drm/i915: Delay queuing hangcheck to wait-request
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
b50a5371
AS
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
2c22569b
CW
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64}
65
4f1959ee
AS
66static int
67insert_mappable_node(struct drm_i915_private *i915,
68 struct drm_mm_node *node, u32 size)
69{
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 size, 0, 0, 0,
73 i915->ggtt.mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76}
77
78static void
79remove_mappable_node(struct drm_mm_node *node)
80{
81 drm_mm_remove_node(node);
82}
83
73aa808f
CW
84/* some bookkeeping */
85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 size_t size)
87{
c20e8355 88 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
c20e8355 91 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92}
93
94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 size_t size)
96{
c20e8355 97 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
c20e8355 100 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
101}
102
21dd3734 103static int
33196ded 104i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 105{
30dbf0c0
CW
106 int ret;
107
d98c52cf 108 if (!i915_reset_in_progress(error))
30dbf0c0
CW
109 return 0;
110
0a6759c6
DV
111 /*
112 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 * userspace. If it takes that long something really bad is going on and
114 * we should simply try to bail out and fail as gracefully as possible.
115 */
1f83fee0 116 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 117 !i915_reset_in_progress(error),
1f83fee0 118 10*HZ);
0a6759c6
DV
119 if (ret == 0) {
120 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 return -EIO;
122 } else if (ret < 0) {
30dbf0c0 123 return ret;
d98c52cf
CW
124 } else {
125 return 0;
0a6759c6 126 }
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
72e96d64 150 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 152 struct drm_i915_gem_get_aperture *args = data;
ca1543be 153 struct i915_vma *vma;
6299f992 154 size_t pinned;
5a125c3c 155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
159 if (vma->pin_count)
160 pinned += vma->node.size;
1c7f4bca 161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
162 if (vma->pin_count)
163 pinned += vma->node.size;
73aa808f 164 mutex_unlock(&dev->struct_mutex);
5a125c3c 165
72e96d64 166 args->aper_size = ggtt->base.total;
0206e353 167 args->aper_available_size = args->aper_size - pinned;
6299f992 168
5a125c3c
EA
169 return 0;
170}
171
6a2c4232
CW
172static int
173i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 174{
6a2c4232
CW
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
00731155 180
6a2c4232
CW
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
09cbfeaf 197 put_page(page);
6a2c4232
CW
198 vaddr += PAGE_SIZE;
199 }
200
c033666a 201 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
00731155 215
6a2c4232
CW
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
6a2c4232
CW
220 return 0;
221}
222
223static void
224i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225{
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 229
6a2c4232 230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 231 if (WARN_ON(ret)) {
6a2c4232
CW
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
6a2c4232
CW
235 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 }
237
238 if (obj->madv == I915_MADV_DONTNEED)
239 obj->dirty = 0;
240
241 if (obj->dirty) {
00731155 242 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 243 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
244 int i;
245
246 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
247 struct page *page;
248 char *dst;
249
250 page = shmem_read_mapping_page(mapping, i);
251 if (IS_ERR(page))
252 continue;
253
254 dst = kmap_atomic(page);
255 drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 memcpy(dst, vaddr, PAGE_SIZE);
257 kunmap_atomic(dst);
258
259 set_page_dirty(page);
260 if (obj->madv == I915_MADV_WILLNEED)
00731155 261 mark_page_accessed(page);
09cbfeaf 262 put_page(page);
00731155
CW
263 vaddr += PAGE_SIZE;
264 }
6a2c4232 265 obj->dirty = 0;
00731155
CW
266 }
267
6a2c4232
CW
268 sg_free_table(obj->pages);
269 kfree(obj->pages);
6a2c4232
CW
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
1c7f4bca 291 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 343 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
77a0d1ca 353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
c033666a 371 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
372
373out:
de152b62 374 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
d37cd8a8 405 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
406 if (IS_ERR(obj))
407 return PTR_ERR(obj);
673a394b 408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
ff72145b
DA
436 */
437int
438i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440{
441 struct drm_i915_gem_create *args = data;
63ed2cb2 442
ff72145b 443 return i915_gem_create(file, dev,
da6b51d0 444 args->size, &args->handle);
ff72145b
DA
445}
446
8461d226
DV
447static inline int
448__copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451{
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471}
472
8c59967c 473static inline int
4f0c7cfb
BW
474__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
8c59967c
DV
476 int length)
477{
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497}
498
4c914c0c
BV
499/*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506{
507 int ret;
508
509 *needs_clflush = 0;
510
b9bcd14a 511 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524 }
525
526 ret = i915_gem_object_get_pages(obj);
527 if (ret)
528 return ret;
529
530 i915_gem_object_pin_pages(obj);
531
532 return ret;
533}
534
d174bd64
DV
535/* Per-page copy function for the shmem pread fastpath.
536 * Flushes invalid cachelines before reading the target if
537 * needs_clflush is set. */
eb01459f 538static int
d174bd64
DV
539shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 char __user *user_data,
541 bool page_do_bit17_swizzling, bool needs_clflush)
542{
543 char *vaddr;
544 int ret;
545
e7e58eb5 546 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
547 return -EINVAL;
548
549 vaddr = kmap_atomic(page);
550 if (needs_clflush)
551 drm_clflush_virt_range(vaddr + shmem_page_offset,
552 page_length);
553 ret = __copy_to_user_inatomic(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap_atomic(vaddr);
557
f60d7f0c 558 return ret ? -EFAULT : 0;
d174bd64
DV
559}
560
23c18c71
DV
561static void
562shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 bool swizzled)
564{
e7e58eb5 565 if (unlikely(swizzled)) {
23c18c71
DV
566 unsigned long start = (unsigned long) addr;
567 unsigned long end = (unsigned long) addr + length;
568
569 /* For swizzling simply ensure that we always flush both
570 * channels. Lame, but simple and it works. Swizzled
571 * pwrite/pread is far from a hotpath - current userspace
572 * doesn't use it at all. */
573 start = round_down(start, 128);
574 end = round_up(end, 128);
575
576 drm_clflush_virt_range((void *)start, end - start);
577 } else {
578 drm_clflush_virt_range(addr, length);
579 }
580
581}
582
d174bd64
DV
583/* Only difference to the fast-path function is that this can handle bit17
584 * and uses non-atomic copy and kmap functions. */
585static int
586shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 char __user *user_data,
588 bool page_do_bit17_swizzling, bool needs_clflush)
589{
590 char *vaddr;
591 int ret;
592
593 vaddr = kmap(page);
594 if (needs_clflush)
23c18c71
DV
595 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 page_length,
597 page_do_bit17_swizzling);
d174bd64
DV
598
599 if (page_do_bit17_swizzling)
600 ret = __copy_to_user_swizzled(user_data,
601 vaddr, shmem_page_offset,
602 page_length);
603 else
604 ret = __copy_to_user(user_data,
605 vaddr + shmem_page_offset,
606 page_length);
607 kunmap(page);
608
f60d7f0c 609 return ret ? - EFAULT : 0;
d174bd64
DV
610}
611
b50a5371
AS
612static inline unsigned long
613slow_user_access(struct io_mapping *mapping,
614 uint64_t page_base, int page_offset,
615 char __user *user_data,
616 unsigned long length, bool pwrite)
617{
618 void __iomem *ioaddr;
619 void *vaddr;
620 uint64_t unwritten;
621
622 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 /* We can use the cpu mem copy function because this is X86. */
624 vaddr = (void __force *)ioaddr + page_offset;
625 if (pwrite)
626 unwritten = __copy_from_user(vaddr, user_data, length);
627 else
628 unwritten = __copy_to_user(user_data, vaddr, length);
629
630 io_mapping_unmap(ioaddr);
631 return unwritten;
632}
633
634static int
635i915_gem_gtt_pread(struct drm_device *dev,
636 struct drm_i915_gem_object *obj, uint64_t size,
637 uint64_t data_offset, uint64_t data_ptr)
638{
639 struct drm_i915_private *dev_priv = dev->dev_private;
640 struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 struct drm_mm_node node;
642 char __user *user_data;
643 uint64_t remain;
644 uint64_t offset;
645 int ret;
646
647 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 if (ret) {
649 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 if (ret)
651 goto out;
652
653 ret = i915_gem_object_get_pages(obj);
654 if (ret) {
655 remove_mappable_node(&node);
656 goto out;
657 }
658
659 i915_gem_object_pin_pages(obj);
660 } else {
661 node.start = i915_gem_obj_ggtt_offset(obj);
662 node.allocated = false;
663 ret = i915_gem_object_put_fence(obj);
664 if (ret)
665 goto out_unpin;
666 }
667
668 ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 if (ret)
670 goto out_unpin;
671
672 user_data = u64_to_user_ptr(data_ptr);
673 remain = size;
674 offset = data_offset;
675
676 mutex_unlock(&dev->struct_mutex);
677 if (likely(!i915.prefault_disable)) {
678 ret = fault_in_multipages_writeable(user_data, remain);
679 if (ret) {
680 mutex_lock(&dev->struct_mutex);
681 goto out_unpin;
682 }
683 }
684
685 while (remain > 0) {
686 /* Operation in this page
687 *
688 * page_base = page offset within aperture
689 * page_offset = offset within page
690 * page_length = bytes to copy for this page
691 */
692 u32 page_base = node.start;
693 unsigned page_offset = offset_in_page(offset);
694 unsigned page_length = PAGE_SIZE - page_offset;
695 page_length = remain < page_length ? remain : page_length;
696 if (node.allocated) {
697 wmb();
698 ggtt->base.insert_page(&ggtt->base,
699 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 node.start,
701 I915_CACHE_NONE, 0);
702 wmb();
703 } else {
704 page_base += offset & PAGE_MASK;
705 }
706 /* This is a slow read/write as it tries to read from
707 * and write to user memory which may result into page
708 * faults, and so we cannot perform this under struct_mutex.
709 */
710 if (slow_user_access(ggtt->mappable, page_base,
711 page_offset, user_data,
712 page_length, false)) {
713 ret = -EFAULT;
714 break;
715 }
716
717 remain -= page_length;
718 user_data += page_length;
719 offset += page_length;
720 }
721
722 mutex_lock(&dev->struct_mutex);
723 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 /* The user has modified the object whilst we tried
725 * reading from it, and we now have no idea what domain
726 * the pages should be in. As we have just been touching
727 * them directly, flush everything back to the GTT
728 * domain.
729 */
730 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 }
732
733out_unpin:
734 if (node.allocated) {
735 wmb();
736 ggtt->base.clear_range(&ggtt->base,
737 node.start, node.size,
738 true);
739 i915_gem_object_unpin_pages(obj);
740 remove_mappable_node(&node);
741 } else {
742 i915_gem_object_ggtt_unpin(obj);
743 }
744out:
745 return ret;
746}
747
eb01459f 748static int
dbf7bff0
DV
749i915_gem_shmem_pread(struct drm_device *dev,
750 struct drm_i915_gem_object *obj,
751 struct drm_i915_gem_pread *args,
752 struct drm_file *file)
eb01459f 753{
8461d226 754 char __user *user_data;
eb01459f 755 ssize_t remain;
8461d226 756 loff_t offset;
eb2c0c81 757 int shmem_page_offset, page_length, ret = 0;
8461d226 758 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 759 int prefaulted = 0;
8489731c 760 int needs_clflush = 0;
67d5a50c 761 struct sg_page_iter sg_iter;
eb01459f 762
6eae0059 763 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
764 return -ENODEV;
765
3ed605bc 766 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
767 remain = args->size;
768
8461d226 769 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 770
4c914c0c 771 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
772 if (ret)
773 return ret;
774
8461d226 775 offset = args->offset;
eb01459f 776
67d5a50c
ID
777 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 offset >> PAGE_SHIFT) {
2db76d7c 779 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
780
781 if (remain <= 0)
782 break;
783
eb01459f
EA
784 /* Operation in this page
785 *
eb01459f 786 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
787 * page_length = bytes to copy for this page
788 */
c8cbbb8b 789 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 793
8461d226
DV
794 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 (page_to_phys(page) & (1 << 17)) != 0;
796
d174bd64
DV
797 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 needs_clflush);
800 if (ret == 0)
801 goto next_page;
dbf7bff0 802
dbf7bff0
DV
803 mutex_unlock(&dev->struct_mutex);
804
d330a953 805 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 806 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
807 /* Userspace is tricking us, but we've already clobbered
808 * its pages with the prefault and promised to write the
809 * data up to the first fault. Hence ignore any errors
810 * and just continue. */
811 (void)ret;
812 prefaulted = 1;
813 }
eb01459f 814
d174bd64
DV
815 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 needs_clflush);
eb01459f 818
dbf7bff0 819 mutex_lock(&dev->struct_mutex);
f60d7f0c 820
f60d7f0c 821 if (ret)
8461d226 822 goto out;
8461d226 823
17793c9a 824next_page:
eb01459f 825 remain -= page_length;
8461d226 826 user_data += page_length;
eb01459f
EA
827 offset += page_length;
828 }
829
4f27b75d 830out:
f60d7f0c
CW
831 i915_gem_object_unpin_pages(obj);
832
eb01459f
EA
833 return ret;
834}
835
673a394b
EA
836/**
837 * Reads data from the object referenced by handle.
14bb2c11
TU
838 * @dev: drm device pointer
839 * @data: ioctl data blob
840 * @file: drm file pointer
673a394b
EA
841 *
842 * On error, the contents of *data are undefined.
843 */
844int
845i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 846 struct drm_file *file)
673a394b
EA
847{
848 struct drm_i915_gem_pread *args = data;
05394f39 849 struct drm_i915_gem_object *obj;
35b62a89 850 int ret = 0;
673a394b 851
51311d0a
CW
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_WRITE,
3ed605bc 856 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
857 args->size))
858 return -EFAULT;
859
4f27b75d 860 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 861 if (ret)
4f27b75d 862 return ret;
673a394b 863
a8ad0bd8 864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 865 if (&obj->base == NULL) {
1d7cfea1
CW
866 ret = -ENOENT;
867 goto unlock;
4f27b75d 868 }
673a394b 869
7dcd2499 870 /* Bounds check source. */
05394f39
CW
871 if (args->offset > obj->base.size ||
872 args->size > obj->base.size - args->offset) {
ce9d419d 873 ret = -EINVAL;
35b62a89 874 goto out;
ce9d419d
CW
875 }
876
db53a302
CW
877 trace_i915_gem_object_pread(obj, args->offset, args->size);
878
dbf7bff0 879 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 880
b50a5371
AS
881 /* pread for non shmem backed objects */
882 if (ret == -EFAULT || ret == -ENODEV)
883 ret = i915_gem_gtt_pread(dev, obj, args->size,
884 args->offset, args->data_ptr);
885
35b62a89 886out:
05394f39 887 drm_gem_object_unreference(&obj->base);
1d7cfea1 888unlock:
4f27b75d 889 mutex_unlock(&dev->struct_mutex);
eb01459f 890 return ret;
673a394b
EA
891}
892
0839ccb8
KP
893/* This is the fast write path which cannot handle
894 * page faults in the source data
9b7530cc 895 */
0839ccb8
KP
896
897static inline int
898fast_user_write(struct io_mapping *mapping,
899 loff_t page_base, int page_offset,
900 char __user *user_data,
901 int length)
9b7530cc 902{
4f0c7cfb
BW
903 void __iomem *vaddr_atomic;
904 void *vaddr;
0839ccb8 905 unsigned long unwritten;
9b7530cc 906
3e4d3af5 907 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
908 /* We can use the cpu mem copy function because this is X86. */
909 vaddr = (void __force*)vaddr_atomic + page_offset;
910 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 911 user_data, length);
3e4d3af5 912 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 913 return unwritten;
0839ccb8
KP
914}
915
3de09aa3
EA
916/**
917 * This is the fast pwrite path, where we copy the data directly from the
918 * user into the GTT, uncached.
14bb2c11
TU
919 * @dev: drm device pointer
920 * @obj: i915 gem object
921 * @args: pwrite arguments structure
922 * @file: drm file pointer
3de09aa3 923 */
673a394b 924static int
4f1959ee 925i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 926 struct drm_i915_gem_object *obj,
3de09aa3 927 struct drm_i915_gem_pwrite *args,
05394f39 928 struct drm_file *file)
673a394b 929{
4f1959ee 930 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 931 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
932 struct drm_mm_node node;
933 uint64_t remain, offset;
673a394b 934 char __user *user_data;
4f1959ee 935 int ret;
b50a5371
AS
936 bool hit_slow_path = false;
937
938 if (obj->tiling_mode != I915_TILING_NONE)
939 return -EFAULT;
935aaa69 940
1ec9e26d 941 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
942 if (ret) {
943 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944 if (ret)
945 goto out;
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret) {
949 remove_mappable_node(&node);
950 goto out;
951 }
952
953 i915_gem_object_pin_pages(obj);
954 } else {
955 node.start = i915_gem_obj_ggtt_offset(obj);
956 node.allocated = false;
b50a5371
AS
957 ret = i915_gem_object_put_fence(obj);
958 if (ret)
959 goto out_unpin;
4f1959ee 960 }
935aaa69
DV
961
962 ret = i915_gem_object_set_to_gtt_domain(obj, true);
963 if (ret)
964 goto out_unpin;
965
77a0d1ca 966 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 967 obj->dirty = true;
063e4e6b 968
4f1959ee
AS
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = args->offset;
971 remain = args->size;
972 while (remain) {
673a394b
EA
973 /* Operation in this page
974 *
0839ccb8
KP
975 * page_base = page offset within aperture
976 * page_offset = offset within page
977 * page_length = bytes to copy for this page
673a394b 978 */
4f1959ee
AS
979 u32 page_base = node.start;
980 unsigned page_offset = offset_in_page(offset);
981 unsigned page_length = PAGE_SIZE - page_offset;
982 page_length = remain < page_length ? remain : page_length;
983 if (node.allocated) {
984 wmb(); /* flush the write before we modify the GGTT */
985 ggtt->base.insert_page(&ggtt->base,
986 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987 node.start, I915_CACHE_NONE, 0);
988 wmb(); /* flush modifications to the GGTT (insert_page) */
989 } else {
990 page_base += offset & PAGE_MASK;
991 }
0839ccb8 992 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
993 * source page isn't available. Return the error and we'll
994 * retry in the slow path.
b50a5371
AS
995 * If the object is non-shmem backed, we retry again with the
996 * path that handles page fault.
0839ccb8 997 */
72e96d64 998 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 999 page_offset, user_data, page_length)) {
b50a5371
AS
1000 hit_slow_path = true;
1001 mutex_unlock(&dev->struct_mutex);
1002 if (slow_user_access(ggtt->mappable,
1003 page_base,
1004 page_offset, user_data,
1005 page_length, true)) {
1006 ret = -EFAULT;
1007 mutex_lock(&dev->struct_mutex);
1008 goto out_flush;
1009 }
1010
1011 mutex_lock(&dev->struct_mutex);
935aaa69 1012 }
673a394b 1013
0839ccb8
KP
1014 remain -= page_length;
1015 user_data += page_length;
1016 offset += page_length;
673a394b 1017 }
673a394b 1018
063e4e6b 1019out_flush:
b50a5371
AS
1020 if (hit_slow_path) {
1021 if (ret == 0 &&
1022 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023 /* The user has modified the object whilst we tried
1024 * reading from it, and we now have no idea what domain
1025 * the pages should be in. As we have just been touching
1026 * them directly, flush everything back to the GTT
1027 * domain.
1028 */
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 }
1031 }
1032
de152b62 1033 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1034out_unpin:
4f1959ee
AS
1035 if (node.allocated) {
1036 wmb();
1037 ggtt->base.clear_range(&ggtt->base,
1038 node.start, node.size,
1039 true);
1040 i915_gem_object_unpin_pages(obj);
1041 remove_mappable_node(&node);
1042 } else {
1043 i915_gem_object_ggtt_unpin(obj);
1044 }
935aaa69 1045out:
3de09aa3 1046 return ret;
673a394b
EA
1047}
1048
d174bd64
DV
1049/* Per-page copy function for the shmem pwrite fastpath.
1050 * Flushes invalid cachelines before writing to the target if
1051 * needs_clflush_before is set and flushes out any written cachelines after
1052 * writing if needs_clflush is set. */
3043c60c 1053static int
d174bd64
DV
1054shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055 char __user *user_data,
1056 bool page_do_bit17_swizzling,
1057 bool needs_clflush_before,
1058 bool needs_clflush_after)
673a394b 1059{
d174bd64 1060 char *vaddr;
673a394b 1061 int ret;
3de09aa3 1062
e7e58eb5 1063 if (unlikely(page_do_bit17_swizzling))
d174bd64 1064 return -EINVAL;
3de09aa3 1065
d174bd64
DV
1066 vaddr = kmap_atomic(page);
1067 if (needs_clflush_before)
1068 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069 page_length);
c2831a94
CW
1070 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071 user_data, page_length);
d174bd64
DV
1072 if (needs_clflush_after)
1073 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074 page_length);
1075 kunmap_atomic(vaddr);
3de09aa3 1076
755d2218 1077 return ret ? -EFAULT : 0;
3de09aa3
EA
1078}
1079
d174bd64
DV
1080/* Only difference to the fast-path function is that this can handle bit17
1081 * and uses non-atomic copy and kmap functions. */
3043c60c 1082static int
d174bd64
DV
1083shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084 char __user *user_data,
1085 bool page_do_bit17_swizzling,
1086 bool needs_clflush_before,
1087 bool needs_clflush_after)
673a394b 1088{
d174bd64
DV
1089 char *vaddr;
1090 int ret;
e5281ccd 1091
d174bd64 1092 vaddr = kmap(page);
e7e58eb5 1093 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1094 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095 page_length,
1096 page_do_bit17_swizzling);
d174bd64
DV
1097 if (page_do_bit17_swizzling)
1098 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1099 user_data,
1100 page_length);
d174bd64
DV
1101 else
1102 ret = __copy_from_user(vaddr + shmem_page_offset,
1103 user_data,
1104 page_length);
1105 if (needs_clflush_after)
23c18c71
DV
1106 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 page_length,
1108 page_do_bit17_swizzling);
d174bd64 1109 kunmap(page);
40123c1f 1110
755d2218 1111 return ret ? -EFAULT : 0;
40123c1f
EA
1112}
1113
40123c1f 1114static int
e244a443
DV
1115i915_gem_shmem_pwrite(struct drm_device *dev,
1116 struct drm_i915_gem_object *obj,
1117 struct drm_i915_gem_pwrite *args,
1118 struct drm_file *file)
40123c1f 1119{
40123c1f 1120 ssize_t remain;
8c59967c
DV
1121 loff_t offset;
1122 char __user *user_data;
eb2c0c81 1123 int shmem_page_offset, page_length, ret = 0;
8c59967c 1124 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1125 int hit_slowpath = 0;
58642885
DV
1126 int needs_clflush_after = 0;
1127 int needs_clflush_before = 0;
67d5a50c 1128 struct sg_page_iter sg_iter;
40123c1f 1129
3ed605bc 1130 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1131 remain = args->size;
1132
8c59967c 1133 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1134
58642885
DV
1135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136 /* If we're not in the cpu write domain, set ourself into the gtt
1137 * write domain and manually flush cachelines (if required). This
1138 * optimizes for the case when the gpu will use the data
1139 * right away and we therefore have to clflush anyway. */
2c22569b 1140 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
1141 ret = i915_gem_object_wait_rendering(obj, false);
1142 if (ret)
1143 return ret;
58642885 1144 }
c76ce038
CW
1145 /* Same trick applies to invalidate partially written cachelines read
1146 * before writing. */
1147 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148 needs_clflush_before =
1149 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1150
755d2218
CW
1151 ret = i915_gem_object_get_pages(obj);
1152 if (ret)
1153 return ret;
1154
77a0d1ca 1155 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1156
755d2218
CW
1157 i915_gem_object_pin_pages(obj);
1158
673a394b 1159 offset = args->offset;
05394f39 1160 obj->dirty = 1;
673a394b 1161
67d5a50c
ID
1162 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163 offset >> PAGE_SHIFT) {
2db76d7c 1164 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1165 int partial_cacheline_write;
e5281ccd 1166
9da3da66
CW
1167 if (remain <= 0)
1168 break;
1169
40123c1f
EA
1170 /* Operation in this page
1171 *
40123c1f 1172 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1173 * page_length = bytes to copy for this page
1174 */
c8cbbb8b 1175 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1176
1177 page_length = remain;
1178 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1180
58642885
DV
1181 /* If we don't overwrite a cacheline completely we need to be
1182 * careful to have up-to-date data by first clflushing. Don't
1183 * overcomplicate things and flush the entire patch. */
1184 partial_cacheline_write = needs_clflush_before &&
1185 ((shmem_page_offset | page_length)
1186 & (boot_cpu_data.x86_clflush_size - 1));
1187
8c59967c
DV
1188 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189 (page_to_phys(page) & (1 << 17)) != 0;
1190
d174bd64
DV
1191 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192 user_data, page_do_bit17_swizzling,
1193 partial_cacheline_write,
1194 needs_clflush_after);
1195 if (ret == 0)
1196 goto next_page;
e244a443
DV
1197
1198 hit_slowpath = 1;
e244a443 1199 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1200 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201 user_data, page_do_bit17_swizzling,
1202 partial_cacheline_write,
1203 needs_clflush_after);
40123c1f 1204
e244a443 1205 mutex_lock(&dev->struct_mutex);
755d2218 1206
755d2218 1207 if (ret)
8c59967c 1208 goto out;
8c59967c 1209
17793c9a 1210next_page:
40123c1f 1211 remain -= page_length;
8c59967c 1212 user_data += page_length;
40123c1f 1213 offset += page_length;
673a394b
EA
1214 }
1215
fbd5a26d 1216out:
755d2218
CW
1217 i915_gem_object_unpin_pages(obj);
1218
e244a443 1219 if (hit_slowpath) {
8dcf015e
DV
1220 /*
1221 * Fixup: Flush cpu caches in case we didn't flush the dirty
1222 * cachelines in-line while writing and the object moved
1223 * out of the cpu write domain while we've dropped the lock.
1224 */
1225 if (!needs_clflush_after &&
1226 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1227 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1228 needs_clflush_after = true;
e244a443 1229 }
8c59967c 1230 }
673a394b 1231
58642885 1232 if (needs_clflush_after)
c033666a 1233 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1234 else
1235 obj->cache_dirty = true;
58642885 1236
de152b62 1237 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1238 return ret;
673a394b
EA
1239}
1240
1241/**
1242 * Writes data to the object referenced by handle.
14bb2c11
TU
1243 * @dev: drm device
1244 * @data: ioctl data blob
1245 * @file: drm file
673a394b
EA
1246 *
1247 * On error, the contents of the buffer that were to be modified are undefined.
1248 */
1249int
1250i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1251 struct drm_file *file)
673a394b 1252{
5d77d9c5 1253 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1254 struct drm_i915_gem_pwrite *args = data;
05394f39 1255 struct drm_i915_gem_object *obj;
51311d0a
CW
1256 int ret;
1257
1258 if (args->size == 0)
1259 return 0;
1260
1261 if (!access_ok(VERIFY_READ,
3ed605bc 1262 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1263 args->size))
1264 return -EFAULT;
1265
d330a953 1266 if (likely(!i915.prefault_disable)) {
3ed605bc 1267 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1268 args->size);
1269 if (ret)
1270 return -EFAULT;
1271 }
673a394b 1272
5d77d9c5
ID
1273 intel_runtime_pm_get(dev_priv);
1274
fbd5a26d 1275 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1276 if (ret)
5d77d9c5 1277 goto put_rpm;
1d7cfea1 1278
a8ad0bd8 1279 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1280 if (&obj->base == NULL) {
1d7cfea1
CW
1281 ret = -ENOENT;
1282 goto unlock;
fbd5a26d 1283 }
673a394b 1284
7dcd2499 1285 /* Bounds check destination. */
05394f39
CW
1286 if (args->offset > obj->base.size ||
1287 args->size > obj->base.size - args->offset) {
ce9d419d 1288 ret = -EINVAL;
35b62a89 1289 goto out;
ce9d419d
CW
1290 }
1291
db53a302
CW
1292 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
935aaa69 1294 ret = -EFAULT;
673a394b
EA
1295 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296 * it would end up going through the fenced access, and we'll get
1297 * different detiling behavior between reading and writing.
1298 * pread/pwrite currently are reading and writing from the CPU
1299 * perspective, requiring manual detiling by the client.
1300 */
6eae0059
CW
1301 if (!i915_gem_object_has_struct_page(obj) ||
1302 cpu_write_needs_clflush(obj)) {
4f1959ee 1303 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1304 /* Note that the gtt paths might fail with non-page-backed user
1305 * pointers (e.g. gtt mappings when moving data between
1306 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1307 }
673a394b 1308
b50a5371 1309 if (ret == -EFAULT) {
6a2c4232
CW
1310 if (obj->phys_handle)
1311 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1312 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1313 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1314 else
1315 ret = -ENODEV;
6a2c4232 1316 }
5c0480f2 1317
35b62a89 1318out:
05394f39 1319 drm_gem_object_unreference(&obj->base);
1d7cfea1 1320unlock:
fbd5a26d 1321 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1322put_rpm:
1323 intel_runtime_pm_put(dev_priv);
1324
673a394b
EA
1325 return ret;
1326}
1327
f4457ae7
CW
1328static int
1329i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1330{
f4457ae7
CW
1331 if (__i915_terminally_wedged(reset_counter))
1332 return -EIO;
d98c52cf 1333
f4457ae7 1334 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1335 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336 * -EIO unconditionally for these. */
1337 if (!interruptible)
1338 return -EIO;
1339
d98c52cf 1340 return -EAGAIN;
b361237b
CW
1341 }
1342
1343 return 0;
1344}
1345
094f9a54
CW
1346static void fake_irq(unsigned long data)
1347{
1348 wake_up_process((struct task_struct *)data);
1349}
1350
1351static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1352 struct intel_engine_cs *engine)
094f9a54 1353{
0bc40be8 1354 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1355}
1356
ca5b721e
CW
1357static unsigned long local_clock_us(unsigned *cpu)
1358{
1359 unsigned long t;
1360
1361 /* Cheaply and approximately convert from nanoseconds to microseconds.
1362 * The result and subsequent calculations are also defined in the same
1363 * approximate microseconds units. The principal source of timing
1364 * error here is from the simple truncation.
1365 *
1366 * Note that local_clock() is only defined wrt to the current CPU;
1367 * the comparisons are no longer valid if we switch CPUs. Instead of
1368 * blocking preemption for the entire busywait, we can detect the CPU
1369 * switch and use that as indicator of system load and a reason to
1370 * stop busywaiting, see busywait_stop().
1371 */
1372 *cpu = get_cpu();
1373 t = local_clock() >> 10;
1374 put_cpu();
1375
1376 return t;
1377}
1378
1379static bool busywait_stop(unsigned long timeout, unsigned cpu)
1380{
1381 unsigned this_cpu;
1382
1383 if (time_after(local_clock_us(&this_cpu), timeout))
1384 return true;
1385
1386 return this_cpu != cpu;
1387}
1388
91b0c352 1389static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1390{
2def4ad9 1391 unsigned long timeout;
ca5b721e
CW
1392 unsigned cpu;
1393
1394 /* When waiting for high frequency requests, e.g. during synchronous
1395 * rendering split between the CPU and GPU, the finite amount of time
1396 * required to set up the irq and wait upon it limits the response
1397 * rate. By busywaiting on the request completion for a short while we
1398 * can service the high frequency waits as quick as possible. However,
1399 * if it is a slow request, we want to sleep as quickly as possible.
1400 * The tradeoff between waiting and sleeping is roughly the time it
1401 * takes to sleep on a request, on the order of a microsecond.
1402 */
2def4ad9 1403
4a570db5 1404 if (req->engine->irq_refcount)
2def4ad9
CW
1405 return -EBUSY;
1406
821485dc
CW
1407 /* Only spin if we know the GPU is processing this request */
1408 if (!i915_gem_request_started(req, true))
1409 return -EAGAIN;
1410
ca5b721e 1411 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1412 while (!need_resched()) {
eed29a5b 1413 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1414 return 0;
1415
91b0c352
CW
1416 if (signal_pending_state(state, current))
1417 break;
1418
ca5b721e 1419 if (busywait_stop(timeout, cpu))
2def4ad9 1420 break;
b29c19b6 1421
2def4ad9
CW
1422 cpu_relax_lowlatency();
1423 }
821485dc 1424
eed29a5b 1425 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1426 return 0;
1427
1428 return -EAGAIN;
b29c19b6
CW
1429}
1430
b361237b 1431/**
9c654818
JH
1432 * __i915_wait_request - wait until execution of request has finished
1433 * @req: duh!
b361237b
CW
1434 * @interruptible: do an interruptible wait (normally yes)
1435 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
14bb2c11 1436 * @rps: RPS client
b361237b 1437 *
f69061be
DV
1438 * Note: It is of utmost importance that the passed in seqno and reset_counter
1439 * values have been read by the caller in an smp safe manner. Where read-side
1440 * locks are involved, it is sufficient to read the reset_counter before
1441 * unlocking the lock that protects the seqno. For lockless tricks, the
1442 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1443 * inserted.
1444 *
9c654818 1445 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1446 * errno with remaining time filled in timeout argument.
1447 */
9c654818 1448int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1449 bool interruptible,
5ed0bdf2 1450 s64 *timeout,
2e1b8730 1451 struct intel_rps_client *rps)
b361237b 1452{
666796da 1453 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
c033666a 1454 struct drm_i915_private *dev_priv = req->i915;
168c3f21 1455 const bool irq_test_in_progress =
666796da 1456 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1457 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1458 DEFINE_WAIT(wait);
47e9766d 1459 unsigned long timeout_expire;
e0313db0 1460 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1461 int ret;
1462
9df7575f 1463 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1464
b4716185
CW
1465 if (list_empty(&req->list))
1466 return 0;
1467
1b5a433a 1468 if (i915_gem_request_completed(req, true))
b361237b
CW
1469 return 0;
1470
bb6d1984
CW
1471 timeout_expire = 0;
1472 if (timeout) {
1473 if (WARN_ON(*timeout < 0))
1474 return -EINVAL;
1475
1476 if (*timeout == 0)
1477 return -ETIME;
1478
1479 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1480
1481 /*
1482 * Record current time in case interrupted by signal, or wedged.
1483 */
1484 before = ktime_get_raw_ns();
bb6d1984 1485 }
b361237b 1486
2e1b8730 1487 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1488 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1489
74328ee5 1490 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1491
1492 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1493 ret = __i915_spin_request(req, state);
2def4ad9
CW
1494 if (ret == 0)
1495 goto out;
1496
e2f80391 1497 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1498 ret = -ENODEV;
1499 goto out;
1500 }
1501
094f9a54
CW
1502 for (;;) {
1503 struct timer_list timer;
b361237b 1504
e2f80391 1505 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1506
f69061be 1507 /* We need to check whether any gpu reset happened in between
f4457ae7 1508 * the request being submitted and now. If a reset has occurred,
0c5eed65
CW
1509 * the seqno will have been advance past ours and our request
1510 * is complete. If we are in the process of handling a reset,
1511 * the request is effectively complete as the rendering will
1512 * be discarded, but we need to return in order to drop the
1513 * struct_mutex.
f4457ae7 1514 */
0c5eed65 1515 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
f4457ae7 1516 ret = 0;
094f9a54
CW
1517 break;
1518 }
f69061be 1519
1b5a433a 1520 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1521 ret = 0;
1522 break;
1523 }
b361237b 1524
91b0c352 1525 if (signal_pending_state(state, current)) {
094f9a54
CW
1526 ret = -ERESTARTSYS;
1527 break;
1528 }
1529
47e9766d 1530 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1531 ret = -ETIME;
1532 break;
1533 }
1534
05535726
CW
1535 /* Ensure that even if the GPU hangs, we get woken up.
1536 *
1537 * However, note that if no one is waiting, we never notice
1538 * a gpu hang. Eventually, we will have to wait for a resource
1539 * held by the GPU and so trigger a hangcheck. In the most
1540 * pathological case, this will be upon memory starvation!
1541 */
1542 i915_queue_hangcheck(dev_priv);
1543
094f9a54 1544 timer.function = NULL;
e2f80391 1545 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1546 unsigned long expire;
1547
094f9a54 1548 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1549 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1550 mod_timer(&timer, expire);
1551 }
1552
5035c275 1553 io_schedule();
094f9a54 1554
094f9a54
CW
1555 if (timer.function) {
1556 del_singleshot_timer_sync(&timer);
1557 destroy_timer_on_stack(&timer);
1558 }
1559 }
168c3f21 1560 if (!irq_test_in_progress)
e2f80391 1561 engine->irq_put(engine);
094f9a54 1562
e2f80391 1563 finish_wait(&engine->irq_queue, &wait);
b361237b 1564
2def4ad9 1565out:
2def4ad9
CW
1566 trace_i915_gem_request_wait_end(req);
1567
b361237b 1568 if (timeout) {
e0313db0 1569 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1570
1571 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1572
1573 /*
1574 * Apparently ktime isn't accurate enough and occasionally has a
1575 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1576 * things up to make the test happy. We allow up to 1 jiffy.
1577 *
1578 * This is a regrssion from the timespec->ktime conversion.
1579 */
1580 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1581 *timeout = 0;
b361237b
CW
1582 }
1583
094f9a54 1584 return ret;
b361237b
CW
1585}
1586
fcfa423c
JH
1587int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1588 struct drm_file *file)
1589{
fcfa423c
JH
1590 struct drm_i915_file_private *file_priv;
1591
1592 WARN_ON(!req || !file || req->file_priv);
1593
1594 if (!req || !file)
1595 return -EINVAL;
1596
1597 if (req->file_priv)
1598 return -EINVAL;
1599
fcfa423c
JH
1600 file_priv = file->driver_priv;
1601
1602 spin_lock(&file_priv->mm.lock);
1603 req->file_priv = file_priv;
1604 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1605 spin_unlock(&file_priv->mm.lock);
1606
1607 req->pid = get_pid(task_pid(current));
1608
1609 return 0;
1610}
1611
b4716185
CW
1612static inline void
1613i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1614{
1615 struct drm_i915_file_private *file_priv = request->file_priv;
1616
1617 if (!file_priv)
1618 return;
1619
1620 spin_lock(&file_priv->mm.lock);
1621 list_del(&request->client_list);
1622 request->file_priv = NULL;
1623 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1624
1625 put_pid(request->pid);
1626 request->pid = NULL;
b4716185
CW
1627}
1628
1629static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1630{
1631 trace_i915_gem_request_retire(request);
1632
1633 /* We know the GPU must have read the request to have
1634 * sent us the seqno + interrupt, so use the position
1635 * of tail of the request to update the last known position
1636 * of the GPU head.
1637 *
1638 * Note this requires that we are always called in request
1639 * completion order.
1640 */
1641 request->ringbuf->last_retired_head = request->postfix;
1642
1643 list_del_init(&request->list);
1644 i915_gem_request_remove_from_client(request);
1645
a16a4052 1646 if (request->previous_context) {
73db04cf 1647 if (i915.enable_execlists)
a16a4052
CW
1648 intel_lr_context_unpin(request->previous_context,
1649 request->engine);
73db04cf
CW
1650 }
1651
a16a4052 1652 i915_gem_context_unreference(request->ctx);
b4716185
CW
1653 i915_gem_request_unreference(request);
1654}
1655
1656static void
1657__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1658{
4a570db5 1659 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1660 struct drm_i915_gem_request *tmp;
1661
c033666a 1662 lockdep_assert_held(&engine->i915->dev->struct_mutex);
b4716185
CW
1663
1664 if (list_empty(&req->list))
1665 return;
1666
1667 do {
1668 tmp = list_first_entry(&engine->request_list,
1669 typeof(*tmp), list);
1670
1671 i915_gem_request_retire(tmp);
1672 } while (tmp != req);
1673
1674 WARN_ON(i915_verify_lists(engine->dev));
1675}
1676
b361237b 1677/**
a4b3a571 1678 * Waits for a request to be signaled, and cleans up the
b361237b 1679 * request and object lists appropriately for that event.
14bb2c11 1680 * @req: request to wait on
b361237b
CW
1681 */
1682int
a4b3a571 1683i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1684{
791bee12 1685 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1686 bool interruptible;
b361237b
CW
1687 int ret;
1688
a4b3a571
DV
1689 interruptible = dev_priv->mm.interruptible;
1690
791bee12 1691 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
b361237b 1692
299259a3 1693 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1694 if (ret)
1695 return ret;
d26e3af8 1696
e075a32f 1697 /* If the GPU hung, we want to keep the requests to find the guilty. */
0c5eed65 1698 if (!i915_reset_in_progress(&dev_priv->gpu_error))
e075a32f
CW
1699 __i915_gem_request_retire__upto(req);
1700
d26e3af8
CW
1701 return 0;
1702}
1703
b361237b
CW
1704/**
1705 * Ensures that all rendering to the object has completed and the object is
1706 * safe to unbind from the GTT or access from the CPU.
14bb2c11
TU
1707 * @obj: i915 gem object
1708 * @readonly: waiting for read access or write
b361237b 1709 */
2e2f351d 1710int
b361237b
CW
1711i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1712 bool readonly)
1713{
b4716185 1714 int ret, i;
b361237b 1715
b4716185 1716 if (!obj->active)
b361237b
CW
1717 return 0;
1718
b4716185
CW
1719 if (readonly) {
1720 if (obj->last_write_req != NULL) {
1721 ret = i915_wait_request(obj->last_write_req);
1722 if (ret)
1723 return ret;
b361237b 1724
4a570db5 1725 i = obj->last_write_req->engine->id;
b4716185
CW
1726 if (obj->last_read_req[i] == obj->last_write_req)
1727 i915_gem_object_retire__read(obj, i);
1728 else
1729 i915_gem_object_retire__write(obj);
1730 }
1731 } else {
666796da 1732 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1733 if (obj->last_read_req[i] == NULL)
1734 continue;
1735
1736 ret = i915_wait_request(obj->last_read_req[i]);
1737 if (ret)
1738 return ret;
1739
1740 i915_gem_object_retire__read(obj, i);
1741 }
d501b1d2 1742 GEM_BUG_ON(obj->active);
b4716185
CW
1743 }
1744
1745 return 0;
1746}
1747
1748static void
1749i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1750 struct drm_i915_gem_request *req)
1751{
4a570db5 1752 int ring = req->engine->id;
b4716185
CW
1753
1754 if (obj->last_read_req[ring] == req)
1755 i915_gem_object_retire__read(obj, ring);
1756 else if (obj->last_write_req == req)
1757 i915_gem_object_retire__write(obj);
1758
0c5eed65 1759 if (!i915_reset_in_progress(&req->i915->gpu_error))
e075a32f 1760 __i915_gem_request_retire__upto(req);
b361237b
CW
1761}
1762
3236f57a
CW
1763/* A nonblocking variant of the above wait. This is a highly dangerous routine
1764 * as the object state may change during this call.
1765 */
1766static __must_check int
1767i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1768 struct intel_rps_client *rps,
3236f57a
CW
1769 bool readonly)
1770{
1771 struct drm_device *dev = obj->base.dev;
1772 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1773 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1774 int ret, i, n = 0;
3236f57a
CW
1775
1776 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1777 BUG_ON(!dev_priv->mm.interruptible);
1778
b4716185 1779 if (!obj->active)
3236f57a
CW
1780 return 0;
1781
b4716185
CW
1782 if (readonly) {
1783 struct drm_i915_gem_request *req;
1784
1785 req = obj->last_write_req;
1786 if (req == NULL)
1787 return 0;
1788
b4716185
CW
1789 requests[n++] = i915_gem_request_reference(req);
1790 } else {
666796da 1791 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1792 struct drm_i915_gem_request *req;
1793
1794 req = obj->last_read_req[i];
1795 if (req == NULL)
1796 continue;
1797
b4716185
CW
1798 requests[n++] = i915_gem_request_reference(req);
1799 }
1800 }
1801
3236f57a 1802 mutex_unlock(&dev->struct_mutex);
299259a3 1803 ret = 0;
b4716185 1804 for (i = 0; ret == 0 && i < n; i++)
299259a3 1805 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1806 mutex_lock(&dev->struct_mutex);
1807
b4716185
CW
1808 for (i = 0; i < n; i++) {
1809 if (ret == 0)
1810 i915_gem_object_retire_request(obj, requests[i]);
1811 i915_gem_request_unreference(requests[i]);
1812 }
1813
1814 return ret;
3236f57a
CW
1815}
1816
2e1b8730
CW
1817static struct intel_rps_client *to_rps_client(struct drm_file *file)
1818{
1819 struct drm_i915_file_private *fpriv = file->driver_priv;
1820 return &fpriv->rps;
1821}
1822
aeecc969
CW
1823static enum fb_op_origin
1824write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1825{
1826 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1827 ORIGIN_GTT : ORIGIN_CPU;
1828}
1829
673a394b 1830/**
2ef7eeaa
EA
1831 * Called when user space prepares to use an object with the CPU, either
1832 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1833 * @dev: drm device
1834 * @data: ioctl data blob
1835 * @file: drm file
673a394b
EA
1836 */
1837int
1838i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1839 struct drm_file *file)
673a394b
EA
1840{
1841 struct drm_i915_gem_set_domain *args = data;
05394f39 1842 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1843 uint32_t read_domains = args->read_domains;
1844 uint32_t write_domain = args->write_domain;
673a394b
EA
1845 int ret;
1846
2ef7eeaa 1847 /* Only handle setting domains to types used by the CPU. */
21d509e3 1848 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1849 return -EINVAL;
1850
21d509e3 1851 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1852 return -EINVAL;
1853
1854 /* Having something in the write domain implies it's in the read
1855 * domain, and only that read domain. Enforce that in the request.
1856 */
1857 if (write_domain != 0 && read_domains != write_domain)
1858 return -EINVAL;
1859
76c1dec1 1860 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1861 if (ret)
76c1dec1 1862 return ret;
1d7cfea1 1863
a8ad0bd8 1864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1865 if (&obj->base == NULL) {
1d7cfea1
CW
1866 ret = -ENOENT;
1867 goto unlock;
76c1dec1 1868 }
673a394b 1869
3236f57a
CW
1870 /* Try to flush the object off the GPU without holding the lock.
1871 * We will repeat the flush holding the lock in the normal manner
1872 * to catch cases where we are gazumped.
1873 */
6e4930f6 1874 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1875 to_rps_client(file),
6e4930f6 1876 !write_domain);
3236f57a
CW
1877 if (ret)
1878 goto unref;
1879
43566ded 1880 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1881 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1882 else
e47c68e9 1883 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1884
031b698a 1885 if (write_domain != 0)
aeecc969 1886 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1887
3236f57a 1888unref:
05394f39 1889 drm_gem_object_unreference(&obj->base);
1d7cfea1 1890unlock:
673a394b
EA
1891 mutex_unlock(&dev->struct_mutex);
1892 return ret;
1893}
1894
1895/**
1896 * Called when user space has done writes to this buffer
14bb2c11
TU
1897 * @dev: drm device
1898 * @data: ioctl data blob
1899 * @file: drm file
673a394b
EA
1900 */
1901int
1902i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1903 struct drm_file *file)
673a394b
EA
1904{
1905 struct drm_i915_gem_sw_finish *args = data;
05394f39 1906 struct drm_i915_gem_object *obj;
673a394b
EA
1907 int ret = 0;
1908
76c1dec1 1909 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1910 if (ret)
76c1dec1 1911 return ret;
1d7cfea1 1912
a8ad0bd8 1913 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1914 if (&obj->base == NULL) {
1d7cfea1
CW
1915 ret = -ENOENT;
1916 goto unlock;
673a394b
EA
1917 }
1918
673a394b 1919 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1920 if (obj->pin_display)
e62b59e4 1921 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1922
05394f39 1923 drm_gem_object_unreference(&obj->base);
1d7cfea1 1924unlock:
673a394b
EA
1925 mutex_unlock(&dev->struct_mutex);
1926 return ret;
1927}
1928
1929/**
14bb2c11
TU
1930 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1931 * it is mapped to.
1932 * @dev: drm device
1933 * @data: ioctl data blob
1934 * @file: drm file
673a394b
EA
1935 *
1936 * While the mapping holds a reference on the contents of the object, it doesn't
1937 * imply a ref on the object itself.
34367381
DV
1938 *
1939 * IMPORTANT:
1940 *
1941 * DRM driver writers who look a this function as an example for how to do GEM
1942 * mmap support, please don't implement mmap support like here. The modern way
1943 * to implement DRM mmap support is with an mmap offset ioctl (like
1944 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1945 * That way debug tooling like valgrind will understand what's going on, hiding
1946 * the mmap call in a driver private ioctl will break that. The i915 driver only
1947 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1948 */
1949int
1950i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1951 struct drm_file *file)
673a394b
EA
1952{
1953 struct drm_i915_gem_mmap *args = data;
1954 struct drm_gem_object *obj;
673a394b
EA
1955 unsigned long addr;
1956
1816f923
AG
1957 if (args->flags & ~(I915_MMAP_WC))
1958 return -EINVAL;
1959
568a58e5 1960 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1961 return -ENODEV;
1962
a8ad0bd8 1963 obj = drm_gem_object_lookup(file, args->handle);
673a394b 1964 if (obj == NULL)
bf79cb91 1965 return -ENOENT;
673a394b 1966
1286ff73
DV
1967 /* prime objects have no backing filp to GEM mmap
1968 * pages from.
1969 */
1970 if (!obj->filp) {
1971 drm_gem_object_unreference_unlocked(obj);
1972 return -EINVAL;
1973 }
1974
6be5ceb0 1975 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1976 PROT_READ | PROT_WRITE, MAP_SHARED,
1977 args->offset);
1816f923
AG
1978 if (args->flags & I915_MMAP_WC) {
1979 struct mm_struct *mm = current->mm;
1980 struct vm_area_struct *vma;
1981
80a89a5e
MH
1982 if (down_write_killable(&mm->mmap_sem)) {
1983 drm_gem_object_unreference_unlocked(obj);
1984 return -EINTR;
1985 }
1816f923
AG
1986 vma = find_vma(mm, addr);
1987 if (vma)
1988 vma->vm_page_prot =
1989 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1990 else
1991 addr = -ENOMEM;
1992 up_write(&mm->mmap_sem);
aeecc969
CW
1993
1994 /* This may race, but that's ok, it only gets set */
1995 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1816f923 1996 }
bc9025bd 1997 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1998 if (IS_ERR((void *)addr))
1999 return addr;
2000
2001 args->addr_ptr = (uint64_t) addr;
2002
2003 return 0;
2004}
2005
de151cf6
JB
2006/**
2007 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
2008 * @vma: VMA in question
2009 * @vmf: fault info
de151cf6
JB
2010 *
2011 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2012 * from userspace. The fault handler takes care of binding the object to
2013 * the GTT (if needed), allocating and programming a fence register (again,
2014 * only if needed based on whether the old reg is still valid or the object
2015 * is tiled) and inserting a new PTE into the faulting process.
2016 *
2017 * Note that the faulting process may involve evicting existing objects
2018 * from the GTT and/or fence registers to make room. So performance may
2019 * suffer if the GTT working set is large or there are few fence registers
2020 * left.
2021 */
2022int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2023{
05394f39
CW
2024 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2025 struct drm_device *dev = obj->base.dev;
72e96d64
JL
2026 struct drm_i915_private *dev_priv = to_i915(dev);
2027 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 2028 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
2029 pgoff_t page_offset;
2030 unsigned long pfn;
2031 int ret = 0;
0f973f27 2032 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 2033
f65c9168
PZ
2034 intel_runtime_pm_get(dev_priv);
2035
de151cf6
JB
2036 /* We don't use vmf->pgoff since that has the fake offset */
2037 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2038 PAGE_SHIFT;
2039
d9bc7e9f
CW
2040 ret = i915_mutex_lock_interruptible(dev);
2041 if (ret)
2042 goto out;
a00b10c3 2043
db53a302
CW
2044 trace_i915_gem_object_fault(obj, page_offset, true, write);
2045
6e4930f6
CW
2046 /* Try to flush the object off the GPU first without holding the lock.
2047 * Upon reacquiring the lock, we will perform our sanity checks and then
2048 * repeat the flush holding the lock in the normal manner to catch cases
2049 * where we are gazumped.
2050 */
2051 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2052 if (ret)
2053 goto unlock;
2054
eb119bd6
CW
2055 /* Access to snoopable pages through the GTT is incoherent. */
2056 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 2057 ret = -EFAULT;
eb119bd6
CW
2058 goto unlock;
2059 }
2060
c5ad54cf 2061 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 2062 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 2063 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 2064 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 2065
c5ad54cf
JL
2066 memset(&view, 0, sizeof(view));
2067 view.type = I915_GGTT_VIEW_PARTIAL;
2068 view.params.partial.offset = rounddown(page_offset, chunk_size);
2069 view.params.partial.size =
2070 min_t(unsigned int,
2071 chunk_size,
2072 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2073 view.params.partial.offset);
2074 }
2075
2076 /* Now pin it into the GTT if needed */
2077 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
2078 if (ret)
2079 goto unlock;
4a684a41 2080
c9839303
CW
2081 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2082 if (ret)
2083 goto unpin;
74898d7e 2084
06d98131 2085 ret = i915_gem_object_get_fence(obj);
d9e86c0e 2086 if (ret)
c9839303 2087 goto unpin;
7d1c4804 2088
b90b91d8 2089 /* Finally, remap it using the new GTT offset */
72e96d64 2090 pfn = ggtt->mappable_base +
c5ad54cf 2091 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 2092 pfn >>= PAGE_SHIFT;
de151cf6 2093
c5ad54cf
JL
2094 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2095 /* Overriding existing pages in partial view does not cause
2096 * us any trouble as TLBs are still valid because the fault
2097 * is due to userspace losing part of the mapping or never
2098 * having accessed it before (at this partials' range).
2099 */
2100 unsigned long base = vma->vm_start +
2101 (view.params.partial.offset << PAGE_SHIFT);
2102 unsigned int i;
b90b91d8 2103
c5ad54cf
JL
2104 for (i = 0; i < view.params.partial.size; i++) {
2105 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
2106 if (ret)
2107 break;
2108 }
2109
2110 obj->fault_mappable = true;
c5ad54cf
JL
2111 } else {
2112 if (!obj->fault_mappable) {
2113 unsigned long size = min_t(unsigned long,
2114 vma->vm_end - vma->vm_start,
2115 obj->base.size);
2116 int i;
2117
2118 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2119 ret = vm_insert_pfn(vma,
2120 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2121 pfn + i);
2122 if (ret)
2123 break;
2124 }
2125
2126 obj->fault_mappable = true;
2127 } else
2128 ret = vm_insert_pfn(vma,
2129 (unsigned long)vmf->virtual_address,
2130 pfn + page_offset);
2131 }
c9839303 2132unpin:
c5ad54cf 2133 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 2134unlock:
de151cf6 2135 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 2136out:
de151cf6 2137 switch (ret) {
d9bc7e9f 2138 case -EIO:
2232f031
DV
2139 /*
2140 * We eat errors when the gpu is terminally wedged to avoid
2141 * userspace unduly crashing (gl has no provisions for mmaps to
2142 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2143 * and so needs to be reported.
2144 */
2145 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
2146 ret = VM_FAULT_SIGBUS;
2147 break;
2148 }
045e769a 2149 case -EAGAIN:
571c608d
DV
2150 /*
2151 * EAGAIN means the gpu is hung and we'll wait for the error
2152 * handler to reset everything when re-faulting in
2153 * i915_mutex_lock_interruptible.
d9bc7e9f 2154 */
c715089f
CW
2155 case 0:
2156 case -ERESTARTSYS:
bed636ab 2157 case -EINTR:
e79e0fe3
DR
2158 case -EBUSY:
2159 /*
2160 * EBUSY is ok: this just means that another thread
2161 * already did the job.
2162 */
f65c9168
PZ
2163 ret = VM_FAULT_NOPAGE;
2164 break;
de151cf6 2165 case -ENOMEM:
f65c9168
PZ
2166 ret = VM_FAULT_OOM;
2167 break;
a7c2e1aa 2168 case -ENOSPC:
45d67817 2169 case -EFAULT:
f65c9168
PZ
2170 ret = VM_FAULT_SIGBUS;
2171 break;
de151cf6 2172 default:
a7c2e1aa 2173 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
2174 ret = VM_FAULT_SIGBUS;
2175 break;
de151cf6 2176 }
f65c9168
PZ
2177
2178 intel_runtime_pm_put(dev_priv);
2179 return ret;
de151cf6
JB
2180}
2181
901782b2
CW
2182/**
2183 * i915_gem_release_mmap - remove physical page mappings
2184 * @obj: obj in question
2185 *
af901ca1 2186 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2187 * relinquish ownership of the pages back to the system.
2188 *
2189 * It is vital that we remove the page mapping if we have mapped a tiled
2190 * object through the GTT and then lose the fence register due to
2191 * resource pressure. Similarly if the object has been moved out of the
2192 * aperture, than pages mapped into userspace must be revoked. Removing the
2193 * mapping will then trigger a page fault on the next user access, allowing
2194 * fixup by i915_gem_fault().
2195 */
d05ca301 2196void
05394f39 2197i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2198{
349f2ccf
CW
2199 /* Serialisation between user GTT access and our code depends upon
2200 * revoking the CPU's PTE whilst the mutex is held. The next user
2201 * pagefault then has to wait until we release the mutex.
2202 */
2203 lockdep_assert_held(&obj->base.dev->struct_mutex);
2204
6299f992
CW
2205 if (!obj->fault_mappable)
2206 return;
901782b2 2207
6796cb16
DH
2208 drm_vma_node_unmap(&obj->base.vma_node,
2209 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
2210
2211 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2212 * memory transactions from userspace before we return. The TLB
2213 * flushing implied above by changing the PTE above *should* be
2214 * sufficient, an extra barrier here just provides us with a bit
2215 * of paranoid documentation about our requirement to serialise
2216 * memory writes before touching registers / GSM.
2217 */
2218 wmb();
2219
6299f992 2220 obj->fault_mappable = false;
901782b2
CW
2221}
2222
eedd10f4
CW
2223void
2224i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2225{
2226 struct drm_i915_gem_object *obj;
2227
2228 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2229 i915_gem_release_mmap(obj);
2230}
2231
0fa87796 2232uint32_t
e28f8711 2233i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 2234{
e28f8711 2235 uint32_t gtt_size;
92b88aeb
CW
2236
2237 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
2238 tiling_mode == I915_TILING_NONE)
2239 return size;
92b88aeb
CW
2240
2241 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 2242 if (IS_GEN3(dev))
e28f8711 2243 gtt_size = 1024*1024;
92b88aeb 2244 else
e28f8711 2245 gtt_size = 512*1024;
92b88aeb 2246
e28f8711
CW
2247 while (gtt_size < size)
2248 gtt_size <<= 1;
92b88aeb 2249
e28f8711 2250 return gtt_size;
92b88aeb
CW
2251}
2252
de151cf6
JB
2253/**
2254 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
14bb2c11
TU
2255 * @dev: drm device
2256 * @size: object size
2257 * @tiling_mode: tiling mode
2258 * @fenced: is fenced alignemned required or not
de151cf6
JB
2259 *
2260 * Return the required GTT alignment for an object, taking into account
5e783301 2261 * potential fence register mapping.
de151cf6 2262 */
d865110c
ID
2263uint32_t
2264i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2265 int tiling_mode, bool fenced)
de151cf6 2266{
de151cf6
JB
2267 /*
2268 * Minimum alignment is 4k (GTT page size), but might be greater
2269 * if a fence register is needed for the object.
2270 */
d865110c 2271 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2272 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2273 return 4096;
2274
a00b10c3
CW
2275 /*
2276 * Previous chips need to be aligned to the size of the smallest
2277 * fence register that can contain the object.
2278 */
e28f8711 2279 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2280}
2281
d8cb5086
CW
2282static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2283{
2284 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2285 int ret;
2286
da494d7c
DV
2287 dev_priv->mm.shrinker_no_lock_stealing = true;
2288
d8cb5086
CW
2289 ret = drm_gem_create_mmap_offset(&obj->base);
2290 if (ret != -ENOSPC)
da494d7c 2291 goto out;
d8cb5086
CW
2292
2293 /* Badly fragmented mmap space? The only way we can recover
2294 * space is by destroying unwanted objects. We can't randomly release
2295 * mmap_offsets as userspace expects them to be persistent for the
2296 * lifetime of the objects. The closest we can is to release the
2297 * offsets on purgeable objects by truncating it and marking it purged,
2298 * which prevents userspace from ever using that object again.
2299 */
21ab4e74
CW
2300 i915_gem_shrink(dev_priv,
2301 obj->base.size >> PAGE_SHIFT,
2302 I915_SHRINK_BOUND |
2303 I915_SHRINK_UNBOUND |
2304 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2305 ret = drm_gem_create_mmap_offset(&obj->base);
2306 if (ret != -ENOSPC)
da494d7c 2307 goto out;
d8cb5086
CW
2308
2309 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2310 ret = drm_gem_create_mmap_offset(&obj->base);
2311out:
2312 dev_priv->mm.shrinker_no_lock_stealing = false;
2313
2314 return ret;
d8cb5086
CW
2315}
2316
2317static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2318{
d8cb5086
CW
2319 drm_gem_free_mmap_offset(&obj->base);
2320}
2321
da6b51d0 2322int
ff72145b
DA
2323i915_gem_mmap_gtt(struct drm_file *file,
2324 struct drm_device *dev,
da6b51d0 2325 uint32_t handle,
ff72145b 2326 uint64_t *offset)
de151cf6 2327{
05394f39 2328 struct drm_i915_gem_object *obj;
de151cf6
JB
2329 int ret;
2330
76c1dec1 2331 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2332 if (ret)
76c1dec1 2333 return ret;
de151cf6 2334
a8ad0bd8 2335 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
c8725226 2336 if (&obj->base == NULL) {
1d7cfea1
CW
2337 ret = -ENOENT;
2338 goto unlock;
2339 }
de151cf6 2340
05394f39 2341 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2342 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2343 ret = -EFAULT;
1d7cfea1 2344 goto out;
ab18282d
CW
2345 }
2346
d8cb5086
CW
2347 ret = i915_gem_object_create_mmap_offset(obj);
2348 if (ret)
2349 goto out;
de151cf6 2350
0de23977 2351 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2352
1d7cfea1 2353out:
05394f39 2354 drm_gem_object_unreference(&obj->base);
1d7cfea1 2355unlock:
de151cf6 2356 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2357 return ret;
de151cf6
JB
2358}
2359
ff72145b
DA
2360/**
2361 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2362 * @dev: DRM device
2363 * @data: GTT mapping ioctl data
2364 * @file: GEM object info
2365 *
2366 * Simply returns the fake offset to userspace so it can mmap it.
2367 * The mmap call will end up in drm_gem_mmap(), which will set things
2368 * up so we can get faults in the handler above.
2369 *
2370 * The fault handler will take care of binding the object into the GTT
2371 * (since it may have been evicted to make room for something), allocating
2372 * a fence register, and mapping the appropriate aperture address into
2373 * userspace.
2374 */
2375int
2376i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2377 struct drm_file *file)
2378{
2379 struct drm_i915_gem_mmap_gtt *args = data;
2380
da6b51d0 2381 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2382}
2383
225067ee
DV
2384/* Immediately discard the backing storage */
2385static void
2386i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2387{
4d6294bf 2388 i915_gem_object_free_mmap_offset(obj);
1286ff73 2389
4d6294bf
CW
2390 if (obj->base.filp == NULL)
2391 return;
e5281ccd 2392
225067ee
DV
2393 /* Our goal here is to return as much of the memory as
2394 * is possible back to the system as we are called from OOM.
2395 * To do this we must instruct the shmfs to drop all of its
2396 * backing pages, *now*.
2397 */
5537252b 2398 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2399 obj->madv = __I915_MADV_PURGED;
2400}
e5281ccd 2401
5537252b
CW
2402/* Try to discard unwanted pages */
2403static void
2404i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2405{
5537252b
CW
2406 struct address_space *mapping;
2407
2408 switch (obj->madv) {
2409 case I915_MADV_DONTNEED:
2410 i915_gem_object_truncate(obj);
2411 case __I915_MADV_PURGED:
2412 return;
2413 }
2414
2415 if (obj->base.filp == NULL)
2416 return;
2417
2418 mapping = file_inode(obj->base.filp)->i_mapping,
2419 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2420}
2421
5cdf5881 2422static void
05394f39 2423i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2424{
85d1225e
DG
2425 struct sgt_iter sgt_iter;
2426 struct page *page;
90797e6d 2427 int ret;
1286ff73 2428
05394f39 2429 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2430
6c085a72 2431 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2432 if (WARN_ON(ret)) {
6c085a72
CW
2433 /* In the event of a disaster, abandon all caches and
2434 * hope for the best.
2435 */
2c22569b 2436 i915_gem_clflush_object(obj, true);
6c085a72
CW
2437 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2438 }
2439
e2273302
ID
2440 i915_gem_gtt_finish_object(obj);
2441
6dacfd2f 2442 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2443 i915_gem_object_save_bit_17_swizzle(obj);
2444
05394f39
CW
2445 if (obj->madv == I915_MADV_DONTNEED)
2446 obj->dirty = 0;
3ef94daa 2447
85d1225e 2448 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2449 if (obj->dirty)
9da3da66 2450 set_page_dirty(page);
3ef94daa 2451
05394f39 2452 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2453 mark_page_accessed(page);
3ef94daa 2454
09cbfeaf 2455 put_page(page);
3ef94daa 2456 }
05394f39 2457 obj->dirty = 0;
673a394b 2458
9da3da66
CW
2459 sg_free_table(obj->pages);
2460 kfree(obj->pages);
37e680a1 2461}
6c085a72 2462
dd624afd 2463int
37e680a1
CW
2464i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2465{
2466 const struct drm_i915_gem_object_ops *ops = obj->ops;
2467
2f745ad3 2468 if (obj->pages == NULL)
37e680a1
CW
2469 return 0;
2470
a5570178
CW
2471 if (obj->pages_pin_count)
2472 return -EBUSY;
2473
9843877d 2474 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2475
a2165e31
CW
2476 /* ->put_pages might need to allocate memory for the bit17 swizzle
2477 * array, hence protect them from being reaped by removing them from gtt
2478 * lists early. */
35c20a60 2479 list_del(&obj->global_list);
a2165e31 2480
0a798eb9 2481 if (obj->mapping) {
fb8621d3
CW
2482 if (is_vmalloc_addr(obj->mapping))
2483 vunmap(obj->mapping);
2484 else
2485 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2486 obj->mapping = NULL;
2487 }
2488
37e680a1 2489 ops->put_pages(obj);
05394f39 2490 obj->pages = NULL;
37e680a1 2491
5537252b 2492 i915_gem_object_invalidate(obj);
6c085a72
CW
2493
2494 return 0;
2495}
2496
37e680a1 2497static int
6c085a72 2498i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2499{
6c085a72 2500 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2501 int page_count, i;
2502 struct address_space *mapping;
9da3da66
CW
2503 struct sg_table *st;
2504 struct scatterlist *sg;
85d1225e 2505 struct sgt_iter sgt_iter;
e5281ccd 2506 struct page *page;
90797e6d 2507 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2508 int ret;
6c085a72 2509 gfp_t gfp;
e5281ccd 2510
6c085a72
CW
2511 /* Assert that the object is not currently in any GPU domain. As it
2512 * wasn't in the GTT, there shouldn't be any way it could have been in
2513 * a GPU cache
2514 */
2515 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2516 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2517
9da3da66
CW
2518 st = kmalloc(sizeof(*st), GFP_KERNEL);
2519 if (st == NULL)
2520 return -ENOMEM;
2521
05394f39 2522 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2523 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2524 kfree(st);
e5281ccd 2525 return -ENOMEM;
9da3da66 2526 }
e5281ccd 2527
9da3da66
CW
2528 /* Get the list of pages out of our struct file. They'll be pinned
2529 * at this point until we release them.
2530 *
2531 * Fail silently without starting the shrinker
2532 */
496ad9aa 2533 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2534 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2535 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2536 sg = st->sgl;
2537 st->nents = 0;
2538 for (i = 0; i < page_count; i++) {
6c085a72
CW
2539 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2540 if (IS_ERR(page)) {
21ab4e74
CW
2541 i915_gem_shrink(dev_priv,
2542 page_count,
2543 I915_SHRINK_BOUND |
2544 I915_SHRINK_UNBOUND |
2545 I915_SHRINK_PURGEABLE);
6c085a72
CW
2546 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2547 }
2548 if (IS_ERR(page)) {
2549 /* We've tried hard to allocate the memory by reaping
2550 * our own buffer, now let the real VM do its job and
2551 * go down in flames if truly OOM.
2552 */
6c085a72 2553 i915_gem_shrink_all(dev_priv);
f461d1be 2554 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2555 if (IS_ERR(page)) {
2556 ret = PTR_ERR(page);
6c085a72 2557 goto err_pages;
e2273302 2558 }
6c085a72 2559 }
426729dc
KRW
2560#ifdef CONFIG_SWIOTLB
2561 if (swiotlb_nr_tbl()) {
2562 st->nents++;
2563 sg_set_page(sg, page, PAGE_SIZE, 0);
2564 sg = sg_next(sg);
2565 continue;
2566 }
2567#endif
90797e6d
ID
2568 if (!i || page_to_pfn(page) != last_pfn + 1) {
2569 if (i)
2570 sg = sg_next(sg);
2571 st->nents++;
2572 sg_set_page(sg, page, PAGE_SIZE, 0);
2573 } else {
2574 sg->length += PAGE_SIZE;
2575 }
2576 last_pfn = page_to_pfn(page);
3bbbe706
DV
2577
2578 /* Check that the i965g/gm workaround works. */
2579 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2580 }
426729dc
KRW
2581#ifdef CONFIG_SWIOTLB
2582 if (!swiotlb_nr_tbl())
2583#endif
2584 sg_mark_end(sg);
74ce6b6c
CW
2585 obj->pages = st;
2586
e2273302
ID
2587 ret = i915_gem_gtt_prepare_object(obj);
2588 if (ret)
2589 goto err_pages;
2590
6dacfd2f 2591 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2592 i915_gem_object_do_bit_17_swizzle(obj);
2593
656bfa3a
DV
2594 if (obj->tiling_mode != I915_TILING_NONE &&
2595 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2596 i915_gem_object_pin_pages(obj);
2597
e5281ccd
CW
2598 return 0;
2599
2600err_pages:
90797e6d 2601 sg_mark_end(sg);
85d1225e
DG
2602 for_each_sgt_page(page, sgt_iter, st)
2603 put_page(page);
9da3da66
CW
2604 sg_free_table(st);
2605 kfree(st);
0820baf3
CW
2606
2607 /* shmemfs first checks if there is enough memory to allocate the page
2608 * and reports ENOSPC should there be insufficient, along with the usual
2609 * ENOMEM for a genuine allocation failure.
2610 *
2611 * We use ENOSPC in our driver to mean that we have run out of aperture
2612 * space and so want to translate the error from shmemfs back to our
2613 * usual understanding of ENOMEM.
2614 */
e2273302
ID
2615 if (ret == -ENOSPC)
2616 ret = -ENOMEM;
2617
2618 return ret;
673a394b
EA
2619}
2620
37e680a1
CW
2621/* Ensure that the associated pages are gathered from the backing storage
2622 * and pinned into our object. i915_gem_object_get_pages() may be called
2623 * multiple times before they are released by a single call to
2624 * i915_gem_object_put_pages() - once the pages are no longer referenced
2625 * either as a result of memory pressure (reaping pages under the shrinker)
2626 * or as the object is itself released.
2627 */
2628int
2629i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2630{
2631 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2632 const struct drm_i915_gem_object_ops *ops = obj->ops;
2633 int ret;
2634
2f745ad3 2635 if (obj->pages)
37e680a1
CW
2636 return 0;
2637
43e28f09 2638 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2639 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2640 return -EFAULT;
43e28f09
CW
2641 }
2642
a5570178
CW
2643 BUG_ON(obj->pages_pin_count);
2644
37e680a1
CW
2645 ret = ops->get_pages(obj);
2646 if (ret)
2647 return ret;
2648
35c20a60 2649 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2650
2651 obj->get_page.sg = obj->pages->sgl;
2652 obj->get_page.last = 0;
2653
37e680a1 2654 return 0;
673a394b
EA
2655}
2656
dd6034c6
DG
2657/* The 'mapping' part of i915_gem_object_pin_map() below */
2658static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2659{
2660 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2661 struct sg_table *sgt = obj->pages;
85d1225e
DG
2662 struct sgt_iter sgt_iter;
2663 struct page *page;
b338fa47
DG
2664 struct page *stack_pages[32];
2665 struct page **pages = stack_pages;
dd6034c6
DG
2666 unsigned long i = 0;
2667 void *addr;
2668
2669 /* A single page can always be kmapped */
2670 if (n_pages == 1)
2671 return kmap(sg_page(sgt->sgl));
2672
b338fa47
DG
2673 if (n_pages > ARRAY_SIZE(stack_pages)) {
2674 /* Too big for stack -- allocate temporary array instead */
2675 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2676 if (!pages)
2677 return NULL;
2678 }
dd6034c6 2679
85d1225e
DG
2680 for_each_sgt_page(page, sgt_iter, sgt)
2681 pages[i++] = page;
dd6034c6
DG
2682
2683 /* Check that we have the expected number of pages */
2684 GEM_BUG_ON(i != n_pages);
2685
2686 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2687
b338fa47
DG
2688 if (pages != stack_pages)
2689 drm_free_large(pages);
dd6034c6
DG
2690
2691 return addr;
2692}
2693
2694/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2695void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2696{
2697 int ret;
2698
2699 lockdep_assert_held(&obj->base.dev->struct_mutex);
2700
2701 ret = i915_gem_object_get_pages(obj);
2702 if (ret)
2703 return ERR_PTR(ret);
2704
2705 i915_gem_object_pin_pages(obj);
2706
dd6034c6
DG
2707 if (!obj->mapping) {
2708 obj->mapping = i915_gem_object_map(obj);
2709 if (!obj->mapping) {
0a798eb9
CW
2710 i915_gem_object_unpin_pages(obj);
2711 return ERR_PTR(-ENOMEM);
2712 }
2713 }
2714
2715 return obj->mapping;
2716}
2717
b4716185 2718void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2719 struct drm_i915_gem_request *req)
673a394b 2720{
b4716185 2721 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2722 struct intel_engine_cs *engine;
b2af0376 2723
666796da 2724 engine = i915_gem_request_get_engine(req);
673a394b
EA
2725
2726 /* Add a reference if we're newly entering the active list. */
b4716185 2727 if (obj->active == 0)
05394f39 2728 drm_gem_object_reference(&obj->base);
666796da 2729 obj->active |= intel_engine_flag(engine);
e35a41de 2730
117897f4 2731 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2732 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2733
1c7f4bca 2734 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2735}
2736
b4716185
CW
2737static void
2738i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2739{
d501b1d2
CW
2740 GEM_BUG_ON(obj->last_write_req == NULL);
2741 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2742
2743 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2744 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2745}
2746
caea7476 2747static void
b4716185 2748i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2749{
feb822cf 2750 struct i915_vma *vma;
ce44b0ea 2751
d501b1d2
CW
2752 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2753 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2754
117897f4 2755 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2756 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2757
4a570db5 2758 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2759 i915_gem_object_retire__write(obj);
2760
2761 obj->active &= ~(1 << ring);
2762 if (obj->active)
2763 return;
caea7476 2764
6c246959
CW
2765 /* Bump our place on the bound list to keep it roughly in LRU order
2766 * so that we don't steal from recently used but inactive objects
2767 * (unless we are forced to ofc!)
2768 */
2769 list_move_tail(&obj->global_list,
2770 &to_i915(obj->base.dev)->mm.bound_list);
2771
1c7f4bca
CW
2772 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2773 if (!list_empty(&vma->vm_link))
2774 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2775 }
caea7476 2776
97b2a6a1 2777 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2778 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2779}
2780
9d773091 2781static int
c033666a 2782i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
53d227f2 2783{
e2f80391 2784 struct intel_engine_cs *engine;
29dcb570 2785 int ret;
53d227f2 2786
107f27a5 2787 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2788 for_each_engine(engine, dev_priv) {
666796da 2789 ret = intel_engine_idle(engine);
107f27a5
CW
2790 if (ret)
2791 return ret;
9d773091 2792 }
c033666a 2793 i915_gem_retire_requests(dev_priv);
107f27a5
CW
2794
2795 /* Finally reset hw state */
29dcb570 2796 for_each_engine(engine, dev_priv)
e2f80391 2797 intel_ring_init_seqno(engine, seqno);
498d2ac1 2798
9d773091 2799 return 0;
53d227f2
DV
2800}
2801
fca26bb4
MK
2802int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2803{
2804 struct drm_i915_private *dev_priv = dev->dev_private;
2805 int ret;
2806
2807 if (seqno == 0)
2808 return -EINVAL;
2809
2810 /* HWS page needs to be set less than what we
2811 * will inject to ring
2812 */
c033666a 2813 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
fca26bb4
MK
2814 if (ret)
2815 return ret;
2816
2817 /* Carefully set the last_seqno value so that wrap
2818 * detection still works
2819 */
2820 dev_priv->next_seqno = seqno;
2821 dev_priv->last_seqno = seqno - 1;
2822 if (dev_priv->last_seqno == 0)
2823 dev_priv->last_seqno--;
2824
2825 return 0;
2826}
2827
9d773091 2828int
c033666a 2829i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
53d227f2 2830{
9d773091
CW
2831 /* reserve 0 for non-seqno */
2832 if (dev_priv->next_seqno == 0) {
c033666a 2833 int ret = i915_gem_init_seqno(dev_priv, 0);
9d773091
CW
2834 if (ret)
2835 return ret;
53d227f2 2836
9d773091
CW
2837 dev_priv->next_seqno = 1;
2838 }
53d227f2 2839
f72b3435 2840 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2841 return 0;
53d227f2
DV
2842}
2843
bf7dc5b7
JH
2844/*
2845 * NB: This function is not allowed to fail. Doing so would mean the the
2846 * request is not being tracked for completion but the work itself is
2847 * going to happen on the hardware. This would be a Bad Thing(tm).
2848 */
75289874 2849void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2850 struct drm_i915_gem_object *obj,
2851 bool flush_caches)
673a394b 2852{
e2f80391 2853 struct intel_engine_cs *engine;
75289874 2854 struct drm_i915_private *dev_priv;
48e29f55 2855 struct intel_ringbuffer *ringbuf;
6d3d8274 2856 u32 request_start;
0251a963 2857 u32 reserved_tail;
3cce469c
CW
2858 int ret;
2859
48e29f55 2860 if (WARN_ON(request == NULL))
bf7dc5b7 2861 return;
48e29f55 2862
4a570db5 2863 engine = request->engine;
39dabecd 2864 dev_priv = request->i915;
75289874
JH
2865 ringbuf = request->ringbuf;
2866
29b1b415
JH
2867 /*
2868 * To ensure that this call will not fail, space for its emissions
2869 * should already have been reserved in the ring buffer. Let the ring
2870 * know that it is time to use that space up.
2871 */
48e29f55 2872 request_start = intel_ring_get_tail(ringbuf);
0251a963
CW
2873 reserved_tail = request->reserved_space;
2874 request->reserved_space = 0;
2875
cc889e0f
DV
2876 /*
2877 * Emit any outstanding flushes - execbuf can fail to emit the flush
2878 * after having emitted the batchbuffer command. Hence we need to fix
2879 * things up similar to emitting the lazy request. The difference here
2880 * is that the flush _must_ happen before the next request, no matter
2881 * what.
2882 */
5b4a60c2
JH
2883 if (flush_caches) {
2884 if (i915.enable_execlists)
4866d729 2885 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2886 else
4866d729 2887 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2888 /* Not allowed to fail! */
2889 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2890 }
cc889e0f 2891
7c90b7de
CW
2892 trace_i915_gem_request_add(request);
2893
2894 request->head = request_start;
2895
2896 /* Whilst this request exists, batch_obj will be on the
2897 * active_list, and so will hold the active reference. Only when this
2898 * request is retired will the the batch_obj be moved onto the
2899 * inactive_list and lose its active reference. Hence we do not need
2900 * to explicitly hold another reference here.
2901 */
2902 request->batch_obj = obj;
2903
2904 /* Seal the request and mark it as pending execution. Note that
2905 * we may inspect this state, without holding any locks, during
2906 * hangcheck. Hence we apply the barrier to ensure that we do not
2907 * see a more recent value in the hws than we are tracking.
2908 */
2909 request->emitted_jiffies = jiffies;
2910 request->previous_seqno = engine->last_submitted_seqno;
2911 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2912 list_add_tail(&request->list, &engine->request_list);
2913
a71d8d94
CW
2914 /* Record the position of the start of the request so that
2915 * should we detect the updated seqno part-way through the
2916 * GPU processing the request, we never over-estimate the
2917 * position of the head.
2918 */
6d3d8274 2919 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2920
bf7dc5b7 2921 if (i915.enable_execlists)
e2f80391 2922 ret = engine->emit_request(request);
bf7dc5b7 2923 else {
e2f80391 2924 ret = engine->add_request(request);
53292cdb
MT
2925
2926 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2927 }
bf7dc5b7
JH
2928 /* Not allowed to fail! */
2929 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2930
87255483
DV
2931 queue_delayed_work(dev_priv->wq,
2932 &dev_priv->mm.retire_work,
2933 round_jiffies_up_relative(HZ));
7d993739 2934 intel_mark_busy(dev_priv);
cc889e0f 2935
29b1b415 2936 /* Sanity check that the reserved size was large enough. */
0251a963
CW
2937 ret = intel_ring_get_tail(ringbuf) - request_start;
2938 if (ret < 0)
2939 ret += ringbuf->size;
2940 WARN_ONCE(ret > reserved_tail,
2941 "Not enough space reserved (%d bytes) "
2942 "for adding the request (%d bytes)\n",
2943 reserved_tail, ret);
673a394b
EA
2944}
2945
939fd762 2946static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
e2efd130 2947 const struct i915_gem_context *ctx)
be62acb4 2948{
44e2c070 2949 unsigned long elapsed;
be62acb4 2950
44e2c070
MK
2951 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2952
2953 if (ctx->hang_stats.banned)
be62acb4
MK
2954 return true;
2955
676fa572
CW
2956 if (ctx->hang_stats.ban_period_seconds &&
2957 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2958 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2959 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2960 return true;
88b4aa87
MK
2961 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2962 if (i915_stop_ring_allow_warn(dev_priv))
2963 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2964 return true;
3fac8978 2965 }
be62acb4
MK
2966 }
2967
2968 return false;
2969}
2970
939fd762 2971static void i915_set_reset_status(struct drm_i915_private *dev_priv,
e2efd130 2972 struct i915_gem_context *ctx,
b6b0fac0 2973 const bool guilty)
aa60c664 2974{
44e2c070
MK
2975 struct i915_ctx_hang_stats *hs;
2976
2977 if (WARN_ON(!ctx))
2978 return;
aa60c664 2979
44e2c070
MK
2980 hs = &ctx->hang_stats;
2981
2982 if (guilty) {
939fd762 2983 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2984 hs->batch_active++;
2985 hs->guilty_ts = get_seconds();
2986 } else {
2987 hs->batch_pending++;
aa60c664
MK
2988 }
2989}
2990
abfe262a
JH
2991void i915_gem_request_free(struct kref *req_ref)
2992{
2993 struct drm_i915_gem_request *req = container_of(req_ref,
2994 typeof(*req), ref);
efab6d8d 2995 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2996}
2997
26827088 2998static inline int
0bc40be8 2999__i915_gem_request_alloc(struct intel_engine_cs *engine,
e2efd130 3000 struct i915_gem_context *ctx,
26827088 3001 struct drm_i915_gem_request **req_out)
6689cb2b 3002{
c033666a 3003 struct drm_i915_private *dev_priv = engine->i915;
299259a3 3004 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 3005 struct drm_i915_gem_request *req;
6689cb2b 3006 int ret;
6689cb2b 3007
217e46b5
JH
3008 if (!req_out)
3009 return -EINVAL;
3010
bccca494 3011 *req_out = NULL;
6689cb2b 3012
f4457ae7
CW
3013 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3014 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3015 * and restart.
3016 */
3017 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
3018 if (ret)
3019 return ret;
3020
eed29a5b
DV
3021 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3022 if (req == NULL)
6689cb2b
JH
3023 return -ENOMEM;
3024
c033666a 3025 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
9a0c1e27
CW
3026 if (ret)
3027 goto err;
6689cb2b 3028
40e895ce
JH
3029 kref_init(&req->ref);
3030 req->i915 = dev_priv;
4a570db5 3031 req->engine = engine;
40e895ce
JH
3032 req->ctx = ctx;
3033 i915_gem_context_reference(req->ctx);
6689cb2b 3034
29b1b415
JH
3035 /*
3036 * Reserve space in the ring buffer for all the commands required to
3037 * eventually emit this request. This is to guarantee that the
3038 * i915_add_request() call can't fail. Note that the reserve may need
3039 * to be redone if the request is not actually submitted straight
3040 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 3041 */
0251a963 3042 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
3043
3044 if (i915.enable_execlists)
3045 ret = intel_logical_ring_alloc_request_extras(req);
3046 else
3047 ret = intel_ring_alloc_request_extras(req);
3048 if (ret)
3049 goto err_ctx;
29b1b415 3050
bccca494 3051 *req_out = req;
6689cb2b 3052 return 0;
9a0c1e27 3053
bfa01200
CW
3054err_ctx:
3055 i915_gem_context_unreference(ctx);
9a0c1e27
CW
3056err:
3057 kmem_cache_free(dev_priv->requests, req);
3058 return ret;
0e50e96b
MK
3059}
3060
26827088
DG
3061/**
3062 * i915_gem_request_alloc - allocate a request structure
3063 *
3064 * @engine: engine that we wish to issue the request on.
3065 * @ctx: context that the request will be associated with.
3066 * This can be NULL if the request is not directly related to
3067 * any specific user context, in which case this function will
3068 * choose an appropriate context to use.
3069 *
3070 * Returns a pointer to the allocated request if successful,
3071 * or an error code if not.
3072 */
3073struct drm_i915_gem_request *
3074i915_gem_request_alloc(struct intel_engine_cs *engine,
e2efd130 3075 struct i915_gem_context *ctx)
26827088
DG
3076{
3077 struct drm_i915_gem_request *req;
3078 int err;
3079
3080 if (ctx == NULL)
c033666a 3081 ctx = engine->i915->kernel_context;
26827088
DG
3082 err = __i915_gem_request_alloc(engine, ctx, &req);
3083 return err ? ERR_PTR(err) : req;
3084}
3085
8d9fc7fd 3086struct drm_i915_gem_request *
0bc40be8 3087i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 3088{
4db080f9
CW
3089 struct drm_i915_gem_request *request;
3090
0bc40be8 3091 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 3092 if (i915_gem_request_completed(request, false))
4db080f9 3093 continue;
aa60c664 3094
b6b0fac0 3095 return request;
4db080f9 3096 }
b6b0fac0
MK
3097
3098 return NULL;
3099}
3100
666796da 3101static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 3102 struct intel_engine_cs *engine)
b6b0fac0
MK
3103{
3104 struct drm_i915_gem_request *request;
3105 bool ring_hung;
3106
0bc40be8 3107 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
3108
3109 if (request == NULL)
3110 return;
3111
0bc40be8 3112 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 3113
939fd762 3114 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 3115
0bc40be8 3116 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 3117 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 3118}
aa60c664 3119
666796da 3120static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 3121 struct intel_engine_cs *engine)
4db080f9 3122{
608c1a52
CW
3123 struct intel_ringbuffer *buffer;
3124
0bc40be8 3125 while (!list_empty(&engine->active_list)) {
05394f39 3126 struct drm_i915_gem_object *obj;
9375e446 3127
0bc40be8 3128 obj = list_first_entry(&engine->active_list,
05394f39 3129 struct drm_i915_gem_object,
117897f4 3130 engine_list[engine->id]);
9375e446 3131
0bc40be8 3132 i915_gem_object_retire__read(obj, engine->id);
673a394b 3133 }
1d62beea 3134
dcb4c12a
OM
3135 /*
3136 * Clear the execlists queue up before freeing the requests, as those
3137 * are the ones that keep the context and ringbuffer backing objects
3138 * pinned in place.
3139 */
dcb4c12a 3140
7de1691a 3141 if (i915.enable_execlists) {
27af5eea
TU
3142 /* Ensure irq handler finishes or is cancelled. */
3143 tasklet_kill(&engine->irq_tasklet);
1197b4f2 3144
e39d42fa 3145 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
3146 }
3147
1d62beea
BW
3148 /*
3149 * We must free the requests after all the corresponding objects have
3150 * been moved off active lists. Which is the same order as the normal
3151 * retire_requests function does. This is important if object hold
3152 * implicit references on things like e.g. ppgtt address spaces through
3153 * the request.
3154 */
0bc40be8 3155 while (!list_empty(&engine->request_list)) {
1d62beea
BW
3156 struct drm_i915_gem_request *request;
3157
0bc40be8 3158 request = list_first_entry(&engine->request_list,
1d62beea
BW
3159 struct drm_i915_gem_request,
3160 list);
3161
b4716185 3162 i915_gem_request_retire(request);
1d62beea 3163 }
608c1a52
CW
3164
3165 /* Having flushed all requests from all queues, we know that all
3166 * ringbuffers must now be empty. However, since we do not reclaim
3167 * all space when retiring the request (to prevent HEADs colliding
3168 * with rapid ringbuffer wraparound) the amount of available space
3169 * upon reset is less than when we start. Do one more pass over
3170 * all the ringbuffers to reset last_retired_head.
3171 */
0bc40be8 3172 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
3173 buffer->last_retired_head = buffer->tail;
3174 intel_ring_update_space(buffer);
3175 }
2ed53a94
CW
3176
3177 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
3178}
3179
069efc1d 3180void i915_gem_reset(struct drm_device *dev)
673a394b 3181{
77f01230 3182 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3183 struct intel_engine_cs *engine;
673a394b 3184
4db080f9
CW
3185 /*
3186 * Before we free the objects from the requests, we need to inspect
3187 * them for finding the guilty party. As the requests only borrow
3188 * their reference to the objects, the inspection must be done first.
3189 */
b4ac5afc 3190 for_each_engine(engine, dev_priv)
666796da 3191 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 3192
b4ac5afc 3193 for_each_engine(engine, dev_priv)
666796da 3194 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 3195
acce9ffa
BW
3196 i915_gem_context_reset(dev);
3197
19b2dbde 3198 i915_gem_restore_fences(dev);
b4716185
CW
3199
3200 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3201}
3202
3203/**
3204 * This function clears the request list as sequence numbers are passed.
14bb2c11 3205 * @engine: engine to retire requests on
673a394b 3206 */
1cf0ba14 3207void
0bc40be8 3208i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 3209{
0bc40be8 3210 WARN_ON(i915_verify_lists(engine->dev));
673a394b 3211
832a3aad
CW
3212 /* Retire requests first as we use it above for the early return.
3213 * If we retire requests last, we may use a later seqno and so clear
3214 * the requests lists without clearing the active list, leading to
3215 * confusion.
e9103038 3216 */
0bc40be8 3217 while (!list_empty(&engine->request_list)) {
673a394b 3218 struct drm_i915_gem_request *request;
673a394b 3219
0bc40be8 3220 request = list_first_entry(&engine->request_list,
673a394b
EA
3221 struct drm_i915_gem_request,
3222 list);
673a394b 3223
1b5a433a 3224 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
3225 break;
3226
b4716185 3227 i915_gem_request_retire(request);
b84d5f0c 3228 }
673a394b 3229
832a3aad
CW
3230 /* Move any buffers on the active list that are no longer referenced
3231 * by the ringbuffer to the flushing/inactive lists as appropriate,
3232 * before we free the context associated with the requests.
3233 */
0bc40be8 3234 while (!list_empty(&engine->active_list)) {
832a3aad
CW
3235 struct drm_i915_gem_object *obj;
3236
0bc40be8
TU
3237 obj = list_first_entry(&engine->active_list,
3238 struct drm_i915_gem_object,
117897f4 3239 engine_list[engine->id]);
832a3aad 3240
0bc40be8 3241 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
3242 break;
3243
0bc40be8 3244 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
3245 }
3246
0bc40be8
TU
3247 if (unlikely(engine->trace_irq_req &&
3248 i915_gem_request_completed(engine->trace_irq_req, true))) {
3249 engine->irq_put(engine);
3250 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 3251 }
23bc5982 3252
0bc40be8 3253 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
3254}
3255
b29c19b6 3256bool
c033666a 3257i915_gem_retire_requests(struct drm_i915_private *dev_priv)
b09a1fec 3258{
e2f80391 3259 struct intel_engine_cs *engine;
b29c19b6 3260 bool idle = true;
b09a1fec 3261
b4ac5afc 3262 for_each_engine(engine, dev_priv) {
e2f80391
TU
3263 i915_gem_retire_requests_ring(engine);
3264 idle &= list_empty(&engine->request_list);
c86ee3a9 3265 if (i915.enable_execlists) {
27af5eea 3266 spin_lock_bh(&engine->execlist_lock);
e2f80391 3267 idle &= list_empty(&engine->execlist_queue);
27af5eea 3268 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3269 }
b29c19b6
CW
3270 }
3271
3272 if (idle)
3273 mod_delayed_work(dev_priv->wq,
05535726
CW
3274 &dev_priv->mm.idle_work,
3275 msecs_to_jiffies(100));
b29c19b6
CW
3276
3277 return idle;
b09a1fec
CW
3278}
3279
75ef9da2 3280static void
673a394b
EA
3281i915_gem_retire_work_handler(struct work_struct *work)
3282{
b29c19b6
CW
3283 struct drm_i915_private *dev_priv =
3284 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3285 struct drm_device *dev = dev_priv->dev;
0a58705b 3286 bool idle;
673a394b 3287
891b48cf 3288 /* Come back later if the device is busy... */
b29c19b6
CW
3289 idle = false;
3290 if (mutex_trylock(&dev->struct_mutex)) {
c033666a 3291 idle = i915_gem_retire_requests(dev_priv);
b29c19b6 3292 mutex_unlock(&dev->struct_mutex);
673a394b 3293 }
b29c19b6 3294 if (!idle)
bcb45086
CW
3295 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3296 round_jiffies_up_relative(HZ));
b29c19b6 3297}
0a58705b 3298
b29c19b6
CW
3299static void
3300i915_gem_idle_work_handler(struct work_struct *work)
3301{
3302 struct drm_i915_private *dev_priv =
3303 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3304 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3305 struct intel_engine_cs *engine;
b29c19b6 3306
b4ac5afc
DG
3307 for_each_engine(engine, dev_priv)
3308 if (!list_empty(&engine->request_list))
423795cb 3309 return;
35c94185 3310
30ecad77 3311 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3312 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3313 * by dev->struct_mutex. */
3314
7d993739 3315 intel_mark_idle(dev_priv);
35c94185
CW
3316
3317 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3318 for_each_engine(engine, dev_priv)
e2f80391 3319 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3320
35c94185
CW
3321 mutex_unlock(&dev->struct_mutex);
3322 }
673a394b
EA
3323}
3324
30dfebf3
DV
3325/**
3326 * Ensures that an object will eventually get non-busy by flushing any required
3327 * write domains, emitting any outstanding lazy request and retiring and
3328 * completed requests.
14bb2c11 3329 * @obj: object to flush
30dfebf3
DV
3330 */
3331static int
3332i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3333{
a5ac0f90 3334 int i;
b4716185
CW
3335
3336 if (!obj->active)
3337 return 0;
30dfebf3 3338
666796da 3339 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3340 struct drm_i915_gem_request *req;
41c52415 3341
b4716185
CW
3342 req = obj->last_read_req[i];
3343 if (req == NULL)
3344 continue;
3345
e6db7469 3346 if (i915_gem_request_completed(req, true))
b4716185 3347 i915_gem_object_retire__read(obj, i);
30dfebf3
DV
3348 }
3349
3350 return 0;
3351}
3352
23ba4fd0
BW
3353/**
3354 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3355 * @dev: drm device pointer
3356 * @data: ioctl data blob
3357 * @file: drm file pointer
23ba4fd0
BW
3358 *
3359 * Returns 0 if successful, else an error is returned with the remaining time in
3360 * the timeout parameter.
3361 * -ETIME: object is still busy after timeout
3362 * -ERESTARTSYS: signal interrupted the wait
3363 * -ENONENT: object doesn't exist
3364 * Also possible, but rare:
3365 * -EAGAIN: GPU wedged
3366 * -ENOMEM: damn
3367 * -ENODEV: Internal IRQ fail
3368 * -E?: The add request failed
3369 *
3370 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3371 * non-zero timeout parameter the wait ioctl will wait for the given number of
3372 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3373 * without holding struct_mutex the object may become re-busied before this
3374 * function completes. A similar but shorter * race condition exists in the busy
3375 * ioctl
3376 */
3377int
3378i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3379{
3380 struct drm_i915_gem_wait *args = data;
3381 struct drm_i915_gem_object *obj;
666796da 3382 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3383 int i, n = 0;
3384 int ret;
23ba4fd0 3385
11b5d511
DV
3386 if (args->flags != 0)
3387 return -EINVAL;
3388
23ba4fd0
BW
3389 ret = i915_mutex_lock_interruptible(dev);
3390 if (ret)
3391 return ret;
3392
a8ad0bd8 3393 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
23ba4fd0
BW
3394 if (&obj->base == NULL) {
3395 mutex_unlock(&dev->struct_mutex);
3396 return -ENOENT;
3397 }
3398
30dfebf3
DV
3399 /* Need to make sure the object gets inactive eventually. */
3400 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3401 if (ret)
3402 goto out;
3403
b4716185 3404 if (!obj->active)
97b2a6a1 3405 goto out;
23ba4fd0 3406
23ba4fd0 3407 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3408 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3409 */
762e4583 3410 if (args->timeout_ns == 0) {
23ba4fd0
BW
3411 ret = -ETIME;
3412 goto out;
3413 }
3414
3415 drm_gem_object_unreference(&obj->base);
b4716185 3416
666796da 3417 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3418 if (obj->last_read_req[i] == NULL)
3419 continue;
3420
3421 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3422 }
3423
23ba4fd0
BW
3424 mutex_unlock(&dev->struct_mutex);
3425
b4716185
CW
3426 for (i = 0; i < n; i++) {
3427 if (ret == 0)
299259a3 3428 ret = __i915_wait_request(req[i], true,
b4716185 3429 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3430 to_rps_client(file));
73db04cf 3431 i915_gem_request_unreference(req[i]);
b4716185 3432 }
ff865885 3433 return ret;
23ba4fd0
BW
3434
3435out:
3436 drm_gem_object_unreference(&obj->base);
3437 mutex_unlock(&dev->struct_mutex);
3438 return ret;
3439}
3440
b4716185
CW
3441static int
3442__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3443 struct intel_engine_cs *to,
91af127f
JH
3444 struct drm_i915_gem_request *from_req,
3445 struct drm_i915_gem_request **to_req)
b4716185
CW
3446{
3447 struct intel_engine_cs *from;
3448 int ret;
3449
666796da 3450 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3451 if (to == from)
3452 return 0;
3453
91af127f 3454 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3455 return 0;
3456
c033666a 3457 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
a6f766f3 3458 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3459 ret = __i915_wait_request(from_req,
a6f766f3
CW
3460 i915->mm.interruptible,
3461 NULL,
3462 &i915->rps.semaphores);
b4716185
CW
3463 if (ret)
3464 return ret;
3465
91af127f 3466 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3467 } else {
3468 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3469 u32 seqno = i915_gem_request_get_seqno(from_req);
3470
3471 WARN_ON(!to_req);
b4716185
CW
3472
3473 if (seqno <= from->semaphore.sync_seqno[idx])
3474 return 0;
3475
91af127f 3476 if (*to_req == NULL) {
26827088
DG
3477 struct drm_i915_gem_request *req;
3478
3479 req = i915_gem_request_alloc(to, NULL);
3480 if (IS_ERR(req))
3481 return PTR_ERR(req);
3482
3483 *to_req = req;
91af127f
JH
3484 }
3485
599d924c
JH
3486 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3487 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3488 if (ret)
3489 return ret;
3490
3491 /* We use last_read_req because sync_to()
3492 * might have just caused seqno wrap under
3493 * the radar.
3494 */
3495 from->semaphore.sync_seqno[idx] =
3496 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3497 }
3498
3499 return 0;
3500}
3501
5816d648
BW
3502/**
3503 * i915_gem_object_sync - sync an object to a ring.
3504 *
3505 * @obj: object which may be in use on another ring.
3506 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3507 * @to_req: request we wish to use the object for. See below.
3508 * This will be allocated and returned if a request is
3509 * required but not passed in.
5816d648
BW
3510 *
3511 * This code is meant to abstract object synchronization with the GPU.
3512 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3513 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3514 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3515 * into a buffer at any time, but multiple readers. To ensure each has
3516 * a coherent view of memory, we must:
3517 *
3518 * - If there is an outstanding write request to the object, the new
3519 * request must wait for it to complete (either CPU or in hw, requests
3520 * on the same ring will be naturally ordered).
3521 *
3522 * - If we are a write request (pending_write_domain is set), the new
3523 * request must wait for outstanding read requests to complete.
5816d648 3524 *
91af127f
JH
3525 * For CPU synchronisation (NULL to) no request is required. For syncing with
3526 * rings to_req must be non-NULL. However, a request does not have to be
3527 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3528 * request will be allocated automatically and returned through *to_req. Note
3529 * that it is not guaranteed that commands will be emitted (because the system
3530 * might already be idle). Hence there is no need to create a request that
3531 * might never have any work submitted. Note further that if a request is
3532 * returned in *to_req, it is the responsibility of the caller to submit
3533 * that request (after potentially adding more work to it).
3534 *
5816d648
BW
3535 * Returns 0 if successful, else propagates up the lower layer error.
3536 */
2911a35b
BW
3537int
3538i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3539 struct intel_engine_cs *to,
3540 struct drm_i915_gem_request **to_req)
2911a35b 3541{
b4716185 3542 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3543 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3544 int ret, i, n;
41c52415 3545
b4716185 3546 if (!obj->active)
2911a35b
BW
3547 return 0;
3548
b4716185
CW
3549 if (to == NULL)
3550 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3551
b4716185
CW
3552 n = 0;
3553 if (readonly) {
3554 if (obj->last_write_req)
3555 req[n++] = obj->last_write_req;
3556 } else {
666796da 3557 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3558 if (obj->last_read_req[i])
3559 req[n++] = obj->last_read_req[i];
3560 }
3561 for (i = 0; i < n; i++) {
91af127f 3562 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3563 if (ret)
3564 return ret;
3565 }
2911a35b 3566
b4716185 3567 return 0;
2911a35b
BW
3568}
3569
b5ffc9bc
CW
3570static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3571{
3572 u32 old_write_domain, old_read_domains;
3573
b5ffc9bc
CW
3574 /* Force a pagefault for domain tracking on next user access */
3575 i915_gem_release_mmap(obj);
3576
b97c3d9c
KP
3577 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3578 return;
3579
b5ffc9bc
CW
3580 old_read_domains = obj->base.read_domains;
3581 old_write_domain = obj->base.write_domain;
3582
3583 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3584 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3585
3586 trace_i915_gem_object_change_domain(obj,
3587 old_read_domains,
3588 old_write_domain);
3589}
3590
8ef8561f
CW
3591static void __i915_vma_iounmap(struct i915_vma *vma)
3592{
3593 GEM_BUG_ON(vma->pin_count);
3594
3595 if (vma->iomap == NULL)
3596 return;
3597
3598 io_mapping_unmap(vma->iomap);
3599 vma->iomap = NULL;
3600}
3601
e9f24d5f 3602static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3603{
07fe0b12 3604 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3605 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3606 int ret;
673a394b 3607
1c7f4bca 3608 if (list_empty(&vma->obj_link))
673a394b
EA
3609 return 0;
3610
0ff501cb
DV
3611 if (!drm_mm_node_allocated(&vma->node)) {
3612 i915_gem_vma_destroy(vma);
0ff501cb
DV
3613 return 0;
3614 }
433544bd 3615
d7f46fc4 3616 if (vma->pin_count)
31d8d651 3617 return -EBUSY;
673a394b 3618
c4670ad0
CW
3619 BUG_ON(obj->pages == NULL);
3620
e9f24d5f
TU
3621 if (wait) {
3622 ret = i915_gem_object_wait_rendering(obj, false);
3623 if (ret)
3624 return ret;
3625 }
a8198eea 3626
596c5923 3627 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3628 i915_gem_object_finish_gtt(obj);
5323fd04 3629
8b1bc9b4
DV
3630 /* release the fence reg _after_ flushing */
3631 ret = i915_gem_object_put_fence(obj);
3632 if (ret)
3633 return ret;
8ef8561f
CW
3634
3635 __i915_vma_iounmap(vma);
8b1bc9b4 3636 }
96b47b65 3637
07fe0b12 3638 trace_i915_vma_unbind(vma);
db53a302 3639
777dc5bb 3640 vma->vm->unbind_vma(vma);
5e562f1d 3641 vma->bound = 0;
6f65e29a 3642
1c7f4bca 3643 list_del_init(&vma->vm_link);
596c5923 3644 if (vma->is_ggtt) {
fe14d5f4
TU
3645 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3646 obj->map_and_fenceable = false;
3647 } else if (vma->ggtt_view.pages) {
3648 sg_free_table(vma->ggtt_view.pages);
3649 kfree(vma->ggtt_view.pages);
fe14d5f4 3650 }
016a65a3 3651 vma->ggtt_view.pages = NULL;
fe14d5f4 3652 }
673a394b 3653
2f633156
BW
3654 drm_mm_remove_node(&vma->node);
3655 i915_gem_vma_destroy(vma);
3656
3657 /* Since the unbound list is global, only move to that list if
b93dab6e 3658 * no more VMAs exist. */
e2273302 3659 if (list_empty(&obj->vma_list))
2f633156 3660 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3661
70903c3b
CW
3662 /* And finally now the object is completely decoupled from this vma,
3663 * we can drop its hold on the backing storage and allow it to be
3664 * reaped by the shrinker.
3665 */
3666 i915_gem_object_unpin_pages(obj);
3667
88241785 3668 return 0;
54cf91dc
CW
3669}
3670
e9f24d5f
TU
3671int i915_vma_unbind(struct i915_vma *vma)
3672{
3673 return __i915_vma_unbind(vma, true);
3674}
3675
3676int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3677{
3678 return __i915_vma_unbind(vma, false);
3679}
3680
6e5a5beb 3681int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
4df2faf4 3682{
e2f80391 3683 struct intel_engine_cs *engine;
b4ac5afc 3684 int ret;
4df2faf4 3685
6e5a5beb
CW
3686 lockdep_assert_held(&dev_priv->dev->struct_mutex);
3687
b4ac5afc 3688 for_each_engine(engine, dev_priv) {
62e63007
CW
3689 if (engine->last_context == NULL)
3690 continue;
3691
666796da 3692 ret = intel_engine_idle(engine);
1ec14ad3
CW
3693 if (ret)
3694 return ret;
3695 }
4df2faf4 3696
b4716185 3697 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3698 return 0;
4df2faf4
DV
3699}
3700
4144f9b5 3701static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3702 unsigned long cache_level)
3703{
4144f9b5 3704 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3705 struct drm_mm_node *other;
3706
4144f9b5
CW
3707 /*
3708 * On some machines we have to be careful when putting differing types
3709 * of snoopable memory together to avoid the prefetcher crossing memory
3710 * domains and dying. During vm initialisation, we decide whether or not
3711 * these constraints apply and set the drm_mm.color_adjust
3712 * appropriately.
42d6ab48 3713 */
4144f9b5 3714 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3715 return true;
3716
c6cfb325 3717 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3718 return true;
3719
3720 if (list_empty(&gtt_space->node_list))
3721 return true;
3722
3723 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3724 if (other->allocated && !other->hole_follows && other->color != cache_level)
3725 return false;
3726
3727 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3728 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3729 return false;
3730
3731 return true;
3732}
3733
673a394b 3734/**
91e6711e
JL
3735 * Finds free space in the GTT aperture and binds the object or a view of it
3736 * there.
14bb2c11
TU
3737 * @obj: object to bind
3738 * @vm: address space to bind into
3739 * @ggtt_view: global gtt view if applicable
3740 * @alignment: requested alignment
3741 * @flags: mask of PIN_* flags to use
673a394b 3742 */
262de145 3743static struct i915_vma *
07fe0b12
BW
3744i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3745 struct i915_address_space *vm,
ec7adb6e 3746 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3747 unsigned alignment,
ec7adb6e 3748 uint64_t flags)
673a394b 3749{
05394f39 3750 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3751 struct drm_i915_private *dev_priv = to_i915(dev);
3752 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3753 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3754 u32 search_flag, alloc_flag;
3755 u64 start, end;
65bd342f 3756 u64 size, fence_size;
2f633156 3757 struct i915_vma *vma;
07f73f69 3758 int ret;
673a394b 3759
91e6711e
JL
3760 if (i915_is_ggtt(vm)) {
3761 u32 view_size;
3762
3763 if (WARN_ON(!ggtt_view))
3764 return ERR_PTR(-EINVAL);
ec7adb6e 3765
91e6711e
JL
3766 view_size = i915_ggtt_view_size(obj, ggtt_view);
3767
3768 fence_size = i915_gem_get_gtt_size(dev,
3769 view_size,
3770 obj->tiling_mode);
3771 fence_alignment = i915_gem_get_gtt_alignment(dev,
3772 view_size,
3773 obj->tiling_mode,
3774 true);
3775 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3776 view_size,
3777 obj->tiling_mode,
3778 false);
3779 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3780 } else {
3781 fence_size = i915_gem_get_gtt_size(dev,
3782 obj->base.size,
3783 obj->tiling_mode);
3784 fence_alignment = i915_gem_get_gtt_alignment(dev,
3785 obj->base.size,
3786 obj->tiling_mode,
3787 true);
3788 unfenced_alignment =
3789 i915_gem_get_gtt_alignment(dev,
3790 obj->base.size,
3791 obj->tiling_mode,
3792 false);
3793 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3794 }
a00b10c3 3795
101b506a
MT
3796 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3797 end = vm->total;
3798 if (flags & PIN_MAPPABLE)
72e96d64 3799 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3800 if (flags & PIN_ZONE_4G)
48ea1e32 3801 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3802
673a394b 3803 if (alignment == 0)
1ec9e26d 3804 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3805 unfenced_alignment;
1ec9e26d 3806 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3807 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3808 ggtt_view ? ggtt_view->type : 0,
3809 alignment);
262de145 3810 return ERR_PTR(-EINVAL);
673a394b
EA
3811 }
3812
91e6711e
JL
3813 /* If binding the object/GGTT view requires more space than the entire
3814 * aperture has, reject it early before evicting everything in a vain
3815 * attempt to find space.
654fc607 3816 */
91e6711e 3817 if (size > end) {
65bd342f 3818 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3819 ggtt_view ? ggtt_view->type : 0,
3820 size,
1ec9e26d 3821 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3822 end);
262de145 3823 return ERR_PTR(-E2BIG);
654fc607
CW
3824 }
3825
37e680a1 3826 ret = i915_gem_object_get_pages(obj);
6c085a72 3827 if (ret)
262de145 3828 return ERR_PTR(ret);
6c085a72 3829
fbdda6fb
CW
3830 i915_gem_object_pin_pages(obj);
3831
ec7adb6e
JL
3832 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3833 i915_gem_obj_lookup_or_create_vma(obj, vm);
3834
262de145 3835 if (IS_ERR(vma))
bc6bc15b 3836 goto err_unpin;
2f633156 3837
506a8e87
CW
3838 if (flags & PIN_OFFSET_FIXED) {
3839 uint64_t offset = flags & PIN_OFFSET_MASK;
3840
3841 if (offset & (alignment - 1) || offset + size > end) {
3842 ret = -EINVAL;
3843 goto err_free_vma;
3844 }
3845 vma->node.start = offset;
3846 vma->node.size = size;
3847 vma->node.color = obj->cache_level;
3848 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3849 if (ret) {
3850 ret = i915_gem_evict_for_vma(vma);
3851 if (ret == 0)
3852 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3853 }
3854 if (ret)
3855 goto err_free_vma;
101b506a 3856 } else {
506a8e87
CW
3857 if (flags & PIN_HIGH) {
3858 search_flag = DRM_MM_SEARCH_BELOW;
3859 alloc_flag = DRM_MM_CREATE_TOP;
3860 } else {
3861 search_flag = DRM_MM_SEARCH_DEFAULT;
3862 alloc_flag = DRM_MM_CREATE_DEFAULT;
3863 }
101b506a 3864
0a9ae0d7 3865search_free:
506a8e87
CW
3866 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3867 size, alignment,
3868 obj->cache_level,
3869 start, end,
3870 search_flag,
3871 alloc_flag);
3872 if (ret) {
3873 ret = i915_gem_evict_something(dev, vm, size, alignment,
3874 obj->cache_level,
3875 start, end,
3876 flags);
3877 if (ret == 0)
3878 goto search_free;
9731129c 3879
506a8e87
CW
3880 goto err_free_vma;
3881 }
673a394b 3882 }
4144f9b5 3883 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3884 ret = -EINVAL;
bc6bc15b 3885 goto err_remove_node;
673a394b
EA
3886 }
3887
fe14d5f4 3888 trace_i915_vma_bind(vma, flags);
0875546c 3889 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3890 if (ret)
e2273302 3891 goto err_remove_node;
fe14d5f4 3892
35c20a60 3893 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3894 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3895
262de145 3896 return vma;
2f633156 3897
bc6bc15b 3898err_remove_node:
6286ef9b 3899 drm_mm_remove_node(&vma->node);
bc6bc15b 3900err_free_vma:
2f633156 3901 i915_gem_vma_destroy(vma);
262de145 3902 vma = ERR_PTR(ret);
bc6bc15b 3903err_unpin:
2f633156 3904 i915_gem_object_unpin_pages(obj);
262de145 3905 return vma;
673a394b
EA
3906}
3907
000433b6 3908bool
2c22569b
CW
3909i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3910 bool force)
673a394b 3911{
673a394b
EA
3912 /* If we don't have a page list set up, then we're not pinned
3913 * to GPU, and we can ignore the cache flush because it'll happen
3914 * again at bind time.
3915 */
05394f39 3916 if (obj->pages == NULL)
000433b6 3917 return false;
673a394b 3918
769ce464
ID
3919 /*
3920 * Stolen memory is always coherent with the GPU as it is explicitly
3921 * marked as wc by the system, or the system is cache-coherent.
3922 */
6a2c4232 3923 if (obj->stolen || obj->phys_handle)
000433b6 3924 return false;
769ce464 3925
9c23f7fc
CW
3926 /* If the GPU is snooping the contents of the CPU cache,
3927 * we do not need to manually clear the CPU cache lines. However,
3928 * the caches are only snooped when the render cache is
3929 * flushed/invalidated. As we always have to emit invalidations
3930 * and flushes when moving into and out of the RENDER domain, correct
3931 * snooping behaviour occurs naturally as the result of our domain
3932 * tracking.
3933 */
0f71979a
CW
3934 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3935 obj->cache_dirty = true;
000433b6 3936 return false;
0f71979a 3937 }
9c23f7fc 3938
1c5d22f7 3939 trace_i915_gem_object_clflush(obj);
9da3da66 3940 drm_clflush_sg(obj->pages);
0f71979a 3941 obj->cache_dirty = false;
000433b6
CW
3942
3943 return true;
e47c68e9
EA
3944}
3945
3946/** Flushes the GTT write domain for the object if it's dirty. */
3947static void
05394f39 3948i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3949{
1c5d22f7
CW
3950 uint32_t old_write_domain;
3951
05394f39 3952 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3953 return;
3954
63256ec5 3955 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3956 * to it immediately go to main memory as far as we know, so there's
3957 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3958 *
3959 * However, we do have to enforce the order so that all writes through
3960 * the GTT land before any writes to the device, such as updates to
3961 * the GATT itself.
e47c68e9 3962 */
63256ec5
CW
3963 wmb();
3964
05394f39
CW
3965 old_write_domain = obj->base.write_domain;
3966 obj->base.write_domain = 0;
1c5d22f7 3967
de152b62 3968 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3969
1c5d22f7 3970 trace_i915_gem_object_change_domain(obj,
05394f39 3971 obj->base.read_domains,
1c5d22f7 3972 old_write_domain);
e47c68e9
EA
3973}
3974
3975/** Flushes the CPU write domain for the object if it's dirty. */
3976static void
e62b59e4 3977i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3978{
1c5d22f7 3979 uint32_t old_write_domain;
e47c68e9 3980
05394f39 3981 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3982 return;
3983
e62b59e4 3984 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3985 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3986
05394f39
CW
3987 old_write_domain = obj->base.write_domain;
3988 obj->base.write_domain = 0;
1c5d22f7 3989
de152b62 3990 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3991
1c5d22f7 3992 trace_i915_gem_object_change_domain(obj,
05394f39 3993 obj->base.read_domains,
1c5d22f7 3994 old_write_domain);
e47c68e9
EA
3995}
3996
2ef7eeaa
EA
3997/**
3998 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3999 * @obj: object to act on
4000 * @write: ask for write access or read only
2ef7eeaa
EA
4001 *
4002 * This function returns when the move is complete, including waiting on
4003 * flushes to occur.
4004 */
79e53945 4005int
2021746e 4006i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 4007{
72e96d64
JL
4008 struct drm_device *dev = obj->base.dev;
4009 struct drm_i915_private *dev_priv = to_i915(dev);
4010 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 4011 uint32_t old_write_domain, old_read_domains;
43566ded 4012 struct i915_vma *vma;
e47c68e9 4013 int ret;
2ef7eeaa 4014
8d7e3de1
CW
4015 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4016 return 0;
4017
0201f1ec 4018 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4019 if (ret)
4020 return ret;
4021
43566ded
CW
4022 /* Flush and acquire obj->pages so that we are coherent through
4023 * direct access in memory with previous cached writes through
4024 * shmemfs and that our cache domain tracking remains valid.
4025 * For example, if the obj->filp was moved to swap without us
4026 * being notified and releasing the pages, we would mistakenly
4027 * continue to assume that the obj remained out of the CPU cached
4028 * domain.
4029 */
4030 ret = i915_gem_object_get_pages(obj);
4031 if (ret)
4032 return ret;
4033
e62b59e4 4034 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 4035
d0a57789
CW
4036 /* Serialise direct access to this object with the barriers for
4037 * coherent writes from the GPU, by effectively invalidating the
4038 * GTT domain upon first access.
4039 */
4040 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4041 mb();
4042
05394f39
CW
4043 old_write_domain = obj->base.write_domain;
4044 old_read_domains = obj->base.read_domains;
1c5d22f7 4045
e47c68e9
EA
4046 /* It should now be out of any other write domains, and we can update
4047 * the domain values for our changes.
4048 */
05394f39
CW
4049 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4050 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 4051 if (write) {
05394f39
CW
4052 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4053 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4054 obj->dirty = 1;
2ef7eeaa
EA
4055 }
4056
1c5d22f7
CW
4057 trace_i915_gem_object_change_domain(obj,
4058 old_read_domains,
4059 old_write_domain);
4060
8325a09d 4061 /* And bump the LRU for this access */
43566ded
CW
4062 vma = i915_gem_obj_to_ggtt(obj);
4063 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 4064 list_move_tail(&vma->vm_link,
72e96d64 4065 &ggtt->base.inactive_list);
8325a09d 4066
e47c68e9
EA
4067 return 0;
4068}
4069
ef55f92a
CW
4070/**
4071 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
4072 * @obj: object to act on
4073 * @cache_level: new cache level to set for the object
ef55f92a
CW
4074 *
4075 * After this function returns, the object will be in the new cache-level
4076 * across all GTT and the contents of the backing storage will be coherent,
4077 * with respect to the new cache-level. In order to keep the backing storage
4078 * coherent for all users, we only allow a single cache level to be set
4079 * globally on the object and prevent it from being changed whilst the
4080 * hardware is reading from the object. That is if the object is currently
4081 * on the scanout it will be set to uncached (or equivalent display
4082 * cache coherency) and all non-MOCS GPU access will also be uncached so
4083 * that all direct access to the scanout remains coherent.
4084 */
e4ffd173
CW
4085int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4086 enum i915_cache_level cache_level)
4087{
7bddb01f 4088 struct drm_device *dev = obj->base.dev;
df6f783a 4089 struct i915_vma *vma, *next;
ef55f92a 4090 bool bound = false;
ed75a55b 4091 int ret = 0;
e4ffd173
CW
4092
4093 if (obj->cache_level == cache_level)
ed75a55b 4094 goto out;
e4ffd173 4095
ef55f92a
CW
4096 /* Inspect the list of currently bound VMA and unbind any that would
4097 * be invalid given the new cache-level. This is principally to
4098 * catch the issue of the CS prefetch crossing page boundaries and
4099 * reading an invalid PTE on older architectures.
4100 */
1c7f4bca 4101 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
4102 if (!drm_mm_node_allocated(&vma->node))
4103 continue;
4104
4105 if (vma->pin_count) {
4106 DRM_DEBUG("can not change the cache level of pinned objects\n");
4107 return -EBUSY;
4108 }
4109
4144f9b5 4110 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 4111 ret = i915_vma_unbind(vma);
3089c6f2
BW
4112 if (ret)
4113 return ret;
ef55f92a
CW
4114 } else
4115 bound = true;
42d6ab48
CW
4116 }
4117
ef55f92a
CW
4118 /* We can reuse the existing drm_mm nodes but need to change the
4119 * cache-level on the PTE. We could simply unbind them all and
4120 * rebind with the correct cache-level on next use. However since
4121 * we already have a valid slot, dma mapping, pages etc, we may as
4122 * rewrite the PTE in the belief that doing so tramples upon less
4123 * state and so involves less work.
4124 */
4125 if (bound) {
4126 /* Before we change the PTE, the GPU must not be accessing it.
4127 * If we wait upon the object, we know that all the bound
4128 * VMA are no longer active.
4129 */
2e2f351d 4130 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
4131 if (ret)
4132 return ret;
4133
ef55f92a
CW
4134 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4135 /* Access to snoopable pages through the GTT is
4136 * incoherent and on some machines causes a hard
4137 * lockup. Relinquish the CPU mmaping to force
4138 * userspace to refault in the pages and we can
4139 * then double check if the GTT mapping is still
4140 * valid for that pointer access.
4141 */
4142 i915_gem_release_mmap(obj);
4143
4144 /* As we no longer need a fence for GTT access,
4145 * we can relinquish it now (and so prevent having
4146 * to steal a fence from someone else on the next
4147 * fence request). Note GPU activity would have
4148 * dropped the fence as all snoopable access is
4149 * supposed to be linear.
4150 */
e4ffd173
CW
4151 ret = i915_gem_object_put_fence(obj);
4152 if (ret)
4153 return ret;
ef55f92a
CW
4154 } else {
4155 /* We either have incoherent backing store and
4156 * so no GTT access or the architecture is fully
4157 * coherent. In such cases, existing GTT mmaps
4158 * ignore the cache bit in the PTE and we can
4159 * rewrite it without confusing the GPU or having
4160 * to force userspace to fault back in its mmaps.
4161 */
e4ffd173
CW
4162 }
4163
1c7f4bca 4164 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4165 if (!drm_mm_node_allocated(&vma->node))
4166 continue;
4167
4168 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4169 if (ret)
4170 return ret;
4171 }
e4ffd173
CW
4172 }
4173
1c7f4bca 4174 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
4175 vma->node.color = cache_level;
4176 obj->cache_level = cache_level;
4177
ed75a55b 4178out:
ef55f92a
CW
4179 /* Flush the dirty CPU caches to the backing storage so that the
4180 * object is now coherent at its new cache level (with respect
4181 * to the access domain).
4182 */
b50a5371 4183 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 4184 if (i915_gem_clflush_object(obj, true))
c033666a 4185 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
4186 }
4187
e4ffd173
CW
4188 return 0;
4189}
4190
199adf40
BW
4191int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4192 struct drm_file *file)
e6994aee 4193{
199adf40 4194 struct drm_i915_gem_caching *args = data;
e6994aee 4195 struct drm_i915_gem_object *obj;
e6994aee 4196
a8ad0bd8 4197 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
432be69d
CW
4198 if (&obj->base == NULL)
4199 return -ENOENT;
e6994aee 4200
651d794f
CW
4201 switch (obj->cache_level) {
4202 case I915_CACHE_LLC:
4203 case I915_CACHE_L3_LLC:
4204 args->caching = I915_CACHING_CACHED;
4205 break;
4206
4257d3ba
CW
4207 case I915_CACHE_WT:
4208 args->caching = I915_CACHING_DISPLAY;
4209 break;
4210
651d794f
CW
4211 default:
4212 args->caching = I915_CACHING_NONE;
4213 break;
4214 }
e6994aee 4215
432be69d
CW
4216 drm_gem_object_unreference_unlocked(&obj->base);
4217 return 0;
e6994aee
CW
4218}
4219
199adf40
BW
4220int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4221 struct drm_file *file)
e6994aee 4222{
fd0fe6ac 4223 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 4224 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4225 struct drm_i915_gem_object *obj;
4226 enum i915_cache_level level;
4227 int ret;
4228
199adf40
BW
4229 switch (args->caching) {
4230 case I915_CACHING_NONE:
e6994aee
CW
4231 level = I915_CACHE_NONE;
4232 break;
199adf40 4233 case I915_CACHING_CACHED:
e5756c10
ID
4234 /*
4235 * Due to a HW issue on BXT A stepping, GPU stores via a
4236 * snooped mapping may leave stale data in a corresponding CPU
4237 * cacheline, whereas normally such cachelines would get
4238 * invalidated.
4239 */
ca377809 4240 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
4241 return -ENODEV;
4242
e6994aee
CW
4243 level = I915_CACHE_LLC;
4244 break;
4257d3ba
CW
4245 case I915_CACHING_DISPLAY:
4246 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4247 break;
e6994aee
CW
4248 default:
4249 return -EINVAL;
4250 }
4251
fd0fe6ac
ID
4252 intel_runtime_pm_get(dev_priv);
4253
3bc2913e
BW
4254 ret = i915_mutex_lock_interruptible(dev);
4255 if (ret)
fd0fe6ac 4256 goto rpm_put;
3bc2913e 4257
a8ad0bd8 4258 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
e6994aee
CW
4259 if (&obj->base == NULL) {
4260 ret = -ENOENT;
4261 goto unlock;
4262 }
4263
4264 ret = i915_gem_object_set_cache_level(obj, level);
4265
4266 drm_gem_object_unreference(&obj->base);
4267unlock:
4268 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4269rpm_put:
4270 intel_runtime_pm_put(dev_priv);
4271
e6994aee
CW
4272 return ret;
4273}
4274
b9241ea3 4275/*
2da3b9b9
CW
4276 * Prepare buffer for display plane (scanout, cursors, etc).
4277 * Can be called from an uninterruptible phase (modesetting) and allows
4278 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4279 */
4280int
2da3b9b9
CW
4281i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4282 u32 alignment,
e6617330 4283 const struct i915_ggtt_view *view)
b9241ea3 4284{
2da3b9b9 4285 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4286 int ret;
4287
cc98b413
CW
4288 /* Mark the pin_display early so that we account for the
4289 * display coherency whilst setting up the cache domains.
4290 */
8a0c39b1 4291 obj->pin_display++;
cc98b413 4292
a7ef0640
EA
4293 /* The display engine is not coherent with the LLC cache on gen6. As
4294 * a result, we make sure that the pinning that is about to occur is
4295 * done with uncached PTEs. This is lowest common denominator for all
4296 * chipsets.
4297 *
4298 * However for gen6+, we could do better by using the GFDT bit instead
4299 * of uncaching, which would allow us to flush all the LLC-cached data
4300 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4301 */
651d794f
CW
4302 ret = i915_gem_object_set_cache_level(obj,
4303 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4304 if (ret)
cc98b413 4305 goto err_unpin_display;
a7ef0640 4306
2da3b9b9
CW
4307 /* As the user may map the buffer once pinned in the display plane
4308 * (e.g. libkms for the bootup splash), we have to ensure that we
4309 * always use map_and_fenceable for all scanout buffers.
4310 */
50470bb0
TU
4311 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4312 view->type == I915_GGTT_VIEW_NORMAL ?
4313 PIN_MAPPABLE : 0);
2da3b9b9 4314 if (ret)
cc98b413 4315 goto err_unpin_display;
2da3b9b9 4316
e62b59e4 4317 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4318
2da3b9b9 4319 old_write_domain = obj->base.write_domain;
05394f39 4320 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4321
4322 /* It should now be out of any other write domains, and we can update
4323 * the domain values for our changes.
4324 */
e5f1d962 4325 obj->base.write_domain = 0;
05394f39 4326 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4327
4328 trace_i915_gem_object_change_domain(obj,
4329 old_read_domains,
2da3b9b9 4330 old_write_domain);
b9241ea3
ZW
4331
4332 return 0;
cc98b413
CW
4333
4334err_unpin_display:
8a0c39b1 4335 obj->pin_display--;
cc98b413
CW
4336 return ret;
4337}
4338
4339void
e6617330
TU
4340i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4341 const struct i915_ggtt_view *view)
cc98b413 4342{
8a0c39b1
TU
4343 if (WARN_ON(obj->pin_display == 0))
4344 return;
4345
e6617330
TU
4346 i915_gem_object_ggtt_unpin_view(obj, view);
4347
8a0c39b1 4348 obj->pin_display--;
b9241ea3
ZW
4349}
4350
e47c68e9
EA
4351/**
4352 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
4353 * @obj: object to act on
4354 * @write: requesting write or read-only access
e47c68e9
EA
4355 *
4356 * This function returns when the move is complete, including waiting on
4357 * flushes to occur.
4358 */
dabdfe02 4359int
919926ae 4360i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4361{
1c5d22f7 4362 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4363 int ret;
4364
8d7e3de1
CW
4365 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4366 return 0;
4367
0201f1ec 4368 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4369 if (ret)
4370 return ret;
4371
e47c68e9 4372 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4373
05394f39
CW
4374 old_write_domain = obj->base.write_domain;
4375 old_read_domains = obj->base.read_domains;
1c5d22f7 4376
e47c68e9 4377 /* Flush the CPU cache if it's still invalid. */
05394f39 4378 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4379 i915_gem_clflush_object(obj, false);
2ef7eeaa 4380
05394f39 4381 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4382 }
4383
4384 /* It should now be out of any other write domains, and we can update
4385 * the domain values for our changes.
4386 */
05394f39 4387 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4388
4389 /* If we're writing through the CPU, then the GPU read domains will
4390 * need to be invalidated at next use.
4391 */
4392 if (write) {
05394f39
CW
4393 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4394 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4395 }
2ef7eeaa 4396
1c5d22f7
CW
4397 trace_i915_gem_object_change_domain(obj,
4398 old_read_domains,
4399 old_write_domain);
4400
2ef7eeaa
EA
4401 return 0;
4402}
4403
673a394b
EA
4404/* Throttle our rendering by waiting until the ring has completed our requests
4405 * emitted over 20 msec ago.
4406 *
b962442e
EA
4407 * Note that if we were to use the current jiffies each time around the loop,
4408 * we wouldn't escape the function with any frames outstanding if the time to
4409 * render a frame was over 20ms.
4410 *
673a394b
EA
4411 * This should get us reasonable parallelism between CPU and GPU but also
4412 * relatively low latency when blocking on a particular request to finish.
4413 */
40a5f0de 4414static int
f787a5f5 4415i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4416{
f787a5f5
CW
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4419 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4420 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4421 int ret;
93533c29 4422
308887aa
DV
4423 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4424 if (ret)
4425 return ret;
4426
f4457ae7
CW
4427 /* ABI: return -EIO if already wedged */
4428 if (i915_terminally_wedged(&dev_priv->gpu_error))
4429 return -EIO;
e110e8d6 4430
1c25595f 4431 spin_lock(&file_priv->mm.lock);
f787a5f5 4432 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4433 if (time_after_eq(request->emitted_jiffies, recent_enough))
4434 break;
40a5f0de 4435
fcfa423c
JH
4436 /*
4437 * Note that the request might not have been submitted yet.
4438 * In which case emitted_jiffies will be zero.
4439 */
4440 if (!request->emitted_jiffies)
4441 continue;
4442
54fb2411 4443 target = request;
b962442e 4444 }
ff865885
JH
4445 if (target)
4446 i915_gem_request_reference(target);
1c25595f 4447 spin_unlock(&file_priv->mm.lock);
40a5f0de 4448
54fb2411 4449 if (target == NULL)
f787a5f5 4450 return 0;
2bc43b5c 4451
299259a3 4452 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4453 if (ret == 0)
4454 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4455
73db04cf 4456 i915_gem_request_unreference(target);
ff865885 4457
40a5f0de
EA
4458 return ret;
4459}
4460
d23db88c
CW
4461static bool
4462i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4463{
4464 struct drm_i915_gem_object *obj = vma->obj;
4465
4466 if (alignment &&
4467 vma->node.start & (alignment - 1))
4468 return true;
4469
4470 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4471 return true;
4472
4473 if (flags & PIN_OFFSET_BIAS &&
4474 vma->node.start < (flags & PIN_OFFSET_MASK))
4475 return true;
4476
506a8e87
CW
4477 if (flags & PIN_OFFSET_FIXED &&
4478 vma->node.start != (flags & PIN_OFFSET_MASK))
4479 return true;
4480
d23db88c
CW
4481 return false;
4482}
4483
d0710abb
CW
4484void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4485{
4486 struct drm_i915_gem_object *obj = vma->obj;
4487 bool mappable, fenceable;
4488 u32 fence_size, fence_alignment;
4489
4490 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4491 obj->base.size,
4492 obj->tiling_mode);
4493 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4494 obj->base.size,
4495 obj->tiling_mode,
4496 true);
4497
4498 fenceable = (vma->node.size == fence_size &&
4499 (vma->node.start & (fence_alignment - 1)) == 0);
4500
4501 mappable = (vma->node.start + fence_size <=
62106b4f 4502 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4503
4504 obj->map_and_fenceable = mappable && fenceable;
4505}
4506
ec7adb6e
JL
4507static int
4508i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4509 struct i915_address_space *vm,
4510 const struct i915_ggtt_view *ggtt_view,
4511 uint32_t alignment,
4512 uint64_t flags)
673a394b 4513{
6e7186af 4514 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4515 struct i915_vma *vma;
ef79e17c 4516 unsigned bound;
673a394b
EA
4517 int ret;
4518
6e7186af
BW
4519 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4520 return -ENODEV;
4521
bf3d149b 4522 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4523 return -EINVAL;
07fe0b12 4524
c826c449
CW
4525 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4526 return -EINVAL;
4527
ec7adb6e
JL
4528 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4529 return -EINVAL;
4530
4531 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4532 i915_gem_obj_to_vma(obj, vm);
4533
07fe0b12 4534 if (vma) {
d7f46fc4
BW
4535 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4536 return -EBUSY;
4537
d23db88c 4538 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4539 WARN(vma->pin_count,
ec7adb6e 4540 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4541 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4542 " obj->map_and_fenceable=%d\n",
ec7adb6e 4543 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4544 upper_32_bits(vma->node.start),
4545 lower_32_bits(vma->node.start),
fe14d5f4 4546 alignment,
d23db88c 4547 !!(flags & PIN_MAPPABLE),
05394f39 4548 obj->map_and_fenceable);
07fe0b12 4549 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4550 if (ret)
4551 return ret;
8ea99c92
DV
4552
4553 vma = NULL;
ac0c6b5a
CW
4554 }
4555 }
4556
ef79e17c 4557 bound = vma ? vma->bound : 0;
8ea99c92 4558 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4559 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4560 flags);
262de145
DV
4561 if (IS_ERR(vma))
4562 return PTR_ERR(vma);
0875546c
DV
4563 } else {
4564 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4565 if (ret)
4566 return ret;
4567 }
74898d7e 4568
91e6711e
JL
4569 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4570 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4571 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4572 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4573 }
ef79e17c 4574
8ea99c92 4575 vma->pin_count++;
673a394b
EA
4576 return 0;
4577}
4578
ec7adb6e
JL
4579int
4580i915_gem_object_pin(struct drm_i915_gem_object *obj,
4581 struct i915_address_space *vm,
4582 uint32_t alignment,
4583 uint64_t flags)
4584{
4585 return i915_gem_object_do_pin(obj, vm,
4586 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4587 alignment, flags);
4588}
4589
4590int
4591i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4592 const struct i915_ggtt_view *view,
4593 uint32_t alignment,
4594 uint64_t flags)
4595{
72e96d64
JL
4596 struct drm_device *dev = obj->base.dev;
4597 struct drm_i915_private *dev_priv = to_i915(dev);
4598 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4599
ade7daa1 4600 BUG_ON(!view);
ec7adb6e 4601
72e96d64 4602 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4603 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4604}
4605
673a394b 4606void
e6617330
TU
4607i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4608 const struct i915_ggtt_view *view)
673a394b 4609{
e6617330 4610 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4611
e6617330 4612 WARN_ON(vma->pin_count == 0);
9abc4648 4613 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4614
30154650 4615 --vma->pin_count;
673a394b
EA
4616}
4617
673a394b
EA
4618int
4619i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4620 struct drm_file *file)
673a394b
EA
4621{
4622 struct drm_i915_gem_busy *args = data;
05394f39 4623 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4624 int ret;
4625
76c1dec1 4626 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4627 if (ret)
76c1dec1 4628 return ret;
673a394b 4629
a8ad0bd8 4630 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 4631 if (&obj->base == NULL) {
1d7cfea1
CW
4632 ret = -ENOENT;
4633 goto unlock;
673a394b 4634 }
d1b851fc 4635
0be555b6
CW
4636 /* Count all active objects as busy, even if they are currently not used
4637 * by the gpu. Users of this interface expect objects to eventually
4638 * become non-busy without any further actions, therefore emit any
4639 * necessary flushes here.
c4de0a5d 4640 */
30dfebf3 4641 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4642 if (ret)
4643 goto unref;
0be555b6 4644
426960be
CW
4645 args->busy = 0;
4646 if (obj->active) {
4647 int i;
4648
666796da 4649 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4650 struct drm_i915_gem_request *req;
4651
4652 req = obj->last_read_req[i];
4653 if (req)
4a570db5 4654 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4655 }
4656 if (obj->last_write_req)
4a570db5 4657 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4658 }
673a394b 4659
b4716185 4660unref:
05394f39 4661 drm_gem_object_unreference(&obj->base);
1d7cfea1 4662unlock:
673a394b 4663 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4664 return ret;
673a394b
EA
4665}
4666
4667int
4668i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4669 struct drm_file *file_priv)
4670{
0206e353 4671 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4672}
4673
3ef94daa
CW
4674int
4675i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4676 struct drm_file *file_priv)
4677{
656bfa3a 4678 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4679 struct drm_i915_gem_madvise *args = data;
05394f39 4680 struct drm_i915_gem_object *obj;
76c1dec1 4681 int ret;
3ef94daa
CW
4682
4683 switch (args->madv) {
4684 case I915_MADV_DONTNEED:
4685 case I915_MADV_WILLNEED:
4686 break;
4687 default:
4688 return -EINVAL;
4689 }
4690
1d7cfea1
CW
4691 ret = i915_mutex_lock_interruptible(dev);
4692 if (ret)
4693 return ret;
4694
a8ad0bd8 4695 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
c8725226 4696 if (&obj->base == NULL) {
1d7cfea1
CW
4697 ret = -ENOENT;
4698 goto unlock;
3ef94daa 4699 }
3ef94daa 4700
d7f46fc4 4701 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4702 ret = -EINVAL;
4703 goto out;
3ef94daa
CW
4704 }
4705
656bfa3a
DV
4706 if (obj->pages &&
4707 obj->tiling_mode != I915_TILING_NONE &&
4708 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4709 if (obj->madv == I915_MADV_WILLNEED)
4710 i915_gem_object_unpin_pages(obj);
4711 if (args->madv == I915_MADV_WILLNEED)
4712 i915_gem_object_pin_pages(obj);
4713 }
4714
05394f39
CW
4715 if (obj->madv != __I915_MADV_PURGED)
4716 obj->madv = args->madv;
3ef94daa 4717
6c085a72 4718 /* if the object is no longer attached, discard its backing storage */
be6a0376 4719 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4720 i915_gem_object_truncate(obj);
4721
05394f39 4722 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4723
1d7cfea1 4724out:
05394f39 4725 drm_gem_object_unreference(&obj->base);
1d7cfea1 4726unlock:
3ef94daa 4727 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4728 return ret;
3ef94daa
CW
4729}
4730
37e680a1
CW
4731void i915_gem_object_init(struct drm_i915_gem_object *obj,
4732 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4733{
b4716185
CW
4734 int i;
4735
35c20a60 4736 INIT_LIST_HEAD(&obj->global_list);
666796da 4737 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4738 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4739 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4740 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4741 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4742
37e680a1
CW
4743 obj->ops = ops;
4744
0327d6ba
CW
4745 obj->fence_reg = I915_FENCE_REG_NONE;
4746 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4747
4748 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4749}
4750
37e680a1 4751static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4752 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4753 .get_pages = i915_gem_object_get_pages_gtt,
4754 .put_pages = i915_gem_object_put_pages_gtt,
4755};
4756
d37cd8a8 4757struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4758 size_t size)
ac52bc56 4759{
c397b908 4760 struct drm_i915_gem_object *obj;
5949eac4 4761 struct address_space *mapping;
1a240d4d 4762 gfp_t mask;
fe3db79b 4763 int ret;
ac52bc56 4764
42dcedd4 4765 obj = i915_gem_object_alloc(dev);
c397b908 4766 if (obj == NULL)
fe3db79b 4767 return ERR_PTR(-ENOMEM);
673a394b 4768
fe3db79b
CW
4769 ret = drm_gem_object_init(dev, &obj->base, size);
4770 if (ret)
4771 goto fail;
673a394b 4772
bed1ea95
CW
4773 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4774 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4775 /* 965gm cannot relocate objects above 4GiB. */
4776 mask &= ~__GFP_HIGHMEM;
4777 mask |= __GFP_DMA32;
4778 }
4779
496ad9aa 4780 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4781 mapping_set_gfp_mask(mapping, mask);
5949eac4 4782
37e680a1 4783 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4784
c397b908
DV
4785 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4786 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4787
3d29b842
ED
4788 if (HAS_LLC(dev)) {
4789 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4790 * cache) for about a 10% performance improvement
4791 * compared to uncached. Graphics requests other than
4792 * display scanout are coherent with the CPU in
4793 * accessing this cache. This means in this mode we
4794 * don't need to clflush on the CPU side, and on the
4795 * GPU side we only need to flush internal caches to
4796 * get data visible to the CPU.
4797 *
4798 * However, we maintain the display planes as UC, and so
4799 * need to rebind when first used as such.
4800 */
4801 obj->cache_level = I915_CACHE_LLC;
4802 } else
4803 obj->cache_level = I915_CACHE_NONE;
4804
d861e338
DV
4805 trace_i915_gem_object_create(obj);
4806
05394f39 4807 return obj;
fe3db79b
CW
4808
4809fail:
4810 i915_gem_object_free(obj);
4811
4812 return ERR_PTR(ret);
c397b908
DV
4813}
4814
340fbd8c
CW
4815static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4816{
4817 /* If we are the last user of the backing storage (be it shmemfs
4818 * pages or stolen etc), we know that the pages are going to be
4819 * immediately released. In this case, we can then skip copying
4820 * back the contents from the GPU.
4821 */
4822
4823 if (obj->madv != I915_MADV_WILLNEED)
4824 return false;
4825
4826 if (obj->base.filp == NULL)
4827 return true;
4828
4829 /* At first glance, this looks racy, but then again so would be
4830 * userspace racing mmap against close. However, the first external
4831 * reference to the filp can only be obtained through the
4832 * i915_gem_mmap_ioctl() which safeguards us against the user
4833 * acquiring such a reference whilst we are in the middle of
4834 * freeing the object.
4835 */
4836 return atomic_long_read(&obj->base.filp->f_count) == 1;
4837}
4838
1488fc08 4839void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4840{
1488fc08 4841 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4842 struct drm_device *dev = obj->base.dev;
3e31c6c0 4843 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4844 struct i915_vma *vma, *next;
673a394b 4845
f65c9168
PZ
4846 intel_runtime_pm_get(dev_priv);
4847
26e12f89
CW
4848 trace_i915_gem_object_destroy(obj);
4849
1c7f4bca 4850 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4851 int ret;
4852
4853 vma->pin_count = 0;
4854 ret = i915_vma_unbind(vma);
07fe0b12
BW
4855 if (WARN_ON(ret == -ERESTARTSYS)) {
4856 bool was_interruptible;
1488fc08 4857
07fe0b12
BW
4858 was_interruptible = dev_priv->mm.interruptible;
4859 dev_priv->mm.interruptible = false;
1488fc08 4860
07fe0b12 4861 WARN_ON(i915_vma_unbind(vma));
1488fc08 4862
07fe0b12
BW
4863 dev_priv->mm.interruptible = was_interruptible;
4864 }
1488fc08
CW
4865 }
4866
1d64ae71
BW
4867 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4868 * before progressing. */
4869 if (obj->stolen)
4870 i915_gem_object_unpin_pages(obj);
4871
a071fa00
DV
4872 WARN_ON(obj->frontbuffer_bits);
4873
656bfa3a
DV
4874 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4875 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4876 obj->tiling_mode != I915_TILING_NONE)
4877 i915_gem_object_unpin_pages(obj);
4878
401c29f6
BW
4879 if (WARN_ON(obj->pages_pin_count))
4880 obj->pages_pin_count = 0;
340fbd8c 4881 if (discard_backing_storage(obj))
5537252b 4882 obj->madv = I915_MADV_DONTNEED;
37e680a1 4883 i915_gem_object_put_pages(obj);
d8cb5086 4884 i915_gem_object_free_mmap_offset(obj);
de151cf6 4885
9da3da66
CW
4886 BUG_ON(obj->pages);
4887
2f745ad3
CW
4888 if (obj->base.import_attach)
4889 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4890
5cc9ed4b
CW
4891 if (obj->ops->release)
4892 obj->ops->release(obj);
4893
05394f39
CW
4894 drm_gem_object_release(&obj->base);
4895 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4896
05394f39 4897 kfree(obj->bit_17);
42dcedd4 4898 i915_gem_object_free(obj);
f65c9168
PZ
4899
4900 intel_runtime_pm_put(dev_priv);
673a394b
EA
4901}
4902
ec7adb6e
JL
4903struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4904 struct i915_address_space *vm)
e656a6cb
DV
4905{
4906 struct i915_vma *vma;
1c7f4bca 4907 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4908 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4909 vma->vm == vm)
e656a6cb 4910 return vma;
ec7adb6e
JL
4911 }
4912 return NULL;
4913}
4914
4915struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4916 const struct i915_ggtt_view *view)
4917{
ec7adb6e 4918 struct i915_vma *vma;
e656a6cb 4919
598b9ec8 4920 GEM_BUG_ON(!view);
ec7adb6e 4921
1c7f4bca 4922 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4923 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4924 return vma;
e656a6cb
DV
4925 return NULL;
4926}
4927
2f633156
BW
4928void i915_gem_vma_destroy(struct i915_vma *vma)
4929{
4930 WARN_ON(vma->node.allocated);
aaa05667
CW
4931
4932 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4933 if (!list_empty(&vma->exec_list))
4934 return;
4935
596c5923
CW
4936 if (!vma->is_ggtt)
4937 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4938
1c7f4bca 4939 list_del(&vma->obj_link);
b93dab6e 4940
e20d2ab7 4941 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4942}
4943
e3efda49 4944static void
117897f4 4945i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4946{
4947 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4948 struct intel_engine_cs *engine;
e3efda49 4949
b4ac5afc 4950 for_each_engine(engine, dev_priv)
117897f4 4951 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4952}
4953
29105ccc 4954int
45c5f202 4955i915_gem_suspend(struct drm_device *dev)
29105ccc 4956{
3e31c6c0 4957 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4958 int ret = 0;
28dfe52a 4959
45c5f202 4960 mutex_lock(&dev->struct_mutex);
6e5a5beb 4961 ret = i915_gem_wait_for_idle(dev_priv);
f7403347 4962 if (ret)
45c5f202 4963 goto err;
f7403347 4964
c033666a 4965 i915_gem_retire_requests(dev_priv);
673a394b 4966
117897f4 4967 i915_gem_stop_engines(dev);
b2e862d0 4968 i915_gem_context_lost(dev_priv);
45c5f202
CW
4969 mutex_unlock(&dev->struct_mutex);
4970
737b1506 4971 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4972 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4973 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4974
bdcf120b
CW
4975 /* Assert that we sucessfully flushed all the work and
4976 * reset the GPU back to its idle, low power state.
4977 */
4978 WARN_ON(dev_priv->mm.busy);
4979
673a394b 4980 return 0;
45c5f202
CW
4981
4982err:
4983 mutex_unlock(&dev->struct_mutex);
4984 return ret;
673a394b
EA
4985}
4986
f691e2f4
DV
4987void i915_gem_init_swizzling(struct drm_device *dev)
4988{
3e31c6c0 4989 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4990
11782b02 4991 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4992 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4993 return;
4994
4995 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4996 DISP_TILE_SURFACE_SWIZZLING);
4997
11782b02
DV
4998 if (IS_GEN5(dev))
4999 return;
5000
f691e2f4
DV
5001 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5002 if (IS_GEN6(dev))
6b26c86d 5003 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 5004 else if (IS_GEN7(dev))
6b26c86d 5005 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
5006 else if (IS_GEN8(dev))
5007 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
5008 else
5009 BUG();
f691e2f4 5010}
e21af88d 5011
81e7f200
VS
5012static void init_unused_ring(struct drm_device *dev, u32 base)
5013{
5014 struct drm_i915_private *dev_priv = dev->dev_private;
5015
5016 I915_WRITE(RING_CTL(base), 0);
5017 I915_WRITE(RING_HEAD(base), 0);
5018 I915_WRITE(RING_TAIL(base), 0);
5019 I915_WRITE(RING_START(base), 0);
5020}
5021
5022static void init_unused_rings(struct drm_device *dev)
5023{
5024 if (IS_I830(dev)) {
5025 init_unused_ring(dev, PRB1_BASE);
5026 init_unused_ring(dev, SRB0_BASE);
5027 init_unused_ring(dev, SRB1_BASE);
5028 init_unused_ring(dev, SRB2_BASE);
5029 init_unused_ring(dev, SRB3_BASE);
5030 } else if (IS_GEN2(dev)) {
5031 init_unused_ring(dev, SRB0_BASE);
5032 init_unused_ring(dev, SRB1_BASE);
5033 } else if (IS_GEN3(dev)) {
5034 init_unused_ring(dev, PRB1_BASE);
5035 init_unused_ring(dev, PRB2_BASE);
5036 }
5037}
5038
117897f4 5039int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 5040{
4fc7c971 5041 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 5042 int ret;
68f95ba9 5043
5c1143bb 5044 ret = intel_init_render_ring_buffer(dev);
68f95ba9 5045 if (ret)
b6913e4b 5046 return ret;
68f95ba9
CW
5047
5048 if (HAS_BSD(dev)) {
5c1143bb 5049 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
5050 if (ret)
5051 goto cleanup_render_ring;
d1b851fc 5052 }
68f95ba9 5053
d39398f5 5054 if (HAS_BLT(dev)) {
549f7365
CW
5055 ret = intel_init_blt_ring_buffer(dev);
5056 if (ret)
5057 goto cleanup_bsd_ring;
5058 }
5059
9a8a2213
BW
5060 if (HAS_VEBOX(dev)) {
5061 ret = intel_init_vebox_ring_buffer(dev);
5062 if (ret)
5063 goto cleanup_blt_ring;
5064 }
5065
845f74a7
ZY
5066 if (HAS_BSD2(dev)) {
5067 ret = intel_init_bsd2_ring_buffer(dev);
5068 if (ret)
5069 goto cleanup_vebox_ring;
5070 }
9a8a2213 5071
4fc7c971
BW
5072 return 0;
5073
9a8a2213 5074cleanup_vebox_ring:
117897f4 5075 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 5076cleanup_blt_ring:
117897f4 5077 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 5078cleanup_bsd_ring:
117897f4 5079 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 5080cleanup_render_ring:
117897f4 5081 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
5082
5083 return ret;
5084}
5085
5086int
5087i915_gem_init_hw(struct drm_device *dev)
5088{
3e31c6c0 5089 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 5090 struct intel_engine_cs *engine;
d200cda6 5091 int ret;
4fc7c971 5092
5e4f5189
CW
5093 /* Double layer security blanket, see i915_gem_init() */
5094 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5095
3accaf7e 5096 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 5097 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5098
0bf21347
VS
5099 if (IS_HASWELL(dev))
5100 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5101 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5102
88a2b2a3 5103 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
5104 if (IS_IVYBRIDGE(dev)) {
5105 u32 temp = I915_READ(GEN7_MSG_CTL);
5106 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5107 I915_WRITE(GEN7_MSG_CTL, temp);
5108 } else if (INTEL_INFO(dev)->gen >= 7) {
5109 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5110 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5111 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5112 }
88a2b2a3
BW
5113 }
5114
4fc7c971
BW
5115 i915_gem_init_swizzling(dev);
5116
d5abdfda
DV
5117 /*
5118 * At least 830 can leave some of the unused rings
5119 * "active" (ie. head != tail) after resume which
5120 * will prevent c3 entry. Makes sure all unused rings
5121 * are totally idle.
5122 */
5123 init_unused_rings(dev);
5124
ed54c1a1 5125 BUG_ON(!dev_priv->kernel_context);
90638cc1 5126
4ad2fd88
JH
5127 ret = i915_ppgtt_init_hw(dev);
5128 if (ret) {
5129 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5130 goto out;
5131 }
5132
5133 /* Need to do basic initialisation of all rings first: */
b4ac5afc 5134 for_each_engine(engine, dev_priv) {
e2f80391 5135 ret = engine->init_hw(engine);
35a57ffb 5136 if (ret)
5e4f5189 5137 goto out;
35a57ffb 5138 }
99433931 5139
0ccdacf6
PA
5140 intel_mocs_init_l3cc_table(dev);
5141
33a732f4 5142 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
5143 ret = intel_guc_setup(dev);
5144 if (ret)
5145 goto out;
33a732f4 5146
e84fe803
NH
5147 /*
5148 * Increment the next seqno by 0x100 so we have a visible break
5149 * on re-initialisation
5150 */
5151 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
e21af88d 5152
5e4f5189
CW
5153out:
5154 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5155 return ret;
8187a2b7
ZN
5156}
5157
1070a42b
CW
5158int i915_gem_init(struct drm_device *dev)
5159{
5160 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5161 int ret;
5162
1070a42b 5163 mutex_lock(&dev->struct_mutex);
d62b4892 5164
a83014d3 5165 if (!i915.enable_execlists) {
f3dc74c0 5166 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
5167 dev_priv->gt.init_engines = i915_gem_init_engines;
5168 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5169 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 5170 } else {
f3dc74c0 5171 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
5172 dev_priv->gt.init_engines = intel_logical_rings_init;
5173 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5174 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
5175 }
5176
5e4f5189
CW
5177 /* This is just a security blanket to placate dragons.
5178 * On some systems, we very sporadically observe that the first TLBs
5179 * used by the CS may be stale, despite us poking the TLB reset. If
5180 * we hold the forcewake during initialisation these problems
5181 * just magically go away.
5182 */
5183 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5184
72778cb2 5185 i915_gem_init_userptr(dev_priv);
d85489d3 5186 i915_gem_init_ggtt(dev);
d62b4892 5187
2fa48d8d 5188 ret = i915_gem_context_init(dev);
7bcc3777
JN
5189 if (ret)
5190 goto out_unlock;
2fa48d8d 5191
117897f4 5192 ret = dev_priv->gt.init_engines(dev);
35a57ffb 5193 if (ret)
7bcc3777 5194 goto out_unlock;
2fa48d8d 5195
1070a42b 5196 ret = i915_gem_init_hw(dev);
60990320
CW
5197 if (ret == -EIO) {
5198 /* Allow ring initialisation to fail by marking the GPU as
5199 * wedged. But we only want to do this where the GPU is angry,
5200 * for all other failure, such as an allocation failure, bail.
5201 */
5202 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 5203 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 5204 ret = 0;
1070a42b 5205 }
7bcc3777
JN
5206
5207out_unlock:
5e4f5189 5208 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5209 mutex_unlock(&dev->struct_mutex);
1070a42b 5210
60990320 5211 return ret;
1070a42b
CW
5212}
5213
8187a2b7 5214void
117897f4 5215i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 5216{
3e31c6c0 5217 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 5218 struct intel_engine_cs *engine;
8187a2b7 5219
b4ac5afc 5220 for_each_engine(engine, dev_priv)
117897f4 5221 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
5222}
5223
64193406 5224static void
666796da 5225init_engine_lists(struct intel_engine_cs *engine)
64193406 5226{
0bc40be8
TU
5227 INIT_LIST_HEAD(&engine->active_list);
5228 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
5229}
5230
40ae4e16
ID
5231void
5232i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5233{
5234 struct drm_device *dev = dev_priv->dev;
5235
5236 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5237 !IS_CHERRYVIEW(dev_priv))
5238 dev_priv->num_fence_regs = 32;
5239 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5240 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5241 dev_priv->num_fence_regs = 16;
5242 else
5243 dev_priv->num_fence_regs = 8;
5244
c033666a 5245 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
5246 dev_priv->num_fence_regs =
5247 I915_READ(vgtif_reg(avail_rs.fence_num));
5248
5249 /* Initialize fence registers to zero */
5250 i915_gem_restore_fences(dev);
5251
5252 i915_gem_detect_bit_6_swizzle(dev);
5253}
5254
673a394b 5255void
d64aa096 5256i915_gem_load_init(struct drm_device *dev)
673a394b 5257{
3e31c6c0 5258 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5259 int i;
5260
efab6d8d 5261 dev_priv->objects =
42dcedd4
CW
5262 kmem_cache_create("i915_gem_object",
5263 sizeof(struct drm_i915_gem_object), 0,
5264 SLAB_HWCACHE_ALIGN,
5265 NULL);
e20d2ab7
CW
5266 dev_priv->vmas =
5267 kmem_cache_create("i915_gem_vma",
5268 sizeof(struct i915_vma), 0,
5269 SLAB_HWCACHE_ALIGN,
5270 NULL);
efab6d8d
CW
5271 dev_priv->requests =
5272 kmem_cache_create("i915_gem_request",
5273 sizeof(struct drm_i915_gem_request), 0,
5274 SLAB_HWCACHE_ALIGN,
5275 NULL);
673a394b 5276
fc8c067e 5277 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5278 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5279 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5280 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5281 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5282 for (i = 0; i < I915_NUM_ENGINES; i++)
5283 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5284 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5285 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5286 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5287 i915_gem_retire_work_handler);
b29c19b6
CW
5288 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5289 i915_gem_idle_work_handler);
1f83fee0 5290 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5291
72bfa19c
CW
5292 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5293
e84fe803
NH
5294 /*
5295 * Set initial sequence number for requests.
5296 * Using this number allows the wraparound to happen early,
5297 * catching any obvious problems.
5298 */
5299 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5300 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5301
19b2dbde 5302 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5303
6b95a207 5304 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5305
ce453d81
CW
5306 dev_priv->mm.interruptible = true;
5307
f99d7069 5308 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5309}
71acb5eb 5310
d64aa096
ID
5311void i915_gem_load_cleanup(struct drm_device *dev)
5312{
5313 struct drm_i915_private *dev_priv = to_i915(dev);
5314
5315 kmem_cache_destroy(dev_priv->requests);
5316 kmem_cache_destroy(dev_priv->vmas);
5317 kmem_cache_destroy(dev_priv->objects);
5318}
5319
461fb99c
CW
5320int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5321{
5322 struct drm_i915_gem_object *obj;
5323
5324 /* Called just before we write the hibernation image.
5325 *
5326 * We need to update the domain tracking to reflect that the CPU
5327 * will be accessing all the pages to create and restore from the
5328 * hibernation, and so upon restoration those pages will be in the
5329 * CPU domain.
5330 *
5331 * To make sure the hibernation image contains the latest state,
5332 * we update that state just before writing out the image.
5333 */
5334
5335 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5336 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5337 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5338 }
5339
5340 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5341 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5342 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5343 }
5344
5345 return 0;
5346}
5347
f787a5f5 5348void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5349{
f787a5f5 5350 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5351
5352 /* Clean up our request list when the client is going away, so that
5353 * later retire_requests won't dereference our soon-to-be-gone
5354 * file_priv.
5355 */
1c25595f 5356 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5357 while (!list_empty(&file_priv->mm.request_list)) {
5358 struct drm_i915_gem_request *request;
5359
5360 request = list_first_entry(&file_priv->mm.request_list,
5361 struct drm_i915_gem_request,
5362 client_list);
5363 list_del(&request->client_list);
5364 request->file_priv = NULL;
5365 }
1c25595f 5366 spin_unlock(&file_priv->mm.lock);
b29c19b6 5367
2e1b8730 5368 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5369 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5370 list_del(&file_priv->rps.link);
8d3afd7d 5371 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5372 }
b29c19b6
CW
5373}
5374
5375int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5376{
5377 struct drm_i915_file_private *file_priv;
e422b888 5378 int ret;
b29c19b6
CW
5379
5380 DRM_DEBUG_DRIVER("\n");
5381
5382 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5383 if (!file_priv)
5384 return -ENOMEM;
5385
5386 file->driver_priv = file_priv;
5387 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5388 file_priv->file = file;
2e1b8730 5389 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5390
5391 spin_lock_init(&file_priv->mm.lock);
5392 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5393
de1add36
TU
5394 file_priv->bsd_ring = -1;
5395
e422b888
BW
5396 ret = i915_gem_context_open(dev, file);
5397 if (ret)
5398 kfree(file_priv);
b29c19b6 5399
e422b888 5400 return ret;
b29c19b6
CW
5401}
5402
b680c37a
DV
5403/**
5404 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5405 * @old: current GEM buffer for the frontbuffer slots
5406 * @new: new GEM buffer for the frontbuffer slots
5407 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5408 *
5409 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5410 * from @old and setting them in @new. Both @old and @new can be NULL.
5411 */
a071fa00
DV
5412void i915_gem_track_fb(struct drm_i915_gem_object *old,
5413 struct drm_i915_gem_object *new,
5414 unsigned frontbuffer_bits)
5415{
5416 if (old) {
5417 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5418 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5419 old->frontbuffer_bits &= ~frontbuffer_bits;
5420 }
5421
5422 if (new) {
5423 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5424 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5425 new->frontbuffer_bits |= frontbuffer_bits;
5426 }
5427}
5428
a70a3148 5429/* All the new VM stuff */
088e0df4
MT
5430u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5431 struct i915_address_space *vm)
a70a3148
BW
5432{
5433 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5434 struct i915_vma *vma;
5435
896ab1a5 5436 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5437
1c7f4bca 5438 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5439 if (vma->is_ggtt &&
ec7adb6e
JL
5440 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5441 continue;
5442 if (vma->vm == vm)
a70a3148 5443 return vma->node.start;
a70a3148 5444 }
ec7adb6e 5445
f25748ea
DV
5446 WARN(1, "%s vma for this object not found.\n",
5447 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5448 return -1;
5449}
5450
088e0df4
MT
5451u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5452 const struct i915_ggtt_view *view)
a70a3148
BW
5453{
5454 struct i915_vma *vma;
5455
1c7f4bca 5456 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5457 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5458 return vma->node.start;
5459
5678ad73 5460 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5461 return -1;
5462}
5463
5464bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5465 struct i915_address_space *vm)
5466{
5467 struct i915_vma *vma;
5468
1c7f4bca 5469 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5470 if (vma->is_ggtt &&
ec7adb6e
JL
5471 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5472 continue;
5473 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5474 return true;
5475 }
5476
5477 return false;
5478}
5479
5480bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5481 const struct i915_ggtt_view *view)
ec7adb6e 5482{
ec7adb6e
JL
5483 struct i915_vma *vma;
5484
1c7f4bca 5485 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5486 if (vma->is_ggtt &&
9abc4648 5487 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5488 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5489 return true;
5490
5491 return false;
5492}
5493
5494bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5495{
5a1d5eb0 5496 struct i915_vma *vma;
a70a3148 5497
1c7f4bca 5498 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5499 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5500 return true;
5501
5502 return false;
5503}
5504
8da32727 5505unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5506{
a70a3148
BW
5507 struct i915_vma *vma;
5508
8da32727 5509 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5510
1c7f4bca 5511 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5512 if (vma->is_ggtt &&
8da32727 5513 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5514 return vma->node.size;
ec7adb6e 5515 }
8da32727 5516
a70a3148
BW
5517 return 0;
5518}
5519
ec7adb6e 5520bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5521{
5522 struct i915_vma *vma;
1c7f4bca 5523 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5524 if (vma->pin_count > 0)
5525 return true;
a6631ae1 5526
ec7adb6e 5527 return false;
5c2abbea 5528}
ea70299d 5529
033908ae
DG
5530/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5531struct page *
5532i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5533{
5534 struct page *page;
5535
5536 /* Only default objects have per-page dirty tracking */
b9bcd14a 5537 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
5538 return NULL;
5539
5540 page = i915_gem_object_get_page(obj, n);
5541 set_page_dirty(page);
5542 return page;
5543}
5544
ea70299d
DG
5545/* Allocate a new GEM object and fill it with the supplied data */
5546struct drm_i915_gem_object *
5547i915_gem_object_create_from_data(struct drm_device *dev,
5548 const void *data, size_t size)
5549{
5550 struct drm_i915_gem_object *obj;
5551 struct sg_table *sg;
5552 size_t bytes;
5553 int ret;
5554
d37cd8a8 5555 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5556 if (IS_ERR(obj))
ea70299d
DG
5557 return obj;
5558
5559 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5560 if (ret)
5561 goto fail;
5562
5563 ret = i915_gem_object_get_pages(obj);
5564 if (ret)
5565 goto fail;
5566
5567 i915_gem_object_pin_pages(obj);
5568 sg = obj->pages;
5569 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5570 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5571 i915_gem_object_unpin_pages(obj);
5572
5573 if (WARN_ON(bytes != size)) {
5574 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5575 ret = -EFAULT;
5576 goto fail;
5577 }
5578
5579 return obj;
5580
5581fail:
5582 drm_gem_object_unreference(&obj->base);
5583 return ERR_PTR(ret);
5584}
This page took 2.035173 seconds and 5 git commands to generate.