drm/i915/skl: SKL FBC enablement
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43
CW
63static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
00731155
CW
212static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213{
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241#ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243#endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246}
247
248int
249i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251{
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276#ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278#endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286#ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288#endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305}
306
307static int
308i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311{
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332}
333
42dcedd4
CW
334void *i915_gem_object_alloc(struct drm_device *dev)
335{
336 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
338}
339
340void i915_gem_object_free(struct drm_i915_gem_object *obj)
341{
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344}
345
ff72145b
DA
346static int
347i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
673a394b 351{
05394f39 352 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
353 int ret;
354 u32 handle;
673a394b 355
ff72145b 356 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
357 if (size == 0)
358 return -EINVAL;
673a394b
EA
359
360 /* Allocate the new object */
ff72145b 361 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
362 if (obj == NULL)
363 return -ENOMEM;
364
05394f39 365 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 366 /* drop reference from allocate - handle holds it now */
d861e338
DV
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
202f2fef 370
ff72145b 371 *handle_p = handle;
673a394b
EA
372 return 0;
373}
374
ff72145b
DA
375int
376i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379{
380 /* have to work out size/pitch and return them */
de45eaf7 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385}
386
ff72145b
DA
387/**
388 * Creates a new mm object and returns a handle to it.
389 */
390int
391i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393{
394 struct drm_i915_gem_create *args = data;
63ed2cb2 395
ff72145b
DA
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398}
399
8461d226
DV
400static inline int
401__copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404{
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424}
425
8c59967c 426static inline int
4f0c7cfb
BW
427__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
8c59967c
DV
429 int length)
430{
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450}
451
4c914c0c
BV
452/*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459{
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
c8725f3d
CW
477
478 i915_gem_object_retire(obj);
4c914c0c
BV
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488}
489
d174bd64
DV
490/* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
eb01459f 493static int
d174bd64
DV
494shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497{
498 char *vaddr;
499 int ret;
500
e7e58eb5 501 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
f60d7f0c 513 return ret ? -EFAULT : 0;
d174bd64
DV
514}
515
23c18c71
DV
516static void
517shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519{
e7e58eb5 520 if (unlikely(swizzled)) {
23c18c71
DV
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536}
537
d174bd64
DV
538/* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540static int
541shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544{
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
23c18c71
DV
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
d174bd64
DV
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
f60d7f0c 564 return ret ? - EFAULT : 0;
d174bd64
DV
565}
566
eb01459f 567static int
dbf7bff0
DV
568i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
eb01459f 572{
8461d226 573 char __user *user_data;
eb01459f 574 ssize_t remain;
8461d226 575 loff_t offset;
eb2c0c81 576 int shmem_page_offset, page_length, ret = 0;
8461d226 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 578 int prefaulted = 0;
8489731c 579 int needs_clflush = 0;
67d5a50c 580 struct sg_page_iter sg_iter;
eb01459f 581
2bb4629a 582 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
583 remain = args->size;
584
8461d226 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 586
4c914c0c 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
588 if (ret)
589 return ret;
590
8461d226 591 offset = args->offset;
eb01459f 592
67d5a50c
ID
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
2db76d7c 595 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
596
597 if (remain <= 0)
598 break;
599
eb01459f
EA
600 /* Operation in this page
601 *
eb01459f 602 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
603 * page_length = bytes to copy for this page
604 */
c8cbbb8b 605 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 609
8461d226
DV
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
d174bd64
DV
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
dbf7bff0 618
dbf7bff0
DV
619 mutex_unlock(&dev->struct_mutex);
620
d330a953 621 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 622 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
eb01459f 630
d174bd64
DV
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
eb01459f 634
dbf7bff0 635 mutex_lock(&dev->struct_mutex);
f60d7f0c 636
f60d7f0c 637 if (ret)
8461d226 638 goto out;
8461d226 639
17793c9a 640next_page:
eb01459f 641 remain -= page_length;
8461d226 642 user_data += page_length;
eb01459f
EA
643 offset += page_length;
644 }
645
4f27b75d 646out:
f60d7f0c
CW
647 i915_gem_object_unpin_pages(obj);
648
eb01459f
EA
649 return ret;
650}
651
673a394b
EA
652/**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657int
658i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 659 struct drm_file *file)
673a394b
EA
660{
661 struct drm_i915_gem_pread *args = data;
05394f39 662 struct drm_i915_gem_object *obj;
35b62a89 663 int ret = 0;
673a394b 664
51311d0a
CW
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
2bb4629a 669 to_user_ptr(args->data_ptr),
51311d0a
CW
670 args->size))
671 return -EFAULT;
672
4f27b75d 673 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 674 if (ret)
4f27b75d 675 return ret;
673a394b 676
05394f39 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 678 if (&obj->base == NULL) {
1d7cfea1
CW
679 ret = -ENOENT;
680 goto unlock;
4f27b75d 681 }
673a394b 682
7dcd2499 683 /* Bounds check source. */
05394f39
CW
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
ce9d419d 686 ret = -EINVAL;
35b62a89 687 goto out;
ce9d419d
CW
688 }
689
1286ff73
DV
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
db53a302
CW
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
dbf7bff0 700 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 701
35b62a89 702out:
05394f39 703 drm_gem_object_unreference(&obj->base);
1d7cfea1 704unlock:
4f27b75d 705 mutex_unlock(&dev->struct_mutex);
eb01459f 706 return ret;
673a394b
EA
707}
708
0839ccb8
KP
709/* This is the fast write path which cannot handle
710 * page faults in the source data
9b7530cc 711 */
0839ccb8
KP
712
713static inline int
714fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
9b7530cc 718{
4f0c7cfb
BW
719 void __iomem *vaddr_atomic;
720 void *vaddr;
0839ccb8 721 unsigned long unwritten;
9b7530cc 722
3e4d3af5 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 727 user_data, length);
3e4d3af5 728 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 729 return unwritten;
0839ccb8
KP
730}
731
3de09aa3
EA
732/**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
673a394b 736static int
05394f39
CW
737i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
3de09aa3 739 struct drm_i915_gem_pwrite *args,
05394f39 740 struct drm_file *file)
673a394b 741{
3e31c6c0 742 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 743 ssize_t remain;
0839ccb8 744 loff_t offset, page_base;
673a394b 745 char __user *user_data;
935aaa69
DV
746 int page_offset, page_length, ret;
747
1ec9e26d 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
673a394b 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
673a394b 761 remain = args->size;
673a394b 762
f343c5f6 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
0839ccb8
KP
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
673a394b 771 */
c8cbbb8b
CW
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
0839ccb8
KP
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
0839ccb8 778 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
0839ccb8 781 */
5d4545ae 782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
673a394b 787
0839ccb8
KP
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
673a394b 791 }
673a394b 792
935aaa69 793out_unpin:
d7f46fc4 794 i915_gem_object_ggtt_unpin(obj);
935aaa69 795out:
3de09aa3 796 return ret;
673a394b
EA
797}
798
d174bd64
DV
799/* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
3043c60c 803static int
d174bd64
DV
804shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
673a394b 809{
d174bd64 810 char *vaddr;
673a394b 811 int ret;
3de09aa3 812
e7e58eb5 813 if (unlikely(page_do_bit17_swizzling))
d174bd64 814 return -EINVAL;
3de09aa3 815
d174bd64
DV
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
c2831a94
CW
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
d174bd64
DV
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
3de09aa3 826
755d2218 827 return ret ? -EFAULT : 0;
3de09aa3
EA
828}
829
d174bd64
DV
830/* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
3043c60c 832static int
d174bd64
DV
833shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
673a394b 838{
d174bd64
DV
839 char *vaddr;
840 int ret;
e5281ccd 841
d174bd64 842 vaddr = kmap(page);
e7e58eb5 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
d174bd64
DV
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
849 user_data,
850 page_length);
d174bd64
DV
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
23c18c71
DV
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
d174bd64 859 kunmap(page);
40123c1f 860
755d2218 861 return ret ? -EFAULT : 0;
40123c1f
EA
862}
863
40123c1f 864static int
e244a443
DV
865i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
40123c1f 869{
40123c1f 870 ssize_t remain;
8c59967c
DV
871 loff_t offset;
872 char __user *user_data;
eb2c0c81 873 int shmem_page_offset, page_length, ret = 0;
8c59967c 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 875 int hit_slowpath = 0;
58642885
DV
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
67d5a50c 878 struct sg_page_iter sg_iter;
40123c1f 879
2bb4629a 880 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
881 remain = args->size;
882
8c59967c 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
58642885
DV
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
2c22569b 890 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
c8725f3d
CW
894
895 i915_gem_object_retire(obj);
58642885 896 }
c76ce038
CW
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 902
755d2218
CW
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
673a394b 909 offset = args->offset;
05394f39 910 obj->dirty = 1;
673a394b 911
67d5a50c
ID
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
2db76d7c 914 struct page *page = sg_page_iter_page(&sg_iter);
58642885 915 int partial_cacheline_write;
e5281ccd 916
9da3da66
CW
917 if (remain <= 0)
918 break;
919
40123c1f
EA
920 /* Operation in this page
921 *
40123c1f 922 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
923 * page_length = bytes to copy for this page
924 */
c8cbbb8b 925 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 930
58642885
DV
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
8c59967c
DV
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
d174bd64
DV
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
e244a443
DV
947
948 hit_slowpath = 1;
e244a443 949 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
40123c1f 954
e244a443 955 mutex_lock(&dev->struct_mutex);
755d2218 956
755d2218 957 if (ret)
8c59967c 958 goto out;
8c59967c 959
17793c9a 960next_page:
40123c1f 961 remain -= page_length;
8c59967c 962 user_data += page_length;
40123c1f 963 offset += page_length;
673a394b
EA
964 }
965
fbd5a26d 966out:
755d2218
CW
967 i915_gem_object_unpin_pages(obj);
968
e244a443 969 if (hit_slowpath) {
8dcf015e
DV
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
e244a443 979 }
8c59967c 980 }
673a394b 981
58642885 982 if (needs_clflush_after)
e76e9aeb 983 i915_gem_chipset_flush(dev);
58642885 984
40123c1f 985 return ret;
673a394b
EA
986}
987
988/**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993int
994i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_pwrite *args = data;
05394f39 998 struct drm_i915_gem_object *obj;
51311d0a
CW
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
2bb4629a 1005 to_user_ptr(args->data_ptr),
51311d0a
CW
1006 args->size))
1007 return -EFAULT;
1008
d330a953 1009 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
673a394b 1015
fbd5a26d 1016 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1017 if (ret)
fbd5a26d 1018 return ret;
1d7cfea1 1019
05394f39 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1021 if (&obj->base == NULL) {
1d7cfea1
CW
1022 ret = -ENOENT;
1023 goto unlock;
fbd5a26d 1024 }
673a394b 1025
7dcd2499 1026 /* Bounds check destination. */
05394f39
CW
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
ce9d419d 1029 ret = -EINVAL;
35b62a89 1030 goto out;
ce9d419d
CW
1031 }
1032
1286ff73
DV
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
db53a302
CW
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
935aaa69 1043 ret = -EFAULT;
673a394b
EA
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
00731155
CW
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1052 goto out;
1053 }
1054
2c22569b
CW
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
fbd5a26d 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1062 }
673a394b 1063
86a1ee26 1064 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1066
35b62a89 1067out:
05394f39 1068 drm_gem_object_unreference(&obj->base);
1d7cfea1 1069unlock:
fbd5a26d 1070 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1071 return ret;
1072}
1073
b361237b 1074int
33196ded 1075i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1076 bool interruptible)
1077{
1f83fee0 1078 if (i915_reset_in_progress(error)) {
b361237b
CW
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1f83fee0
DV
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
b361237b
CW
1086 return -EIO;
1087
6689c167
MA
1088 /*
1089 * Check if GPU Reset is in progress - we need intel_ring_begin
1090 * to work properly to reinit the hw state while the gpu is
1091 * still marked as reset-in-progress. Handle this with a flag.
1092 */
1093 if (!error->reload_in_reset)
1094 return -EAGAIN;
b361237b
CW
1095 }
1096
1097 return 0;
1098}
1099
1100/*
1101 * Compare seqno against outstanding lazy request. Emit a request if they are
1102 * equal.
1103 */
84c33a64 1104int
a4872ba6 1105i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1106{
1107 int ret;
1108
1109 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1110
1111 ret = 0;
1823521d 1112 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1113 ret = i915_add_request(ring, NULL);
b361237b
CW
1114
1115 return ret;
1116}
1117
094f9a54
CW
1118static void fake_irq(unsigned long data)
1119{
1120 wake_up_process((struct task_struct *)data);
1121}
1122
1123static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1124 struct intel_engine_cs *ring)
094f9a54
CW
1125{
1126 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1127}
1128
b29c19b6
CW
1129static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1130{
1131 if (file_priv == NULL)
1132 return true;
1133
1134 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1135}
1136
b361237b
CW
1137/**
1138 * __wait_seqno - wait until execution of seqno has finished
1139 * @ring: the ring expected to report seqno
1140 * @seqno: duh!
f69061be 1141 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1142 * @interruptible: do an interruptible wait (normally yes)
1143 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1144 *
f69061be
DV
1145 * Note: It is of utmost importance that the passed in seqno and reset_counter
1146 * values have been read by the caller in an smp safe manner. Where read-side
1147 * locks are involved, it is sufficient to read the reset_counter before
1148 * unlocking the lock that protects the seqno. For lockless tricks, the
1149 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1150 * inserted.
1151 *
b361237b
CW
1152 * Returns 0 if the seqno was found within the alloted time. Else returns the
1153 * errno with remaining time filled in timeout argument.
1154 */
a4872ba6 1155static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1156 unsigned reset_counter,
b29c19b6 1157 bool interruptible,
5ed0bdf2 1158 s64 *timeout,
b29c19b6 1159 struct drm_i915_file_private *file_priv)
b361237b 1160{
3d13ef2e 1161 struct drm_device *dev = ring->dev;
3e31c6c0 1162 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1163 const bool irq_test_in_progress =
1164 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1165 DEFINE_WAIT(wait);
47e9766d 1166 unsigned long timeout_expire;
5ed0bdf2 1167 s64 before, now;
b361237b
CW
1168 int ret;
1169
9df7575f 1170 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1171
b361237b
CW
1172 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1173 return 0;
1174
5ed0bdf2 1175 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1176
ec5cc0f9 1177 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1178 gen6_rps_boost(dev_priv);
1179 if (file_priv)
1180 mod_delayed_work(dev_priv->wq,
1181 &file_priv->mm.idle_work,
1182 msecs_to_jiffies(100));
1183 }
1184
168c3f21 1185 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1186 return -ENODEV;
1187
094f9a54
CW
1188 /* Record current time in case interrupted by signal, or wedged */
1189 trace_i915_gem_request_wait_begin(ring, seqno);
5ed0bdf2 1190 before = ktime_get_raw_ns();
094f9a54
CW
1191 for (;;) {
1192 struct timer_list timer;
b361237b 1193
094f9a54
CW
1194 prepare_to_wait(&ring->irq_queue, &wait,
1195 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1196
f69061be
DV
1197 /* We need to check whether any gpu reset happened in between
1198 * the caller grabbing the seqno and now ... */
094f9a54
CW
1199 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1200 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1201 * is truely gone. */
1202 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1203 if (ret == 0)
1204 ret = -EAGAIN;
1205 break;
1206 }
f69061be 1207
094f9a54
CW
1208 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1209 ret = 0;
1210 break;
1211 }
b361237b 1212
094f9a54
CW
1213 if (interruptible && signal_pending(current)) {
1214 ret = -ERESTARTSYS;
1215 break;
1216 }
1217
47e9766d 1218 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1219 ret = -ETIME;
1220 break;
1221 }
1222
1223 timer.function = NULL;
1224 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1225 unsigned long expire;
1226
094f9a54 1227 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1228 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1229 mod_timer(&timer, expire);
1230 }
1231
5035c275 1232 io_schedule();
094f9a54 1233
094f9a54
CW
1234 if (timer.function) {
1235 del_singleshot_timer_sync(&timer);
1236 destroy_timer_on_stack(&timer);
1237 }
1238 }
5ed0bdf2 1239 now = ktime_get_raw_ns();
094f9a54 1240 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1241
168c3f21
MK
1242 if (!irq_test_in_progress)
1243 ring->irq_put(ring);
094f9a54
CW
1244
1245 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1246
1247 if (timeout) {
5ed0bdf2
TG
1248 s64 tres = *timeout - (now - before);
1249
1250 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1251 }
1252
094f9a54 1253 return ret;
b361237b
CW
1254}
1255
1256/**
1257 * Waits for a sequence number to be signaled, and cleans up the
1258 * request and object lists appropriately for that event.
1259 */
1260int
a4872ba6 1261i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1262{
1263 struct drm_device *dev = ring->dev;
1264 struct drm_i915_private *dev_priv = dev->dev_private;
1265 bool interruptible = dev_priv->mm.interruptible;
1266 int ret;
1267
1268 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1269 BUG_ON(seqno == 0);
1270
33196ded 1271 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1272 if (ret)
1273 return ret;
1274
1275 ret = i915_gem_check_olr(ring, seqno);
1276 if (ret)
1277 return ret;
1278
f69061be
DV
1279 return __wait_seqno(ring, seqno,
1280 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1281 interruptible, NULL, NULL);
b361237b
CW
1282}
1283
d26e3af8
CW
1284static int
1285i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1286 struct intel_engine_cs *ring)
d26e3af8 1287{
c8725f3d
CW
1288 if (!obj->active)
1289 return 0;
d26e3af8
CW
1290
1291 /* Manually manage the write flush as we may have not yet
1292 * retired the buffer.
1293 *
1294 * Note that the last_write_seqno is always the earlier of
1295 * the two (read/write) seqno, so if we haved successfully waited,
1296 * we know we have passed the last write.
1297 */
1298 obj->last_write_seqno = 0;
d26e3af8
CW
1299
1300 return 0;
1301}
1302
b361237b
CW
1303/**
1304 * Ensures that all rendering to the object has completed and the object is
1305 * safe to unbind from the GTT or access from the CPU.
1306 */
1307static __must_check int
1308i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1309 bool readonly)
1310{
a4872ba6 1311 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1312 u32 seqno;
1313 int ret;
1314
1315 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1316 if (seqno == 0)
1317 return 0;
1318
1319 ret = i915_wait_seqno(ring, seqno);
1320 if (ret)
1321 return ret;
1322
d26e3af8 1323 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1324}
1325
3236f57a
CW
1326/* A nonblocking variant of the above wait. This is a highly dangerous routine
1327 * as the object state may change during this call.
1328 */
1329static __must_check int
1330i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1331 struct drm_i915_file_private *file_priv,
3236f57a
CW
1332 bool readonly)
1333{
1334 struct drm_device *dev = obj->base.dev;
1335 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1336 struct intel_engine_cs *ring = obj->ring;
f69061be 1337 unsigned reset_counter;
3236f57a
CW
1338 u32 seqno;
1339 int ret;
1340
1341 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1342 BUG_ON(!dev_priv->mm.interruptible);
1343
1344 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1345 if (seqno == 0)
1346 return 0;
1347
33196ded 1348 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1349 if (ret)
1350 return ret;
1351
1352 ret = i915_gem_check_olr(ring, seqno);
1353 if (ret)
1354 return ret;
1355
f69061be 1356 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1357 mutex_unlock(&dev->struct_mutex);
6e4930f6 1358 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1359 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1360 if (ret)
1361 return ret;
3236f57a 1362
d26e3af8 1363 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1364}
1365
673a394b 1366/**
2ef7eeaa
EA
1367 * Called when user space prepares to use an object with the CPU, either
1368 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1369 */
1370int
1371i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1372 struct drm_file *file)
673a394b
EA
1373{
1374 struct drm_i915_gem_set_domain *args = data;
05394f39 1375 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1376 uint32_t read_domains = args->read_domains;
1377 uint32_t write_domain = args->write_domain;
673a394b
EA
1378 int ret;
1379
2ef7eeaa 1380 /* Only handle setting domains to types used by the CPU. */
21d509e3 1381 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1382 return -EINVAL;
1383
21d509e3 1384 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1385 return -EINVAL;
1386
1387 /* Having something in the write domain implies it's in the read
1388 * domain, and only that read domain. Enforce that in the request.
1389 */
1390 if (write_domain != 0 && read_domains != write_domain)
1391 return -EINVAL;
1392
76c1dec1 1393 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1394 if (ret)
76c1dec1 1395 return ret;
1d7cfea1 1396
05394f39 1397 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1398 if (&obj->base == NULL) {
1d7cfea1
CW
1399 ret = -ENOENT;
1400 goto unlock;
76c1dec1 1401 }
673a394b 1402
3236f57a
CW
1403 /* Try to flush the object off the GPU without holding the lock.
1404 * We will repeat the flush holding the lock in the normal manner
1405 * to catch cases where we are gazumped.
1406 */
6e4930f6
CW
1407 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1408 file->driver_priv,
1409 !write_domain);
3236f57a
CW
1410 if (ret)
1411 goto unref;
1412
2ef7eeaa
EA
1413 if (read_domains & I915_GEM_DOMAIN_GTT) {
1414 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1415
1416 /* Silently promote "you're not bound, there was nothing to do"
1417 * to success, since the client was just asking us to
1418 * make sure everything was done.
1419 */
1420 if (ret == -EINVAL)
1421 ret = 0;
2ef7eeaa 1422 } else {
e47c68e9 1423 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1424 }
1425
3236f57a 1426unref:
05394f39 1427 drm_gem_object_unreference(&obj->base);
1d7cfea1 1428unlock:
673a394b
EA
1429 mutex_unlock(&dev->struct_mutex);
1430 return ret;
1431}
1432
1433/**
1434 * Called when user space has done writes to this buffer
1435 */
1436int
1437i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1438 struct drm_file *file)
673a394b
EA
1439{
1440 struct drm_i915_gem_sw_finish *args = data;
05394f39 1441 struct drm_i915_gem_object *obj;
673a394b
EA
1442 int ret = 0;
1443
76c1dec1 1444 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1445 if (ret)
76c1dec1 1446 return ret;
1d7cfea1 1447
05394f39 1448 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1449 if (&obj->base == NULL) {
1d7cfea1
CW
1450 ret = -ENOENT;
1451 goto unlock;
673a394b
EA
1452 }
1453
673a394b 1454 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1455 if (obj->pin_display)
1456 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1457
05394f39 1458 drm_gem_object_unreference(&obj->base);
1d7cfea1 1459unlock:
673a394b
EA
1460 mutex_unlock(&dev->struct_mutex);
1461 return ret;
1462}
1463
1464/**
1465 * Maps the contents of an object, returning the address it is mapped
1466 * into.
1467 *
1468 * While the mapping holds a reference on the contents of the object, it doesn't
1469 * imply a ref on the object itself.
1470 */
1471int
1472i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1473 struct drm_file *file)
673a394b
EA
1474{
1475 struct drm_i915_gem_mmap *args = data;
1476 struct drm_gem_object *obj;
673a394b
EA
1477 unsigned long addr;
1478
05394f39 1479 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1480 if (obj == NULL)
bf79cb91 1481 return -ENOENT;
673a394b 1482
1286ff73
DV
1483 /* prime objects have no backing filp to GEM mmap
1484 * pages from.
1485 */
1486 if (!obj->filp) {
1487 drm_gem_object_unreference_unlocked(obj);
1488 return -EINVAL;
1489 }
1490
6be5ceb0 1491 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1492 PROT_READ | PROT_WRITE, MAP_SHARED,
1493 args->offset);
bc9025bd 1494 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1495 if (IS_ERR((void *)addr))
1496 return addr;
1497
1498 args->addr_ptr = (uint64_t) addr;
1499
1500 return 0;
1501}
1502
de151cf6
JB
1503/**
1504 * i915_gem_fault - fault a page into the GTT
1505 * vma: VMA in question
1506 * vmf: fault info
1507 *
1508 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1509 * from userspace. The fault handler takes care of binding the object to
1510 * the GTT (if needed), allocating and programming a fence register (again,
1511 * only if needed based on whether the old reg is still valid or the object
1512 * is tiled) and inserting a new PTE into the faulting process.
1513 *
1514 * Note that the faulting process may involve evicting existing objects
1515 * from the GTT and/or fence registers to make room. So performance may
1516 * suffer if the GTT working set is large or there are few fence registers
1517 * left.
1518 */
1519int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1520{
05394f39
CW
1521 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1522 struct drm_device *dev = obj->base.dev;
3e31c6c0 1523 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1524 pgoff_t page_offset;
1525 unsigned long pfn;
1526 int ret = 0;
0f973f27 1527 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1528
f65c9168
PZ
1529 intel_runtime_pm_get(dev_priv);
1530
de151cf6
JB
1531 /* We don't use vmf->pgoff since that has the fake offset */
1532 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1533 PAGE_SHIFT;
1534
d9bc7e9f
CW
1535 ret = i915_mutex_lock_interruptible(dev);
1536 if (ret)
1537 goto out;
a00b10c3 1538
db53a302
CW
1539 trace_i915_gem_object_fault(obj, page_offset, true, write);
1540
6e4930f6
CW
1541 /* Try to flush the object off the GPU first without holding the lock.
1542 * Upon reacquiring the lock, we will perform our sanity checks and then
1543 * repeat the flush holding the lock in the normal manner to catch cases
1544 * where we are gazumped.
1545 */
1546 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1547 if (ret)
1548 goto unlock;
1549
eb119bd6
CW
1550 /* Access to snoopable pages through the GTT is incoherent. */
1551 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1552 ret = -EFAULT;
eb119bd6
CW
1553 goto unlock;
1554 }
1555
d9bc7e9f 1556 /* Now bind it into the GTT if needed */
1ec9e26d 1557 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1558 if (ret)
1559 goto unlock;
4a684a41 1560
c9839303
CW
1561 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1562 if (ret)
1563 goto unpin;
74898d7e 1564
06d98131 1565 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1566 if (ret)
c9839303 1567 goto unpin;
7d1c4804 1568
b90b91d8 1569 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1570 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1571 pfn >>= PAGE_SHIFT;
de151cf6 1572
b90b91d8 1573 if (!obj->fault_mappable) {
beff0d0f
VS
1574 unsigned long size = min_t(unsigned long,
1575 vma->vm_end - vma->vm_start,
1576 obj->base.size);
b90b91d8
CW
1577 int i;
1578
beff0d0f 1579 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1580 ret = vm_insert_pfn(vma,
1581 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1582 pfn + i);
1583 if (ret)
1584 break;
1585 }
1586
1587 obj->fault_mappable = true;
1588 } else
1589 ret = vm_insert_pfn(vma,
1590 (unsigned long)vmf->virtual_address,
1591 pfn + page_offset);
c9839303 1592unpin:
d7f46fc4 1593 i915_gem_object_ggtt_unpin(obj);
c715089f 1594unlock:
de151cf6 1595 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1596out:
de151cf6 1597 switch (ret) {
d9bc7e9f 1598 case -EIO:
2232f031
DV
1599 /*
1600 * We eat errors when the gpu is terminally wedged to avoid
1601 * userspace unduly crashing (gl has no provisions for mmaps to
1602 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1603 * and so needs to be reported.
1604 */
1605 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1606 ret = VM_FAULT_SIGBUS;
1607 break;
1608 }
045e769a 1609 case -EAGAIN:
571c608d
DV
1610 /*
1611 * EAGAIN means the gpu is hung and we'll wait for the error
1612 * handler to reset everything when re-faulting in
1613 * i915_mutex_lock_interruptible.
d9bc7e9f 1614 */
c715089f
CW
1615 case 0:
1616 case -ERESTARTSYS:
bed636ab 1617 case -EINTR:
e79e0fe3
DR
1618 case -EBUSY:
1619 /*
1620 * EBUSY is ok: this just means that another thread
1621 * already did the job.
1622 */
f65c9168
PZ
1623 ret = VM_FAULT_NOPAGE;
1624 break;
de151cf6 1625 case -ENOMEM:
f65c9168
PZ
1626 ret = VM_FAULT_OOM;
1627 break;
a7c2e1aa 1628 case -ENOSPC:
45d67817 1629 case -EFAULT:
f65c9168
PZ
1630 ret = VM_FAULT_SIGBUS;
1631 break;
de151cf6 1632 default:
a7c2e1aa 1633 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1634 ret = VM_FAULT_SIGBUS;
1635 break;
de151cf6 1636 }
f65c9168
PZ
1637
1638 intel_runtime_pm_put(dev_priv);
1639 return ret;
de151cf6
JB
1640}
1641
901782b2
CW
1642/**
1643 * i915_gem_release_mmap - remove physical page mappings
1644 * @obj: obj in question
1645 *
af901ca1 1646 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1647 * relinquish ownership of the pages back to the system.
1648 *
1649 * It is vital that we remove the page mapping if we have mapped a tiled
1650 * object through the GTT and then lose the fence register due to
1651 * resource pressure. Similarly if the object has been moved out of the
1652 * aperture, than pages mapped into userspace must be revoked. Removing the
1653 * mapping will then trigger a page fault on the next user access, allowing
1654 * fixup by i915_gem_fault().
1655 */
d05ca301 1656void
05394f39 1657i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1658{
6299f992
CW
1659 if (!obj->fault_mappable)
1660 return;
901782b2 1661
6796cb16
DH
1662 drm_vma_node_unmap(&obj->base.vma_node,
1663 obj->base.dev->anon_inode->i_mapping);
6299f992 1664 obj->fault_mappable = false;
901782b2
CW
1665}
1666
eedd10f4
CW
1667void
1668i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1669{
1670 struct drm_i915_gem_object *obj;
1671
1672 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1673 i915_gem_release_mmap(obj);
1674}
1675
0fa87796 1676uint32_t
e28f8711 1677i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1678{
e28f8711 1679 uint32_t gtt_size;
92b88aeb
CW
1680
1681 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1682 tiling_mode == I915_TILING_NONE)
1683 return size;
92b88aeb
CW
1684
1685 /* Previous chips need a power-of-two fence region when tiling */
1686 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1687 gtt_size = 1024*1024;
92b88aeb 1688 else
e28f8711 1689 gtt_size = 512*1024;
92b88aeb 1690
e28f8711
CW
1691 while (gtt_size < size)
1692 gtt_size <<= 1;
92b88aeb 1693
e28f8711 1694 return gtt_size;
92b88aeb
CW
1695}
1696
de151cf6
JB
1697/**
1698 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1699 * @obj: object to check
1700 *
1701 * Return the required GTT alignment for an object, taking into account
5e783301 1702 * potential fence register mapping.
de151cf6 1703 */
d865110c
ID
1704uint32_t
1705i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1706 int tiling_mode, bool fenced)
de151cf6 1707{
de151cf6
JB
1708 /*
1709 * Minimum alignment is 4k (GTT page size), but might be greater
1710 * if a fence register is needed for the object.
1711 */
d865110c 1712 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1713 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1714 return 4096;
1715
a00b10c3
CW
1716 /*
1717 * Previous chips need to be aligned to the size of the smallest
1718 * fence register that can contain the object.
1719 */
e28f8711 1720 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1721}
1722
d8cb5086
CW
1723static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1724{
1725 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1726 int ret;
1727
0de23977 1728 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1729 return 0;
1730
da494d7c
DV
1731 dev_priv->mm.shrinker_no_lock_stealing = true;
1732
d8cb5086
CW
1733 ret = drm_gem_create_mmap_offset(&obj->base);
1734 if (ret != -ENOSPC)
da494d7c 1735 goto out;
d8cb5086
CW
1736
1737 /* Badly fragmented mmap space? The only way we can recover
1738 * space is by destroying unwanted objects. We can't randomly release
1739 * mmap_offsets as userspace expects them to be persistent for the
1740 * lifetime of the objects. The closest we can is to release the
1741 * offsets on purgeable objects by truncating it and marking it purged,
1742 * which prevents userspace from ever using that object again.
1743 */
1744 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1745 ret = drm_gem_create_mmap_offset(&obj->base);
1746 if (ret != -ENOSPC)
da494d7c 1747 goto out;
d8cb5086
CW
1748
1749 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1750 ret = drm_gem_create_mmap_offset(&obj->base);
1751out:
1752 dev_priv->mm.shrinker_no_lock_stealing = false;
1753
1754 return ret;
d8cb5086
CW
1755}
1756
1757static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1758{
d8cb5086
CW
1759 drm_gem_free_mmap_offset(&obj->base);
1760}
1761
de151cf6 1762int
ff72145b
DA
1763i915_gem_mmap_gtt(struct drm_file *file,
1764 struct drm_device *dev,
1765 uint32_t handle,
1766 uint64_t *offset)
de151cf6 1767{
da761a6e 1768 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1769 struct drm_i915_gem_object *obj;
de151cf6
JB
1770 int ret;
1771
76c1dec1 1772 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1773 if (ret)
76c1dec1 1774 return ret;
de151cf6 1775
ff72145b 1776 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1777 if (&obj->base == NULL) {
1d7cfea1
CW
1778 ret = -ENOENT;
1779 goto unlock;
1780 }
de151cf6 1781
5d4545ae 1782 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1783 ret = -E2BIG;
ff56b0bc 1784 goto out;
da761a6e
CW
1785 }
1786
05394f39 1787 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1788 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1789 ret = -EFAULT;
1d7cfea1 1790 goto out;
ab18282d
CW
1791 }
1792
d8cb5086
CW
1793 ret = i915_gem_object_create_mmap_offset(obj);
1794 if (ret)
1795 goto out;
de151cf6 1796
0de23977 1797 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1798
1d7cfea1 1799out:
05394f39 1800 drm_gem_object_unreference(&obj->base);
1d7cfea1 1801unlock:
de151cf6 1802 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1803 return ret;
de151cf6
JB
1804}
1805
ff72145b
DA
1806/**
1807 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1808 * @dev: DRM device
1809 * @data: GTT mapping ioctl data
1810 * @file: GEM object info
1811 *
1812 * Simply returns the fake offset to userspace so it can mmap it.
1813 * The mmap call will end up in drm_gem_mmap(), which will set things
1814 * up so we can get faults in the handler above.
1815 *
1816 * The fault handler will take care of binding the object into the GTT
1817 * (since it may have been evicted to make room for something), allocating
1818 * a fence register, and mapping the appropriate aperture address into
1819 * userspace.
1820 */
1821int
1822i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1823 struct drm_file *file)
1824{
1825 struct drm_i915_gem_mmap_gtt *args = data;
1826
ff72145b
DA
1827 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1828}
1829
5537252b
CW
1830static inline int
1831i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1832{
1833 return obj->madv == I915_MADV_DONTNEED;
1834}
1835
225067ee
DV
1836/* Immediately discard the backing storage */
1837static void
1838i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1839{
4d6294bf 1840 i915_gem_object_free_mmap_offset(obj);
1286ff73 1841
4d6294bf
CW
1842 if (obj->base.filp == NULL)
1843 return;
e5281ccd 1844
225067ee
DV
1845 /* Our goal here is to return as much of the memory as
1846 * is possible back to the system as we are called from OOM.
1847 * To do this we must instruct the shmfs to drop all of its
1848 * backing pages, *now*.
1849 */
5537252b 1850 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1851 obj->madv = __I915_MADV_PURGED;
1852}
e5281ccd 1853
5537252b
CW
1854/* Try to discard unwanted pages */
1855static void
1856i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1857{
5537252b
CW
1858 struct address_space *mapping;
1859
1860 switch (obj->madv) {
1861 case I915_MADV_DONTNEED:
1862 i915_gem_object_truncate(obj);
1863 case __I915_MADV_PURGED:
1864 return;
1865 }
1866
1867 if (obj->base.filp == NULL)
1868 return;
1869
1870 mapping = file_inode(obj->base.filp)->i_mapping,
1871 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1872}
1873
5cdf5881 1874static void
05394f39 1875i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1876{
90797e6d
ID
1877 struct sg_page_iter sg_iter;
1878 int ret;
1286ff73 1879
05394f39 1880 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1881
6c085a72
CW
1882 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1883 if (ret) {
1884 /* In the event of a disaster, abandon all caches and
1885 * hope for the best.
1886 */
1887 WARN_ON(ret != -EIO);
2c22569b 1888 i915_gem_clflush_object(obj, true);
6c085a72
CW
1889 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1890 }
1891
6dacfd2f 1892 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1893 i915_gem_object_save_bit_17_swizzle(obj);
1894
05394f39
CW
1895 if (obj->madv == I915_MADV_DONTNEED)
1896 obj->dirty = 0;
3ef94daa 1897
90797e6d 1898 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1899 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1900
05394f39 1901 if (obj->dirty)
9da3da66 1902 set_page_dirty(page);
3ef94daa 1903
05394f39 1904 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1905 mark_page_accessed(page);
3ef94daa 1906
9da3da66 1907 page_cache_release(page);
3ef94daa 1908 }
05394f39 1909 obj->dirty = 0;
673a394b 1910
9da3da66
CW
1911 sg_free_table(obj->pages);
1912 kfree(obj->pages);
37e680a1 1913}
6c085a72 1914
dd624afd 1915int
37e680a1
CW
1916i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1917{
1918 const struct drm_i915_gem_object_ops *ops = obj->ops;
1919
2f745ad3 1920 if (obj->pages == NULL)
37e680a1
CW
1921 return 0;
1922
a5570178
CW
1923 if (obj->pages_pin_count)
1924 return -EBUSY;
1925
9843877d 1926 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1927
a2165e31
CW
1928 /* ->put_pages might need to allocate memory for the bit17 swizzle
1929 * array, hence protect them from being reaped by removing them from gtt
1930 * lists early. */
35c20a60 1931 list_del(&obj->global_list);
a2165e31 1932
37e680a1 1933 ops->put_pages(obj);
05394f39 1934 obj->pages = NULL;
37e680a1 1935
5537252b 1936 i915_gem_object_invalidate(obj);
6c085a72
CW
1937
1938 return 0;
1939}
1940
d9973b43 1941static unsigned long
93927ca5
DV
1942__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1943 bool purgeable_only)
6c085a72 1944{
c8725f3d
CW
1945 struct list_head still_in_list;
1946 struct drm_i915_gem_object *obj;
d9973b43 1947 unsigned long count = 0;
6c085a72 1948
57094f82 1949 /*
c8725f3d 1950 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1951 * (due to retiring requests) we have to strictly process only
1952 * one element of the list at the time, and recheck the list
1953 * on every iteration.
c8725f3d
CW
1954 *
1955 * In particular, we must hold a reference whilst removing the
1956 * object as we may end up waiting for and/or retiring the objects.
1957 * This might release the final reference (held by the active list)
1958 * and result in the object being freed from under us. This is
1959 * similar to the precautions the eviction code must take whilst
1960 * removing objects.
1961 *
1962 * Also note that although these lists do not hold a reference to
1963 * the object we can safely grab one here: The final object
1964 * unreferencing and the bound_list are both protected by the
1965 * dev->struct_mutex and so we won't ever be able to observe an
1966 * object on the bound_list with a reference count equals 0.
57094f82 1967 */
c8725f3d
CW
1968 INIT_LIST_HEAD(&still_in_list);
1969 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1970 obj = list_first_entry(&dev_priv->mm.unbound_list,
1971 typeof(*obj), global_list);
1972 list_move_tail(&obj->global_list, &still_in_list);
1973
1974 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1975 continue;
1976
1977 drm_gem_object_reference(&obj->base);
1978
1979 if (i915_gem_object_put_pages(obj) == 0)
1980 count += obj->base.size >> PAGE_SHIFT;
1981
1982 drm_gem_object_unreference(&obj->base);
1983 }
1984 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1985
1986 INIT_LIST_HEAD(&still_in_list);
57094f82 1987 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1988 struct i915_vma *vma, *v;
80dcfdbd 1989
57094f82
CW
1990 obj = list_first_entry(&dev_priv->mm.bound_list,
1991 typeof(*obj), global_list);
c8725f3d 1992 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1993
80dcfdbd
BW
1994 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1995 continue;
1996
57094f82
CW
1997 drm_gem_object_reference(&obj->base);
1998
07fe0b12
BW
1999 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2000 if (i915_vma_unbind(vma))
2001 break;
80dcfdbd 2002
57094f82 2003 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 2004 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
2005
2006 drm_gem_object_unreference(&obj->base);
6c085a72 2007 }
c8725f3d 2008 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
2009
2010 return count;
2011}
2012
d9973b43 2013static unsigned long
93927ca5
DV
2014i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2015{
2016 return __i915_gem_shrink(dev_priv, target, true);
2017}
2018
d9973b43 2019static unsigned long
6c085a72
CW
2020i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2021{
6c085a72 2022 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 2023 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
2024}
2025
37e680a1 2026static int
6c085a72 2027i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2028{
6c085a72 2029 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2030 int page_count, i;
2031 struct address_space *mapping;
9da3da66
CW
2032 struct sg_table *st;
2033 struct scatterlist *sg;
90797e6d 2034 struct sg_page_iter sg_iter;
e5281ccd 2035 struct page *page;
90797e6d 2036 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2037 gfp_t gfp;
e5281ccd 2038
6c085a72
CW
2039 /* Assert that the object is not currently in any GPU domain. As it
2040 * wasn't in the GTT, there shouldn't be any way it could have been in
2041 * a GPU cache
2042 */
2043 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2044 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2045
9da3da66
CW
2046 st = kmalloc(sizeof(*st), GFP_KERNEL);
2047 if (st == NULL)
2048 return -ENOMEM;
2049
05394f39 2050 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2051 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2052 kfree(st);
e5281ccd 2053 return -ENOMEM;
9da3da66 2054 }
e5281ccd 2055
9da3da66
CW
2056 /* Get the list of pages out of our struct file. They'll be pinned
2057 * at this point until we release them.
2058 *
2059 * Fail silently without starting the shrinker
2060 */
496ad9aa 2061 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2062 gfp = mapping_gfp_mask(mapping);
caf49191 2063 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2064 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2065 sg = st->sgl;
2066 st->nents = 0;
2067 for (i = 0; i < page_count; i++) {
6c085a72
CW
2068 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2069 if (IS_ERR(page)) {
2070 i915_gem_purge(dev_priv, page_count);
2071 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2072 }
2073 if (IS_ERR(page)) {
2074 /* We've tried hard to allocate the memory by reaping
2075 * our own buffer, now let the real VM do its job and
2076 * go down in flames if truly OOM.
2077 */
6c085a72 2078 i915_gem_shrink_all(dev_priv);
f461d1be 2079 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2080 if (IS_ERR(page))
2081 goto err_pages;
6c085a72 2082 }
426729dc
KRW
2083#ifdef CONFIG_SWIOTLB
2084 if (swiotlb_nr_tbl()) {
2085 st->nents++;
2086 sg_set_page(sg, page, PAGE_SIZE, 0);
2087 sg = sg_next(sg);
2088 continue;
2089 }
2090#endif
90797e6d
ID
2091 if (!i || page_to_pfn(page) != last_pfn + 1) {
2092 if (i)
2093 sg = sg_next(sg);
2094 st->nents++;
2095 sg_set_page(sg, page, PAGE_SIZE, 0);
2096 } else {
2097 sg->length += PAGE_SIZE;
2098 }
2099 last_pfn = page_to_pfn(page);
3bbbe706
DV
2100
2101 /* Check that the i965g/gm workaround works. */
2102 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2103 }
426729dc
KRW
2104#ifdef CONFIG_SWIOTLB
2105 if (!swiotlb_nr_tbl())
2106#endif
2107 sg_mark_end(sg);
74ce6b6c
CW
2108 obj->pages = st;
2109
6dacfd2f 2110 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2111 i915_gem_object_do_bit_17_swizzle(obj);
2112
2113 return 0;
2114
2115err_pages:
90797e6d
ID
2116 sg_mark_end(sg);
2117 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2118 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2119 sg_free_table(st);
2120 kfree(st);
0820baf3
CW
2121
2122 /* shmemfs first checks if there is enough memory to allocate the page
2123 * and reports ENOSPC should there be insufficient, along with the usual
2124 * ENOMEM for a genuine allocation failure.
2125 *
2126 * We use ENOSPC in our driver to mean that we have run out of aperture
2127 * space and so want to translate the error from shmemfs back to our
2128 * usual understanding of ENOMEM.
2129 */
2130 if (PTR_ERR(page) == -ENOSPC)
2131 return -ENOMEM;
2132 else
2133 return PTR_ERR(page);
673a394b
EA
2134}
2135
37e680a1
CW
2136/* Ensure that the associated pages are gathered from the backing storage
2137 * and pinned into our object. i915_gem_object_get_pages() may be called
2138 * multiple times before they are released by a single call to
2139 * i915_gem_object_put_pages() - once the pages are no longer referenced
2140 * either as a result of memory pressure (reaping pages under the shrinker)
2141 * or as the object is itself released.
2142 */
2143int
2144i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2145{
2146 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2147 const struct drm_i915_gem_object_ops *ops = obj->ops;
2148 int ret;
2149
2f745ad3 2150 if (obj->pages)
37e680a1
CW
2151 return 0;
2152
43e28f09 2153 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2154 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2155 return -EFAULT;
43e28f09
CW
2156 }
2157
a5570178
CW
2158 BUG_ON(obj->pages_pin_count);
2159
37e680a1
CW
2160 ret = ops->get_pages(obj);
2161 if (ret)
2162 return ret;
2163
35c20a60 2164 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2165 return 0;
673a394b
EA
2166}
2167
e2d05a8b 2168static void
05394f39 2169i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2170 struct intel_engine_cs *ring)
673a394b 2171{
9d773091 2172 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2173
852835f3 2174 BUG_ON(ring == NULL);
02978ff5
CW
2175 if (obj->ring != ring && obj->last_write_seqno) {
2176 /* Keep the seqno relative to the current ring */
2177 obj->last_write_seqno = seqno;
2178 }
05394f39 2179 obj->ring = ring;
673a394b
EA
2180
2181 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2182 if (!obj->active) {
2183 drm_gem_object_reference(&obj->base);
2184 obj->active = 1;
673a394b 2185 }
e35a41de 2186
05394f39 2187 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2188
0201f1ec 2189 obj->last_read_seqno = seqno;
caea7476
CW
2190}
2191
e2d05a8b 2192void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2193 struct intel_engine_cs *ring)
e2d05a8b
BW
2194{
2195 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2196 return i915_gem_object_move_to_active(vma->obj, ring);
2197}
2198
caea7476 2199static void
caea7476 2200i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2201{
ca191b13 2202 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2203 struct i915_address_space *vm;
2204 struct i915_vma *vma;
ce44b0ea 2205
65ce3027 2206 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2207 BUG_ON(!obj->active);
caea7476 2208
feb822cf
BW
2209 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2210 vma = i915_gem_obj_to_vma(obj, vm);
2211 if (vma && !list_empty(&vma->mm_list))
2212 list_move_tail(&vma->mm_list, &vm->inactive_list);
2213 }
caea7476 2214
f99d7069
DV
2215 intel_fb_obj_flush(obj, true);
2216
65ce3027 2217 list_del_init(&obj->ring_list);
caea7476
CW
2218 obj->ring = NULL;
2219
65ce3027
CW
2220 obj->last_read_seqno = 0;
2221 obj->last_write_seqno = 0;
2222 obj->base.write_domain = 0;
2223
2224 obj->last_fenced_seqno = 0;
caea7476
CW
2225
2226 obj->active = 0;
2227 drm_gem_object_unreference(&obj->base);
2228
2229 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2230}
673a394b 2231
c8725f3d
CW
2232static void
2233i915_gem_object_retire(struct drm_i915_gem_object *obj)
2234{
a4872ba6 2235 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2236
2237 if (ring == NULL)
2238 return;
2239
2240 if (i915_seqno_passed(ring->get_seqno(ring, true),
2241 obj->last_read_seqno))
2242 i915_gem_object_move_to_inactive(obj);
2243}
2244
9d773091 2245static int
fca26bb4 2246i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2247{
9d773091 2248 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2249 struct intel_engine_cs *ring;
9d773091 2250 int ret, i, j;
53d227f2 2251
107f27a5 2252 /* Carefully retire all requests without writing to the rings */
9d773091 2253 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2254 ret = intel_ring_idle(ring);
2255 if (ret)
2256 return ret;
9d773091 2257 }
9d773091 2258 i915_gem_retire_requests(dev);
107f27a5
CW
2259
2260 /* Finally reset hw state */
9d773091 2261 for_each_ring(ring, dev_priv, i) {
fca26bb4 2262 intel_ring_init_seqno(ring, seqno);
498d2ac1 2263
ebc348b2
BW
2264 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2265 ring->semaphore.sync_seqno[j] = 0;
9d773091 2266 }
53d227f2 2267
9d773091 2268 return 0;
53d227f2
DV
2269}
2270
fca26bb4
MK
2271int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2272{
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2274 int ret;
2275
2276 if (seqno == 0)
2277 return -EINVAL;
2278
2279 /* HWS page needs to be set less than what we
2280 * will inject to ring
2281 */
2282 ret = i915_gem_init_seqno(dev, seqno - 1);
2283 if (ret)
2284 return ret;
2285
2286 /* Carefully set the last_seqno value so that wrap
2287 * detection still works
2288 */
2289 dev_priv->next_seqno = seqno;
2290 dev_priv->last_seqno = seqno - 1;
2291 if (dev_priv->last_seqno == 0)
2292 dev_priv->last_seqno--;
2293
2294 return 0;
2295}
2296
9d773091
CW
2297int
2298i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2299{
9d773091
CW
2300 struct drm_i915_private *dev_priv = dev->dev_private;
2301
2302 /* reserve 0 for non-seqno */
2303 if (dev_priv->next_seqno == 0) {
fca26bb4 2304 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2305 if (ret)
2306 return ret;
53d227f2 2307
9d773091
CW
2308 dev_priv->next_seqno = 1;
2309 }
53d227f2 2310
f72b3435 2311 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2312 return 0;
53d227f2
DV
2313}
2314
a4872ba6 2315int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2316 struct drm_file *file,
7d736f4f 2317 struct drm_i915_gem_object *obj,
0025c077 2318 u32 *out_seqno)
673a394b 2319{
3e31c6c0 2320 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2321 struct drm_i915_gem_request *request;
48e29f55 2322 struct intel_ringbuffer *ringbuf;
7d736f4f 2323 u32 request_ring_position, request_start;
3cce469c
CW
2324 int ret;
2325
48e29f55
OM
2326 request = ring->preallocated_lazy_request;
2327 if (WARN_ON(request == NULL))
2328 return -ENOMEM;
2329
2330 if (i915.enable_execlists) {
2331 struct intel_context *ctx = request->ctx;
2332 ringbuf = ctx->engine[ring->id].ringbuf;
2333 } else
2334 ringbuf = ring->buffer;
2335
2336 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2337 /*
2338 * Emit any outstanding flushes - execbuf can fail to emit the flush
2339 * after having emitted the batchbuffer command. Hence we need to fix
2340 * things up similar to emitting the lazy request. The difference here
2341 * is that the flush _must_ happen before the next request, no matter
2342 * what.
2343 */
48e29f55
OM
2344 if (i915.enable_execlists) {
2345 ret = logical_ring_flush_all_caches(ringbuf);
2346 if (ret)
2347 return ret;
2348 } else {
2349 ret = intel_ring_flush_all_caches(ring);
2350 if (ret)
2351 return ret;
2352 }
cc889e0f 2353
a71d8d94
CW
2354 /* Record the position of the start of the request so that
2355 * should we detect the updated seqno part-way through the
2356 * GPU processing the request, we never over-estimate the
2357 * position of the head.
2358 */
48e29f55 2359 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2360
48e29f55
OM
2361 if (i915.enable_execlists) {
2362 ret = ring->emit_request(ringbuf);
2363 if (ret)
2364 return ret;
2365 } else {
2366 ret = ring->add_request(ring);
2367 if (ret)
2368 return ret;
2369 }
673a394b 2370
9d773091 2371 request->seqno = intel_ring_get_seqno(ring);
852835f3 2372 request->ring = ring;
7d736f4f 2373 request->head = request_start;
a71d8d94 2374 request->tail = request_ring_position;
7d736f4f
MK
2375
2376 /* Whilst this request exists, batch_obj will be on the
2377 * active_list, and so will hold the active reference. Only when this
2378 * request is retired will the the batch_obj be moved onto the
2379 * inactive_list and lose its active reference. Hence we do not need
2380 * to explicitly hold another reference here.
2381 */
9a7e0c2a 2382 request->batch_obj = obj;
0e50e96b 2383
48e29f55
OM
2384 if (!i915.enable_execlists) {
2385 /* Hold a reference to the current context so that we can inspect
2386 * it later in case a hangcheck error event fires.
2387 */
2388 request->ctx = ring->last_context;
2389 if (request->ctx)
2390 i915_gem_context_reference(request->ctx);
2391 }
0e50e96b 2392
673a394b 2393 request->emitted_jiffies = jiffies;
852835f3 2394 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2395 request->file_priv = NULL;
852835f3 2396
db53a302
CW
2397 if (file) {
2398 struct drm_i915_file_private *file_priv = file->driver_priv;
2399
1c25595f 2400 spin_lock(&file_priv->mm.lock);
f787a5f5 2401 request->file_priv = file_priv;
b962442e 2402 list_add_tail(&request->client_list,
f787a5f5 2403 &file_priv->mm.request_list);
1c25595f 2404 spin_unlock(&file_priv->mm.lock);
b962442e 2405 }
673a394b 2406
9d773091 2407 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2408 ring->outstanding_lazy_seqno = 0;
3c0e234c 2409 ring->preallocated_lazy_request = NULL;
db53a302 2410
db1b76ca 2411 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2412 i915_queue_hangcheck(ring->dev);
2413
f62a0076
CW
2414 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2415 queue_delayed_work(dev_priv->wq,
2416 &dev_priv->mm.retire_work,
2417 round_jiffies_up_relative(HZ));
2418 intel_mark_busy(dev_priv->dev);
f65d9421 2419 }
cc889e0f 2420
acb868d3 2421 if (out_seqno)
9d773091 2422 *out_seqno = request->seqno;
3cce469c 2423 return 0;
673a394b
EA
2424}
2425
f787a5f5
CW
2426static inline void
2427i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2428{
1c25595f 2429 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2430
1c25595f
CW
2431 if (!file_priv)
2432 return;
1c5d22f7 2433
1c25595f 2434 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2435 list_del(&request->client_list);
2436 request->file_priv = NULL;
1c25595f 2437 spin_unlock(&file_priv->mm.lock);
673a394b 2438}
673a394b 2439
939fd762 2440static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2441 const struct intel_context *ctx)
be62acb4 2442{
44e2c070 2443 unsigned long elapsed;
be62acb4 2444
44e2c070
MK
2445 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2446
2447 if (ctx->hang_stats.banned)
be62acb4
MK
2448 return true;
2449
2450 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2451 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2452 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2453 return true;
88b4aa87
MK
2454 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2455 if (i915_stop_ring_allow_warn(dev_priv))
2456 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2457 return true;
3fac8978 2458 }
be62acb4
MK
2459 }
2460
2461 return false;
2462}
2463
939fd762 2464static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2465 struct intel_context *ctx,
b6b0fac0 2466 const bool guilty)
aa60c664 2467{
44e2c070
MK
2468 struct i915_ctx_hang_stats *hs;
2469
2470 if (WARN_ON(!ctx))
2471 return;
aa60c664 2472
44e2c070
MK
2473 hs = &ctx->hang_stats;
2474
2475 if (guilty) {
939fd762 2476 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2477 hs->batch_active++;
2478 hs->guilty_ts = get_seconds();
2479 } else {
2480 hs->batch_pending++;
aa60c664
MK
2481 }
2482}
2483
0e50e96b
MK
2484static void i915_gem_free_request(struct drm_i915_gem_request *request)
2485{
2486 list_del(&request->list);
2487 i915_gem_request_remove_from_client(request);
2488
2489 if (request->ctx)
2490 i915_gem_context_unreference(request->ctx);
2491
2492 kfree(request);
2493}
2494
8d9fc7fd 2495struct drm_i915_gem_request *
a4872ba6 2496i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2497{
4db080f9 2498 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2499 u32 completed_seqno;
2500
2501 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2502
2503 list_for_each_entry(request, &ring->request_list, list) {
2504 if (i915_seqno_passed(completed_seqno, request->seqno))
2505 continue;
aa60c664 2506
b6b0fac0 2507 return request;
4db080f9 2508 }
b6b0fac0
MK
2509
2510 return NULL;
2511}
2512
2513static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2514 struct intel_engine_cs *ring)
b6b0fac0
MK
2515{
2516 struct drm_i915_gem_request *request;
2517 bool ring_hung;
2518
8d9fc7fd 2519 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2520
2521 if (request == NULL)
2522 return;
2523
2524 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2525
939fd762 2526 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2527
2528 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2529 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2530}
aa60c664 2531
4db080f9 2532static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2533 struct intel_engine_cs *ring)
4db080f9 2534{
dfaae392 2535 while (!list_empty(&ring->active_list)) {
05394f39 2536 struct drm_i915_gem_object *obj;
9375e446 2537
05394f39
CW
2538 obj = list_first_entry(&ring->active_list,
2539 struct drm_i915_gem_object,
2540 ring_list);
9375e446 2541
05394f39 2542 i915_gem_object_move_to_inactive(obj);
673a394b 2543 }
1d62beea
BW
2544
2545 /*
2546 * We must free the requests after all the corresponding objects have
2547 * been moved off active lists. Which is the same order as the normal
2548 * retire_requests function does. This is important if object hold
2549 * implicit references on things like e.g. ppgtt address spaces through
2550 * the request.
2551 */
2552 while (!list_empty(&ring->request_list)) {
2553 struct drm_i915_gem_request *request;
2554
2555 request = list_first_entry(&ring->request_list,
2556 struct drm_i915_gem_request,
2557 list);
2558
2559 i915_gem_free_request(request);
2560 }
e3efda49 2561
cc9130be
OM
2562 while (!list_empty(&ring->execlist_queue)) {
2563 struct intel_ctx_submit_request *submit_req;
2564
2565 submit_req = list_first_entry(&ring->execlist_queue,
2566 struct intel_ctx_submit_request,
2567 execlist_link);
2568 list_del(&submit_req->execlist_link);
2569 intel_runtime_pm_put(dev_priv);
2570 i915_gem_context_unreference(submit_req->ctx);
2571 kfree(submit_req);
2572 }
2573
e3efda49
CW
2574 /* These may not have been flush before the reset, do so now */
2575 kfree(ring->preallocated_lazy_request);
2576 ring->preallocated_lazy_request = NULL;
2577 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2578}
2579
19b2dbde 2580void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2581{
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 int i;
2584
4b9de737 2585 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2586 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2587
94a335db
DV
2588 /*
2589 * Commit delayed tiling changes if we have an object still
2590 * attached to the fence, otherwise just clear the fence.
2591 */
2592 if (reg->obj) {
2593 i915_gem_object_update_fence(reg->obj, reg,
2594 reg->obj->tiling_mode);
2595 } else {
2596 i915_gem_write_fence(dev, i, NULL);
2597 }
312817a3
CW
2598 }
2599}
2600
069efc1d 2601void i915_gem_reset(struct drm_device *dev)
673a394b 2602{
77f01230 2603 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2604 struct intel_engine_cs *ring;
1ec14ad3 2605 int i;
673a394b 2606
4db080f9
CW
2607 /*
2608 * Before we free the objects from the requests, we need to inspect
2609 * them for finding the guilty party. As the requests only borrow
2610 * their reference to the objects, the inspection must be done first.
2611 */
2612 for_each_ring(ring, dev_priv, i)
2613 i915_gem_reset_ring_status(dev_priv, ring);
2614
b4519513 2615 for_each_ring(ring, dev_priv, i)
4db080f9 2616 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2617
acce9ffa
BW
2618 i915_gem_context_reset(dev);
2619
19b2dbde 2620 i915_gem_restore_fences(dev);
673a394b
EA
2621}
2622
2623/**
2624 * This function clears the request list as sequence numbers are passed.
2625 */
1cf0ba14 2626void
a4872ba6 2627i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2628{
673a394b
EA
2629 uint32_t seqno;
2630
db53a302 2631 if (list_empty(&ring->request_list))
6c0594a3
KW
2632 return;
2633
db53a302 2634 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2635
b2eadbc8 2636 seqno = ring->get_seqno(ring, true);
1ec14ad3 2637
e9103038
CW
2638 /* Move any buffers on the active list that are no longer referenced
2639 * by the ringbuffer to the flushing/inactive lists as appropriate,
2640 * before we free the context associated with the requests.
2641 */
2642 while (!list_empty(&ring->active_list)) {
2643 struct drm_i915_gem_object *obj;
2644
2645 obj = list_first_entry(&ring->active_list,
2646 struct drm_i915_gem_object,
2647 ring_list);
2648
2649 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2650 break;
2651
2652 i915_gem_object_move_to_inactive(obj);
2653 }
2654
2655
852835f3 2656 while (!list_empty(&ring->request_list)) {
673a394b 2657 struct drm_i915_gem_request *request;
48e29f55 2658 struct intel_ringbuffer *ringbuf;
673a394b 2659
852835f3 2660 request = list_first_entry(&ring->request_list,
673a394b
EA
2661 struct drm_i915_gem_request,
2662 list);
673a394b 2663
dfaae392 2664 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2665 break;
2666
db53a302 2667 trace_i915_gem_request_retire(ring, request->seqno);
48e29f55
OM
2668
2669 /* This is one of the few common intersection points
2670 * between legacy ringbuffer submission and execlists:
2671 * we need to tell them apart in order to find the correct
2672 * ringbuffer to which the request belongs to.
2673 */
2674 if (i915.enable_execlists) {
2675 struct intel_context *ctx = request->ctx;
2676 ringbuf = ctx->engine[ring->id].ringbuf;
2677 } else
2678 ringbuf = ring->buffer;
2679
a71d8d94
CW
2680 /* We know the GPU must have read the request to have
2681 * sent us the seqno + interrupt, so use the position
2682 * of tail of the request to update the last known position
2683 * of the GPU head.
2684 */
48e29f55 2685 ringbuf->last_retired_head = request->tail;
b84d5f0c 2686
0e50e96b 2687 i915_gem_free_request(request);
b84d5f0c 2688 }
673a394b 2689
db53a302
CW
2690 if (unlikely(ring->trace_irq_seqno &&
2691 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2692 ring->irq_put(ring);
db53a302 2693 ring->trace_irq_seqno = 0;
9d34e5db 2694 }
23bc5982 2695
db53a302 2696 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2697}
2698
b29c19b6 2699bool
b09a1fec
CW
2700i915_gem_retire_requests(struct drm_device *dev)
2701{
3e31c6c0 2702 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2703 struct intel_engine_cs *ring;
b29c19b6 2704 bool idle = true;
1ec14ad3 2705 int i;
b09a1fec 2706
b29c19b6 2707 for_each_ring(ring, dev_priv, i) {
b4519513 2708 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2709 idle &= list_empty(&ring->request_list);
2710 }
2711
2712 if (idle)
2713 mod_delayed_work(dev_priv->wq,
2714 &dev_priv->mm.idle_work,
2715 msecs_to_jiffies(100));
2716
2717 return idle;
b09a1fec
CW
2718}
2719
75ef9da2 2720static void
673a394b
EA
2721i915_gem_retire_work_handler(struct work_struct *work)
2722{
b29c19b6
CW
2723 struct drm_i915_private *dev_priv =
2724 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2725 struct drm_device *dev = dev_priv->dev;
0a58705b 2726 bool idle;
673a394b 2727
891b48cf 2728 /* Come back later if the device is busy... */
b29c19b6
CW
2729 idle = false;
2730 if (mutex_trylock(&dev->struct_mutex)) {
2731 idle = i915_gem_retire_requests(dev);
2732 mutex_unlock(&dev->struct_mutex);
673a394b 2733 }
b29c19b6 2734 if (!idle)
bcb45086
CW
2735 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2736 round_jiffies_up_relative(HZ));
b29c19b6 2737}
0a58705b 2738
b29c19b6
CW
2739static void
2740i915_gem_idle_work_handler(struct work_struct *work)
2741{
2742 struct drm_i915_private *dev_priv =
2743 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2744
2745 intel_mark_idle(dev_priv->dev);
673a394b
EA
2746}
2747
30dfebf3
DV
2748/**
2749 * Ensures that an object will eventually get non-busy by flushing any required
2750 * write domains, emitting any outstanding lazy request and retiring and
2751 * completed requests.
2752 */
2753static int
2754i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2755{
2756 int ret;
2757
2758 if (obj->active) {
0201f1ec 2759 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2760 if (ret)
2761 return ret;
2762
30dfebf3
DV
2763 i915_gem_retire_requests_ring(obj->ring);
2764 }
2765
2766 return 0;
2767}
2768
23ba4fd0
BW
2769/**
2770 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2771 * @DRM_IOCTL_ARGS: standard ioctl arguments
2772 *
2773 * Returns 0 if successful, else an error is returned with the remaining time in
2774 * the timeout parameter.
2775 * -ETIME: object is still busy after timeout
2776 * -ERESTARTSYS: signal interrupted the wait
2777 * -ENONENT: object doesn't exist
2778 * Also possible, but rare:
2779 * -EAGAIN: GPU wedged
2780 * -ENOMEM: damn
2781 * -ENODEV: Internal IRQ fail
2782 * -E?: The add request failed
2783 *
2784 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2785 * non-zero timeout parameter the wait ioctl will wait for the given number of
2786 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2787 * without holding struct_mutex the object may become re-busied before this
2788 * function completes. A similar but shorter * race condition exists in the busy
2789 * ioctl
2790 */
2791int
2792i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2793{
3e31c6c0 2794 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2795 struct drm_i915_gem_wait *args = data;
2796 struct drm_i915_gem_object *obj;
a4872ba6 2797 struct intel_engine_cs *ring = NULL;
f69061be 2798 unsigned reset_counter;
23ba4fd0
BW
2799 u32 seqno = 0;
2800 int ret = 0;
2801
23ba4fd0
BW
2802 ret = i915_mutex_lock_interruptible(dev);
2803 if (ret)
2804 return ret;
2805
2806 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2807 if (&obj->base == NULL) {
2808 mutex_unlock(&dev->struct_mutex);
2809 return -ENOENT;
2810 }
2811
30dfebf3
DV
2812 /* Need to make sure the object gets inactive eventually. */
2813 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2814 if (ret)
2815 goto out;
2816
2817 if (obj->active) {
0201f1ec 2818 seqno = obj->last_read_seqno;
23ba4fd0
BW
2819 ring = obj->ring;
2820 }
2821
2822 if (seqno == 0)
2823 goto out;
2824
23ba4fd0 2825 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2826 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2827 */
5ed0bdf2 2828 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2829 ret = -ETIME;
2830 goto out;
2831 }
2832
2833 drm_gem_object_unreference(&obj->base);
f69061be 2834 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2835 mutex_unlock(&dev->struct_mutex);
2836
5ed0bdf2
TG
2837 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2838 file->driver_priv);
23ba4fd0
BW
2839
2840out:
2841 drm_gem_object_unreference(&obj->base);
2842 mutex_unlock(&dev->struct_mutex);
2843 return ret;
2844}
2845
5816d648
BW
2846/**
2847 * i915_gem_object_sync - sync an object to a ring.
2848 *
2849 * @obj: object which may be in use on another ring.
2850 * @to: ring we wish to use the object on. May be NULL.
2851 *
2852 * This code is meant to abstract object synchronization with the GPU.
2853 * Calling with NULL implies synchronizing the object with the CPU
2854 * rather than a particular GPU ring.
2855 *
2856 * Returns 0 if successful, else propagates up the lower layer error.
2857 */
2911a35b
BW
2858int
2859i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2860 struct intel_engine_cs *to)
2911a35b 2861{
a4872ba6 2862 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2863 u32 seqno;
2864 int ret, idx;
2865
2866 if (from == NULL || to == from)
2867 return 0;
2868
5816d648 2869 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2870 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2871
2872 idx = intel_ring_sync_index(from, to);
2873
0201f1ec 2874 seqno = obj->last_read_seqno;
ddd4dbc6
RV
2875 /* Optimization: Avoid semaphore sync when we are sure we already
2876 * waited for an object with higher seqno */
ebc348b2 2877 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2878 return 0;
2879
b4aca010
BW
2880 ret = i915_gem_check_olr(obj->ring, seqno);
2881 if (ret)
2882 return ret;
2911a35b 2883
b52b89da 2884 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2885 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2886 if (!ret)
7b01e260
MK
2887 /* We use last_read_seqno because sync_to()
2888 * might have just caused seqno wrap under
2889 * the radar.
2890 */
ebc348b2 2891 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2892
e3a5a225 2893 return ret;
2911a35b
BW
2894}
2895
b5ffc9bc
CW
2896static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2897{
2898 u32 old_write_domain, old_read_domains;
2899
b5ffc9bc
CW
2900 /* Force a pagefault for domain tracking on next user access */
2901 i915_gem_release_mmap(obj);
2902
b97c3d9c
KP
2903 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2904 return;
2905
97c809fd
CW
2906 /* Wait for any direct GTT access to complete */
2907 mb();
2908
b5ffc9bc
CW
2909 old_read_domains = obj->base.read_domains;
2910 old_write_domain = obj->base.write_domain;
2911
2912 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2913 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2914
2915 trace_i915_gem_object_change_domain(obj,
2916 old_read_domains,
2917 old_write_domain);
2918}
2919
07fe0b12 2920int i915_vma_unbind(struct i915_vma *vma)
673a394b 2921{
07fe0b12 2922 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2923 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2924 int ret;
673a394b 2925
07fe0b12 2926 if (list_empty(&vma->vma_link))
673a394b
EA
2927 return 0;
2928
0ff501cb
DV
2929 if (!drm_mm_node_allocated(&vma->node)) {
2930 i915_gem_vma_destroy(vma);
0ff501cb
DV
2931 return 0;
2932 }
433544bd 2933
d7f46fc4 2934 if (vma->pin_count)
31d8d651 2935 return -EBUSY;
673a394b 2936
c4670ad0
CW
2937 BUG_ON(obj->pages == NULL);
2938
a8198eea 2939 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2940 if (ret)
a8198eea
CW
2941 return ret;
2942 /* Continue on if we fail due to EIO, the GPU is hung so we
2943 * should be safe and we need to cleanup or else we might
2944 * cause memory corruption through use-after-free.
2945 */
2946
8b1bc9b4
DV
2947 if (i915_is_ggtt(vma->vm)) {
2948 i915_gem_object_finish_gtt(obj);
5323fd04 2949
8b1bc9b4
DV
2950 /* release the fence reg _after_ flushing */
2951 ret = i915_gem_object_put_fence(obj);
2952 if (ret)
2953 return ret;
2954 }
96b47b65 2955
07fe0b12 2956 trace_i915_vma_unbind(vma);
db53a302 2957
6f65e29a
BW
2958 vma->unbind_vma(vma);
2959
64bf9303 2960 list_del_init(&vma->mm_list);
5cacaac7 2961 if (i915_is_ggtt(vma->vm))
e6a84468 2962 obj->map_and_fenceable = false;
673a394b 2963
2f633156
BW
2964 drm_mm_remove_node(&vma->node);
2965 i915_gem_vma_destroy(vma);
2966
2967 /* Since the unbound list is global, only move to that list if
b93dab6e 2968 * no more VMAs exist. */
9490edb5
AR
2969 if (list_empty(&obj->vma_list)) {
2970 i915_gem_gtt_finish_object(obj);
2f633156 2971 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 2972 }
673a394b 2973
70903c3b
CW
2974 /* And finally now the object is completely decoupled from this vma,
2975 * we can drop its hold on the backing storage and allow it to be
2976 * reaped by the shrinker.
2977 */
2978 i915_gem_object_unpin_pages(obj);
2979
88241785 2980 return 0;
54cf91dc
CW
2981}
2982
b2da9fe5 2983int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2984{
3e31c6c0 2985 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2986 struct intel_engine_cs *ring;
1ec14ad3 2987 int ret, i;
4df2faf4 2988
4df2faf4 2989 /* Flush everything onto the inactive list. */
b4519513 2990 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
2991 if (!i915.enable_execlists) {
2992 ret = i915_switch_context(ring, ring->default_context);
2993 if (ret)
2994 return ret;
2995 }
b6c7488d 2996
3e960501 2997 ret = intel_ring_idle(ring);
1ec14ad3
CW
2998 if (ret)
2999 return ret;
3000 }
4df2faf4 3001
8a1a49f9 3002 return 0;
4df2faf4
DV
3003}
3004
9ce079e4
CW
3005static void i965_write_fence_reg(struct drm_device *dev, int reg,
3006 struct drm_i915_gem_object *obj)
de151cf6 3007{
3e31c6c0 3008 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3009 int fence_reg;
3010 int fence_pitch_shift;
de151cf6 3011
56c844e5
ID
3012 if (INTEL_INFO(dev)->gen >= 6) {
3013 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3014 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3015 } else {
3016 fence_reg = FENCE_REG_965_0;
3017 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3018 }
3019
d18b9619
CW
3020 fence_reg += reg * 8;
3021
3022 /* To w/a incoherency with non-atomic 64-bit register updates,
3023 * we split the 64-bit update into two 32-bit writes. In order
3024 * for a partial fence not to be evaluated between writes, we
3025 * precede the update with write to turn off the fence register,
3026 * and only enable the fence as the last step.
3027 *
3028 * For extra levels of paranoia, we make sure each step lands
3029 * before applying the next step.
3030 */
3031 I915_WRITE(fence_reg, 0);
3032 POSTING_READ(fence_reg);
3033
9ce079e4 3034 if (obj) {
f343c5f6 3035 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3036 uint64_t val;
de151cf6 3037
f343c5f6 3038 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3039 0xfffff000) << 32;
f343c5f6 3040 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3041 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3042 if (obj->tiling_mode == I915_TILING_Y)
3043 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3044 val |= I965_FENCE_REG_VALID;
c6642782 3045
d18b9619
CW
3046 I915_WRITE(fence_reg + 4, val >> 32);
3047 POSTING_READ(fence_reg + 4);
3048
3049 I915_WRITE(fence_reg + 0, val);
3050 POSTING_READ(fence_reg);
3051 } else {
3052 I915_WRITE(fence_reg + 4, 0);
3053 POSTING_READ(fence_reg + 4);
3054 }
de151cf6
JB
3055}
3056
9ce079e4
CW
3057static void i915_write_fence_reg(struct drm_device *dev, int reg,
3058 struct drm_i915_gem_object *obj)
de151cf6 3059{
3e31c6c0 3060 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3061 u32 val;
de151cf6 3062
9ce079e4 3063 if (obj) {
f343c5f6 3064 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3065 int pitch_val;
3066 int tile_width;
c6642782 3067
f343c5f6 3068 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3069 (size & -size) != size ||
f343c5f6
BW
3070 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3071 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3072 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3073
9ce079e4
CW
3074 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3075 tile_width = 128;
3076 else
3077 tile_width = 512;
3078
3079 /* Note: pitch better be a power of two tile widths */
3080 pitch_val = obj->stride / tile_width;
3081 pitch_val = ffs(pitch_val) - 1;
3082
f343c5f6 3083 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3084 if (obj->tiling_mode == I915_TILING_Y)
3085 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3086 val |= I915_FENCE_SIZE_BITS(size);
3087 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3088 val |= I830_FENCE_REG_VALID;
3089 } else
3090 val = 0;
3091
3092 if (reg < 8)
3093 reg = FENCE_REG_830_0 + reg * 4;
3094 else
3095 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3096
3097 I915_WRITE(reg, val);
3098 POSTING_READ(reg);
de151cf6
JB
3099}
3100
9ce079e4
CW
3101static void i830_write_fence_reg(struct drm_device *dev, int reg,
3102 struct drm_i915_gem_object *obj)
de151cf6 3103{
3e31c6c0 3104 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3105 uint32_t val;
de151cf6 3106
9ce079e4 3107 if (obj) {
f343c5f6 3108 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3109 uint32_t pitch_val;
de151cf6 3110
f343c5f6 3111 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3112 (size & -size) != size ||
f343c5f6
BW
3113 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3114 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3115 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3116
9ce079e4
CW
3117 pitch_val = obj->stride / 128;
3118 pitch_val = ffs(pitch_val) - 1;
de151cf6 3119
f343c5f6 3120 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3121 if (obj->tiling_mode == I915_TILING_Y)
3122 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3123 val |= I830_FENCE_SIZE_BITS(size);
3124 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3125 val |= I830_FENCE_REG_VALID;
3126 } else
3127 val = 0;
c6642782 3128
9ce079e4
CW
3129 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3130 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3131}
3132
d0a57789
CW
3133inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3134{
3135 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3136}
3137
9ce079e4
CW
3138static void i915_gem_write_fence(struct drm_device *dev, int reg,
3139 struct drm_i915_gem_object *obj)
3140{
d0a57789
CW
3141 struct drm_i915_private *dev_priv = dev->dev_private;
3142
3143 /* Ensure that all CPU reads are completed before installing a fence
3144 * and all writes before removing the fence.
3145 */
3146 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3147 mb();
3148
94a335db
DV
3149 WARN(obj && (!obj->stride || !obj->tiling_mode),
3150 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3151 obj->stride, obj->tiling_mode);
3152
9ce079e4 3153 switch (INTEL_INFO(dev)->gen) {
5ab31333 3154 case 8:
9ce079e4 3155 case 7:
56c844e5 3156 case 6:
9ce079e4
CW
3157 case 5:
3158 case 4: i965_write_fence_reg(dev, reg, obj); break;
3159 case 3: i915_write_fence_reg(dev, reg, obj); break;
3160 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3161 default: BUG();
9ce079e4 3162 }
d0a57789
CW
3163
3164 /* And similarly be paranoid that no direct access to this region
3165 * is reordered to before the fence is installed.
3166 */
3167 if (i915_gem_object_needs_mb(obj))
3168 mb();
de151cf6
JB
3169}
3170
61050808
CW
3171static inline int fence_number(struct drm_i915_private *dev_priv,
3172 struct drm_i915_fence_reg *fence)
3173{
3174 return fence - dev_priv->fence_regs;
3175}
3176
3177static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3178 struct drm_i915_fence_reg *fence,
3179 bool enable)
3180{
2dc8aae0 3181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3182 int reg = fence_number(dev_priv, fence);
3183
3184 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3185
3186 if (enable) {
46a0b638 3187 obj->fence_reg = reg;
61050808
CW
3188 fence->obj = obj;
3189 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3190 } else {
3191 obj->fence_reg = I915_FENCE_REG_NONE;
3192 fence->obj = NULL;
3193 list_del_init(&fence->lru_list);
3194 }
94a335db 3195 obj->fence_dirty = false;
61050808
CW
3196}
3197
d9e86c0e 3198static int
d0a57789 3199i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3200{
1c293ea3 3201 if (obj->last_fenced_seqno) {
86d5bc37 3202 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3203 if (ret)
3204 return ret;
d9e86c0e
CW
3205
3206 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3207 }
3208
3209 return 0;
3210}
3211
3212int
3213i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3214{
61050808 3215 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3216 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3217 int ret;
3218
d0a57789 3219 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3220 if (ret)
3221 return ret;
3222
61050808
CW
3223 if (obj->fence_reg == I915_FENCE_REG_NONE)
3224 return 0;
d9e86c0e 3225
f9c513e9
CW
3226 fence = &dev_priv->fence_regs[obj->fence_reg];
3227
aff10b30
DV
3228 if (WARN_ON(fence->pin_count))
3229 return -EBUSY;
3230
61050808 3231 i915_gem_object_fence_lost(obj);
f9c513e9 3232 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3233
3234 return 0;
3235}
3236
3237static struct drm_i915_fence_reg *
a360bb1a 3238i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3239{
ae3db24a 3240 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3241 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3242 int i;
ae3db24a
DV
3243
3244 /* First try to find a free reg */
d9e86c0e 3245 avail = NULL;
ae3db24a
DV
3246 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3247 reg = &dev_priv->fence_regs[i];
3248 if (!reg->obj)
d9e86c0e 3249 return reg;
ae3db24a 3250
1690e1eb 3251 if (!reg->pin_count)
d9e86c0e 3252 avail = reg;
ae3db24a
DV
3253 }
3254
d9e86c0e 3255 if (avail == NULL)
5dce5b93 3256 goto deadlock;
ae3db24a
DV
3257
3258 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3259 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3260 if (reg->pin_count)
ae3db24a
DV
3261 continue;
3262
8fe301ad 3263 return reg;
ae3db24a
DV
3264 }
3265
5dce5b93
CW
3266deadlock:
3267 /* Wait for completion of pending flips which consume fences */
3268 if (intel_has_pending_fb_unpin(dev))
3269 return ERR_PTR(-EAGAIN);
3270
3271 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3272}
3273
de151cf6 3274/**
9a5a53b3 3275 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3276 * @obj: object to map through a fence reg
3277 *
3278 * When mapping objects through the GTT, userspace wants to be able to write
3279 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3280 * This function walks the fence regs looking for a free one for @obj,
3281 * stealing one if it can't find any.
3282 *
3283 * It then sets up the reg based on the object's properties: address, pitch
3284 * and tiling format.
9a5a53b3
CW
3285 *
3286 * For an untiled surface, this removes any existing fence.
de151cf6 3287 */
8c4b8c3f 3288int
06d98131 3289i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3290{
05394f39 3291 struct drm_device *dev = obj->base.dev;
79e53945 3292 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3293 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3294 struct drm_i915_fence_reg *reg;
ae3db24a 3295 int ret;
de151cf6 3296
14415745
CW
3297 /* Have we updated the tiling parameters upon the object and so
3298 * will need to serialise the write to the associated fence register?
3299 */
5d82e3e6 3300 if (obj->fence_dirty) {
d0a57789 3301 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3302 if (ret)
3303 return ret;
3304 }
9a5a53b3 3305
d9e86c0e 3306 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3307 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3308 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3309 if (!obj->fence_dirty) {
14415745
CW
3310 list_move_tail(&reg->lru_list,
3311 &dev_priv->mm.fence_list);
3312 return 0;
3313 }
3314 } else if (enable) {
e6a84468
CW
3315 if (WARN_ON(!obj->map_and_fenceable))
3316 return -EINVAL;
3317
14415745 3318 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3319 if (IS_ERR(reg))
3320 return PTR_ERR(reg);
d9e86c0e 3321
14415745
CW
3322 if (reg->obj) {
3323 struct drm_i915_gem_object *old = reg->obj;
3324
d0a57789 3325 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3326 if (ret)
3327 return ret;
3328
14415745 3329 i915_gem_object_fence_lost(old);
29c5a587 3330 }
14415745 3331 } else
a09ba7fa 3332 return 0;
a09ba7fa 3333
14415745 3334 i915_gem_object_update_fence(obj, reg, enable);
14415745 3335
9ce079e4 3336 return 0;
de151cf6
JB
3337}
3338
42d6ab48
CW
3339static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3340 struct drm_mm_node *gtt_space,
3341 unsigned long cache_level)
3342{
3343 struct drm_mm_node *other;
3344
3345 /* On non-LLC machines we have to be careful when putting differing
3346 * types of snoopable memory together to avoid the prefetcher
4239ca77 3347 * crossing memory domains and dying.
42d6ab48
CW
3348 */
3349 if (HAS_LLC(dev))
3350 return true;
3351
c6cfb325 3352 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3353 return true;
3354
3355 if (list_empty(&gtt_space->node_list))
3356 return true;
3357
3358 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3359 if (other->allocated && !other->hole_follows && other->color != cache_level)
3360 return false;
3361
3362 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3363 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3364 return false;
3365
3366 return true;
3367}
3368
3369static void i915_gem_verify_gtt(struct drm_device *dev)
3370{
3371#if WATCH_GTT
3372 struct drm_i915_private *dev_priv = dev->dev_private;
3373 struct drm_i915_gem_object *obj;
3374 int err = 0;
3375
35c20a60 3376 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3377 if (obj->gtt_space == NULL) {
3378 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3379 err++;
3380 continue;
3381 }
3382
3383 if (obj->cache_level != obj->gtt_space->color) {
3384 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3385 i915_gem_obj_ggtt_offset(obj),
3386 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3387 obj->cache_level,
3388 obj->gtt_space->color);
3389 err++;
3390 continue;
3391 }
3392
3393 if (!i915_gem_valid_gtt_space(dev,
3394 obj->gtt_space,
3395 obj->cache_level)) {
3396 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3397 i915_gem_obj_ggtt_offset(obj),
3398 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3399 obj->cache_level);
3400 err++;
3401 continue;
3402 }
3403 }
3404
3405 WARN_ON(err);
3406#endif
3407}
3408
673a394b
EA
3409/**
3410 * Finds free space in the GTT aperture and binds the object there.
3411 */
262de145 3412static struct i915_vma *
07fe0b12
BW
3413i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3414 struct i915_address_space *vm,
3415 unsigned alignment,
d23db88c 3416 uint64_t flags)
673a394b 3417{
05394f39 3418 struct drm_device *dev = obj->base.dev;
3e31c6c0 3419 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3420 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3421 unsigned long start =
3422 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3423 unsigned long end =
1ec9e26d 3424 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3425 struct i915_vma *vma;
07f73f69 3426 int ret;
673a394b 3427
e28f8711
CW
3428 fence_size = i915_gem_get_gtt_size(dev,
3429 obj->base.size,
3430 obj->tiling_mode);
3431 fence_alignment = i915_gem_get_gtt_alignment(dev,
3432 obj->base.size,
d865110c 3433 obj->tiling_mode, true);
e28f8711 3434 unfenced_alignment =
d865110c 3435 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3436 obj->base.size,
3437 obj->tiling_mode, false);
a00b10c3 3438
673a394b 3439 if (alignment == 0)
1ec9e26d 3440 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3441 unfenced_alignment;
1ec9e26d 3442 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3443 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3444 return ERR_PTR(-EINVAL);
673a394b
EA
3445 }
3446
1ec9e26d 3447 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3448
654fc607
CW
3449 /* If the object is bigger than the entire aperture, reject it early
3450 * before evicting everything in a vain attempt to find space.
3451 */
d23db88c
CW
3452 if (obj->base.size > end) {
3453 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3454 obj->base.size,
1ec9e26d 3455 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3456 end);
262de145 3457 return ERR_PTR(-E2BIG);
654fc607
CW
3458 }
3459
37e680a1 3460 ret = i915_gem_object_get_pages(obj);
6c085a72 3461 if (ret)
262de145 3462 return ERR_PTR(ret);
6c085a72 3463
fbdda6fb
CW
3464 i915_gem_object_pin_pages(obj);
3465
accfef2e 3466 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3467 if (IS_ERR(vma))
bc6bc15b 3468 goto err_unpin;
2f633156 3469
0a9ae0d7 3470search_free:
07fe0b12 3471 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3472 size, alignment,
d23db88c
CW
3473 obj->cache_level,
3474 start, end,
62347f9e
LK
3475 DRM_MM_SEARCH_DEFAULT,
3476 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3477 if (ret) {
f6cd1f15 3478 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3479 obj->cache_level,
3480 start, end,
3481 flags);
dc9dd7a2
CW
3482 if (ret == 0)
3483 goto search_free;
9731129c 3484
bc6bc15b 3485 goto err_free_vma;
673a394b 3486 }
2f633156 3487 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3488 obj->cache_level))) {
2f633156 3489 ret = -EINVAL;
bc6bc15b 3490 goto err_remove_node;
673a394b
EA
3491 }
3492
74163907 3493 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3494 if (ret)
bc6bc15b 3495 goto err_remove_node;
673a394b 3496
35c20a60 3497 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3498 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3499
4bd561b3
BW
3500 if (i915_is_ggtt(vm)) {
3501 bool mappable, fenceable;
a00b10c3 3502
49987099
DV
3503 fenceable = (vma->node.size == fence_size &&
3504 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3505
49987099
DV
3506 mappable = (vma->node.start + obj->base.size <=
3507 dev_priv->gtt.mappable_end);
a00b10c3 3508
5cacaac7 3509 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3510 }
75e9e915 3511
1ec9e26d 3512 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3513
1ec9e26d 3514 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3515 vma->bind_vma(vma, obj->cache_level,
3516 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3517
42d6ab48 3518 i915_gem_verify_gtt(dev);
262de145 3519 return vma;
2f633156 3520
bc6bc15b 3521err_remove_node:
6286ef9b 3522 drm_mm_remove_node(&vma->node);
bc6bc15b 3523err_free_vma:
2f633156 3524 i915_gem_vma_destroy(vma);
262de145 3525 vma = ERR_PTR(ret);
bc6bc15b 3526err_unpin:
2f633156 3527 i915_gem_object_unpin_pages(obj);
262de145 3528 return vma;
673a394b
EA
3529}
3530
000433b6 3531bool
2c22569b
CW
3532i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3533 bool force)
673a394b 3534{
673a394b
EA
3535 /* If we don't have a page list set up, then we're not pinned
3536 * to GPU, and we can ignore the cache flush because it'll happen
3537 * again at bind time.
3538 */
05394f39 3539 if (obj->pages == NULL)
000433b6 3540 return false;
673a394b 3541
769ce464
ID
3542 /*
3543 * Stolen memory is always coherent with the GPU as it is explicitly
3544 * marked as wc by the system, or the system is cache-coherent.
3545 */
3546 if (obj->stolen)
000433b6 3547 return false;
769ce464 3548
9c23f7fc
CW
3549 /* If the GPU is snooping the contents of the CPU cache,
3550 * we do not need to manually clear the CPU cache lines. However,
3551 * the caches are only snooped when the render cache is
3552 * flushed/invalidated. As we always have to emit invalidations
3553 * and flushes when moving into and out of the RENDER domain, correct
3554 * snooping behaviour occurs naturally as the result of our domain
3555 * tracking.
3556 */
2c22569b 3557 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3558 return false;
9c23f7fc 3559
1c5d22f7 3560 trace_i915_gem_object_clflush(obj);
9da3da66 3561 drm_clflush_sg(obj->pages);
000433b6
CW
3562
3563 return true;
e47c68e9
EA
3564}
3565
3566/** Flushes the GTT write domain for the object if it's dirty. */
3567static void
05394f39 3568i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3569{
1c5d22f7
CW
3570 uint32_t old_write_domain;
3571
05394f39 3572 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3573 return;
3574
63256ec5 3575 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3576 * to it immediately go to main memory as far as we know, so there's
3577 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3578 *
3579 * However, we do have to enforce the order so that all writes through
3580 * the GTT land before any writes to the device, such as updates to
3581 * the GATT itself.
e47c68e9 3582 */
63256ec5
CW
3583 wmb();
3584
05394f39
CW
3585 old_write_domain = obj->base.write_domain;
3586 obj->base.write_domain = 0;
1c5d22f7 3587
f99d7069
DV
3588 intel_fb_obj_flush(obj, false);
3589
1c5d22f7 3590 trace_i915_gem_object_change_domain(obj,
05394f39 3591 obj->base.read_domains,
1c5d22f7 3592 old_write_domain);
e47c68e9
EA
3593}
3594
3595/** Flushes the CPU write domain for the object if it's dirty. */
3596static void
2c22569b
CW
3597i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3598 bool force)
e47c68e9 3599{
1c5d22f7 3600 uint32_t old_write_domain;
e47c68e9 3601
05394f39 3602 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3603 return;
3604
000433b6
CW
3605 if (i915_gem_clflush_object(obj, force))
3606 i915_gem_chipset_flush(obj->base.dev);
3607
05394f39
CW
3608 old_write_domain = obj->base.write_domain;
3609 obj->base.write_domain = 0;
1c5d22f7 3610
f99d7069
DV
3611 intel_fb_obj_flush(obj, false);
3612
1c5d22f7 3613 trace_i915_gem_object_change_domain(obj,
05394f39 3614 obj->base.read_domains,
1c5d22f7 3615 old_write_domain);
e47c68e9
EA
3616}
3617
2ef7eeaa
EA
3618/**
3619 * Moves a single object to the GTT read, and possibly write domain.
3620 *
3621 * This function returns when the move is complete, including waiting on
3622 * flushes to occur.
3623 */
79e53945 3624int
2021746e 3625i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3626{
3e31c6c0 3627 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3628 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3629 uint32_t old_write_domain, old_read_domains;
e47c68e9 3630 int ret;
2ef7eeaa 3631
02354392 3632 /* Not valid to be called on unbound objects. */
dc8cd1e7 3633 if (vma == NULL)
02354392
EA
3634 return -EINVAL;
3635
8d7e3de1
CW
3636 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3637 return 0;
3638
0201f1ec 3639 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3640 if (ret)
3641 return ret;
3642
c8725f3d 3643 i915_gem_object_retire(obj);
2c22569b 3644 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3645
d0a57789
CW
3646 /* Serialise direct access to this object with the barriers for
3647 * coherent writes from the GPU, by effectively invalidating the
3648 * GTT domain upon first access.
3649 */
3650 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3651 mb();
3652
05394f39
CW
3653 old_write_domain = obj->base.write_domain;
3654 old_read_domains = obj->base.read_domains;
1c5d22f7 3655
e47c68e9
EA
3656 /* It should now be out of any other write domains, and we can update
3657 * the domain values for our changes.
3658 */
05394f39
CW
3659 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3660 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3661 if (write) {
05394f39
CW
3662 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3663 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3664 obj->dirty = 1;
2ef7eeaa
EA
3665 }
3666
f99d7069
DV
3667 if (write)
3668 intel_fb_obj_invalidate(obj, NULL);
3669
1c5d22f7
CW
3670 trace_i915_gem_object_change_domain(obj,
3671 old_read_domains,
3672 old_write_domain);
3673
8325a09d 3674 /* And bump the LRU for this access */
dc8cd1e7
CW
3675 if (i915_gem_object_is_inactive(obj))
3676 list_move_tail(&vma->mm_list,
3677 &dev_priv->gtt.base.inactive_list);
8325a09d 3678
e47c68e9
EA
3679 return 0;
3680}
3681
e4ffd173
CW
3682int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3683 enum i915_cache_level cache_level)
3684{
7bddb01f 3685 struct drm_device *dev = obj->base.dev;
df6f783a 3686 struct i915_vma *vma, *next;
e4ffd173
CW
3687 int ret;
3688
3689 if (obj->cache_level == cache_level)
3690 return 0;
3691
d7f46fc4 3692 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3693 DRM_DEBUG("can not change the cache level of pinned objects\n");
3694 return -EBUSY;
3695 }
3696
df6f783a 3697 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3698 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3699 ret = i915_vma_unbind(vma);
3089c6f2
BW
3700 if (ret)
3701 return ret;
3089c6f2 3702 }
42d6ab48
CW
3703 }
3704
3089c6f2 3705 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3706 ret = i915_gem_object_finish_gpu(obj);
3707 if (ret)
3708 return ret;
3709
3710 i915_gem_object_finish_gtt(obj);
3711
3712 /* Before SandyBridge, you could not use tiling or fence
3713 * registers with snooped memory, so relinquish any fences
3714 * currently pointing to our region in the aperture.
3715 */
42d6ab48 3716 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3717 ret = i915_gem_object_put_fence(obj);
3718 if (ret)
3719 return ret;
3720 }
3721
6f65e29a 3722 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3723 if (drm_mm_node_allocated(&vma->node))
3724 vma->bind_vma(vma, cache_level,
3725 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3726 }
3727
2c22569b
CW
3728 list_for_each_entry(vma, &obj->vma_list, vma_link)
3729 vma->node.color = cache_level;
3730 obj->cache_level = cache_level;
3731
3732 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3733 u32 old_read_domains, old_write_domain;
3734
3735 /* If we're coming from LLC cached, then we haven't
3736 * actually been tracking whether the data is in the
3737 * CPU cache or not, since we only allow one bit set
3738 * in obj->write_domain and have been skipping the clflushes.
3739 * Just set it to the CPU cache for now.
3740 */
c8725f3d 3741 i915_gem_object_retire(obj);
e4ffd173 3742 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3743
3744 old_read_domains = obj->base.read_domains;
3745 old_write_domain = obj->base.write_domain;
3746
3747 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3748 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3749
3750 trace_i915_gem_object_change_domain(obj,
3751 old_read_domains,
3752 old_write_domain);
3753 }
3754
42d6ab48 3755 i915_gem_verify_gtt(dev);
e4ffd173
CW
3756 return 0;
3757}
3758
199adf40
BW
3759int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3760 struct drm_file *file)
e6994aee 3761{
199adf40 3762 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3763 struct drm_i915_gem_object *obj;
3764 int ret;
3765
3766 ret = i915_mutex_lock_interruptible(dev);
3767 if (ret)
3768 return ret;
3769
3770 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3771 if (&obj->base == NULL) {
3772 ret = -ENOENT;
3773 goto unlock;
3774 }
3775
651d794f
CW
3776 switch (obj->cache_level) {
3777 case I915_CACHE_LLC:
3778 case I915_CACHE_L3_LLC:
3779 args->caching = I915_CACHING_CACHED;
3780 break;
3781
4257d3ba
CW
3782 case I915_CACHE_WT:
3783 args->caching = I915_CACHING_DISPLAY;
3784 break;
3785
651d794f
CW
3786 default:
3787 args->caching = I915_CACHING_NONE;
3788 break;
3789 }
e6994aee
CW
3790
3791 drm_gem_object_unreference(&obj->base);
3792unlock:
3793 mutex_unlock(&dev->struct_mutex);
3794 return ret;
3795}
3796
199adf40
BW
3797int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3798 struct drm_file *file)
e6994aee 3799{
199adf40 3800 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3801 struct drm_i915_gem_object *obj;
3802 enum i915_cache_level level;
3803 int ret;
3804
199adf40
BW
3805 switch (args->caching) {
3806 case I915_CACHING_NONE:
e6994aee
CW
3807 level = I915_CACHE_NONE;
3808 break;
199adf40 3809 case I915_CACHING_CACHED:
e6994aee
CW
3810 level = I915_CACHE_LLC;
3811 break;
4257d3ba
CW
3812 case I915_CACHING_DISPLAY:
3813 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3814 break;
e6994aee
CW
3815 default:
3816 return -EINVAL;
3817 }
3818
3bc2913e
BW
3819 ret = i915_mutex_lock_interruptible(dev);
3820 if (ret)
3821 return ret;
3822
e6994aee
CW
3823 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3824 if (&obj->base == NULL) {
3825 ret = -ENOENT;
3826 goto unlock;
3827 }
3828
3829 ret = i915_gem_object_set_cache_level(obj, level);
3830
3831 drm_gem_object_unreference(&obj->base);
3832unlock:
3833 mutex_unlock(&dev->struct_mutex);
3834 return ret;
3835}
3836
cc98b413
CW
3837static bool is_pin_display(struct drm_i915_gem_object *obj)
3838{
19656430
OM
3839 struct i915_vma *vma;
3840
19656430
OM
3841 vma = i915_gem_obj_to_ggtt(obj);
3842 if (!vma)
3843 return false;
3844
cc98b413
CW
3845 /* There are 3 sources that pin objects:
3846 * 1. The display engine (scanouts, sprites, cursors);
3847 * 2. Reservations for execbuffer;
3848 * 3. The user.
3849 *
3850 * We can ignore reservations as we hold the struct_mutex and
3851 * are only called outside of the reservation path. The user
3852 * can only increment pin_count once, and so if after
3853 * subtracting the potential reference by the user, any pin_count
3854 * remains, it must be due to another use by the display engine.
3855 */
19656430 3856 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3857}
3858
b9241ea3 3859/*
2da3b9b9
CW
3860 * Prepare buffer for display plane (scanout, cursors, etc).
3861 * Can be called from an uninterruptible phase (modesetting) and allows
3862 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3863 */
3864int
2da3b9b9
CW
3865i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3866 u32 alignment,
a4872ba6 3867 struct intel_engine_cs *pipelined)
b9241ea3 3868{
2da3b9b9 3869 u32 old_read_domains, old_write_domain;
19656430 3870 bool was_pin_display;
b9241ea3
ZW
3871 int ret;
3872
0be73284 3873 if (pipelined != obj->ring) {
2911a35b
BW
3874 ret = i915_gem_object_sync(obj, pipelined);
3875 if (ret)
b9241ea3
ZW
3876 return ret;
3877 }
3878
cc98b413
CW
3879 /* Mark the pin_display early so that we account for the
3880 * display coherency whilst setting up the cache domains.
3881 */
19656430 3882 was_pin_display = obj->pin_display;
cc98b413
CW
3883 obj->pin_display = true;
3884
a7ef0640
EA
3885 /* The display engine is not coherent with the LLC cache on gen6. As
3886 * a result, we make sure that the pinning that is about to occur is
3887 * done with uncached PTEs. This is lowest common denominator for all
3888 * chipsets.
3889 *
3890 * However for gen6+, we could do better by using the GFDT bit instead
3891 * of uncaching, which would allow us to flush all the LLC-cached data
3892 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3893 */
651d794f
CW
3894 ret = i915_gem_object_set_cache_level(obj,
3895 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3896 if (ret)
cc98b413 3897 goto err_unpin_display;
a7ef0640 3898
2da3b9b9
CW
3899 /* As the user may map the buffer once pinned in the display plane
3900 * (e.g. libkms for the bootup splash), we have to ensure that we
3901 * always use map_and_fenceable for all scanout buffers.
3902 */
1ec9e26d 3903 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3904 if (ret)
cc98b413 3905 goto err_unpin_display;
2da3b9b9 3906
2c22569b 3907 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3908
2da3b9b9 3909 old_write_domain = obj->base.write_domain;
05394f39 3910 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3911
3912 /* It should now be out of any other write domains, and we can update
3913 * the domain values for our changes.
3914 */
e5f1d962 3915 obj->base.write_domain = 0;
05394f39 3916 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3917
3918 trace_i915_gem_object_change_domain(obj,
3919 old_read_domains,
2da3b9b9 3920 old_write_domain);
b9241ea3
ZW
3921
3922 return 0;
cc98b413
CW
3923
3924err_unpin_display:
19656430
OM
3925 WARN_ON(was_pin_display != is_pin_display(obj));
3926 obj->pin_display = was_pin_display;
cc98b413
CW
3927 return ret;
3928}
3929
3930void
3931i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3932{
d7f46fc4 3933 i915_gem_object_ggtt_unpin(obj);
cc98b413 3934 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3935}
3936
85345517 3937int
a8198eea 3938i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3939{
88241785
CW
3940 int ret;
3941
a8198eea 3942 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3943 return 0;
3944
0201f1ec 3945 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3946 if (ret)
3947 return ret;
3948
a8198eea
CW
3949 /* Ensure that we invalidate the GPU's caches and TLBs. */
3950 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3951 return 0;
85345517
CW
3952}
3953
e47c68e9
EA
3954/**
3955 * Moves a single object to the CPU read, and possibly write domain.
3956 *
3957 * This function returns when the move is complete, including waiting on
3958 * flushes to occur.
3959 */
dabdfe02 3960int
919926ae 3961i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3962{
1c5d22f7 3963 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3964 int ret;
3965
8d7e3de1
CW
3966 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3967 return 0;
3968
0201f1ec 3969 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3970 if (ret)
3971 return ret;
3972
c8725f3d 3973 i915_gem_object_retire(obj);
e47c68e9 3974 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3975
05394f39
CW
3976 old_write_domain = obj->base.write_domain;
3977 old_read_domains = obj->base.read_domains;
1c5d22f7 3978
e47c68e9 3979 /* Flush the CPU cache if it's still invalid. */
05394f39 3980 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3981 i915_gem_clflush_object(obj, false);
2ef7eeaa 3982
05394f39 3983 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3984 }
3985
3986 /* It should now be out of any other write domains, and we can update
3987 * the domain values for our changes.
3988 */
05394f39 3989 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3990
3991 /* If we're writing through the CPU, then the GPU read domains will
3992 * need to be invalidated at next use.
3993 */
3994 if (write) {
05394f39
CW
3995 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3996 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3997 }
2ef7eeaa 3998
f99d7069
DV
3999 if (write)
4000 intel_fb_obj_invalidate(obj, NULL);
4001
1c5d22f7
CW
4002 trace_i915_gem_object_change_domain(obj,
4003 old_read_domains,
4004 old_write_domain);
4005
2ef7eeaa
EA
4006 return 0;
4007}
4008
673a394b
EA
4009/* Throttle our rendering by waiting until the ring has completed our requests
4010 * emitted over 20 msec ago.
4011 *
b962442e
EA
4012 * Note that if we were to use the current jiffies each time around the loop,
4013 * we wouldn't escape the function with any frames outstanding if the time to
4014 * render a frame was over 20ms.
4015 *
673a394b
EA
4016 * This should get us reasonable parallelism between CPU and GPU but also
4017 * relatively low latency when blocking on a particular request to finish.
4018 */
40a5f0de 4019static int
f787a5f5 4020i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4021{
f787a5f5
CW
4022 struct drm_i915_private *dev_priv = dev->dev_private;
4023 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4024 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 4025 struct drm_i915_gem_request *request;
a4872ba6 4026 struct intel_engine_cs *ring = NULL;
f69061be 4027 unsigned reset_counter;
f787a5f5
CW
4028 u32 seqno = 0;
4029 int ret;
93533c29 4030
308887aa
DV
4031 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4032 if (ret)
4033 return ret;
4034
4035 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4036 if (ret)
4037 return ret;
e110e8d6 4038
1c25595f 4039 spin_lock(&file_priv->mm.lock);
f787a5f5 4040 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4041 if (time_after_eq(request->emitted_jiffies, recent_enough))
4042 break;
40a5f0de 4043
f787a5f5
CW
4044 ring = request->ring;
4045 seqno = request->seqno;
b962442e 4046 }
f69061be 4047 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4048 spin_unlock(&file_priv->mm.lock);
40a5f0de 4049
f787a5f5
CW
4050 if (seqno == 0)
4051 return 0;
2bc43b5c 4052
b29c19b6 4053 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4054 if (ret == 0)
4055 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4056
4057 return ret;
4058}
4059
d23db88c
CW
4060static bool
4061i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4062{
4063 struct drm_i915_gem_object *obj = vma->obj;
4064
4065 if (alignment &&
4066 vma->node.start & (alignment - 1))
4067 return true;
4068
4069 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4070 return true;
4071
4072 if (flags & PIN_OFFSET_BIAS &&
4073 vma->node.start < (flags & PIN_OFFSET_MASK))
4074 return true;
4075
4076 return false;
4077}
4078
673a394b 4079int
05394f39 4080i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4081 struct i915_address_space *vm,
05394f39 4082 uint32_t alignment,
d23db88c 4083 uint64_t flags)
673a394b 4084{
6e7186af 4085 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4086 struct i915_vma *vma;
673a394b
EA
4087 int ret;
4088
6e7186af
BW
4089 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4090 return -ENODEV;
4091
bf3d149b 4092 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4093 return -EINVAL;
07fe0b12
BW
4094
4095 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4096 if (vma) {
d7f46fc4
BW
4097 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4098 return -EBUSY;
4099
d23db88c 4100 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4101 WARN(vma->pin_count,
ae7d49d8 4102 "bo is already pinned with incorrect alignment:"
f343c5f6 4103 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4104 " obj->map_and_fenceable=%d\n",
07fe0b12 4105 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4106 !!(flags & PIN_MAPPABLE),
05394f39 4107 obj->map_and_fenceable);
07fe0b12 4108 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4109 if (ret)
4110 return ret;
8ea99c92
DV
4111
4112 vma = NULL;
ac0c6b5a
CW
4113 }
4114 }
4115
8ea99c92 4116 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4117 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4118 if (IS_ERR(vma))
4119 return PTR_ERR(vma);
22c344e9 4120 }
76446cac 4121
8ea99c92
DV
4122 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4123 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4124
8ea99c92 4125 vma->pin_count++;
1ec9e26d
DV
4126 if (flags & PIN_MAPPABLE)
4127 obj->pin_mappable |= true;
673a394b
EA
4128
4129 return 0;
4130}
4131
4132void
d7f46fc4 4133i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4134{
d7f46fc4 4135 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4136
d7f46fc4
BW
4137 BUG_ON(!vma);
4138 BUG_ON(vma->pin_count == 0);
4139 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4140
4141 if (--vma->pin_count == 0)
6299f992 4142 obj->pin_mappable = false;
673a394b
EA
4143}
4144
d8ffa60b
DV
4145bool
4146i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4147{
4148 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4149 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4150 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4151
4152 WARN_ON(!ggtt_vma ||
4153 dev_priv->fence_regs[obj->fence_reg].pin_count >
4154 ggtt_vma->pin_count);
4155 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4156 return true;
4157 } else
4158 return false;
4159}
4160
4161void
4162i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4163{
4164 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4165 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4166 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4167 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4168 }
4169}
4170
673a394b
EA
4171int
4172i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4173 struct drm_file *file)
673a394b
EA
4174{
4175 struct drm_i915_gem_pin *args = data;
05394f39 4176 struct drm_i915_gem_object *obj;
673a394b
EA
4177 int ret;
4178
02f6bccc
DV
4179 if (INTEL_INFO(dev)->gen >= 6)
4180 return -ENODEV;
4181
1d7cfea1
CW
4182 ret = i915_mutex_lock_interruptible(dev);
4183 if (ret)
4184 return ret;
673a394b 4185
05394f39 4186 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4187 if (&obj->base == NULL) {
1d7cfea1
CW
4188 ret = -ENOENT;
4189 goto unlock;
673a394b 4190 }
673a394b 4191
05394f39 4192 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4193 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4194 ret = -EFAULT;
1d7cfea1 4195 goto out;
3ef94daa
CW
4196 }
4197
05394f39 4198 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4199 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4200 args->handle);
1d7cfea1
CW
4201 ret = -EINVAL;
4202 goto out;
79e53945
JB
4203 }
4204
aa5f8021
DV
4205 if (obj->user_pin_count == ULONG_MAX) {
4206 ret = -EBUSY;
4207 goto out;
4208 }
4209
93be8788 4210 if (obj->user_pin_count == 0) {
1ec9e26d 4211 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4212 if (ret)
4213 goto out;
673a394b
EA
4214 }
4215
93be8788
CW
4216 obj->user_pin_count++;
4217 obj->pin_filp = file;
4218
f343c5f6 4219 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4220out:
05394f39 4221 drm_gem_object_unreference(&obj->base);
1d7cfea1 4222unlock:
673a394b 4223 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4224 return ret;
673a394b
EA
4225}
4226
4227int
4228i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4229 struct drm_file *file)
673a394b
EA
4230{
4231 struct drm_i915_gem_pin *args = data;
05394f39 4232 struct drm_i915_gem_object *obj;
76c1dec1 4233 int ret;
673a394b 4234
1d7cfea1
CW
4235 ret = i915_mutex_lock_interruptible(dev);
4236 if (ret)
4237 return ret;
673a394b 4238
05394f39 4239 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4240 if (&obj->base == NULL) {
1d7cfea1
CW
4241 ret = -ENOENT;
4242 goto unlock;
673a394b 4243 }
76c1dec1 4244
05394f39 4245 if (obj->pin_filp != file) {
bd9b6a4e 4246 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4247 args->handle);
1d7cfea1
CW
4248 ret = -EINVAL;
4249 goto out;
79e53945 4250 }
05394f39
CW
4251 obj->user_pin_count--;
4252 if (obj->user_pin_count == 0) {
4253 obj->pin_filp = NULL;
d7f46fc4 4254 i915_gem_object_ggtt_unpin(obj);
79e53945 4255 }
673a394b 4256
1d7cfea1 4257out:
05394f39 4258 drm_gem_object_unreference(&obj->base);
1d7cfea1 4259unlock:
673a394b 4260 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4261 return ret;
673a394b
EA
4262}
4263
4264int
4265i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4266 struct drm_file *file)
673a394b
EA
4267{
4268 struct drm_i915_gem_busy *args = data;
05394f39 4269 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4270 int ret;
4271
76c1dec1 4272 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4273 if (ret)
76c1dec1 4274 return ret;
673a394b 4275
05394f39 4276 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4277 if (&obj->base == NULL) {
1d7cfea1
CW
4278 ret = -ENOENT;
4279 goto unlock;
673a394b 4280 }
d1b851fc 4281
0be555b6
CW
4282 /* Count all active objects as busy, even if they are currently not used
4283 * by the gpu. Users of this interface expect objects to eventually
4284 * become non-busy without any further actions, therefore emit any
4285 * necessary flushes here.
c4de0a5d 4286 */
30dfebf3 4287 ret = i915_gem_object_flush_active(obj);
0be555b6 4288
30dfebf3 4289 args->busy = obj->active;
e9808edd
CW
4290 if (obj->ring) {
4291 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4292 args->busy |= intel_ring_flag(obj->ring) << 16;
4293 }
673a394b 4294
05394f39 4295 drm_gem_object_unreference(&obj->base);
1d7cfea1 4296unlock:
673a394b 4297 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4298 return ret;
673a394b
EA
4299}
4300
4301int
4302i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4303 struct drm_file *file_priv)
4304{
0206e353 4305 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4306}
4307
3ef94daa
CW
4308int
4309i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4310 struct drm_file *file_priv)
4311{
4312 struct drm_i915_gem_madvise *args = data;
05394f39 4313 struct drm_i915_gem_object *obj;
76c1dec1 4314 int ret;
3ef94daa
CW
4315
4316 switch (args->madv) {
4317 case I915_MADV_DONTNEED:
4318 case I915_MADV_WILLNEED:
4319 break;
4320 default:
4321 return -EINVAL;
4322 }
4323
1d7cfea1
CW
4324 ret = i915_mutex_lock_interruptible(dev);
4325 if (ret)
4326 return ret;
4327
05394f39 4328 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4329 if (&obj->base == NULL) {
1d7cfea1
CW
4330 ret = -ENOENT;
4331 goto unlock;
3ef94daa 4332 }
3ef94daa 4333
d7f46fc4 4334 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4335 ret = -EINVAL;
4336 goto out;
3ef94daa
CW
4337 }
4338
05394f39
CW
4339 if (obj->madv != __I915_MADV_PURGED)
4340 obj->madv = args->madv;
3ef94daa 4341
6c085a72
CW
4342 /* if the object is no longer attached, discard its backing storage */
4343 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4344 i915_gem_object_truncate(obj);
4345
05394f39 4346 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4347
1d7cfea1 4348out:
05394f39 4349 drm_gem_object_unreference(&obj->base);
1d7cfea1 4350unlock:
3ef94daa 4351 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4352 return ret;
3ef94daa
CW
4353}
4354
37e680a1
CW
4355void i915_gem_object_init(struct drm_i915_gem_object *obj,
4356 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4357{
35c20a60 4358 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4359 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4360 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4361 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4362
37e680a1
CW
4363 obj->ops = ops;
4364
0327d6ba
CW
4365 obj->fence_reg = I915_FENCE_REG_NONE;
4366 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4367
4368 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4369}
4370
37e680a1
CW
4371static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4372 .get_pages = i915_gem_object_get_pages_gtt,
4373 .put_pages = i915_gem_object_put_pages_gtt,
4374};
4375
05394f39
CW
4376struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4377 size_t size)
ac52bc56 4378{
c397b908 4379 struct drm_i915_gem_object *obj;
5949eac4 4380 struct address_space *mapping;
1a240d4d 4381 gfp_t mask;
ac52bc56 4382
42dcedd4 4383 obj = i915_gem_object_alloc(dev);
c397b908
DV
4384 if (obj == NULL)
4385 return NULL;
673a394b 4386
c397b908 4387 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4388 i915_gem_object_free(obj);
c397b908
DV
4389 return NULL;
4390 }
673a394b 4391
bed1ea95
CW
4392 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4393 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4394 /* 965gm cannot relocate objects above 4GiB. */
4395 mask &= ~__GFP_HIGHMEM;
4396 mask |= __GFP_DMA32;
4397 }
4398
496ad9aa 4399 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4400 mapping_set_gfp_mask(mapping, mask);
5949eac4 4401
37e680a1 4402 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4403
c397b908
DV
4404 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4405 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4406
3d29b842
ED
4407 if (HAS_LLC(dev)) {
4408 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4409 * cache) for about a 10% performance improvement
4410 * compared to uncached. Graphics requests other than
4411 * display scanout are coherent with the CPU in
4412 * accessing this cache. This means in this mode we
4413 * don't need to clflush on the CPU side, and on the
4414 * GPU side we only need to flush internal caches to
4415 * get data visible to the CPU.
4416 *
4417 * However, we maintain the display planes as UC, and so
4418 * need to rebind when first used as such.
4419 */
4420 obj->cache_level = I915_CACHE_LLC;
4421 } else
4422 obj->cache_level = I915_CACHE_NONE;
4423
d861e338
DV
4424 trace_i915_gem_object_create(obj);
4425
05394f39 4426 return obj;
c397b908
DV
4427}
4428
340fbd8c
CW
4429static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4430{
4431 /* If we are the last user of the backing storage (be it shmemfs
4432 * pages or stolen etc), we know that the pages are going to be
4433 * immediately released. In this case, we can then skip copying
4434 * back the contents from the GPU.
4435 */
4436
4437 if (obj->madv != I915_MADV_WILLNEED)
4438 return false;
4439
4440 if (obj->base.filp == NULL)
4441 return true;
4442
4443 /* At first glance, this looks racy, but then again so would be
4444 * userspace racing mmap against close. However, the first external
4445 * reference to the filp can only be obtained through the
4446 * i915_gem_mmap_ioctl() which safeguards us against the user
4447 * acquiring such a reference whilst we are in the middle of
4448 * freeing the object.
4449 */
4450 return atomic_long_read(&obj->base.filp->f_count) == 1;
4451}
4452
1488fc08 4453void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4454{
1488fc08 4455 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4456 struct drm_device *dev = obj->base.dev;
3e31c6c0 4457 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4458 struct i915_vma *vma, *next;
673a394b 4459
f65c9168
PZ
4460 intel_runtime_pm_get(dev_priv);
4461
26e12f89
CW
4462 trace_i915_gem_object_destroy(obj);
4463
07fe0b12 4464 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4465 int ret;
4466
4467 vma->pin_count = 0;
4468 ret = i915_vma_unbind(vma);
07fe0b12
BW
4469 if (WARN_ON(ret == -ERESTARTSYS)) {
4470 bool was_interruptible;
1488fc08 4471
07fe0b12
BW
4472 was_interruptible = dev_priv->mm.interruptible;
4473 dev_priv->mm.interruptible = false;
1488fc08 4474
07fe0b12 4475 WARN_ON(i915_vma_unbind(vma));
1488fc08 4476
07fe0b12
BW
4477 dev_priv->mm.interruptible = was_interruptible;
4478 }
1488fc08
CW
4479 }
4480
00731155
CW
4481 i915_gem_object_detach_phys(obj);
4482
1d64ae71
BW
4483 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4484 * before progressing. */
4485 if (obj->stolen)
4486 i915_gem_object_unpin_pages(obj);
4487
a071fa00
DV
4488 WARN_ON(obj->frontbuffer_bits);
4489
401c29f6
BW
4490 if (WARN_ON(obj->pages_pin_count))
4491 obj->pages_pin_count = 0;
340fbd8c 4492 if (discard_backing_storage(obj))
5537252b 4493 obj->madv = I915_MADV_DONTNEED;
37e680a1 4494 i915_gem_object_put_pages(obj);
d8cb5086 4495 i915_gem_object_free_mmap_offset(obj);
de151cf6 4496
9da3da66
CW
4497 BUG_ON(obj->pages);
4498
2f745ad3
CW
4499 if (obj->base.import_attach)
4500 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4501
5cc9ed4b
CW
4502 if (obj->ops->release)
4503 obj->ops->release(obj);
4504
05394f39
CW
4505 drm_gem_object_release(&obj->base);
4506 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4507
05394f39 4508 kfree(obj->bit_17);
42dcedd4 4509 i915_gem_object_free(obj);
f65c9168
PZ
4510
4511 intel_runtime_pm_put(dev_priv);
673a394b
EA
4512}
4513
e656a6cb 4514struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4515 struct i915_address_space *vm)
e656a6cb
DV
4516{
4517 struct i915_vma *vma;
4518 list_for_each_entry(vma, &obj->vma_list, vma_link)
4519 if (vma->vm == vm)
4520 return vma;
4521
4522 return NULL;
4523}
4524
2f633156
BW
4525void i915_gem_vma_destroy(struct i915_vma *vma)
4526{
b9d06dd9 4527 struct i915_address_space *vm = NULL;
2f633156 4528 WARN_ON(vma->node.allocated);
aaa05667
CW
4529
4530 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4531 if (!list_empty(&vma->exec_list))
4532 return;
4533
b9d06dd9 4534 vm = vma->vm;
b9d06dd9 4535
841cd773
DV
4536 if (!i915_is_ggtt(vm))
4537 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4538
8b9c2b94 4539 list_del(&vma->vma_link);
b93dab6e 4540
2f633156
BW
4541 kfree(vma);
4542}
4543
e3efda49
CW
4544static void
4545i915_gem_stop_ringbuffers(struct drm_device *dev)
4546{
4547 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4548 struct intel_engine_cs *ring;
e3efda49
CW
4549 int i;
4550
4551 for_each_ring(ring, dev_priv, i)
a83014d3 4552 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4553}
4554
29105ccc 4555int
45c5f202 4556i915_gem_suspend(struct drm_device *dev)
29105ccc 4557{
3e31c6c0 4558 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4559 int ret = 0;
28dfe52a 4560
45c5f202 4561 mutex_lock(&dev->struct_mutex);
f7403347 4562 if (dev_priv->ums.mm_suspended)
45c5f202 4563 goto err;
28dfe52a 4564
b2da9fe5 4565 ret = i915_gpu_idle(dev);
f7403347 4566 if (ret)
45c5f202 4567 goto err;
f7403347 4568
b2da9fe5 4569 i915_gem_retire_requests(dev);
673a394b 4570
29105ccc 4571 /* Under UMS, be paranoid and evict. */
a39d7efc 4572 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4573 i915_gem_evict_everything(dev);
29105ccc 4574
29105ccc 4575 i915_kernel_lost_context(dev);
e3efda49 4576 i915_gem_stop_ringbuffers(dev);
29105ccc 4577
45c5f202
CW
4578 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4579 * We need to replace this with a semaphore, or something.
4580 * And not confound ums.mm_suspended!
4581 */
4582 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4583 DRIVER_MODESET);
4584 mutex_unlock(&dev->struct_mutex);
4585
4586 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4587 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4588 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4589
673a394b 4590 return 0;
45c5f202
CW
4591
4592err:
4593 mutex_unlock(&dev->struct_mutex);
4594 return ret;
673a394b
EA
4595}
4596
a4872ba6 4597int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4598{
c3787e2e 4599 struct drm_device *dev = ring->dev;
3e31c6c0 4600 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4601 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4602 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4603 int i, ret;
b9524a1e 4604
040d2baa 4605 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4606 return 0;
b9524a1e 4607
c3787e2e
BW
4608 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4609 if (ret)
4610 return ret;
b9524a1e 4611
c3787e2e
BW
4612 /*
4613 * Note: We do not worry about the concurrent register cacheline hang
4614 * here because no other code should access these registers other than
4615 * at initialization time.
4616 */
b9524a1e 4617 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4618 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4619 intel_ring_emit(ring, reg_base + i);
4620 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4621 }
4622
c3787e2e 4623 intel_ring_advance(ring);
b9524a1e 4624
c3787e2e 4625 return ret;
b9524a1e
BW
4626}
4627
f691e2f4
DV
4628void i915_gem_init_swizzling(struct drm_device *dev)
4629{
3e31c6c0 4630 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4631
11782b02 4632 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4633 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4634 return;
4635
4636 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4637 DISP_TILE_SURFACE_SWIZZLING);
4638
11782b02
DV
4639 if (IS_GEN5(dev))
4640 return;
4641
f691e2f4
DV
4642 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4643 if (IS_GEN6(dev))
6b26c86d 4644 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4645 else if (IS_GEN7(dev))
6b26c86d 4646 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4647 else if (IS_GEN8(dev))
4648 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4649 else
4650 BUG();
f691e2f4 4651}
e21af88d 4652
67b1b571
CW
4653static bool
4654intel_enable_blt(struct drm_device *dev)
4655{
4656 if (!HAS_BLT(dev))
4657 return false;
4658
4659 /* The blitter was dysfunctional on early prototypes */
4660 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4661 DRM_INFO("BLT not supported on this pre-production hardware;"
4662 " graphics performance will be degraded.\n");
4663 return false;
4664 }
4665
4666 return true;
4667}
4668
81e7f200
VS
4669static void init_unused_ring(struct drm_device *dev, u32 base)
4670{
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4672
4673 I915_WRITE(RING_CTL(base), 0);
4674 I915_WRITE(RING_HEAD(base), 0);
4675 I915_WRITE(RING_TAIL(base), 0);
4676 I915_WRITE(RING_START(base), 0);
4677}
4678
4679static void init_unused_rings(struct drm_device *dev)
4680{
4681 if (IS_I830(dev)) {
4682 init_unused_ring(dev, PRB1_BASE);
4683 init_unused_ring(dev, SRB0_BASE);
4684 init_unused_ring(dev, SRB1_BASE);
4685 init_unused_ring(dev, SRB2_BASE);
4686 init_unused_ring(dev, SRB3_BASE);
4687 } else if (IS_GEN2(dev)) {
4688 init_unused_ring(dev, SRB0_BASE);
4689 init_unused_ring(dev, SRB1_BASE);
4690 } else if (IS_GEN3(dev)) {
4691 init_unused_ring(dev, PRB1_BASE);
4692 init_unused_ring(dev, PRB2_BASE);
4693 }
4694}
4695
a83014d3 4696int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4697{
4fc7c971 4698 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4699 int ret;
68f95ba9 4700
81e7f200
VS
4701 /*
4702 * At least 830 can leave some of the unused rings
4703 * "active" (ie. head != tail) after resume which
4704 * will prevent c3 entry. Makes sure all unused rings
4705 * are totally idle.
4706 */
4707 init_unused_rings(dev);
4708
5c1143bb 4709 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4710 if (ret)
b6913e4b 4711 return ret;
68f95ba9
CW
4712
4713 if (HAS_BSD(dev)) {
5c1143bb 4714 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4715 if (ret)
4716 goto cleanup_render_ring;
d1b851fc 4717 }
68f95ba9 4718
67b1b571 4719 if (intel_enable_blt(dev)) {
549f7365
CW
4720 ret = intel_init_blt_ring_buffer(dev);
4721 if (ret)
4722 goto cleanup_bsd_ring;
4723 }
4724
9a8a2213
BW
4725 if (HAS_VEBOX(dev)) {
4726 ret = intel_init_vebox_ring_buffer(dev);
4727 if (ret)
4728 goto cleanup_blt_ring;
4729 }
4730
845f74a7
ZY
4731 if (HAS_BSD2(dev)) {
4732 ret = intel_init_bsd2_ring_buffer(dev);
4733 if (ret)
4734 goto cleanup_vebox_ring;
4735 }
9a8a2213 4736
99433931 4737 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4738 if (ret)
845f74a7 4739 goto cleanup_bsd2_ring;
4fc7c971
BW
4740
4741 return 0;
4742
845f74a7
ZY
4743cleanup_bsd2_ring:
4744 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4745cleanup_vebox_ring:
4746 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4747cleanup_blt_ring:
4748 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4749cleanup_bsd_ring:
4750 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4751cleanup_render_ring:
4752 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4753
4754 return ret;
4755}
4756
4757int
4758i915_gem_init_hw(struct drm_device *dev)
4759{
3e31c6c0 4760 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4761 int ret, i;
4fc7c971
BW
4762
4763 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4764 return -EIO;
4765
59124506 4766 if (dev_priv->ellc_size)
05e21cc4 4767 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4768
0bf21347
VS
4769 if (IS_HASWELL(dev))
4770 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4771 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4772
88a2b2a3 4773 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4774 if (IS_IVYBRIDGE(dev)) {
4775 u32 temp = I915_READ(GEN7_MSG_CTL);
4776 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4777 I915_WRITE(GEN7_MSG_CTL, temp);
4778 } else if (INTEL_INFO(dev)->gen >= 7) {
4779 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4780 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4781 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4782 }
88a2b2a3
BW
4783 }
4784
4fc7c971
BW
4785 i915_gem_init_swizzling(dev);
4786
a83014d3 4787 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4788 if (ret)
4789 return ret;
4790
c3787e2e
BW
4791 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4792 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4793
254f965c 4794 /*
2fa48d8d
BW
4795 * XXX: Contexts should only be initialized once. Doing a switch to the
4796 * default context switch however is something we'd like to do after
4797 * reset or thaw (the latter may not actually be necessary for HW, but
4798 * goes with our code better). Context switching requires rings (for
4799 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4800 */
2fa48d8d 4801 ret = i915_gem_context_enable(dev_priv);
60990320 4802 if (ret && ret != -EIO) {
2fa48d8d 4803 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4804 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4805
4806 return ret;
4807 }
4808
4809 ret = i915_ppgtt_init_hw(dev);
4810 if (ret && ret != -EIO) {
4811 DRM_ERROR("PPGTT enable failed %d\n", ret);
4812 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4813 }
e21af88d 4814
2fa48d8d 4815 return ret;
8187a2b7
ZN
4816}
4817
1070a42b
CW
4818int i915_gem_init(struct drm_device *dev)
4819{
4820 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4821 int ret;
4822
127f1003
OM
4823 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4824 i915.enable_execlists);
4825
1070a42b 4826 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4827
4828 if (IS_VALLEYVIEW(dev)) {
4829 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4830 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4831 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4832 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4833 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4834 }
4835
a83014d3
OM
4836 if (!i915.enable_execlists) {
4837 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4838 dev_priv->gt.init_rings = i915_gem_init_rings;
4839 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4840 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4841 } else {
4842 dev_priv->gt.do_execbuf = intel_execlists_submission;
4843 dev_priv->gt.init_rings = intel_logical_rings_init;
4844 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4845 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4846 }
4847
6c5566a8
DV
4848 ret = i915_gem_init_userptr(dev);
4849 if (ret) {
4850 mutex_unlock(&dev->struct_mutex);
4851 return ret;
4852 }
4853
d7e5008f 4854 i915_gem_init_global_gtt(dev);
d62b4892 4855
2fa48d8d 4856 ret = i915_gem_context_init(dev);
e3848694
MK
4857 if (ret) {
4858 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4859 return ret;
e3848694 4860 }
2fa48d8d 4861
1070a42b 4862 ret = i915_gem_init_hw(dev);
60990320
CW
4863 if (ret == -EIO) {
4864 /* Allow ring initialisation to fail by marking the GPU as
4865 * wedged. But we only want to do this where the GPU is angry,
4866 * for all other failure, such as an allocation failure, bail.
4867 */
4868 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4869 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4870 ret = 0;
1070a42b 4871 }
60990320 4872 mutex_unlock(&dev->struct_mutex);
1070a42b 4873
53ca26ca
DV
4874 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4875 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4876 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4877 return ret;
1070a42b
CW
4878}
4879
8187a2b7
ZN
4880void
4881i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4882{
3e31c6c0 4883 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4884 struct intel_engine_cs *ring;
1ec14ad3 4885 int i;
8187a2b7 4886
b4519513 4887 for_each_ring(ring, dev_priv, i)
a83014d3 4888 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4889}
4890
673a394b
EA
4891int
4892i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4893 struct drm_file *file_priv)
4894{
db1b76ca 4895 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4896 int ret;
673a394b 4897
79e53945
JB
4898 if (drm_core_check_feature(dev, DRIVER_MODESET))
4899 return 0;
4900
1f83fee0 4901 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4902 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4903 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4904 }
4905
673a394b 4906 mutex_lock(&dev->struct_mutex);
db1b76ca 4907 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4908
f691e2f4 4909 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4910 if (ret != 0) {
4911 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4912 return ret;
d816f6ac 4913 }
9bb2d6f9 4914
5cef07e1 4915 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4916
bb0f1b5c 4917 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4918 if (ret)
4919 goto cleanup_ringbuffer;
e090c53b 4920 mutex_unlock(&dev->struct_mutex);
dbb19d30 4921
673a394b 4922 return 0;
5f35308b
CW
4923
4924cleanup_ringbuffer:
5f35308b 4925 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4926 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4927 mutex_unlock(&dev->struct_mutex);
4928
4929 return ret;
673a394b
EA
4930}
4931
4932int
4933i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4934 struct drm_file *file_priv)
4935{
79e53945
JB
4936 if (drm_core_check_feature(dev, DRIVER_MODESET))
4937 return 0;
4938
e090c53b 4939 mutex_lock(&dev->struct_mutex);
dbb19d30 4940 drm_irq_uninstall(dev);
e090c53b 4941 mutex_unlock(&dev->struct_mutex);
db1b76ca 4942
45c5f202 4943 return i915_gem_suspend(dev);
673a394b
EA
4944}
4945
4946void
4947i915_gem_lastclose(struct drm_device *dev)
4948{
4949 int ret;
673a394b 4950
e806b495
EA
4951 if (drm_core_check_feature(dev, DRIVER_MODESET))
4952 return;
4953
45c5f202 4954 ret = i915_gem_suspend(dev);
6dbe2772
KP
4955 if (ret)
4956 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4957}
4958
64193406 4959static void
a4872ba6 4960init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4961{
4962 INIT_LIST_HEAD(&ring->active_list);
4963 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4964}
4965
7e0d96bc
BW
4966void i915_init_vm(struct drm_i915_private *dev_priv,
4967 struct i915_address_space *vm)
fc8c067e 4968{
7e0d96bc
BW
4969 if (!i915_is_ggtt(vm))
4970 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4971 vm->dev = dev_priv->dev;
4972 INIT_LIST_HEAD(&vm->active_list);
4973 INIT_LIST_HEAD(&vm->inactive_list);
4974 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4975 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4976}
4977
673a394b
EA
4978void
4979i915_gem_load(struct drm_device *dev)
4980{
3e31c6c0 4981 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4982 int i;
4983
4984 dev_priv->slab =
4985 kmem_cache_create("i915_gem_object",
4986 sizeof(struct drm_i915_gem_object), 0,
4987 SLAB_HWCACHE_ALIGN,
4988 NULL);
673a394b 4989
fc8c067e
BW
4990 INIT_LIST_HEAD(&dev_priv->vm_list);
4991 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4992
a33afea5 4993 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4994 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4995 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4996 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4997 for (i = 0; i < I915_NUM_RINGS; i++)
4998 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4999 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5000 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5001 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5002 i915_gem_retire_work_handler);
b29c19b6
CW
5003 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5004 i915_gem_idle_work_handler);
1f83fee0 5005 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5006
94400120 5007 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 5008 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
5009 I915_WRITE(MI_ARB_STATE,
5010 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
5011 }
5012
72bfa19c
CW
5013 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5014
de151cf6 5015 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
5016 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5017 dev_priv->fence_reg_start = 3;
de151cf6 5018
42b5aeab
VS
5019 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5020 dev_priv->num_fence_regs = 32;
5021 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5022 dev_priv->num_fence_regs = 16;
5023 else
5024 dev_priv->num_fence_regs = 8;
5025
b5aa8a0f 5026 /* Initialize fence registers to zero */
19b2dbde
CW
5027 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5028 i915_gem_restore_fences(dev);
10ed13e4 5029
673a394b 5030 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5031 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5032
ce453d81
CW
5033 dev_priv->mm.interruptible = true;
5034
ceabbba5
CW
5035 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5036 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5037 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5038 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5039
5040 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5041 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
5042
5043 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5044}
71acb5eb 5045
f787a5f5 5046void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5047{
f787a5f5 5048 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5049
b29c19b6
CW
5050 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5051
b962442e
EA
5052 /* Clean up our request list when the client is going away, so that
5053 * later retire_requests won't dereference our soon-to-be-gone
5054 * file_priv.
5055 */
1c25595f 5056 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5057 while (!list_empty(&file_priv->mm.request_list)) {
5058 struct drm_i915_gem_request *request;
5059
5060 request = list_first_entry(&file_priv->mm.request_list,
5061 struct drm_i915_gem_request,
5062 client_list);
5063 list_del(&request->client_list);
5064 request->file_priv = NULL;
5065 }
1c25595f 5066 spin_unlock(&file_priv->mm.lock);
b962442e 5067}
31169714 5068
b29c19b6
CW
5069static void
5070i915_gem_file_idle_work_handler(struct work_struct *work)
5071{
5072 struct drm_i915_file_private *file_priv =
5073 container_of(work, typeof(*file_priv), mm.idle_work.work);
5074
5075 atomic_set(&file_priv->rps_wait_boost, false);
5076}
5077
5078int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5079{
5080 struct drm_i915_file_private *file_priv;
e422b888 5081 int ret;
b29c19b6
CW
5082
5083 DRM_DEBUG_DRIVER("\n");
5084
5085 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5086 if (!file_priv)
5087 return -ENOMEM;
5088
5089 file->driver_priv = file_priv;
5090 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5091 file_priv->file = file;
b29c19b6
CW
5092
5093 spin_lock_init(&file_priv->mm.lock);
5094 INIT_LIST_HEAD(&file_priv->mm.request_list);
5095 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5096 i915_gem_file_idle_work_handler);
5097
e422b888
BW
5098 ret = i915_gem_context_open(dev, file);
5099 if (ret)
5100 kfree(file_priv);
b29c19b6 5101
e422b888 5102 return ret;
b29c19b6
CW
5103}
5104
a071fa00
DV
5105void i915_gem_track_fb(struct drm_i915_gem_object *old,
5106 struct drm_i915_gem_object *new,
5107 unsigned frontbuffer_bits)
5108{
5109 if (old) {
5110 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5111 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5112 old->frontbuffer_bits &= ~frontbuffer_bits;
5113 }
5114
5115 if (new) {
5116 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5117 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5118 new->frontbuffer_bits |= frontbuffer_bits;
5119 }
5120}
5121
5774506f
CW
5122static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5123{
5124 if (!mutex_is_locked(mutex))
5125 return false;
5126
5127#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5128 return mutex->owner == task;
5129#else
5130 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5131 return false;
5132#endif
5133}
5134
b453c4db
CW
5135static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5136{
5137 if (!mutex_trylock(&dev->struct_mutex)) {
5138 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5139 return false;
5140
5141 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5142 return false;
5143
5144 *unlock = false;
5145 } else
5146 *unlock = true;
5147
5148 return true;
5149}
5150
ceabbba5
CW
5151static int num_vma_bound(struct drm_i915_gem_object *obj)
5152{
5153 struct i915_vma *vma;
5154 int count = 0;
5155
5156 list_for_each_entry(vma, &obj->vma_list, vma_link)
5157 if (drm_mm_node_allocated(&vma->node))
5158 count++;
5159
5160 return count;
5161}
5162
7dc19d5a 5163static unsigned long
ceabbba5 5164i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5165{
17250b71 5166 struct drm_i915_private *dev_priv =
ceabbba5 5167 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5168 struct drm_device *dev = dev_priv->dev;
6c085a72 5169 struct drm_i915_gem_object *obj;
7dc19d5a 5170 unsigned long count;
b453c4db 5171 bool unlock;
17250b71 5172
b453c4db
CW
5173 if (!i915_gem_shrinker_lock(dev, &unlock))
5174 return 0;
31169714 5175
7dc19d5a 5176 count = 0;
35c20a60 5177 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5178 if (obj->pages_pin_count == 0)
7dc19d5a 5179 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5180
5181 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5182 if (!i915_gem_obj_is_pinned(obj) &&
5183 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5184 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5185 }
17250b71 5186
5774506f
CW
5187 if (unlock)
5188 mutex_unlock(&dev->struct_mutex);
d9973b43 5189
7dc19d5a 5190 return count;
31169714 5191}
a70a3148
BW
5192
5193/* All the new VM stuff */
5194unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5195 struct i915_address_space *vm)
5196{
5197 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5198 struct i915_vma *vma;
5199
896ab1a5 5200 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5201
a70a3148
BW
5202 list_for_each_entry(vma, &o->vma_list, vma_link) {
5203 if (vma->vm == vm)
5204 return vma->node.start;
5205
5206 }
f25748ea
DV
5207 WARN(1, "%s vma for this object not found.\n",
5208 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5209 return -1;
5210}
5211
5212bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5213 struct i915_address_space *vm)
5214{
5215 struct i915_vma *vma;
5216
5217 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5218 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5219 return true;
5220
5221 return false;
5222}
5223
5224bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5225{
5a1d5eb0 5226 struct i915_vma *vma;
a70a3148 5227
5a1d5eb0
CW
5228 list_for_each_entry(vma, &o->vma_list, vma_link)
5229 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5230 return true;
5231
5232 return false;
5233}
5234
5235unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5236 struct i915_address_space *vm)
5237{
5238 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5239 struct i915_vma *vma;
5240
896ab1a5 5241 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5242
5243 BUG_ON(list_empty(&o->vma_list));
5244
5245 list_for_each_entry(vma, &o->vma_list, vma_link)
5246 if (vma->vm == vm)
5247 return vma->node.size;
5248
5249 return 0;
5250}
5251
7dc19d5a 5252static unsigned long
ceabbba5 5253i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5254{
5255 struct drm_i915_private *dev_priv =
ceabbba5 5256 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5257 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5258 unsigned long freed;
b453c4db 5259 bool unlock;
7dc19d5a 5260
b453c4db
CW
5261 if (!i915_gem_shrinker_lock(dev, &unlock))
5262 return SHRINK_STOP;
7dc19d5a 5263
d9973b43
CW
5264 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5265 if (freed < sc->nr_to_scan)
5266 freed += __i915_gem_shrink(dev_priv,
5267 sc->nr_to_scan - freed,
5268 false);
7dc19d5a
DC
5269 if (unlock)
5270 mutex_unlock(&dev->struct_mutex);
d9973b43 5271
7dc19d5a
DC
5272 return freed;
5273}
5c2abbea 5274
2cfcd32a
CW
5275static int
5276i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5277{
5278 struct drm_i915_private *dev_priv =
5279 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5280 struct drm_device *dev = dev_priv->dev;
5281 struct drm_i915_gem_object *obj;
5282 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5283 unsigned long pinned, bound, unbound, freed;
5284 bool was_interruptible;
5285 bool unlock;
5286
a1db2fa7 5287 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5288 schedule_timeout_killable(1);
a1db2fa7
CW
5289 if (fatal_signal_pending(current))
5290 return NOTIFY_DONE;
5291 }
2cfcd32a
CW
5292 if (timeout == 0) {
5293 pr_err("Unable to purge GPU memory due lock contention.\n");
5294 return NOTIFY_DONE;
5295 }
5296
5297 was_interruptible = dev_priv->mm.interruptible;
5298 dev_priv->mm.interruptible = false;
5299
5300 freed = i915_gem_shrink_all(dev_priv);
5301
5302 dev_priv->mm.interruptible = was_interruptible;
5303
5304 /* Because we may be allocating inside our own driver, we cannot
5305 * assert that there are no objects with pinned pages that are not
5306 * being pointed to by hardware.
5307 */
5308 unbound = bound = pinned = 0;
5309 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5310 if (!obj->base.filp) /* not backed by a freeable object */
5311 continue;
5312
5313 if (obj->pages_pin_count)
5314 pinned += obj->base.size;
5315 else
5316 unbound += obj->base.size;
5317 }
5318 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5319 if (!obj->base.filp)
5320 continue;
5321
5322 if (obj->pages_pin_count)
5323 pinned += obj->base.size;
5324 else
5325 bound += obj->base.size;
5326 }
5327
5328 if (unlock)
5329 mutex_unlock(&dev->struct_mutex);
5330
5331 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5332 freed, pinned);
5333 if (unbound || bound)
5334 pr_err("%lu and %lu bytes still available in the "
5335 "bound and unbound GPU page lists.\n",
5336 bound, unbound);
5337
5338 *(unsigned long *)ptr += freed;
5339 return NOTIFY_DONE;
5340}
5341
5c2abbea
BW
5342struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5343{
5344 struct i915_vma *vma;
5345
5c2abbea 5346 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5dc383b0 5347 if (vma->vm != i915_obj_to_ggtt(obj))
5c2abbea
BW
5348 return NULL;
5349
5350 return vma;
5351}
This page took 1.261204 seconds and 5 git commands to generate.