Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12
BW
43static __must_check int
44i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45 struct i915_address_space *vm,
46 unsigned alignment,
47 bool map_and_fenceable,
48 bool nonblocking);
05394f39
CW
49static int i915_gem_phys_pwrite(struct drm_device *dev,
50 struct drm_i915_gem_object *obj,
71acb5eb 51 struct drm_i915_gem_pwrite *args,
05394f39 52 struct drm_file *file);
673a394b 53
61050808
CW
54static void i915_gem_write_fence(struct drm_device *dev, int reg,
55 struct drm_i915_gem_object *obj);
56static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57 struct drm_i915_fence_reg *fence,
58 bool enable);
59
17250b71 60static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 61 struct shrink_control *sc);
6c085a72
CW
62static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
63static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 64static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 202 if (obj->pin_count)
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
42dcedd4
CW
212void *i915_gem_object_alloc(struct drm_device *dev)
213{
214 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 215 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
216}
217
218void i915_gem_object_free(struct drm_i915_gem_object *obj)
219{
220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221 kmem_cache_free(dev_priv->slab, obj);
222}
223
ff72145b
DA
224static int
225i915_gem_create(struct drm_file *file,
226 struct drm_device *dev,
227 uint64_t size,
228 uint32_t *handle_p)
673a394b 229{
05394f39 230 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
231 int ret;
232 u32 handle;
673a394b 233
ff72145b 234 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
235 if (size == 0)
236 return -EINVAL;
673a394b
EA
237
238 /* Allocate the new object */
ff72145b 239 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
240 if (obj == NULL)
241 return -ENOMEM;
242
05394f39 243 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 244 /* drop reference from allocate - handle holds it now */
d861e338
DV
245 drm_gem_object_unreference_unlocked(&obj->base);
246 if (ret)
247 return ret;
202f2fef 248
ff72145b 249 *handle_p = handle;
673a394b
EA
250 return 0;
251}
252
ff72145b
DA
253int
254i915_gem_dumb_create(struct drm_file *file,
255 struct drm_device *dev,
256 struct drm_mode_create_dumb *args)
257{
258 /* have to work out size/pitch and return them */
ed0291fd 259 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
260 args->size = args->pitch * args->height;
261 return i915_gem_create(file, dev,
262 args->size, &args->handle);
263}
264
ff72145b
DA
265/**
266 * Creates a new mm object and returns a handle to it.
267 */
268int
269i915_gem_create_ioctl(struct drm_device *dev, void *data,
270 struct drm_file *file)
271{
272 struct drm_i915_gem_create *args = data;
63ed2cb2 273
ff72145b
DA
274 return i915_gem_create(file, dev,
275 args->size, &args->handle);
276}
277
8461d226
DV
278static inline int
279__copy_to_user_swizzled(char __user *cpu_vaddr,
280 const char *gpu_vaddr, int gpu_offset,
281 int length)
282{
283 int ret, cpu_offset = 0;
284
285 while (length > 0) {
286 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 int this_length = min(cacheline_end - gpu_offset, length);
288 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 gpu_vaddr + swizzled_gpu_offset,
292 this_length);
293 if (ret)
294 return ret + length;
295
296 cpu_offset += this_length;
297 gpu_offset += this_length;
298 length -= this_length;
299 }
300
301 return 0;
302}
303
8c59967c 304static inline int
4f0c7cfb
BW
305__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 const char __user *cpu_vaddr,
8c59967c
DV
307 int length)
308{
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 cpu_vaddr + cpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328}
329
d174bd64
DV
330/* Per-page copy function for the shmem pread fastpath.
331 * Flushes invalid cachelines before reading the target if
332 * needs_clflush is set. */
eb01459f 333static int
d174bd64
DV
334shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
335 char __user *user_data,
336 bool page_do_bit17_swizzling, bool needs_clflush)
337{
338 char *vaddr;
339 int ret;
340
e7e58eb5 341 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
342 return -EINVAL;
343
344 vaddr = kmap_atomic(page);
345 if (needs_clflush)
346 drm_clflush_virt_range(vaddr + shmem_page_offset,
347 page_length);
348 ret = __copy_to_user_inatomic(user_data,
349 vaddr + shmem_page_offset,
350 page_length);
351 kunmap_atomic(vaddr);
352
f60d7f0c 353 return ret ? -EFAULT : 0;
d174bd64
DV
354}
355
23c18c71
DV
356static void
357shmem_clflush_swizzled_range(char *addr, unsigned long length,
358 bool swizzled)
359{
e7e58eb5 360 if (unlikely(swizzled)) {
23c18c71
DV
361 unsigned long start = (unsigned long) addr;
362 unsigned long end = (unsigned long) addr + length;
363
364 /* For swizzling simply ensure that we always flush both
365 * channels. Lame, but simple and it works. Swizzled
366 * pwrite/pread is far from a hotpath - current userspace
367 * doesn't use it at all. */
368 start = round_down(start, 128);
369 end = round_up(end, 128);
370
371 drm_clflush_virt_range((void *)start, end - start);
372 } else {
373 drm_clflush_virt_range(addr, length);
374 }
375
376}
377
d174bd64
DV
378/* Only difference to the fast-path function is that this can handle bit17
379 * and uses non-atomic copy and kmap functions. */
380static int
381shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
382 char __user *user_data,
383 bool page_do_bit17_swizzling, bool needs_clflush)
384{
385 char *vaddr;
386 int ret;
387
388 vaddr = kmap(page);
389 if (needs_clflush)
23c18c71
DV
390 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
391 page_length,
392 page_do_bit17_swizzling);
d174bd64
DV
393
394 if (page_do_bit17_swizzling)
395 ret = __copy_to_user_swizzled(user_data,
396 vaddr, shmem_page_offset,
397 page_length);
398 else
399 ret = __copy_to_user(user_data,
400 vaddr + shmem_page_offset,
401 page_length);
402 kunmap(page);
403
f60d7f0c 404 return ret ? - EFAULT : 0;
d174bd64
DV
405}
406
eb01459f 407static int
dbf7bff0
DV
408i915_gem_shmem_pread(struct drm_device *dev,
409 struct drm_i915_gem_object *obj,
410 struct drm_i915_gem_pread *args,
411 struct drm_file *file)
eb01459f 412{
8461d226 413 char __user *user_data;
eb01459f 414 ssize_t remain;
8461d226 415 loff_t offset;
eb2c0c81 416 int shmem_page_offset, page_length, ret = 0;
8461d226 417 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 418 int prefaulted = 0;
8489731c 419 int needs_clflush = 0;
67d5a50c 420 struct sg_page_iter sg_iter;
eb01459f 421
2bb4629a 422 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
423 remain = args->size;
424
8461d226 425 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 426
8489731c
DV
427 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
428 /* If we're not in the cpu read domain, set ourself into the gtt
429 * read domain and manually flush cachelines (if required). This
430 * optimizes for the case when the gpu will dirty the data
431 * anyway again before the next pread happens. */
c76ce038 432 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
9843877d 433 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
434 ret = i915_gem_object_set_to_gtt_domain(obj, false);
435 if (ret)
436 return ret;
437 }
8489731c 438 }
eb01459f 439
f60d7f0c
CW
440 ret = i915_gem_object_get_pages(obj);
441 if (ret)
442 return ret;
443
444 i915_gem_object_pin_pages(obj);
445
8461d226 446 offset = args->offset;
eb01459f 447
67d5a50c
ID
448 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
449 offset >> PAGE_SHIFT) {
2db76d7c 450 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
451
452 if (remain <= 0)
453 break;
454
eb01459f
EA
455 /* Operation in this page
456 *
eb01459f 457 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
458 * page_length = bytes to copy for this page
459 */
c8cbbb8b 460 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
461 page_length = remain;
462 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 464
8461d226
DV
465 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
466 (page_to_phys(page) & (1 << 17)) != 0;
467
d174bd64
DV
468 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
469 user_data, page_do_bit17_swizzling,
470 needs_clflush);
471 if (ret == 0)
472 goto next_page;
dbf7bff0 473
dbf7bff0
DV
474 mutex_unlock(&dev->struct_mutex);
475
0b74b508 476 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 477 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
478 /* Userspace is tricking us, but we've already clobbered
479 * its pages with the prefault and promised to write the
480 * data up to the first fault. Hence ignore any errors
481 * and just continue. */
482 (void)ret;
483 prefaulted = 1;
484 }
eb01459f 485
d174bd64
DV
486 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 user_data, page_do_bit17_swizzling,
488 needs_clflush);
eb01459f 489
dbf7bff0 490 mutex_lock(&dev->struct_mutex);
f60d7f0c 491
dbf7bff0 492next_page:
e5281ccd 493 mark_page_accessed(page);
e5281ccd 494
f60d7f0c 495 if (ret)
8461d226 496 goto out;
8461d226 497
eb01459f 498 remain -= page_length;
8461d226 499 user_data += page_length;
eb01459f
EA
500 offset += page_length;
501 }
502
4f27b75d 503out:
f60d7f0c
CW
504 i915_gem_object_unpin_pages(obj);
505
eb01459f
EA
506 return ret;
507}
508
673a394b
EA
509/**
510 * Reads data from the object referenced by handle.
511 *
512 * On error, the contents of *data are undefined.
513 */
514int
515i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 516 struct drm_file *file)
673a394b
EA
517{
518 struct drm_i915_gem_pread *args = data;
05394f39 519 struct drm_i915_gem_object *obj;
35b62a89 520 int ret = 0;
673a394b 521
51311d0a
CW
522 if (args->size == 0)
523 return 0;
524
525 if (!access_ok(VERIFY_WRITE,
2bb4629a 526 to_user_ptr(args->data_ptr),
51311d0a
CW
527 args->size))
528 return -EFAULT;
529
4f27b75d 530 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 531 if (ret)
4f27b75d 532 return ret;
673a394b 533
05394f39 534 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 535 if (&obj->base == NULL) {
1d7cfea1
CW
536 ret = -ENOENT;
537 goto unlock;
4f27b75d 538 }
673a394b 539
7dcd2499 540 /* Bounds check source. */
05394f39
CW
541 if (args->offset > obj->base.size ||
542 args->size > obj->base.size - args->offset) {
ce9d419d 543 ret = -EINVAL;
35b62a89 544 goto out;
ce9d419d
CW
545 }
546
1286ff73
DV
547 /* prime objects have no backing filp to GEM pread/pwrite
548 * pages from.
549 */
550 if (!obj->base.filp) {
551 ret = -EINVAL;
552 goto out;
553 }
554
db53a302
CW
555 trace_i915_gem_object_pread(obj, args->offset, args->size);
556
dbf7bff0 557 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 558
35b62a89 559out:
05394f39 560 drm_gem_object_unreference(&obj->base);
1d7cfea1 561unlock:
4f27b75d 562 mutex_unlock(&dev->struct_mutex);
eb01459f 563 return ret;
673a394b
EA
564}
565
0839ccb8
KP
566/* This is the fast write path which cannot handle
567 * page faults in the source data
9b7530cc 568 */
0839ccb8
KP
569
570static inline int
571fast_user_write(struct io_mapping *mapping,
572 loff_t page_base, int page_offset,
573 char __user *user_data,
574 int length)
9b7530cc 575{
4f0c7cfb
BW
576 void __iomem *vaddr_atomic;
577 void *vaddr;
0839ccb8 578 unsigned long unwritten;
9b7530cc 579
3e4d3af5 580 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
581 /* We can use the cpu mem copy function because this is X86. */
582 vaddr = (void __force*)vaddr_atomic + page_offset;
583 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 584 user_data, length);
3e4d3af5 585 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 586 return unwritten;
0839ccb8
KP
587}
588
3de09aa3
EA
589/**
590 * This is the fast pwrite path, where we copy the data directly from the
591 * user into the GTT, uncached.
592 */
673a394b 593static int
05394f39
CW
594i915_gem_gtt_pwrite_fast(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
3de09aa3 596 struct drm_i915_gem_pwrite *args,
05394f39 597 struct drm_file *file)
673a394b 598{
0839ccb8 599 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 600 ssize_t remain;
0839ccb8 601 loff_t offset, page_base;
673a394b 602 char __user *user_data;
935aaa69
DV
603 int page_offset, page_length, ret;
604
c37e2204 605 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
606 if (ret)
607 goto out;
608
609 ret = i915_gem_object_set_to_gtt_domain(obj, true);
610 if (ret)
611 goto out_unpin;
612
613 ret = i915_gem_object_put_fence(obj);
614 if (ret)
615 goto out_unpin;
673a394b 616
2bb4629a 617 user_data = to_user_ptr(args->data_ptr);
673a394b 618 remain = args->size;
673a394b 619
f343c5f6 620 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
621
622 while (remain > 0) {
623 /* Operation in this page
624 *
0839ccb8
KP
625 * page_base = page offset within aperture
626 * page_offset = offset within page
627 * page_length = bytes to copy for this page
673a394b 628 */
c8cbbb8b
CW
629 page_base = offset & PAGE_MASK;
630 page_offset = offset_in_page(offset);
0839ccb8
KP
631 page_length = remain;
632 if ((page_offset + remain) > PAGE_SIZE)
633 page_length = PAGE_SIZE - page_offset;
634
0839ccb8 635 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
636 * source page isn't available. Return the error and we'll
637 * retry in the slow path.
0839ccb8 638 */
5d4545ae 639 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
640 page_offset, user_data, page_length)) {
641 ret = -EFAULT;
642 goto out_unpin;
643 }
673a394b 644
0839ccb8
KP
645 remain -= page_length;
646 user_data += page_length;
647 offset += page_length;
673a394b 648 }
673a394b 649
935aaa69
DV
650out_unpin:
651 i915_gem_object_unpin(obj);
652out:
3de09aa3 653 return ret;
673a394b
EA
654}
655
d174bd64
DV
656/* Per-page copy function for the shmem pwrite fastpath.
657 * Flushes invalid cachelines before writing to the target if
658 * needs_clflush_before is set and flushes out any written cachelines after
659 * writing if needs_clflush is set. */
3043c60c 660static int
d174bd64
DV
661shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
662 char __user *user_data,
663 bool page_do_bit17_swizzling,
664 bool needs_clflush_before,
665 bool needs_clflush_after)
673a394b 666{
d174bd64 667 char *vaddr;
673a394b 668 int ret;
3de09aa3 669
e7e58eb5 670 if (unlikely(page_do_bit17_swizzling))
d174bd64 671 return -EINVAL;
3de09aa3 672
d174bd64
DV
673 vaddr = kmap_atomic(page);
674 if (needs_clflush_before)
675 drm_clflush_virt_range(vaddr + shmem_page_offset,
676 page_length);
677 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
678 user_data,
679 page_length);
680 if (needs_clflush_after)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 kunmap_atomic(vaddr);
3de09aa3 684
755d2218 685 return ret ? -EFAULT : 0;
3de09aa3
EA
686}
687
d174bd64
DV
688/* Only difference to the fast-path function is that this can handle bit17
689 * and uses non-atomic copy and kmap functions. */
3043c60c 690static int
d174bd64
DV
691shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
692 char __user *user_data,
693 bool page_do_bit17_swizzling,
694 bool needs_clflush_before,
695 bool needs_clflush_after)
673a394b 696{
d174bd64
DV
697 char *vaddr;
698 int ret;
e5281ccd 699
d174bd64 700 vaddr = kmap(page);
e7e58eb5 701 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
702 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
703 page_length,
704 page_do_bit17_swizzling);
d174bd64
DV
705 if (page_do_bit17_swizzling)
706 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
707 user_data,
708 page_length);
d174bd64
DV
709 else
710 ret = __copy_from_user(vaddr + shmem_page_offset,
711 user_data,
712 page_length);
713 if (needs_clflush_after)
23c18c71
DV
714 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
715 page_length,
716 page_do_bit17_swizzling);
d174bd64 717 kunmap(page);
40123c1f 718
755d2218 719 return ret ? -EFAULT : 0;
40123c1f
EA
720}
721
40123c1f 722static int
e244a443
DV
723i915_gem_shmem_pwrite(struct drm_device *dev,
724 struct drm_i915_gem_object *obj,
725 struct drm_i915_gem_pwrite *args,
726 struct drm_file *file)
40123c1f 727{
40123c1f 728 ssize_t remain;
8c59967c
DV
729 loff_t offset;
730 char __user *user_data;
eb2c0c81 731 int shmem_page_offset, page_length, ret = 0;
8c59967c 732 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 733 int hit_slowpath = 0;
58642885
DV
734 int needs_clflush_after = 0;
735 int needs_clflush_before = 0;
67d5a50c 736 struct sg_page_iter sg_iter;
40123c1f 737
2bb4629a 738 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
739 remain = args->size;
740
8c59967c 741 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 742
58642885
DV
743 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744 /* If we're not in the cpu write domain, set ourself into the gtt
745 * write domain and manually flush cachelines (if required). This
746 * optimizes for the case when the gpu will use the data
747 * right away and we therefore have to clflush anyway. */
2c22569b 748 needs_clflush_after = cpu_write_needs_clflush(obj);
9843877d 749 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
750 ret = i915_gem_object_set_to_gtt_domain(obj, true);
751 if (ret)
752 return ret;
753 }
58642885 754 }
c76ce038
CW
755 /* Same trick applies to invalidate partially written cachelines read
756 * before writing. */
757 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
758 needs_clflush_before =
759 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 760
755d2218
CW
761 ret = i915_gem_object_get_pages(obj);
762 if (ret)
763 return ret;
764
765 i915_gem_object_pin_pages(obj);
766
673a394b 767 offset = args->offset;
05394f39 768 obj->dirty = 1;
673a394b 769
67d5a50c
ID
770 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
771 offset >> PAGE_SHIFT) {
2db76d7c 772 struct page *page = sg_page_iter_page(&sg_iter);
58642885 773 int partial_cacheline_write;
e5281ccd 774
9da3da66
CW
775 if (remain <= 0)
776 break;
777
40123c1f
EA
778 /* Operation in this page
779 *
40123c1f 780 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
781 * page_length = bytes to copy for this page
782 */
c8cbbb8b 783 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
784
785 page_length = remain;
786 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 788
58642885
DV
789 /* If we don't overwrite a cacheline completely we need to be
790 * careful to have up-to-date data by first clflushing. Don't
791 * overcomplicate things and flush the entire patch. */
792 partial_cacheline_write = needs_clflush_before &&
793 ((shmem_page_offset | page_length)
794 & (boot_cpu_data.x86_clflush_size - 1));
795
8c59967c
DV
796 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
797 (page_to_phys(page) & (1 << 17)) != 0;
798
d174bd64
DV
799 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
800 user_data, page_do_bit17_swizzling,
801 partial_cacheline_write,
802 needs_clflush_after);
803 if (ret == 0)
804 goto next_page;
e244a443
DV
805
806 hit_slowpath = 1;
e244a443 807 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
808 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
809 user_data, page_do_bit17_swizzling,
810 partial_cacheline_write,
811 needs_clflush_after);
40123c1f 812
e244a443 813 mutex_lock(&dev->struct_mutex);
755d2218 814
e244a443 815next_page:
e5281ccd
CW
816 set_page_dirty(page);
817 mark_page_accessed(page);
e5281ccd 818
755d2218 819 if (ret)
8c59967c 820 goto out;
8c59967c 821
40123c1f 822 remain -= page_length;
8c59967c 823 user_data += page_length;
40123c1f 824 offset += page_length;
673a394b
EA
825 }
826
fbd5a26d 827out:
755d2218
CW
828 i915_gem_object_unpin_pages(obj);
829
e244a443 830 if (hit_slowpath) {
8dcf015e
DV
831 /*
832 * Fixup: Flush cpu caches in case we didn't flush the dirty
833 * cachelines in-line while writing and the object moved
834 * out of the cpu write domain while we've dropped the lock.
835 */
836 if (!needs_clflush_after &&
837 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
838 if (i915_gem_clflush_object(obj, obj->pin_display))
839 i915_gem_chipset_flush(dev);
e244a443 840 }
8c59967c 841 }
673a394b 842
58642885 843 if (needs_clflush_after)
e76e9aeb 844 i915_gem_chipset_flush(dev);
58642885 845
40123c1f 846 return ret;
673a394b
EA
847}
848
849/**
850 * Writes data to the object referenced by handle.
851 *
852 * On error, the contents of the buffer that were to be modified are undefined.
853 */
854int
855i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 856 struct drm_file *file)
673a394b
EA
857{
858 struct drm_i915_gem_pwrite *args = data;
05394f39 859 struct drm_i915_gem_object *obj;
51311d0a
CW
860 int ret;
861
862 if (args->size == 0)
863 return 0;
864
865 if (!access_ok(VERIFY_READ,
2bb4629a 866 to_user_ptr(args->data_ptr),
51311d0a
CW
867 args->size))
868 return -EFAULT;
869
0b74b508
XZ
870 if (likely(!i915_prefault_disable)) {
871 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
872 args->size);
873 if (ret)
874 return -EFAULT;
875 }
673a394b 876
fbd5a26d 877 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 878 if (ret)
fbd5a26d 879 return ret;
1d7cfea1 880
05394f39 881 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 882 if (&obj->base == NULL) {
1d7cfea1
CW
883 ret = -ENOENT;
884 goto unlock;
fbd5a26d 885 }
673a394b 886
7dcd2499 887 /* Bounds check destination. */
05394f39
CW
888 if (args->offset > obj->base.size ||
889 args->size > obj->base.size - args->offset) {
ce9d419d 890 ret = -EINVAL;
35b62a89 891 goto out;
ce9d419d
CW
892 }
893
1286ff73
DV
894 /* prime objects have no backing filp to GEM pread/pwrite
895 * pages from.
896 */
897 if (!obj->base.filp) {
898 ret = -EINVAL;
899 goto out;
900 }
901
db53a302
CW
902 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
903
935aaa69 904 ret = -EFAULT;
673a394b
EA
905 /* We can only do the GTT pwrite on untiled buffers, as otherwise
906 * it would end up going through the fenced access, and we'll get
907 * different detiling behavior between reading and writing.
908 * pread/pwrite currently are reading and writing from the CPU
909 * perspective, requiring manual detiling by the client.
910 */
5c0480f2 911 if (obj->phys_obj) {
fbd5a26d 912 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
913 goto out;
914 }
915
2c22569b
CW
916 if (obj->tiling_mode == I915_TILING_NONE &&
917 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
918 cpu_write_needs_clflush(obj)) {
fbd5a26d 919 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
920 /* Note that the gtt paths might fail with non-page-backed user
921 * pointers (e.g. gtt mappings when moving data between
922 * textures). Fallback to the shmem path in that case. */
fbd5a26d 923 }
673a394b 924
86a1ee26 925 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 926 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 927
35b62a89 928out:
05394f39 929 drm_gem_object_unreference(&obj->base);
1d7cfea1 930unlock:
fbd5a26d 931 mutex_unlock(&dev->struct_mutex);
673a394b
EA
932 return ret;
933}
934
b361237b 935int
33196ded 936i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
937 bool interruptible)
938{
1f83fee0 939 if (i915_reset_in_progress(error)) {
b361237b
CW
940 /* Non-interruptible callers can't handle -EAGAIN, hence return
941 * -EIO unconditionally for these. */
942 if (!interruptible)
943 return -EIO;
944
1f83fee0
DV
945 /* Recovery complete, but the reset failed ... */
946 if (i915_terminally_wedged(error))
b361237b
CW
947 return -EIO;
948
949 return -EAGAIN;
950 }
951
952 return 0;
953}
954
955/*
956 * Compare seqno against outstanding lazy request. Emit a request if they are
957 * equal.
958 */
959static int
960i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
961{
962 int ret;
963
964 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965
966 ret = 0;
967 if (seqno == ring->outstanding_lazy_request)
0025c077 968 ret = i915_add_request(ring, NULL);
b361237b
CW
969
970 return ret;
971}
972
973/**
974 * __wait_seqno - wait until execution of seqno has finished
975 * @ring: the ring expected to report seqno
976 * @seqno: duh!
f69061be 977 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
978 * @interruptible: do an interruptible wait (normally yes)
979 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
980 *
f69061be
DV
981 * Note: It is of utmost importance that the passed in seqno and reset_counter
982 * values have been read by the caller in an smp safe manner. Where read-side
983 * locks are involved, it is sufficient to read the reset_counter before
984 * unlocking the lock that protects the seqno. For lockless tricks, the
985 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
986 * inserted.
987 *
b361237b
CW
988 * Returns 0 if the seqno was found within the alloted time. Else returns the
989 * errno with remaining time filled in timeout argument.
990 */
991static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 992 unsigned reset_counter,
b361237b
CW
993 bool interruptible, struct timespec *timeout)
994{
995 drm_i915_private_t *dev_priv = ring->dev->dev_private;
996 struct timespec before, now, wait_time={1,0};
997 unsigned long timeout_jiffies;
998 long end;
999 bool wait_forever = true;
1000 int ret;
1001
c67a470b
PZ
1002 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1003
b361237b
CW
1004 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005 return 0;
1006
1007 trace_i915_gem_request_wait_begin(ring, seqno);
1008
1009 if (timeout != NULL) {
1010 wait_time = *timeout;
1011 wait_forever = false;
1012 }
1013
e054cc39 1014 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1015
1016 if (WARN_ON(!ring->irq_get(ring)))
1017 return -ENODEV;
1018
1019 /* Record current time in case interrupted by signal, or wedged * */
1020 getrawmonotonic(&before);
1021
1022#define EXIT_COND \
1023 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1024 i915_reset_in_progress(&dev_priv->gpu_error) || \
1025 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1026 do {
1027 if (interruptible)
1028 end = wait_event_interruptible_timeout(ring->irq_queue,
1029 EXIT_COND,
1030 timeout_jiffies);
1031 else
1032 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033 timeout_jiffies);
1034
f69061be
DV
1035 /* We need to check whether any gpu reset happened in between
1036 * the caller grabbing the seqno and now ... */
1037 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038 end = -EAGAIN;
1039
1040 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041 * gone. */
33196ded 1042 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1043 if (ret)
1044 end = ret;
1045 } while (end == 0 && wait_forever);
1046
1047 getrawmonotonic(&now);
1048
1049 ring->irq_put(ring);
1050 trace_i915_gem_request_wait_end(ring, seqno);
1051#undef EXIT_COND
1052
1053 if (timeout) {
1054 struct timespec sleep_time = timespec_sub(now, before);
1055 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1056 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1057 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1058 }
1059
1060 switch (end) {
1061 case -EIO:
1062 case -EAGAIN: /* Wedged */
1063 case -ERESTARTSYS: /* Signal */
1064 return (int)end;
1065 case 0: /* Timeout */
b361237b
CW
1066 return -ETIME;
1067 default: /* Completed */
1068 WARN_ON(end < 0); /* We're not aware of other errors */
1069 return 0;
1070 }
1071}
1072
1073/**
1074 * Waits for a sequence number to be signaled, and cleans up the
1075 * request and object lists appropriately for that event.
1076 */
1077int
1078i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079{
1080 struct drm_device *dev = ring->dev;
1081 struct drm_i915_private *dev_priv = dev->dev_private;
1082 bool interruptible = dev_priv->mm.interruptible;
1083 int ret;
1084
1085 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086 BUG_ON(seqno == 0);
1087
33196ded 1088 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1089 if (ret)
1090 return ret;
1091
1092 ret = i915_gem_check_olr(ring, seqno);
1093 if (ret)
1094 return ret;
1095
f69061be
DV
1096 return __wait_seqno(ring, seqno,
1097 atomic_read(&dev_priv->gpu_error.reset_counter),
1098 interruptible, NULL);
b361237b
CW
1099}
1100
d26e3af8
CW
1101static int
1102i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1103 struct intel_ring_buffer *ring)
1104{
1105 i915_gem_retire_requests_ring(ring);
1106
1107 /* Manually manage the write flush as we may have not yet
1108 * retired the buffer.
1109 *
1110 * Note that the last_write_seqno is always the earlier of
1111 * the two (read/write) seqno, so if we haved successfully waited,
1112 * we know we have passed the last write.
1113 */
1114 obj->last_write_seqno = 0;
1115 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1116
1117 return 0;
1118}
1119
b361237b
CW
1120/**
1121 * Ensures that all rendering to the object has completed and the object is
1122 * safe to unbind from the GTT or access from the CPU.
1123 */
1124static __must_check int
1125i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1126 bool readonly)
1127{
1128 struct intel_ring_buffer *ring = obj->ring;
1129 u32 seqno;
1130 int ret;
1131
1132 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133 if (seqno == 0)
1134 return 0;
1135
1136 ret = i915_wait_seqno(ring, seqno);
1137 if (ret)
1138 return ret;
1139
d26e3af8 1140 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1141}
1142
3236f57a
CW
1143/* A nonblocking variant of the above wait. This is a highly dangerous routine
1144 * as the object state may change during this call.
1145 */
1146static __must_check int
1147i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1148 bool readonly)
1149{
1150 struct drm_device *dev = obj->base.dev;
1151 struct drm_i915_private *dev_priv = dev->dev_private;
1152 struct intel_ring_buffer *ring = obj->ring;
f69061be 1153 unsigned reset_counter;
3236f57a
CW
1154 u32 seqno;
1155 int ret;
1156
1157 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1158 BUG_ON(!dev_priv->mm.interruptible);
1159
1160 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1161 if (seqno == 0)
1162 return 0;
1163
33196ded 1164 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1165 if (ret)
1166 return ret;
1167
1168 ret = i915_gem_check_olr(ring, seqno);
1169 if (ret)
1170 return ret;
1171
f69061be 1172 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1173 mutex_unlock(&dev->struct_mutex);
f69061be 1174 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1175 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1176 if (ret)
1177 return ret;
3236f57a 1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1180}
1181
673a394b 1182/**
2ef7eeaa
EA
1183 * Called when user space prepares to use an object with the CPU, either
1184 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1185 */
1186int
1187i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1188 struct drm_file *file)
673a394b
EA
1189{
1190 struct drm_i915_gem_set_domain *args = data;
05394f39 1191 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1192 uint32_t read_domains = args->read_domains;
1193 uint32_t write_domain = args->write_domain;
673a394b
EA
1194 int ret;
1195
2ef7eeaa 1196 /* Only handle setting domains to types used by the CPU. */
21d509e3 1197 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1198 return -EINVAL;
1199
21d509e3 1200 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1201 return -EINVAL;
1202
1203 /* Having something in the write domain implies it's in the read
1204 * domain, and only that read domain. Enforce that in the request.
1205 */
1206 if (write_domain != 0 && read_domains != write_domain)
1207 return -EINVAL;
1208
76c1dec1 1209 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1210 if (ret)
76c1dec1 1211 return ret;
1d7cfea1 1212
05394f39 1213 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1214 if (&obj->base == NULL) {
1d7cfea1
CW
1215 ret = -ENOENT;
1216 goto unlock;
76c1dec1 1217 }
673a394b 1218
3236f57a
CW
1219 /* Try to flush the object off the GPU without holding the lock.
1220 * We will repeat the flush holding the lock in the normal manner
1221 * to catch cases where we are gazumped.
1222 */
1223 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224 if (ret)
1225 goto unref;
1226
2ef7eeaa
EA
1227 if (read_domains & I915_GEM_DOMAIN_GTT) {
1228 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1229
1230 /* Silently promote "you're not bound, there was nothing to do"
1231 * to success, since the client was just asking us to
1232 * make sure everything was done.
1233 */
1234 if (ret == -EINVAL)
1235 ret = 0;
2ef7eeaa 1236 } else {
e47c68e9 1237 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1238 }
1239
3236f57a 1240unref:
05394f39 1241 drm_gem_object_unreference(&obj->base);
1d7cfea1 1242unlock:
673a394b
EA
1243 mutex_unlock(&dev->struct_mutex);
1244 return ret;
1245}
1246
1247/**
1248 * Called when user space has done writes to this buffer
1249 */
1250int
1251i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1252 struct drm_file *file)
673a394b
EA
1253{
1254 struct drm_i915_gem_sw_finish *args = data;
05394f39 1255 struct drm_i915_gem_object *obj;
673a394b
EA
1256 int ret = 0;
1257
76c1dec1 1258 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1259 if (ret)
76c1dec1 1260 return ret;
1d7cfea1 1261
05394f39 1262 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1263 if (&obj->base == NULL) {
1d7cfea1
CW
1264 ret = -ENOENT;
1265 goto unlock;
673a394b
EA
1266 }
1267
673a394b 1268 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1269 if (obj->pin_display)
1270 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1271
05394f39 1272 drm_gem_object_unreference(&obj->base);
1d7cfea1 1273unlock:
673a394b
EA
1274 mutex_unlock(&dev->struct_mutex);
1275 return ret;
1276}
1277
1278/**
1279 * Maps the contents of an object, returning the address it is mapped
1280 * into.
1281 *
1282 * While the mapping holds a reference on the contents of the object, it doesn't
1283 * imply a ref on the object itself.
1284 */
1285int
1286i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1287 struct drm_file *file)
673a394b
EA
1288{
1289 struct drm_i915_gem_mmap *args = data;
1290 struct drm_gem_object *obj;
673a394b
EA
1291 unsigned long addr;
1292
05394f39 1293 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1294 if (obj == NULL)
bf79cb91 1295 return -ENOENT;
673a394b 1296
1286ff73
DV
1297 /* prime objects have no backing filp to GEM mmap
1298 * pages from.
1299 */
1300 if (!obj->filp) {
1301 drm_gem_object_unreference_unlocked(obj);
1302 return -EINVAL;
1303 }
1304
6be5ceb0 1305 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1306 PROT_READ | PROT_WRITE, MAP_SHARED,
1307 args->offset);
bc9025bd 1308 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1309 if (IS_ERR((void *)addr))
1310 return addr;
1311
1312 args->addr_ptr = (uint64_t) addr;
1313
1314 return 0;
1315}
1316
de151cf6
JB
1317/**
1318 * i915_gem_fault - fault a page into the GTT
1319 * vma: VMA in question
1320 * vmf: fault info
1321 *
1322 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323 * from userspace. The fault handler takes care of binding the object to
1324 * the GTT (if needed), allocating and programming a fence register (again,
1325 * only if needed based on whether the old reg is still valid or the object
1326 * is tiled) and inserting a new PTE into the faulting process.
1327 *
1328 * Note that the faulting process may involve evicting existing objects
1329 * from the GTT and/or fence registers to make room. So performance may
1330 * suffer if the GTT working set is large or there are few fence registers
1331 * left.
1332 */
1333int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334{
05394f39
CW
1335 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336 struct drm_device *dev = obj->base.dev;
7d1c4804 1337 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1338 pgoff_t page_offset;
1339 unsigned long pfn;
1340 int ret = 0;
0f973f27 1341 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1342
1343 /* We don't use vmf->pgoff since that has the fake offset */
1344 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345 PAGE_SHIFT;
1346
d9bc7e9f
CW
1347 ret = i915_mutex_lock_interruptible(dev);
1348 if (ret)
1349 goto out;
a00b10c3 1350
db53a302
CW
1351 trace_i915_gem_object_fault(obj, page_offset, true, write);
1352
eb119bd6
CW
1353 /* Access to snoopable pages through the GTT is incoherent. */
1354 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1355 ret = -EINVAL;
1356 goto unlock;
1357 }
1358
d9bc7e9f 1359 /* Now bind it into the GTT if needed */
c37e2204 1360 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1361 if (ret)
1362 goto unlock;
4a684a41 1363
c9839303
CW
1364 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365 if (ret)
1366 goto unpin;
74898d7e 1367
06d98131 1368 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1369 if (ret)
c9839303 1370 goto unpin;
7d1c4804 1371
6299f992
CW
1372 obj->fault_mappable = true;
1373
f343c5f6
BW
1374 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1375 pfn >>= PAGE_SHIFT;
1376 pfn += page_offset;
de151cf6
JB
1377
1378 /* Finally, remap it using the new GTT offset */
1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1380unpin:
1381 i915_gem_object_unpin(obj);
c715089f 1382unlock:
de151cf6 1383 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1384out:
de151cf6 1385 switch (ret) {
d9bc7e9f 1386 case -EIO:
a9340cca
DV
1387 /* If this -EIO is due to a gpu hang, give the reset code a
1388 * chance to clean up the mess. Otherwise return the proper
1389 * SIGBUS. */
1f83fee0 1390 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1391 return VM_FAULT_SIGBUS;
045e769a 1392 case -EAGAIN:
d9bc7e9f
CW
1393 /* Give the error handler a chance to run and move the
1394 * objects off the GPU active list. Next time we service the
1395 * fault, we should be able to transition the page into the
1396 * GTT without touching the GPU (and so avoid further
1397 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1398 * with coherency, just lost writes.
1399 */
045e769a 1400 set_need_resched();
c715089f
CW
1401 case 0:
1402 case -ERESTARTSYS:
bed636ab 1403 case -EINTR:
e79e0fe3
DR
1404 case -EBUSY:
1405 /*
1406 * EBUSY is ok: this just means that another thread
1407 * already did the job.
1408 */
c715089f 1409 return VM_FAULT_NOPAGE;
de151cf6 1410 case -ENOMEM:
de151cf6 1411 return VM_FAULT_OOM;
a7c2e1aa
DV
1412 case -ENOSPC:
1413 return VM_FAULT_SIGBUS;
de151cf6 1414 default:
a7c2e1aa 1415 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1416 return VM_FAULT_SIGBUS;
de151cf6
JB
1417 }
1418}
1419
901782b2
CW
1420/**
1421 * i915_gem_release_mmap - remove physical page mappings
1422 * @obj: obj in question
1423 *
af901ca1 1424 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1425 * relinquish ownership of the pages back to the system.
1426 *
1427 * It is vital that we remove the page mapping if we have mapped a tiled
1428 * object through the GTT and then lose the fence register due to
1429 * resource pressure. Similarly if the object has been moved out of the
1430 * aperture, than pages mapped into userspace must be revoked. Removing the
1431 * mapping will then trigger a page fault on the next user access, allowing
1432 * fixup by i915_gem_fault().
1433 */
d05ca301 1434void
05394f39 1435i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1436{
6299f992
CW
1437 if (!obj->fault_mappable)
1438 return;
901782b2 1439
51335df9 1440 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1441 obj->fault_mappable = false;
901782b2
CW
1442}
1443
0fa87796 1444uint32_t
e28f8711 1445i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1446{
e28f8711 1447 uint32_t gtt_size;
92b88aeb
CW
1448
1449 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1450 tiling_mode == I915_TILING_NONE)
1451 return size;
92b88aeb
CW
1452
1453 /* Previous chips need a power-of-two fence region when tiling */
1454 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1455 gtt_size = 1024*1024;
92b88aeb 1456 else
e28f8711 1457 gtt_size = 512*1024;
92b88aeb 1458
e28f8711
CW
1459 while (gtt_size < size)
1460 gtt_size <<= 1;
92b88aeb 1461
e28f8711 1462 return gtt_size;
92b88aeb
CW
1463}
1464
de151cf6
JB
1465/**
1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467 * @obj: object to check
1468 *
1469 * Return the required GTT alignment for an object, taking into account
5e783301 1470 * potential fence register mapping.
de151cf6 1471 */
d865110c
ID
1472uint32_t
1473i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1474 int tiling_mode, bool fenced)
de151cf6 1475{
de151cf6
JB
1476 /*
1477 * Minimum alignment is 4k (GTT page size), but might be greater
1478 * if a fence register is needed for the object.
1479 */
d865110c 1480 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1481 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1482 return 4096;
1483
a00b10c3
CW
1484 /*
1485 * Previous chips need to be aligned to the size of the smallest
1486 * fence register that can contain the object.
1487 */
e28f8711 1488 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1489}
1490
d8cb5086
CW
1491static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1492{
1493 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1494 int ret;
1495
0de23977 1496 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1497 return 0;
1498
da494d7c
DV
1499 dev_priv->mm.shrinker_no_lock_stealing = true;
1500
d8cb5086
CW
1501 ret = drm_gem_create_mmap_offset(&obj->base);
1502 if (ret != -ENOSPC)
da494d7c 1503 goto out;
d8cb5086
CW
1504
1505 /* Badly fragmented mmap space? The only way we can recover
1506 * space is by destroying unwanted objects. We can't randomly release
1507 * mmap_offsets as userspace expects them to be persistent for the
1508 * lifetime of the objects. The closest we can is to release the
1509 * offsets on purgeable objects by truncating it and marking it purged,
1510 * which prevents userspace from ever using that object again.
1511 */
1512 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1513 ret = drm_gem_create_mmap_offset(&obj->base);
1514 if (ret != -ENOSPC)
da494d7c 1515 goto out;
d8cb5086
CW
1516
1517 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1518 ret = drm_gem_create_mmap_offset(&obj->base);
1519out:
1520 dev_priv->mm.shrinker_no_lock_stealing = false;
1521
1522 return ret;
d8cb5086
CW
1523}
1524
1525static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1526{
d8cb5086
CW
1527 drm_gem_free_mmap_offset(&obj->base);
1528}
1529
de151cf6 1530int
ff72145b
DA
1531i915_gem_mmap_gtt(struct drm_file *file,
1532 struct drm_device *dev,
1533 uint32_t handle,
1534 uint64_t *offset)
de151cf6 1535{
da761a6e 1536 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1537 struct drm_i915_gem_object *obj;
de151cf6
JB
1538 int ret;
1539
76c1dec1 1540 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1541 if (ret)
76c1dec1 1542 return ret;
de151cf6 1543
ff72145b 1544 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1545 if (&obj->base == NULL) {
1d7cfea1
CW
1546 ret = -ENOENT;
1547 goto unlock;
1548 }
de151cf6 1549
5d4545ae 1550 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1551 ret = -E2BIG;
ff56b0bc 1552 goto out;
da761a6e
CW
1553 }
1554
05394f39 1555 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1556 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1557 ret = -EINVAL;
1558 goto out;
ab18282d
CW
1559 }
1560
d8cb5086
CW
1561 ret = i915_gem_object_create_mmap_offset(obj);
1562 if (ret)
1563 goto out;
de151cf6 1564
0de23977 1565 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1566
1d7cfea1 1567out:
05394f39 1568 drm_gem_object_unreference(&obj->base);
1d7cfea1 1569unlock:
de151cf6 1570 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1571 return ret;
de151cf6
JB
1572}
1573
ff72145b
DA
1574/**
1575 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1576 * @dev: DRM device
1577 * @data: GTT mapping ioctl data
1578 * @file: GEM object info
1579 *
1580 * Simply returns the fake offset to userspace so it can mmap it.
1581 * The mmap call will end up in drm_gem_mmap(), which will set things
1582 * up so we can get faults in the handler above.
1583 *
1584 * The fault handler will take care of binding the object into the GTT
1585 * (since it may have been evicted to make room for something), allocating
1586 * a fence register, and mapping the appropriate aperture address into
1587 * userspace.
1588 */
1589int
1590i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1591 struct drm_file *file)
1592{
1593 struct drm_i915_gem_mmap_gtt *args = data;
1594
ff72145b
DA
1595 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1596}
1597
225067ee
DV
1598/* Immediately discard the backing storage */
1599static void
1600i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1601{
e5281ccd 1602 struct inode *inode;
e5281ccd 1603
4d6294bf 1604 i915_gem_object_free_mmap_offset(obj);
1286ff73 1605
4d6294bf
CW
1606 if (obj->base.filp == NULL)
1607 return;
e5281ccd 1608
225067ee
DV
1609 /* Our goal here is to return as much of the memory as
1610 * is possible back to the system as we are called from OOM.
1611 * To do this we must instruct the shmfs to drop all of its
1612 * backing pages, *now*.
1613 */
496ad9aa 1614 inode = file_inode(obj->base.filp);
225067ee 1615 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1616
225067ee
DV
1617 obj->madv = __I915_MADV_PURGED;
1618}
e5281ccd 1619
225067ee
DV
1620static inline int
1621i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1622{
1623 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1624}
1625
5cdf5881 1626static void
05394f39 1627i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1628{
90797e6d
ID
1629 struct sg_page_iter sg_iter;
1630 int ret;
1286ff73 1631
05394f39 1632 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1633
6c085a72
CW
1634 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1635 if (ret) {
1636 /* In the event of a disaster, abandon all caches and
1637 * hope for the best.
1638 */
1639 WARN_ON(ret != -EIO);
2c22569b 1640 i915_gem_clflush_object(obj, true);
6c085a72
CW
1641 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1642 }
1643
6dacfd2f 1644 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1645 i915_gem_object_save_bit_17_swizzle(obj);
1646
05394f39
CW
1647 if (obj->madv == I915_MADV_DONTNEED)
1648 obj->dirty = 0;
3ef94daa 1649
90797e6d 1650 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1651 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1652
05394f39 1653 if (obj->dirty)
9da3da66 1654 set_page_dirty(page);
3ef94daa 1655
05394f39 1656 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1657 mark_page_accessed(page);
3ef94daa 1658
9da3da66 1659 page_cache_release(page);
3ef94daa 1660 }
05394f39 1661 obj->dirty = 0;
673a394b 1662
9da3da66
CW
1663 sg_free_table(obj->pages);
1664 kfree(obj->pages);
37e680a1 1665}
6c085a72 1666
dd624afd 1667int
37e680a1
CW
1668i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1669{
1670 const struct drm_i915_gem_object_ops *ops = obj->ops;
1671
2f745ad3 1672 if (obj->pages == NULL)
37e680a1
CW
1673 return 0;
1674
a5570178
CW
1675 if (obj->pages_pin_count)
1676 return -EBUSY;
1677
9843877d 1678 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1679
a2165e31
CW
1680 /* ->put_pages might need to allocate memory for the bit17 swizzle
1681 * array, hence protect them from being reaped by removing them from gtt
1682 * lists early. */
35c20a60 1683 list_del(&obj->global_list);
a2165e31 1684
37e680a1 1685 ops->put_pages(obj);
05394f39 1686 obj->pages = NULL;
37e680a1 1687
6c085a72
CW
1688 if (i915_gem_object_is_purgeable(obj))
1689 i915_gem_object_truncate(obj);
1690
1691 return 0;
1692}
1693
1694static long
93927ca5
DV
1695__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1696 bool purgeable_only)
6c085a72 1697{
57094f82 1698 struct list_head still_bound_list;
6c085a72
CW
1699 struct drm_i915_gem_object *obj, *next;
1700 long count = 0;
1701
1702 list_for_each_entry_safe(obj, next,
1703 &dev_priv->mm.unbound_list,
35c20a60 1704 global_list) {
93927ca5 1705 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1706 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1707 count += obj->base.size >> PAGE_SHIFT;
1708 if (count >= target)
1709 return count;
1710 }
1711 }
1712
57094f82
CW
1713 /*
1714 * As we may completely rewrite the bound list whilst unbinding
1715 * (due to retiring requests) we have to strictly process only
1716 * one element of the list at the time, and recheck the list
1717 * on every iteration.
1718 */
1719 INIT_LIST_HEAD(&still_bound_list);
1720 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1721 struct i915_vma *vma, *v;
80dcfdbd 1722
57094f82
CW
1723 obj = list_first_entry(&dev_priv->mm.bound_list,
1724 typeof(*obj), global_list);
1725 list_move_tail(&obj->global_list, &still_bound_list);
1726
80dcfdbd
BW
1727 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1728 continue;
1729
57094f82
CW
1730 /*
1731 * Hold a reference whilst we unbind this object, as we may
1732 * end up waiting for and retiring requests. This might
1733 * release the final reference (held by the active list)
1734 * and result in the object being freed from under us.
1735 * in this object being freed.
1736 *
1737 * Note 1: Shrinking the bound list is special since only active
1738 * (and hence bound objects) can contain such limbo objects, so
1739 * we don't need special tricks for shrinking the unbound list.
1740 * The only other place where we have to be careful with active
1741 * objects suddenly disappearing due to retiring requests is the
1742 * eviction code.
1743 *
1744 * Note 2: Even though the bound list doesn't hold a reference
1745 * to the object we can safely grab one here: The final object
1746 * unreferencing and the bound_list are both protected by the
1747 * dev->struct_mutex and so we won't ever be able to observe an
1748 * object on the bound_list with a reference count equals 0.
1749 */
1750 drm_gem_object_reference(&obj->base);
1751
07fe0b12
BW
1752 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1753 if (i915_vma_unbind(vma))
1754 break;
80dcfdbd 1755
57094f82 1756 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1757 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1758
1759 drm_gem_object_unreference(&obj->base);
6c085a72 1760 }
57094f82 1761 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1762
1763 return count;
1764}
1765
93927ca5
DV
1766static long
1767i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1768{
1769 return __i915_gem_shrink(dev_priv, target, true);
1770}
1771
6c085a72
CW
1772static void
1773i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1774{
1775 struct drm_i915_gem_object *obj, *next;
1776
1777 i915_gem_evict_everything(dev_priv->dev);
1778
35c20a60
BW
1779 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1780 global_list)
37e680a1 1781 i915_gem_object_put_pages(obj);
225067ee
DV
1782}
1783
37e680a1 1784static int
6c085a72 1785i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1786{
6c085a72 1787 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1788 int page_count, i;
1789 struct address_space *mapping;
9da3da66
CW
1790 struct sg_table *st;
1791 struct scatterlist *sg;
90797e6d 1792 struct sg_page_iter sg_iter;
e5281ccd 1793 struct page *page;
90797e6d 1794 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1795 gfp_t gfp;
e5281ccd 1796
6c085a72
CW
1797 /* Assert that the object is not currently in any GPU domain. As it
1798 * wasn't in the GTT, there shouldn't be any way it could have been in
1799 * a GPU cache
1800 */
1801 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1802 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1803
9da3da66
CW
1804 st = kmalloc(sizeof(*st), GFP_KERNEL);
1805 if (st == NULL)
1806 return -ENOMEM;
1807
05394f39 1808 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1809 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1810 kfree(st);
e5281ccd 1811 return -ENOMEM;
9da3da66 1812 }
e5281ccd 1813
9da3da66
CW
1814 /* Get the list of pages out of our struct file. They'll be pinned
1815 * at this point until we release them.
1816 *
1817 * Fail silently without starting the shrinker
1818 */
496ad9aa 1819 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1820 gfp = mapping_gfp_mask(mapping);
caf49191 1821 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1822 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1823 sg = st->sgl;
1824 st->nents = 0;
1825 for (i = 0; i < page_count; i++) {
6c085a72
CW
1826 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1827 if (IS_ERR(page)) {
1828 i915_gem_purge(dev_priv, page_count);
1829 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1830 }
1831 if (IS_ERR(page)) {
1832 /* We've tried hard to allocate the memory by reaping
1833 * our own buffer, now let the real VM do its job and
1834 * go down in flames if truly OOM.
1835 */
caf49191 1836 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1837 gfp |= __GFP_IO | __GFP_WAIT;
1838
1839 i915_gem_shrink_all(dev_priv);
1840 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1841 if (IS_ERR(page))
1842 goto err_pages;
1843
caf49191 1844 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1845 gfp &= ~(__GFP_IO | __GFP_WAIT);
1846 }
426729dc
KRW
1847#ifdef CONFIG_SWIOTLB
1848 if (swiotlb_nr_tbl()) {
1849 st->nents++;
1850 sg_set_page(sg, page, PAGE_SIZE, 0);
1851 sg = sg_next(sg);
1852 continue;
1853 }
1854#endif
90797e6d
ID
1855 if (!i || page_to_pfn(page) != last_pfn + 1) {
1856 if (i)
1857 sg = sg_next(sg);
1858 st->nents++;
1859 sg_set_page(sg, page, PAGE_SIZE, 0);
1860 } else {
1861 sg->length += PAGE_SIZE;
1862 }
1863 last_pfn = page_to_pfn(page);
e5281ccd 1864 }
426729dc
KRW
1865#ifdef CONFIG_SWIOTLB
1866 if (!swiotlb_nr_tbl())
1867#endif
1868 sg_mark_end(sg);
74ce6b6c
CW
1869 obj->pages = st;
1870
6dacfd2f 1871 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1872 i915_gem_object_do_bit_17_swizzle(obj);
1873
1874 return 0;
1875
1876err_pages:
90797e6d
ID
1877 sg_mark_end(sg);
1878 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1879 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1880 sg_free_table(st);
1881 kfree(st);
e5281ccd 1882 return PTR_ERR(page);
673a394b
EA
1883}
1884
37e680a1
CW
1885/* Ensure that the associated pages are gathered from the backing storage
1886 * and pinned into our object. i915_gem_object_get_pages() may be called
1887 * multiple times before they are released by a single call to
1888 * i915_gem_object_put_pages() - once the pages are no longer referenced
1889 * either as a result of memory pressure (reaping pages under the shrinker)
1890 * or as the object is itself released.
1891 */
1892int
1893i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1894{
1895 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1896 const struct drm_i915_gem_object_ops *ops = obj->ops;
1897 int ret;
1898
2f745ad3 1899 if (obj->pages)
37e680a1
CW
1900 return 0;
1901
43e28f09
CW
1902 if (obj->madv != I915_MADV_WILLNEED) {
1903 DRM_ERROR("Attempting to obtain a purgeable object\n");
1904 return -EINVAL;
1905 }
1906
a5570178
CW
1907 BUG_ON(obj->pages_pin_count);
1908
37e680a1
CW
1909 ret = ops->get_pages(obj);
1910 if (ret)
1911 return ret;
1912
35c20a60 1913 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1914 return 0;
673a394b
EA
1915}
1916
54cf91dc 1917void
05394f39 1918i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1919 struct intel_ring_buffer *ring)
673a394b 1920{
05394f39 1921 struct drm_device *dev = obj->base.dev;
69dc4987 1922 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1923 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1924
852835f3 1925 BUG_ON(ring == NULL);
02978ff5
CW
1926 if (obj->ring != ring && obj->last_write_seqno) {
1927 /* Keep the seqno relative to the current ring */
1928 obj->last_write_seqno = seqno;
1929 }
05394f39 1930 obj->ring = ring;
673a394b
EA
1931
1932 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1933 if (!obj->active) {
1934 drm_gem_object_reference(&obj->base);
1935 obj->active = 1;
673a394b 1936 }
e35a41de 1937
05394f39 1938 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1939
0201f1ec 1940 obj->last_read_seqno = seqno;
caea7476 1941
7dd49065 1942 if (obj->fenced_gpu_access) {
caea7476 1943 obj->last_fenced_seqno = seqno;
caea7476 1944
7dd49065
CW
1945 /* Bump MRU to take account of the delayed flush */
1946 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1947 struct drm_i915_fence_reg *reg;
1948
1949 reg = &dev_priv->fence_regs[obj->fence_reg];
1950 list_move_tail(&reg->lru_list,
1951 &dev_priv->mm.fence_list);
1952 }
caea7476
CW
1953 }
1954}
1955
1956static void
caea7476 1957i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1958{
ca191b13
BW
1959 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1960 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1961 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 1962
65ce3027 1963 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1964 BUG_ON(!obj->active);
caea7476 1965
ca191b13 1966 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 1967
65ce3027 1968 list_del_init(&obj->ring_list);
caea7476
CW
1969 obj->ring = NULL;
1970
65ce3027
CW
1971 obj->last_read_seqno = 0;
1972 obj->last_write_seqno = 0;
1973 obj->base.write_domain = 0;
1974
1975 obj->last_fenced_seqno = 0;
caea7476 1976 obj->fenced_gpu_access = false;
caea7476
CW
1977
1978 obj->active = 0;
1979 drm_gem_object_unreference(&obj->base);
1980
1981 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1982}
673a394b 1983
9d773091 1984static int
fca26bb4 1985i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1986{
9d773091
CW
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988 struct intel_ring_buffer *ring;
1989 int ret, i, j;
53d227f2 1990
107f27a5 1991 /* Carefully retire all requests without writing to the rings */
9d773091 1992 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1993 ret = intel_ring_idle(ring);
1994 if (ret)
1995 return ret;
9d773091 1996 }
9d773091 1997 i915_gem_retire_requests(dev);
107f27a5
CW
1998
1999 /* Finally reset hw state */
9d773091 2000 for_each_ring(ring, dev_priv, i) {
fca26bb4 2001 intel_ring_init_seqno(ring, seqno);
498d2ac1 2002
9d773091
CW
2003 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2004 ring->sync_seqno[j] = 0;
2005 }
53d227f2 2006
9d773091 2007 return 0;
53d227f2
DV
2008}
2009
fca26bb4
MK
2010int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2011{
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 int ret;
2014
2015 if (seqno == 0)
2016 return -EINVAL;
2017
2018 /* HWS page needs to be set less than what we
2019 * will inject to ring
2020 */
2021 ret = i915_gem_init_seqno(dev, seqno - 1);
2022 if (ret)
2023 return ret;
2024
2025 /* Carefully set the last_seqno value so that wrap
2026 * detection still works
2027 */
2028 dev_priv->next_seqno = seqno;
2029 dev_priv->last_seqno = seqno - 1;
2030 if (dev_priv->last_seqno == 0)
2031 dev_priv->last_seqno--;
2032
2033 return 0;
2034}
2035
9d773091
CW
2036int
2037i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2038{
9d773091
CW
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040
2041 /* reserve 0 for non-seqno */
2042 if (dev_priv->next_seqno == 0) {
fca26bb4 2043 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2044 if (ret)
2045 return ret;
53d227f2 2046
9d773091
CW
2047 dev_priv->next_seqno = 1;
2048 }
53d227f2 2049
f72b3435 2050 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2051 return 0;
53d227f2
DV
2052}
2053
0025c077
MK
2054int __i915_add_request(struct intel_ring_buffer *ring,
2055 struct drm_file *file,
7d736f4f 2056 struct drm_i915_gem_object *obj,
0025c077 2057 u32 *out_seqno)
673a394b 2058{
db53a302 2059 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2060 struct drm_i915_gem_request *request;
7d736f4f 2061 u32 request_ring_position, request_start;
673a394b 2062 int was_empty;
3cce469c
CW
2063 int ret;
2064
7d736f4f 2065 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2066 /*
2067 * Emit any outstanding flushes - execbuf can fail to emit the flush
2068 * after having emitted the batchbuffer command. Hence we need to fix
2069 * things up similar to emitting the lazy request. The difference here
2070 * is that the flush _must_ happen before the next request, no matter
2071 * what.
2072 */
a7b9761d
CW
2073 ret = intel_ring_flush_all_caches(ring);
2074 if (ret)
2075 return ret;
cc889e0f 2076
acb868d3
CW
2077 request = kmalloc(sizeof(*request), GFP_KERNEL);
2078 if (request == NULL)
2079 return -ENOMEM;
cc889e0f 2080
673a394b 2081
a71d8d94
CW
2082 /* Record the position of the start of the request so that
2083 * should we detect the updated seqno part-way through the
2084 * GPU processing the request, we never over-estimate the
2085 * position of the head.
2086 */
2087 request_ring_position = intel_ring_get_tail(ring);
2088
9d773091 2089 ret = ring->add_request(ring);
3bb73aba
CW
2090 if (ret) {
2091 kfree(request);
2092 return ret;
2093 }
673a394b 2094
9d773091 2095 request->seqno = intel_ring_get_seqno(ring);
852835f3 2096 request->ring = ring;
7d736f4f 2097 request->head = request_start;
a71d8d94 2098 request->tail = request_ring_position;
0e50e96b 2099 request->ctx = ring->last_context;
7d736f4f
MK
2100 request->batch_obj = obj;
2101
2102 /* Whilst this request exists, batch_obj will be on the
2103 * active_list, and so will hold the active reference. Only when this
2104 * request is retired will the the batch_obj be moved onto the
2105 * inactive_list and lose its active reference. Hence we do not need
2106 * to explicitly hold another reference here.
2107 */
0e50e96b
MK
2108
2109 if (request->ctx)
2110 i915_gem_context_reference(request->ctx);
2111
673a394b 2112 request->emitted_jiffies = jiffies;
852835f3
ZN
2113 was_empty = list_empty(&ring->request_list);
2114 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2115 request->file_priv = NULL;
852835f3 2116
db53a302
CW
2117 if (file) {
2118 struct drm_i915_file_private *file_priv = file->driver_priv;
2119
1c25595f 2120 spin_lock(&file_priv->mm.lock);
f787a5f5 2121 request->file_priv = file_priv;
b962442e 2122 list_add_tail(&request->client_list,
f787a5f5 2123 &file_priv->mm.request_list);
1c25595f 2124 spin_unlock(&file_priv->mm.lock);
b962442e 2125 }
673a394b 2126
9d773091 2127 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2128 ring->outstanding_lazy_request = 0;
db53a302 2129
db1b76ca 2130 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2131 i915_queue_hangcheck(ring->dev);
2132
f047e395 2133 if (was_empty) {
b3b079db 2134 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2135 &dev_priv->mm.retire_work,
2136 round_jiffies_up_relative(HZ));
f047e395
CW
2137 intel_mark_busy(dev_priv->dev);
2138 }
f65d9421 2139 }
cc889e0f 2140
acb868d3 2141 if (out_seqno)
9d773091 2142 *out_seqno = request->seqno;
3cce469c 2143 return 0;
673a394b
EA
2144}
2145
f787a5f5
CW
2146static inline void
2147i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2148{
1c25595f 2149 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2150
1c25595f
CW
2151 if (!file_priv)
2152 return;
1c5d22f7 2153
1c25595f 2154 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2155 if (request->file_priv) {
2156 list_del(&request->client_list);
2157 request->file_priv = NULL;
2158 }
1c25595f 2159 spin_unlock(&file_priv->mm.lock);
673a394b 2160}
673a394b 2161
d1ccbb5d
BW
2162static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2163 struct i915_address_space *vm)
aa60c664 2164{
d1ccbb5d
BW
2165 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2166 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2167 return true;
2168
2169 return false;
2170}
2171
2172static bool i915_head_inside_request(const u32 acthd_unmasked,
2173 const u32 request_start,
2174 const u32 request_end)
2175{
2176 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2177
2178 if (request_start < request_end) {
2179 if (acthd >= request_start && acthd < request_end)
2180 return true;
2181 } else if (request_start > request_end) {
2182 if (acthd >= request_start || acthd < request_end)
2183 return true;
2184 }
2185
2186 return false;
2187}
2188
d1ccbb5d
BW
2189static struct i915_address_space *
2190request_to_vm(struct drm_i915_gem_request *request)
2191{
2192 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2193 struct i915_address_space *vm;
2194
2195 vm = &dev_priv->gtt.base;
2196
2197 return vm;
2198}
2199
aa60c664
MK
2200static bool i915_request_guilty(struct drm_i915_gem_request *request,
2201 const u32 acthd, bool *inside)
2202{
2203 /* There is a possibility that unmasked head address
2204 * pointing inside the ring, matches the batch_obj address range.
2205 * However this is extremely unlikely.
2206 */
aa60c664 2207 if (request->batch_obj) {
d1ccbb5d
BW
2208 if (i915_head_inside_object(acthd, request->batch_obj,
2209 request_to_vm(request))) {
aa60c664
MK
2210 *inside = true;
2211 return true;
2212 }
2213 }
2214
2215 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2216 *inside = false;
2217 return true;
2218 }
2219
2220 return false;
2221}
2222
2223static void i915_set_reset_status(struct intel_ring_buffer *ring,
2224 struct drm_i915_gem_request *request,
2225 u32 acthd)
2226{
2227 struct i915_ctx_hang_stats *hs = NULL;
2228 bool inside, guilty;
d1ccbb5d 2229 unsigned long offset = 0;
aa60c664
MK
2230
2231 /* Innocent until proven guilty */
2232 guilty = false;
2233
d1ccbb5d
BW
2234 if (request->batch_obj)
2235 offset = i915_gem_obj_offset(request->batch_obj,
2236 request_to_vm(request));
2237
f2f4d82f 2238 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2239 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2240 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2241 ring->name,
2242 inside ? "inside" : "flushing",
d1ccbb5d 2243 offset,
aa60c664
MK
2244 request->ctx ? request->ctx->id : 0,
2245 acthd);
2246
2247 guilty = true;
2248 }
2249
2250 /* If contexts are disabled or this is the default context, use
2251 * file_priv->reset_state
2252 */
2253 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2254 hs = &request->ctx->hang_stats;
2255 else if (request->file_priv)
2256 hs = &request->file_priv->hang_stats;
2257
2258 if (hs) {
2259 if (guilty)
2260 hs->batch_active++;
2261 else
2262 hs->batch_pending++;
2263 }
2264}
2265
0e50e96b
MK
2266static void i915_gem_free_request(struct drm_i915_gem_request *request)
2267{
2268 list_del(&request->list);
2269 i915_gem_request_remove_from_client(request);
2270
2271 if (request->ctx)
2272 i915_gem_context_unreference(request->ctx);
2273
2274 kfree(request);
2275}
2276
dfaae392
CW
2277static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2278 struct intel_ring_buffer *ring)
9375e446 2279{
aa60c664
MK
2280 u32 completed_seqno;
2281 u32 acthd;
2282
2283 acthd = intel_ring_get_active_head(ring);
2284 completed_seqno = ring->get_seqno(ring, false);
2285
dfaae392
CW
2286 while (!list_empty(&ring->request_list)) {
2287 struct drm_i915_gem_request *request;
673a394b 2288
dfaae392
CW
2289 request = list_first_entry(&ring->request_list,
2290 struct drm_i915_gem_request,
2291 list);
de151cf6 2292
aa60c664
MK
2293 if (request->seqno > completed_seqno)
2294 i915_set_reset_status(ring, request, acthd);
2295
0e50e96b 2296 i915_gem_free_request(request);
dfaae392 2297 }
673a394b 2298
dfaae392 2299 while (!list_empty(&ring->active_list)) {
05394f39 2300 struct drm_i915_gem_object *obj;
9375e446 2301
05394f39
CW
2302 obj = list_first_entry(&ring->active_list,
2303 struct drm_i915_gem_object,
2304 ring_list);
9375e446 2305
05394f39 2306 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2307 }
2308}
2309
19b2dbde 2310void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2311{
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 int i;
2314
4b9de737 2315 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2316 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2317
94a335db
DV
2318 /*
2319 * Commit delayed tiling changes if we have an object still
2320 * attached to the fence, otherwise just clear the fence.
2321 */
2322 if (reg->obj) {
2323 i915_gem_object_update_fence(reg->obj, reg,
2324 reg->obj->tiling_mode);
2325 } else {
2326 i915_gem_write_fence(dev, i, NULL);
2327 }
312817a3
CW
2328 }
2329}
2330
069efc1d 2331void i915_gem_reset(struct drm_device *dev)
673a394b 2332{
77f01230 2333 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2334 struct intel_ring_buffer *ring;
1ec14ad3 2335 int i;
673a394b 2336
b4519513
CW
2337 for_each_ring(ring, dev_priv, i)
2338 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2339
19b2dbde 2340 i915_gem_restore_fences(dev);
673a394b
EA
2341}
2342
2343/**
2344 * This function clears the request list as sequence numbers are passed.
2345 */
a71d8d94 2346void
db53a302 2347i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2348{
673a394b
EA
2349 uint32_t seqno;
2350
db53a302 2351 if (list_empty(&ring->request_list))
6c0594a3
KW
2352 return;
2353
db53a302 2354 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2355
b2eadbc8 2356 seqno = ring->get_seqno(ring, true);
1ec14ad3 2357
852835f3 2358 while (!list_empty(&ring->request_list)) {
673a394b 2359 struct drm_i915_gem_request *request;
673a394b 2360
852835f3 2361 request = list_first_entry(&ring->request_list,
673a394b
EA
2362 struct drm_i915_gem_request,
2363 list);
673a394b 2364
dfaae392 2365 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2366 break;
2367
db53a302 2368 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2369 /* We know the GPU must have read the request to have
2370 * sent us the seqno + interrupt, so use the position
2371 * of tail of the request to update the last known position
2372 * of the GPU head.
2373 */
2374 ring->last_retired_head = request->tail;
b84d5f0c 2375
0e50e96b 2376 i915_gem_free_request(request);
b84d5f0c 2377 }
673a394b 2378
b84d5f0c
CW
2379 /* Move any buffers on the active list that are no longer referenced
2380 * by the ringbuffer to the flushing/inactive lists as appropriate.
2381 */
2382 while (!list_empty(&ring->active_list)) {
05394f39 2383 struct drm_i915_gem_object *obj;
b84d5f0c 2384
0206e353 2385 obj = list_first_entry(&ring->active_list,
05394f39
CW
2386 struct drm_i915_gem_object,
2387 ring_list);
673a394b 2388
0201f1ec 2389 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2390 break;
b84d5f0c 2391
65ce3027 2392 i915_gem_object_move_to_inactive(obj);
673a394b 2393 }
9d34e5db 2394
db53a302
CW
2395 if (unlikely(ring->trace_irq_seqno &&
2396 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2397 ring->irq_put(ring);
db53a302 2398 ring->trace_irq_seqno = 0;
9d34e5db 2399 }
23bc5982 2400
db53a302 2401 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2402}
2403
b09a1fec
CW
2404void
2405i915_gem_retire_requests(struct drm_device *dev)
2406{
2407 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2408 struct intel_ring_buffer *ring;
1ec14ad3 2409 int i;
b09a1fec 2410
b4519513
CW
2411 for_each_ring(ring, dev_priv, i)
2412 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2413}
2414
75ef9da2 2415static void
673a394b
EA
2416i915_gem_retire_work_handler(struct work_struct *work)
2417{
2418 drm_i915_private_t *dev_priv;
2419 struct drm_device *dev;
b4519513 2420 struct intel_ring_buffer *ring;
0a58705b
CW
2421 bool idle;
2422 int i;
673a394b
EA
2423
2424 dev_priv = container_of(work, drm_i915_private_t,
2425 mm.retire_work.work);
2426 dev = dev_priv->dev;
2427
891b48cf
CW
2428 /* Come back later if the device is busy... */
2429 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2430 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2431 round_jiffies_up_relative(HZ));
891b48cf
CW
2432 return;
2433 }
673a394b 2434
b09a1fec 2435 i915_gem_retire_requests(dev);
673a394b 2436
0a58705b
CW
2437 /* Send a periodic flush down the ring so we don't hold onto GEM
2438 * objects indefinitely.
673a394b 2439 */
0a58705b 2440 idle = true;
b4519513 2441 for_each_ring(ring, dev_priv, i) {
3bb73aba 2442 if (ring->gpu_caches_dirty)
0025c077 2443 i915_add_request(ring, NULL);
0a58705b
CW
2444
2445 idle &= list_empty(&ring->request_list);
673a394b
EA
2446 }
2447
db1b76ca 2448 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2449 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2450 round_jiffies_up_relative(HZ));
f047e395
CW
2451 if (idle)
2452 intel_mark_idle(dev);
0a58705b 2453
673a394b 2454 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2455}
2456
30dfebf3
DV
2457/**
2458 * Ensures that an object will eventually get non-busy by flushing any required
2459 * write domains, emitting any outstanding lazy request and retiring and
2460 * completed requests.
2461 */
2462static int
2463i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2464{
2465 int ret;
2466
2467 if (obj->active) {
0201f1ec 2468 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2469 if (ret)
2470 return ret;
2471
30dfebf3
DV
2472 i915_gem_retire_requests_ring(obj->ring);
2473 }
2474
2475 return 0;
2476}
2477
23ba4fd0
BW
2478/**
2479 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2480 * @DRM_IOCTL_ARGS: standard ioctl arguments
2481 *
2482 * Returns 0 if successful, else an error is returned with the remaining time in
2483 * the timeout parameter.
2484 * -ETIME: object is still busy after timeout
2485 * -ERESTARTSYS: signal interrupted the wait
2486 * -ENONENT: object doesn't exist
2487 * Also possible, but rare:
2488 * -EAGAIN: GPU wedged
2489 * -ENOMEM: damn
2490 * -ENODEV: Internal IRQ fail
2491 * -E?: The add request failed
2492 *
2493 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2494 * non-zero timeout parameter the wait ioctl will wait for the given number of
2495 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2496 * without holding struct_mutex the object may become re-busied before this
2497 * function completes. A similar but shorter * race condition exists in the busy
2498 * ioctl
2499 */
2500int
2501i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2502{
f69061be 2503 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2504 struct drm_i915_gem_wait *args = data;
2505 struct drm_i915_gem_object *obj;
2506 struct intel_ring_buffer *ring = NULL;
eac1f14f 2507 struct timespec timeout_stack, *timeout = NULL;
f69061be 2508 unsigned reset_counter;
23ba4fd0
BW
2509 u32 seqno = 0;
2510 int ret = 0;
2511
eac1f14f
BW
2512 if (args->timeout_ns >= 0) {
2513 timeout_stack = ns_to_timespec(args->timeout_ns);
2514 timeout = &timeout_stack;
2515 }
23ba4fd0
BW
2516
2517 ret = i915_mutex_lock_interruptible(dev);
2518 if (ret)
2519 return ret;
2520
2521 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2522 if (&obj->base == NULL) {
2523 mutex_unlock(&dev->struct_mutex);
2524 return -ENOENT;
2525 }
2526
30dfebf3
DV
2527 /* Need to make sure the object gets inactive eventually. */
2528 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2529 if (ret)
2530 goto out;
2531
2532 if (obj->active) {
0201f1ec 2533 seqno = obj->last_read_seqno;
23ba4fd0
BW
2534 ring = obj->ring;
2535 }
2536
2537 if (seqno == 0)
2538 goto out;
2539
23ba4fd0
BW
2540 /* Do this after OLR check to make sure we make forward progress polling
2541 * on this IOCTL with a 0 timeout (like busy ioctl)
2542 */
2543 if (!args->timeout_ns) {
2544 ret = -ETIME;
2545 goto out;
2546 }
2547
2548 drm_gem_object_unreference(&obj->base);
f69061be 2549 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2550 mutex_unlock(&dev->struct_mutex);
2551
f69061be 2552 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2553 if (timeout)
eac1f14f 2554 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2555 return ret;
2556
2557out:
2558 drm_gem_object_unreference(&obj->base);
2559 mutex_unlock(&dev->struct_mutex);
2560 return ret;
2561}
2562
5816d648
BW
2563/**
2564 * i915_gem_object_sync - sync an object to a ring.
2565 *
2566 * @obj: object which may be in use on another ring.
2567 * @to: ring we wish to use the object on. May be NULL.
2568 *
2569 * This code is meant to abstract object synchronization with the GPU.
2570 * Calling with NULL implies synchronizing the object with the CPU
2571 * rather than a particular GPU ring.
2572 *
2573 * Returns 0 if successful, else propagates up the lower layer error.
2574 */
2911a35b
BW
2575int
2576i915_gem_object_sync(struct drm_i915_gem_object *obj,
2577 struct intel_ring_buffer *to)
2578{
2579 struct intel_ring_buffer *from = obj->ring;
2580 u32 seqno;
2581 int ret, idx;
2582
2583 if (from == NULL || to == from)
2584 return 0;
2585
5816d648 2586 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2587 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2588
2589 idx = intel_ring_sync_index(from, to);
2590
0201f1ec 2591 seqno = obj->last_read_seqno;
2911a35b
BW
2592 if (seqno <= from->sync_seqno[idx])
2593 return 0;
2594
b4aca010
BW
2595 ret = i915_gem_check_olr(obj->ring, seqno);
2596 if (ret)
2597 return ret;
2911a35b 2598
1500f7ea 2599 ret = to->sync_to(to, from, seqno);
e3a5a225 2600 if (!ret)
7b01e260
MK
2601 /* We use last_read_seqno because sync_to()
2602 * might have just caused seqno wrap under
2603 * the radar.
2604 */
2605 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2606
e3a5a225 2607 return ret;
2911a35b
BW
2608}
2609
b5ffc9bc
CW
2610static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2611{
2612 u32 old_write_domain, old_read_domains;
2613
b5ffc9bc
CW
2614 /* Force a pagefault for domain tracking on next user access */
2615 i915_gem_release_mmap(obj);
2616
b97c3d9c
KP
2617 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2618 return;
2619
97c809fd
CW
2620 /* Wait for any direct GTT access to complete */
2621 mb();
2622
b5ffc9bc
CW
2623 old_read_domains = obj->base.read_domains;
2624 old_write_domain = obj->base.write_domain;
2625
2626 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2627 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2628
2629 trace_i915_gem_object_change_domain(obj,
2630 old_read_domains,
2631 old_write_domain);
2632}
2633
07fe0b12 2634int i915_vma_unbind(struct i915_vma *vma)
673a394b 2635{
07fe0b12 2636 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2637 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2638 int ret;
673a394b 2639
07fe0b12 2640 if (list_empty(&vma->vma_link))
673a394b
EA
2641 return 0;
2642
433544bd
BW
2643 if (!drm_mm_node_allocated(&vma->node))
2644 goto destroy;
2645
31d8d651
CW
2646 if (obj->pin_count)
2647 return -EBUSY;
673a394b 2648
c4670ad0
CW
2649 BUG_ON(obj->pages == NULL);
2650
a8198eea 2651 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2652 if (ret)
a8198eea
CW
2653 return ret;
2654 /* Continue on if we fail due to EIO, the GPU is hung so we
2655 * should be safe and we need to cleanup or else we might
2656 * cause memory corruption through use-after-free.
2657 */
2658
b5ffc9bc 2659 i915_gem_object_finish_gtt(obj);
5323fd04 2660
96b47b65 2661 /* release the fence reg _after_ flushing */
d9e86c0e 2662 ret = i915_gem_object_put_fence(obj);
1488fc08 2663 if (ret)
d9e86c0e 2664 return ret;
96b47b65 2665
07fe0b12 2666 trace_i915_vma_unbind(vma);
db53a302 2667
74898d7e
DV
2668 if (obj->has_global_gtt_mapping)
2669 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2670 if (obj->has_aliasing_ppgtt_mapping) {
2671 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2672 obj->has_aliasing_ppgtt_mapping = 0;
2673 }
74163907 2674 i915_gem_gtt_finish_object(obj);
401c29f6 2675 i915_gem_object_unpin_pages(obj);
7bddb01f 2676
ca191b13 2677 list_del(&vma->mm_list);
75e9e915 2678 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2679 if (i915_is_ggtt(vma->vm))
2680 obj->map_and_fenceable = true;
673a394b 2681
2f633156 2682 drm_mm_remove_node(&vma->node);
433544bd
BW
2683
2684destroy:
2f633156
BW
2685 i915_gem_vma_destroy(vma);
2686
2687 /* Since the unbound list is global, only move to that list if
2688 * no more VMAs exist.
2689 * NB: Until we have real VMAs there will only ever be one */
2690 WARN_ON(!list_empty(&obj->vma_list));
2691 if (list_empty(&obj->vma_list))
2692 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2693
88241785 2694 return 0;
54cf91dc
CW
2695}
2696
07fe0b12
BW
2697/**
2698 * Unbinds an object from the global GTT aperture.
2699 */
2700int
2701i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2702{
2703 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2704 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2705
58e73e15 2706 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2707 return 0;
2708
2709 if (obj->pin_count)
2710 return -EBUSY;
2711
2712 BUG_ON(obj->pages == NULL);
2713
2714 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2715}
2716
b2da9fe5 2717int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2718{
2719 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2720 struct intel_ring_buffer *ring;
1ec14ad3 2721 int ret, i;
4df2faf4 2722
4df2faf4 2723 /* Flush everything onto the inactive list. */
b4519513 2724 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2725 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2726 if (ret)
2727 return ret;
2728
3e960501 2729 ret = intel_ring_idle(ring);
1ec14ad3
CW
2730 if (ret)
2731 return ret;
2732 }
4df2faf4 2733
8a1a49f9 2734 return 0;
4df2faf4
DV
2735}
2736
9ce079e4
CW
2737static void i965_write_fence_reg(struct drm_device *dev, int reg,
2738 struct drm_i915_gem_object *obj)
de151cf6 2739{
de151cf6 2740 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2741 int fence_reg;
2742 int fence_pitch_shift;
de151cf6 2743
56c844e5
ID
2744 if (INTEL_INFO(dev)->gen >= 6) {
2745 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2746 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2747 } else {
2748 fence_reg = FENCE_REG_965_0;
2749 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2750 }
2751
d18b9619
CW
2752 fence_reg += reg * 8;
2753
2754 /* To w/a incoherency with non-atomic 64-bit register updates,
2755 * we split the 64-bit update into two 32-bit writes. In order
2756 * for a partial fence not to be evaluated between writes, we
2757 * precede the update with write to turn off the fence register,
2758 * and only enable the fence as the last step.
2759 *
2760 * For extra levels of paranoia, we make sure each step lands
2761 * before applying the next step.
2762 */
2763 I915_WRITE(fence_reg, 0);
2764 POSTING_READ(fence_reg);
2765
9ce079e4 2766 if (obj) {
f343c5f6 2767 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2768 uint64_t val;
de151cf6 2769
f343c5f6 2770 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2771 0xfffff000) << 32;
f343c5f6 2772 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2773 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2774 if (obj->tiling_mode == I915_TILING_Y)
2775 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2776 val |= I965_FENCE_REG_VALID;
c6642782 2777
d18b9619
CW
2778 I915_WRITE(fence_reg + 4, val >> 32);
2779 POSTING_READ(fence_reg + 4);
2780
2781 I915_WRITE(fence_reg + 0, val);
2782 POSTING_READ(fence_reg);
2783 } else {
2784 I915_WRITE(fence_reg + 4, 0);
2785 POSTING_READ(fence_reg + 4);
2786 }
de151cf6
JB
2787}
2788
9ce079e4
CW
2789static void i915_write_fence_reg(struct drm_device *dev, int reg,
2790 struct drm_i915_gem_object *obj)
de151cf6 2791{
de151cf6 2792 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2793 u32 val;
de151cf6 2794
9ce079e4 2795 if (obj) {
f343c5f6 2796 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2797 int pitch_val;
2798 int tile_width;
c6642782 2799
f343c5f6 2800 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2801 (size & -size) != size ||
f343c5f6
BW
2802 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2803 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2804 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2805
9ce079e4
CW
2806 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2807 tile_width = 128;
2808 else
2809 tile_width = 512;
2810
2811 /* Note: pitch better be a power of two tile widths */
2812 pitch_val = obj->stride / tile_width;
2813 pitch_val = ffs(pitch_val) - 1;
2814
f343c5f6 2815 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2816 if (obj->tiling_mode == I915_TILING_Y)
2817 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2818 val |= I915_FENCE_SIZE_BITS(size);
2819 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2820 val |= I830_FENCE_REG_VALID;
2821 } else
2822 val = 0;
2823
2824 if (reg < 8)
2825 reg = FENCE_REG_830_0 + reg * 4;
2826 else
2827 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2828
2829 I915_WRITE(reg, val);
2830 POSTING_READ(reg);
de151cf6
JB
2831}
2832
9ce079e4
CW
2833static void i830_write_fence_reg(struct drm_device *dev, int reg,
2834 struct drm_i915_gem_object *obj)
de151cf6 2835{
de151cf6 2836 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2837 uint32_t val;
de151cf6 2838
9ce079e4 2839 if (obj) {
f343c5f6 2840 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2841 uint32_t pitch_val;
de151cf6 2842
f343c5f6 2843 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2844 (size & -size) != size ||
f343c5f6
BW
2845 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2846 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2847 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2848
9ce079e4
CW
2849 pitch_val = obj->stride / 128;
2850 pitch_val = ffs(pitch_val) - 1;
de151cf6 2851
f343c5f6 2852 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2853 if (obj->tiling_mode == I915_TILING_Y)
2854 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2855 val |= I830_FENCE_SIZE_BITS(size);
2856 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2857 val |= I830_FENCE_REG_VALID;
2858 } else
2859 val = 0;
c6642782 2860
9ce079e4
CW
2861 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2862 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2863}
2864
d0a57789
CW
2865inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2866{
2867 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2868}
2869
9ce079e4
CW
2870static void i915_gem_write_fence(struct drm_device *dev, int reg,
2871 struct drm_i915_gem_object *obj)
2872{
d0a57789
CW
2873 struct drm_i915_private *dev_priv = dev->dev_private;
2874
2875 /* Ensure that all CPU reads are completed before installing a fence
2876 * and all writes before removing the fence.
2877 */
2878 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2879 mb();
2880
94a335db
DV
2881 WARN(obj && (!obj->stride || !obj->tiling_mode),
2882 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2883 obj->stride, obj->tiling_mode);
2884
9ce079e4
CW
2885 switch (INTEL_INFO(dev)->gen) {
2886 case 7:
56c844e5 2887 case 6:
9ce079e4
CW
2888 case 5:
2889 case 4: i965_write_fence_reg(dev, reg, obj); break;
2890 case 3: i915_write_fence_reg(dev, reg, obj); break;
2891 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2892 default: BUG();
9ce079e4 2893 }
d0a57789
CW
2894
2895 /* And similarly be paranoid that no direct access to this region
2896 * is reordered to before the fence is installed.
2897 */
2898 if (i915_gem_object_needs_mb(obj))
2899 mb();
de151cf6
JB
2900}
2901
61050808
CW
2902static inline int fence_number(struct drm_i915_private *dev_priv,
2903 struct drm_i915_fence_reg *fence)
2904{
2905 return fence - dev_priv->fence_regs;
2906}
2907
2908static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2909 struct drm_i915_fence_reg *fence,
2910 bool enable)
2911{
2dc8aae0 2912 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2913 int reg = fence_number(dev_priv, fence);
2914
2915 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2916
2917 if (enable) {
46a0b638 2918 obj->fence_reg = reg;
61050808
CW
2919 fence->obj = obj;
2920 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2921 } else {
2922 obj->fence_reg = I915_FENCE_REG_NONE;
2923 fence->obj = NULL;
2924 list_del_init(&fence->lru_list);
2925 }
94a335db 2926 obj->fence_dirty = false;
61050808
CW
2927}
2928
d9e86c0e 2929static int
d0a57789 2930i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2931{
1c293ea3 2932 if (obj->last_fenced_seqno) {
86d5bc37 2933 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2934 if (ret)
2935 return ret;
d9e86c0e
CW
2936
2937 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2938 }
2939
86d5bc37 2940 obj->fenced_gpu_access = false;
d9e86c0e
CW
2941 return 0;
2942}
2943
2944int
2945i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2946{
61050808 2947 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2948 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2949 int ret;
2950
d0a57789 2951 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2952 if (ret)
2953 return ret;
2954
61050808
CW
2955 if (obj->fence_reg == I915_FENCE_REG_NONE)
2956 return 0;
d9e86c0e 2957
f9c513e9
CW
2958 fence = &dev_priv->fence_regs[obj->fence_reg];
2959
61050808 2960 i915_gem_object_fence_lost(obj);
f9c513e9 2961 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2962
2963 return 0;
2964}
2965
2966static struct drm_i915_fence_reg *
a360bb1a 2967i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2968{
ae3db24a 2969 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2970 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2971 int i;
ae3db24a
DV
2972
2973 /* First try to find a free reg */
d9e86c0e 2974 avail = NULL;
ae3db24a
DV
2975 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2976 reg = &dev_priv->fence_regs[i];
2977 if (!reg->obj)
d9e86c0e 2978 return reg;
ae3db24a 2979
1690e1eb 2980 if (!reg->pin_count)
d9e86c0e 2981 avail = reg;
ae3db24a
DV
2982 }
2983
d9e86c0e
CW
2984 if (avail == NULL)
2985 return NULL;
ae3db24a
DV
2986
2987 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2988 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2989 if (reg->pin_count)
ae3db24a
DV
2990 continue;
2991
8fe301ad 2992 return reg;
ae3db24a
DV
2993 }
2994
8fe301ad 2995 return NULL;
ae3db24a
DV
2996}
2997
de151cf6 2998/**
9a5a53b3 2999 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3000 * @obj: object to map through a fence reg
3001 *
3002 * When mapping objects through the GTT, userspace wants to be able to write
3003 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3004 * This function walks the fence regs looking for a free one for @obj,
3005 * stealing one if it can't find any.
3006 *
3007 * It then sets up the reg based on the object's properties: address, pitch
3008 * and tiling format.
9a5a53b3
CW
3009 *
3010 * For an untiled surface, this removes any existing fence.
de151cf6 3011 */
8c4b8c3f 3012int
06d98131 3013i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3014{
05394f39 3015 struct drm_device *dev = obj->base.dev;
79e53945 3016 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3017 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3018 struct drm_i915_fence_reg *reg;
ae3db24a 3019 int ret;
de151cf6 3020
14415745
CW
3021 /* Have we updated the tiling parameters upon the object and so
3022 * will need to serialise the write to the associated fence register?
3023 */
5d82e3e6 3024 if (obj->fence_dirty) {
d0a57789 3025 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3026 if (ret)
3027 return ret;
3028 }
9a5a53b3 3029
d9e86c0e 3030 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3031 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3032 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3033 if (!obj->fence_dirty) {
14415745
CW
3034 list_move_tail(&reg->lru_list,
3035 &dev_priv->mm.fence_list);
3036 return 0;
3037 }
3038 } else if (enable) {
3039 reg = i915_find_fence_reg(dev);
3040 if (reg == NULL)
3041 return -EDEADLK;
d9e86c0e 3042
14415745
CW
3043 if (reg->obj) {
3044 struct drm_i915_gem_object *old = reg->obj;
3045
d0a57789 3046 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3047 if (ret)
3048 return ret;
3049
14415745 3050 i915_gem_object_fence_lost(old);
29c5a587 3051 }
14415745 3052 } else
a09ba7fa 3053 return 0;
a09ba7fa 3054
14415745 3055 i915_gem_object_update_fence(obj, reg, enable);
14415745 3056
9ce079e4 3057 return 0;
de151cf6
JB
3058}
3059
42d6ab48
CW
3060static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3061 struct drm_mm_node *gtt_space,
3062 unsigned long cache_level)
3063{
3064 struct drm_mm_node *other;
3065
3066 /* On non-LLC machines we have to be careful when putting differing
3067 * types of snoopable memory together to avoid the prefetcher
4239ca77 3068 * crossing memory domains and dying.
42d6ab48
CW
3069 */
3070 if (HAS_LLC(dev))
3071 return true;
3072
c6cfb325 3073 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3074 return true;
3075
3076 if (list_empty(&gtt_space->node_list))
3077 return true;
3078
3079 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3080 if (other->allocated && !other->hole_follows && other->color != cache_level)
3081 return false;
3082
3083 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3084 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3085 return false;
3086
3087 return true;
3088}
3089
3090static void i915_gem_verify_gtt(struct drm_device *dev)
3091{
3092#if WATCH_GTT
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094 struct drm_i915_gem_object *obj;
3095 int err = 0;
3096
35c20a60 3097 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3098 if (obj->gtt_space == NULL) {
3099 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3100 err++;
3101 continue;
3102 }
3103
3104 if (obj->cache_level != obj->gtt_space->color) {
3105 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3106 i915_gem_obj_ggtt_offset(obj),
3107 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3108 obj->cache_level,
3109 obj->gtt_space->color);
3110 err++;
3111 continue;
3112 }
3113
3114 if (!i915_gem_valid_gtt_space(dev,
3115 obj->gtt_space,
3116 obj->cache_level)) {
3117 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3118 i915_gem_obj_ggtt_offset(obj),
3119 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3120 obj->cache_level);
3121 err++;
3122 continue;
3123 }
3124 }
3125
3126 WARN_ON(err);
3127#endif
3128}
3129
673a394b
EA
3130/**
3131 * Finds free space in the GTT aperture and binds the object there.
3132 */
3133static int
07fe0b12
BW
3134i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3135 struct i915_address_space *vm,
3136 unsigned alignment,
3137 bool map_and_fenceable,
3138 bool nonblocking)
673a394b 3139{
05394f39 3140 struct drm_device *dev = obj->base.dev;
673a394b 3141 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3142 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3143 size_t gtt_max =
3144 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3145 struct i915_vma *vma;
07f73f69 3146 int ret;
673a394b 3147
e28f8711
CW
3148 fence_size = i915_gem_get_gtt_size(dev,
3149 obj->base.size,
3150 obj->tiling_mode);
3151 fence_alignment = i915_gem_get_gtt_alignment(dev,
3152 obj->base.size,
d865110c 3153 obj->tiling_mode, true);
e28f8711 3154 unfenced_alignment =
d865110c 3155 i915_gem_get_gtt_alignment(dev,
e28f8711 3156 obj->base.size,
d865110c 3157 obj->tiling_mode, false);
a00b10c3 3158
673a394b 3159 if (alignment == 0)
5e783301
DV
3160 alignment = map_and_fenceable ? fence_alignment :
3161 unfenced_alignment;
75e9e915 3162 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3163 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3164 return -EINVAL;
3165 }
3166
05394f39 3167 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3168
654fc607
CW
3169 /* If the object is bigger than the entire aperture, reject it early
3170 * before evicting everything in a vain attempt to find space.
3171 */
0a9ae0d7 3172 if (obj->base.size > gtt_max) {
3765f304 3173 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3174 obj->base.size,
3175 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3176 gtt_max);
654fc607
CW
3177 return -E2BIG;
3178 }
3179
37e680a1 3180 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3181 if (ret)
3182 return ret;
3183
fbdda6fb
CW
3184 i915_gem_object_pin_pages(obj);
3185
07fe0b12 3186 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3187
accfef2e 3188 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3189 if (IS_ERR(vma)) {
bc6bc15b
DV
3190 ret = PTR_ERR(vma);
3191 goto err_unpin;
2f633156
BW
3192 }
3193
accfef2e
BW
3194 /* For now we only ever use 1 vma per object */
3195 WARN_ON(!list_is_singular(&obj->vma_list));
3196
0a9ae0d7 3197search_free:
07fe0b12 3198 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3199 size, alignment,
31e5d7c6
DH
3200 obj->cache_level, 0, gtt_max,
3201 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3202 if (ret) {
f6cd1f15 3203 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3204 obj->cache_level,
86a1ee26
CW
3205 map_and_fenceable,
3206 nonblocking);
dc9dd7a2
CW
3207 if (ret == 0)
3208 goto search_free;
9731129c 3209
bc6bc15b 3210 goto err_free_vma;
673a394b 3211 }
2f633156 3212 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3213 obj->cache_level))) {
2f633156 3214 ret = -EINVAL;
bc6bc15b 3215 goto err_remove_node;
673a394b
EA
3216 }
3217
74163907 3218 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3219 if (ret)
bc6bc15b 3220 goto err_remove_node;
673a394b 3221
35c20a60 3222 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3223 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3224
4bd561b3
BW
3225 if (i915_is_ggtt(vm)) {
3226 bool mappable, fenceable;
a00b10c3 3227
49987099
DV
3228 fenceable = (vma->node.size == fence_size &&
3229 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3230
49987099
DV
3231 mappable = (vma->node.start + obj->base.size <=
3232 dev_priv->gtt.mappable_end);
a00b10c3 3233
5cacaac7 3234 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3235 }
75e9e915 3236
7ace7ef2 3237 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3238
07fe0b12 3239 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3240 i915_gem_verify_gtt(dev);
673a394b 3241 return 0;
2f633156 3242
bc6bc15b 3243err_remove_node:
6286ef9b 3244 drm_mm_remove_node(&vma->node);
bc6bc15b 3245err_free_vma:
2f633156 3246 i915_gem_vma_destroy(vma);
bc6bc15b 3247err_unpin:
2f633156 3248 i915_gem_object_unpin_pages(obj);
2f633156 3249 return ret;
673a394b
EA
3250}
3251
000433b6 3252bool
2c22569b
CW
3253i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3254 bool force)
673a394b 3255{
673a394b
EA
3256 /* If we don't have a page list set up, then we're not pinned
3257 * to GPU, and we can ignore the cache flush because it'll happen
3258 * again at bind time.
3259 */
05394f39 3260 if (obj->pages == NULL)
000433b6 3261 return false;
673a394b 3262
769ce464
ID
3263 /*
3264 * Stolen memory is always coherent with the GPU as it is explicitly
3265 * marked as wc by the system, or the system is cache-coherent.
3266 */
3267 if (obj->stolen)
000433b6 3268 return false;
769ce464 3269
9c23f7fc
CW
3270 /* If the GPU is snooping the contents of the CPU cache,
3271 * we do not need to manually clear the CPU cache lines. However,
3272 * the caches are only snooped when the render cache is
3273 * flushed/invalidated. As we always have to emit invalidations
3274 * and flushes when moving into and out of the RENDER domain, correct
3275 * snooping behaviour occurs naturally as the result of our domain
3276 * tracking.
3277 */
2c22569b 3278 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3279 return false;
9c23f7fc 3280
1c5d22f7 3281 trace_i915_gem_object_clflush(obj);
9da3da66 3282 drm_clflush_sg(obj->pages);
000433b6
CW
3283
3284 return true;
e47c68e9
EA
3285}
3286
3287/** Flushes the GTT write domain for the object if it's dirty. */
3288static void
05394f39 3289i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3290{
1c5d22f7
CW
3291 uint32_t old_write_domain;
3292
05394f39 3293 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3294 return;
3295
63256ec5 3296 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3297 * to it immediately go to main memory as far as we know, so there's
3298 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3299 *
3300 * However, we do have to enforce the order so that all writes through
3301 * the GTT land before any writes to the device, such as updates to
3302 * the GATT itself.
e47c68e9 3303 */
63256ec5
CW
3304 wmb();
3305
05394f39
CW
3306 old_write_domain = obj->base.write_domain;
3307 obj->base.write_domain = 0;
1c5d22f7
CW
3308
3309 trace_i915_gem_object_change_domain(obj,
05394f39 3310 obj->base.read_domains,
1c5d22f7 3311 old_write_domain);
e47c68e9
EA
3312}
3313
3314/** Flushes the CPU write domain for the object if it's dirty. */
3315static void
2c22569b
CW
3316i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3317 bool force)
e47c68e9 3318{
1c5d22f7 3319 uint32_t old_write_domain;
e47c68e9 3320
05394f39 3321 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3322 return;
3323
000433b6
CW
3324 if (i915_gem_clflush_object(obj, force))
3325 i915_gem_chipset_flush(obj->base.dev);
3326
05394f39
CW
3327 old_write_domain = obj->base.write_domain;
3328 obj->base.write_domain = 0;
1c5d22f7
CW
3329
3330 trace_i915_gem_object_change_domain(obj,
05394f39 3331 obj->base.read_domains,
1c5d22f7 3332 old_write_domain);
e47c68e9
EA
3333}
3334
2ef7eeaa
EA
3335/**
3336 * Moves a single object to the GTT read, and possibly write domain.
3337 *
3338 * This function returns when the move is complete, including waiting on
3339 * flushes to occur.
3340 */
79e53945 3341int
2021746e 3342i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3343{
8325a09d 3344 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3345 uint32_t old_write_domain, old_read_domains;
e47c68e9 3346 int ret;
2ef7eeaa 3347
02354392 3348 /* Not valid to be called on unbound objects. */
9843877d 3349 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3350 return -EINVAL;
3351
8d7e3de1
CW
3352 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3353 return 0;
3354
0201f1ec 3355 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3356 if (ret)
3357 return ret;
3358
2c22569b 3359 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3360
d0a57789
CW
3361 /* Serialise direct access to this object with the barriers for
3362 * coherent writes from the GPU, by effectively invalidating the
3363 * GTT domain upon first access.
3364 */
3365 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3366 mb();
3367
05394f39
CW
3368 old_write_domain = obj->base.write_domain;
3369 old_read_domains = obj->base.read_domains;
1c5d22f7 3370
e47c68e9
EA
3371 /* It should now be out of any other write domains, and we can update
3372 * the domain values for our changes.
3373 */
05394f39
CW
3374 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3375 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3376 if (write) {
05394f39
CW
3377 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3378 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3379 obj->dirty = 1;
2ef7eeaa
EA
3380 }
3381
1c5d22f7
CW
3382 trace_i915_gem_object_change_domain(obj,
3383 old_read_domains,
3384 old_write_domain);
3385
8325a09d 3386 /* And bump the LRU for this access */
ca191b13
BW
3387 if (i915_gem_object_is_inactive(obj)) {
3388 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3389 &dev_priv->gtt.base);
3390 if (vma)
3391 list_move_tail(&vma->mm_list,
3392 &dev_priv->gtt.base.inactive_list);
3393
3394 }
8325a09d 3395
e47c68e9
EA
3396 return 0;
3397}
3398
e4ffd173
CW
3399int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3400 enum i915_cache_level cache_level)
3401{
7bddb01f
DV
3402 struct drm_device *dev = obj->base.dev;
3403 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3404 struct i915_vma *vma;
e4ffd173
CW
3405 int ret;
3406
3407 if (obj->cache_level == cache_level)
3408 return 0;
3409
3410 if (obj->pin_count) {
3411 DRM_DEBUG("can not change the cache level of pinned objects\n");
3412 return -EBUSY;
3413 }
3414
3089c6f2
BW
3415 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3416 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3417 ret = i915_vma_unbind(vma);
3089c6f2
BW
3418 if (ret)
3419 return ret;
3420
3421 break;
3422 }
42d6ab48
CW
3423 }
3424
3089c6f2 3425 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3426 ret = i915_gem_object_finish_gpu(obj);
3427 if (ret)
3428 return ret;
3429
3430 i915_gem_object_finish_gtt(obj);
3431
3432 /* Before SandyBridge, you could not use tiling or fence
3433 * registers with snooped memory, so relinquish any fences
3434 * currently pointing to our region in the aperture.
3435 */
42d6ab48 3436 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3437 ret = i915_gem_object_put_fence(obj);
3438 if (ret)
3439 return ret;
3440 }
3441
74898d7e
DV
3442 if (obj->has_global_gtt_mapping)
3443 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3444 if (obj->has_aliasing_ppgtt_mapping)
3445 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3446 obj, cache_level);
e4ffd173
CW
3447 }
3448
2c22569b
CW
3449 list_for_each_entry(vma, &obj->vma_list, vma_link)
3450 vma->node.color = cache_level;
3451 obj->cache_level = cache_level;
3452
3453 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3454 u32 old_read_domains, old_write_domain;
3455
3456 /* If we're coming from LLC cached, then we haven't
3457 * actually been tracking whether the data is in the
3458 * CPU cache or not, since we only allow one bit set
3459 * in obj->write_domain and have been skipping the clflushes.
3460 * Just set it to the CPU cache for now.
3461 */
3462 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3463
3464 old_read_domains = obj->base.read_domains;
3465 old_write_domain = obj->base.write_domain;
3466
3467 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3468 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3469
3470 trace_i915_gem_object_change_domain(obj,
3471 old_read_domains,
3472 old_write_domain);
3473 }
3474
42d6ab48 3475 i915_gem_verify_gtt(dev);
e4ffd173
CW
3476 return 0;
3477}
3478
199adf40
BW
3479int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3480 struct drm_file *file)
e6994aee 3481{
199adf40 3482 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3483 struct drm_i915_gem_object *obj;
3484 int ret;
3485
3486 ret = i915_mutex_lock_interruptible(dev);
3487 if (ret)
3488 return ret;
3489
3490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3491 if (&obj->base == NULL) {
3492 ret = -ENOENT;
3493 goto unlock;
3494 }
3495
651d794f
CW
3496 switch (obj->cache_level) {
3497 case I915_CACHE_LLC:
3498 case I915_CACHE_L3_LLC:
3499 args->caching = I915_CACHING_CACHED;
3500 break;
3501
4257d3ba
CW
3502 case I915_CACHE_WT:
3503 args->caching = I915_CACHING_DISPLAY;
3504 break;
3505
651d794f
CW
3506 default:
3507 args->caching = I915_CACHING_NONE;
3508 break;
3509 }
e6994aee
CW
3510
3511 drm_gem_object_unreference(&obj->base);
3512unlock:
3513 mutex_unlock(&dev->struct_mutex);
3514 return ret;
3515}
3516
199adf40
BW
3517int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3518 struct drm_file *file)
e6994aee 3519{
199adf40 3520 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3521 struct drm_i915_gem_object *obj;
3522 enum i915_cache_level level;
3523 int ret;
3524
199adf40
BW
3525 switch (args->caching) {
3526 case I915_CACHING_NONE:
e6994aee
CW
3527 level = I915_CACHE_NONE;
3528 break;
199adf40 3529 case I915_CACHING_CACHED:
e6994aee
CW
3530 level = I915_CACHE_LLC;
3531 break;
4257d3ba
CW
3532 case I915_CACHING_DISPLAY:
3533 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3534 break;
e6994aee
CW
3535 default:
3536 return -EINVAL;
3537 }
3538
3bc2913e
BW
3539 ret = i915_mutex_lock_interruptible(dev);
3540 if (ret)
3541 return ret;
3542
e6994aee
CW
3543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3544 if (&obj->base == NULL) {
3545 ret = -ENOENT;
3546 goto unlock;
3547 }
3548
3549 ret = i915_gem_object_set_cache_level(obj, level);
3550
3551 drm_gem_object_unreference(&obj->base);
3552unlock:
3553 mutex_unlock(&dev->struct_mutex);
3554 return ret;
3555}
3556
cc98b413
CW
3557static bool is_pin_display(struct drm_i915_gem_object *obj)
3558{
3559 /* There are 3 sources that pin objects:
3560 * 1. The display engine (scanouts, sprites, cursors);
3561 * 2. Reservations for execbuffer;
3562 * 3. The user.
3563 *
3564 * We can ignore reservations as we hold the struct_mutex and
3565 * are only called outside of the reservation path. The user
3566 * can only increment pin_count once, and so if after
3567 * subtracting the potential reference by the user, any pin_count
3568 * remains, it must be due to another use by the display engine.
3569 */
3570 return obj->pin_count - !!obj->user_pin_count;
3571}
3572
b9241ea3 3573/*
2da3b9b9
CW
3574 * Prepare buffer for display plane (scanout, cursors, etc).
3575 * Can be called from an uninterruptible phase (modesetting) and allows
3576 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3577 */
3578int
2da3b9b9
CW
3579i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3580 u32 alignment,
919926ae 3581 struct intel_ring_buffer *pipelined)
b9241ea3 3582{
2da3b9b9 3583 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3584 int ret;
3585
0be73284 3586 if (pipelined != obj->ring) {
2911a35b
BW
3587 ret = i915_gem_object_sync(obj, pipelined);
3588 if (ret)
b9241ea3
ZW
3589 return ret;
3590 }
3591
cc98b413
CW
3592 /* Mark the pin_display early so that we account for the
3593 * display coherency whilst setting up the cache domains.
3594 */
3595 obj->pin_display = true;
3596
a7ef0640
EA
3597 /* The display engine is not coherent with the LLC cache on gen6. As
3598 * a result, we make sure that the pinning that is about to occur is
3599 * done with uncached PTEs. This is lowest common denominator for all
3600 * chipsets.
3601 *
3602 * However for gen6+, we could do better by using the GFDT bit instead
3603 * of uncaching, which would allow us to flush all the LLC-cached data
3604 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3605 */
651d794f
CW
3606 ret = i915_gem_object_set_cache_level(obj,
3607 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3608 if (ret)
cc98b413 3609 goto err_unpin_display;
a7ef0640 3610
2da3b9b9
CW
3611 /* As the user may map the buffer once pinned in the display plane
3612 * (e.g. libkms for the bootup splash), we have to ensure that we
3613 * always use map_and_fenceable for all scanout buffers.
3614 */
c37e2204 3615 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3616 if (ret)
cc98b413 3617 goto err_unpin_display;
2da3b9b9 3618
2c22569b 3619 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3620
2da3b9b9 3621 old_write_domain = obj->base.write_domain;
05394f39 3622 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3623
3624 /* It should now be out of any other write domains, and we can update
3625 * the domain values for our changes.
3626 */
e5f1d962 3627 obj->base.write_domain = 0;
05394f39 3628 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3629
3630 trace_i915_gem_object_change_domain(obj,
3631 old_read_domains,
2da3b9b9 3632 old_write_domain);
b9241ea3
ZW
3633
3634 return 0;
cc98b413
CW
3635
3636err_unpin_display:
3637 obj->pin_display = is_pin_display(obj);
3638 return ret;
3639}
3640
3641void
3642i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3643{
3644 i915_gem_object_unpin(obj);
3645 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3646}
3647
85345517 3648int
a8198eea 3649i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3650{
88241785
CW
3651 int ret;
3652
a8198eea 3653 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3654 return 0;
3655
0201f1ec 3656 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3657 if (ret)
3658 return ret;
3659
a8198eea
CW
3660 /* Ensure that we invalidate the GPU's caches and TLBs. */
3661 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3662 return 0;
85345517
CW
3663}
3664
e47c68e9
EA
3665/**
3666 * Moves a single object to the CPU read, and possibly write domain.
3667 *
3668 * This function returns when the move is complete, including waiting on
3669 * flushes to occur.
3670 */
dabdfe02 3671int
919926ae 3672i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3673{
1c5d22f7 3674 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3675 int ret;
3676
8d7e3de1
CW
3677 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3678 return 0;
3679
0201f1ec 3680 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3681 if (ret)
3682 return ret;
3683
e47c68e9 3684 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3685
05394f39
CW
3686 old_write_domain = obj->base.write_domain;
3687 old_read_domains = obj->base.read_domains;
1c5d22f7 3688
e47c68e9 3689 /* Flush the CPU cache if it's still invalid. */
05394f39 3690 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3691 i915_gem_clflush_object(obj, false);
2ef7eeaa 3692
05394f39 3693 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3694 }
3695
3696 /* It should now be out of any other write domains, and we can update
3697 * the domain values for our changes.
3698 */
05394f39 3699 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3700
3701 /* If we're writing through the CPU, then the GPU read domains will
3702 * need to be invalidated at next use.
3703 */
3704 if (write) {
05394f39
CW
3705 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3706 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3707 }
2ef7eeaa 3708
1c5d22f7
CW
3709 trace_i915_gem_object_change_domain(obj,
3710 old_read_domains,
3711 old_write_domain);
3712
2ef7eeaa
EA
3713 return 0;
3714}
3715
673a394b
EA
3716/* Throttle our rendering by waiting until the ring has completed our requests
3717 * emitted over 20 msec ago.
3718 *
b962442e
EA
3719 * Note that if we were to use the current jiffies each time around the loop,
3720 * we wouldn't escape the function with any frames outstanding if the time to
3721 * render a frame was over 20ms.
3722 *
673a394b
EA
3723 * This should get us reasonable parallelism between CPU and GPU but also
3724 * relatively low latency when blocking on a particular request to finish.
3725 */
40a5f0de 3726static int
f787a5f5 3727i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3728{
f787a5f5
CW
3729 struct drm_i915_private *dev_priv = dev->dev_private;
3730 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3731 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3732 struct drm_i915_gem_request *request;
3733 struct intel_ring_buffer *ring = NULL;
f69061be 3734 unsigned reset_counter;
f787a5f5
CW
3735 u32 seqno = 0;
3736 int ret;
93533c29 3737
308887aa
DV
3738 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3739 if (ret)
3740 return ret;
3741
3742 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3743 if (ret)
3744 return ret;
e110e8d6 3745
1c25595f 3746 spin_lock(&file_priv->mm.lock);
f787a5f5 3747 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3748 if (time_after_eq(request->emitted_jiffies, recent_enough))
3749 break;
40a5f0de 3750
f787a5f5
CW
3751 ring = request->ring;
3752 seqno = request->seqno;
b962442e 3753 }
f69061be 3754 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3755 spin_unlock(&file_priv->mm.lock);
40a5f0de 3756
f787a5f5
CW
3757 if (seqno == 0)
3758 return 0;
2bc43b5c 3759
f69061be 3760 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3761 if (ret == 0)
3762 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3763
3764 return ret;
3765}
3766
673a394b 3767int
05394f39 3768i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3769 struct i915_address_space *vm,
05394f39 3770 uint32_t alignment,
86a1ee26
CW
3771 bool map_and_fenceable,
3772 bool nonblocking)
673a394b 3773{
07fe0b12 3774 struct i915_vma *vma;
673a394b
EA
3775 int ret;
3776
7e81a42e
CW
3777 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3778 return -EBUSY;
ac0c6b5a 3779
07fe0b12
BW
3780 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3781
3782 vma = i915_gem_obj_to_vma(obj, vm);
3783
3784 if (vma) {
3785 if ((alignment &&
3786 vma->node.start & (alignment - 1)) ||
05394f39
CW
3787 (map_and_fenceable && !obj->map_and_fenceable)) {
3788 WARN(obj->pin_count,
ae7d49d8 3789 "bo is already pinned with incorrect alignment:"
f343c5f6 3790 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3791 " obj->map_and_fenceable=%d\n",
07fe0b12 3792 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3793 map_and_fenceable,
05394f39 3794 obj->map_and_fenceable);
07fe0b12 3795 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3796 if (ret)
3797 return ret;
3798 }
3799 }
3800
07fe0b12 3801 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3802 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3803
07fe0b12
BW
3804 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3805 map_and_fenceable,
3806 nonblocking);
9731129c 3807 if (ret)
673a394b 3808 return ret;
8742267a
CW
3809
3810 if (!dev_priv->mm.aliasing_ppgtt)
3811 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3812 }
76446cac 3813
74898d7e
DV
3814 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3815 i915_gem_gtt_bind_object(obj, obj->cache_level);
3816
1b50247a 3817 obj->pin_count++;
6299f992 3818 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3819
3820 return 0;
3821}
3822
3823void
05394f39 3824i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3825{
05394f39 3826 BUG_ON(obj->pin_count == 0);
9843877d 3827 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3828
1b50247a 3829 if (--obj->pin_count == 0)
6299f992 3830 obj->pin_mappable = false;
673a394b
EA
3831}
3832
3833int
3834i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3835 struct drm_file *file)
673a394b
EA
3836{
3837 struct drm_i915_gem_pin *args = data;
05394f39 3838 struct drm_i915_gem_object *obj;
673a394b
EA
3839 int ret;
3840
1d7cfea1
CW
3841 ret = i915_mutex_lock_interruptible(dev);
3842 if (ret)
3843 return ret;
673a394b 3844
05394f39 3845 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3846 if (&obj->base == NULL) {
1d7cfea1
CW
3847 ret = -ENOENT;
3848 goto unlock;
673a394b 3849 }
673a394b 3850
05394f39 3851 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3852 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3853 ret = -EINVAL;
3854 goto out;
3ef94daa
CW
3855 }
3856
05394f39 3857 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3858 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3859 args->handle);
1d7cfea1
CW
3860 ret = -EINVAL;
3861 goto out;
79e53945
JB
3862 }
3863
93be8788 3864 if (obj->user_pin_count == 0) {
c37e2204 3865 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3866 if (ret)
3867 goto out;
673a394b
EA
3868 }
3869
93be8788
CW
3870 obj->user_pin_count++;
3871 obj->pin_filp = file;
3872
f343c5f6 3873 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3874out:
05394f39 3875 drm_gem_object_unreference(&obj->base);
1d7cfea1 3876unlock:
673a394b 3877 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3878 return ret;
673a394b
EA
3879}
3880
3881int
3882i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3883 struct drm_file *file)
673a394b
EA
3884{
3885 struct drm_i915_gem_pin *args = data;
05394f39 3886 struct drm_i915_gem_object *obj;
76c1dec1 3887 int ret;
673a394b 3888
1d7cfea1
CW
3889 ret = i915_mutex_lock_interruptible(dev);
3890 if (ret)
3891 return ret;
673a394b 3892
05394f39 3893 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3894 if (&obj->base == NULL) {
1d7cfea1
CW
3895 ret = -ENOENT;
3896 goto unlock;
673a394b 3897 }
76c1dec1 3898
05394f39 3899 if (obj->pin_filp != file) {
79e53945
JB
3900 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3901 args->handle);
1d7cfea1
CW
3902 ret = -EINVAL;
3903 goto out;
79e53945 3904 }
05394f39
CW
3905 obj->user_pin_count--;
3906 if (obj->user_pin_count == 0) {
3907 obj->pin_filp = NULL;
79e53945
JB
3908 i915_gem_object_unpin(obj);
3909 }
673a394b 3910
1d7cfea1 3911out:
05394f39 3912 drm_gem_object_unreference(&obj->base);
1d7cfea1 3913unlock:
673a394b 3914 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3915 return ret;
673a394b
EA
3916}
3917
3918int
3919i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3920 struct drm_file *file)
673a394b
EA
3921{
3922 struct drm_i915_gem_busy *args = data;
05394f39 3923 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3924 int ret;
3925
76c1dec1 3926 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3927 if (ret)
76c1dec1 3928 return ret;
673a394b 3929
05394f39 3930 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3931 if (&obj->base == NULL) {
1d7cfea1
CW
3932 ret = -ENOENT;
3933 goto unlock;
673a394b 3934 }
d1b851fc 3935
0be555b6
CW
3936 /* Count all active objects as busy, even if they are currently not used
3937 * by the gpu. Users of this interface expect objects to eventually
3938 * become non-busy without any further actions, therefore emit any
3939 * necessary flushes here.
c4de0a5d 3940 */
30dfebf3 3941 ret = i915_gem_object_flush_active(obj);
0be555b6 3942
30dfebf3 3943 args->busy = obj->active;
e9808edd
CW
3944 if (obj->ring) {
3945 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3946 args->busy |= intel_ring_flag(obj->ring) << 16;
3947 }
673a394b 3948
05394f39 3949 drm_gem_object_unreference(&obj->base);
1d7cfea1 3950unlock:
673a394b 3951 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3952 return ret;
673a394b
EA
3953}
3954
3955int
3956i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3957 struct drm_file *file_priv)
3958{
0206e353 3959 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3960}
3961
3ef94daa
CW
3962int
3963i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3964 struct drm_file *file_priv)
3965{
3966 struct drm_i915_gem_madvise *args = data;
05394f39 3967 struct drm_i915_gem_object *obj;
76c1dec1 3968 int ret;
3ef94daa
CW
3969
3970 switch (args->madv) {
3971 case I915_MADV_DONTNEED:
3972 case I915_MADV_WILLNEED:
3973 break;
3974 default:
3975 return -EINVAL;
3976 }
3977
1d7cfea1
CW
3978 ret = i915_mutex_lock_interruptible(dev);
3979 if (ret)
3980 return ret;
3981
05394f39 3982 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3983 if (&obj->base == NULL) {
1d7cfea1
CW
3984 ret = -ENOENT;
3985 goto unlock;
3ef94daa 3986 }
3ef94daa 3987
05394f39 3988 if (obj->pin_count) {
1d7cfea1
CW
3989 ret = -EINVAL;
3990 goto out;
3ef94daa
CW
3991 }
3992
05394f39
CW
3993 if (obj->madv != __I915_MADV_PURGED)
3994 obj->madv = args->madv;
3ef94daa 3995
6c085a72
CW
3996 /* if the object is no longer attached, discard its backing storage */
3997 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3998 i915_gem_object_truncate(obj);
3999
05394f39 4000 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4001
1d7cfea1 4002out:
05394f39 4003 drm_gem_object_unreference(&obj->base);
1d7cfea1 4004unlock:
3ef94daa 4005 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4006 return ret;
3ef94daa
CW
4007}
4008
37e680a1
CW
4009void i915_gem_object_init(struct drm_i915_gem_object *obj,
4010 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4011{
35c20a60 4012 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
4013 INIT_LIST_HEAD(&obj->ring_list);
4014 INIT_LIST_HEAD(&obj->exec_list);
b25cb2f8 4015 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4016 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4017
37e680a1
CW
4018 obj->ops = ops;
4019
0327d6ba
CW
4020 obj->fence_reg = I915_FENCE_REG_NONE;
4021 obj->madv = I915_MADV_WILLNEED;
4022 /* Avoid an unnecessary call to unbind on the first bind. */
4023 obj->map_and_fenceable = true;
4024
4025 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4026}
4027
37e680a1
CW
4028static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4029 .get_pages = i915_gem_object_get_pages_gtt,
4030 .put_pages = i915_gem_object_put_pages_gtt,
4031};
4032
05394f39
CW
4033struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4034 size_t size)
ac52bc56 4035{
c397b908 4036 struct drm_i915_gem_object *obj;
5949eac4 4037 struct address_space *mapping;
1a240d4d 4038 gfp_t mask;
ac52bc56 4039
42dcedd4 4040 obj = i915_gem_object_alloc(dev);
c397b908
DV
4041 if (obj == NULL)
4042 return NULL;
673a394b 4043
c397b908 4044 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4045 i915_gem_object_free(obj);
c397b908
DV
4046 return NULL;
4047 }
673a394b 4048
bed1ea95
CW
4049 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4050 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4051 /* 965gm cannot relocate objects above 4GiB. */
4052 mask &= ~__GFP_HIGHMEM;
4053 mask |= __GFP_DMA32;
4054 }
4055
496ad9aa 4056 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4057 mapping_set_gfp_mask(mapping, mask);
5949eac4 4058
37e680a1 4059 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4060
c397b908
DV
4061 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4062 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4063
3d29b842
ED
4064 if (HAS_LLC(dev)) {
4065 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4066 * cache) for about a 10% performance improvement
4067 * compared to uncached. Graphics requests other than
4068 * display scanout are coherent with the CPU in
4069 * accessing this cache. This means in this mode we
4070 * don't need to clflush on the CPU side, and on the
4071 * GPU side we only need to flush internal caches to
4072 * get data visible to the CPU.
4073 *
4074 * However, we maintain the display planes as UC, and so
4075 * need to rebind when first used as such.
4076 */
4077 obj->cache_level = I915_CACHE_LLC;
4078 } else
4079 obj->cache_level = I915_CACHE_NONE;
4080
d861e338
DV
4081 trace_i915_gem_object_create(obj);
4082
05394f39 4083 return obj;
c397b908
DV
4084}
4085
4086int i915_gem_init_object(struct drm_gem_object *obj)
4087{
4088 BUG();
de151cf6 4089
673a394b
EA
4090 return 0;
4091}
4092
1488fc08 4093void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4094{
1488fc08 4095 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4096 struct drm_device *dev = obj->base.dev;
be72615b 4097 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4098 struct i915_vma *vma, *next;
673a394b 4099
26e12f89
CW
4100 trace_i915_gem_object_destroy(obj);
4101
1488fc08
CW
4102 if (obj->phys_obj)
4103 i915_gem_detach_phys_object(dev, obj);
4104
4105 obj->pin_count = 0;
07fe0b12
BW
4106 /* NB: 0 or 1 elements */
4107 WARN_ON(!list_empty(&obj->vma_list) &&
4108 !list_is_singular(&obj->vma_list));
4109 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4110 int ret = i915_vma_unbind(vma);
4111 if (WARN_ON(ret == -ERESTARTSYS)) {
4112 bool was_interruptible;
1488fc08 4113
07fe0b12
BW
4114 was_interruptible = dev_priv->mm.interruptible;
4115 dev_priv->mm.interruptible = false;
1488fc08 4116
07fe0b12 4117 WARN_ON(i915_vma_unbind(vma));
1488fc08 4118
07fe0b12
BW
4119 dev_priv->mm.interruptible = was_interruptible;
4120 }
1488fc08
CW
4121 }
4122
1d64ae71
BW
4123 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4124 * before progressing. */
4125 if (obj->stolen)
4126 i915_gem_object_unpin_pages(obj);
4127
401c29f6
BW
4128 if (WARN_ON(obj->pages_pin_count))
4129 obj->pages_pin_count = 0;
37e680a1 4130 i915_gem_object_put_pages(obj);
d8cb5086 4131 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4132 i915_gem_object_release_stolen(obj);
de151cf6 4133
9da3da66
CW
4134 BUG_ON(obj->pages);
4135
2f745ad3
CW
4136 if (obj->base.import_attach)
4137 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4138
05394f39
CW
4139 drm_gem_object_release(&obj->base);
4140 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4141
05394f39 4142 kfree(obj->bit_17);
42dcedd4 4143 i915_gem_object_free(obj);
673a394b
EA
4144}
4145
2f633156
BW
4146struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4147 struct i915_address_space *vm)
4148{
4149 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4150 if (vma == NULL)
4151 return ERR_PTR(-ENOMEM);
4152
4153 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4154 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4155 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4156 vma->vm = vm;
4157 vma->obj = obj;
4158
8b9c2b94
BW
4159 /* Keep GGTT vmas first to make debug easier */
4160 if (i915_is_ggtt(vm))
4161 list_add(&vma->vma_link, &obj->vma_list);
4162 else
4163 list_add_tail(&vma->vma_link, &obj->vma_list);
4164
2f633156
BW
4165 return vma;
4166}
4167
4168void i915_gem_vma_destroy(struct i915_vma *vma)
4169{
4170 WARN_ON(vma->node.allocated);
8b9c2b94 4171 list_del(&vma->vma_link);
2f633156
BW
4172 kfree(vma);
4173}
4174
29105ccc
CW
4175int
4176i915_gem_idle(struct drm_device *dev)
4177{
4178 drm_i915_private_t *dev_priv = dev->dev_private;
4179 int ret;
28dfe52a 4180
db1b76ca 4181 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4182 mutex_unlock(&dev->struct_mutex);
4183 return 0;
28dfe52a
EA
4184 }
4185
b2da9fe5 4186 ret = i915_gpu_idle(dev);
6dbe2772
KP
4187 if (ret) {
4188 mutex_unlock(&dev->struct_mutex);
673a394b 4189 return ret;
6dbe2772 4190 }
b2da9fe5 4191 i915_gem_retire_requests(dev);
673a394b 4192
29105ccc 4193 /* Under UMS, be paranoid and evict. */
a39d7efc 4194 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4195 i915_gem_evict_everything(dev);
29105ccc 4196
99584db3 4197 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4198
4199 i915_kernel_lost_context(dev);
6dbe2772 4200 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4201
29105ccc
CW
4202 /* Cancel the retire work handler, which should be idle now. */
4203 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4204
673a394b
EA
4205 return 0;
4206}
4207
b9524a1e
BW
4208void i915_gem_l3_remap(struct drm_device *dev)
4209{
4210 drm_i915_private_t *dev_priv = dev->dev_private;
4211 u32 misccpctl;
4212 int i;
4213
eb32e458 4214 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4215 return;
4216
a4da4fa4 4217 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4218 return;
4219
4220 misccpctl = I915_READ(GEN7_MISCCPCTL);
4221 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4222 POSTING_READ(GEN7_MISCCPCTL);
4223
4224 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4225 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4226 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4227 DRM_DEBUG("0x%x was already programmed to %x\n",
4228 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4229 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4230 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4231 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4232 }
4233
4234 /* Make sure all the writes land before disabling dop clock gating */
4235 POSTING_READ(GEN7_L3LOG_BASE);
4236
4237 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4238}
4239
f691e2f4
DV
4240void i915_gem_init_swizzling(struct drm_device *dev)
4241{
4242 drm_i915_private_t *dev_priv = dev->dev_private;
4243
11782b02 4244 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4245 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4246 return;
4247
4248 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4249 DISP_TILE_SURFACE_SWIZZLING);
4250
11782b02
DV
4251 if (IS_GEN5(dev))
4252 return;
4253
f691e2f4
DV
4254 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4255 if (IS_GEN6(dev))
6b26c86d 4256 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4257 else if (IS_GEN7(dev))
6b26c86d 4258 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4259 else
4260 BUG();
f691e2f4 4261}
e21af88d 4262
67b1b571
CW
4263static bool
4264intel_enable_blt(struct drm_device *dev)
4265{
4266 if (!HAS_BLT(dev))
4267 return false;
4268
4269 /* The blitter was dysfunctional on early prototypes */
4270 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4271 DRM_INFO("BLT not supported on this pre-production hardware;"
4272 " graphics performance will be degraded.\n");
4273 return false;
4274 }
4275
4276 return true;
4277}
4278
4fc7c971 4279static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4280{
4fc7c971 4281 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4282 int ret;
68f95ba9 4283
5c1143bb 4284 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4285 if (ret)
b6913e4b 4286 return ret;
68f95ba9
CW
4287
4288 if (HAS_BSD(dev)) {
5c1143bb 4289 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4290 if (ret)
4291 goto cleanup_render_ring;
d1b851fc 4292 }
68f95ba9 4293
67b1b571 4294 if (intel_enable_blt(dev)) {
549f7365
CW
4295 ret = intel_init_blt_ring_buffer(dev);
4296 if (ret)
4297 goto cleanup_bsd_ring;
4298 }
4299
9a8a2213
BW
4300 if (HAS_VEBOX(dev)) {
4301 ret = intel_init_vebox_ring_buffer(dev);
4302 if (ret)
4303 goto cleanup_blt_ring;
4304 }
4305
4306
99433931 4307 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4308 if (ret)
9a8a2213 4309 goto cleanup_vebox_ring;
4fc7c971
BW
4310
4311 return 0;
4312
9a8a2213
BW
4313cleanup_vebox_ring:
4314 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4315cleanup_blt_ring:
4316 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4317cleanup_bsd_ring:
4318 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4319cleanup_render_ring:
4320 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4321
4322 return ret;
4323}
4324
4325int
4326i915_gem_init_hw(struct drm_device *dev)
4327{
4328 drm_i915_private_t *dev_priv = dev->dev_private;
4329 int ret;
4330
4331 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4332 return -EIO;
4333
59124506 4334 if (dev_priv->ellc_size)
05e21cc4 4335 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4336
88a2b2a3
BW
4337 if (HAS_PCH_NOP(dev)) {
4338 u32 temp = I915_READ(GEN7_MSG_CTL);
4339 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4340 I915_WRITE(GEN7_MSG_CTL, temp);
4341 }
4342
4fc7c971
BW
4343 i915_gem_l3_remap(dev);
4344
4345 i915_gem_init_swizzling(dev);
4346
4347 ret = i915_gem_init_rings(dev);
99433931
MK
4348 if (ret)
4349 return ret;
4350
254f965c
BW
4351 /*
4352 * XXX: There was some w/a described somewhere suggesting loading
4353 * contexts before PPGTT.
4354 */
4355 i915_gem_context_init(dev);
b7c36d25
BW
4356 if (dev_priv->mm.aliasing_ppgtt) {
4357 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4358 if (ret) {
4359 i915_gem_cleanup_aliasing_ppgtt(dev);
4360 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4361 }
4362 }
e21af88d 4363
68f95ba9 4364 return 0;
8187a2b7
ZN
4365}
4366
1070a42b
CW
4367int i915_gem_init(struct drm_device *dev)
4368{
4369 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4370 int ret;
4371
1070a42b 4372 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4373
4374 if (IS_VALLEYVIEW(dev)) {
4375 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4376 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4377 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4378 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4379 }
4380
d7e5008f 4381 i915_gem_init_global_gtt(dev);
d62b4892 4382
1070a42b
CW
4383 ret = i915_gem_init_hw(dev);
4384 mutex_unlock(&dev->struct_mutex);
4385 if (ret) {
4386 i915_gem_cleanup_aliasing_ppgtt(dev);
4387 return ret;
4388 }
4389
53ca26ca
DV
4390 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4391 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4392 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4393 return 0;
4394}
4395
8187a2b7
ZN
4396void
4397i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4398{
4399 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4400 struct intel_ring_buffer *ring;
1ec14ad3 4401 int i;
8187a2b7 4402
b4519513
CW
4403 for_each_ring(ring, dev_priv, i)
4404 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4405}
4406
673a394b
EA
4407int
4408i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4409 struct drm_file *file_priv)
4410{
db1b76ca 4411 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4412 int ret;
673a394b 4413
79e53945
JB
4414 if (drm_core_check_feature(dev, DRIVER_MODESET))
4415 return 0;
4416
1f83fee0 4417 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4418 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4419 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4420 }
4421
673a394b 4422 mutex_lock(&dev->struct_mutex);
db1b76ca 4423 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4424
f691e2f4 4425 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4426 if (ret != 0) {
4427 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4428 return ret;
d816f6ac 4429 }
9bb2d6f9 4430
5cef07e1 4431 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4432 mutex_unlock(&dev->struct_mutex);
dbb19d30 4433
5f35308b
CW
4434 ret = drm_irq_install(dev);
4435 if (ret)
4436 goto cleanup_ringbuffer;
dbb19d30 4437
673a394b 4438 return 0;
5f35308b
CW
4439
4440cleanup_ringbuffer:
4441 mutex_lock(&dev->struct_mutex);
4442 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4443 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4444 mutex_unlock(&dev->struct_mutex);
4445
4446 return ret;
673a394b
EA
4447}
4448
4449int
4450i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4451 struct drm_file *file_priv)
4452{
db1b76ca
DV
4453 struct drm_i915_private *dev_priv = dev->dev_private;
4454 int ret;
4455
79e53945
JB
4456 if (drm_core_check_feature(dev, DRIVER_MODESET))
4457 return 0;
4458
dbb19d30 4459 drm_irq_uninstall(dev);
db1b76ca
DV
4460
4461 mutex_lock(&dev->struct_mutex);
4462 ret = i915_gem_idle(dev);
4463
4464 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4465 * We need to replace this with a semaphore, or something.
4466 * And not confound ums.mm_suspended!
4467 */
4468 if (ret != 0)
4469 dev_priv->ums.mm_suspended = 1;
4470 mutex_unlock(&dev->struct_mutex);
4471
4472 return ret;
673a394b
EA
4473}
4474
4475void
4476i915_gem_lastclose(struct drm_device *dev)
4477{
4478 int ret;
673a394b 4479
e806b495
EA
4480 if (drm_core_check_feature(dev, DRIVER_MODESET))
4481 return;
4482
db1b76ca 4483 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4484 ret = i915_gem_idle(dev);
4485 if (ret)
4486 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4487 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4488}
4489
64193406
CW
4490static void
4491init_ring_lists(struct intel_ring_buffer *ring)
4492{
4493 INIT_LIST_HEAD(&ring->active_list);
4494 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4495}
4496
fc8c067e
BW
4497static void i915_init_vm(struct drm_i915_private *dev_priv,
4498 struct i915_address_space *vm)
4499{
4500 vm->dev = dev_priv->dev;
4501 INIT_LIST_HEAD(&vm->active_list);
4502 INIT_LIST_HEAD(&vm->inactive_list);
4503 INIT_LIST_HEAD(&vm->global_link);
4504 list_add(&vm->global_link, &dev_priv->vm_list);
4505}
4506
673a394b
EA
4507void
4508i915_gem_load(struct drm_device *dev)
4509{
4510 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4511 int i;
4512
4513 dev_priv->slab =
4514 kmem_cache_create("i915_gem_object",
4515 sizeof(struct drm_i915_gem_object), 0,
4516 SLAB_HWCACHE_ALIGN,
4517 NULL);
673a394b 4518
fc8c067e
BW
4519 INIT_LIST_HEAD(&dev_priv->vm_list);
4520 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4521
6c085a72
CW
4522 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4523 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4524 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4525 for (i = 0; i < I915_NUM_RINGS; i++)
4526 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4527 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4528 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4529 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4530 i915_gem_retire_work_handler);
1f83fee0 4531 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4532
94400120
DA
4533 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4534 if (IS_GEN3(dev)) {
50743298
DV
4535 I915_WRITE(MI_ARB_STATE,
4536 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4537 }
4538
72bfa19c
CW
4539 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4540
de151cf6 4541 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4542 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4543 dev_priv->fence_reg_start = 3;
de151cf6 4544
42b5aeab
VS
4545 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4546 dev_priv->num_fence_regs = 32;
4547 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4548 dev_priv->num_fence_regs = 16;
4549 else
4550 dev_priv->num_fence_regs = 8;
4551
b5aa8a0f 4552 /* Initialize fence registers to zero */
19b2dbde
CW
4553 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4554 i915_gem_restore_fences(dev);
10ed13e4 4555
673a394b 4556 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4557 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4558
ce453d81
CW
4559 dev_priv->mm.interruptible = true;
4560
17250b71
CW
4561 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4562 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4563 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4564}
71acb5eb
DA
4565
4566/*
4567 * Create a physically contiguous memory object for this object
4568 * e.g. for cursor + overlay regs
4569 */
995b6762
CW
4570static int i915_gem_init_phys_object(struct drm_device *dev,
4571 int id, int size, int align)
71acb5eb
DA
4572{
4573 drm_i915_private_t *dev_priv = dev->dev_private;
4574 struct drm_i915_gem_phys_object *phys_obj;
4575 int ret;
4576
4577 if (dev_priv->mm.phys_objs[id - 1] || !size)
4578 return 0;
4579
9a298b2a 4580 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4581 if (!phys_obj)
4582 return -ENOMEM;
4583
4584 phys_obj->id = id;
4585
6eeefaf3 4586 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4587 if (!phys_obj->handle) {
4588 ret = -ENOMEM;
4589 goto kfree_obj;
4590 }
4591#ifdef CONFIG_X86
4592 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4593#endif
4594
4595 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4596
4597 return 0;
4598kfree_obj:
9a298b2a 4599 kfree(phys_obj);
71acb5eb
DA
4600 return ret;
4601}
4602
995b6762 4603static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4604{
4605 drm_i915_private_t *dev_priv = dev->dev_private;
4606 struct drm_i915_gem_phys_object *phys_obj;
4607
4608 if (!dev_priv->mm.phys_objs[id - 1])
4609 return;
4610
4611 phys_obj = dev_priv->mm.phys_objs[id - 1];
4612 if (phys_obj->cur_obj) {
4613 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4614 }
4615
4616#ifdef CONFIG_X86
4617 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4618#endif
4619 drm_pci_free(dev, phys_obj->handle);
4620 kfree(phys_obj);
4621 dev_priv->mm.phys_objs[id - 1] = NULL;
4622}
4623
4624void i915_gem_free_all_phys_object(struct drm_device *dev)
4625{
4626 int i;
4627
260883c8 4628 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4629 i915_gem_free_phys_object(dev, i);
4630}
4631
4632void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4633 struct drm_i915_gem_object *obj)
71acb5eb 4634{
496ad9aa 4635 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4636 char *vaddr;
71acb5eb 4637 int i;
71acb5eb
DA
4638 int page_count;
4639
05394f39 4640 if (!obj->phys_obj)
71acb5eb 4641 return;
05394f39 4642 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4643
05394f39 4644 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4645 for (i = 0; i < page_count; i++) {
5949eac4 4646 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4647 if (!IS_ERR(page)) {
4648 char *dst = kmap_atomic(page);
4649 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4650 kunmap_atomic(dst);
4651
4652 drm_clflush_pages(&page, 1);
4653
4654 set_page_dirty(page);
4655 mark_page_accessed(page);
4656 page_cache_release(page);
4657 }
71acb5eb 4658 }
e76e9aeb 4659 i915_gem_chipset_flush(dev);
d78b47b9 4660
05394f39
CW
4661 obj->phys_obj->cur_obj = NULL;
4662 obj->phys_obj = NULL;
71acb5eb
DA
4663}
4664
4665int
4666i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4667 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4668 int id,
4669 int align)
71acb5eb 4670{
496ad9aa 4671 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4672 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4673 int ret = 0;
4674 int page_count;
4675 int i;
4676
4677 if (id > I915_MAX_PHYS_OBJECT)
4678 return -EINVAL;
4679
05394f39
CW
4680 if (obj->phys_obj) {
4681 if (obj->phys_obj->id == id)
71acb5eb
DA
4682 return 0;
4683 i915_gem_detach_phys_object(dev, obj);
4684 }
4685
71acb5eb
DA
4686 /* create a new object */
4687 if (!dev_priv->mm.phys_objs[id - 1]) {
4688 ret = i915_gem_init_phys_object(dev, id,
05394f39 4689 obj->base.size, align);
71acb5eb 4690 if (ret) {
05394f39
CW
4691 DRM_ERROR("failed to init phys object %d size: %zu\n",
4692 id, obj->base.size);
e5281ccd 4693 return ret;
71acb5eb
DA
4694 }
4695 }
4696
4697 /* bind to the object */
05394f39
CW
4698 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4699 obj->phys_obj->cur_obj = obj;
71acb5eb 4700
05394f39 4701 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4702
4703 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4704 struct page *page;
4705 char *dst, *src;
4706
5949eac4 4707 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4708 if (IS_ERR(page))
4709 return PTR_ERR(page);
71acb5eb 4710
ff75b9bc 4711 src = kmap_atomic(page);
05394f39 4712 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4713 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4714 kunmap_atomic(src);
71acb5eb 4715
e5281ccd
CW
4716 mark_page_accessed(page);
4717 page_cache_release(page);
4718 }
d78b47b9 4719
71acb5eb 4720 return 0;
71acb5eb
DA
4721}
4722
4723static int
05394f39
CW
4724i915_gem_phys_pwrite(struct drm_device *dev,
4725 struct drm_i915_gem_object *obj,
71acb5eb
DA
4726 struct drm_i915_gem_pwrite *args,
4727 struct drm_file *file_priv)
4728{
05394f39 4729 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4730 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4731
b47b30cc
CW
4732 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4733 unsigned long unwritten;
4734
4735 /* The physical object once assigned is fixed for the lifetime
4736 * of the obj, so we can safely drop the lock and continue
4737 * to access vaddr.
4738 */
4739 mutex_unlock(&dev->struct_mutex);
4740 unwritten = copy_from_user(vaddr, user_data, args->size);
4741 mutex_lock(&dev->struct_mutex);
4742 if (unwritten)
4743 return -EFAULT;
4744 }
71acb5eb 4745
e76e9aeb 4746 i915_gem_chipset_flush(dev);
71acb5eb
DA
4747 return 0;
4748}
b962442e 4749
f787a5f5 4750void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4751{
f787a5f5 4752 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4753
4754 /* Clean up our request list when the client is going away, so that
4755 * later retire_requests won't dereference our soon-to-be-gone
4756 * file_priv.
4757 */
1c25595f 4758 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4759 while (!list_empty(&file_priv->mm.request_list)) {
4760 struct drm_i915_gem_request *request;
4761
4762 request = list_first_entry(&file_priv->mm.request_list,
4763 struct drm_i915_gem_request,
4764 client_list);
4765 list_del(&request->client_list);
4766 request->file_priv = NULL;
4767 }
1c25595f 4768 spin_unlock(&file_priv->mm.lock);
b962442e 4769}
31169714 4770
5774506f
CW
4771static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4772{
4773 if (!mutex_is_locked(mutex))
4774 return false;
4775
4776#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4777 return mutex->owner == task;
4778#else
4779 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4780 return false;
4781#endif
4782}
4783
31169714 4784static int
1495f230 4785i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4786{
17250b71
CW
4787 struct drm_i915_private *dev_priv =
4788 container_of(shrinker,
4789 struct drm_i915_private,
4790 mm.inactive_shrinker);
4791 struct drm_device *dev = dev_priv->dev;
6c085a72 4792 struct drm_i915_gem_object *obj;
1495f230 4793 int nr_to_scan = sc->nr_to_scan;
5774506f 4794 bool unlock = true;
17250b71
CW
4795 int cnt;
4796
5774506f
CW
4797 if (!mutex_trylock(&dev->struct_mutex)) {
4798 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4799 return 0;
4800
677feac2
DV
4801 if (dev_priv->mm.shrinker_no_lock_stealing)
4802 return 0;
4803
5774506f
CW
4804 unlock = false;
4805 }
31169714 4806
6c085a72
CW
4807 if (nr_to_scan) {
4808 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4809 if (nr_to_scan > 0)
4810 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4811 false);
6c085a72
CW
4812 if (nr_to_scan > 0)
4813 i915_gem_shrink_all(dev_priv);
31169714
CW
4814 }
4815
17250b71 4816 cnt = 0;
35c20a60 4817 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4818 if (obj->pages_pin_count == 0)
4819 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4820
4821 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4822 if (obj->active)
4823 continue;
4824
a5570178 4825 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4826 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578 4827 }
17250b71 4828
5774506f
CW
4829 if (unlock)
4830 mutex_unlock(&dev->struct_mutex);
6c085a72 4831 return cnt;
31169714 4832}
a70a3148
BW
4833
4834/* All the new VM stuff */
4835unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4836 struct i915_address_space *vm)
4837{
4838 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4839 struct i915_vma *vma;
4840
4841 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4842 vm = &dev_priv->gtt.base;
4843
4844 BUG_ON(list_empty(&o->vma_list));
4845 list_for_each_entry(vma, &o->vma_list, vma_link) {
4846 if (vma->vm == vm)
4847 return vma->node.start;
4848
4849 }
4850 return -1;
4851}
4852
4853bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4854 struct i915_address_space *vm)
4855{
4856 struct i915_vma *vma;
4857
4858 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4859 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4860 return true;
4861
4862 return false;
4863}
4864
4865bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4866{
4867 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4868 struct i915_address_space *vm;
4869
4870 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4871 if (i915_gem_obj_bound(o, vm))
4872 return true;
4873
4874 return false;
4875}
4876
4877unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4878 struct i915_address_space *vm)
4879{
4880 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4881 struct i915_vma *vma;
4882
4883 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4884 vm = &dev_priv->gtt.base;
4885
4886 BUG_ON(list_empty(&o->vma_list));
4887
4888 list_for_each_entry(vma, &o->vma_list, vma_link)
4889 if (vma->vm == vm)
4890 return vma->node.size;
4891
4892 return 0;
4893}
4894
4895struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4896 struct i915_address_space *vm)
4897{
4898 struct i915_vma *vma;
4899 list_for_each_entry(vma, &obj->vma_list, vma_link)
4900 if (vma->vm == vm)
4901 return vma;
4902
4903 return NULL;
4904}
accfef2e
BW
4905
4906struct i915_vma *
4907i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4908 struct i915_address_space *vm)
4909{
4910 struct i915_vma *vma;
4911
4912 vma = i915_gem_obj_to_vma(obj, vm);
4913 if (!vma)
4914 vma = i915_gem_vma_create(obj, vm);
4915
4916 return vma;
4917}
This page took 1.085064 seconds and 5 git commands to generate.