3366 * reaped by the shrinker.
3367 */
3368 i915_gem_object_unpin_pages(obj);
3369
88241785 3370 return 0;
54cf91dc
CW
3371}
3372
e9f24d5f
TU
3373int i915_vma_unbind(struct i915_vma *vma)
3374{
3375 return __i915_vma_unbind(vma, true);
3376}
3377
3378int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3379{
3380 return __i915_vma_unbind(vma, false);
3381}
3382
b2da9fe5 3383int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3384{
3e31c6c0 3385 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3386 struct intel_engine_cs *engine;
b4ac5afc 3387 int ret;
4df2faf4 3388
4df2faf4 3389 /* Flush everything onto the inactive list. */
b4ac5afc 3390 for_each_engine(engine, dev_priv) {
ecdb5fd8 3391 if (!i915.enable_execlists) {
73cfa865
JH
3392 struct drm_i915_gem_request *req;
3393
e2f80391 3394 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3395 if (IS_ERR(req))
3396 return PTR_ERR(req);
73cfa865 3397
ba01cc93 3398 ret = i915_switch_context(req);
73cfa865
JH
3399 if (ret) {
3400 i915_gem_request_cancel(req);
3401 return ret;
3402 }
3403
75289874 3404 i915_add_request_no_flush(req);
ecdb5fd8 3405 }
b6c7488d 3406
666796da 3407 ret = intel_engine_idle(engine);
1ec14ad3
CW
3408 if (ret)
3409 return ret;
3410 }
4df2faf4 3411
b4716185 3412 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3413 return 0;
4df2faf4
DV
3414}
3415
4144f9b5 3416static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3417 unsigned long cache_level)
3418{
4144f9b5 3419 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3420 struct drm_mm_node *other;
3421
4144f9b5
CW
3422 /*
3423 * On some machines we have to be careful when putting differing types
3424 * of snoopable memory together to avoid the prefetcher crossing memory
3425 * domains and dying. During vm initialisation, we decide whether or not
3426 * these constraints apply and set the drm_mm.color_adjust
3427 * appropriately.
42d6ab48 3428 */
4144f9b5 3429 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3430 return true;
3431
c6cfb325 3432 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3433 return true;
3434
3435 if (list_empty(&gtt_space->node_list))
3436 return true;
3437
3438 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3439 if (other->allocated && !other->hole_follows && other->color != cache_level)
3440 return false;
3441
3442 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3443 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3444 return false;
3445
3446 return true;
3447}
3448
673a394b 3449/**
91e6711e
JL
3450 * Finds free space in the GTT aperture and binds the object or a view of it
3451 * there.
673a394b 3452 */
262de145 3453static struct i915_vma *
07fe0b12
BW
3454i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3455 struct i915_address_space *vm,
ec7adb6e 3456 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3457 unsigned alignment,
ec7adb6e 3458 uint64_t flags)
673a394b 3459{
05394f39 3460 struct drm_device *dev = obj->base.dev;
3e31c6c0 3461 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3462 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3463 u32 search_flag, alloc_flag;
3464 u64 start, end;
65bd342f 3465 u64 size, fence_size;
2f633156 3466 struct i915_vma *vma;
07f73f69 3467 int ret;
673a394b 3468
91e6711e
JL
3469 if (i915_is_ggtt(vm)) {
3470 u32 view_size;
3471
3472 if (WARN_ON(!ggtt_view))
3473 return ERR_PTR(-EINVAL);
ec7adb6e 3474
91e6711e
JL
3475 view_size = i915_ggtt_view_size(obj, ggtt_view);
3476
3477 fence_size = i915_gem_get_gtt_size(dev,
3478 view_size,
3479 obj->tiling_mode);
3480 fence_alignment = i915_gem_get_gtt_alignment(dev,
3481 view_size,
3482 obj->tiling_mode,
3483 true);
3484 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3485 view_size,
3486 obj->tiling_mode,
3487 false);
3488 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3489 } else {
3490 fence_size = i915_gem_get_gtt_size(dev,
3491 obj->base.size,
3492 obj->tiling_mode);
3493 fence_alignment = i915_gem_get_gtt_alignment(dev,
3494 obj->base.size,
3495 obj->tiling_mode,
3496 true);
3497 unfenced_alignment =
3498 i915_gem_get_gtt_alignment(dev,
3499 obj->base.size,
3500 obj->tiling_mode,
3501 false);
3502 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3503 }
a00b10c3 3504
101b506a
MT
3505 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3506 end = vm->total;
3507 if (flags & PIN_MAPPABLE)
62106b4f 3508 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3509 if (flags & PIN_ZONE_4G)
48ea1e32 3510 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3511
673a394b 3512 if (alignment == 0)
1ec9e26d 3513 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3514 unfenced_alignment;
1ec9e26d 3515 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3516 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3517 ggtt_view ? ggtt_view->type : 0,
3518 alignment);
262de145 3519 return ERR_PTR(-EINVAL);
673a394b
EA
3520 }
3521
91e6711e
JL
3522 /* If binding the object/GGTT view requires more space than the entire
3523 * aperture has, reject it early before evicting everything in a vain
3524 * attempt to find space.
654fc607 3525 */
91e6711e 3526 if (size > end) {
65bd342f 3527 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3528 ggtt_view ? ggtt_view->type : 0,
3529 size,
1ec9e26d 3530 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3531 end);
262de145 3532 return ERR_PTR(-E2BIG);
654fc607
CW
3533 }
3534
37e680a1 3535 ret = i915_gem_object_get_pages(obj);
6c085a72 3536 if (ret)
262de145 3537 return ERR_PTR(ret);
6c085a72 3538
fbdda6fb
CW
3539 i915_gem_object_pin_pages(obj);
3540
ec7adb6e
JL
3541 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3542 i915_gem_obj_lookup_or_create_vma(obj, vm);
3543
262de145 3544 if (IS_ERR(vma))
bc6bc15b 3545 goto err_unpin;
2f633156 3546
506a8e87
CW
3547 if (flags & PIN_OFFSET_FIXED) {
3548 uint64_t offset = flags & PIN_OFFSET_MASK;
3549
3550 if (offset & (alignment - 1) || offset + size > end) {
3551 ret = -EINVAL;
3552 goto err_free_vma;
3553 }
3554 vma->node.start = offset;
3555 vma->node.size = size;
3556 vma->node.color = obj->cache_level;
3557 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3558 if (ret) {
3559 ret = i915_gem_evict_for_vma(vma);
3560 if (ret == 0)
3561 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3562 }
3563 if (ret)
3564 goto err_free_vma;
101b506a 3565 } else {
506a8e87
CW
3566 if (flags & PIN_HIGH) {
3567 search_flag = DRM_MM_SEARCH_BELOW;
3568 alloc_flag = DRM_MM_CREATE_TOP;
3569 } else {
3570 search_flag = DRM_MM_SEARCH_DEFAULT;
3571 alloc_flag = DRM_MM_CREATE_DEFAULT;
3572 }
101b506a 3573
0a9ae0d7 3574search_free:
506a8e87
CW
3575 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3576 size, alignment,
3577 obj->cache_level,
3578 start, end,
3579 search_flag,
3580 alloc_flag);
3581 if (ret) {
3582 ret = i915_gem_evict_something(dev, vm, size, alignment,
3583 obj->cache_level,
3584 start, end,
3585 flags);
3586 if (ret == 0)
3587 goto search_free;
9731129c 3588
506a8e87
CW
3589 goto err_free_vma;
3590 }
673a394b 3591 }
4144f9b5 3592 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3593 ret = -EINVAL;
bc6bc15b 3594 goto err_remove_node;
673a394b
EA
3595 }
3596
fe14d5f4 3597 trace_i915_vma_bind(vma, flags);
0875546c 3598 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3599 if (ret)
e2273302 3600 goto err_remove_node;
fe14d5f4 3601
35c20a60 3602 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3603 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3604
262de145 3605 return vma;
2f633156 3606
bc6bc15b 3607err_remove_node:
6286ef9b 3608 drm_mm_remove_node(&vma->node);
bc6bc15b 3609err_free_vma:
2f633156 3610 i915_gem_vma_destroy(vma);
262de145 3611 vma = ERR_PTR(ret);
bc6bc15b 3612err_unpin:
2f633156 3613 i915_gem_object_unpin_pages(obj);
262de145 3614 return vma;
673a394b
EA
3615}
3616
000433b6 3617bool
2c22569b
CW
3618i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3619 bool force)
673a394b 3620{
673a394b
EA
3621 /* If we don't have a page list set up, then we're not pinned
3622 * to GPU, and we can ignore the cache flush because it'll happen
3623 * again at bind time.
3624 */
05394f39 3625 if (obj->pages == NULL)
000433b6 3626 return false;
673a394b 3627
769ce464
ID
3628 /*
3629 * Stolen memory is always coherent with the GPU as it is explicitly
3630 * marked as wc by the system, or the system is cache-coherent.
3631 */
6a2c4232 3632 if (obj->stolen || obj->phys_handle)
000433b6 3633 return false;
769ce464 3634
9c23f7fc
CW
3635 /* If the GPU is snooping the contents of the CPU cache,
3636 * we do not need to manually clear the CPU cache lines. However,
3637 * the caches are only snooped when the render cache is
3638 * flushed/invalidated. As we always have to emit invalidations
3639 * and flushes when moving into and out of the RENDER domain, correct
3640 * snooping behaviour occurs naturally as the result of our domain
3641 * tracking.
3642 */
0f71979a
CW
3643 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3644 obj->cache_dirty = true;
000433b6 3645 return false;
0f71979a 3646 }
9c23f7fc 3647
1c5d22f7 3648 trace_i915_gem_object_clflush(obj);
9da3da66 3649 drm_clflush_sg(obj->pages);
0f71979a 3650 obj->cache_dirty = false;
000433b6
CW
3651
3652 return true;
e47c68e9
EA
3653}
3654
3655/** Flushes the GTT write domain for the object if it's dirty. */
3656static void
05394f39 3657i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3658{
1c5d22f7
CW
3659 uint32_t old_write_domain;
3660
05394f39 3661 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3662 return;
3663
63256ec5 3664 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3665 * to it immediately go to main memory as far as we know, so there's
3666 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3667 *
3668 * However, we do have to enforce the order so that all writes through
3669 * the GTT land before any writes to the device, such as updates to
3670 * the GATT itself.
e47c68e9 3671 */
63256ec5
CW
3672 wmb();
3673
05394f39
CW
3674 old_write_domain = obj->base.write_domain;
3675 obj->base.write_domain = 0;
1c5d22f7 3676
de152b62 3677 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3678
1c5d22f7 3679 trace_i915_gem_object_change_domain(obj,
05394f39 3680 obj->base.read_domains,
1c5d22f7 3681 old_write_domain);
e47c68e9
EA
3682}
3683
3684/** Flushes the CPU write domain for the object if it's dirty. */
3685static void
e62b59e4 3686i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3687{
1c5d22f7 3688 uint32_t old_write_domain;
e47c68e9 3689
05394f39 3690 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3691 return;
3692
e62b59e4 3693 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3694 i915_gem_chipset_flush(obj->base.dev);
3695
05394f39
CW
3696 old_write_domain = obj->base.write_domain;
3697 obj->base.write_domain = 0;
1c5d22f7 3698
de152b62 3699 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3700
1c5d22f7 3701 trace_i915_gem_object_change_domain(obj,
05394f39 3702 obj->base.read_domains,
1c5d22f7 3703 old_write_domain);
e47c68e9
EA
3704}
3705
2ef7eeaa
EA
3706/**
3707 * Moves a single object to the GTT read, and possibly write domain.
3708 *
3709 * This function returns when the move is complete, including waiting on
3710 * flushes to occur.
3711 */
79e53945 3712int
2021746e 3713i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3714{
1c5d22f7 3715 uint32_t old_write_domain, old_read_domains;
43566ded 3716 struct i915_vma *vma;
e47c68e9 3717 int ret;
2ef7eeaa 3718
8d7e3de1
CW
3719 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3720 return 0;
3721
0201f1ec 3722 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3723 if (ret)
3724 return ret;
3725
43566ded
CW
3726 /* Flush and acquire obj->pages so that we are coherent through
3727 * direct access in memory with previous cached writes through
3728 * shmemfs and that our cache domain tracking remains valid.
3729 * For example, if the obj->filp was moved to swap without us
3730 * being notified and releasing the pages, we would mistakenly
3731 * continue to assume that the obj remained out of the CPU cached
3732 * domain.
3733 */
3734 ret = i915_gem_object_get_pages(obj);
3735 if (ret)
3736 return ret;
3737
e62b59e4 3738 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3739
d0a57789
CW
3740 /* Serialise direct access to this object with the barriers for
3741 * coherent writes from the GPU, by effectively invalidating the
3742 * GTT domain upon first access.
3743 */
3744 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3745 mb();
3746
05394f39
CW
3747 old_write_domain = obj->base.write_domain;
3748 old_read_domains = obj->base.read_domains;
1c5d22f7 3749
e47c68e9
EA
3750 /* It should now be out of any other write domains, and we can update
3751 * the domain values for our changes.
3752 */
05394f39
CW
3753 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3754 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3755 if (write) {
05394f39
CW
3756 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3757 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3758 obj->dirty = 1;
2ef7eeaa
EA
3759 }
3760
1c5d22f7
CW
3761 trace_i915_gem_object_change_domain(obj,
3762 old_read_domains,
3763 old_write_domain);
3764
8325a09d 3765 /* And bump the LRU for this access */
43566ded
CW
3766 vma = i915_gem_obj_to_ggtt(obj);
3767 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3768 list_move_tail(&vma->vm_link,
62106b4f 3769 &to_i915(obj->base.dev)->ggtt.base.inactive_list);
8325a09d 3770
e47c68e9
EA
3771 return 0;
3772}
3773
ef55f92a
CW
3774/**
3775 * Changes the cache-level of an object across all VMA.
3776 *
3777 * After this function returns, the object will be in the new cache-level
3778 * across all GTT and the contents of the backing storage will be coherent,
3779 * with respect to the new cache-level. In order to keep the backing storage
3780 * coherent for all users, we only allow a single cache level to be set
3781 * globally on the object and prevent it from being changed whilst the
3782 * hardware is reading from the object. That is if the object is currently
3783 * on the scanout it will be set to uncached (or equivalent display
3784 * cache coherency) and all non-MOCS GPU access will also be uncached so
3785 * that all direct access to the scanout remains coherent.
3786 */
e4ffd173
CW
3787int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3788 enum i915_cache_level cache_level)
3789{
7bddb01f 3790 struct drm_device *dev = obj->base.dev;
df6f783a 3791 struct i915_vma *vma, *next;
ef55f92a 3792 bool bound = false;
ed75a55b 3793 int ret = 0;
e4ffd173
CW
3794
3795 if (obj->cache_level == cache_level)
ed75a55b 3796 goto out;
e4ffd173 3797
ef55f92a
CW
3798 /* Inspect the list of currently bound VMA and unbind any that would
3799 * be invalid given the new cache-level. This is principally to
3800 * catch the issue of the CS prefetch crossing page boundaries and
3801 * reading an invalid PTE on older architectures.
3802 */
1c7f4bca 3803 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3804 if (!drm_mm_node_allocated(&vma->node))
3805 continue;
3806
3807 if (vma->pin_count) {
3808 DRM_DEBUG("can not change the cache level of pinned objects\n");
3809 return -EBUSY;
3810 }
3811
4144f9b5 3812 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3813 ret = i915_vma_unbind(vma);
3089c6f2
BW
3814 if (ret)
3815 return ret;
ef55f92a
CW
3816 } else
3817 bound = true;
42d6ab48
CW
3818 }
3819
ef55f92a
CW
3820 /* We can reuse the existing drm_mm nodes but need to change the
3821 * cache-level on the PTE. We could simply unbind them all and
3822 * rebind with the correct cache-level on next use. However since
3823 * we already have a valid slot, dma mapping, pages etc, we may as
3824 * rewrite the PTE in the belief that doing so tramples upon less
3825 * state and so involves less work.
3826 */
3827 if (bound) {
3828 /* Before we change the PTE, the GPU must not be accessing it.
3829 * If we wait upon the object, we know that all the bound
3830 * VMA are no longer active.
3831 */
2e2f351d 3832 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3833 if (ret)
3834 return ret;
3835
ef55f92a
CW
3836 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3837 /* Access to snoopable pages through the GTT is
3838 * incoherent and on some machines causes a hard
3839 * lockup. Relinquish the CPU mmaping to force
3840 * userspace to refault in the pages and we can
3841 * then double check if the GTT mapping is still
3842 * valid for that pointer access.
3843 */
3844 i915_gem_release_mmap(obj);
3845
3846 /* As we no longer need a fence for GTT access,
3847 * we can relinquish it now (and so prevent having
3848 * to steal a fence from someone else on the next
3849 * fence request). Note GPU activity would have
3850 * dropped the fence as all snoopable access is
3851 * supposed to be linear.
3852 */
e4ffd173
CW
3853 ret = i915_gem_object_put_fence(obj);
3854 if (ret)
3855 return ret;
ef55f92a
CW
3856 } else {
3857 /* We either have incoherent backing store and
3858 * so no GTT access or the architecture is fully
3859 * coherent. In such cases, existing GTT mmaps
3860 * ignore the cache bit in the PTE and we can
3861 * rewrite it without confusing the GPU or having
3862 * to force userspace to fault back in its mmaps.
3863 */
e4ffd173
CW
3864 }
3865
1c7f4bca 3866 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3867 if (!drm_mm_node_allocated(&vma->node))
3868 continue;
3869
3870 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3871 if (ret)
3872 return ret;
3873 }
e4ffd173
CW
3874 }
3875
1c7f4bca 3876 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3877 vma->node.color = cache_level;
3878 obj->cache_level = cache_level;
3879
ed75a55b 3880out:
ef55f92a
CW
3881 /* Flush the dirty CPU caches to the backing storage so that the
3882 * object is now coherent at its new cache level (with respect
3883 * to the access domain).
3884 */
0f71979a
CW
3885 if (obj->cache_dirty &&
3886 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3887 cpu_write_needs_clflush(obj)) {
3888 if (i915_gem_clflush_object(obj, true))
3889 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3890 }
3891
e4ffd173
CW
3892 return 0;
3893}
3894
199adf40
BW
3895int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3896 struct drm_file *file)
e6994aee 3897{
199adf40 3898 struct drm_i915_gem_caching *args = data;
e6994aee 3899 struct drm_i915_gem_object *obj;
e6994aee
CW
3900
3901 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3902 if (&obj->base == NULL)
3903 return -ENOENT;
e6994aee 3904
651d794f
CW
3905 switch (obj->cache_level) {
3906 case I915_CACHE_LLC:
3907 case I915_CACHE_L3_LLC:
3908 args->caching = I915_CACHING_CACHED;
3909 break;
3910
4257d3ba
CW
3911 case I915_CACHE_WT:
3912 args->caching = I915_CACHING_DISPLAY;
3913 break;
3914
651d794f
CW
3915 default:
3916 args->caching = I915_CACHING_NONE;
3917 break;
3918 }
e6994aee 3919
432be69d
CW
3920 drm_gem_object_unreference_unlocked(&obj->base);
3921 return 0;
e6994aee
CW
3922}
3923
199adf40
BW
3924int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3925 struct drm_file *file)
e6994aee 3926{
fd0fe6ac 3927 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3928 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3929 struct drm_i915_gem_object *obj;
3930 enum i915_cache_level level;
3931 int ret;
3932
199adf40
BW
3933 switch (args->caching) {
3934 case I915_CACHING_NONE:
e6994aee
CW
3935 level = I915_CACHE_NONE;
3936 break;
199adf40 3937 case I915_CACHING_CACHED:
e5756c10
ID
3938 /*
3939 * Due to a HW issue on BXT A stepping, GPU stores via a
3940 * snooped mapping may leave stale data in a corresponding CPU
3941 * cacheline, whereas normally such cachelines would get
3942 * invalidated.
3943 */
ca377809 3944 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3945 return -ENODEV;
3946
e6994aee
CW
3947 level = I915_CACHE_LLC;
3948 break;
4257d3ba
CW
3949 case I915_CACHING_DISPLAY:
3950 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3951 break;
e6994aee
CW
3952 default:
3953 return -EINVAL;
3954 }
3955
fd0fe6ac
ID
3956 intel_runtime_pm_get(dev_priv);
3957
3bc2913e
BW
3958 ret = i915_mutex_lock_interruptible(dev);
3959 if (ret)
fd0fe6ac 3960 goto rpm_put;
3bc2913e 3961
e6994aee
CW
3962 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3963 if (&obj->base == NULL) {
3964 ret = -ENOENT;
3965 goto unlock;
3966 }
3967
3968 ret = i915_gem_object_set_cache_level(obj, level);
3969
3970 drm_gem_object_unreference(&obj->base);
3971unlock:
3972 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3973rpm_put:
3974 intel_runtime_pm_put(dev_priv);
3975
e6994aee
CW
3976 return ret;
3977}
3978
b9241ea3 3979/*
2da3b9b9
CW
3980 * Prepare buffer for display plane (scanout, cursors, etc).
3981 * Can be called from an uninterruptible phase (modesetting) and allows
3982 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3983 */
3984int
2da3b9b9
CW
3985i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3986 u32 alignment,
e6617330 3987 const struct i915_ggtt_view *view)
b9241ea3 3988{
2da3b9b9 3989 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3990 int ret;
3991
cc98b413
CW
3992 /* Mark the pin_display early so that we account for the
3993 * display coherency whilst setting up the cache domains.
3994 */
8a0c39b1 3995 obj->pin_display++;
cc98b413 3996
a7ef0640
EA
3997 /* The display engine is not coherent with the LLC cache on gen6. As
3998 * a result, we make sure that the pinning that is about to occur is
3999 * done with uncached PTEs. This is lowest common denominator for all
4000 * chipsets.
4001 *
4002 * However for gen6+, we could do better by using the GFDT bit instead
4003 * of uncaching, which would allow us to flush all the LLC-cached data
4004 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4005 */
651d794f
CW
4006 ret = i915_gem_object_set_cache_level(obj,
4007 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4008 if (ret)
cc98b413 4009 goto err_unpin_display;
a7ef0640 4010
2da3b9b9
CW
4011 /* As the user may map the buffer once pinned in the display plane
4012 * (e.g. libkms for the bootup splash), we have to ensure that we
4013 * always use map_and_fenceable for all scanout buffers.
4014 */
50470bb0
TU
4015 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4016 view->type == I915_GGTT_VIEW_NORMAL ?
4017 PIN_MAPPABLE : 0);
2da3b9b9 4018 if (ret)
cc98b413 4019 goto err_unpin_display;
2da3b9b9 4020
e62b59e4 4021 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4022
2da3b9b9 4023 old_write_domain = obj->base.write_domain;
05394f39 4024 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4025
4026 /* It should now be out of any other write domains, and we can update
4027 * the domain values for our changes.
4028 */
e5f1d962 4029 obj->base.write_domain = 0;
05394f39 4030 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4031
4032 trace_i915_gem_object_change_domain(obj,
4033 old_read_domains,
2da3b9b9 4034 old_write_domain);
b9241ea3
ZW
4035
4036 return 0;
cc98b413
CW
4037
4038err_unpin_display:
8a0c39b1 4039 obj->pin_display--;
cc98b413
CW
4040 return ret;
4041}
4042
4043void
e6617330
TU
4044i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4045 const struct i915_ggtt_view *view)
cc98b413 4046{
8a0c39b1
TU
4047 if (WARN_ON(obj->pin_display == 0))
4048 return;
4049
e6617330
TU
4050 i915_gem_object_ggtt_unpin_view(obj, view);
4051
8a0c39b1 4052 obj->pin_display--;
b9241ea3
ZW
4053}
4054
e47c68e9
EA
4055/**
4056 * Moves a single object to the CPU read, and possibly write domain.
4057 *
4058 * This function returns when the move is complete, including waiting on
4059 * flushes to occur.
4060 */
dabdfe02 4061int
919926ae 4062i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4063{
1c5d22f7 4064 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4065 int ret;
4066
8d7e3de1
CW
4067 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4068 return 0;
4069
0201f1ec 4070 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4071 if (ret)
4072 return ret;
4073
e47c68e9 4074 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4075
05394f39
CW
4076 old_write_domain = obj->base.write_domain;
4077 old_read_domains = obj->base.read_domains;
1c5d22f7 4078
e47c68e9 4079 /* Flush the CPU cache if it's still invalid. */
05394f39 4080 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4081 i915_gem_clflush_object(obj, false);
2ef7eeaa 4082
05394f39 4083 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4084 }
4085
4086 /* It should now be out of any other write domains, and we can update
4087 * the domain values for our changes.
4088 */
05394f39 4089 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4090
4091 /* If we're writing through the CPU, then the GPU read domains will
4092 * need to be invalidated at next use.
4093 */
4094 if (write) {
05394f39
CW
4095 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4096 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4097 }
2ef7eeaa 4098
1c5d22f7
CW
4099 trace_i915_gem_object_change_domain(obj,
4100 old_read_domains,
4101 old_write_domain);
4102
2ef7eeaa
EA
4103 return 0;
4104}
4105
673a394b
EA
4106/* Throttle our rendering by waiting until the ring has completed our requests
4107 * emitted over 20 msec ago.
4108 *
b962442e
EA
4109 * Note that if we were to use the current jiffies each time around the loop,
4110 * we wouldn't escape the function with any frames outstanding if the time to
4111 * render a frame was over 20ms.
4112 *
673a394b
EA
4113 * This should get us reasonable parallelism between CPU and GPU but also
4114 * relatively low latency when blocking on a particular request to finish.
4115 */
40a5f0de 4116static int
f787a5f5 4117i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4118{
f787a5f5
CW
4119 struct drm_i915_private *dev_priv = dev->dev_private;
4120 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4121 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4122 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4123 unsigned reset_counter;
f787a5f5 4124 int ret;
93533c29 4125
308887aa
DV
4126 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4127 if (ret)
4128 return ret;
4129
4130 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4131 if (ret)
4132 return ret;
e110e8d6 4133
1c25595f 4134 spin_lock(&file_priv->mm.lock);
f787a5f5 4135 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4136 if (time_after_eq(request->emitted_jiffies, recent_enough))
4137 break;
40a5f0de 4138
fcfa423c
JH
4139 /*
4140 * Note that the request might not have been submitted yet.
4141 * In which case emitted_jiffies will be zero.
4142 */
4143 if (!request->emitted_jiffies)
4144 continue;
4145
54fb2411 4146 target = request;
b962442e 4147 }
f69061be 4148 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4149 if (target)
4150 i915_gem_request_reference(target);
1c25595f 4151 spin_unlock(&file_priv->mm.lock);
40a5f0de 4152
54fb2411 4153 if (target == NULL)
f787a5f5 4154 return 0;
2bc43b5c 4155
9c654818 4156 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4157 if (ret == 0)
4158 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4159
41037f9f 4160 i915_gem_request_unreference__unlocked(target);
ff865885 4161
40a5f0de
EA
4162 return ret;
4163}
4164
d23db88c
CW
4165static bool
4166i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4167{
4168 struct drm_i915_gem_object *obj = vma->obj;
4169
4170 if (alignment &&
4171 vma->node.start & (alignment - 1))
4172 return true;
4173
4174 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4175 return true;
4176
4177 if (flags & PIN_OFFSET_BIAS &&
4178 vma->node.start < (flags & PIN_OFFSET_MASK))
4179 return true;
4180
506a8e87
CW
4181 if (flags & PIN_OFFSET_FIXED &&
4182 vma->node.start != (flags & PIN_OFFSET_MASK))
4183 return true;
4184
d23db88c
CW
4185 return false;
4186}
4187
d0710abb
CW
4188void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4189{
4190 struct drm_i915_gem_object *obj = vma->obj;
4191 bool mappable, fenceable;
4192 u32 fence_size, fence_alignment;
4193
4194 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4195 obj->base.size,
4196 obj->tiling_mode);
4197 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4198 obj->base.size,
4199 obj->tiling_mode,
4200 true);
4201
4202 fenceable = (vma->node.size == fence_size &&
4203 (vma->node.start & (fence_alignment - 1)) == 0);
4204
4205 mappable = (vma->node.start + fence_size <=
62106b4f 4206 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4207
4208 obj->map_and_fenceable = mappable && fenceable;
4209}
4210
ec7adb6e
JL
4211static int
4212i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4213 struct i915_address_space *vm,
4214 const struct i915_ggtt_view *ggtt_view,
4215 uint32_t alignment,
4216 uint64_t flags)
673a394b 4217{
6e7186af 4218 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4219 struct i915_vma *vma;
ef79e17c 4220 unsigned bound;
673a394b
EA
4221 int ret;
4222
6e7186af
BW
4223 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4224 return -ENODEV;
4225
bf3d149b 4226 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4227 return -EINVAL;
07fe0b12 4228
c826c449
CW
4229 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4230 return -EINVAL;
4231
ec7adb6e
JL
4232 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4233 return -EINVAL;
4234
4235 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4236 i915_gem_obj_to_vma(obj, vm);
4237
4238 if (IS_ERR(vma))
4239 return PTR_ERR(vma);
4240
07fe0b12 4241 if (vma) {
d7f46fc4
BW
4242 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4243 return -EBUSY;
4244
d23db88c 4245 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4246 WARN(vma->pin_count,
ec7adb6e 4247 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4248 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4249 " obj->map_and_fenceable=%d\n",
ec7adb6e 4250 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4251 upper_32_bits(vma->node.start),
4252 lower_32_bits(vma->node.start),
fe14d5f4 4253 alignment,
d23db88c 4254 !!(flags & PIN_MAPPABLE),
05394f39 4255 obj->map_and_fenceable);
07fe0b12 4256 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4257 if (ret)
4258 return ret;
8ea99c92
DV
4259
4260 vma = NULL;
ac0c6b5a
CW
4261 }
4262 }
4263
ef79e17c 4264 bound = vma ? vma->bound : 0;
8ea99c92 4265 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4266 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4267 flags);
262de145
DV
4268 if (IS_ERR(vma))
4269 return PTR_ERR(vma);
0875546c
DV
4270 } else {
4271 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4272 if (ret)
4273 return ret;
4274 }
74898d7e 4275
91e6711e
JL
4276 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4277 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4278 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4279 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4280 }
ef79e17c 4281
8ea99c92 4282 vma->pin_count++;
673a394b
EA
4283 return 0;
4284}
4285
ec7adb6e
JL
4286int
4287i915_gem_object_pin(struct drm_i915_gem_object *obj,
4288 struct i915_address_space *vm,
4289 uint32_t alignment,
4290 uint64_t flags)
4291{
4292 return i915_gem_object_do_pin(obj, vm,
4293 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4294 alignment, flags);
4295}
4296
4297int
4298i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4299 const struct i915_ggtt_view *view,
4300 uint32_t alignment,
4301 uint64_t flags)
4302{
4303 if (WARN_ONCE(!view, "no view specified"))
4304 return -EINVAL;
4305
4306 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4307 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4308}
4309
673a394b 4310void
e6617330
TU
4311i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4312 const struct i915_ggtt_view *view)
673a394b 4313{
e6617330 4314 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4315
d7f46fc4 4316 BUG_ON(!vma);
e6617330 4317 WARN_ON(vma->pin_count == 0);
9abc4648 4318 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4319
30154650 4320 --vma->pin_count;
673a394b
EA
4321}
4322
673a394b
EA
4323int
4324i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4325 struct drm_file *file)
673a394b
EA
4326{
4327 struct drm_i915_gem_busy *args = data;
05394f39 4328 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4329 int ret;
4330
76c1dec1 4331 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4332 if (ret)
76c1dec1 4333 return ret;
673a394b 4334
05394f39 4335 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4336 if (&obj->base == NULL) {
1d7cfea1
CW
4337 ret = -ENOENT;
4338 goto unlock;
673a394b 4339 }
d1b851fc 4340
0be555b6
CW
4341 /* Count all active objects as busy, even if they are currently not used
4342 * by the gpu. Users of this interface expect objects to eventually
4343 * become non-busy without any further actions, therefore emit any
4344 * necessary flushes here.
c4de0a5d 4345 */
30dfebf3 4346 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4347 if (ret)
4348 goto unref;
0be555b6 4349
426960be
CW
4350 args->busy = 0;
4351 if (obj->active) {
4352 int i;
4353
666796da 4354 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4355 struct drm_i915_gem_request *req;
4356
4357 req = obj->last_read_req[i];
4358 if (req)
4a570db5 4359 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4360 }
4361 if (obj->last_write_req)
4a570db5 4362 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4363 }
673a394b 4364
b4716185 4365unref:
05394f39 4366 drm_gem_object_unreference(&obj->base);
1d7cfea1 4367unlock:
673a394b 4368 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4369 return ret;
673a394b
EA
4370}
4371
4372int
4373i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4374 struct drm_file *file_priv)
4375{
0206e353 4376 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4377}
4378
3ef94daa
CW
4379int
4380i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4381 struct drm_file *file_priv)
4382{
656bfa3a 4383 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4384 struct drm_i915_gem_madvise *args = data;
05394f39 4385 struct drm_i915_gem_object *obj;
76c1dec1 4386 int ret;
3ef94daa
CW
4387
4388 switch (args->madv) {
4389 case I915_MADV_DONTNEED:
4390 case I915_MADV_WILLNEED:
4391 break;
4392 default:
4393 return -EINVAL;
4394 }
4395
1d7cfea1
CW
4396 ret = i915_mutex_lock_interruptible(dev);
4397 if (ret)
4398 return ret;
4399
05394f39 4400 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4401 if (&obj->base == NULL) {
1d7cfea1
CW
4402 ret = -ENOENT;
4403 goto unlock;
3ef94daa 4404 }
3ef94daa 4405
d7f46fc4 4406 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4407 ret = -EINVAL;
4408 goto out;
3ef94daa
CW
4409 }
4410
656bfa3a
DV
4411 if (obj->pages &&
4412 obj->tiling_mode != I915_TILING_NONE &&
4413 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4414 if (obj->madv == I915_MADV_WILLNEED)
4415 i915_gem_object_unpin_pages(obj);
4416 if (args->madv == I915_MADV_WILLNEED)
4417 i915_gem_object_pin_pages(obj);
4418 }
4419
05394f39
CW
4420 if (obj->madv != __I915_MADV_PURGED)
4421 obj->madv = args->madv;
3ef94daa 4422
6c085a72 4423 /* if the object is no longer attached, discard its backing storage */
be6a0376 4424 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4425 i915_gem_object_truncate(obj);
4426
05394f39 4427 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4428
1d7cfea1 4429out:
05394f39 4430 drm_gem_object_unreference(&obj->base);
1d7cfea1 4431unlock:
3ef94daa 4432 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4433 return ret;
3ef94daa
CW
4434}
4435
37e680a1
CW
4436void i915_gem_object_init(struct drm_i915_gem_object *obj,
4437 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4438{
b4716185
CW
4439 int i;
4440
35c20a60 4441 INIT_LIST_HEAD(&obj->global_list);
666796da 4442 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4443 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4444 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4445 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4446 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4447
37e680a1
CW
4448 obj->ops = ops;
4449
0327d6ba
CW
4450 obj->fence_reg = I915_FENCE_REG_NONE;
4451 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4452
4453 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4454}
4455
37e680a1 4456static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4457 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4458 .get_pages = i915_gem_object_get_pages_gtt,
4459 .put_pages = i915_gem_object_put_pages_gtt,
4460};
4461
05394f39
CW
4462struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4463 size_t size)
ac52bc56 4464{
c397b908 4465 struct drm_i915_gem_object *obj;
5949eac4 4466 struct address_space *mapping;
1a240d4d 4467 gfp_t mask;
ac52bc56 4468
42dcedd4 4469 obj = i915_gem_object_alloc(dev);
c397b908
DV
4470 if (obj == NULL)
4471 return NULL;
673a394b 4472
c397b908 4473 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4474 i915_gem_object_free(obj);
c397b908
DV
4475 return NULL;
4476 }
673a394b 4477
bed1ea95
CW
4478 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4479 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4480 /* 965gm cannot relocate objects above 4GiB. */
4481 mask &= ~__GFP_HIGHMEM;
4482 mask |= __GFP_DMA32;
4483 }
4484
496ad9aa 4485 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4486 mapping_set_gfp_mask(mapping, mask);
5949eac4 4487
37e680a1 4488 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4489
c397b908
DV
4490 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4491 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4492
3d29b842
ED
4493 if (HAS_LLC(dev)) {
4494 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4495 * cache) for about a 10% performance improvement
4496 * compared to uncached. Graphics requests other than
4497 * display scanout are coherent with the CPU in
4498 * accessing this cache. This means in this mode we
4499 * don't need to clflush on the CPU side, and on the
4500 * GPU side we only need to flush internal caches to
4501 * get data visible to the CPU.
4502 *
4503 * However, we maintain the display planes as UC, and so
4504 * need to rebind when first used as such.
4505 */
4506 obj->cache_level = I915_CACHE_LLC;
4507 } else
4508 obj->cache_level = I915_CACHE_NONE;
4509
d861e338
DV
4510 trace_i915_gem_object_create(obj);
4511
05394f39 4512 return obj;
c397b908
DV
4513}
4514
340fbd8c
CW
4515static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4516{
4517 /* If we are the last user of the backing storage (be it shmemfs
4518 * pages or stolen etc), we know that the pages are going to be
4519 * immediately released. In this case, we can then skip copying
4520 * back the contents from the GPU.
4521 */
4522
4523 if (obj->madv != I915_MADV_WILLNEED)
4524 return false;
4525
4526 if (obj->base.filp == NULL)
4527 return true;
4528
4529 /* At first glance, this looks racy, but then again so would be
4530 * userspace racing mmap against close. However, the first external
4531 * reference to the filp can only be obtained through the
4532 * i915_gem_mmap_ioctl() which safeguards us against the user
4533 * acquiring such a reference whilst we are in the middle of
4534 * freeing the object.
4535 */
4536 return atomic_long_read(&obj->base.filp->f_count) == 1;
4537}
4538
1488fc08 4539void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4540{
1488fc08 4541 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4542 struct drm_device *dev = obj->base.dev;
3e31c6c0 4543 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4544 struct i915_vma *vma, *next;
673a394b 4545
f65c9168
PZ
4546 intel_runtime_pm_get(dev_priv);
4547
26e12f89
CW
4548 trace_i915_gem_object_destroy(obj);
4549
1c7f4bca 4550 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4551 int ret;
4552
4553 vma->pin_count = 0;
4554 ret = i915_vma_unbind(vma);
07fe0b12
BW
4555 if (WARN_ON(ret == -ERESTARTSYS)) {
4556 bool was_interruptible;
1488fc08 4557
07fe0b12
BW
4558 was_interruptible = dev_priv->mm.interruptible;
4559 dev_priv->mm.interruptible = false;
1488fc08 4560
07fe0b12 4561 WARN_ON(i915_vma_unbind(vma));
1488fc08 4562
07fe0b12
BW
4563 dev_priv->mm.interruptible = was_interruptible;
4564 }
1488fc08
CW
4565 }
4566
1d64ae71
BW
4567 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4568 * before progressing. */
4569 if (obj->stolen)
4570 i915_gem_object_unpin_pages(obj);
4571
a071fa00
DV
4572 WARN_ON(obj->frontbuffer_bits);
4573
656bfa3a
DV
4574 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4575 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4576 obj->tiling_mode != I915_TILING_NONE)
4577 i915_gem_object_unpin_pages(obj);
4578
401c29f6
BW
4579 if (WARN_ON(obj->pages_pin_count))
4580 obj->pages_pin_count = 0;
340fbd8c 4581 if (discard_backing_storage(obj))
5537252b 4582 obj->madv = I915_MADV_DONTNEED;
37e680a1 4583 i915_gem_object_put_pages(obj);
d8cb5086 4584 i915_gem_object_free_mmap_offset(obj);
de151cf6 4585
9da3da66
CW
4586 BUG_ON(obj->pages);
4587
2f745ad3
CW
4588 if (obj->base.import_attach)
4589 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4590
5cc9ed4b
CW
4591 if (obj->ops->release)
4592 obj->ops->release(obj);
4593
05394f39
CW
4594 drm_gem_object_release(&obj->base);
4595 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4596
05394f39 4597 kfree(obj->bit_17);
42dcedd4 4598 i915_gem_object_free(obj);
f65c9168
PZ
4599
4600 intel_runtime_pm_put(dev_priv);
673a394b
EA
4601}
4602
ec7adb6e
JL
4603struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4604 struct i915_address_space *vm)
e656a6cb
DV
4605{
4606 struct i915_vma *vma;
1c7f4bca 4607 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4608 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4609 vma->vm == vm)
e656a6cb 4610 return vma;
ec7adb6e
JL
4611 }
4612 return NULL;
4613}
4614
4615struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4616 const struct i915_ggtt_view *view)
4617{
4618 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4619 struct i915_vma *vma;
e656a6cb 4620
ec7adb6e
JL
4621 if (WARN_ONCE(!view, "no view specified"))
4622 return ERR_PTR(-EINVAL);
4623
1c7f4bca 4624 list_for_each_entry(vma, &obj->vma_list, obj_link)
9abc4648
JL
4625 if (vma->vm == ggtt &&
4626 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4627 return vma;
e656a6cb
DV
4628 return NULL;
4629}
4630
2f633156
BW
4631void i915_gem_vma_destroy(struct i915_vma *vma)
4632{
4633 WARN_ON(vma->node.allocated);
aaa05667
CW
4634
4635 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4636 if (!list_empty(&vma->exec_list))
4637 return;
4638
596c5923
CW
4639 if (!vma->is_ggtt)
4640 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4641
1c7f4bca 4642 list_del(&vma->obj_link);
b93dab6e 4643
e20d2ab7 4644 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4645}
4646
e3efda49 4647static void
117897f4 4648i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4649{
4650 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4651 struct intel_engine_cs *engine;
e3efda49 4652
b4ac5afc 4653 for_each_engine(engine, dev_priv)
117897f4 4654 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4655}
4656
29105ccc 4657int
45c5f202 4658i915_gem_suspend(struct drm_device *dev)
29105ccc 4659{
3e31c6c0 4660 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4661 int ret = 0;
28dfe52a 4662
45c5f202 4663 mutex_lock(&dev->struct_mutex);
b2da9fe5 4664 ret = i915_gpu_idle(dev);
f7403347 4665 if (ret)
45c5f202 4666 goto err;
f7403347 4667
b2da9fe5 4668 i915_gem_retire_requests(dev);
673a394b 4669
117897f4 4670 i915_gem_stop_engines(dev);
45c5f202
CW
4671 mutex_unlock(&dev->struct_mutex);
4672
737b1506 4673 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4674 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4675 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4676
bdcf120b
CW
4677 /* Assert that we sucessfully flushed all the work and
4678 * reset the GPU back to its idle, low power state.
4679 */
4680 WARN_ON(dev_priv->mm.busy);
4681
673a394b 4682 return 0;
45c5f202
CW
4683
4684err:
4685 mutex_unlock(&dev->struct_mutex);
4686 return ret;
673a394b
EA
4687}
4688
6909a666 4689int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4690{
4a570db5 4691 struct intel_engine_cs *engine = req->engine;
e2f80391 4692 struct drm_device *dev = engine->dev;
3e31c6c0 4693 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4694 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4695 int i, ret;
b9524a1e 4696
040d2baa 4697 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4698 return 0;
b9524a1e 4699
5fb9de1a 4700 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4701 if (ret)
4702 return ret;
b9524a1e 4703
c3787e2e
BW
4704 /*
4705 * Note: We do not worry about the concurrent register cacheline hang
4706 * here because no other code should access these registers other than
4707 * at initialization time.
4708 */
6fa1c5f1 4709 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
e2f80391
TU
4710 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4711 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4712 intel_ring_emit(engine, remap_info[i]);
b9524a1e
BW
4713 }
4714
e2f80391 4715 intel_ring_advance(engine);
b9524a1e 4716
c3787e2e 4717 return ret;
b9524a1e
BW
4718}
4719
f691e2f4
DV
4720void i915_gem_init_swizzling(struct drm_device *dev)
4721{
3e31c6c0 4722 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4723
11782b02 4724 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4725 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4726 return;
4727
4728 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4729 DISP_TILE_SURFACE_SWIZZLING);
4730
11782b02
DV
4731 if (IS_GEN5(dev))
4732 return;
4733
f691e2f4
DV
4734 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4735 if (IS_GEN6(dev))
6b26c86d 4736 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4737 else if (IS_GEN7(dev))
6b26c86d 4738 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4739 else if (IS_GEN8(dev))
4740 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4741 else
4742 BUG();
f691e2f4 4743}
e21af88d 4744
81e7f200
VS
4745static void init_unused_ring(struct drm_device *dev, u32 base)
4746{
4747 struct drm_i915_private *dev_priv = dev->dev_private;
4748
4749 I915_WRITE(RING_CTL(base), 0);
4750 I915_WRITE(RING_HEAD(base), 0);
4751 I915_WRITE(RING_TAIL(base), 0);
4752 I915_WRITE(RING_START(base), 0);
4753}
4754
4755static void init_unused_rings(struct drm_device *dev)
4756{
4757 if (IS_I830(dev)) {
4758 init_unused_ring(dev, PRB1_BASE);
4759 init_unused_ring(dev, SRB0_BASE);
4760 init_unused_ring(dev, SRB1_BASE);
4761 init_unused_ring(dev, SRB2_BASE);
4762 init_unused_ring(dev, SRB3_BASE);
4763 } else if (IS_GEN2(dev)) {
4764 init_unused_ring(dev, SRB0_BASE);
4765 init_unused_ring(dev, SRB1_BASE);
4766 } else if (IS_GEN3(dev)) {
4767 init_unused_ring(dev, PRB1_BASE);
4768 init_unused_ring(dev, PRB2_BASE);
4769 }
4770}
4771
117897f4 4772int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4773{
4fc7c971 4774 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4775 int ret;
68f95ba9 4776
5c1143bb 4777 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4778 if (ret)
b6913e4b 4779 return ret;
68f95ba9
CW
4780
4781 if (HAS_BSD(dev)) {
5c1143bb 4782 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4783 if (ret)
4784 goto cleanup_render_ring;
d1b851fc 4785 }
68f95ba9 4786
d39398f5 4787 if (HAS_BLT(dev)) {
549f7365
CW
4788 ret = intel_init_blt_ring_buffer(dev);
4789 if (ret)
4790 goto cleanup_bsd_ring;
4791 }
4792
9a8a2213
BW
4793 if (HAS_VEBOX(dev)) {
4794 ret = intel_init_vebox_ring_buffer(dev);
4795 if (ret)
4796 goto cleanup_blt_ring;
4797 }
4798
845f74a7
ZY
4799 if (HAS_BSD2(dev)) {
4800 ret = intel_init_bsd2_ring_buffer(dev);
4801 if (ret)
4802 goto cleanup_vebox_ring;
4803 }
9a8a2213 4804
4fc7c971
BW
4805 return 0;
4806
9a8a2213 4807cleanup_vebox_ring:
117897f4 4808 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4809cleanup_blt_ring:
117897f4 4810 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4811cleanup_bsd_ring:
117897f4 4812 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4813cleanup_render_ring:
117897f4 4814 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4815
4816 return ret;
4817}
4818
4819int
4820i915_gem_init_hw(struct drm_device *dev)
4821{
3e31c6c0 4822 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4823 struct intel_engine_cs *engine;
b4ac5afc 4824 int ret, j;
4fc7c971
BW
4825
4826 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4827 return -EIO;
4828
5e4f5189
CW
4829 /* Double layer security blanket, see i915_gem_init() */
4830 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4831
59124506 4832 if (dev_priv->ellc_size)
05e21cc4 4833 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4834
0bf21347
VS
4835 if (IS_HASWELL(dev))
4836 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4837 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4838
88a2b2a3 4839 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4840 if (IS_IVYBRIDGE(dev)) {
4841 u32 temp = I915_READ(GEN7_MSG_CTL);
4842 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4843 I915_WRITE(GEN7_MSG_CTL, temp);
4844 } else if (INTEL_INFO(dev)->gen >= 7) {
4845 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4846 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4847 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4848 }
88a2b2a3
BW
4849 }
4850
4fc7c971
BW
4851 i915_gem_init_swizzling(dev);
4852
d5abdfda
DV
4853 /*
4854 * At least 830 can leave some of the unused rings
4855 * "active" (ie. head != tail) after resume which
4856 * will prevent c3 entry. Makes sure all unused rings
4857 * are totally idle.
4858 */
4859 init_unused_rings(dev);
4860
ed54c1a1 4861 BUG_ON(!dev_priv->kernel_context);
90638cc1 4862
4ad2fd88
JH
4863 ret = i915_ppgtt_init_hw(dev);
4864 if (ret) {
4865 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4866 goto out;
4867 }
4868
4869 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4870 for_each_engine(engine, dev_priv) {
e2f80391 4871 ret = engine->init_hw(engine);
35a57ffb 4872 if (ret)
5e4f5189 4873 goto out;
35a57ffb 4874 }
99433931 4875
33a732f4 4876 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4877 if (HAS_GUC_UCODE(dev)) {
4878 ret = intel_guc_ucode_load(dev);
4879 if (ret) {
9f9e539f
DV
4880 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4881 ret = -EIO;
4882 goto out;
87bcdd2e 4883 }
33a732f4
AD
4884 }
4885
e84fe803
NH
4886 /*
4887 * Increment the next seqno by 0x100 so we have a visible break
4888 * on re-initialisation
4889 */
4890 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4891 if (ret)
4892 goto out;
4893
4ad2fd88 4894 /* Now it is safe to go back round and do everything else: */
b4ac5afc 4895 for_each_engine(engine, dev_priv) {
dc4be607
JH
4896 struct drm_i915_gem_request *req;
4897
e2f80391 4898 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
4899 if (IS_ERR(req)) {
4900 ret = PTR_ERR(req);
117897f4 4901 i915_gem_cleanup_engines(dev);
dc4be607
JH
4902 goto out;
4903 }
4904
e2f80391 4905 if (engine->id == RCS) {
4ad2fd88 4906 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4907 i915_gem_l3_remap(req, j);
4ad2fd88 4908 }
c3787e2e 4909
b3dd6b96 4910 ret = i915_ppgtt_init_ring(req);
4ad2fd88 4911 if (ret && ret != -EIO) {
b4ac5afc
DG
4912 DRM_ERROR("PPGTT enable %s failed %d\n",
4913 engine->name, ret);
dc4be607 4914 i915_gem_request_cancel(req);
117897f4 4915 i915_gem_cleanup_engines(dev);
4ad2fd88
JH
4916 goto out;
4917 }
82460d97 4918
b3dd6b96 4919 ret = i915_gem_context_enable(req);
90638cc1 4920 if (ret && ret != -EIO) {
b4ac5afc
DG
4921 DRM_ERROR("Context enable %s failed %d\n",
4922 engine->name, ret);
dc4be607 4923 i915_gem_request_cancel(req);
117897f4 4924 i915_gem_cleanup_engines(dev);
90638cc1
JH
4925 goto out;
4926 }
dc4be607 4927
75289874 4928 i915_add_request_no_flush(req);
b7c36d25 4929 }
e21af88d 4930
5e4f5189
CW
4931out:
4932 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4933 return ret;
8187a2b7
ZN
4934}
4935
1070a42b
CW
4936int i915_gem_init(struct drm_device *dev)
4937{
4938 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4939 int ret;
4940
127f1003
OM
4941 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4942 i915.enable_execlists);
4943
1070a42b 4944 mutex_lock(&dev->struct_mutex);
d62b4892 4945
a83014d3 4946 if (!i915.enable_execlists) {
f3dc74c0 4947 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4948 dev_priv->gt.init_engines = i915_gem_init_engines;
4949 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4950 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4951 } else {
f3dc74c0 4952 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4953 dev_priv->gt.init_engines = intel_logical_rings_init;
4954 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4955 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4956 }
4957
5e4f5189
CW
4958 /* This is just a security blanket to placate dragons.
4959 * On some systems, we very sporadically observe that the first TLBs
4960 * used by the CS may be stale, despite us poking the TLB reset. If
4961 * we hold the forcewake during initialisation these problems
4962 * just magically go away.
4963 */
4964 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4965
6c5566a8 4966 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4967 if (ret)
4968 goto out_unlock;
6c5566a8 4969
d7e5008f 4970 i915_gem_init_global_gtt(dev);
d62b4892 4971
2fa48d8d 4972 ret = i915_gem_context_init(dev);
7bcc3777
JN
4973 if (ret)
4974 goto out_unlock;
2fa48d8d 4975
117897f4 4976 ret = dev_priv->gt.init_engines(dev);
35a57ffb 4977 if (ret)
7bcc3777 4978 goto out_unlock;
2fa48d8d 4979
1070a42b 4980 ret = i915_gem_init_hw(dev);
60990320
CW
4981 if (ret == -EIO) {
4982 /* Allow ring initialisation to fail by marking the GPU as
4983 * wedged. But we only want to do this where the GPU is angry,
4984 * for all other failure, such as an allocation failure, bail.
4985 */
4986 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4987 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4988 ret = 0;
1070a42b 4989 }
7bcc3777
JN
4990
4991out_unlock:
5e4f5189 4992 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4993 mutex_unlock(&dev->struct_mutex);
1070a42b 4994
60990320 4995 return ret;
1070a42b
CW
4996}
4997
8187a2b7 4998void
117897f4 4999i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 5000{
3e31c6c0 5001 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 5002 struct intel_engine_cs *engine;
8187a2b7 5003
b4ac5afc 5004 for_each_engine(engine, dev_priv)
117897f4 5005 dev_priv->gt.cleanup_engine(engine);
a647828a 5006
ee4b6faf
MK
5007 if (i915.enable_execlists)
5008 /*
5009 * Neither the BIOS, ourselves or any other kernel
5010 * expects the system to be in execlists mode on startup,
5011 * so we need to reset the GPU back to legacy mode.
5012 */
5013 intel_gpu_reset(dev, ALL_ENGINES);
8187a2b7
ZN
5014}
5015
64193406 5016static void
666796da 5017init_engine_lists(struct intel_engine_cs *engine)
64193406 5018{
0bc40be8
TU
5019 INIT_LIST_HEAD(&engine->active_list);
5020 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
5021}
5022
40ae4e16
ID
5023void
5024i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5025{
5026 struct drm_device *dev = dev_priv->dev;
5027
5028 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5029 !IS_CHERRYVIEW(dev_priv))
5030 dev_priv->num_fence_regs = 32;
5031 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5032 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5033 dev_priv->num_fence_regs = 16;
5034 else
5035 dev_priv->num_fence_regs = 8;
5036
5037 if (intel_vgpu_active(dev))
5038 dev_priv->num_fence_regs =
5039 I915_READ(vgtif_reg(avail_rs.fence_num));
5040
5041 /* Initialize fence registers to zero */
5042 i915_gem_restore_fences(dev);
5043
5044 i915_gem_detect_bit_6_swizzle(dev);
5045}
5046
673a394b 5047void
d64aa096 5048i915_gem_load_init(struct drm_device *dev)
673a394b 5049{
3e31c6c0 5050 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5051 int i;
5052
efab6d8d 5053 dev_priv->objects =
42dcedd4
CW
5054 kmem_cache_create("i915_gem_object",
5055 sizeof(struct drm_i915_gem_object), 0,
5056 SLAB_HWCACHE_ALIGN,
5057 NULL);
e20d2ab7
CW
5058 dev_priv->vmas =
5059 kmem_cache_create("i915_gem_vma",
5060 sizeof(struct i915_vma), 0,
5061 SLAB_HWCACHE_ALIGN,
5062 NULL);
efab6d8d
CW
5063 dev_priv->requests =
5064 kmem_cache_create("i915_gem_request",
5065 sizeof(struct drm_i915_gem_request), 0,
5066 SLAB_HWCACHE_ALIGN,
5067 NULL);
673a394b 5068
fc8c067e 5069 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5070 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5071 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5072 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5073 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5074 for (i = 0; i < I915_NUM_ENGINES; i++)
5075 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5076 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5077 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5078 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5079 i915_gem_retire_work_handler);
b29c19b6
CW
5080 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5081 i915_gem_idle_work_handler);
1f83fee0 5082 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5083
72bfa19c
CW
5084 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5085
e84fe803
NH
5086 /*
5087 * Set initial sequence number for requests.
5088 * Using this number allows the wraparound to happen early,
5089 * catching any obvious problems.
5090 */
5091 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5092 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5093
19b2dbde 5094 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5095
6b95a207 5096 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5097
ce453d81
CW
5098 dev_priv->mm.interruptible = true;
5099
f99d7069 5100 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5101}
71acb5eb 5102
d64aa096
ID
5103void i915_gem_load_cleanup(struct drm_device *dev)
5104{
5105 struct drm_i915_private *dev_priv = to_i915(dev);
5106
5107 kmem_cache_destroy(dev_priv->requests);
5108 kmem_cache_destroy(dev_priv->vmas);
5109 kmem_cache_destroy(dev_priv->objects);
5110}
5111
f787a5f5 5112void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5113{
f787a5f5 5114 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5115
5116 /* Clean up our request list when the client is going away, so that
5117 * later retire_requests won't dereference our soon-to-be-gone
5118 * file_priv.
5119 */
1c25595f 5120 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5121 while (!list_empty(&file_priv->mm.request_list)) {
5122 struct drm_i915_gem_request *request;
5123
5124 request = list_first_entry(&file_priv->mm.request_list,
5125 struct drm_i915_gem_request,
5126 client_list);
5127 list_del(&request->client_list);
5128 request->file_priv = NULL;
5129 }
1c25595f 5130 spin_unlock(&file_priv->mm.lock);
b29c19b6 5131
2e1b8730 5132 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5133 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5134 list_del(&file_priv->rps.link);
8d3afd7d 5135 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5136 }
b29c19b6
CW
5137}
5138
5139int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5140{
5141 struct drm_i915_file_private *file_priv;
e422b888 5142 int ret;
b29c19b6
CW
5143
5144 DRM_DEBUG_DRIVER("\n");
5145
5146 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5147 if (!file_priv)
5148 return -ENOMEM;
5149
5150 file->driver_priv = file_priv;
5151 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5152 file_priv->file = file;
2e1b8730 5153 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5154
5155 spin_lock_init(&file_priv->mm.lock);
5156 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5157
de1add36
TU
5158 file_priv->bsd_ring = -1;
5159
e422b888
BW
5160 ret = i915_gem_context_open(dev, file);
5161 if (ret)
5162 kfree(file_priv);
b29c19b6 5163
e422b888 5164 return ret;
b29c19b6
CW
5165}
5166
b680c37a
DV
5167/**
5168 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5169 * @old: current GEM buffer for the frontbuffer slots
5170 * @new: new GEM buffer for the frontbuffer slots
5171 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5172 *
5173 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5174 * from @old and setting them in @new. Both @old and @new can be NULL.
5175 */
a071fa00
DV
5176void i915_gem_track_fb(struct drm_i915_gem_object *old,
5177 struct drm_i915_gem_object *new,
5178 unsigned frontbuffer_bits)
5179{
5180 if (old) {
5181 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5182 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5183 old->frontbuffer_bits &= ~frontbuffer_bits;
5184 }
5185
5186 if (new) {
5187 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5188 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5189 new->frontbuffer_bits |= frontbuffer_bits;
5190 }
5191}
5192
a70a3148 5193/* All the new VM stuff */
088e0df4
MT
5194u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5195 struct i915_address_space *vm)
a70a3148
BW
5196{
5197 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5198 struct i915_vma *vma;
5199
896ab1a5 5200 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5201
1c7f4bca 5202 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5203 if (vma->is_ggtt &&
ec7adb6e
JL
5204 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5205 continue;
5206 if (vma->vm == vm)
a70a3148 5207 return vma->node.start;
a70a3148 5208 }
ec7adb6e 5209
f25748ea
DV
5210 WARN(1, "%s vma for this object not found.\n",
5211 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5212 return -1;
5213}
5214
088e0df4
MT
5215u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5216 const struct i915_ggtt_view *view)
a70a3148 5217{
ec7adb6e 5218 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5219 struct i915_vma *vma;
5220
1c7f4bca 5221 list_for_each_entry(vma, &o->vma_list, obj_link)
9abc4648
JL
5222 if (vma->vm == ggtt &&
5223 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5224 return vma->node.start;
5225
5678ad73 5226 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5227 return -1;
5228}
5229
5230bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5231 struct i915_address_space *vm)
5232{
5233 struct i915_vma *vma;
5234
1c7f4bca 5235 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5236 if (vma->is_ggtt &&
ec7adb6e
JL
5237 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5238 continue;
5239 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5240 return true;
5241 }
5242
5243 return false;
5244}
5245
5246bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5247 const struct i915_ggtt_view *view)
ec7adb6e
JL
5248{
5249 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5250 struct i915_vma *vma;
5251
1c7f4bca 5252 list_for_each_entry(vma, &o->vma_list, obj_link)
ec7adb6e 5253 if (vma->vm == ggtt &&
9abc4648 5254 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5255 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5256 return true;
5257
5258 return false;
5259}
5260
5261bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5262{
5a1d5eb0 5263 struct i915_vma *vma;
a70a3148 5264
1c7f4bca 5265 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5266 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5267 return true;
5268
5269 return false;
5270}
5271
5272unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5273 struct i915_address_space *vm)
5274{
5275 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5276 struct i915_vma *vma;
5277
896ab1a5 5278 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5279
5280 BUG_ON(list_empty(&o->vma_list));
5281
1c7f4bca 5282 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5283 if (vma->is_ggtt &&
ec7adb6e
JL
5284 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5285 continue;
a70a3148
BW
5286 if (vma->vm == vm)
5287 return vma->node.size;
ec7adb6e 5288 }
a70a3148
BW
5289 return 0;
5290}
5291
ec7adb6e 5292bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5293{
5294 struct i915_vma *vma;
1c7f4bca 5295 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5296 if (vma->pin_count > 0)
5297 return true;
a6631ae1 5298
ec7adb6e 5299 return false;
5c2abbea 5300}
ea70299d 5301
033908ae
DG
5302/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5303struct page *
5304i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5305{
5306 struct page *page;
5307
5308 /* Only default objects have per-page dirty tracking */
de472664 5309 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5310 return NULL;
5311
5312 page = i915_gem_object_get_page(obj, n);
5313 set_page_dirty(page);
5314 return page;
5315}
5316
ea70299d
DG
5317/* Allocate a new GEM object and fill it with the supplied data */
5318struct drm_i915_gem_object *
5319i915_gem_object_create_from_data(struct drm_device *dev,
5320 const void *data, size_t size)
5321{
5322 struct drm_i915_gem_object *obj;
5323 struct sg_table *sg;
5324 size_t bytes;
5325 int ret;
5326
5327 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5328 if (IS_ERR_OR_NULL(obj))
5329 return obj;
5330
5331 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5332 if (ret)
5333 goto fail;
5334
5335 ret = i915_gem_object_get_pages(obj);
5336 if (ret)
5337 goto fail;
5338
5339 i915_gem_object_pin_pages(obj);
5340 sg = obj->pages;
5341 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5342 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5343 i915_gem_object_unpin_pages(obj);
5344
5345 if (WARN_ON(bytes != size)) {
5346 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5347 ret = -EFAULT;
5348 goto fail;
5349 }
5350
5351 return obj;
5352
5353fail:
5354 drm_gem_object_unreference(&obj->base);
5355 return ERR_PTR(ret);
5356}
This page took 1.306105 seconds and 5 git commands to generate.