drm/i915: Fix dynamic allocation of physical handles
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
673a394b 46
61050808
CW
47static void i915_gem_write_fence(struct drm_device *dev, int reg,
48 struct drm_i915_gem_object *obj);
49static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
50 struct drm_i915_fence_reg *fence,
51 bool enable);
52
7dc19d5a
DC
53static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
54 struct shrink_control *sc);
55static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
56 struct shrink_control *sc);
d9973b43
CW
57static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
58static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
cb216aa8 60static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
31169714 61
c76ce038
CW
62static bool cpu_cache_is_coherent(struct drm_device *dev,
63 enum i915_cache_level level)
64{
65 return HAS_LLC(dev) || level != I915_CACHE_NONE;
66}
67
2c22569b
CW
68static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
69{
70 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
71 return true;
72
73 return obj->pin_display;
74}
75
61050808
CW
76static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
77{
78 if (obj->tiling_mode)
79 i915_gem_release_mmap(obj);
80
81 /* As we do not have an associated fence register, we will force
82 * a tiling change if we ever need to acquire one.
83 */
5d82e3e6 84 obj->fence_dirty = false;
61050808
CW
85 obj->fence_reg = I915_FENCE_REG_NONE;
86}
87
73aa808f
CW
88/* some bookkeeping */
89static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
90 size_t size)
91{
c20e8355 92 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
93 dev_priv->mm.object_count++;
94 dev_priv->mm.object_memory += size;
c20e8355 95 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96}
97
98static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count--;
103 dev_priv->mm.object_memory -= size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
21dd3734 107static int
33196ded 108i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 109{
30dbf0c0
CW
110 int ret;
111
7abb690a
DV
112#define EXIT_COND (!i915_reset_in_progress(error) || \
113 i915_terminally_wedged(error))
1f83fee0 114 if (EXIT_COND)
30dbf0c0
CW
115 return 0;
116
0a6759c6
DV
117 /*
118 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
119 * userspace. If it takes that long something really bad is going on and
120 * we should simply try to bail out and fail as gracefully as possible.
121 */
1f83fee0
DV
122 ret = wait_event_interruptible_timeout(error->reset_queue,
123 EXIT_COND,
124 10*HZ);
0a6759c6
DV
125 if (ret == 0) {
126 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
127 return -EIO;
128 } else if (ret < 0) {
30dbf0c0 129 return ret;
0a6759c6 130 }
1f83fee0 131#undef EXIT_COND
30dbf0c0 132
21dd3734 133 return 0;
30dbf0c0
CW
134}
135
54cf91dc 136int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 137{
33196ded 138 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
139 int ret;
140
33196ded 141 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
142 if (ret)
143 return ret;
144
145 ret = mutex_lock_interruptible(&dev->struct_mutex);
146 if (ret)
147 return ret;
148
23bc5982 149 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
150 return 0;
151}
30dbf0c0 152
7d1c4804 153static inline bool
05394f39 154i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 155{
9843877d 156 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
157}
158
79e53945
JB
159int
160i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 161 struct drm_file *file)
79e53945 162{
93d18799 163 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 164 struct drm_i915_gem_init *args = data;
2021746e 165
7bb6fb8d
DV
166 if (drm_core_check_feature(dev, DRIVER_MODESET))
167 return -ENODEV;
168
2021746e
CW
169 if (args->gtt_start >= args->gtt_end ||
170 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
171 return -EINVAL;
79e53945 172
f534bc0b
DV
173 /* GEM with user mode setting was never supported on ilk and later. */
174 if (INTEL_INFO(dev)->gen >= 5)
175 return -ENODEV;
176
79e53945 177 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
178 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
179 args->gtt_end);
93d18799 180 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
181 mutex_unlock(&dev->struct_mutex);
182
2021746e 183 return 0;
673a394b
EA
184}
185
5a125c3c
EA
186int
187i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 188 struct drm_file *file)
5a125c3c 189{
73aa808f 190 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 191 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
192 struct drm_i915_gem_object *obj;
193 size_t pinned;
5a125c3c 194
6299f992 195 pinned = 0;
73aa808f 196 mutex_lock(&dev->struct_mutex);
35c20a60 197 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 198 if (i915_gem_obj_is_pinned(obj))
f343c5f6 199 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 200 mutex_unlock(&dev->struct_mutex);
5a125c3c 201
853ba5d2 202 args->aper_size = dev_priv->gtt.base.total;
0206e353 203 args->aper_available_size = args->aper_size - pinned;
6299f992 204
5a125c3c
EA
205 return 0;
206}
207
00731155
CW
208static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
209{
210 drm_dma_handle_t *phys = obj->phys_handle;
211
212 if (!phys)
213 return;
214
215 if (obj->madv == I915_MADV_WILLNEED) {
216 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
217 char *vaddr = phys->vaddr;
218 int i;
219
220 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
221 struct page *page = shmem_read_mapping_page(mapping, i);
222 if (!IS_ERR(page)) {
223 char *dst = kmap_atomic(page);
224 memcpy(dst, vaddr, PAGE_SIZE);
225 drm_clflush_virt_range(dst, PAGE_SIZE);
226 kunmap_atomic(dst);
227
228 set_page_dirty(page);
229 mark_page_accessed(page);
230 page_cache_release(page);
231 }
232 vaddr += PAGE_SIZE;
233 }
234 i915_gem_chipset_flush(obj->base.dev);
235 }
236
237#ifdef CONFIG_X86
238 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
239#endif
240 drm_pci_free(obj->base.dev, phys);
241 obj->phys_handle = NULL;
242}
243
244int
245i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
246 int align)
247{
248 drm_dma_handle_t *phys;
249 struct address_space *mapping;
250 char *vaddr;
251 int i;
252
253 if (obj->phys_handle) {
254 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
255 return -EBUSY;
256
257 return 0;
258 }
259
260 if (obj->madv != I915_MADV_WILLNEED)
261 return -EFAULT;
262
263 if (obj->base.filp == NULL)
264 return -EINVAL;
265
266 /* create a new object */
267 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
268 if (!phys)
269 return -ENOMEM;
270
271 vaddr = phys->vaddr;
272#ifdef CONFIG_X86
273 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
274#endif
275 mapping = file_inode(obj->base.filp)->i_mapping;
276 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
277 struct page *page;
278 char *src;
279
280 page = shmem_read_mapping_page(mapping, i);
281 if (IS_ERR(page)) {
282#ifdef CONFIG_X86
283 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
284#endif
285 drm_pci_free(obj->base.dev, phys);
286 return PTR_ERR(page);
287 }
288
289 src = kmap_atomic(page);
290 memcpy(vaddr, src, PAGE_SIZE);
291 kunmap_atomic(src);
292
293 mark_page_accessed(page);
294 page_cache_release(page);
295
296 vaddr += PAGE_SIZE;
297 }
298
299 obj->phys_handle = phys;
300 return 0;
301}
302
303static int
304i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
305 struct drm_i915_gem_pwrite *args,
306 struct drm_file *file_priv)
307{
308 struct drm_device *dev = obj->base.dev;
309 void *vaddr = obj->phys_handle->vaddr + args->offset;
310 char __user *user_data = to_user_ptr(args->data_ptr);
311
312 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
313 unsigned long unwritten;
314
315 /* The physical object once assigned is fixed for the lifetime
316 * of the obj, so we can safely drop the lock and continue
317 * to access vaddr.
318 */
319 mutex_unlock(&dev->struct_mutex);
320 unwritten = copy_from_user(vaddr, user_data, args->size);
321 mutex_lock(&dev->struct_mutex);
322 if (unwritten)
323 return -EFAULT;
324 }
325
326 i915_gem_chipset_flush(dev);
327 return 0;
328}
329
42dcedd4
CW
330void *i915_gem_object_alloc(struct drm_device *dev)
331{
332 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 333 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
334}
335
336void i915_gem_object_free(struct drm_i915_gem_object *obj)
337{
338 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
339 kmem_cache_free(dev_priv->slab, obj);
340}
341
ff72145b
DA
342static int
343i915_gem_create(struct drm_file *file,
344 struct drm_device *dev,
345 uint64_t size,
346 uint32_t *handle_p)
673a394b 347{
05394f39 348 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
349 int ret;
350 u32 handle;
673a394b 351
ff72145b 352 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
353 if (size == 0)
354 return -EINVAL;
673a394b
EA
355
356 /* Allocate the new object */
ff72145b 357 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
358 if (obj == NULL)
359 return -ENOMEM;
360
05394f39 361 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 362 /* drop reference from allocate - handle holds it now */
d861e338
DV
363 drm_gem_object_unreference_unlocked(&obj->base);
364 if (ret)
365 return ret;
202f2fef 366
ff72145b 367 *handle_p = handle;
673a394b
EA
368 return 0;
369}
370
ff72145b
DA
371int
372i915_gem_dumb_create(struct drm_file *file,
373 struct drm_device *dev,
374 struct drm_mode_create_dumb *args)
375{
376 /* have to work out size/pitch and return them */
de45eaf7 377 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
378 args->size = args->pitch * args->height;
379 return i915_gem_create(file, dev,
380 args->size, &args->handle);
381}
382
ff72145b
DA
383/**
384 * Creates a new mm object and returns a handle to it.
385 */
386int
387i915_gem_create_ioctl(struct drm_device *dev, void *data,
388 struct drm_file *file)
389{
390 struct drm_i915_gem_create *args = data;
63ed2cb2 391
ff72145b
DA
392 return i915_gem_create(file, dev,
393 args->size, &args->handle);
394}
395
8461d226
DV
396static inline int
397__copy_to_user_swizzled(char __user *cpu_vaddr,
398 const char *gpu_vaddr, int gpu_offset,
399 int length)
400{
401 int ret, cpu_offset = 0;
402
403 while (length > 0) {
404 int cacheline_end = ALIGN(gpu_offset + 1, 64);
405 int this_length = min(cacheline_end - gpu_offset, length);
406 int swizzled_gpu_offset = gpu_offset ^ 64;
407
408 ret = __copy_to_user(cpu_vaddr + cpu_offset,
409 gpu_vaddr + swizzled_gpu_offset,
410 this_length);
411 if (ret)
412 return ret + length;
413
414 cpu_offset += this_length;
415 gpu_offset += this_length;
416 length -= this_length;
417 }
418
419 return 0;
420}
421
8c59967c 422static inline int
4f0c7cfb
BW
423__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
424 const char __user *cpu_vaddr,
8c59967c
DV
425 int length)
426{
427 int ret, cpu_offset = 0;
428
429 while (length > 0) {
430 int cacheline_end = ALIGN(gpu_offset + 1, 64);
431 int this_length = min(cacheline_end - gpu_offset, length);
432 int swizzled_gpu_offset = gpu_offset ^ 64;
433
434 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
435 cpu_vaddr + cpu_offset,
436 this_length);
437 if (ret)
438 return ret + length;
439
440 cpu_offset += this_length;
441 gpu_offset += this_length;
442 length -= this_length;
443 }
444
445 return 0;
446}
447
4c914c0c
BV
448/*
449 * Pins the specified object's pages and synchronizes the object with
450 * GPU accesses. Sets needs_clflush to non-zero if the caller should
451 * flush the object from the CPU cache.
452 */
453int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
454 int *needs_clflush)
455{
456 int ret;
457
458 *needs_clflush = 0;
459
460 if (!obj->base.filp)
461 return -EINVAL;
462
463 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
464 /* If we're not in the cpu read domain, set ourself into the gtt
465 * read domain and manually flush cachelines (if required). This
466 * optimizes for the case when the gpu will dirty the data
467 * anyway again before the next pread happens. */
468 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
469 obj->cache_level);
470 ret = i915_gem_object_wait_rendering(obj, true);
471 if (ret)
472 return ret;
473 }
474
475 ret = i915_gem_object_get_pages(obj);
476 if (ret)
477 return ret;
478
479 i915_gem_object_pin_pages(obj);
480
481 return ret;
482}
483
d174bd64
DV
484/* Per-page copy function for the shmem pread fastpath.
485 * Flushes invalid cachelines before reading the target if
486 * needs_clflush is set. */
eb01459f 487static int
d174bd64
DV
488shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
489 char __user *user_data,
490 bool page_do_bit17_swizzling, bool needs_clflush)
491{
492 char *vaddr;
493 int ret;
494
e7e58eb5 495 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
496 return -EINVAL;
497
498 vaddr = kmap_atomic(page);
499 if (needs_clflush)
500 drm_clflush_virt_range(vaddr + shmem_page_offset,
501 page_length);
502 ret = __copy_to_user_inatomic(user_data,
503 vaddr + shmem_page_offset,
504 page_length);
505 kunmap_atomic(vaddr);
506
f60d7f0c 507 return ret ? -EFAULT : 0;
d174bd64
DV
508}
509
23c18c71
DV
510static void
511shmem_clflush_swizzled_range(char *addr, unsigned long length,
512 bool swizzled)
513{
e7e58eb5 514 if (unlikely(swizzled)) {
23c18c71
DV
515 unsigned long start = (unsigned long) addr;
516 unsigned long end = (unsigned long) addr + length;
517
518 /* For swizzling simply ensure that we always flush both
519 * channels. Lame, but simple and it works. Swizzled
520 * pwrite/pread is far from a hotpath - current userspace
521 * doesn't use it at all. */
522 start = round_down(start, 128);
523 end = round_up(end, 128);
524
525 drm_clflush_virt_range((void *)start, end - start);
526 } else {
527 drm_clflush_virt_range(addr, length);
528 }
529
530}
531
d174bd64
DV
532/* Only difference to the fast-path function is that this can handle bit17
533 * and uses non-atomic copy and kmap functions. */
534static int
535shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
536 char __user *user_data,
537 bool page_do_bit17_swizzling, bool needs_clflush)
538{
539 char *vaddr;
540 int ret;
541
542 vaddr = kmap(page);
543 if (needs_clflush)
23c18c71
DV
544 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
545 page_length,
546 page_do_bit17_swizzling);
d174bd64
DV
547
548 if (page_do_bit17_swizzling)
549 ret = __copy_to_user_swizzled(user_data,
550 vaddr, shmem_page_offset,
551 page_length);
552 else
553 ret = __copy_to_user(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap(page);
557
f60d7f0c 558 return ret ? - EFAULT : 0;
d174bd64
DV
559}
560
eb01459f 561static int
dbf7bff0
DV
562i915_gem_shmem_pread(struct drm_device *dev,
563 struct drm_i915_gem_object *obj,
564 struct drm_i915_gem_pread *args,
565 struct drm_file *file)
eb01459f 566{
8461d226 567 char __user *user_data;
eb01459f 568 ssize_t remain;
8461d226 569 loff_t offset;
eb2c0c81 570 int shmem_page_offset, page_length, ret = 0;
8461d226 571 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 572 int prefaulted = 0;
8489731c 573 int needs_clflush = 0;
67d5a50c 574 struct sg_page_iter sg_iter;
eb01459f 575
2bb4629a 576 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
577 remain = args->size;
578
8461d226 579 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 580
4c914c0c 581 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
582 if (ret)
583 return ret;
584
8461d226 585 offset = args->offset;
eb01459f 586
67d5a50c
ID
587 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
588 offset >> PAGE_SHIFT) {
2db76d7c 589 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
590
591 if (remain <= 0)
592 break;
593
eb01459f
EA
594 /* Operation in this page
595 *
eb01459f 596 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
597 * page_length = bytes to copy for this page
598 */
c8cbbb8b 599 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
600 page_length = remain;
601 if ((shmem_page_offset + page_length) > PAGE_SIZE)
602 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 603
8461d226
DV
604 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
605 (page_to_phys(page) & (1 << 17)) != 0;
606
d174bd64
DV
607 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
608 user_data, page_do_bit17_swizzling,
609 needs_clflush);
610 if (ret == 0)
611 goto next_page;
dbf7bff0 612
dbf7bff0
DV
613 mutex_unlock(&dev->struct_mutex);
614
d330a953 615 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 616 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
617 /* Userspace is tricking us, but we've already clobbered
618 * its pages with the prefault and promised to write the
619 * data up to the first fault. Hence ignore any errors
620 * and just continue. */
621 (void)ret;
622 prefaulted = 1;
623 }
eb01459f 624
d174bd64
DV
625 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
626 user_data, page_do_bit17_swizzling,
627 needs_clflush);
eb01459f 628
dbf7bff0 629 mutex_lock(&dev->struct_mutex);
f60d7f0c 630
f60d7f0c 631 if (ret)
8461d226 632 goto out;
8461d226 633
17793c9a 634next_page:
eb01459f 635 remain -= page_length;
8461d226 636 user_data += page_length;
eb01459f
EA
637 offset += page_length;
638 }
639
4f27b75d 640out:
f60d7f0c
CW
641 i915_gem_object_unpin_pages(obj);
642
eb01459f
EA
643 return ret;
644}
645
673a394b
EA
646/**
647 * Reads data from the object referenced by handle.
648 *
649 * On error, the contents of *data are undefined.
650 */
651int
652i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 653 struct drm_file *file)
673a394b
EA
654{
655 struct drm_i915_gem_pread *args = data;
05394f39 656 struct drm_i915_gem_object *obj;
35b62a89 657 int ret = 0;
673a394b 658
51311d0a
CW
659 if (args->size == 0)
660 return 0;
661
662 if (!access_ok(VERIFY_WRITE,
2bb4629a 663 to_user_ptr(args->data_ptr),
51311d0a
CW
664 args->size))
665 return -EFAULT;
666
4f27b75d 667 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 668 if (ret)
4f27b75d 669 return ret;
673a394b 670
05394f39 671 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 672 if (&obj->base == NULL) {
1d7cfea1
CW
673 ret = -ENOENT;
674 goto unlock;
4f27b75d 675 }
673a394b 676
7dcd2499 677 /* Bounds check source. */
05394f39
CW
678 if (args->offset > obj->base.size ||
679 args->size > obj->base.size - args->offset) {
ce9d419d 680 ret = -EINVAL;
35b62a89 681 goto out;
ce9d419d
CW
682 }
683
1286ff73
DV
684 /* prime objects have no backing filp to GEM pread/pwrite
685 * pages from.
686 */
687 if (!obj->base.filp) {
688 ret = -EINVAL;
689 goto out;
690 }
691
db53a302
CW
692 trace_i915_gem_object_pread(obj, args->offset, args->size);
693
dbf7bff0 694 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 695
35b62a89 696out:
05394f39 697 drm_gem_object_unreference(&obj->base);
1d7cfea1 698unlock:
4f27b75d 699 mutex_unlock(&dev->struct_mutex);
eb01459f 700 return ret;
673a394b
EA
701}
702
0839ccb8
KP
703/* This is the fast write path which cannot handle
704 * page faults in the source data
9b7530cc 705 */
0839ccb8
KP
706
707static inline int
708fast_user_write(struct io_mapping *mapping,
709 loff_t page_base, int page_offset,
710 char __user *user_data,
711 int length)
9b7530cc 712{
4f0c7cfb
BW
713 void __iomem *vaddr_atomic;
714 void *vaddr;
0839ccb8 715 unsigned long unwritten;
9b7530cc 716
3e4d3af5 717 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
718 /* We can use the cpu mem copy function because this is X86. */
719 vaddr = (void __force*)vaddr_atomic + page_offset;
720 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 721 user_data, length);
3e4d3af5 722 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 723 return unwritten;
0839ccb8
KP
724}
725
3de09aa3
EA
726/**
727 * This is the fast pwrite path, where we copy the data directly from the
728 * user into the GTT, uncached.
729 */
673a394b 730static int
05394f39
CW
731i915_gem_gtt_pwrite_fast(struct drm_device *dev,
732 struct drm_i915_gem_object *obj,
3de09aa3 733 struct drm_i915_gem_pwrite *args,
05394f39 734 struct drm_file *file)
673a394b 735{
3e31c6c0 736 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 737 ssize_t remain;
0839ccb8 738 loff_t offset, page_base;
673a394b 739 char __user *user_data;
935aaa69
DV
740 int page_offset, page_length, ret;
741
1ec9e26d 742 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
743 if (ret)
744 goto out;
745
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 goto out_unpin;
749
750 ret = i915_gem_object_put_fence(obj);
751 if (ret)
752 goto out_unpin;
673a394b 753
2bb4629a 754 user_data = to_user_ptr(args->data_ptr);
673a394b 755 remain = args->size;
673a394b 756
f343c5f6 757 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
758
759 while (remain > 0) {
760 /* Operation in this page
761 *
0839ccb8
KP
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
673a394b 765 */
c8cbbb8b
CW
766 page_base = offset & PAGE_MASK;
767 page_offset = offset_in_page(offset);
0839ccb8
KP
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
0839ccb8 772 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
773 * source page isn't available. Return the error and we'll
774 * retry in the slow path.
0839ccb8 775 */
5d4545ae 776 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
777 page_offset, user_data, page_length)) {
778 ret = -EFAULT;
779 goto out_unpin;
780 }
673a394b 781
0839ccb8
KP
782 remain -= page_length;
783 user_data += page_length;
784 offset += page_length;
673a394b 785 }
673a394b 786
935aaa69 787out_unpin:
d7f46fc4 788 i915_gem_object_ggtt_unpin(obj);
935aaa69 789out:
3de09aa3 790 return ret;
673a394b
EA
791}
792
d174bd64
DV
793/* Per-page copy function for the shmem pwrite fastpath.
794 * Flushes invalid cachelines before writing to the target if
795 * needs_clflush_before is set and flushes out any written cachelines after
796 * writing if needs_clflush is set. */
3043c60c 797static int
d174bd64
DV
798shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
799 char __user *user_data,
800 bool page_do_bit17_swizzling,
801 bool needs_clflush_before,
802 bool needs_clflush_after)
673a394b 803{
d174bd64 804 char *vaddr;
673a394b 805 int ret;
3de09aa3 806
e7e58eb5 807 if (unlikely(page_do_bit17_swizzling))
d174bd64 808 return -EINVAL;
3de09aa3 809
d174bd64
DV
810 vaddr = kmap_atomic(page);
811 if (needs_clflush_before)
812 drm_clflush_virt_range(vaddr + shmem_page_offset,
813 page_length);
c2831a94
CW
814 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
815 user_data, page_length);
d174bd64
DV
816 if (needs_clflush_after)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
819 kunmap_atomic(vaddr);
3de09aa3 820
755d2218 821 return ret ? -EFAULT : 0;
3de09aa3
EA
822}
823
d174bd64
DV
824/* Only difference to the fast-path function is that this can handle bit17
825 * and uses non-atomic copy and kmap functions. */
3043c60c 826static int
d174bd64
DV
827shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
828 char __user *user_data,
829 bool page_do_bit17_swizzling,
830 bool needs_clflush_before,
831 bool needs_clflush_after)
673a394b 832{
d174bd64
DV
833 char *vaddr;
834 int ret;
e5281ccd 835
d174bd64 836 vaddr = kmap(page);
e7e58eb5 837 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
838 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
839 page_length,
840 page_do_bit17_swizzling);
d174bd64
DV
841 if (page_do_bit17_swizzling)
842 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
843 user_data,
844 page_length);
d174bd64
DV
845 else
846 ret = __copy_from_user(vaddr + shmem_page_offset,
847 user_data,
848 page_length);
849 if (needs_clflush_after)
23c18c71
DV
850 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
851 page_length,
852 page_do_bit17_swizzling);
d174bd64 853 kunmap(page);
40123c1f 854
755d2218 855 return ret ? -EFAULT : 0;
40123c1f
EA
856}
857
40123c1f 858static int
e244a443
DV
859i915_gem_shmem_pwrite(struct drm_device *dev,
860 struct drm_i915_gem_object *obj,
861 struct drm_i915_gem_pwrite *args,
862 struct drm_file *file)
40123c1f 863{
40123c1f 864 ssize_t remain;
8c59967c
DV
865 loff_t offset;
866 char __user *user_data;
eb2c0c81 867 int shmem_page_offset, page_length, ret = 0;
8c59967c 868 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 869 int hit_slowpath = 0;
58642885
DV
870 int needs_clflush_after = 0;
871 int needs_clflush_before = 0;
67d5a50c 872 struct sg_page_iter sg_iter;
40123c1f 873
2bb4629a 874 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
875 remain = args->size;
876
8c59967c 877 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 878
58642885
DV
879 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
880 /* If we're not in the cpu write domain, set ourself into the gtt
881 * write domain and manually flush cachelines (if required). This
882 * optimizes for the case when the gpu will use the data
883 * right away and we therefore have to clflush anyway. */
2c22569b 884 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
885 ret = i915_gem_object_wait_rendering(obj, false);
886 if (ret)
887 return ret;
58642885 888 }
c76ce038
CW
889 /* Same trick applies to invalidate partially written cachelines read
890 * before writing. */
891 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
892 needs_clflush_before =
893 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 894
755d2218
CW
895 ret = i915_gem_object_get_pages(obj);
896 if (ret)
897 return ret;
898
899 i915_gem_object_pin_pages(obj);
900
673a394b 901 offset = args->offset;
05394f39 902 obj->dirty = 1;
673a394b 903
67d5a50c
ID
904 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
905 offset >> PAGE_SHIFT) {
2db76d7c 906 struct page *page = sg_page_iter_page(&sg_iter);
58642885 907 int partial_cacheline_write;
e5281ccd 908
9da3da66
CW
909 if (remain <= 0)
910 break;
911
40123c1f
EA
912 /* Operation in this page
913 *
40123c1f 914 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
915 * page_length = bytes to copy for this page
916 */
c8cbbb8b 917 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
918
919 page_length = remain;
920 if ((shmem_page_offset + page_length) > PAGE_SIZE)
921 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 922
58642885
DV
923 /* If we don't overwrite a cacheline completely we need to be
924 * careful to have up-to-date data by first clflushing. Don't
925 * overcomplicate things and flush the entire patch. */
926 partial_cacheline_write = needs_clflush_before &&
927 ((shmem_page_offset | page_length)
928 & (boot_cpu_data.x86_clflush_size - 1));
929
8c59967c
DV
930 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
931 (page_to_phys(page) & (1 << 17)) != 0;
932
d174bd64
DV
933 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
934 user_data, page_do_bit17_swizzling,
935 partial_cacheline_write,
936 needs_clflush_after);
937 if (ret == 0)
938 goto next_page;
e244a443
DV
939
940 hit_slowpath = 1;
e244a443 941 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
942 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
943 user_data, page_do_bit17_swizzling,
944 partial_cacheline_write,
945 needs_clflush_after);
40123c1f 946
e244a443 947 mutex_lock(&dev->struct_mutex);
755d2218 948
755d2218 949 if (ret)
8c59967c 950 goto out;
8c59967c 951
17793c9a 952next_page:
40123c1f 953 remain -= page_length;
8c59967c 954 user_data += page_length;
40123c1f 955 offset += page_length;
673a394b
EA
956 }
957
fbd5a26d 958out:
755d2218
CW
959 i915_gem_object_unpin_pages(obj);
960
e244a443 961 if (hit_slowpath) {
8dcf015e
DV
962 /*
963 * Fixup: Flush cpu caches in case we didn't flush the dirty
964 * cachelines in-line while writing and the object moved
965 * out of the cpu write domain while we've dropped the lock.
966 */
967 if (!needs_clflush_after &&
968 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
969 if (i915_gem_clflush_object(obj, obj->pin_display))
970 i915_gem_chipset_flush(dev);
e244a443 971 }
8c59967c 972 }
673a394b 973
58642885 974 if (needs_clflush_after)
e76e9aeb 975 i915_gem_chipset_flush(dev);
58642885 976
40123c1f 977 return ret;
673a394b
EA
978}
979
980/**
981 * Writes data to the object referenced by handle.
982 *
983 * On error, the contents of the buffer that were to be modified are undefined.
984 */
985int
986i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 987 struct drm_file *file)
673a394b
EA
988{
989 struct drm_i915_gem_pwrite *args = data;
05394f39 990 struct drm_i915_gem_object *obj;
51311d0a
CW
991 int ret;
992
993 if (args->size == 0)
994 return 0;
995
996 if (!access_ok(VERIFY_READ,
2bb4629a 997 to_user_ptr(args->data_ptr),
51311d0a
CW
998 args->size))
999 return -EFAULT;
1000
d330a953 1001 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1002 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1003 args->size);
1004 if (ret)
1005 return -EFAULT;
1006 }
673a394b 1007
fbd5a26d 1008 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1009 if (ret)
fbd5a26d 1010 return ret;
1d7cfea1 1011
05394f39 1012 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1013 if (&obj->base == NULL) {
1d7cfea1
CW
1014 ret = -ENOENT;
1015 goto unlock;
fbd5a26d 1016 }
673a394b 1017
7dcd2499 1018 /* Bounds check destination. */
05394f39
CW
1019 if (args->offset > obj->base.size ||
1020 args->size > obj->base.size - args->offset) {
ce9d419d 1021 ret = -EINVAL;
35b62a89 1022 goto out;
ce9d419d
CW
1023 }
1024
1286ff73
DV
1025 /* prime objects have no backing filp to GEM pread/pwrite
1026 * pages from.
1027 */
1028 if (!obj->base.filp) {
1029 ret = -EINVAL;
1030 goto out;
1031 }
1032
db53a302
CW
1033 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1034
935aaa69 1035 ret = -EFAULT;
673a394b
EA
1036 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1037 * it would end up going through the fenced access, and we'll get
1038 * different detiling behavior between reading and writing.
1039 * pread/pwrite currently are reading and writing from the CPU
1040 * perspective, requiring manual detiling by the client.
1041 */
00731155
CW
1042 if (obj->phys_handle) {
1043 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1044 goto out;
1045 }
1046
2c22569b
CW
1047 if (obj->tiling_mode == I915_TILING_NONE &&
1048 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1049 cpu_write_needs_clflush(obj)) {
fbd5a26d 1050 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1051 /* Note that the gtt paths might fail with non-page-backed user
1052 * pointers (e.g. gtt mappings when moving data between
1053 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1054 }
673a394b 1055
86a1ee26 1056 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1057 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1058
35b62a89 1059out:
05394f39 1060 drm_gem_object_unreference(&obj->base);
1d7cfea1 1061unlock:
fbd5a26d 1062 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1063 return ret;
1064}
1065
b361237b 1066int
33196ded 1067i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1068 bool interruptible)
1069{
1f83fee0 1070 if (i915_reset_in_progress(error)) {
b361237b
CW
1071 /* Non-interruptible callers can't handle -EAGAIN, hence return
1072 * -EIO unconditionally for these. */
1073 if (!interruptible)
1074 return -EIO;
1075
1f83fee0
DV
1076 /* Recovery complete, but the reset failed ... */
1077 if (i915_terminally_wedged(error))
b361237b
CW
1078 return -EIO;
1079
1080 return -EAGAIN;
1081 }
1082
1083 return 0;
1084}
1085
1086/*
1087 * Compare seqno against outstanding lazy request. Emit a request if they are
1088 * equal.
1089 */
1090static int
1091i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1092{
1093 int ret;
1094
1095 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1096
1097 ret = 0;
1823521d 1098 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1099 ret = i915_add_request(ring, NULL);
b361237b
CW
1100
1101 return ret;
1102}
1103
094f9a54
CW
1104static void fake_irq(unsigned long data)
1105{
1106 wake_up_process((struct task_struct *)data);
1107}
1108
1109static bool missed_irq(struct drm_i915_private *dev_priv,
1110 struct intel_ring_buffer *ring)
1111{
1112 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1113}
1114
b29c19b6
CW
1115static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1116{
1117 if (file_priv == NULL)
1118 return true;
1119
1120 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1121}
1122
b361237b
CW
1123/**
1124 * __wait_seqno - wait until execution of seqno has finished
1125 * @ring: the ring expected to report seqno
1126 * @seqno: duh!
f69061be 1127 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1128 * @interruptible: do an interruptible wait (normally yes)
1129 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1130 *
f69061be
DV
1131 * Note: It is of utmost importance that the passed in seqno and reset_counter
1132 * values have been read by the caller in an smp safe manner. Where read-side
1133 * locks are involved, it is sufficient to read the reset_counter before
1134 * unlocking the lock that protects the seqno. For lockless tricks, the
1135 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1136 * inserted.
1137 *
b361237b
CW
1138 * Returns 0 if the seqno was found within the alloted time. Else returns the
1139 * errno with remaining time filled in timeout argument.
1140 */
1141static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1142 unsigned reset_counter,
b29c19b6
CW
1143 bool interruptible,
1144 struct timespec *timeout,
1145 struct drm_i915_file_private *file_priv)
b361237b 1146{
3d13ef2e 1147 struct drm_device *dev = ring->dev;
3e31c6c0 1148 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1149 const bool irq_test_in_progress =
1150 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1151 struct timespec before, now;
1152 DEFINE_WAIT(wait);
47e9766d 1153 unsigned long timeout_expire;
b361237b
CW
1154 int ret;
1155
5d584b2e 1156 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1157
b361237b
CW
1158 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1159 return 0;
1160
47e9766d 1161 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1162
3d13ef2e 1163 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1164 gen6_rps_boost(dev_priv);
1165 if (file_priv)
1166 mod_delayed_work(dev_priv->wq,
1167 &file_priv->mm.idle_work,
1168 msecs_to_jiffies(100));
1169 }
1170
168c3f21 1171 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1172 return -ENODEV;
1173
094f9a54
CW
1174 /* Record current time in case interrupted by signal, or wedged */
1175 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1176 getrawmonotonic(&before);
094f9a54
CW
1177 for (;;) {
1178 struct timer_list timer;
b361237b 1179
094f9a54
CW
1180 prepare_to_wait(&ring->irq_queue, &wait,
1181 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1182
f69061be
DV
1183 /* We need to check whether any gpu reset happened in between
1184 * the caller grabbing the seqno and now ... */
094f9a54
CW
1185 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1186 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1187 * is truely gone. */
1188 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1189 if (ret == 0)
1190 ret = -EAGAIN;
1191 break;
1192 }
f69061be 1193
094f9a54
CW
1194 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1195 ret = 0;
1196 break;
1197 }
b361237b 1198
094f9a54
CW
1199 if (interruptible && signal_pending(current)) {
1200 ret = -ERESTARTSYS;
1201 break;
1202 }
1203
47e9766d 1204 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1205 ret = -ETIME;
1206 break;
1207 }
1208
1209 timer.function = NULL;
1210 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1211 unsigned long expire;
1212
094f9a54 1213 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1214 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1215 mod_timer(&timer, expire);
1216 }
1217
5035c275 1218 io_schedule();
094f9a54 1219
094f9a54
CW
1220 if (timer.function) {
1221 del_singleshot_timer_sync(&timer);
1222 destroy_timer_on_stack(&timer);
1223 }
1224 }
b361237b 1225 getrawmonotonic(&now);
094f9a54 1226 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1227
168c3f21
MK
1228 if (!irq_test_in_progress)
1229 ring->irq_put(ring);
094f9a54
CW
1230
1231 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1232
1233 if (timeout) {
1234 struct timespec sleep_time = timespec_sub(now, before);
1235 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1236 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1237 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1238 }
1239
094f9a54 1240 return ret;
b361237b
CW
1241}
1242
1243/**
1244 * Waits for a sequence number to be signaled, and cleans up the
1245 * request and object lists appropriately for that event.
1246 */
1247int
1248i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1249{
1250 struct drm_device *dev = ring->dev;
1251 struct drm_i915_private *dev_priv = dev->dev_private;
1252 bool interruptible = dev_priv->mm.interruptible;
1253 int ret;
1254
1255 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1256 BUG_ON(seqno == 0);
1257
33196ded 1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1259 if (ret)
1260 return ret;
1261
1262 ret = i915_gem_check_olr(ring, seqno);
1263 if (ret)
1264 return ret;
1265
f69061be
DV
1266 return __wait_seqno(ring, seqno,
1267 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1268 interruptible, NULL, NULL);
b361237b
CW
1269}
1270
d26e3af8
CW
1271static int
1272i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1273 struct intel_ring_buffer *ring)
1274{
1275 i915_gem_retire_requests_ring(ring);
1276
1277 /* Manually manage the write flush as we may have not yet
1278 * retired the buffer.
1279 *
1280 * Note that the last_write_seqno is always the earlier of
1281 * the two (read/write) seqno, so if we haved successfully waited,
1282 * we know we have passed the last write.
1283 */
1284 obj->last_write_seqno = 0;
1285 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1286
1287 return 0;
1288}
1289
b361237b
CW
1290/**
1291 * Ensures that all rendering to the object has completed and the object is
1292 * safe to unbind from the GTT or access from the CPU.
1293 */
1294static __must_check int
1295i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1296 bool readonly)
1297{
1298 struct intel_ring_buffer *ring = obj->ring;
1299 u32 seqno;
1300 int ret;
1301
1302 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1303 if (seqno == 0)
1304 return 0;
1305
1306 ret = i915_wait_seqno(ring, seqno);
1307 if (ret)
1308 return ret;
1309
d26e3af8 1310 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1311}
1312
3236f57a
CW
1313/* A nonblocking variant of the above wait. This is a highly dangerous routine
1314 * as the object state may change during this call.
1315 */
1316static __must_check int
1317i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1318 struct drm_i915_file_private *file_priv,
3236f57a
CW
1319 bool readonly)
1320{
1321 struct drm_device *dev = obj->base.dev;
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 struct intel_ring_buffer *ring = obj->ring;
f69061be 1324 unsigned reset_counter;
3236f57a
CW
1325 u32 seqno;
1326 int ret;
1327
1328 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329 BUG_ON(!dev_priv->mm.interruptible);
1330
1331 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1332 if (seqno == 0)
1333 return 0;
1334
33196ded 1335 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1336 if (ret)
1337 return ret;
1338
1339 ret = i915_gem_check_olr(ring, seqno);
1340 if (ret)
1341 return ret;
1342
f69061be 1343 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1344 mutex_unlock(&dev->struct_mutex);
6e4930f6 1345 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1346 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1347 if (ret)
1348 return ret;
3236f57a 1349
d26e3af8 1350 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1351}
1352
673a394b 1353/**
2ef7eeaa
EA
1354 * Called when user space prepares to use an object with the CPU, either
1355 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1356 */
1357int
1358i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1359 struct drm_file *file)
673a394b
EA
1360{
1361 struct drm_i915_gem_set_domain *args = data;
05394f39 1362 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1363 uint32_t read_domains = args->read_domains;
1364 uint32_t write_domain = args->write_domain;
673a394b
EA
1365 int ret;
1366
2ef7eeaa 1367 /* Only handle setting domains to types used by the CPU. */
21d509e3 1368 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1369 return -EINVAL;
1370
21d509e3 1371 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1372 return -EINVAL;
1373
1374 /* Having something in the write domain implies it's in the read
1375 * domain, and only that read domain. Enforce that in the request.
1376 */
1377 if (write_domain != 0 && read_domains != write_domain)
1378 return -EINVAL;
1379
76c1dec1 1380 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1381 if (ret)
76c1dec1 1382 return ret;
1d7cfea1 1383
05394f39 1384 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1385 if (&obj->base == NULL) {
1d7cfea1
CW
1386 ret = -ENOENT;
1387 goto unlock;
76c1dec1 1388 }
673a394b 1389
3236f57a
CW
1390 /* Try to flush the object off the GPU without holding the lock.
1391 * We will repeat the flush holding the lock in the normal manner
1392 * to catch cases where we are gazumped.
1393 */
6e4930f6
CW
1394 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1395 file->driver_priv,
1396 !write_domain);
3236f57a
CW
1397 if (ret)
1398 goto unref;
1399
2ef7eeaa
EA
1400 if (read_domains & I915_GEM_DOMAIN_GTT) {
1401 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1402
1403 /* Silently promote "you're not bound, there was nothing to do"
1404 * to success, since the client was just asking us to
1405 * make sure everything was done.
1406 */
1407 if (ret == -EINVAL)
1408 ret = 0;
2ef7eeaa 1409 } else {
e47c68e9 1410 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1411 }
1412
3236f57a 1413unref:
05394f39 1414 drm_gem_object_unreference(&obj->base);
1d7cfea1 1415unlock:
673a394b
EA
1416 mutex_unlock(&dev->struct_mutex);
1417 return ret;
1418}
1419
1420/**
1421 * Called when user space has done writes to this buffer
1422 */
1423int
1424i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1425 struct drm_file *file)
673a394b
EA
1426{
1427 struct drm_i915_gem_sw_finish *args = data;
05394f39 1428 struct drm_i915_gem_object *obj;
673a394b
EA
1429 int ret = 0;
1430
76c1dec1 1431 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1432 if (ret)
76c1dec1 1433 return ret;
1d7cfea1 1434
05394f39 1435 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1436 if (&obj->base == NULL) {
1d7cfea1
CW
1437 ret = -ENOENT;
1438 goto unlock;
673a394b
EA
1439 }
1440
673a394b 1441 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1442 if (obj->pin_display)
1443 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1444
05394f39 1445 drm_gem_object_unreference(&obj->base);
1d7cfea1 1446unlock:
673a394b
EA
1447 mutex_unlock(&dev->struct_mutex);
1448 return ret;
1449}
1450
1451/**
1452 * Maps the contents of an object, returning the address it is mapped
1453 * into.
1454 *
1455 * While the mapping holds a reference on the contents of the object, it doesn't
1456 * imply a ref on the object itself.
1457 */
1458int
1459i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1460 struct drm_file *file)
673a394b
EA
1461{
1462 struct drm_i915_gem_mmap *args = data;
1463 struct drm_gem_object *obj;
673a394b
EA
1464 unsigned long addr;
1465
05394f39 1466 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1467 if (obj == NULL)
bf79cb91 1468 return -ENOENT;
673a394b 1469
1286ff73
DV
1470 /* prime objects have no backing filp to GEM mmap
1471 * pages from.
1472 */
1473 if (!obj->filp) {
1474 drm_gem_object_unreference_unlocked(obj);
1475 return -EINVAL;
1476 }
1477
6be5ceb0 1478 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1479 PROT_READ | PROT_WRITE, MAP_SHARED,
1480 args->offset);
bc9025bd 1481 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1482 if (IS_ERR((void *)addr))
1483 return addr;
1484
1485 args->addr_ptr = (uint64_t) addr;
1486
1487 return 0;
1488}
1489
de151cf6
JB
1490/**
1491 * i915_gem_fault - fault a page into the GTT
1492 * vma: VMA in question
1493 * vmf: fault info
1494 *
1495 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1496 * from userspace. The fault handler takes care of binding the object to
1497 * the GTT (if needed), allocating and programming a fence register (again,
1498 * only if needed based on whether the old reg is still valid or the object
1499 * is tiled) and inserting a new PTE into the faulting process.
1500 *
1501 * Note that the faulting process may involve evicting existing objects
1502 * from the GTT and/or fence registers to make room. So performance may
1503 * suffer if the GTT working set is large or there are few fence registers
1504 * left.
1505 */
1506int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1507{
05394f39
CW
1508 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1509 struct drm_device *dev = obj->base.dev;
3e31c6c0 1510 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1511 pgoff_t page_offset;
1512 unsigned long pfn;
1513 int ret = 0;
0f973f27 1514 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1515
f65c9168
PZ
1516 intel_runtime_pm_get(dev_priv);
1517
de151cf6
JB
1518 /* We don't use vmf->pgoff since that has the fake offset */
1519 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1520 PAGE_SHIFT;
1521
d9bc7e9f
CW
1522 ret = i915_mutex_lock_interruptible(dev);
1523 if (ret)
1524 goto out;
a00b10c3 1525
db53a302
CW
1526 trace_i915_gem_object_fault(obj, page_offset, true, write);
1527
6e4930f6
CW
1528 /* Try to flush the object off the GPU first without holding the lock.
1529 * Upon reacquiring the lock, we will perform our sanity checks and then
1530 * repeat the flush holding the lock in the normal manner to catch cases
1531 * where we are gazumped.
1532 */
1533 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1534 if (ret)
1535 goto unlock;
1536
eb119bd6
CW
1537 /* Access to snoopable pages through the GTT is incoherent. */
1538 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1539 ret = -EINVAL;
1540 goto unlock;
1541 }
1542
d9bc7e9f 1543 /* Now bind it into the GTT if needed */
1ec9e26d 1544 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1545 if (ret)
1546 goto unlock;
4a684a41 1547
c9839303
CW
1548 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549 if (ret)
1550 goto unpin;
74898d7e 1551
06d98131 1552 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1553 if (ret)
c9839303 1554 goto unpin;
7d1c4804 1555
6299f992
CW
1556 obj->fault_mappable = true;
1557
f343c5f6
BW
1558 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1559 pfn >>= PAGE_SHIFT;
1560 pfn += page_offset;
de151cf6
JB
1561
1562 /* Finally, remap it using the new GTT offset */
1563 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1564unpin:
d7f46fc4 1565 i915_gem_object_ggtt_unpin(obj);
c715089f 1566unlock:
de151cf6 1567 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1568out:
de151cf6 1569 switch (ret) {
d9bc7e9f 1570 case -EIO:
a9340cca
DV
1571 /* If this -EIO is due to a gpu hang, give the reset code a
1572 * chance to clean up the mess. Otherwise return the proper
1573 * SIGBUS. */
f65c9168
PZ
1574 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1575 ret = VM_FAULT_SIGBUS;
1576 break;
1577 }
045e769a 1578 case -EAGAIN:
571c608d
DV
1579 /*
1580 * EAGAIN means the gpu is hung and we'll wait for the error
1581 * handler to reset everything when re-faulting in
1582 * i915_mutex_lock_interruptible.
d9bc7e9f 1583 */
c715089f
CW
1584 case 0:
1585 case -ERESTARTSYS:
bed636ab 1586 case -EINTR:
e79e0fe3
DR
1587 case -EBUSY:
1588 /*
1589 * EBUSY is ok: this just means that another thread
1590 * already did the job.
1591 */
f65c9168
PZ
1592 ret = VM_FAULT_NOPAGE;
1593 break;
de151cf6 1594 case -ENOMEM:
f65c9168
PZ
1595 ret = VM_FAULT_OOM;
1596 break;
a7c2e1aa 1597 case -ENOSPC:
45d67817 1598 case -EFAULT:
f65c9168
PZ
1599 ret = VM_FAULT_SIGBUS;
1600 break;
de151cf6 1601 default:
a7c2e1aa 1602 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1603 ret = VM_FAULT_SIGBUS;
1604 break;
de151cf6 1605 }
f65c9168
PZ
1606
1607 intel_runtime_pm_put(dev_priv);
1608 return ret;
de151cf6
JB
1609}
1610
48018a57
PZ
1611void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1612{
1613 struct i915_vma *vma;
1614
1615 /*
1616 * Only the global gtt is relevant for gtt memory mappings, so restrict
1617 * list traversal to objects bound into the global address space. Note
1618 * that the active list should be empty, but better safe than sorry.
1619 */
1620 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1621 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1622 i915_gem_release_mmap(vma->obj);
1623 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1624 i915_gem_release_mmap(vma->obj);
1625}
1626
901782b2
CW
1627/**
1628 * i915_gem_release_mmap - remove physical page mappings
1629 * @obj: obj in question
1630 *
af901ca1 1631 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1632 * relinquish ownership of the pages back to the system.
1633 *
1634 * It is vital that we remove the page mapping if we have mapped a tiled
1635 * object through the GTT and then lose the fence register due to
1636 * resource pressure. Similarly if the object has been moved out of the
1637 * aperture, than pages mapped into userspace must be revoked. Removing the
1638 * mapping will then trigger a page fault on the next user access, allowing
1639 * fixup by i915_gem_fault().
1640 */
d05ca301 1641void
05394f39 1642i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1643{
6299f992
CW
1644 if (!obj->fault_mappable)
1645 return;
901782b2 1646
6796cb16
DH
1647 drm_vma_node_unmap(&obj->base.vma_node,
1648 obj->base.dev->anon_inode->i_mapping);
6299f992 1649 obj->fault_mappable = false;
901782b2
CW
1650}
1651
0fa87796 1652uint32_t
e28f8711 1653i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1654{
e28f8711 1655 uint32_t gtt_size;
92b88aeb
CW
1656
1657 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1658 tiling_mode == I915_TILING_NONE)
1659 return size;
92b88aeb
CW
1660
1661 /* Previous chips need a power-of-two fence region when tiling */
1662 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1663 gtt_size = 1024*1024;
92b88aeb 1664 else
e28f8711 1665 gtt_size = 512*1024;
92b88aeb 1666
e28f8711
CW
1667 while (gtt_size < size)
1668 gtt_size <<= 1;
92b88aeb 1669
e28f8711 1670 return gtt_size;
92b88aeb
CW
1671}
1672
de151cf6
JB
1673/**
1674 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1675 * @obj: object to check
1676 *
1677 * Return the required GTT alignment for an object, taking into account
5e783301 1678 * potential fence register mapping.
de151cf6 1679 */
d865110c
ID
1680uint32_t
1681i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1682 int tiling_mode, bool fenced)
de151cf6 1683{
de151cf6
JB
1684 /*
1685 * Minimum alignment is 4k (GTT page size), but might be greater
1686 * if a fence register is needed for the object.
1687 */
d865110c 1688 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1689 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1690 return 4096;
1691
a00b10c3
CW
1692 /*
1693 * Previous chips need to be aligned to the size of the smallest
1694 * fence register that can contain the object.
1695 */
e28f8711 1696 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1697}
1698
d8cb5086
CW
1699static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1700{
1701 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1702 int ret;
1703
0de23977 1704 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1705 return 0;
1706
da494d7c
DV
1707 dev_priv->mm.shrinker_no_lock_stealing = true;
1708
d8cb5086
CW
1709 ret = drm_gem_create_mmap_offset(&obj->base);
1710 if (ret != -ENOSPC)
da494d7c 1711 goto out;
d8cb5086
CW
1712
1713 /* Badly fragmented mmap space? The only way we can recover
1714 * space is by destroying unwanted objects. We can't randomly release
1715 * mmap_offsets as userspace expects them to be persistent for the
1716 * lifetime of the objects. The closest we can is to release the
1717 * offsets on purgeable objects by truncating it and marking it purged,
1718 * which prevents userspace from ever using that object again.
1719 */
1720 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1721 ret = drm_gem_create_mmap_offset(&obj->base);
1722 if (ret != -ENOSPC)
da494d7c 1723 goto out;
d8cb5086
CW
1724
1725 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1726 ret = drm_gem_create_mmap_offset(&obj->base);
1727out:
1728 dev_priv->mm.shrinker_no_lock_stealing = false;
1729
1730 return ret;
d8cb5086
CW
1731}
1732
1733static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1734{
d8cb5086
CW
1735 drm_gem_free_mmap_offset(&obj->base);
1736}
1737
de151cf6 1738int
ff72145b
DA
1739i915_gem_mmap_gtt(struct drm_file *file,
1740 struct drm_device *dev,
1741 uint32_t handle,
1742 uint64_t *offset)
de151cf6 1743{
da761a6e 1744 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1745 struct drm_i915_gem_object *obj;
de151cf6
JB
1746 int ret;
1747
76c1dec1 1748 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1749 if (ret)
76c1dec1 1750 return ret;
de151cf6 1751
ff72145b 1752 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1753 if (&obj->base == NULL) {
1d7cfea1
CW
1754 ret = -ENOENT;
1755 goto unlock;
1756 }
de151cf6 1757
5d4545ae 1758 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1759 ret = -E2BIG;
ff56b0bc 1760 goto out;
da761a6e
CW
1761 }
1762
05394f39 1763 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1764 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1765 ret = -EFAULT;
1d7cfea1 1766 goto out;
ab18282d
CW
1767 }
1768
d8cb5086
CW
1769 ret = i915_gem_object_create_mmap_offset(obj);
1770 if (ret)
1771 goto out;
de151cf6 1772
0de23977 1773 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1774
1d7cfea1 1775out:
05394f39 1776 drm_gem_object_unreference(&obj->base);
1d7cfea1 1777unlock:
de151cf6 1778 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1779 return ret;
de151cf6
JB
1780}
1781
ff72145b
DA
1782/**
1783 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1784 * @dev: DRM device
1785 * @data: GTT mapping ioctl data
1786 * @file: GEM object info
1787 *
1788 * Simply returns the fake offset to userspace so it can mmap it.
1789 * The mmap call will end up in drm_gem_mmap(), which will set things
1790 * up so we can get faults in the handler above.
1791 *
1792 * The fault handler will take care of binding the object into the GTT
1793 * (since it may have been evicted to make room for something), allocating
1794 * a fence register, and mapping the appropriate aperture address into
1795 * userspace.
1796 */
1797int
1798i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1799 struct drm_file *file)
1800{
1801 struct drm_i915_gem_mmap_gtt *args = data;
1802
ff72145b
DA
1803 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1804}
1805
225067ee
DV
1806/* Immediately discard the backing storage */
1807static void
1808i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1809{
e5281ccd 1810 struct inode *inode;
e5281ccd 1811
4d6294bf 1812 i915_gem_object_free_mmap_offset(obj);
1286ff73 1813
4d6294bf
CW
1814 if (obj->base.filp == NULL)
1815 return;
e5281ccd 1816
225067ee
DV
1817 /* Our goal here is to return as much of the memory as
1818 * is possible back to the system as we are called from OOM.
1819 * To do this we must instruct the shmfs to drop all of its
1820 * backing pages, *now*.
1821 */
496ad9aa 1822 inode = file_inode(obj->base.filp);
225067ee 1823 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1824
225067ee
DV
1825 obj->madv = __I915_MADV_PURGED;
1826}
e5281ccd 1827
225067ee
DV
1828static inline int
1829i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1830{
1831 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1832}
1833
5cdf5881 1834static void
05394f39 1835i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1836{
90797e6d
ID
1837 struct sg_page_iter sg_iter;
1838 int ret;
1286ff73 1839
05394f39 1840 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1841
6c085a72
CW
1842 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1843 if (ret) {
1844 /* In the event of a disaster, abandon all caches and
1845 * hope for the best.
1846 */
1847 WARN_ON(ret != -EIO);
2c22569b 1848 i915_gem_clflush_object(obj, true);
6c085a72
CW
1849 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1850 }
1851
6dacfd2f 1852 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1853 i915_gem_object_save_bit_17_swizzle(obj);
1854
05394f39
CW
1855 if (obj->madv == I915_MADV_DONTNEED)
1856 obj->dirty = 0;
3ef94daa 1857
90797e6d 1858 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1859 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1860
05394f39 1861 if (obj->dirty)
9da3da66 1862 set_page_dirty(page);
3ef94daa 1863
05394f39 1864 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1865 mark_page_accessed(page);
3ef94daa 1866
9da3da66 1867 page_cache_release(page);
3ef94daa 1868 }
05394f39 1869 obj->dirty = 0;
673a394b 1870
9da3da66
CW
1871 sg_free_table(obj->pages);
1872 kfree(obj->pages);
37e680a1 1873}
6c085a72 1874
dd624afd 1875int
37e680a1
CW
1876i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1877{
1878 const struct drm_i915_gem_object_ops *ops = obj->ops;
1879
2f745ad3 1880 if (obj->pages == NULL)
37e680a1
CW
1881 return 0;
1882
a5570178
CW
1883 if (obj->pages_pin_count)
1884 return -EBUSY;
1885
9843877d 1886 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1887
a2165e31
CW
1888 /* ->put_pages might need to allocate memory for the bit17 swizzle
1889 * array, hence protect them from being reaped by removing them from gtt
1890 * lists early. */
35c20a60 1891 list_del(&obj->global_list);
a2165e31 1892
37e680a1 1893 ops->put_pages(obj);
05394f39 1894 obj->pages = NULL;
37e680a1 1895
6c085a72
CW
1896 if (i915_gem_object_is_purgeable(obj))
1897 i915_gem_object_truncate(obj);
1898
1899 return 0;
1900}
1901
d9973b43 1902static unsigned long
93927ca5
DV
1903__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1904 bool purgeable_only)
6c085a72 1905{
57094f82 1906 struct list_head still_bound_list;
6c085a72 1907 struct drm_i915_gem_object *obj, *next;
d9973b43 1908 unsigned long count = 0;
6c085a72
CW
1909
1910 list_for_each_entry_safe(obj, next,
1911 &dev_priv->mm.unbound_list,
35c20a60 1912 global_list) {
93927ca5 1913 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1914 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1915 count += obj->base.size >> PAGE_SHIFT;
1916 if (count >= target)
1917 return count;
1918 }
1919 }
1920
57094f82
CW
1921 /*
1922 * As we may completely rewrite the bound list whilst unbinding
1923 * (due to retiring requests) we have to strictly process only
1924 * one element of the list at the time, and recheck the list
1925 * on every iteration.
1926 */
1927 INIT_LIST_HEAD(&still_bound_list);
1928 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1929 struct i915_vma *vma, *v;
80dcfdbd 1930
57094f82
CW
1931 obj = list_first_entry(&dev_priv->mm.bound_list,
1932 typeof(*obj), global_list);
1933 list_move_tail(&obj->global_list, &still_bound_list);
1934
80dcfdbd
BW
1935 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1936 continue;
1937
57094f82
CW
1938 /*
1939 * Hold a reference whilst we unbind this object, as we may
1940 * end up waiting for and retiring requests. This might
1941 * release the final reference (held by the active list)
1942 * and result in the object being freed from under us.
1943 * in this object being freed.
1944 *
1945 * Note 1: Shrinking the bound list is special since only active
1946 * (and hence bound objects) can contain such limbo objects, so
1947 * we don't need special tricks for shrinking the unbound list.
1948 * The only other place where we have to be careful with active
1949 * objects suddenly disappearing due to retiring requests is the
1950 * eviction code.
1951 *
1952 * Note 2: Even though the bound list doesn't hold a reference
1953 * to the object we can safely grab one here: The final object
1954 * unreferencing and the bound_list are both protected by the
1955 * dev->struct_mutex and so we won't ever be able to observe an
1956 * object on the bound_list with a reference count equals 0.
1957 */
1958 drm_gem_object_reference(&obj->base);
1959
07fe0b12
BW
1960 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1961 if (i915_vma_unbind(vma))
1962 break;
80dcfdbd 1963
57094f82 1964 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1965 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1966
1967 drm_gem_object_unreference(&obj->base);
6c085a72 1968 }
57094f82 1969 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1970
1971 return count;
1972}
1973
d9973b43 1974static unsigned long
93927ca5
DV
1975i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1976{
1977 return __i915_gem_shrink(dev_priv, target, true);
1978}
1979
d9973b43 1980static unsigned long
6c085a72
CW
1981i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1982{
1983 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1984 long freed = 0;
6c085a72
CW
1985
1986 i915_gem_evict_everything(dev_priv->dev);
1987
35c20a60 1988 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1989 global_list) {
d9973b43 1990 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1991 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1992 }
1993 return freed;
225067ee
DV
1994}
1995
37e680a1 1996static int
6c085a72 1997i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1998{
6c085a72 1999 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2000 int page_count, i;
2001 struct address_space *mapping;
9da3da66
CW
2002 struct sg_table *st;
2003 struct scatterlist *sg;
90797e6d 2004 struct sg_page_iter sg_iter;
e5281ccd 2005 struct page *page;
90797e6d 2006 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2007 gfp_t gfp;
e5281ccd 2008
6c085a72
CW
2009 /* Assert that the object is not currently in any GPU domain. As it
2010 * wasn't in the GTT, there shouldn't be any way it could have been in
2011 * a GPU cache
2012 */
2013 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2014 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2015
9da3da66
CW
2016 st = kmalloc(sizeof(*st), GFP_KERNEL);
2017 if (st == NULL)
2018 return -ENOMEM;
2019
05394f39 2020 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2021 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2022 kfree(st);
e5281ccd 2023 return -ENOMEM;
9da3da66 2024 }
e5281ccd 2025
9da3da66
CW
2026 /* Get the list of pages out of our struct file. They'll be pinned
2027 * at this point until we release them.
2028 *
2029 * Fail silently without starting the shrinker
2030 */
496ad9aa 2031 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2032 gfp = mapping_gfp_mask(mapping);
caf49191 2033 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2034 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2035 sg = st->sgl;
2036 st->nents = 0;
2037 for (i = 0; i < page_count; i++) {
6c085a72
CW
2038 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2039 if (IS_ERR(page)) {
2040 i915_gem_purge(dev_priv, page_count);
2041 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2042 }
2043 if (IS_ERR(page)) {
2044 /* We've tried hard to allocate the memory by reaping
2045 * our own buffer, now let the real VM do its job and
2046 * go down in flames if truly OOM.
2047 */
caf49191 2048 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
2049 gfp |= __GFP_IO | __GFP_WAIT;
2050
2051 i915_gem_shrink_all(dev_priv);
2052 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053 if (IS_ERR(page))
2054 goto err_pages;
2055
caf49191 2056 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
2057 gfp &= ~(__GFP_IO | __GFP_WAIT);
2058 }
426729dc
KRW
2059#ifdef CONFIG_SWIOTLB
2060 if (swiotlb_nr_tbl()) {
2061 st->nents++;
2062 sg_set_page(sg, page, PAGE_SIZE, 0);
2063 sg = sg_next(sg);
2064 continue;
2065 }
2066#endif
90797e6d
ID
2067 if (!i || page_to_pfn(page) != last_pfn + 1) {
2068 if (i)
2069 sg = sg_next(sg);
2070 st->nents++;
2071 sg_set_page(sg, page, PAGE_SIZE, 0);
2072 } else {
2073 sg->length += PAGE_SIZE;
2074 }
2075 last_pfn = page_to_pfn(page);
3bbbe706
DV
2076
2077 /* Check that the i965g/gm workaround works. */
2078 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2079 }
426729dc
KRW
2080#ifdef CONFIG_SWIOTLB
2081 if (!swiotlb_nr_tbl())
2082#endif
2083 sg_mark_end(sg);
74ce6b6c
CW
2084 obj->pages = st;
2085
6dacfd2f 2086 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2087 i915_gem_object_do_bit_17_swizzle(obj);
2088
2089 return 0;
2090
2091err_pages:
90797e6d
ID
2092 sg_mark_end(sg);
2093 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2094 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2095 sg_free_table(st);
2096 kfree(st);
e5281ccd 2097 return PTR_ERR(page);
673a394b
EA
2098}
2099
37e680a1
CW
2100/* Ensure that the associated pages are gathered from the backing storage
2101 * and pinned into our object. i915_gem_object_get_pages() may be called
2102 * multiple times before they are released by a single call to
2103 * i915_gem_object_put_pages() - once the pages are no longer referenced
2104 * either as a result of memory pressure (reaping pages under the shrinker)
2105 * or as the object is itself released.
2106 */
2107int
2108i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2109{
2110 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2111 const struct drm_i915_gem_object_ops *ops = obj->ops;
2112 int ret;
2113
2f745ad3 2114 if (obj->pages)
37e680a1
CW
2115 return 0;
2116
43e28f09 2117 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2118 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2119 return -EFAULT;
43e28f09
CW
2120 }
2121
a5570178
CW
2122 BUG_ON(obj->pages_pin_count);
2123
37e680a1
CW
2124 ret = ops->get_pages(obj);
2125 if (ret)
2126 return ret;
2127
35c20a60 2128 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2129 return 0;
673a394b
EA
2130}
2131
e2d05a8b 2132static void
05394f39 2133i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 2134 struct intel_ring_buffer *ring)
673a394b 2135{
05394f39 2136 struct drm_device *dev = obj->base.dev;
69dc4987 2137 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2138 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2139
852835f3 2140 BUG_ON(ring == NULL);
02978ff5
CW
2141 if (obj->ring != ring && obj->last_write_seqno) {
2142 /* Keep the seqno relative to the current ring */
2143 obj->last_write_seqno = seqno;
2144 }
05394f39 2145 obj->ring = ring;
673a394b
EA
2146
2147 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2148 if (!obj->active) {
2149 drm_gem_object_reference(&obj->base);
2150 obj->active = 1;
673a394b 2151 }
e35a41de 2152
05394f39 2153 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2154
0201f1ec 2155 obj->last_read_seqno = seqno;
caea7476 2156
7dd49065 2157 if (obj->fenced_gpu_access) {
caea7476 2158 obj->last_fenced_seqno = seqno;
caea7476 2159
7dd49065
CW
2160 /* Bump MRU to take account of the delayed flush */
2161 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2162 struct drm_i915_fence_reg *reg;
2163
2164 reg = &dev_priv->fence_regs[obj->fence_reg];
2165 list_move_tail(&reg->lru_list,
2166 &dev_priv->mm.fence_list);
2167 }
caea7476
CW
2168 }
2169}
2170
e2d05a8b
BW
2171void i915_vma_move_to_active(struct i915_vma *vma,
2172 struct intel_ring_buffer *ring)
2173{
2174 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2175 return i915_gem_object_move_to_active(vma->obj, ring);
2176}
2177
caea7476 2178static void
caea7476 2179i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2180{
ca191b13 2181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2182 struct i915_address_space *vm;
2183 struct i915_vma *vma;
ce44b0ea 2184
65ce3027 2185 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2186 BUG_ON(!obj->active);
caea7476 2187
feb822cf
BW
2188 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2189 vma = i915_gem_obj_to_vma(obj, vm);
2190 if (vma && !list_empty(&vma->mm_list))
2191 list_move_tail(&vma->mm_list, &vm->inactive_list);
2192 }
caea7476 2193
65ce3027 2194 list_del_init(&obj->ring_list);
caea7476
CW
2195 obj->ring = NULL;
2196
65ce3027
CW
2197 obj->last_read_seqno = 0;
2198 obj->last_write_seqno = 0;
2199 obj->base.write_domain = 0;
2200
2201 obj->last_fenced_seqno = 0;
caea7476 2202 obj->fenced_gpu_access = false;
caea7476
CW
2203
2204 obj->active = 0;
2205 drm_gem_object_unreference(&obj->base);
2206
2207 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2208}
673a394b 2209
9d773091 2210static int
fca26bb4 2211i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2212{
9d773091
CW
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 struct intel_ring_buffer *ring;
2215 int ret, i, j;
53d227f2 2216
107f27a5 2217 /* Carefully retire all requests without writing to the rings */
9d773091 2218 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2219 ret = intel_ring_idle(ring);
2220 if (ret)
2221 return ret;
9d773091 2222 }
9d773091 2223 i915_gem_retire_requests(dev);
107f27a5
CW
2224
2225 /* Finally reset hw state */
9d773091 2226 for_each_ring(ring, dev_priv, i) {
fca26bb4 2227 intel_ring_init_seqno(ring, seqno);
498d2ac1 2228
9d773091
CW
2229 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2230 ring->sync_seqno[j] = 0;
2231 }
53d227f2 2232
9d773091 2233 return 0;
53d227f2
DV
2234}
2235
fca26bb4
MK
2236int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2237{
2238 struct drm_i915_private *dev_priv = dev->dev_private;
2239 int ret;
2240
2241 if (seqno == 0)
2242 return -EINVAL;
2243
2244 /* HWS page needs to be set less than what we
2245 * will inject to ring
2246 */
2247 ret = i915_gem_init_seqno(dev, seqno - 1);
2248 if (ret)
2249 return ret;
2250
2251 /* Carefully set the last_seqno value so that wrap
2252 * detection still works
2253 */
2254 dev_priv->next_seqno = seqno;
2255 dev_priv->last_seqno = seqno - 1;
2256 if (dev_priv->last_seqno == 0)
2257 dev_priv->last_seqno--;
2258
2259 return 0;
2260}
2261
9d773091
CW
2262int
2263i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2264{
9d773091
CW
2265 struct drm_i915_private *dev_priv = dev->dev_private;
2266
2267 /* reserve 0 for non-seqno */
2268 if (dev_priv->next_seqno == 0) {
fca26bb4 2269 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2270 if (ret)
2271 return ret;
53d227f2 2272
9d773091
CW
2273 dev_priv->next_seqno = 1;
2274 }
53d227f2 2275
f72b3435 2276 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2277 return 0;
53d227f2
DV
2278}
2279
0025c077
MK
2280int __i915_add_request(struct intel_ring_buffer *ring,
2281 struct drm_file *file,
7d736f4f 2282 struct drm_i915_gem_object *obj,
0025c077 2283 u32 *out_seqno)
673a394b 2284{
3e31c6c0 2285 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2286 struct drm_i915_gem_request *request;
7d736f4f 2287 u32 request_ring_position, request_start;
3cce469c
CW
2288 int ret;
2289
7d736f4f 2290 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2291 /*
2292 * Emit any outstanding flushes - execbuf can fail to emit the flush
2293 * after having emitted the batchbuffer command. Hence we need to fix
2294 * things up similar to emitting the lazy request. The difference here
2295 * is that the flush _must_ happen before the next request, no matter
2296 * what.
2297 */
a7b9761d
CW
2298 ret = intel_ring_flush_all_caches(ring);
2299 if (ret)
2300 return ret;
cc889e0f 2301
3c0e234c
CW
2302 request = ring->preallocated_lazy_request;
2303 if (WARN_ON(request == NULL))
acb868d3 2304 return -ENOMEM;
cc889e0f 2305
a71d8d94
CW
2306 /* Record the position of the start of the request so that
2307 * should we detect the updated seqno part-way through the
2308 * GPU processing the request, we never over-estimate the
2309 * position of the head.
2310 */
2311 request_ring_position = intel_ring_get_tail(ring);
2312
9d773091 2313 ret = ring->add_request(ring);
3c0e234c 2314 if (ret)
3bb73aba 2315 return ret;
673a394b 2316
9d773091 2317 request->seqno = intel_ring_get_seqno(ring);
852835f3 2318 request->ring = ring;
7d736f4f 2319 request->head = request_start;
a71d8d94 2320 request->tail = request_ring_position;
7d736f4f
MK
2321
2322 /* Whilst this request exists, batch_obj will be on the
2323 * active_list, and so will hold the active reference. Only when this
2324 * request is retired will the the batch_obj be moved onto the
2325 * inactive_list and lose its active reference. Hence we do not need
2326 * to explicitly hold another reference here.
2327 */
9a7e0c2a 2328 request->batch_obj = obj;
0e50e96b 2329
9a7e0c2a
CW
2330 /* Hold a reference to the current context so that we can inspect
2331 * it later in case a hangcheck error event fires.
2332 */
2333 request->ctx = ring->last_context;
0e50e96b
MK
2334 if (request->ctx)
2335 i915_gem_context_reference(request->ctx);
2336
673a394b 2337 request->emitted_jiffies = jiffies;
852835f3 2338 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2339 request->file_priv = NULL;
852835f3 2340
db53a302
CW
2341 if (file) {
2342 struct drm_i915_file_private *file_priv = file->driver_priv;
2343
1c25595f 2344 spin_lock(&file_priv->mm.lock);
f787a5f5 2345 request->file_priv = file_priv;
b962442e 2346 list_add_tail(&request->client_list,
f787a5f5 2347 &file_priv->mm.request_list);
1c25595f 2348 spin_unlock(&file_priv->mm.lock);
b962442e 2349 }
673a394b 2350
9d773091 2351 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2352 ring->outstanding_lazy_seqno = 0;
3c0e234c 2353 ring->preallocated_lazy_request = NULL;
db53a302 2354
db1b76ca 2355 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2356 i915_queue_hangcheck(ring->dev);
2357
f62a0076
CW
2358 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2359 queue_delayed_work(dev_priv->wq,
2360 &dev_priv->mm.retire_work,
2361 round_jiffies_up_relative(HZ));
2362 intel_mark_busy(dev_priv->dev);
f65d9421 2363 }
cc889e0f 2364
acb868d3 2365 if (out_seqno)
9d773091 2366 *out_seqno = request->seqno;
3cce469c 2367 return 0;
673a394b
EA
2368}
2369
f787a5f5
CW
2370static inline void
2371i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2372{
1c25595f 2373 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2374
1c25595f
CW
2375 if (!file_priv)
2376 return;
1c5d22f7 2377
1c25595f 2378 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2379 list_del(&request->client_list);
2380 request->file_priv = NULL;
1c25595f 2381 spin_unlock(&file_priv->mm.lock);
673a394b 2382}
673a394b 2383
939fd762 2384static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2385 const struct i915_hw_context *ctx)
be62acb4 2386{
44e2c070 2387 unsigned long elapsed;
be62acb4 2388
44e2c070
MK
2389 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2390
2391 if (ctx->hang_stats.banned)
be62acb4
MK
2392 return true;
2393
2394 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2395 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2396 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0
VS
2397 return true;
2398 } else if (dev_priv->gpu_error.stop_rings == 0) {
2399 DRM_ERROR("gpu hanging too fast, banning!\n");
2400 return true;
3fac8978 2401 }
be62acb4
MK
2402 }
2403
2404 return false;
2405}
2406
939fd762
MK
2407static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2408 struct i915_hw_context *ctx,
b6b0fac0 2409 const bool guilty)
aa60c664 2410{
44e2c070
MK
2411 struct i915_ctx_hang_stats *hs;
2412
2413 if (WARN_ON(!ctx))
2414 return;
aa60c664 2415
44e2c070
MK
2416 hs = &ctx->hang_stats;
2417
2418 if (guilty) {
939fd762 2419 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2420 hs->batch_active++;
2421 hs->guilty_ts = get_seconds();
2422 } else {
2423 hs->batch_pending++;
aa60c664
MK
2424 }
2425}
2426
0e50e96b
MK
2427static void i915_gem_free_request(struct drm_i915_gem_request *request)
2428{
2429 list_del(&request->list);
2430 i915_gem_request_remove_from_client(request);
2431
2432 if (request->ctx)
2433 i915_gem_context_unreference(request->ctx);
2434
2435 kfree(request);
2436}
2437
8d9fc7fd
CW
2438struct drm_i915_gem_request *
2439i915_gem_find_active_request(struct intel_ring_buffer *ring)
9375e446 2440{
4db080f9 2441 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2442 u32 completed_seqno;
2443
2444 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2445
2446 list_for_each_entry(request, &ring->request_list, list) {
2447 if (i915_seqno_passed(completed_seqno, request->seqno))
2448 continue;
aa60c664 2449
b6b0fac0 2450 return request;
4db080f9 2451 }
b6b0fac0
MK
2452
2453 return NULL;
2454}
2455
2456static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2457 struct intel_ring_buffer *ring)
2458{
2459 struct drm_i915_gem_request *request;
2460 bool ring_hung;
2461
8d9fc7fd 2462 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2463
2464 if (request == NULL)
2465 return;
2466
2467 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2468
939fd762 2469 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2470
2471 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2472 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2473}
aa60c664 2474
4db080f9
CW
2475static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2476 struct intel_ring_buffer *ring)
2477{
dfaae392 2478 while (!list_empty(&ring->active_list)) {
05394f39 2479 struct drm_i915_gem_object *obj;
9375e446 2480
05394f39
CW
2481 obj = list_first_entry(&ring->active_list,
2482 struct drm_i915_gem_object,
2483 ring_list);
9375e446 2484
05394f39 2485 i915_gem_object_move_to_inactive(obj);
673a394b 2486 }
1d62beea
BW
2487
2488 /*
2489 * We must free the requests after all the corresponding objects have
2490 * been moved off active lists. Which is the same order as the normal
2491 * retire_requests function does. This is important if object hold
2492 * implicit references on things like e.g. ppgtt address spaces through
2493 * the request.
2494 */
2495 while (!list_empty(&ring->request_list)) {
2496 struct drm_i915_gem_request *request;
2497
2498 request = list_first_entry(&ring->request_list,
2499 struct drm_i915_gem_request,
2500 list);
2501
2502 i915_gem_free_request(request);
2503 }
673a394b
EA
2504}
2505
19b2dbde 2506void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2507{
2508 struct drm_i915_private *dev_priv = dev->dev_private;
2509 int i;
2510
4b9de737 2511 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2512 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2513
94a335db
DV
2514 /*
2515 * Commit delayed tiling changes if we have an object still
2516 * attached to the fence, otherwise just clear the fence.
2517 */
2518 if (reg->obj) {
2519 i915_gem_object_update_fence(reg->obj, reg,
2520 reg->obj->tiling_mode);
2521 } else {
2522 i915_gem_write_fence(dev, i, NULL);
2523 }
312817a3
CW
2524 }
2525}
2526
069efc1d 2527void i915_gem_reset(struct drm_device *dev)
673a394b 2528{
77f01230 2529 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2530 struct intel_ring_buffer *ring;
1ec14ad3 2531 int i;
673a394b 2532
4db080f9
CW
2533 /*
2534 * Before we free the objects from the requests, we need to inspect
2535 * them for finding the guilty party. As the requests only borrow
2536 * their reference to the objects, the inspection must be done first.
2537 */
2538 for_each_ring(ring, dev_priv, i)
2539 i915_gem_reset_ring_status(dev_priv, ring);
2540
b4519513 2541 for_each_ring(ring, dev_priv, i)
4db080f9 2542 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2543
3d57e5bd
BW
2544 i915_gem_cleanup_ringbuffer(dev);
2545
acce9ffa
BW
2546 i915_gem_context_reset(dev);
2547
19b2dbde 2548 i915_gem_restore_fences(dev);
673a394b
EA
2549}
2550
2551/**
2552 * This function clears the request list as sequence numbers are passed.
2553 */
cb216aa8 2554static void
db53a302 2555i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2556{
673a394b
EA
2557 uint32_t seqno;
2558
db53a302 2559 if (list_empty(&ring->request_list))
6c0594a3
KW
2560 return;
2561
db53a302 2562 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2563
b2eadbc8 2564 seqno = ring->get_seqno(ring, true);
1ec14ad3 2565
e9103038
CW
2566 /* Move any buffers on the active list that are no longer referenced
2567 * by the ringbuffer to the flushing/inactive lists as appropriate,
2568 * before we free the context associated with the requests.
2569 */
2570 while (!list_empty(&ring->active_list)) {
2571 struct drm_i915_gem_object *obj;
2572
2573 obj = list_first_entry(&ring->active_list,
2574 struct drm_i915_gem_object,
2575 ring_list);
2576
2577 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2578 break;
2579
2580 i915_gem_object_move_to_inactive(obj);
2581 }
2582
2583
852835f3 2584 while (!list_empty(&ring->request_list)) {
673a394b 2585 struct drm_i915_gem_request *request;
673a394b 2586
852835f3 2587 request = list_first_entry(&ring->request_list,
673a394b
EA
2588 struct drm_i915_gem_request,
2589 list);
673a394b 2590
dfaae392 2591 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2592 break;
2593
db53a302 2594 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2595 /* We know the GPU must have read the request to have
2596 * sent us the seqno + interrupt, so use the position
2597 * of tail of the request to update the last known position
2598 * of the GPU head.
2599 */
2600 ring->last_retired_head = request->tail;
b84d5f0c 2601
0e50e96b 2602 i915_gem_free_request(request);
b84d5f0c 2603 }
673a394b 2604
db53a302
CW
2605 if (unlikely(ring->trace_irq_seqno &&
2606 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2607 ring->irq_put(ring);
db53a302 2608 ring->trace_irq_seqno = 0;
9d34e5db 2609 }
23bc5982 2610
db53a302 2611 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2612}
2613
b29c19b6 2614bool
b09a1fec
CW
2615i915_gem_retire_requests(struct drm_device *dev)
2616{
3e31c6c0 2617 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2618 struct intel_ring_buffer *ring;
b29c19b6 2619 bool idle = true;
1ec14ad3 2620 int i;
b09a1fec 2621
b29c19b6 2622 for_each_ring(ring, dev_priv, i) {
b4519513 2623 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2624 idle &= list_empty(&ring->request_list);
2625 }
2626
2627 if (idle)
2628 mod_delayed_work(dev_priv->wq,
2629 &dev_priv->mm.idle_work,
2630 msecs_to_jiffies(100));
2631
2632 return idle;
b09a1fec
CW
2633}
2634
75ef9da2 2635static void
673a394b
EA
2636i915_gem_retire_work_handler(struct work_struct *work)
2637{
b29c19b6
CW
2638 struct drm_i915_private *dev_priv =
2639 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2640 struct drm_device *dev = dev_priv->dev;
0a58705b 2641 bool idle;
673a394b 2642
891b48cf 2643 /* Come back later if the device is busy... */
b29c19b6
CW
2644 idle = false;
2645 if (mutex_trylock(&dev->struct_mutex)) {
2646 idle = i915_gem_retire_requests(dev);
2647 mutex_unlock(&dev->struct_mutex);
673a394b 2648 }
b29c19b6 2649 if (!idle)
bcb45086
CW
2650 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2651 round_jiffies_up_relative(HZ));
b29c19b6 2652}
0a58705b 2653
b29c19b6
CW
2654static void
2655i915_gem_idle_work_handler(struct work_struct *work)
2656{
2657 struct drm_i915_private *dev_priv =
2658 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2659
2660 intel_mark_idle(dev_priv->dev);
673a394b
EA
2661}
2662
30dfebf3
DV
2663/**
2664 * Ensures that an object will eventually get non-busy by flushing any required
2665 * write domains, emitting any outstanding lazy request and retiring and
2666 * completed requests.
2667 */
2668static int
2669i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2670{
2671 int ret;
2672
2673 if (obj->active) {
0201f1ec 2674 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2675 if (ret)
2676 return ret;
2677
30dfebf3
DV
2678 i915_gem_retire_requests_ring(obj->ring);
2679 }
2680
2681 return 0;
2682}
2683
23ba4fd0
BW
2684/**
2685 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2686 * @DRM_IOCTL_ARGS: standard ioctl arguments
2687 *
2688 * Returns 0 if successful, else an error is returned with the remaining time in
2689 * the timeout parameter.
2690 * -ETIME: object is still busy after timeout
2691 * -ERESTARTSYS: signal interrupted the wait
2692 * -ENONENT: object doesn't exist
2693 * Also possible, but rare:
2694 * -EAGAIN: GPU wedged
2695 * -ENOMEM: damn
2696 * -ENODEV: Internal IRQ fail
2697 * -E?: The add request failed
2698 *
2699 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2700 * non-zero timeout parameter the wait ioctl will wait for the given number of
2701 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2702 * without holding struct_mutex the object may become re-busied before this
2703 * function completes. A similar but shorter * race condition exists in the busy
2704 * ioctl
2705 */
2706int
2707i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2708{
3e31c6c0 2709 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2710 struct drm_i915_gem_wait *args = data;
2711 struct drm_i915_gem_object *obj;
2712 struct intel_ring_buffer *ring = NULL;
eac1f14f 2713 struct timespec timeout_stack, *timeout = NULL;
f69061be 2714 unsigned reset_counter;
23ba4fd0
BW
2715 u32 seqno = 0;
2716 int ret = 0;
2717
eac1f14f
BW
2718 if (args->timeout_ns >= 0) {
2719 timeout_stack = ns_to_timespec(args->timeout_ns);
2720 timeout = &timeout_stack;
2721 }
23ba4fd0
BW
2722
2723 ret = i915_mutex_lock_interruptible(dev);
2724 if (ret)
2725 return ret;
2726
2727 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2728 if (&obj->base == NULL) {
2729 mutex_unlock(&dev->struct_mutex);
2730 return -ENOENT;
2731 }
2732
30dfebf3
DV
2733 /* Need to make sure the object gets inactive eventually. */
2734 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2735 if (ret)
2736 goto out;
2737
2738 if (obj->active) {
0201f1ec 2739 seqno = obj->last_read_seqno;
23ba4fd0
BW
2740 ring = obj->ring;
2741 }
2742
2743 if (seqno == 0)
2744 goto out;
2745
23ba4fd0
BW
2746 /* Do this after OLR check to make sure we make forward progress polling
2747 * on this IOCTL with a 0 timeout (like busy ioctl)
2748 */
2749 if (!args->timeout_ns) {
2750 ret = -ETIME;
2751 goto out;
2752 }
2753
2754 drm_gem_object_unreference(&obj->base);
f69061be 2755 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2756 mutex_unlock(&dev->struct_mutex);
2757
b29c19b6 2758 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2759 if (timeout)
eac1f14f 2760 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2761 return ret;
2762
2763out:
2764 drm_gem_object_unreference(&obj->base);
2765 mutex_unlock(&dev->struct_mutex);
2766 return ret;
2767}
2768
5816d648
BW
2769/**
2770 * i915_gem_object_sync - sync an object to a ring.
2771 *
2772 * @obj: object which may be in use on another ring.
2773 * @to: ring we wish to use the object on. May be NULL.
2774 *
2775 * This code is meant to abstract object synchronization with the GPU.
2776 * Calling with NULL implies synchronizing the object with the CPU
2777 * rather than a particular GPU ring.
2778 *
2779 * Returns 0 if successful, else propagates up the lower layer error.
2780 */
2911a35b
BW
2781int
2782i915_gem_object_sync(struct drm_i915_gem_object *obj,
2783 struct intel_ring_buffer *to)
2784{
2785 struct intel_ring_buffer *from = obj->ring;
2786 u32 seqno;
2787 int ret, idx;
2788
2789 if (from == NULL || to == from)
2790 return 0;
2791
5816d648 2792 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2793 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2794
2795 idx = intel_ring_sync_index(from, to);
2796
0201f1ec 2797 seqno = obj->last_read_seqno;
2911a35b
BW
2798 if (seqno <= from->sync_seqno[idx])
2799 return 0;
2800
b4aca010
BW
2801 ret = i915_gem_check_olr(obj->ring, seqno);
2802 if (ret)
2803 return ret;
2911a35b 2804
b52b89da 2805 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2806 ret = to->sync_to(to, from, seqno);
e3a5a225 2807 if (!ret)
7b01e260
MK
2808 /* We use last_read_seqno because sync_to()
2809 * might have just caused seqno wrap under
2810 * the radar.
2811 */
2812 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2813
e3a5a225 2814 return ret;
2911a35b
BW
2815}
2816
b5ffc9bc
CW
2817static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2818{
2819 u32 old_write_domain, old_read_domains;
2820
b5ffc9bc
CW
2821 /* Force a pagefault for domain tracking on next user access */
2822 i915_gem_release_mmap(obj);
2823
b97c3d9c
KP
2824 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2825 return;
2826
97c809fd
CW
2827 /* Wait for any direct GTT access to complete */
2828 mb();
2829
b5ffc9bc
CW
2830 old_read_domains = obj->base.read_domains;
2831 old_write_domain = obj->base.write_domain;
2832
2833 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2834 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2835
2836 trace_i915_gem_object_change_domain(obj,
2837 old_read_domains,
2838 old_write_domain);
2839}
2840
07fe0b12 2841int i915_vma_unbind(struct i915_vma *vma)
673a394b 2842{
07fe0b12 2843 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2844 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2845 int ret;
673a394b 2846
07fe0b12 2847 if (list_empty(&vma->vma_link))
673a394b
EA
2848 return 0;
2849
0ff501cb
DV
2850 if (!drm_mm_node_allocated(&vma->node)) {
2851 i915_gem_vma_destroy(vma);
0ff501cb
DV
2852 return 0;
2853 }
433544bd 2854
d7f46fc4 2855 if (vma->pin_count)
31d8d651 2856 return -EBUSY;
673a394b 2857
c4670ad0
CW
2858 BUG_ON(obj->pages == NULL);
2859
a8198eea 2860 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2861 if (ret)
a8198eea
CW
2862 return ret;
2863 /* Continue on if we fail due to EIO, the GPU is hung so we
2864 * should be safe and we need to cleanup or else we might
2865 * cause memory corruption through use-after-free.
2866 */
2867
b5ffc9bc 2868 i915_gem_object_finish_gtt(obj);
5323fd04 2869
96b47b65 2870 /* release the fence reg _after_ flushing */
d9e86c0e 2871 ret = i915_gem_object_put_fence(obj);
1488fc08 2872 if (ret)
d9e86c0e 2873 return ret;
96b47b65 2874
07fe0b12 2875 trace_i915_vma_unbind(vma);
db53a302 2876
6f65e29a
BW
2877 vma->unbind_vma(vma);
2878
74163907 2879 i915_gem_gtt_finish_object(obj);
7bddb01f 2880
64bf9303 2881 list_del_init(&vma->mm_list);
75e9e915 2882 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2883 if (i915_is_ggtt(vma->vm))
2884 obj->map_and_fenceable = true;
673a394b 2885
2f633156
BW
2886 drm_mm_remove_node(&vma->node);
2887 i915_gem_vma_destroy(vma);
2888
2889 /* Since the unbound list is global, only move to that list if
b93dab6e 2890 * no more VMAs exist. */
2f633156
BW
2891 if (list_empty(&obj->vma_list))
2892 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2893
70903c3b
CW
2894 /* And finally now the object is completely decoupled from this vma,
2895 * we can drop its hold on the backing storage and allow it to be
2896 * reaped by the shrinker.
2897 */
2898 i915_gem_object_unpin_pages(obj);
2899
88241785 2900 return 0;
54cf91dc
CW
2901}
2902
b2da9fe5 2903int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2904{
3e31c6c0 2905 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2906 struct intel_ring_buffer *ring;
1ec14ad3 2907 int ret, i;
4df2faf4 2908
4df2faf4 2909 /* Flush everything onto the inactive list. */
b4519513 2910 for_each_ring(ring, dev_priv, i) {
691e6415 2911 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2912 if (ret)
2913 return ret;
2914
3e960501 2915 ret = intel_ring_idle(ring);
1ec14ad3
CW
2916 if (ret)
2917 return ret;
2918 }
4df2faf4 2919
8a1a49f9 2920 return 0;
4df2faf4
DV
2921}
2922
9ce079e4
CW
2923static void i965_write_fence_reg(struct drm_device *dev, int reg,
2924 struct drm_i915_gem_object *obj)
de151cf6 2925{
3e31c6c0 2926 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2927 int fence_reg;
2928 int fence_pitch_shift;
de151cf6 2929
56c844e5
ID
2930 if (INTEL_INFO(dev)->gen >= 6) {
2931 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2932 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2933 } else {
2934 fence_reg = FENCE_REG_965_0;
2935 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2936 }
2937
d18b9619
CW
2938 fence_reg += reg * 8;
2939
2940 /* To w/a incoherency with non-atomic 64-bit register updates,
2941 * we split the 64-bit update into two 32-bit writes. In order
2942 * for a partial fence not to be evaluated between writes, we
2943 * precede the update with write to turn off the fence register,
2944 * and only enable the fence as the last step.
2945 *
2946 * For extra levels of paranoia, we make sure each step lands
2947 * before applying the next step.
2948 */
2949 I915_WRITE(fence_reg, 0);
2950 POSTING_READ(fence_reg);
2951
9ce079e4 2952 if (obj) {
f343c5f6 2953 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2954 uint64_t val;
de151cf6 2955
f343c5f6 2956 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2957 0xfffff000) << 32;
f343c5f6 2958 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2959 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2960 if (obj->tiling_mode == I915_TILING_Y)
2961 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2962 val |= I965_FENCE_REG_VALID;
c6642782 2963
d18b9619
CW
2964 I915_WRITE(fence_reg + 4, val >> 32);
2965 POSTING_READ(fence_reg + 4);
2966
2967 I915_WRITE(fence_reg + 0, val);
2968 POSTING_READ(fence_reg);
2969 } else {
2970 I915_WRITE(fence_reg + 4, 0);
2971 POSTING_READ(fence_reg + 4);
2972 }
de151cf6
JB
2973}
2974
9ce079e4
CW
2975static void i915_write_fence_reg(struct drm_device *dev, int reg,
2976 struct drm_i915_gem_object *obj)
de151cf6 2977{
3e31c6c0 2978 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 2979 u32 val;
de151cf6 2980
9ce079e4 2981 if (obj) {
f343c5f6 2982 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2983 int pitch_val;
2984 int tile_width;
c6642782 2985
f343c5f6 2986 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2987 (size & -size) != size ||
f343c5f6
BW
2988 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2989 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2990 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2991
9ce079e4
CW
2992 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2993 tile_width = 128;
2994 else
2995 tile_width = 512;
2996
2997 /* Note: pitch better be a power of two tile widths */
2998 pitch_val = obj->stride / tile_width;
2999 pitch_val = ffs(pitch_val) - 1;
3000
f343c5f6 3001 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3002 if (obj->tiling_mode == I915_TILING_Y)
3003 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3004 val |= I915_FENCE_SIZE_BITS(size);
3005 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3006 val |= I830_FENCE_REG_VALID;
3007 } else
3008 val = 0;
3009
3010 if (reg < 8)
3011 reg = FENCE_REG_830_0 + reg * 4;
3012 else
3013 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3014
3015 I915_WRITE(reg, val);
3016 POSTING_READ(reg);
de151cf6
JB
3017}
3018
9ce079e4
CW
3019static void i830_write_fence_reg(struct drm_device *dev, int reg,
3020 struct drm_i915_gem_object *obj)
de151cf6 3021{
3e31c6c0 3022 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3023 uint32_t val;
de151cf6 3024
9ce079e4 3025 if (obj) {
f343c5f6 3026 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3027 uint32_t pitch_val;
de151cf6 3028
f343c5f6 3029 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3030 (size & -size) != size ||
f343c5f6
BW
3031 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3032 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3033 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3034
9ce079e4
CW
3035 pitch_val = obj->stride / 128;
3036 pitch_val = ffs(pitch_val) - 1;
de151cf6 3037
f343c5f6 3038 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3039 if (obj->tiling_mode == I915_TILING_Y)
3040 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3041 val |= I830_FENCE_SIZE_BITS(size);
3042 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3043 val |= I830_FENCE_REG_VALID;
3044 } else
3045 val = 0;
c6642782 3046
9ce079e4
CW
3047 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3048 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3049}
3050
d0a57789
CW
3051inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3052{
3053 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3054}
3055
9ce079e4
CW
3056static void i915_gem_write_fence(struct drm_device *dev, int reg,
3057 struct drm_i915_gem_object *obj)
3058{
d0a57789
CW
3059 struct drm_i915_private *dev_priv = dev->dev_private;
3060
3061 /* Ensure that all CPU reads are completed before installing a fence
3062 * and all writes before removing the fence.
3063 */
3064 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3065 mb();
3066
94a335db
DV
3067 WARN(obj && (!obj->stride || !obj->tiling_mode),
3068 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3069 obj->stride, obj->tiling_mode);
3070
9ce079e4 3071 switch (INTEL_INFO(dev)->gen) {
5ab31333 3072 case 8:
9ce079e4 3073 case 7:
56c844e5 3074 case 6:
9ce079e4
CW
3075 case 5:
3076 case 4: i965_write_fence_reg(dev, reg, obj); break;
3077 case 3: i915_write_fence_reg(dev, reg, obj); break;
3078 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3079 default: BUG();
9ce079e4 3080 }
d0a57789
CW
3081
3082 /* And similarly be paranoid that no direct access to this region
3083 * is reordered to before the fence is installed.
3084 */
3085 if (i915_gem_object_needs_mb(obj))
3086 mb();
de151cf6
JB
3087}
3088
61050808
CW
3089static inline int fence_number(struct drm_i915_private *dev_priv,
3090 struct drm_i915_fence_reg *fence)
3091{
3092 return fence - dev_priv->fence_regs;
3093}
3094
3095static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3096 struct drm_i915_fence_reg *fence,
3097 bool enable)
3098{
2dc8aae0 3099 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3100 int reg = fence_number(dev_priv, fence);
3101
3102 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3103
3104 if (enable) {
46a0b638 3105 obj->fence_reg = reg;
61050808
CW
3106 fence->obj = obj;
3107 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3108 } else {
3109 obj->fence_reg = I915_FENCE_REG_NONE;
3110 fence->obj = NULL;
3111 list_del_init(&fence->lru_list);
3112 }
94a335db 3113 obj->fence_dirty = false;
61050808
CW
3114}
3115
d9e86c0e 3116static int
d0a57789 3117i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3118{
1c293ea3 3119 if (obj->last_fenced_seqno) {
86d5bc37 3120 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3121 if (ret)
3122 return ret;
d9e86c0e
CW
3123
3124 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3125 }
3126
86d5bc37 3127 obj->fenced_gpu_access = false;
d9e86c0e
CW
3128 return 0;
3129}
3130
3131int
3132i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3133{
61050808 3134 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3135 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3136 int ret;
3137
d0a57789 3138 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3139 if (ret)
3140 return ret;
3141
61050808
CW
3142 if (obj->fence_reg == I915_FENCE_REG_NONE)
3143 return 0;
d9e86c0e 3144
f9c513e9
CW
3145 fence = &dev_priv->fence_regs[obj->fence_reg];
3146
61050808 3147 i915_gem_object_fence_lost(obj);
f9c513e9 3148 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3149
3150 return 0;
3151}
3152
3153static struct drm_i915_fence_reg *
a360bb1a 3154i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3155{
ae3db24a 3156 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3157 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3158 int i;
ae3db24a
DV
3159
3160 /* First try to find a free reg */
d9e86c0e 3161 avail = NULL;
ae3db24a
DV
3162 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3163 reg = &dev_priv->fence_regs[i];
3164 if (!reg->obj)
d9e86c0e 3165 return reg;
ae3db24a 3166
1690e1eb 3167 if (!reg->pin_count)
d9e86c0e 3168 avail = reg;
ae3db24a
DV
3169 }
3170
d9e86c0e 3171 if (avail == NULL)
5dce5b93 3172 goto deadlock;
ae3db24a
DV
3173
3174 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3175 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3176 if (reg->pin_count)
ae3db24a
DV
3177 continue;
3178
8fe301ad 3179 return reg;
ae3db24a
DV
3180 }
3181
5dce5b93
CW
3182deadlock:
3183 /* Wait for completion of pending flips which consume fences */
3184 if (intel_has_pending_fb_unpin(dev))
3185 return ERR_PTR(-EAGAIN);
3186
3187 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3188}
3189
de151cf6 3190/**
9a5a53b3 3191 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3192 * @obj: object to map through a fence reg
3193 *
3194 * When mapping objects through the GTT, userspace wants to be able to write
3195 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3196 * This function walks the fence regs looking for a free one for @obj,
3197 * stealing one if it can't find any.
3198 *
3199 * It then sets up the reg based on the object's properties: address, pitch
3200 * and tiling format.
9a5a53b3
CW
3201 *
3202 * For an untiled surface, this removes any existing fence.
de151cf6 3203 */
8c4b8c3f 3204int
06d98131 3205i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3206{
05394f39 3207 struct drm_device *dev = obj->base.dev;
79e53945 3208 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3209 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3210 struct drm_i915_fence_reg *reg;
ae3db24a 3211 int ret;
de151cf6 3212
14415745
CW
3213 /* Have we updated the tiling parameters upon the object and so
3214 * will need to serialise the write to the associated fence register?
3215 */
5d82e3e6 3216 if (obj->fence_dirty) {
d0a57789 3217 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3218 if (ret)
3219 return ret;
3220 }
9a5a53b3 3221
d9e86c0e 3222 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3223 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3224 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3225 if (!obj->fence_dirty) {
14415745
CW
3226 list_move_tail(&reg->lru_list,
3227 &dev_priv->mm.fence_list);
3228 return 0;
3229 }
3230 } else if (enable) {
3231 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3232 if (IS_ERR(reg))
3233 return PTR_ERR(reg);
d9e86c0e 3234
14415745
CW
3235 if (reg->obj) {
3236 struct drm_i915_gem_object *old = reg->obj;
3237
d0a57789 3238 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3239 if (ret)
3240 return ret;
3241
14415745 3242 i915_gem_object_fence_lost(old);
29c5a587 3243 }
14415745 3244 } else
a09ba7fa 3245 return 0;
a09ba7fa 3246
14415745 3247 i915_gem_object_update_fence(obj, reg, enable);
14415745 3248
9ce079e4 3249 return 0;
de151cf6
JB
3250}
3251
42d6ab48
CW
3252static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3253 struct drm_mm_node *gtt_space,
3254 unsigned long cache_level)
3255{
3256 struct drm_mm_node *other;
3257
3258 /* On non-LLC machines we have to be careful when putting differing
3259 * types of snoopable memory together to avoid the prefetcher
4239ca77 3260 * crossing memory domains and dying.
42d6ab48
CW
3261 */
3262 if (HAS_LLC(dev))
3263 return true;
3264
c6cfb325 3265 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3266 return true;
3267
3268 if (list_empty(&gtt_space->node_list))
3269 return true;
3270
3271 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3272 if (other->allocated && !other->hole_follows && other->color != cache_level)
3273 return false;
3274
3275 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3276 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3277 return false;
3278
3279 return true;
3280}
3281
3282static void i915_gem_verify_gtt(struct drm_device *dev)
3283{
3284#if WATCH_GTT
3285 struct drm_i915_private *dev_priv = dev->dev_private;
3286 struct drm_i915_gem_object *obj;
3287 int err = 0;
3288
35c20a60 3289 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3290 if (obj->gtt_space == NULL) {
3291 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3292 err++;
3293 continue;
3294 }
3295
3296 if (obj->cache_level != obj->gtt_space->color) {
3297 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3298 i915_gem_obj_ggtt_offset(obj),
3299 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3300 obj->cache_level,
3301 obj->gtt_space->color);
3302 err++;
3303 continue;
3304 }
3305
3306 if (!i915_gem_valid_gtt_space(dev,
3307 obj->gtt_space,
3308 obj->cache_level)) {
3309 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3310 i915_gem_obj_ggtt_offset(obj),
3311 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3312 obj->cache_level);
3313 err++;
3314 continue;
3315 }
3316 }
3317
3318 WARN_ON(err);
3319#endif
3320}
3321
673a394b
EA
3322/**
3323 * Finds free space in the GTT aperture and binds the object there.
3324 */
262de145 3325static struct i915_vma *
07fe0b12
BW
3326i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3327 struct i915_address_space *vm,
3328 unsigned alignment,
1ec9e26d 3329 unsigned flags)
673a394b 3330{
05394f39 3331 struct drm_device *dev = obj->base.dev;
3e31c6c0 3332 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3333 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12 3334 size_t gtt_max =
1ec9e26d 3335 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3336 struct i915_vma *vma;
07f73f69 3337 int ret;
673a394b 3338
e28f8711
CW
3339 fence_size = i915_gem_get_gtt_size(dev,
3340 obj->base.size,
3341 obj->tiling_mode);
3342 fence_alignment = i915_gem_get_gtt_alignment(dev,
3343 obj->base.size,
d865110c 3344 obj->tiling_mode, true);
e28f8711 3345 unfenced_alignment =
d865110c 3346 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3347 obj->base.size,
3348 obj->tiling_mode, false);
a00b10c3 3349
673a394b 3350 if (alignment == 0)
1ec9e26d 3351 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3352 unfenced_alignment;
1ec9e26d 3353 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3354 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3355 return ERR_PTR(-EINVAL);
673a394b
EA
3356 }
3357
1ec9e26d 3358 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3359
654fc607
CW
3360 /* If the object is bigger than the entire aperture, reject it early
3361 * before evicting everything in a vain attempt to find space.
3362 */
0a9ae0d7 3363 if (obj->base.size > gtt_max) {
bd9b6a4e 3364 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb 3365 obj->base.size,
1ec9e26d 3366 flags & PIN_MAPPABLE ? "mappable" : "total",
0a9ae0d7 3367 gtt_max);
262de145 3368 return ERR_PTR(-E2BIG);
654fc607
CW
3369 }
3370
37e680a1 3371 ret = i915_gem_object_get_pages(obj);
6c085a72 3372 if (ret)
262de145 3373 return ERR_PTR(ret);
6c085a72 3374
fbdda6fb
CW
3375 i915_gem_object_pin_pages(obj);
3376
accfef2e 3377 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3378 if (IS_ERR(vma))
bc6bc15b 3379 goto err_unpin;
2f633156 3380
0a9ae0d7 3381search_free:
07fe0b12 3382 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3383 size, alignment,
31e5d7c6 3384 obj->cache_level, 0, gtt_max,
62347f9e
LK
3385 DRM_MM_SEARCH_DEFAULT,
3386 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3387 if (ret) {
f6cd1f15 3388 ret = i915_gem_evict_something(dev, vm, size, alignment,
1ec9e26d 3389 obj->cache_level, flags);
dc9dd7a2
CW
3390 if (ret == 0)
3391 goto search_free;
9731129c 3392
bc6bc15b 3393 goto err_free_vma;
673a394b 3394 }
2f633156 3395 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3396 obj->cache_level))) {
2f633156 3397 ret = -EINVAL;
bc6bc15b 3398 goto err_remove_node;
673a394b
EA
3399 }
3400
74163907 3401 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3402 if (ret)
bc6bc15b 3403 goto err_remove_node;
673a394b 3404
35c20a60 3405 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3406 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3407
4bd561b3
BW
3408 if (i915_is_ggtt(vm)) {
3409 bool mappable, fenceable;
a00b10c3 3410
49987099
DV
3411 fenceable = (vma->node.size == fence_size &&
3412 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3413
49987099
DV
3414 mappable = (vma->node.start + obj->base.size <=
3415 dev_priv->gtt.mappable_end);
a00b10c3 3416
5cacaac7 3417 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3418 }
75e9e915 3419
1ec9e26d 3420 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3421
1ec9e26d 3422 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3423 vma->bind_vma(vma, obj->cache_level,
3424 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3425
42d6ab48 3426 i915_gem_verify_gtt(dev);
262de145 3427 return vma;
2f633156 3428
bc6bc15b 3429err_remove_node:
6286ef9b 3430 drm_mm_remove_node(&vma->node);
bc6bc15b 3431err_free_vma:
2f633156 3432 i915_gem_vma_destroy(vma);
262de145 3433 vma = ERR_PTR(ret);
bc6bc15b 3434err_unpin:
2f633156 3435 i915_gem_object_unpin_pages(obj);
262de145 3436 return vma;
673a394b
EA
3437}
3438
000433b6 3439bool
2c22569b
CW
3440i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3441 bool force)
673a394b 3442{
673a394b
EA
3443 /* If we don't have a page list set up, then we're not pinned
3444 * to GPU, and we can ignore the cache flush because it'll happen
3445 * again at bind time.
3446 */
05394f39 3447 if (obj->pages == NULL)
000433b6 3448 return false;
673a394b 3449
769ce464
ID
3450 /*
3451 * Stolen memory is always coherent with the GPU as it is explicitly
3452 * marked as wc by the system, or the system is cache-coherent.
3453 */
3454 if (obj->stolen)
000433b6 3455 return false;
769ce464 3456
9c23f7fc
CW
3457 /* If the GPU is snooping the contents of the CPU cache,
3458 * we do not need to manually clear the CPU cache lines. However,
3459 * the caches are only snooped when the render cache is
3460 * flushed/invalidated. As we always have to emit invalidations
3461 * and flushes when moving into and out of the RENDER domain, correct
3462 * snooping behaviour occurs naturally as the result of our domain
3463 * tracking.
3464 */
2c22569b 3465 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3466 return false;
9c23f7fc 3467
1c5d22f7 3468 trace_i915_gem_object_clflush(obj);
9da3da66 3469 drm_clflush_sg(obj->pages);
000433b6
CW
3470
3471 return true;
e47c68e9
EA
3472}
3473
3474/** Flushes the GTT write domain for the object if it's dirty. */
3475static void
05394f39 3476i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3477{
1c5d22f7
CW
3478 uint32_t old_write_domain;
3479
05394f39 3480 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3481 return;
3482
63256ec5 3483 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3484 * to it immediately go to main memory as far as we know, so there's
3485 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3486 *
3487 * However, we do have to enforce the order so that all writes through
3488 * the GTT land before any writes to the device, such as updates to
3489 * the GATT itself.
e47c68e9 3490 */
63256ec5
CW
3491 wmb();
3492
05394f39
CW
3493 old_write_domain = obj->base.write_domain;
3494 obj->base.write_domain = 0;
1c5d22f7
CW
3495
3496 trace_i915_gem_object_change_domain(obj,
05394f39 3497 obj->base.read_domains,
1c5d22f7 3498 old_write_domain);
e47c68e9
EA
3499}
3500
3501/** Flushes the CPU write domain for the object if it's dirty. */
3502static void
2c22569b
CW
3503i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3504 bool force)
e47c68e9 3505{
1c5d22f7 3506 uint32_t old_write_domain;
e47c68e9 3507
05394f39 3508 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3509 return;
3510
000433b6
CW
3511 if (i915_gem_clflush_object(obj, force))
3512 i915_gem_chipset_flush(obj->base.dev);
3513
05394f39
CW
3514 old_write_domain = obj->base.write_domain;
3515 obj->base.write_domain = 0;
1c5d22f7
CW
3516
3517 trace_i915_gem_object_change_domain(obj,
05394f39 3518 obj->base.read_domains,
1c5d22f7 3519 old_write_domain);
e47c68e9
EA
3520}
3521
2ef7eeaa
EA
3522/**
3523 * Moves a single object to the GTT read, and possibly write domain.
3524 *
3525 * This function returns when the move is complete, including waiting on
3526 * flushes to occur.
3527 */
79e53945 3528int
2021746e 3529i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3530{
3e31c6c0 3531 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3532 uint32_t old_write_domain, old_read_domains;
e47c68e9 3533 int ret;
2ef7eeaa 3534
02354392 3535 /* Not valid to be called on unbound objects. */
9843877d 3536 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3537 return -EINVAL;
3538
8d7e3de1
CW
3539 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3540 return 0;
3541
0201f1ec 3542 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3543 if (ret)
3544 return ret;
3545
2c22569b 3546 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3547
d0a57789
CW
3548 /* Serialise direct access to this object with the barriers for
3549 * coherent writes from the GPU, by effectively invalidating the
3550 * GTT domain upon first access.
3551 */
3552 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3553 mb();
3554
05394f39
CW
3555 old_write_domain = obj->base.write_domain;
3556 old_read_domains = obj->base.read_domains;
1c5d22f7 3557
e47c68e9
EA
3558 /* It should now be out of any other write domains, and we can update
3559 * the domain values for our changes.
3560 */
05394f39
CW
3561 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3562 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3563 if (write) {
05394f39
CW
3564 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3565 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3566 obj->dirty = 1;
2ef7eeaa
EA
3567 }
3568
1c5d22f7
CW
3569 trace_i915_gem_object_change_domain(obj,
3570 old_read_domains,
3571 old_write_domain);
3572
8325a09d 3573 /* And bump the LRU for this access */
ca191b13 3574 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3575 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3576 if (vma)
3577 list_move_tail(&vma->mm_list,
3578 &dev_priv->gtt.base.inactive_list);
3579
3580 }
8325a09d 3581
e47c68e9
EA
3582 return 0;
3583}
3584
e4ffd173
CW
3585int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3586 enum i915_cache_level cache_level)
3587{
7bddb01f 3588 struct drm_device *dev = obj->base.dev;
df6f783a 3589 struct i915_vma *vma, *next;
e4ffd173
CW
3590 int ret;
3591
3592 if (obj->cache_level == cache_level)
3593 return 0;
3594
d7f46fc4 3595 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3596 DRM_DEBUG("can not change the cache level of pinned objects\n");
3597 return -EBUSY;
3598 }
3599
df6f783a 3600 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3601 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3602 ret = i915_vma_unbind(vma);
3089c6f2
BW
3603 if (ret)
3604 return ret;
3089c6f2 3605 }
42d6ab48
CW
3606 }
3607
3089c6f2 3608 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3609 ret = i915_gem_object_finish_gpu(obj);
3610 if (ret)
3611 return ret;
3612
3613 i915_gem_object_finish_gtt(obj);
3614
3615 /* Before SandyBridge, you could not use tiling or fence
3616 * registers with snooped memory, so relinquish any fences
3617 * currently pointing to our region in the aperture.
3618 */
42d6ab48 3619 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3620 ret = i915_gem_object_put_fence(obj);
3621 if (ret)
3622 return ret;
3623 }
3624
6f65e29a 3625 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3626 if (drm_mm_node_allocated(&vma->node))
3627 vma->bind_vma(vma, cache_level,
3628 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3629 }
3630
2c22569b
CW
3631 list_for_each_entry(vma, &obj->vma_list, vma_link)
3632 vma->node.color = cache_level;
3633 obj->cache_level = cache_level;
3634
3635 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3636 u32 old_read_domains, old_write_domain;
3637
3638 /* If we're coming from LLC cached, then we haven't
3639 * actually been tracking whether the data is in the
3640 * CPU cache or not, since we only allow one bit set
3641 * in obj->write_domain and have been skipping the clflushes.
3642 * Just set it to the CPU cache for now.
3643 */
3644 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3645
3646 old_read_domains = obj->base.read_domains;
3647 old_write_domain = obj->base.write_domain;
3648
3649 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3650 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3651
3652 trace_i915_gem_object_change_domain(obj,
3653 old_read_domains,
3654 old_write_domain);
3655 }
3656
42d6ab48 3657 i915_gem_verify_gtt(dev);
e4ffd173
CW
3658 return 0;
3659}
3660
199adf40
BW
3661int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3662 struct drm_file *file)
e6994aee 3663{
199adf40 3664 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3665 struct drm_i915_gem_object *obj;
3666 int ret;
3667
3668 ret = i915_mutex_lock_interruptible(dev);
3669 if (ret)
3670 return ret;
3671
3672 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3673 if (&obj->base == NULL) {
3674 ret = -ENOENT;
3675 goto unlock;
3676 }
3677
651d794f
CW
3678 switch (obj->cache_level) {
3679 case I915_CACHE_LLC:
3680 case I915_CACHE_L3_LLC:
3681 args->caching = I915_CACHING_CACHED;
3682 break;
3683
4257d3ba
CW
3684 case I915_CACHE_WT:
3685 args->caching = I915_CACHING_DISPLAY;
3686 break;
3687
651d794f
CW
3688 default:
3689 args->caching = I915_CACHING_NONE;
3690 break;
3691 }
e6994aee
CW
3692
3693 drm_gem_object_unreference(&obj->base);
3694unlock:
3695 mutex_unlock(&dev->struct_mutex);
3696 return ret;
3697}
3698
199adf40
BW
3699int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3700 struct drm_file *file)
e6994aee 3701{
199adf40 3702 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3703 struct drm_i915_gem_object *obj;
3704 enum i915_cache_level level;
3705 int ret;
3706
199adf40
BW
3707 switch (args->caching) {
3708 case I915_CACHING_NONE:
e6994aee
CW
3709 level = I915_CACHE_NONE;
3710 break;
199adf40 3711 case I915_CACHING_CACHED:
e6994aee
CW
3712 level = I915_CACHE_LLC;
3713 break;
4257d3ba
CW
3714 case I915_CACHING_DISPLAY:
3715 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3716 break;
e6994aee
CW
3717 default:
3718 return -EINVAL;
3719 }
3720
3bc2913e
BW
3721 ret = i915_mutex_lock_interruptible(dev);
3722 if (ret)
3723 return ret;
3724
e6994aee
CW
3725 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3726 if (&obj->base == NULL) {
3727 ret = -ENOENT;
3728 goto unlock;
3729 }
3730
3731 ret = i915_gem_object_set_cache_level(obj, level);
3732
3733 drm_gem_object_unreference(&obj->base);
3734unlock:
3735 mutex_unlock(&dev->struct_mutex);
3736 return ret;
3737}
3738
cc98b413
CW
3739static bool is_pin_display(struct drm_i915_gem_object *obj)
3740{
3741 /* There are 3 sources that pin objects:
3742 * 1. The display engine (scanouts, sprites, cursors);
3743 * 2. Reservations for execbuffer;
3744 * 3. The user.
3745 *
3746 * We can ignore reservations as we hold the struct_mutex and
3747 * are only called outside of the reservation path. The user
3748 * can only increment pin_count once, and so if after
3749 * subtracting the potential reference by the user, any pin_count
3750 * remains, it must be due to another use by the display engine.
3751 */
d7f46fc4 3752 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3753}
3754
b9241ea3 3755/*
2da3b9b9
CW
3756 * Prepare buffer for display plane (scanout, cursors, etc).
3757 * Can be called from an uninterruptible phase (modesetting) and allows
3758 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3759 */
3760int
2da3b9b9
CW
3761i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3762 u32 alignment,
919926ae 3763 struct intel_ring_buffer *pipelined)
b9241ea3 3764{
2da3b9b9 3765 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3766 int ret;
3767
0be73284 3768 if (pipelined != obj->ring) {
2911a35b
BW
3769 ret = i915_gem_object_sync(obj, pipelined);
3770 if (ret)
b9241ea3
ZW
3771 return ret;
3772 }
3773
cc98b413
CW
3774 /* Mark the pin_display early so that we account for the
3775 * display coherency whilst setting up the cache domains.
3776 */
3777 obj->pin_display = true;
3778
a7ef0640
EA
3779 /* The display engine is not coherent with the LLC cache on gen6. As
3780 * a result, we make sure that the pinning that is about to occur is
3781 * done with uncached PTEs. This is lowest common denominator for all
3782 * chipsets.
3783 *
3784 * However for gen6+, we could do better by using the GFDT bit instead
3785 * of uncaching, which would allow us to flush all the LLC-cached data
3786 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3787 */
651d794f
CW
3788 ret = i915_gem_object_set_cache_level(obj,
3789 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3790 if (ret)
cc98b413 3791 goto err_unpin_display;
a7ef0640 3792
2da3b9b9
CW
3793 /* As the user may map the buffer once pinned in the display plane
3794 * (e.g. libkms for the bootup splash), we have to ensure that we
3795 * always use map_and_fenceable for all scanout buffers.
3796 */
1ec9e26d 3797 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3798 if (ret)
cc98b413 3799 goto err_unpin_display;
2da3b9b9 3800
2c22569b 3801 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3802
2da3b9b9 3803 old_write_domain = obj->base.write_domain;
05394f39 3804 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3805
3806 /* It should now be out of any other write domains, and we can update
3807 * the domain values for our changes.
3808 */
e5f1d962 3809 obj->base.write_domain = 0;
05394f39 3810 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3811
3812 trace_i915_gem_object_change_domain(obj,
3813 old_read_domains,
2da3b9b9 3814 old_write_domain);
b9241ea3
ZW
3815
3816 return 0;
cc98b413
CW
3817
3818err_unpin_display:
3819 obj->pin_display = is_pin_display(obj);
3820 return ret;
3821}
3822
3823void
3824i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3825{
d7f46fc4 3826 i915_gem_object_ggtt_unpin(obj);
cc98b413 3827 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3828}
3829
85345517 3830int
a8198eea 3831i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3832{
88241785
CW
3833 int ret;
3834
a8198eea 3835 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3836 return 0;
3837
0201f1ec 3838 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3839 if (ret)
3840 return ret;
3841
a8198eea
CW
3842 /* Ensure that we invalidate the GPU's caches and TLBs. */
3843 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3844 return 0;
85345517
CW
3845}
3846
e47c68e9
EA
3847/**
3848 * Moves a single object to the CPU read, and possibly write domain.
3849 *
3850 * This function returns when the move is complete, including waiting on
3851 * flushes to occur.
3852 */
dabdfe02 3853int
919926ae 3854i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3855{
1c5d22f7 3856 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3857 int ret;
3858
8d7e3de1
CW
3859 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3860 return 0;
3861
0201f1ec 3862 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3863 if (ret)
3864 return ret;
3865
e47c68e9 3866 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3867
05394f39
CW
3868 old_write_domain = obj->base.write_domain;
3869 old_read_domains = obj->base.read_domains;
1c5d22f7 3870
e47c68e9 3871 /* Flush the CPU cache if it's still invalid. */
05394f39 3872 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3873 i915_gem_clflush_object(obj, false);
2ef7eeaa 3874
05394f39 3875 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3876 }
3877
3878 /* It should now be out of any other write domains, and we can update
3879 * the domain values for our changes.
3880 */
05394f39 3881 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3882
3883 /* If we're writing through the CPU, then the GPU read domains will
3884 * need to be invalidated at next use.
3885 */
3886 if (write) {
05394f39
CW
3887 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3888 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3889 }
2ef7eeaa 3890
1c5d22f7
CW
3891 trace_i915_gem_object_change_domain(obj,
3892 old_read_domains,
3893 old_write_domain);
3894
2ef7eeaa
EA
3895 return 0;
3896}
3897
673a394b
EA
3898/* Throttle our rendering by waiting until the ring has completed our requests
3899 * emitted over 20 msec ago.
3900 *
b962442e
EA
3901 * Note that if we were to use the current jiffies each time around the loop,
3902 * we wouldn't escape the function with any frames outstanding if the time to
3903 * render a frame was over 20ms.
3904 *
673a394b
EA
3905 * This should get us reasonable parallelism between CPU and GPU but also
3906 * relatively low latency when blocking on a particular request to finish.
3907 */
40a5f0de 3908static int
f787a5f5 3909i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3910{
f787a5f5
CW
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3912 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3913 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3914 struct drm_i915_gem_request *request;
3915 struct intel_ring_buffer *ring = NULL;
f69061be 3916 unsigned reset_counter;
f787a5f5
CW
3917 u32 seqno = 0;
3918 int ret;
93533c29 3919
308887aa
DV
3920 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3921 if (ret)
3922 return ret;
3923
3924 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3925 if (ret)
3926 return ret;
e110e8d6 3927
1c25595f 3928 spin_lock(&file_priv->mm.lock);
f787a5f5 3929 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3930 if (time_after_eq(request->emitted_jiffies, recent_enough))
3931 break;
40a5f0de 3932
f787a5f5
CW
3933 ring = request->ring;
3934 seqno = request->seqno;
b962442e 3935 }
f69061be 3936 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3937 spin_unlock(&file_priv->mm.lock);
40a5f0de 3938
f787a5f5
CW
3939 if (seqno == 0)
3940 return 0;
2bc43b5c 3941
b29c19b6 3942 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3943 if (ret == 0)
3944 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3945
3946 return ret;
3947}
3948
673a394b 3949int
05394f39 3950i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3951 struct i915_address_space *vm,
05394f39 3952 uint32_t alignment,
1ec9e26d 3953 unsigned flags)
673a394b 3954{
07fe0b12 3955 struct i915_vma *vma;
673a394b
EA
3956 int ret;
3957
bf3d149b 3958 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3959 return -EINVAL;
07fe0b12
BW
3960
3961 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 3962 if (vma) {
d7f46fc4
BW
3963 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3964 return -EBUSY;
3965
07fe0b12
BW
3966 if ((alignment &&
3967 vma->node.start & (alignment - 1)) ||
1ec9e26d 3968 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
d7f46fc4 3969 WARN(vma->pin_count,
ae7d49d8 3970 "bo is already pinned with incorrect alignment:"
f343c5f6 3971 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3972 " obj->map_and_fenceable=%d\n",
07fe0b12 3973 i915_gem_obj_offset(obj, vm), alignment,
1ec9e26d 3974 flags & PIN_MAPPABLE,
05394f39 3975 obj->map_and_fenceable);
07fe0b12 3976 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3977 if (ret)
3978 return ret;
8ea99c92
DV
3979
3980 vma = NULL;
ac0c6b5a
CW
3981 }
3982 }
3983
8ea99c92 3984 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
3985 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3986 if (IS_ERR(vma))
3987 return PTR_ERR(vma);
22c344e9 3988 }
76446cac 3989
8ea99c92
DV
3990 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3991 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 3992
8ea99c92 3993 vma->pin_count++;
1ec9e26d
DV
3994 if (flags & PIN_MAPPABLE)
3995 obj->pin_mappable |= true;
673a394b
EA
3996
3997 return 0;
3998}
3999
4000void
d7f46fc4 4001i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4002{
d7f46fc4 4003 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4004
d7f46fc4
BW
4005 BUG_ON(!vma);
4006 BUG_ON(vma->pin_count == 0);
4007 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4008
4009 if (--vma->pin_count == 0)
6299f992 4010 obj->pin_mappable = false;
673a394b
EA
4011}
4012
4013int
4014i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4015 struct drm_file *file)
673a394b
EA
4016{
4017 struct drm_i915_gem_pin *args = data;
05394f39 4018 struct drm_i915_gem_object *obj;
673a394b
EA
4019 int ret;
4020
02f6bccc
DV
4021 if (INTEL_INFO(dev)->gen >= 6)
4022 return -ENODEV;
4023
1d7cfea1
CW
4024 ret = i915_mutex_lock_interruptible(dev);
4025 if (ret)
4026 return ret;
673a394b 4027
05394f39 4028 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4029 if (&obj->base == NULL) {
1d7cfea1
CW
4030 ret = -ENOENT;
4031 goto unlock;
673a394b 4032 }
673a394b 4033
05394f39 4034 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4035 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4036 ret = -EFAULT;
1d7cfea1 4037 goto out;
3ef94daa
CW
4038 }
4039
05394f39 4040 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4041 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4042 args->handle);
1d7cfea1
CW
4043 ret = -EINVAL;
4044 goto out;
79e53945
JB
4045 }
4046
aa5f8021
DV
4047 if (obj->user_pin_count == ULONG_MAX) {
4048 ret = -EBUSY;
4049 goto out;
4050 }
4051
93be8788 4052 if (obj->user_pin_count == 0) {
1ec9e26d 4053 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4054 if (ret)
4055 goto out;
673a394b
EA
4056 }
4057
93be8788
CW
4058 obj->user_pin_count++;
4059 obj->pin_filp = file;
4060
f343c5f6 4061 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4062out:
05394f39 4063 drm_gem_object_unreference(&obj->base);
1d7cfea1 4064unlock:
673a394b 4065 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4066 return ret;
673a394b
EA
4067}
4068
4069int
4070i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4071 struct drm_file *file)
673a394b
EA
4072{
4073 struct drm_i915_gem_pin *args = data;
05394f39 4074 struct drm_i915_gem_object *obj;
76c1dec1 4075 int ret;
673a394b 4076
1d7cfea1
CW
4077 ret = i915_mutex_lock_interruptible(dev);
4078 if (ret)
4079 return ret;
673a394b 4080
05394f39 4081 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4082 if (&obj->base == NULL) {
1d7cfea1
CW
4083 ret = -ENOENT;
4084 goto unlock;
673a394b 4085 }
76c1dec1 4086
05394f39 4087 if (obj->pin_filp != file) {
bd9b6a4e 4088 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4089 args->handle);
1d7cfea1
CW
4090 ret = -EINVAL;
4091 goto out;
79e53945 4092 }
05394f39
CW
4093 obj->user_pin_count--;
4094 if (obj->user_pin_count == 0) {
4095 obj->pin_filp = NULL;
d7f46fc4 4096 i915_gem_object_ggtt_unpin(obj);
79e53945 4097 }
673a394b 4098
1d7cfea1 4099out:
05394f39 4100 drm_gem_object_unreference(&obj->base);
1d7cfea1 4101unlock:
673a394b 4102 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4103 return ret;
673a394b
EA
4104}
4105
4106int
4107i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4108 struct drm_file *file)
673a394b
EA
4109{
4110 struct drm_i915_gem_busy *args = data;
05394f39 4111 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4112 int ret;
4113
76c1dec1 4114 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4115 if (ret)
76c1dec1 4116 return ret;
673a394b 4117
05394f39 4118 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4119 if (&obj->base == NULL) {
1d7cfea1
CW
4120 ret = -ENOENT;
4121 goto unlock;
673a394b 4122 }
d1b851fc 4123
0be555b6
CW
4124 /* Count all active objects as busy, even if they are currently not used
4125 * by the gpu. Users of this interface expect objects to eventually
4126 * become non-busy without any further actions, therefore emit any
4127 * necessary flushes here.
c4de0a5d 4128 */
30dfebf3 4129 ret = i915_gem_object_flush_active(obj);
0be555b6 4130
30dfebf3 4131 args->busy = obj->active;
e9808edd
CW
4132 if (obj->ring) {
4133 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4134 args->busy |= intel_ring_flag(obj->ring) << 16;
4135 }
673a394b 4136
05394f39 4137 drm_gem_object_unreference(&obj->base);
1d7cfea1 4138unlock:
673a394b 4139 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4140 return ret;
673a394b
EA
4141}
4142
4143int
4144i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4145 struct drm_file *file_priv)
4146{
0206e353 4147 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4148}
4149
3ef94daa
CW
4150int
4151i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4152 struct drm_file *file_priv)
4153{
4154 struct drm_i915_gem_madvise *args = data;
05394f39 4155 struct drm_i915_gem_object *obj;
76c1dec1 4156 int ret;
3ef94daa
CW
4157
4158 switch (args->madv) {
4159 case I915_MADV_DONTNEED:
4160 case I915_MADV_WILLNEED:
4161 break;
4162 default:
4163 return -EINVAL;
4164 }
4165
1d7cfea1
CW
4166 ret = i915_mutex_lock_interruptible(dev);
4167 if (ret)
4168 return ret;
4169
05394f39 4170 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4171 if (&obj->base == NULL) {
1d7cfea1
CW
4172 ret = -ENOENT;
4173 goto unlock;
3ef94daa 4174 }
3ef94daa 4175
d7f46fc4 4176 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4177 ret = -EINVAL;
4178 goto out;
3ef94daa
CW
4179 }
4180
05394f39
CW
4181 if (obj->madv != __I915_MADV_PURGED)
4182 obj->madv = args->madv;
3ef94daa 4183
6c085a72
CW
4184 /* if the object is no longer attached, discard its backing storage */
4185 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4186 i915_gem_object_truncate(obj);
4187
05394f39 4188 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4189
1d7cfea1 4190out:
05394f39 4191 drm_gem_object_unreference(&obj->base);
1d7cfea1 4192unlock:
3ef94daa 4193 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4194 return ret;
3ef94daa
CW
4195}
4196
37e680a1
CW
4197void i915_gem_object_init(struct drm_i915_gem_object *obj,
4198 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4199{
35c20a60 4200 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4201 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4202 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4203 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4204
37e680a1
CW
4205 obj->ops = ops;
4206
0327d6ba
CW
4207 obj->fence_reg = I915_FENCE_REG_NONE;
4208 obj->madv = I915_MADV_WILLNEED;
4209 /* Avoid an unnecessary call to unbind on the first bind. */
4210 obj->map_and_fenceable = true;
4211
4212 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4213}
4214
37e680a1
CW
4215static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4216 .get_pages = i915_gem_object_get_pages_gtt,
4217 .put_pages = i915_gem_object_put_pages_gtt,
4218};
4219
05394f39
CW
4220struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4221 size_t size)
ac52bc56 4222{
c397b908 4223 struct drm_i915_gem_object *obj;
5949eac4 4224 struct address_space *mapping;
1a240d4d 4225 gfp_t mask;
ac52bc56 4226
42dcedd4 4227 obj = i915_gem_object_alloc(dev);
c397b908
DV
4228 if (obj == NULL)
4229 return NULL;
673a394b 4230
c397b908 4231 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4232 i915_gem_object_free(obj);
c397b908
DV
4233 return NULL;
4234 }
673a394b 4235
bed1ea95
CW
4236 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4237 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4238 /* 965gm cannot relocate objects above 4GiB. */
4239 mask &= ~__GFP_HIGHMEM;
4240 mask |= __GFP_DMA32;
4241 }
4242
496ad9aa 4243 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4244 mapping_set_gfp_mask(mapping, mask);
5949eac4 4245
37e680a1 4246 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4247
c397b908
DV
4248 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4249 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4250
3d29b842
ED
4251 if (HAS_LLC(dev)) {
4252 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4253 * cache) for about a 10% performance improvement
4254 * compared to uncached. Graphics requests other than
4255 * display scanout are coherent with the CPU in
4256 * accessing this cache. This means in this mode we
4257 * don't need to clflush on the CPU side, and on the
4258 * GPU side we only need to flush internal caches to
4259 * get data visible to the CPU.
4260 *
4261 * However, we maintain the display planes as UC, and so
4262 * need to rebind when first used as such.
4263 */
4264 obj->cache_level = I915_CACHE_LLC;
4265 } else
4266 obj->cache_level = I915_CACHE_NONE;
4267
d861e338
DV
4268 trace_i915_gem_object_create(obj);
4269
05394f39 4270 return obj;
c397b908
DV
4271}
4272
1488fc08 4273void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4274{
1488fc08 4275 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4276 struct drm_device *dev = obj->base.dev;
3e31c6c0 4277 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4278 struct i915_vma *vma, *next;
673a394b 4279
f65c9168
PZ
4280 intel_runtime_pm_get(dev_priv);
4281
26e12f89
CW
4282 trace_i915_gem_object_destroy(obj);
4283
07fe0b12 4284 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4285 int ret;
4286
4287 vma->pin_count = 0;
4288 ret = i915_vma_unbind(vma);
07fe0b12
BW
4289 if (WARN_ON(ret == -ERESTARTSYS)) {
4290 bool was_interruptible;
1488fc08 4291
07fe0b12
BW
4292 was_interruptible = dev_priv->mm.interruptible;
4293 dev_priv->mm.interruptible = false;
1488fc08 4294
07fe0b12 4295 WARN_ON(i915_vma_unbind(vma));
1488fc08 4296
07fe0b12
BW
4297 dev_priv->mm.interruptible = was_interruptible;
4298 }
1488fc08
CW
4299 }
4300
00731155
CW
4301 i915_gem_object_detach_phys(obj);
4302
1d64ae71
BW
4303 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4304 * before progressing. */
4305 if (obj->stolen)
4306 i915_gem_object_unpin_pages(obj);
4307
401c29f6
BW
4308 if (WARN_ON(obj->pages_pin_count))
4309 obj->pages_pin_count = 0;
37e680a1 4310 i915_gem_object_put_pages(obj);
d8cb5086 4311 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4312 i915_gem_object_release_stolen(obj);
de151cf6 4313
9da3da66
CW
4314 BUG_ON(obj->pages);
4315
2f745ad3
CW
4316 if (obj->base.import_attach)
4317 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4318
05394f39
CW
4319 drm_gem_object_release(&obj->base);
4320 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4321
05394f39 4322 kfree(obj->bit_17);
42dcedd4 4323 i915_gem_object_free(obj);
f65c9168
PZ
4324
4325 intel_runtime_pm_put(dev_priv);
673a394b
EA
4326}
4327
e656a6cb 4328struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4329 struct i915_address_space *vm)
e656a6cb
DV
4330{
4331 struct i915_vma *vma;
4332 list_for_each_entry(vma, &obj->vma_list, vma_link)
4333 if (vma->vm == vm)
4334 return vma;
4335
4336 return NULL;
4337}
4338
2f633156
BW
4339void i915_gem_vma_destroy(struct i915_vma *vma)
4340{
4341 WARN_ON(vma->node.allocated);
aaa05667
CW
4342
4343 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4344 if (!list_empty(&vma->exec_list))
4345 return;
4346
8b9c2b94 4347 list_del(&vma->vma_link);
b93dab6e 4348
2f633156
BW
4349 kfree(vma);
4350}
4351
29105ccc 4352int
45c5f202 4353i915_gem_suspend(struct drm_device *dev)
29105ccc 4354{
3e31c6c0 4355 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4356 int ret = 0;
28dfe52a 4357
45c5f202 4358 mutex_lock(&dev->struct_mutex);
f7403347 4359 if (dev_priv->ums.mm_suspended)
45c5f202 4360 goto err;
28dfe52a 4361
b2da9fe5 4362 ret = i915_gpu_idle(dev);
f7403347 4363 if (ret)
45c5f202 4364 goto err;
f7403347 4365
b2da9fe5 4366 i915_gem_retire_requests(dev);
673a394b 4367
29105ccc 4368 /* Under UMS, be paranoid and evict. */
a39d7efc 4369 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4370 i915_gem_evict_everything(dev);
29105ccc 4371
29105ccc 4372 i915_kernel_lost_context(dev);
6dbe2772 4373 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4374
45c5f202
CW
4375 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4376 * We need to replace this with a semaphore, or something.
4377 * And not confound ums.mm_suspended!
4378 */
4379 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4380 DRIVER_MODESET);
4381 mutex_unlock(&dev->struct_mutex);
4382
4383 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4384 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4385 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4386
673a394b 4387 return 0;
45c5f202
CW
4388
4389err:
4390 mutex_unlock(&dev->struct_mutex);
4391 return ret;
673a394b
EA
4392}
4393
c3787e2e 4394int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4395{
c3787e2e 4396 struct drm_device *dev = ring->dev;
3e31c6c0 4397 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4398 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4399 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4400 int i, ret;
b9524a1e 4401
040d2baa 4402 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4403 return 0;
b9524a1e 4404
c3787e2e
BW
4405 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4406 if (ret)
4407 return ret;
b9524a1e 4408
c3787e2e
BW
4409 /*
4410 * Note: We do not worry about the concurrent register cacheline hang
4411 * here because no other code should access these registers other than
4412 * at initialization time.
4413 */
b9524a1e 4414 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4415 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4416 intel_ring_emit(ring, reg_base + i);
4417 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4418 }
4419
c3787e2e 4420 intel_ring_advance(ring);
b9524a1e 4421
c3787e2e 4422 return ret;
b9524a1e
BW
4423}
4424
f691e2f4
DV
4425void i915_gem_init_swizzling(struct drm_device *dev)
4426{
3e31c6c0 4427 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4428
11782b02 4429 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4430 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4431 return;
4432
4433 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4434 DISP_TILE_SURFACE_SWIZZLING);
4435
11782b02
DV
4436 if (IS_GEN5(dev))
4437 return;
4438
f691e2f4
DV
4439 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4440 if (IS_GEN6(dev))
6b26c86d 4441 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4442 else if (IS_GEN7(dev))
6b26c86d 4443 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4444 else if (IS_GEN8(dev))
4445 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4446 else
4447 BUG();
f691e2f4 4448}
e21af88d 4449
67b1b571
CW
4450static bool
4451intel_enable_blt(struct drm_device *dev)
4452{
4453 if (!HAS_BLT(dev))
4454 return false;
4455
4456 /* The blitter was dysfunctional on early prototypes */
4457 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4458 DRM_INFO("BLT not supported on this pre-production hardware;"
4459 " graphics performance will be degraded.\n");
4460 return false;
4461 }
4462
4463 return true;
4464}
4465
4fc7c971 4466static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4467{
4fc7c971 4468 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4469 int ret;
68f95ba9 4470
5c1143bb 4471 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4472 if (ret)
b6913e4b 4473 return ret;
68f95ba9
CW
4474
4475 if (HAS_BSD(dev)) {
5c1143bb 4476 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4477 if (ret)
4478 goto cleanup_render_ring;
d1b851fc 4479 }
68f95ba9 4480
67b1b571 4481 if (intel_enable_blt(dev)) {
549f7365
CW
4482 ret = intel_init_blt_ring_buffer(dev);
4483 if (ret)
4484 goto cleanup_bsd_ring;
4485 }
4486
9a8a2213
BW
4487 if (HAS_VEBOX(dev)) {
4488 ret = intel_init_vebox_ring_buffer(dev);
4489 if (ret)
4490 goto cleanup_blt_ring;
4491 }
4492
4493
99433931 4494 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4495 if (ret)
9a8a2213 4496 goto cleanup_vebox_ring;
4fc7c971
BW
4497
4498 return 0;
4499
9a8a2213
BW
4500cleanup_vebox_ring:
4501 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4502cleanup_blt_ring:
4503 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4504cleanup_bsd_ring:
4505 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4506cleanup_render_ring:
4507 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4508
4509 return ret;
4510}
4511
4512int
4513i915_gem_init_hw(struct drm_device *dev)
4514{
3e31c6c0 4515 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4516 int ret, i;
4fc7c971
BW
4517
4518 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4519 return -EIO;
4520
59124506 4521 if (dev_priv->ellc_size)
05e21cc4 4522 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4523
0bf21347
VS
4524 if (IS_HASWELL(dev))
4525 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4526 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4527
88a2b2a3 4528 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4529 if (IS_IVYBRIDGE(dev)) {
4530 u32 temp = I915_READ(GEN7_MSG_CTL);
4531 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4532 I915_WRITE(GEN7_MSG_CTL, temp);
4533 } else if (INTEL_INFO(dev)->gen >= 7) {
4534 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4535 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4536 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4537 }
88a2b2a3
BW
4538 }
4539
4fc7c971
BW
4540 i915_gem_init_swizzling(dev);
4541
4542 ret = i915_gem_init_rings(dev);
99433931
MK
4543 if (ret)
4544 return ret;
4545
c3787e2e
BW
4546 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4547 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4548
254f965c 4549 /*
2fa48d8d
BW
4550 * XXX: Contexts should only be initialized once. Doing a switch to the
4551 * default context switch however is something we'd like to do after
4552 * reset or thaw (the latter may not actually be necessary for HW, but
4553 * goes with our code better). Context switching requires rings (for
4554 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4555 */
2fa48d8d 4556 ret = i915_gem_context_enable(dev_priv);
8245be31 4557 if (ret) {
2fa48d8d
BW
4558 DRM_ERROR("Context enable failed %d\n", ret);
4559 goto err_out;
b7c36d25 4560 }
e21af88d 4561
68f95ba9 4562 return 0;
2fa48d8d
BW
4563
4564err_out:
4565 i915_gem_cleanup_ringbuffer(dev);
4566 return ret;
8187a2b7
ZN
4567}
4568
1070a42b
CW
4569int i915_gem_init(struct drm_device *dev)
4570{
4571 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4572 int ret;
4573
1070a42b 4574 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4575
4576 if (IS_VALLEYVIEW(dev)) {
4577 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4578 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4579 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4580 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4581 }
4582
d7e5008f 4583 i915_gem_init_global_gtt(dev);
d62b4892 4584
2fa48d8d 4585 ret = i915_gem_context_init(dev);
e3848694
MK
4586 if (ret) {
4587 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4588 return ret;
e3848694 4589 }
2fa48d8d 4590
1070a42b
CW
4591 ret = i915_gem_init_hw(dev);
4592 mutex_unlock(&dev->struct_mutex);
4593 if (ret) {
bdf4fd7e 4594 WARN_ON(dev_priv->mm.aliasing_ppgtt);
2fa48d8d 4595 i915_gem_context_fini(dev);
c39538a8 4596 drm_mm_takedown(&dev_priv->gtt.base.mm);
1070a42b
CW
4597 return ret;
4598 }
4599
53ca26ca
DV
4600 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4601 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4602 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4603 return 0;
4604}
4605
8187a2b7
ZN
4606void
4607i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4608{
3e31c6c0 4609 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4610 struct intel_ring_buffer *ring;
1ec14ad3 4611 int i;
8187a2b7 4612
b4519513
CW
4613 for_each_ring(ring, dev_priv, i)
4614 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4615}
4616
673a394b
EA
4617int
4618i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4619 struct drm_file *file_priv)
4620{
db1b76ca 4621 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4622 int ret;
673a394b 4623
79e53945
JB
4624 if (drm_core_check_feature(dev, DRIVER_MODESET))
4625 return 0;
4626
1f83fee0 4627 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4628 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4629 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4630 }
4631
673a394b 4632 mutex_lock(&dev->struct_mutex);
db1b76ca 4633 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4634
f691e2f4 4635 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4636 if (ret != 0) {
4637 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4638 return ret;
d816f6ac 4639 }
9bb2d6f9 4640
5cef07e1 4641 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4642 mutex_unlock(&dev->struct_mutex);
dbb19d30 4643
5f35308b
CW
4644 ret = drm_irq_install(dev);
4645 if (ret)
4646 goto cleanup_ringbuffer;
dbb19d30 4647
673a394b 4648 return 0;
5f35308b
CW
4649
4650cleanup_ringbuffer:
4651 mutex_lock(&dev->struct_mutex);
4652 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4653 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4654 mutex_unlock(&dev->struct_mutex);
4655
4656 return ret;
673a394b
EA
4657}
4658
4659int
4660i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4661 struct drm_file *file_priv)
4662{
79e53945
JB
4663 if (drm_core_check_feature(dev, DRIVER_MODESET))
4664 return 0;
4665
dbb19d30 4666 drm_irq_uninstall(dev);
db1b76ca 4667
45c5f202 4668 return i915_gem_suspend(dev);
673a394b
EA
4669}
4670
4671void
4672i915_gem_lastclose(struct drm_device *dev)
4673{
4674 int ret;
673a394b 4675
e806b495
EA
4676 if (drm_core_check_feature(dev, DRIVER_MODESET))
4677 return;
4678
45c5f202 4679 ret = i915_gem_suspend(dev);
6dbe2772
KP
4680 if (ret)
4681 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4682}
4683
64193406
CW
4684static void
4685init_ring_lists(struct intel_ring_buffer *ring)
4686{
4687 INIT_LIST_HEAD(&ring->active_list);
4688 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4689}
4690
7e0d96bc
BW
4691void i915_init_vm(struct drm_i915_private *dev_priv,
4692 struct i915_address_space *vm)
fc8c067e 4693{
7e0d96bc
BW
4694 if (!i915_is_ggtt(vm))
4695 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4696 vm->dev = dev_priv->dev;
4697 INIT_LIST_HEAD(&vm->active_list);
4698 INIT_LIST_HEAD(&vm->inactive_list);
4699 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4700 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4701}
4702
673a394b
EA
4703void
4704i915_gem_load(struct drm_device *dev)
4705{
3e31c6c0 4706 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4707 int i;
4708
4709 dev_priv->slab =
4710 kmem_cache_create("i915_gem_object",
4711 sizeof(struct drm_i915_gem_object), 0,
4712 SLAB_HWCACHE_ALIGN,
4713 NULL);
673a394b 4714
fc8c067e
BW
4715 INIT_LIST_HEAD(&dev_priv->vm_list);
4716 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4717
a33afea5 4718 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4719 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4720 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4721 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4722 for (i = 0; i < I915_NUM_RINGS; i++)
4723 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4724 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4725 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4726 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4727 i915_gem_retire_work_handler);
b29c19b6
CW
4728 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4729 i915_gem_idle_work_handler);
1f83fee0 4730 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4731
94400120
DA
4732 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4733 if (IS_GEN3(dev)) {
50743298
DV
4734 I915_WRITE(MI_ARB_STATE,
4735 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4736 }
4737
72bfa19c
CW
4738 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4739
de151cf6 4740 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4741 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4742 dev_priv->fence_reg_start = 3;
de151cf6 4743
42b5aeab
VS
4744 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4745 dev_priv->num_fence_regs = 32;
4746 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4747 dev_priv->num_fence_regs = 16;
4748 else
4749 dev_priv->num_fence_regs = 8;
4750
b5aa8a0f 4751 /* Initialize fence registers to zero */
19b2dbde
CW
4752 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4753 i915_gem_restore_fences(dev);
10ed13e4 4754
673a394b 4755 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4756 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4757
ce453d81
CW
4758 dev_priv->mm.interruptible = true;
4759
7dc19d5a
DC
4760 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4761 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4762 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4763 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4764}
71acb5eb 4765
f787a5f5 4766void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4767{
f787a5f5 4768 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4769
b29c19b6
CW
4770 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4771
b962442e
EA
4772 /* Clean up our request list when the client is going away, so that
4773 * later retire_requests won't dereference our soon-to-be-gone
4774 * file_priv.
4775 */
1c25595f 4776 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4777 while (!list_empty(&file_priv->mm.request_list)) {
4778 struct drm_i915_gem_request *request;
4779
4780 request = list_first_entry(&file_priv->mm.request_list,
4781 struct drm_i915_gem_request,
4782 client_list);
4783 list_del(&request->client_list);
4784 request->file_priv = NULL;
4785 }
1c25595f 4786 spin_unlock(&file_priv->mm.lock);
b962442e 4787}
31169714 4788
b29c19b6
CW
4789static void
4790i915_gem_file_idle_work_handler(struct work_struct *work)
4791{
4792 struct drm_i915_file_private *file_priv =
4793 container_of(work, typeof(*file_priv), mm.idle_work.work);
4794
4795 atomic_set(&file_priv->rps_wait_boost, false);
4796}
4797
4798int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4799{
4800 struct drm_i915_file_private *file_priv;
e422b888 4801 int ret;
b29c19b6
CW
4802
4803 DRM_DEBUG_DRIVER("\n");
4804
4805 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4806 if (!file_priv)
4807 return -ENOMEM;
4808
4809 file->driver_priv = file_priv;
4810 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4811 file_priv->file = file;
b29c19b6
CW
4812
4813 spin_lock_init(&file_priv->mm.lock);
4814 INIT_LIST_HEAD(&file_priv->mm.request_list);
4815 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4816 i915_gem_file_idle_work_handler);
4817
e422b888
BW
4818 ret = i915_gem_context_open(dev, file);
4819 if (ret)
4820 kfree(file_priv);
b29c19b6 4821
e422b888 4822 return ret;
b29c19b6
CW
4823}
4824
5774506f
CW
4825static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4826{
4827 if (!mutex_is_locked(mutex))
4828 return false;
4829
4830#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4831 return mutex->owner == task;
4832#else
4833 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4834 return false;
4835#endif
4836}
4837
7dc19d5a
DC
4838static unsigned long
4839i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4840{
17250b71
CW
4841 struct drm_i915_private *dev_priv =
4842 container_of(shrinker,
4843 struct drm_i915_private,
4844 mm.inactive_shrinker);
4845 struct drm_device *dev = dev_priv->dev;
6c085a72 4846 struct drm_i915_gem_object *obj;
5774506f 4847 bool unlock = true;
7dc19d5a 4848 unsigned long count;
17250b71 4849
5774506f
CW
4850 if (!mutex_trylock(&dev->struct_mutex)) {
4851 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4852 return 0;
5774506f 4853
677feac2 4854 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4855 return 0;
677feac2 4856
5774506f
CW
4857 unlock = false;
4858 }
31169714 4859
7dc19d5a 4860 count = 0;
35c20a60 4861 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4862 if (obj->pages_pin_count == 0)
7dc19d5a 4863 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4864
4865 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4866 if (obj->active)
4867 continue;
4868
d7f46fc4 4869 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4870 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4871 }
17250b71 4872
5774506f
CW
4873 if (unlock)
4874 mutex_unlock(&dev->struct_mutex);
d9973b43 4875
7dc19d5a 4876 return count;
31169714 4877}
a70a3148
BW
4878
4879/* All the new VM stuff */
4880unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4881 struct i915_address_space *vm)
4882{
4883 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4884 struct i915_vma *vma;
4885
6f425321
BW
4886 if (!dev_priv->mm.aliasing_ppgtt ||
4887 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4888 vm = &dev_priv->gtt.base;
4889
4890 BUG_ON(list_empty(&o->vma_list));
4891 list_for_each_entry(vma, &o->vma_list, vma_link) {
4892 if (vma->vm == vm)
4893 return vma->node.start;
4894
4895 }
4896 return -1;
4897}
4898
4899bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4900 struct i915_address_space *vm)
4901{
4902 struct i915_vma *vma;
4903
4904 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4905 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4906 return true;
4907
4908 return false;
4909}
4910
4911bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4912{
5a1d5eb0 4913 struct i915_vma *vma;
a70a3148 4914
5a1d5eb0
CW
4915 list_for_each_entry(vma, &o->vma_list, vma_link)
4916 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4917 return true;
4918
4919 return false;
4920}
4921
4922unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4923 struct i915_address_space *vm)
4924{
4925 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4926 struct i915_vma *vma;
4927
6f425321
BW
4928 if (!dev_priv->mm.aliasing_ppgtt ||
4929 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4930 vm = &dev_priv->gtt.base;
4931
4932 BUG_ON(list_empty(&o->vma_list));
4933
4934 list_for_each_entry(vma, &o->vma_list, vma_link)
4935 if (vma->vm == vm)
4936 return vma->node.size;
4937
4938 return 0;
4939}
4940
7dc19d5a
DC
4941static unsigned long
4942i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4943{
4944 struct drm_i915_private *dev_priv =
4945 container_of(shrinker,
4946 struct drm_i915_private,
4947 mm.inactive_shrinker);
4948 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
4949 unsigned long freed;
4950 bool unlock = true;
4951
4952 if (!mutex_trylock(&dev->struct_mutex)) {
4953 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4954 return SHRINK_STOP;
7dc19d5a
DC
4955
4956 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4957 return SHRINK_STOP;
7dc19d5a
DC
4958
4959 unlock = false;
4960 }
4961
d9973b43
CW
4962 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
4963 if (freed < sc->nr_to_scan)
4964 freed += __i915_gem_shrink(dev_priv,
4965 sc->nr_to_scan - freed,
4966 false);
4967 if (freed < sc->nr_to_scan)
7dc19d5a
DC
4968 freed += i915_gem_shrink_all(dev_priv);
4969
4970 if (unlock)
4971 mutex_unlock(&dev->struct_mutex);
d9973b43 4972
7dc19d5a
DC
4973 return freed;
4974}
5c2abbea
BW
4975
4976struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4977{
4978 struct i915_vma *vma;
4979
4980 if (WARN_ON(list_empty(&obj->vma_list)))
4981 return NULL;
4982
4983 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 4984 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
4985 return NULL;
4986
4987 return vma;
4988}
This page took 1.064714 seconds and 5 git commands to generate.