drm/i915/gtt: Allow >= 4GB offsets in X86_32
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 i915_gem_chipset_flush(dev);
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
58642885 1014
de152b62 1015 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1016 return ret;
673a394b
EA
1017}
1018
1019/**
1020 * Writes data to the object referenced by handle.
1021 *
1022 * On error, the contents of the buffer that were to be modified are undefined.
1023 */
1024int
1025i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1026 struct drm_file *file)
673a394b 1027{
5d77d9c5 1028 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1029 struct drm_i915_gem_pwrite *args = data;
05394f39 1030 struct drm_i915_gem_object *obj;
51311d0a
CW
1031 int ret;
1032
1033 if (args->size == 0)
1034 return 0;
1035
1036 if (!access_ok(VERIFY_READ,
2bb4629a 1037 to_user_ptr(args->data_ptr),
51311d0a
CW
1038 args->size))
1039 return -EFAULT;
1040
d330a953 1041 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1042 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1043 args->size);
1044 if (ret)
1045 return -EFAULT;
1046 }
673a394b 1047
5d77d9c5
ID
1048 intel_runtime_pm_get(dev_priv);
1049
fbd5a26d 1050 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1051 if (ret)
5d77d9c5 1052 goto put_rpm;
1d7cfea1 1053
05394f39 1054 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1055 if (&obj->base == NULL) {
1d7cfea1
CW
1056 ret = -ENOENT;
1057 goto unlock;
fbd5a26d 1058 }
673a394b 1059
7dcd2499 1060 /* Bounds check destination. */
05394f39
CW
1061 if (args->offset > obj->base.size ||
1062 args->size > obj->base.size - args->offset) {
ce9d419d 1063 ret = -EINVAL;
35b62a89 1064 goto out;
ce9d419d
CW
1065 }
1066
1286ff73
DV
1067 /* prime objects have no backing filp to GEM pread/pwrite
1068 * pages from.
1069 */
1070 if (!obj->base.filp) {
1071 ret = -EINVAL;
1072 goto out;
1073 }
1074
db53a302
CW
1075 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1076
935aaa69 1077 ret = -EFAULT;
673a394b
EA
1078 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1079 * it would end up going through the fenced access, and we'll get
1080 * different detiling behavior between reading and writing.
1081 * pread/pwrite currently are reading and writing from the CPU
1082 * perspective, requiring manual detiling by the client.
1083 */
2c22569b
CW
1084 if (obj->tiling_mode == I915_TILING_NONE &&
1085 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1086 cpu_write_needs_clflush(obj)) {
fbd5a26d 1087 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1088 /* Note that the gtt paths might fail with non-page-backed user
1089 * pointers (e.g. gtt mappings when moving data between
1090 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1091 }
673a394b 1092
6a2c4232
CW
1093 if (ret == -EFAULT || ret == -ENOSPC) {
1094 if (obj->phys_handle)
1095 ret = i915_gem_phys_pwrite(obj, args, file);
1096 else
1097 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1098 }
5c0480f2 1099
35b62a89 1100out:
05394f39 1101 drm_gem_object_unreference(&obj->base);
1d7cfea1 1102unlock:
fbd5a26d 1103 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1104put_rpm:
1105 intel_runtime_pm_put(dev_priv);
1106
673a394b
EA
1107 return ret;
1108}
1109
b361237b 1110int
33196ded 1111i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1112 bool interruptible)
1113{
1f83fee0 1114 if (i915_reset_in_progress(error)) {
b361237b
CW
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
1f83fee0
DV
1120 /* Recovery complete, but the reset failed ... */
1121 if (i915_terminally_wedged(error))
b361237b
CW
1122 return -EIO;
1123
6689c167
MA
1124 /*
1125 * Check if GPU Reset is in progress - we need intel_ring_begin
1126 * to work properly to reinit the hw state while the gpu is
1127 * still marked as reset-in-progress. Handle this with a flag.
1128 */
1129 if (!error->reload_in_reset)
1130 return -EAGAIN;
b361237b
CW
1131 }
1132
1133 return 0;
1134}
1135
094f9a54
CW
1136static void fake_irq(unsigned long data)
1137{
1138 wake_up_process((struct task_struct *)data);
1139}
1140
1141static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1142 struct intel_engine_cs *ring)
094f9a54
CW
1143{
1144 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1145}
1146
eed29a5b 1147static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1148{
2def4ad9
CW
1149 unsigned long timeout;
1150
eed29a5b 1151 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1152 return -EBUSY;
1153
1154 timeout = jiffies + 1;
1155 while (!need_resched()) {
eed29a5b 1156 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1157 return 0;
1158
1159 if (time_after_eq(jiffies, timeout))
1160 break;
b29c19b6 1161
2def4ad9
CW
1162 cpu_relax_lowlatency();
1163 }
eed29a5b 1164 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1165 return 0;
1166
1167 return -EAGAIN;
b29c19b6
CW
1168}
1169
b361237b 1170/**
9c654818
JH
1171 * __i915_wait_request - wait until execution of request has finished
1172 * @req: duh!
1173 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1174 * @interruptible: do an interruptible wait (normally yes)
1175 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1176 *
f69061be
DV
1177 * Note: It is of utmost importance that the passed in seqno and reset_counter
1178 * values have been read by the caller in an smp safe manner. Where read-side
1179 * locks are involved, it is sufficient to read the reset_counter before
1180 * unlocking the lock that protects the seqno. For lockless tricks, the
1181 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1182 * inserted.
1183 *
9c654818 1184 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1185 * errno with remaining time filled in timeout argument.
1186 */
9c654818 1187int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1188 unsigned reset_counter,
b29c19b6 1189 bool interruptible,
5ed0bdf2 1190 s64 *timeout,
2e1b8730 1191 struct intel_rps_client *rps)
b361237b 1192{
9c654818 1193 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1194 struct drm_device *dev = ring->dev;
3e31c6c0 1195 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1196 const bool irq_test_in_progress =
1197 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1198 DEFINE_WAIT(wait);
47e9766d 1199 unsigned long timeout_expire;
5ed0bdf2 1200 s64 before, now;
b361237b
CW
1201 int ret;
1202
9df7575f 1203 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1204
b4716185
CW
1205 if (list_empty(&req->list))
1206 return 0;
1207
1b5a433a 1208 if (i915_gem_request_completed(req, true))
b361237b
CW
1209 return 0;
1210
7bd0e226
DV
1211 timeout_expire = timeout ?
1212 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1213
2e1b8730 1214 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1215 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1216
094f9a54 1217 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1218 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1219 before = ktime_get_raw_ns();
2def4ad9
CW
1220
1221 /* Optimistic spin for the next jiffie before touching IRQs */
1222 ret = __i915_spin_request(req);
1223 if (ret == 0)
1224 goto out;
1225
1226 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1227 ret = -ENODEV;
1228 goto out;
1229 }
1230
094f9a54
CW
1231 for (;;) {
1232 struct timer_list timer;
b361237b 1233
094f9a54
CW
1234 prepare_to_wait(&ring->irq_queue, &wait,
1235 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1236
f69061be
DV
1237 /* We need to check whether any gpu reset happened in between
1238 * the caller grabbing the seqno and now ... */
094f9a54
CW
1239 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1240 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1241 * is truely gone. */
1242 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1243 if (ret == 0)
1244 ret = -EAGAIN;
1245 break;
1246 }
f69061be 1247
1b5a433a 1248 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1249 ret = 0;
1250 break;
1251 }
b361237b 1252
094f9a54
CW
1253 if (interruptible && signal_pending(current)) {
1254 ret = -ERESTARTSYS;
1255 break;
1256 }
1257
47e9766d 1258 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1259 ret = -ETIME;
1260 break;
1261 }
1262
1263 timer.function = NULL;
1264 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1265 unsigned long expire;
1266
094f9a54 1267 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1268 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1269 mod_timer(&timer, expire);
1270 }
1271
5035c275 1272 io_schedule();
094f9a54 1273
094f9a54
CW
1274 if (timer.function) {
1275 del_singleshot_timer_sync(&timer);
1276 destroy_timer_on_stack(&timer);
1277 }
1278 }
168c3f21
MK
1279 if (!irq_test_in_progress)
1280 ring->irq_put(ring);
094f9a54
CW
1281
1282 finish_wait(&ring->irq_queue, &wait);
b361237b 1283
2def4ad9
CW
1284out:
1285 now = ktime_get_raw_ns();
1286 trace_i915_gem_request_wait_end(req);
1287
b361237b 1288 if (timeout) {
5ed0bdf2
TG
1289 s64 tres = *timeout - (now - before);
1290
1291 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1292
1293 /*
1294 * Apparently ktime isn't accurate enough and occasionally has a
1295 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1296 * things up to make the test happy. We allow up to 1 jiffy.
1297 *
1298 * This is a regrssion from the timespec->ktime conversion.
1299 */
1300 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1301 *timeout = 0;
b361237b
CW
1302 }
1303
094f9a54 1304 return ret;
b361237b
CW
1305}
1306
fcfa423c
JH
1307int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1308 struct drm_file *file)
1309{
1310 struct drm_i915_private *dev_private;
1311 struct drm_i915_file_private *file_priv;
1312
1313 WARN_ON(!req || !file || req->file_priv);
1314
1315 if (!req || !file)
1316 return -EINVAL;
1317
1318 if (req->file_priv)
1319 return -EINVAL;
1320
1321 dev_private = req->ring->dev->dev_private;
1322 file_priv = file->driver_priv;
1323
1324 spin_lock(&file_priv->mm.lock);
1325 req->file_priv = file_priv;
1326 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1327 spin_unlock(&file_priv->mm.lock);
1328
1329 req->pid = get_pid(task_pid(current));
1330
1331 return 0;
1332}
1333
b4716185
CW
1334static inline void
1335i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1336{
1337 struct drm_i915_file_private *file_priv = request->file_priv;
1338
1339 if (!file_priv)
1340 return;
1341
1342 spin_lock(&file_priv->mm.lock);
1343 list_del(&request->client_list);
1344 request->file_priv = NULL;
1345 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1346
1347 put_pid(request->pid);
1348 request->pid = NULL;
b4716185
CW
1349}
1350
1351static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352{
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
b4716185
CW
1368 i915_gem_request_unreference(request);
1369}
1370
1371static void
1372__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1373{
1374 struct intel_engine_cs *engine = req->ring;
1375 struct drm_i915_gem_request *tmp;
1376
1377 lockdep_assert_held(&engine->dev->struct_mutex);
1378
1379 if (list_empty(&req->list))
1380 return;
1381
1382 do {
1383 tmp = list_first_entry(&engine->request_list,
1384 typeof(*tmp), list);
1385
1386 i915_gem_request_retire(tmp);
1387 } while (tmp != req);
1388
1389 WARN_ON(i915_verify_lists(engine->dev));
1390}
1391
b361237b 1392/**
a4b3a571 1393 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1394 * request and object lists appropriately for that event.
1395 */
1396int
a4b3a571 1397i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1398{
a4b3a571
DV
1399 struct drm_device *dev;
1400 struct drm_i915_private *dev_priv;
1401 bool interruptible;
b361237b
CW
1402 int ret;
1403
a4b3a571
DV
1404 BUG_ON(req == NULL);
1405
1406 dev = req->ring->dev;
1407 dev_priv = dev->dev_private;
1408 interruptible = dev_priv->mm.interruptible;
1409
b361237b 1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1411
33196ded 1412 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1413 if (ret)
1414 return ret;
1415
b4716185
CW
1416 ret = __i915_wait_request(req,
1417 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1418 interruptible, NULL, NULL);
b4716185
CW
1419 if (ret)
1420 return ret;
d26e3af8 1421
b4716185 1422 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1423 return 0;
1424}
1425
b361237b
CW
1426/**
1427 * Ensures that all rendering to the object has completed and the object is
1428 * safe to unbind from the GTT or access from the CPU.
1429 */
2e2f351d 1430int
b361237b
CW
1431i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1432 bool readonly)
1433{
b4716185 1434 int ret, i;
b361237b 1435
b4716185 1436 if (!obj->active)
b361237b
CW
1437 return 0;
1438
b4716185
CW
1439 if (readonly) {
1440 if (obj->last_write_req != NULL) {
1441 ret = i915_wait_request(obj->last_write_req);
1442 if (ret)
1443 return ret;
b361237b 1444
b4716185
CW
1445 i = obj->last_write_req->ring->id;
1446 if (obj->last_read_req[i] == obj->last_write_req)
1447 i915_gem_object_retire__read(obj, i);
1448 else
1449 i915_gem_object_retire__write(obj);
1450 }
1451 } else {
1452 for (i = 0; i < I915_NUM_RINGS; i++) {
1453 if (obj->last_read_req[i] == NULL)
1454 continue;
1455
1456 ret = i915_wait_request(obj->last_read_req[i]);
1457 if (ret)
1458 return ret;
1459
1460 i915_gem_object_retire__read(obj, i);
1461 }
1462 RQ_BUG_ON(obj->active);
1463 }
1464
1465 return 0;
1466}
1467
1468static void
1469i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1470 struct drm_i915_gem_request *req)
1471{
1472 int ring = req->ring->id;
1473
1474 if (obj->last_read_req[ring] == req)
1475 i915_gem_object_retire__read(obj, ring);
1476 else if (obj->last_write_req == req)
1477 i915_gem_object_retire__write(obj);
1478
1479 __i915_gem_request_retire__upto(req);
b361237b
CW
1480}
1481
3236f57a
CW
1482/* A nonblocking variant of the above wait. This is a highly dangerous routine
1483 * as the object state may change during this call.
1484 */
1485static __must_check int
1486i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1487 struct intel_rps_client *rps,
3236f57a
CW
1488 bool readonly)
1489{
1490 struct drm_device *dev = obj->base.dev;
1491 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1492 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1493 unsigned reset_counter;
b4716185 1494 int ret, i, n = 0;
3236f57a
CW
1495
1496 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1497 BUG_ON(!dev_priv->mm.interruptible);
1498
b4716185 1499 if (!obj->active)
3236f57a
CW
1500 return 0;
1501
33196ded 1502 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1503 if (ret)
1504 return ret;
1505
f69061be 1506 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1507
1508 if (readonly) {
1509 struct drm_i915_gem_request *req;
1510
1511 req = obj->last_write_req;
1512 if (req == NULL)
1513 return 0;
1514
b4716185
CW
1515 requests[n++] = i915_gem_request_reference(req);
1516 } else {
1517 for (i = 0; i < I915_NUM_RINGS; i++) {
1518 struct drm_i915_gem_request *req;
1519
1520 req = obj->last_read_req[i];
1521 if (req == NULL)
1522 continue;
1523
b4716185
CW
1524 requests[n++] = i915_gem_request_reference(req);
1525 }
1526 }
1527
3236f57a 1528 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1529 for (i = 0; ret == 0 && i < n; i++)
1530 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1531 NULL, rps);
3236f57a
CW
1532 mutex_lock(&dev->struct_mutex);
1533
b4716185
CW
1534 for (i = 0; i < n; i++) {
1535 if (ret == 0)
1536 i915_gem_object_retire_request(obj, requests[i]);
1537 i915_gem_request_unreference(requests[i]);
1538 }
1539
1540 return ret;
3236f57a
CW
1541}
1542
2e1b8730
CW
1543static struct intel_rps_client *to_rps_client(struct drm_file *file)
1544{
1545 struct drm_i915_file_private *fpriv = file->driver_priv;
1546 return &fpriv->rps;
1547}
1548
673a394b 1549/**
2ef7eeaa
EA
1550 * Called when user space prepares to use an object with the CPU, either
1551 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1552 */
1553int
1554i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1555 struct drm_file *file)
673a394b
EA
1556{
1557 struct drm_i915_gem_set_domain *args = data;
05394f39 1558 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1559 uint32_t read_domains = args->read_domains;
1560 uint32_t write_domain = args->write_domain;
673a394b
EA
1561 int ret;
1562
2ef7eeaa 1563 /* Only handle setting domains to types used by the CPU. */
21d509e3 1564 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1565 return -EINVAL;
1566
21d509e3 1567 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1568 return -EINVAL;
1569
1570 /* Having something in the write domain implies it's in the read
1571 * domain, and only that read domain. Enforce that in the request.
1572 */
1573 if (write_domain != 0 && read_domains != write_domain)
1574 return -EINVAL;
1575
76c1dec1 1576 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1577 if (ret)
76c1dec1 1578 return ret;
1d7cfea1 1579
05394f39 1580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1581 if (&obj->base == NULL) {
1d7cfea1
CW
1582 ret = -ENOENT;
1583 goto unlock;
76c1dec1 1584 }
673a394b 1585
3236f57a
CW
1586 /* Try to flush the object off the GPU without holding the lock.
1587 * We will repeat the flush holding the lock in the normal manner
1588 * to catch cases where we are gazumped.
1589 */
6e4930f6 1590 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1591 to_rps_client(file),
6e4930f6 1592 !write_domain);
3236f57a
CW
1593 if (ret)
1594 goto unref;
1595
43566ded 1596 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1597 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1598 else
e47c68e9 1599 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1600
031b698a
DV
1601 if (write_domain != 0)
1602 intel_fb_obj_invalidate(obj,
1603 write_domain == I915_GEM_DOMAIN_GTT ?
1604 ORIGIN_GTT : ORIGIN_CPU);
1605
3236f57a 1606unref:
05394f39 1607 drm_gem_object_unreference(&obj->base);
1d7cfea1 1608unlock:
673a394b
EA
1609 mutex_unlock(&dev->struct_mutex);
1610 return ret;
1611}
1612
1613/**
1614 * Called when user space has done writes to this buffer
1615 */
1616int
1617i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1618 struct drm_file *file)
673a394b
EA
1619{
1620 struct drm_i915_gem_sw_finish *args = data;
05394f39 1621 struct drm_i915_gem_object *obj;
673a394b
EA
1622 int ret = 0;
1623
76c1dec1 1624 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1625 if (ret)
76c1dec1 1626 return ret;
1d7cfea1 1627
05394f39 1628 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1629 if (&obj->base == NULL) {
1d7cfea1
CW
1630 ret = -ENOENT;
1631 goto unlock;
673a394b
EA
1632 }
1633
673a394b 1634 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1635 if (obj->pin_display)
e62b59e4 1636 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1637
05394f39 1638 drm_gem_object_unreference(&obj->base);
1d7cfea1 1639unlock:
673a394b
EA
1640 mutex_unlock(&dev->struct_mutex);
1641 return ret;
1642}
1643
1644/**
1645 * Maps the contents of an object, returning the address it is mapped
1646 * into.
1647 *
1648 * While the mapping holds a reference on the contents of the object, it doesn't
1649 * imply a ref on the object itself.
34367381
DV
1650 *
1651 * IMPORTANT:
1652 *
1653 * DRM driver writers who look a this function as an example for how to do GEM
1654 * mmap support, please don't implement mmap support like here. The modern way
1655 * to implement DRM mmap support is with an mmap offset ioctl (like
1656 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1657 * That way debug tooling like valgrind will understand what's going on, hiding
1658 * the mmap call in a driver private ioctl will break that. The i915 driver only
1659 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1660 */
1661int
1662i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1663 struct drm_file *file)
673a394b
EA
1664{
1665 struct drm_i915_gem_mmap *args = data;
1666 struct drm_gem_object *obj;
673a394b
EA
1667 unsigned long addr;
1668
1816f923
AG
1669 if (args->flags & ~(I915_MMAP_WC))
1670 return -EINVAL;
1671
1672 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1673 return -ENODEV;
1674
05394f39 1675 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1676 if (obj == NULL)
bf79cb91 1677 return -ENOENT;
673a394b 1678
1286ff73
DV
1679 /* prime objects have no backing filp to GEM mmap
1680 * pages from.
1681 */
1682 if (!obj->filp) {
1683 drm_gem_object_unreference_unlocked(obj);
1684 return -EINVAL;
1685 }
1686
6be5ceb0 1687 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1688 PROT_READ | PROT_WRITE, MAP_SHARED,
1689 args->offset);
1816f923
AG
1690 if (args->flags & I915_MMAP_WC) {
1691 struct mm_struct *mm = current->mm;
1692 struct vm_area_struct *vma;
1693
1694 down_write(&mm->mmap_sem);
1695 vma = find_vma(mm, addr);
1696 if (vma)
1697 vma->vm_page_prot =
1698 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 else
1700 addr = -ENOMEM;
1701 up_write(&mm->mmap_sem);
1702 }
bc9025bd 1703 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1704 if (IS_ERR((void *)addr))
1705 return addr;
1706
1707 args->addr_ptr = (uint64_t) addr;
1708
1709 return 0;
1710}
1711
de151cf6
JB
1712/**
1713 * i915_gem_fault - fault a page into the GTT
1714 * vma: VMA in question
1715 * vmf: fault info
1716 *
1717 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1718 * from userspace. The fault handler takes care of binding the object to
1719 * the GTT (if needed), allocating and programming a fence register (again,
1720 * only if needed based on whether the old reg is still valid or the object
1721 * is tiled) and inserting a new PTE into the faulting process.
1722 *
1723 * Note that the faulting process may involve evicting existing objects
1724 * from the GTT and/or fence registers to make room. So performance may
1725 * suffer if the GTT working set is large or there are few fence registers
1726 * left.
1727 */
1728int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1729{
05394f39
CW
1730 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1731 struct drm_device *dev = obj->base.dev;
3e31c6c0 1732 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1733 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1734 pgoff_t page_offset;
1735 unsigned long pfn;
1736 int ret = 0;
0f973f27 1737 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1738
f65c9168
PZ
1739 intel_runtime_pm_get(dev_priv);
1740
de151cf6
JB
1741 /* We don't use vmf->pgoff since that has the fake offset */
1742 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1743 PAGE_SHIFT;
1744
d9bc7e9f
CW
1745 ret = i915_mutex_lock_interruptible(dev);
1746 if (ret)
1747 goto out;
a00b10c3 1748
db53a302
CW
1749 trace_i915_gem_object_fault(obj, page_offset, true, write);
1750
6e4930f6
CW
1751 /* Try to flush the object off the GPU first without holding the lock.
1752 * Upon reacquiring the lock, we will perform our sanity checks and then
1753 * repeat the flush holding the lock in the normal manner to catch cases
1754 * where we are gazumped.
1755 */
1756 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1757 if (ret)
1758 goto unlock;
1759
eb119bd6
CW
1760 /* Access to snoopable pages through the GTT is incoherent. */
1761 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1762 ret = -EFAULT;
eb119bd6
CW
1763 goto unlock;
1764 }
1765
c5ad54cf 1766 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1767 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1768 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1769 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1770
c5ad54cf
JL
1771 memset(&view, 0, sizeof(view));
1772 view.type = I915_GGTT_VIEW_PARTIAL;
1773 view.params.partial.offset = rounddown(page_offset, chunk_size);
1774 view.params.partial.size =
1775 min_t(unsigned int,
1776 chunk_size,
1777 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1778 view.params.partial.offset);
1779 }
1780
1781 /* Now pin it into the GTT if needed */
1782 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1783 if (ret)
1784 goto unlock;
4a684a41 1785
c9839303
CW
1786 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1787 if (ret)
1788 goto unpin;
74898d7e 1789
06d98131 1790 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1791 if (ret)
c9839303 1792 goto unpin;
7d1c4804 1793
b90b91d8 1794 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1795 pfn = dev_priv->gtt.mappable_base +
1796 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1797 pfn >>= PAGE_SHIFT;
de151cf6 1798
c5ad54cf
JL
1799 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1800 /* Overriding existing pages in partial view does not cause
1801 * us any trouble as TLBs are still valid because the fault
1802 * is due to userspace losing part of the mapping or never
1803 * having accessed it before (at this partials' range).
1804 */
1805 unsigned long base = vma->vm_start +
1806 (view.params.partial.offset << PAGE_SHIFT);
1807 unsigned int i;
b90b91d8 1808
c5ad54cf
JL
1809 for (i = 0; i < view.params.partial.size; i++) {
1810 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1811 if (ret)
1812 break;
1813 }
1814
1815 obj->fault_mappable = true;
c5ad54cf
JL
1816 } else {
1817 if (!obj->fault_mappable) {
1818 unsigned long size = min_t(unsigned long,
1819 vma->vm_end - vma->vm_start,
1820 obj->base.size);
1821 int i;
1822
1823 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1824 ret = vm_insert_pfn(vma,
1825 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1826 pfn + i);
1827 if (ret)
1828 break;
1829 }
1830
1831 obj->fault_mappable = true;
1832 } else
1833 ret = vm_insert_pfn(vma,
1834 (unsigned long)vmf->virtual_address,
1835 pfn + page_offset);
1836 }
c9839303 1837unpin:
c5ad54cf 1838 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1839unlock:
de151cf6 1840 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1841out:
de151cf6 1842 switch (ret) {
d9bc7e9f 1843 case -EIO:
2232f031
DV
1844 /*
1845 * We eat errors when the gpu is terminally wedged to avoid
1846 * userspace unduly crashing (gl has no provisions for mmaps to
1847 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1848 * and so needs to be reported.
1849 */
1850 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1851 ret = VM_FAULT_SIGBUS;
1852 break;
1853 }
045e769a 1854 case -EAGAIN:
571c608d
DV
1855 /*
1856 * EAGAIN means the gpu is hung and we'll wait for the error
1857 * handler to reset everything when re-faulting in
1858 * i915_mutex_lock_interruptible.
d9bc7e9f 1859 */
c715089f
CW
1860 case 0:
1861 case -ERESTARTSYS:
bed636ab 1862 case -EINTR:
e79e0fe3
DR
1863 case -EBUSY:
1864 /*
1865 * EBUSY is ok: this just means that another thread
1866 * already did the job.
1867 */
f65c9168
PZ
1868 ret = VM_FAULT_NOPAGE;
1869 break;
de151cf6 1870 case -ENOMEM:
f65c9168
PZ
1871 ret = VM_FAULT_OOM;
1872 break;
a7c2e1aa 1873 case -ENOSPC:
45d67817 1874 case -EFAULT:
f65c9168
PZ
1875 ret = VM_FAULT_SIGBUS;
1876 break;
de151cf6 1877 default:
a7c2e1aa 1878 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1879 ret = VM_FAULT_SIGBUS;
1880 break;
de151cf6 1881 }
f65c9168
PZ
1882
1883 intel_runtime_pm_put(dev_priv);
1884 return ret;
de151cf6
JB
1885}
1886
901782b2
CW
1887/**
1888 * i915_gem_release_mmap - remove physical page mappings
1889 * @obj: obj in question
1890 *
af901ca1 1891 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1892 * relinquish ownership of the pages back to the system.
1893 *
1894 * It is vital that we remove the page mapping if we have mapped a tiled
1895 * object through the GTT and then lose the fence register due to
1896 * resource pressure. Similarly if the object has been moved out of the
1897 * aperture, than pages mapped into userspace must be revoked. Removing the
1898 * mapping will then trigger a page fault on the next user access, allowing
1899 * fixup by i915_gem_fault().
1900 */
d05ca301 1901void
05394f39 1902i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1903{
6299f992
CW
1904 if (!obj->fault_mappable)
1905 return;
901782b2 1906
6796cb16
DH
1907 drm_vma_node_unmap(&obj->base.vma_node,
1908 obj->base.dev->anon_inode->i_mapping);
6299f992 1909 obj->fault_mappable = false;
901782b2
CW
1910}
1911
eedd10f4
CW
1912void
1913i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1914{
1915 struct drm_i915_gem_object *obj;
1916
1917 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1918 i915_gem_release_mmap(obj);
1919}
1920
0fa87796 1921uint32_t
e28f8711 1922i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1923{
e28f8711 1924 uint32_t gtt_size;
92b88aeb
CW
1925
1926 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1927 tiling_mode == I915_TILING_NONE)
1928 return size;
92b88aeb
CW
1929
1930 /* Previous chips need a power-of-two fence region when tiling */
1931 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1932 gtt_size = 1024*1024;
92b88aeb 1933 else
e28f8711 1934 gtt_size = 512*1024;
92b88aeb 1935
e28f8711
CW
1936 while (gtt_size < size)
1937 gtt_size <<= 1;
92b88aeb 1938
e28f8711 1939 return gtt_size;
92b88aeb
CW
1940}
1941
de151cf6
JB
1942/**
1943 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1944 * @obj: object to check
1945 *
1946 * Return the required GTT alignment for an object, taking into account
5e783301 1947 * potential fence register mapping.
de151cf6 1948 */
d865110c
ID
1949uint32_t
1950i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1951 int tiling_mode, bool fenced)
de151cf6 1952{
de151cf6
JB
1953 /*
1954 * Minimum alignment is 4k (GTT page size), but might be greater
1955 * if a fence register is needed for the object.
1956 */
d865110c 1957 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1958 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1959 return 4096;
1960
a00b10c3
CW
1961 /*
1962 * Previous chips need to be aligned to the size of the smallest
1963 * fence register that can contain the object.
1964 */
e28f8711 1965 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1966}
1967
d8cb5086
CW
1968static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1969{
1970 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1971 int ret;
1972
0de23977 1973 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1974 return 0;
1975
da494d7c
DV
1976 dev_priv->mm.shrinker_no_lock_stealing = true;
1977
d8cb5086
CW
1978 ret = drm_gem_create_mmap_offset(&obj->base);
1979 if (ret != -ENOSPC)
da494d7c 1980 goto out;
d8cb5086
CW
1981
1982 /* Badly fragmented mmap space? The only way we can recover
1983 * space is by destroying unwanted objects. We can't randomly release
1984 * mmap_offsets as userspace expects them to be persistent for the
1985 * lifetime of the objects. The closest we can is to release the
1986 * offsets on purgeable objects by truncating it and marking it purged,
1987 * which prevents userspace from ever using that object again.
1988 */
21ab4e74
CW
1989 i915_gem_shrink(dev_priv,
1990 obj->base.size >> PAGE_SHIFT,
1991 I915_SHRINK_BOUND |
1992 I915_SHRINK_UNBOUND |
1993 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1994 ret = drm_gem_create_mmap_offset(&obj->base);
1995 if (ret != -ENOSPC)
da494d7c 1996 goto out;
d8cb5086
CW
1997
1998 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1999 ret = drm_gem_create_mmap_offset(&obj->base);
2000out:
2001 dev_priv->mm.shrinker_no_lock_stealing = false;
2002
2003 return ret;
d8cb5086
CW
2004}
2005
2006static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2007{
d8cb5086
CW
2008 drm_gem_free_mmap_offset(&obj->base);
2009}
2010
da6b51d0 2011int
ff72145b
DA
2012i915_gem_mmap_gtt(struct drm_file *file,
2013 struct drm_device *dev,
da6b51d0 2014 uint32_t handle,
ff72145b 2015 uint64_t *offset)
de151cf6 2016{
05394f39 2017 struct drm_i915_gem_object *obj;
de151cf6
JB
2018 int ret;
2019
76c1dec1 2020 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2021 if (ret)
76c1dec1 2022 return ret;
de151cf6 2023
ff72145b 2024 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2025 if (&obj->base == NULL) {
1d7cfea1
CW
2026 ret = -ENOENT;
2027 goto unlock;
2028 }
de151cf6 2029
05394f39 2030 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2031 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2032 ret = -EFAULT;
1d7cfea1 2033 goto out;
ab18282d
CW
2034 }
2035
d8cb5086
CW
2036 ret = i915_gem_object_create_mmap_offset(obj);
2037 if (ret)
2038 goto out;
de151cf6 2039
0de23977 2040 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2041
1d7cfea1 2042out:
05394f39 2043 drm_gem_object_unreference(&obj->base);
1d7cfea1 2044unlock:
de151cf6 2045 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2046 return ret;
de151cf6
JB
2047}
2048
ff72145b
DA
2049/**
2050 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2051 * @dev: DRM device
2052 * @data: GTT mapping ioctl data
2053 * @file: GEM object info
2054 *
2055 * Simply returns the fake offset to userspace so it can mmap it.
2056 * The mmap call will end up in drm_gem_mmap(), which will set things
2057 * up so we can get faults in the handler above.
2058 *
2059 * The fault handler will take care of binding the object into the GTT
2060 * (since it may have been evicted to make room for something), allocating
2061 * a fence register, and mapping the appropriate aperture address into
2062 * userspace.
2063 */
2064int
2065i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2066 struct drm_file *file)
2067{
2068 struct drm_i915_gem_mmap_gtt *args = data;
2069
da6b51d0 2070 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2071}
2072
225067ee
DV
2073/* Immediately discard the backing storage */
2074static void
2075i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2076{
4d6294bf 2077 i915_gem_object_free_mmap_offset(obj);
1286ff73 2078
4d6294bf
CW
2079 if (obj->base.filp == NULL)
2080 return;
e5281ccd 2081
225067ee
DV
2082 /* Our goal here is to return as much of the memory as
2083 * is possible back to the system as we are called from OOM.
2084 * To do this we must instruct the shmfs to drop all of its
2085 * backing pages, *now*.
2086 */
5537252b 2087 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2088 obj->madv = __I915_MADV_PURGED;
2089}
e5281ccd 2090
5537252b
CW
2091/* Try to discard unwanted pages */
2092static void
2093i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2094{
5537252b
CW
2095 struct address_space *mapping;
2096
2097 switch (obj->madv) {
2098 case I915_MADV_DONTNEED:
2099 i915_gem_object_truncate(obj);
2100 case __I915_MADV_PURGED:
2101 return;
2102 }
2103
2104 if (obj->base.filp == NULL)
2105 return;
2106
2107 mapping = file_inode(obj->base.filp)->i_mapping,
2108 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2109}
2110
5cdf5881 2111static void
05394f39 2112i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2113{
90797e6d
ID
2114 struct sg_page_iter sg_iter;
2115 int ret;
1286ff73 2116
05394f39 2117 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2118
6c085a72
CW
2119 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2120 if (ret) {
2121 /* In the event of a disaster, abandon all caches and
2122 * hope for the best.
2123 */
2124 WARN_ON(ret != -EIO);
2c22569b 2125 i915_gem_clflush_object(obj, true);
6c085a72
CW
2126 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2127 }
2128
e2273302
ID
2129 i915_gem_gtt_finish_object(obj);
2130
6dacfd2f 2131 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2132 i915_gem_object_save_bit_17_swizzle(obj);
2133
05394f39
CW
2134 if (obj->madv == I915_MADV_DONTNEED)
2135 obj->dirty = 0;
3ef94daa 2136
90797e6d 2137 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2138 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2139
05394f39 2140 if (obj->dirty)
9da3da66 2141 set_page_dirty(page);
3ef94daa 2142
05394f39 2143 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2144 mark_page_accessed(page);
3ef94daa 2145
9da3da66 2146 page_cache_release(page);
3ef94daa 2147 }
05394f39 2148 obj->dirty = 0;
673a394b 2149
9da3da66
CW
2150 sg_free_table(obj->pages);
2151 kfree(obj->pages);
37e680a1 2152}
6c085a72 2153
dd624afd 2154int
37e680a1
CW
2155i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2156{
2157 const struct drm_i915_gem_object_ops *ops = obj->ops;
2158
2f745ad3 2159 if (obj->pages == NULL)
37e680a1
CW
2160 return 0;
2161
a5570178
CW
2162 if (obj->pages_pin_count)
2163 return -EBUSY;
2164
9843877d 2165 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2166
a2165e31
CW
2167 /* ->put_pages might need to allocate memory for the bit17 swizzle
2168 * array, hence protect them from being reaped by removing them from gtt
2169 * lists early. */
35c20a60 2170 list_del(&obj->global_list);
a2165e31 2171
37e680a1 2172 ops->put_pages(obj);
05394f39 2173 obj->pages = NULL;
37e680a1 2174
5537252b 2175 i915_gem_object_invalidate(obj);
6c085a72
CW
2176
2177 return 0;
2178}
2179
37e680a1 2180static int
6c085a72 2181i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2182{
6c085a72 2183 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2184 int page_count, i;
2185 struct address_space *mapping;
9da3da66
CW
2186 struct sg_table *st;
2187 struct scatterlist *sg;
90797e6d 2188 struct sg_page_iter sg_iter;
e5281ccd 2189 struct page *page;
90797e6d 2190 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2191 int ret;
6c085a72 2192 gfp_t gfp;
e5281ccd 2193
6c085a72
CW
2194 /* Assert that the object is not currently in any GPU domain. As it
2195 * wasn't in the GTT, there shouldn't be any way it could have been in
2196 * a GPU cache
2197 */
2198 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2199 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2200
9da3da66
CW
2201 st = kmalloc(sizeof(*st), GFP_KERNEL);
2202 if (st == NULL)
2203 return -ENOMEM;
2204
05394f39 2205 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2206 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2207 kfree(st);
e5281ccd 2208 return -ENOMEM;
9da3da66 2209 }
e5281ccd 2210
9da3da66
CW
2211 /* Get the list of pages out of our struct file. They'll be pinned
2212 * at this point until we release them.
2213 *
2214 * Fail silently without starting the shrinker
2215 */
496ad9aa 2216 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2217 gfp = mapping_gfp_mask(mapping);
caf49191 2218 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2219 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2220 sg = st->sgl;
2221 st->nents = 0;
2222 for (i = 0; i < page_count; i++) {
6c085a72
CW
2223 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2224 if (IS_ERR(page)) {
21ab4e74
CW
2225 i915_gem_shrink(dev_priv,
2226 page_count,
2227 I915_SHRINK_BOUND |
2228 I915_SHRINK_UNBOUND |
2229 I915_SHRINK_PURGEABLE);
6c085a72
CW
2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 }
2232 if (IS_ERR(page)) {
2233 /* We've tried hard to allocate the memory by reaping
2234 * our own buffer, now let the real VM do its job and
2235 * go down in flames if truly OOM.
2236 */
6c085a72 2237 i915_gem_shrink_all(dev_priv);
f461d1be 2238 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2239 if (IS_ERR(page)) {
2240 ret = PTR_ERR(page);
6c085a72 2241 goto err_pages;
e2273302 2242 }
6c085a72 2243 }
426729dc
KRW
2244#ifdef CONFIG_SWIOTLB
2245 if (swiotlb_nr_tbl()) {
2246 st->nents++;
2247 sg_set_page(sg, page, PAGE_SIZE, 0);
2248 sg = sg_next(sg);
2249 continue;
2250 }
2251#endif
90797e6d
ID
2252 if (!i || page_to_pfn(page) != last_pfn + 1) {
2253 if (i)
2254 sg = sg_next(sg);
2255 st->nents++;
2256 sg_set_page(sg, page, PAGE_SIZE, 0);
2257 } else {
2258 sg->length += PAGE_SIZE;
2259 }
2260 last_pfn = page_to_pfn(page);
3bbbe706
DV
2261
2262 /* Check that the i965g/gm workaround works. */
2263 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2264 }
426729dc
KRW
2265#ifdef CONFIG_SWIOTLB
2266 if (!swiotlb_nr_tbl())
2267#endif
2268 sg_mark_end(sg);
74ce6b6c
CW
2269 obj->pages = st;
2270
e2273302
ID
2271 ret = i915_gem_gtt_prepare_object(obj);
2272 if (ret)
2273 goto err_pages;
2274
6dacfd2f 2275 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2276 i915_gem_object_do_bit_17_swizzle(obj);
2277
656bfa3a
DV
2278 if (obj->tiling_mode != I915_TILING_NONE &&
2279 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2280 i915_gem_object_pin_pages(obj);
2281
e5281ccd
CW
2282 return 0;
2283
2284err_pages:
90797e6d
ID
2285 sg_mark_end(sg);
2286 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2287 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2288 sg_free_table(st);
2289 kfree(st);
0820baf3
CW
2290
2291 /* shmemfs first checks if there is enough memory to allocate the page
2292 * and reports ENOSPC should there be insufficient, along with the usual
2293 * ENOMEM for a genuine allocation failure.
2294 *
2295 * We use ENOSPC in our driver to mean that we have run out of aperture
2296 * space and so want to translate the error from shmemfs back to our
2297 * usual understanding of ENOMEM.
2298 */
e2273302
ID
2299 if (ret == -ENOSPC)
2300 ret = -ENOMEM;
2301
2302 return ret;
673a394b
EA
2303}
2304
37e680a1
CW
2305/* Ensure that the associated pages are gathered from the backing storage
2306 * and pinned into our object. i915_gem_object_get_pages() may be called
2307 * multiple times before they are released by a single call to
2308 * i915_gem_object_put_pages() - once the pages are no longer referenced
2309 * either as a result of memory pressure (reaping pages under the shrinker)
2310 * or as the object is itself released.
2311 */
2312int
2313i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2314{
2315 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2316 const struct drm_i915_gem_object_ops *ops = obj->ops;
2317 int ret;
2318
2f745ad3 2319 if (obj->pages)
37e680a1
CW
2320 return 0;
2321
43e28f09 2322 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2323 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2324 return -EFAULT;
43e28f09
CW
2325 }
2326
a5570178
CW
2327 BUG_ON(obj->pages_pin_count);
2328
37e680a1
CW
2329 ret = ops->get_pages(obj);
2330 if (ret)
2331 return ret;
2332
35c20a60 2333 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2334
2335 obj->get_page.sg = obj->pages->sgl;
2336 obj->get_page.last = 0;
2337
37e680a1 2338 return 0;
673a394b
EA
2339}
2340
b4716185 2341void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2342 struct drm_i915_gem_request *req)
673a394b 2343{
b4716185 2344 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2345 struct intel_engine_cs *ring;
2346
2347 ring = i915_gem_request_get_ring(req);
673a394b
EA
2348
2349 /* Add a reference if we're newly entering the active list. */
b4716185 2350 if (obj->active == 0)
05394f39 2351 drm_gem_object_reference(&obj->base);
b4716185 2352 obj->active |= intel_ring_flag(ring);
e35a41de 2353
b4716185 2354 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2355 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2356
b4716185 2357 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2358}
2359
b4716185
CW
2360static void
2361i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2362{
b4716185
CW
2363 RQ_BUG_ON(obj->last_write_req == NULL);
2364 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2365
2366 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2367 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2368}
2369
caea7476 2370static void
b4716185 2371i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2372{
feb822cf 2373 struct i915_vma *vma;
ce44b0ea 2374
b4716185
CW
2375 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2376 RQ_BUG_ON(!(obj->active & (1 << ring)));
2377
2378 list_del_init(&obj->ring_list[ring]);
2379 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2380
2381 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2382 i915_gem_object_retire__write(obj);
2383
2384 obj->active &= ~(1 << ring);
2385 if (obj->active)
2386 return;
caea7476 2387
6c246959
CW
2388 /* Bump our place on the bound list to keep it roughly in LRU order
2389 * so that we don't steal from recently used but inactive objects
2390 * (unless we are forced to ofc!)
2391 */
2392 list_move_tail(&obj->global_list,
2393 &to_i915(obj->base.dev)->mm.bound_list);
2394
fe14d5f4
TU
2395 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2396 if (!list_empty(&vma->mm_list))
2397 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2398 }
caea7476 2399
97b2a6a1 2400 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2401 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2402}
2403
9d773091 2404static int
fca26bb4 2405i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2406{
9d773091 2407 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2408 struct intel_engine_cs *ring;
9d773091 2409 int ret, i, j;
53d227f2 2410
107f27a5 2411 /* Carefully retire all requests without writing to the rings */
9d773091 2412 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2413 ret = intel_ring_idle(ring);
2414 if (ret)
2415 return ret;
9d773091 2416 }
9d773091 2417 i915_gem_retire_requests(dev);
107f27a5
CW
2418
2419 /* Finally reset hw state */
9d773091 2420 for_each_ring(ring, dev_priv, i) {
fca26bb4 2421 intel_ring_init_seqno(ring, seqno);
498d2ac1 2422
ebc348b2
BW
2423 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2424 ring->semaphore.sync_seqno[j] = 0;
9d773091 2425 }
53d227f2 2426
9d773091 2427 return 0;
53d227f2
DV
2428}
2429
fca26bb4
MK
2430int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2431{
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 int ret;
2434
2435 if (seqno == 0)
2436 return -EINVAL;
2437
2438 /* HWS page needs to be set less than what we
2439 * will inject to ring
2440 */
2441 ret = i915_gem_init_seqno(dev, seqno - 1);
2442 if (ret)
2443 return ret;
2444
2445 /* Carefully set the last_seqno value so that wrap
2446 * detection still works
2447 */
2448 dev_priv->next_seqno = seqno;
2449 dev_priv->last_seqno = seqno - 1;
2450 if (dev_priv->last_seqno == 0)
2451 dev_priv->last_seqno--;
2452
2453 return 0;
2454}
2455
9d773091
CW
2456int
2457i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2458{
9d773091
CW
2459 struct drm_i915_private *dev_priv = dev->dev_private;
2460
2461 /* reserve 0 for non-seqno */
2462 if (dev_priv->next_seqno == 0) {
fca26bb4 2463 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2464 if (ret)
2465 return ret;
53d227f2 2466
9d773091
CW
2467 dev_priv->next_seqno = 1;
2468 }
53d227f2 2469
f72b3435 2470 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2471 return 0;
53d227f2
DV
2472}
2473
bf7dc5b7
JH
2474/*
2475 * NB: This function is not allowed to fail. Doing so would mean the the
2476 * request is not being tracked for completion but the work itself is
2477 * going to happen on the hardware. This would be a Bad Thing(tm).
2478 */
75289874 2479void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2480 struct drm_i915_gem_object *obj,
2481 bool flush_caches)
673a394b 2482{
75289874
JH
2483 struct intel_engine_cs *ring;
2484 struct drm_i915_private *dev_priv;
48e29f55 2485 struct intel_ringbuffer *ringbuf;
6d3d8274 2486 u32 request_start;
3cce469c
CW
2487 int ret;
2488
48e29f55 2489 if (WARN_ON(request == NULL))
bf7dc5b7 2490 return;
48e29f55 2491
75289874
JH
2492 ring = request->ring;
2493 dev_priv = ring->dev->dev_private;
2494 ringbuf = request->ringbuf;
2495
29b1b415
JH
2496 /*
2497 * To ensure that this call will not fail, space for its emissions
2498 * should already have been reserved in the ring buffer. Let the ring
2499 * know that it is time to use that space up.
2500 */
2501 intel_ring_reserved_space_use(ringbuf);
2502
48e29f55 2503 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2504 /*
2505 * Emit any outstanding flushes - execbuf can fail to emit the flush
2506 * after having emitted the batchbuffer command. Hence we need to fix
2507 * things up similar to emitting the lazy request. The difference here
2508 * is that the flush _must_ happen before the next request, no matter
2509 * what.
2510 */
5b4a60c2
JH
2511 if (flush_caches) {
2512 if (i915.enable_execlists)
4866d729 2513 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2514 else
4866d729 2515 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2516 /* Not allowed to fail! */
2517 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2518 }
cc889e0f 2519
a71d8d94
CW
2520 /* Record the position of the start of the request so that
2521 * should we detect the updated seqno part-way through the
2522 * GPU processing the request, we never over-estimate the
2523 * position of the head.
2524 */
6d3d8274 2525 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2526
bf7dc5b7 2527 if (i915.enable_execlists)
c4e76638 2528 ret = ring->emit_request(request);
bf7dc5b7 2529 else {
ee044a88 2530 ret = ring->add_request(request);
53292cdb
MT
2531
2532 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2533 }
bf7dc5b7
JH
2534 /* Not allowed to fail! */
2535 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2536
7d736f4f 2537 request->head = request_start;
7d736f4f
MK
2538
2539 /* Whilst this request exists, batch_obj will be on the
2540 * active_list, and so will hold the active reference. Only when this
2541 * request is retired will the the batch_obj be moved onto the
2542 * inactive_list and lose its active reference. Hence we do not need
2543 * to explicitly hold another reference here.
2544 */
9a7e0c2a 2545 request->batch_obj = obj;
0e50e96b 2546
673a394b 2547 request->emitted_jiffies = jiffies;
94f7bbe1 2548 ring->last_submitted_seqno = request->seqno;
852835f3 2549 list_add_tail(&request->list, &ring->request_list);
673a394b 2550
74328ee5 2551 trace_i915_gem_request_add(request);
db53a302 2552
87255483 2553 i915_queue_hangcheck(ring->dev);
10cd45b6 2554
87255483
DV
2555 queue_delayed_work(dev_priv->wq,
2556 &dev_priv->mm.retire_work,
2557 round_jiffies_up_relative(HZ));
2558 intel_mark_busy(dev_priv->dev);
cc889e0f 2559
29b1b415
JH
2560 /* Sanity check that the reserved size was large enough. */
2561 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2562}
2563
939fd762 2564static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2565 const struct intel_context *ctx)
be62acb4 2566{
44e2c070 2567 unsigned long elapsed;
be62acb4 2568
44e2c070
MK
2569 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2570
2571 if (ctx->hang_stats.banned)
be62acb4
MK
2572 return true;
2573
676fa572
CW
2574 if (ctx->hang_stats.ban_period_seconds &&
2575 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2576 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2577 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2578 return true;
88b4aa87
MK
2579 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2580 if (i915_stop_ring_allow_warn(dev_priv))
2581 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2582 return true;
3fac8978 2583 }
be62acb4
MK
2584 }
2585
2586 return false;
2587}
2588
939fd762 2589static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2590 struct intel_context *ctx,
b6b0fac0 2591 const bool guilty)
aa60c664 2592{
44e2c070
MK
2593 struct i915_ctx_hang_stats *hs;
2594
2595 if (WARN_ON(!ctx))
2596 return;
aa60c664 2597
44e2c070
MK
2598 hs = &ctx->hang_stats;
2599
2600 if (guilty) {
939fd762 2601 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2602 hs->batch_active++;
2603 hs->guilty_ts = get_seconds();
2604 } else {
2605 hs->batch_pending++;
aa60c664
MK
2606 }
2607}
2608
abfe262a
JH
2609void i915_gem_request_free(struct kref *req_ref)
2610{
2611 struct drm_i915_gem_request *req = container_of(req_ref,
2612 typeof(*req), ref);
2613 struct intel_context *ctx = req->ctx;
2614
fcfa423c
JH
2615 if (req->file_priv)
2616 i915_gem_request_remove_from_client(req);
2617
0794aed3
TD
2618 if (ctx) {
2619 if (i915.enable_execlists) {
8ba319da
MK
2620 if (ctx != req->ring->default_context)
2621 intel_lr_context_unpin(req);
0794aed3 2622 }
abfe262a 2623
dcb4c12a
OM
2624 i915_gem_context_unreference(ctx);
2625 }
abfe262a 2626
efab6d8d 2627 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2628}
2629
6689cb2b 2630int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2631 struct intel_context *ctx,
2632 struct drm_i915_gem_request **req_out)
6689cb2b 2633{
efab6d8d 2634 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2635 struct drm_i915_gem_request *req;
6689cb2b 2636 int ret;
6689cb2b 2637
217e46b5
JH
2638 if (!req_out)
2639 return -EINVAL;
2640
bccca494 2641 *req_out = NULL;
6689cb2b 2642
eed29a5b
DV
2643 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2644 if (req == NULL)
6689cb2b
JH
2645 return -ENOMEM;
2646
eed29a5b 2647 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2648 if (ret)
2649 goto err;
6689cb2b 2650
40e895ce
JH
2651 kref_init(&req->ref);
2652 req->i915 = dev_priv;
eed29a5b 2653 req->ring = ring;
40e895ce
JH
2654 req->ctx = ctx;
2655 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2656
2657 if (i915.enable_execlists)
40e895ce 2658 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2659 else
eed29a5b 2660 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2661 if (ret) {
2662 i915_gem_context_unreference(req->ctx);
9a0c1e27 2663 goto err;
40e895ce 2664 }
6689cb2b 2665
29b1b415
JH
2666 /*
2667 * Reserve space in the ring buffer for all the commands required to
2668 * eventually emit this request. This is to guarantee that the
2669 * i915_add_request() call can't fail. Note that the reserve may need
2670 * to be redone if the request is not actually submitted straight
2671 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2672 */
ccd98fe4
JH
2673 if (i915.enable_execlists)
2674 ret = intel_logical_ring_reserve_space(req);
2675 else
2676 ret = intel_ring_reserve_space(req);
2677 if (ret) {
2678 /*
2679 * At this point, the request is fully allocated even if not
2680 * fully prepared. Thus it can be cleaned up using the proper
2681 * free code.
2682 */
2683 i915_gem_request_cancel(req);
2684 return ret;
2685 }
29b1b415 2686
bccca494 2687 *req_out = req;
6689cb2b 2688 return 0;
9a0c1e27
CW
2689
2690err:
2691 kmem_cache_free(dev_priv->requests, req);
2692 return ret;
0e50e96b
MK
2693}
2694
29b1b415
JH
2695void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2696{
2697 intel_ring_reserved_space_cancel(req->ringbuf);
2698
2699 i915_gem_request_unreference(req);
2700}
2701
8d9fc7fd 2702struct drm_i915_gem_request *
a4872ba6 2703i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2704{
4db080f9
CW
2705 struct drm_i915_gem_request *request;
2706
2707 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2708 if (i915_gem_request_completed(request, false))
4db080f9 2709 continue;
aa60c664 2710
b6b0fac0 2711 return request;
4db080f9 2712 }
b6b0fac0
MK
2713
2714 return NULL;
2715}
2716
2717static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2718 struct intel_engine_cs *ring)
b6b0fac0
MK
2719{
2720 struct drm_i915_gem_request *request;
2721 bool ring_hung;
2722
8d9fc7fd 2723 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2724
2725 if (request == NULL)
2726 return;
2727
2728 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2729
939fd762 2730 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2731
2732 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2733 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2734}
aa60c664 2735
4db080f9 2736static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2737 struct intel_engine_cs *ring)
4db080f9 2738{
dfaae392 2739 while (!list_empty(&ring->active_list)) {
05394f39 2740 struct drm_i915_gem_object *obj;
9375e446 2741
05394f39
CW
2742 obj = list_first_entry(&ring->active_list,
2743 struct drm_i915_gem_object,
b4716185 2744 ring_list[ring->id]);
9375e446 2745
b4716185 2746 i915_gem_object_retire__read(obj, ring->id);
673a394b 2747 }
1d62beea 2748
dcb4c12a
OM
2749 /*
2750 * Clear the execlists queue up before freeing the requests, as those
2751 * are the ones that keep the context and ringbuffer backing objects
2752 * pinned in place.
2753 */
2754 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2755 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2756
2757 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2758 struct drm_i915_gem_request,
dcb4c12a
OM
2759 execlist_link);
2760 list_del(&submit_req->execlist_link);
1197b4f2
MK
2761
2762 if (submit_req->ctx != ring->default_context)
8ba319da 2763 intel_lr_context_unpin(submit_req);
1197b4f2 2764
b3a38998 2765 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2766 }
2767
1d62beea
BW
2768 /*
2769 * We must free the requests after all the corresponding objects have
2770 * been moved off active lists. Which is the same order as the normal
2771 * retire_requests function does. This is important if object hold
2772 * implicit references on things like e.g. ppgtt address spaces through
2773 * the request.
2774 */
2775 while (!list_empty(&ring->request_list)) {
2776 struct drm_i915_gem_request *request;
2777
2778 request = list_first_entry(&ring->request_list,
2779 struct drm_i915_gem_request,
2780 list);
2781
b4716185 2782 i915_gem_request_retire(request);
1d62beea 2783 }
673a394b
EA
2784}
2785
069efc1d 2786void i915_gem_reset(struct drm_device *dev)
673a394b 2787{
77f01230 2788 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2789 struct intel_engine_cs *ring;
1ec14ad3 2790 int i;
673a394b 2791
4db080f9
CW
2792 /*
2793 * Before we free the objects from the requests, we need to inspect
2794 * them for finding the guilty party. As the requests only borrow
2795 * their reference to the objects, the inspection must be done first.
2796 */
2797 for_each_ring(ring, dev_priv, i)
2798 i915_gem_reset_ring_status(dev_priv, ring);
2799
b4519513 2800 for_each_ring(ring, dev_priv, i)
4db080f9 2801 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2802
acce9ffa
BW
2803 i915_gem_context_reset(dev);
2804
19b2dbde 2805 i915_gem_restore_fences(dev);
b4716185
CW
2806
2807 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2808}
2809
2810/**
2811 * This function clears the request list as sequence numbers are passed.
2812 */
1cf0ba14 2813void
a4872ba6 2814i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2815{
db53a302 2816 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2817
832a3aad
CW
2818 /* Retire requests first as we use it above for the early return.
2819 * If we retire requests last, we may use a later seqno and so clear
2820 * the requests lists without clearing the active list, leading to
2821 * confusion.
e9103038 2822 */
852835f3 2823 while (!list_empty(&ring->request_list)) {
673a394b 2824 struct drm_i915_gem_request *request;
673a394b 2825
852835f3 2826 request = list_first_entry(&ring->request_list,
673a394b
EA
2827 struct drm_i915_gem_request,
2828 list);
673a394b 2829
1b5a433a 2830 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2831 break;
2832
b4716185 2833 i915_gem_request_retire(request);
b84d5f0c 2834 }
673a394b 2835
832a3aad
CW
2836 /* Move any buffers on the active list that are no longer referenced
2837 * by the ringbuffer to the flushing/inactive lists as appropriate,
2838 * before we free the context associated with the requests.
2839 */
2840 while (!list_empty(&ring->active_list)) {
2841 struct drm_i915_gem_object *obj;
2842
2843 obj = list_first_entry(&ring->active_list,
2844 struct drm_i915_gem_object,
b4716185 2845 ring_list[ring->id]);
832a3aad 2846
b4716185 2847 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2848 break;
2849
b4716185 2850 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2851 }
2852
581c26e8
JH
2853 if (unlikely(ring->trace_irq_req &&
2854 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2855 ring->irq_put(ring);
581c26e8 2856 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2857 }
23bc5982 2858
db53a302 2859 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2860}
2861
b29c19b6 2862bool
b09a1fec
CW
2863i915_gem_retire_requests(struct drm_device *dev)
2864{
3e31c6c0 2865 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2866 struct intel_engine_cs *ring;
b29c19b6 2867 bool idle = true;
1ec14ad3 2868 int i;
b09a1fec 2869
b29c19b6 2870 for_each_ring(ring, dev_priv, i) {
b4519513 2871 i915_gem_retire_requests_ring(ring);
b29c19b6 2872 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2873 if (i915.enable_execlists) {
2874 unsigned long flags;
2875
2876 spin_lock_irqsave(&ring->execlist_lock, flags);
2877 idle &= list_empty(&ring->execlist_queue);
2878 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2879
2880 intel_execlists_retire_requests(ring);
2881 }
b29c19b6
CW
2882 }
2883
2884 if (idle)
2885 mod_delayed_work(dev_priv->wq,
2886 &dev_priv->mm.idle_work,
2887 msecs_to_jiffies(100));
2888
2889 return idle;
b09a1fec
CW
2890}
2891
75ef9da2 2892static void
673a394b
EA
2893i915_gem_retire_work_handler(struct work_struct *work)
2894{
b29c19b6
CW
2895 struct drm_i915_private *dev_priv =
2896 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2897 struct drm_device *dev = dev_priv->dev;
0a58705b 2898 bool idle;
673a394b 2899
891b48cf 2900 /* Come back later if the device is busy... */
b29c19b6
CW
2901 idle = false;
2902 if (mutex_trylock(&dev->struct_mutex)) {
2903 idle = i915_gem_retire_requests(dev);
2904 mutex_unlock(&dev->struct_mutex);
673a394b 2905 }
b29c19b6 2906 if (!idle)
bcb45086
CW
2907 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2908 round_jiffies_up_relative(HZ));
b29c19b6 2909}
0a58705b 2910
b29c19b6
CW
2911static void
2912i915_gem_idle_work_handler(struct work_struct *work)
2913{
2914 struct drm_i915_private *dev_priv =
2915 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2916 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2917 struct intel_engine_cs *ring;
2918 int i;
b29c19b6 2919
423795cb
CW
2920 for_each_ring(ring, dev_priv, i)
2921 if (!list_empty(&ring->request_list))
2922 return;
35c94185
CW
2923
2924 intel_mark_idle(dev);
2925
2926 if (mutex_trylock(&dev->struct_mutex)) {
2927 struct intel_engine_cs *ring;
2928 int i;
2929
2930 for_each_ring(ring, dev_priv, i)
2931 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2932
35c94185
CW
2933 mutex_unlock(&dev->struct_mutex);
2934 }
673a394b
EA
2935}
2936
30dfebf3
DV
2937/**
2938 * Ensures that an object will eventually get non-busy by flushing any required
2939 * write domains, emitting any outstanding lazy request and retiring and
2940 * completed requests.
2941 */
2942static int
2943i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2944{
a5ac0f90 2945 int i;
b4716185
CW
2946
2947 if (!obj->active)
2948 return 0;
30dfebf3 2949
b4716185
CW
2950 for (i = 0; i < I915_NUM_RINGS; i++) {
2951 struct drm_i915_gem_request *req;
41c52415 2952
b4716185
CW
2953 req = obj->last_read_req[i];
2954 if (req == NULL)
2955 continue;
2956
2957 if (list_empty(&req->list))
2958 goto retire;
2959
b4716185
CW
2960 if (i915_gem_request_completed(req, true)) {
2961 __i915_gem_request_retire__upto(req);
2962retire:
2963 i915_gem_object_retire__read(obj, i);
2964 }
30dfebf3
DV
2965 }
2966
2967 return 0;
2968}
2969
23ba4fd0
BW
2970/**
2971 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2972 * @DRM_IOCTL_ARGS: standard ioctl arguments
2973 *
2974 * Returns 0 if successful, else an error is returned with the remaining time in
2975 * the timeout parameter.
2976 * -ETIME: object is still busy after timeout
2977 * -ERESTARTSYS: signal interrupted the wait
2978 * -ENONENT: object doesn't exist
2979 * Also possible, but rare:
2980 * -EAGAIN: GPU wedged
2981 * -ENOMEM: damn
2982 * -ENODEV: Internal IRQ fail
2983 * -E?: The add request failed
2984 *
2985 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2986 * non-zero timeout parameter the wait ioctl will wait for the given number of
2987 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2988 * without holding struct_mutex the object may become re-busied before this
2989 * function completes. A similar but shorter * race condition exists in the busy
2990 * ioctl
2991 */
2992int
2993i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2994{
3e31c6c0 2995 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2996 struct drm_i915_gem_wait *args = data;
2997 struct drm_i915_gem_object *obj;
b4716185 2998 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 2999 unsigned reset_counter;
b4716185
CW
3000 int i, n = 0;
3001 int ret;
23ba4fd0 3002
11b5d511
DV
3003 if (args->flags != 0)
3004 return -EINVAL;
3005
23ba4fd0
BW
3006 ret = i915_mutex_lock_interruptible(dev);
3007 if (ret)
3008 return ret;
3009
3010 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3011 if (&obj->base == NULL) {
3012 mutex_unlock(&dev->struct_mutex);
3013 return -ENOENT;
3014 }
3015
30dfebf3
DV
3016 /* Need to make sure the object gets inactive eventually. */
3017 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3018 if (ret)
3019 goto out;
3020
b4716185 3021 if (!obj->active)
97b2a6a1 3022 goto out;
23ba4fd0 3023
23ba4fd0 3024 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3025 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3026 */
762e4583 3027 if (args->timeout_ns == 0) {
23ba4fd0
BW
3028 ret = -ETIME;
3029 goto out;
3030 }
3031
3032 drm_gem_object_unreference(&obj->base);
f69061be 3033 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3034
3035 for (i = 0; i < I915_NUM_RINGS; i++) {
3036 if (obj->last_read_req[i] == NULL)
3037 continue;
3038
3039 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3040 }
3041
23ba4fd0
BW
3042 mutex_unlock(&dev->struct_mutex);
3043
b4716185
CW
3044 for (i = 0; i < n; i++) {
3045 if (ret == 0)
3046 ret = __i915_wait_request(req[i], reset_counter, true,
3047 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3048 file->driver_priv);
3049 i915_gem_request_unreference__unlocked(req[i]);
3050 }
ff865885 3051 return ret;
23ba4fd0
BW
3052
3053out:
3054 drm_gem_object_unreference(&obj->base);
3055 mutex_unlock(&dev->struct_mutex);
3056 return ret;
3057}
3058
b4716185
CW
3059static int
3060__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3061 struct intel_engine_cs *to,
91af127f
JH
3062 struct drm_i915_gem_request *from_req,
3063 struct drm_i915_gem_request **to_req)
b4716185
CW
3064{
3065 struct intel_engine_cs *from;
3066 int ret;
3067
91af127f 3068 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3069 if (to == from)
3070 return 0;
3071
91af127f 3072 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3073 return 0;
3074
b4716185 3075 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3076 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3077 ret = __i915_wait_request(from_req,
a6f766f3
CW
3078 atomic_read(&i915->gpu_error.reset_counter),
3079 i915->mm.interruptible,
3080 NULL,
3081 &i915->rps.semaphores);
b4716185
CW
3082 if (ret)
3083 return ret;
3084
91af127f 3085 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3086 } else {
3087 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3088 u32 seqno = i915_gem_request_get_seqno(from_req);
3089
3090 WARN_ON(!to_req);
b4716185
CW
3091
3092 if (seqno <= from->semaphore.sync_seqno[idx])
3093 return 0;
3094
91af127f
JH
3095 if (*to_req == NULL) {
3096 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3097 if (ret)
3098 return ret;
3099 }
3100
599d924c
JH
3101 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3102 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3103 if (ret)
3104 return ret;
3105
3106 /* We use last_read_req because sync_to()
3107 * might have just caused seqno wrap under
3108 * the radar.
3109 */
3110 from->semaphore.sync_seqno[idx] =
3111 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3112 }
3113
3114 return 0;
3115}
3116
5816d648
BW
3117/**
3118 * i915_gem_object_sync - sync an object to a ring.
3119 *
3120 * @obj: object which may be in use on another ring.
3121 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3122 * @to_req: request we wish to use the object for. See below.
3123 * This will be allocated and returned if a request is
3124 * required but not passed in.
5816d648
BW
3125 *
3126 * This code is meant to abstract object synchronization with the GPU.
3127 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3128 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3129 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3130 * into a buffer at any time, but multiple readers. To ensure each has
3131 * a coherent view of memory, we must:
3132 *
3133 * - If there is an outstanding write request to the object, the new
3134 * request must wait for it to complete (either CPU or in hw, requests
3135 * on the same ring will be naturally ordered).
3136 *
3137 * - If we are a write request (pending_write_domain is set), the new
3138 * request must wait for outstanding read requests to complete.
5816d648 3139 *
91af127f
JH
3140 * For CPU synchronisation (NULL to) no request is required. For syncing with
3141 * rings to_req must be non-NULL. However, a request does not have to be
3142 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3143 * request will be allocated automatically and returned through *to_req. Note
3144 * that it is not guaranteed that commands will be emitted (because the system
3145 * might already be idle). Hence there is no need to create a request that
3146 * might never have any work submitted. Note further that if a request is
3147 * returned in *to_req, it is the responsibility of the caller to submit
3148 * that request (after potentially adding more work to it).
3149 *
5816d648
BW
3150 * Returns 0 if successful, else propagates up the lower layer error.
3151 */
2911a35b
BW
3152int
3153i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3154 struct intel_engine_cs *to,
3155 struct drm_i915_gem_request **to_req)
2911a35b 3156{
b4716185
CW
3157 const bool readonly = obj->base.pending_write_domain == 0;
3158 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3159 int ret, i, n;
41c52415 3160
b4716185 3161 if (!obj->active)
2911a35b
BW
3162 return 0;
3163
b4716185
CW
3164 if (to == NULL)
3165 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3166
b4716185
CW
3167 n = 0;
3168 if (readonly) {
3169 if (obj->last_write_req)
3170 req[n++] = obj->last_write_req;
3171 } else {
3172 for (i = 0; i < I915_NUM_RINGS; i++)
3173 if (obj->last_read_req[i])
3174 req[n++] = obj->last_read_req[i];
3175 }
3176 for (i = 0; i < n; i++) {
91af127f 3177 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3178 if (ret)
3179 return ret;
3180 }
2911a35b 3181
b4716185 3182 return 0;
2911a35b
BW
3183}
3184
b5ffc9bc
CW
3185static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3186{
3187 u32 old_write_domain, old_read_domains;
3188
b5ffc9bc
CW
3189 /* Force a pagefault for domain tracking on next user access */
3190 i915_gem_release_mmap(obj);
3191
b97c3d9c
KP
3192 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3193 return;
3194
97c809fd
CW
3195 /* Wait for any direct GTT access to complete */
3196 mb();
3197
b5ffc9bc
CW
3198 old_read_domains = obj->base.read_domains;
3199 old_write_domain = obj->base.write_domain;
3200
3201 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3202 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3203
3204 trace_i915_gem_object_change_domain(obj,
3205 old_read_domains,
3206 old_write_domain);
3207}
3208
07fe0b12 3209int i915_vma_unbind(struct i915_vma *vma)
673a394b 3210{
07fe0b12 3211 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3212 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3213 int ret;
673a394b 3214
07fe0b12 3215 if (list_empty(&vma->vma_link))
673a394b
EA
3216 return 0;
3217
0ff501cb
DV
3218 if (!drm_mm_node_allocated(&vma->node)) {
3219 i915_gem_vma_destroy(vma);
0ff501cb
DV
3220 return 0;
3221 }
433544bd 3222
d7f46fc4 3223 if (vma->pin_count)
31d8d651 3224 return -EBUSY;
673a394b 3225
c4670ad0
CW
3226 BUG_ON(obj->pages == NULL);
3227
2e2f351d 3228 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3229 if (ret)
a8198eea
CW
3230 return ret;
3231 /* Continue on if we fail due to EIO, the GPU is hung so we
3232 * should be safe and we need to cleanup or else we might
3233 * cause memory corruption through use-after-free.
3234 */
3235
fe14d5f4
TU
3236 if (i915_is_ggtt(vma->vm) &&
3237 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3238 i915_gem_object_finish_gtt(obj);
5323fd04 3239
8b1bc9b4
DV
3240 /* release the fence reg _after_ flushing */
3241 ret = i915_gem_object_put_fence(obj);
3242 if (ret)
3243 return ret;
3244 }
96b47b65 3245
07fe0b12 3246 trace_i915_vma_unbind(vma);
db53a302 3247
777dc5bb 3248 vma->vm->unbind_vma(vma);
5e562f1d 3249 vma->bound = 0;
6f65e29a 3250
64bf9303 3251 list_del_init(&vma->mm_list);
fe14d5f4
TU
3252 if (i915_is_ggtt(vma->vm)) {
3253 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3254 obj->map_and_fenceable = false;
3255 } else if (vma->ggtt_view.pages) {
3256 sg_free_table(vma->ggtt_view.pages);
3257 kfree(vma->ggtt_view.pages);
fe14d5f4 3258 }
016a65a3 3259 vma->ggtt_view.pages = NULL;
fe14d5f4 3260 }
673a394b 3261
2f633156
BW
3262 drm_mm_remove_node(&vma->node);
3263 i915_gem_vma_destroy(vma);
3264
3265 /* Since the unbound list is global, only move to that list if
b93dab6e 3266 * no more VMAs exist. */
e2273302 3267 if (list_empty(&obj->vma_list))
2f633156 3268 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3269
70903c3b
CW
3270 /* And finally now the object is completely decoupled from this vma,
3271 * we can drop its hold on the backing storage and allow it to be
3272 * reaped by the shrinker.
3273 */
3274 i915_gem_object_unpin_pages(obj);
3275
88241785 3276 return 0;
54cf91dc
CW
3277}
3278
b2da9fe5 3279int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3280{
3e31c6c0 3281 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3282 struct intel_engine_cs *ring;
1ec14ad3 3283 int ret, i;
4df2faf4 3284
4df2faf4 3285 /* Flush everything onto the inactive list. */
b4519513 3286 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3287 if (!i915.enable_execlists) {
73cfa865
JH
3288 struct drm_i915_gem_request *req;
3289
3290 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3291 if (ret)
3292 return ret;
73cfa865 3293
ba01cc93 3294 ret = i915_switch_context(req);
73cfa865
JH
3295 if (ret) {
3296 i915_gem_request_cancel(req);
3297 return ret;
3298 }
3299
75289874 3300 i915_add_request_no_flush(req);
ecdb5fd8 3301 }
b6c7488d 3302
3e960501 3303 ret = intel_ring_idle(ring);
1ec14ad3
CW
3304 if (ret)
3305 return ret;
3306 }
4df2faf4 3307
b4716185 3308 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3309 return 0;
4df2faf4
DV
3310}
3311
4144f9b5 3312static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3313 unsigned long cache_level)
3314{
4144f9b5 3315 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3316 struct drm_mm_node *other;
3317
4144f9b5
CW
3318 /*
3319 * On some machines we have to be careful when putting differing types
3320 * of snoopable memory together to avoid the prefetcher crossing memory
3321 * domains and dying. During vm initialisation, we decide whether or not
3322 * these constraints apply and set the drm_mm.color_adjust
3323 * appropriately.
42d6ab48 3324 */
4144f9b5 3325 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3326 return true;
3327
c6cfb325 3328 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3329 return true;
3330
3331 if (list_empty(&gtt_space->node_list))
3332 return true;
3333
3334 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3335 if (other->allocated && !other->hole_follows && other->color != cache_level)
3336 return false;
3337
3338 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3339 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3340 return false;
3341
3342 return true;
3343}
3344
673a394b 3345/**
91e6711e
JL
3346 * Finds free space in the GTT aperture and binds the object or a view of it
3347 * there.
673a394b 3348 */
262de145 3349static struct i915_vma *
07fe0b12
BW
3350i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3351 struct i915_address_space *vm,
ec7adb6e 3352 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3353 unsigned alignment,
ec7adb6e 3354 uint64_t flags)
673a394b 3355{
05394f39 3356 struct drm_device *dev = obj->base.dev;
3e31c6c0 3357 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f
MT
3358 u32 fence_alignment, unfenced_alignment;
3359 u64 size, fence_size;
c44ef60e 3360 u64 start =
d23db88c 3361 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
c44ef60e 3362 u64 end =
1ec9e26d 3363 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3364 struct i915_vma *vma;
07f73f69 3365 int ret;
673a394b 3366
91e6711e
JL
3367 if (i915_is_ggtt(vm)) {
3368 u32 view_size;
3369
3370 if (WARN_ON(!ggtt_view))
3371 return ERR_PTR(-EINVAL);
ec7adb6e 3372
91e6711e
JL
3373 view_size = i915_ggtt_view_size(obj, ggtt_view);
3374
3375 fence_size = i915_gem_get_gtt_size(dev,
3376 view_size,
3377 obj->tiling_mode);
3378 fence_alignment = i915_gem_get_gtt_alignment(dev,
3379 view_size,
3380 obj->tiling_mode,
3381 true);
3382 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3383 view_size,
3384 obj->tiling_mode,
3385 false);
3386 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3387 } else {
3388 fence_size = i915_gem_get_gtt_size(dev,
3389 obj->base.size,
3390 obj->tiling_mode);
3391 fence_alignment = i915_gem_get_gtt_alignment(dev,
3392 obj->base.size,
3393 obj->tiling_mode,
3394 true);
3395 unfenced_alignment =
3396 i915_gem_get_gtt_alignment(dev,
3397 obj->base.size,
3398 obj->tiling_mode,
3399 false);
3400 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3401 }
a00b10c3 3402
673a394b 3403 if (alignment == 0)
1ec9e26d 3404 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3405 unfenced_alignment;
1ec9e26d 3406 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3407 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3408 ggtt_view ? ggtt_view->type : 0,
3409 alignment);
262de145 3410 return ERR_PTR(-EINVAL);
673a394b
EA
3411 }
3412
91e6711e
JL
3413 /* If binding the object/GGTT view requires more space than the entire
3414 * aperture has, reject it early before evicting everything in a vain
3415 * attempt to find space.
654fc607 3416 */
91e6711e 3417 if (size > end) {
65bd342f 3418 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3419 ggtt_view ? ggtt_view->type : 0,
3420 size,
1ec9e26d 3421 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3422 end);
262de145 3423 return ERR_PTR(-E2BIG);
654fc607
CW
3424 }
3425
37e680a1 3426 ret = i915_gem_object_get_pages(obj);
6c085a72 3427 if (ret)
262de145 3428 return ERR_PTR(ret);
6c085a72 3429
fbdda6fb
CW
3430 i915_gem_object_pin_pages(obj);
3431
ec7adb6e
JL
3432 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3433 i915_gem_obj_lookup_or_create_vma(obj, vm);
3434
262de145 3435 if (IS_ERR(vma))
bc6bc15b 3436 goto err_unpin;
2f633156 3437
0a9ae0d7 3438search_free:
07fe0b12 3439 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3440 size, alignment,
d23db88c
CW
3441 obj->cache_level,
3442 start, end,
62347f9e
LK
3443 DRM_MM_SEARCH_DEFAULT,
3444 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3445 if (ret) {
f6cd1f15 3446 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3447 obj->cache_level,
3448 start, end,
3449 flags);
dc9dd7a2
CW
3450 if (ret == 0)
3451 goto search_free;
9731129c 3452
bc6bc15b 3453 goto err_free_vma;
673a394b 3454 }
4144f9b5 3455 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3456 ret = -EINVAL;
bc6bc15b 3457 goto err_remove_node;
673a394b
EA
3458 }
3459
fe14d5f4 3460 trace_i915_vma_bind(vma, flags);
0875546c 3461 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3462 if (ret)
e2273302 3463 goto err_remove_node;
fe14d5f4 3464
35c20a60 3465 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3466 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3467
262de145 3468 return vma;
2f633156 3469
bc6bc15b 3470err_remove_node:
6286ef9b 3471 drm_mm_remove_node(&vma->node);
bc6bc15b 3472err_free_vma:
2f633156 3473 i915_gem_vma_destroy(vma);
262de145 3474 vma = ERR_PTR(ret);
bc6bc15b 3475err_unpin:
2f633156 3476 i915_gem_object_unpin_pages(obj);
262de145 3477 return vma;
673a394b
EA
3478}
3479
000433b6 3480bool
2c22569b
CW
3481i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3482 bool force)
673a394b 3483{
673a394b
EA
3484 /* If we don't have a page list set up, then we're not pinned
3485 * to GPU, and we can ignore the cache flush because it'll happen
3486 * again at bind time.
3487 */
05394f39 3488 if (obj->pages == NULL)
000433b6 3489 return false;
673a394b 3490
769ce464
ID
3491 /*
3492 * Stolen memory is always coherent with the GPU as it is explicitly
3493 * marked as wc by the system, or the system is cache-coherent.
3494 */
6a2c4232 3495 if (obj->stolen || obj->phys_handle)
000433b6 3496 return false;
769ce464 3497
9c23f7fc
CW
3498 /* If the GPU is snooping the contents of the CPU cache,
3499 * we do not need to manually clear the CPU cache lines. However,
3500 * the caches are only snooped when the render cache is
3501 * flushed/invalidated. As we always have to emit invalidations
3502 * and flushes when moving into and out of the RENDER domain, correct
3503 * snooping behaviour occurs naturally as the result of our domain
3504 * tracking.
3505 */
0f71979a
CW
3506 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3507 obj->cache_dirty = true;
000433b6 3508 return false;
0f71979a 3509 }
9c23f7fc 3510
1c5d22f7 3511 trace_i915_gem_object_clflush(obj);
9da3da66 3512 drm_clflush_sg(obj->pages);
0f71979a 3513 obj->cache_dirty = false;
000433b6
CW
3514
3515 return true;
e47c68e9
EA
3516}
3517
3518/** Flushes the GTT write domain for the object if it's dirty. */
3519static void
05394f39 3520i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3521{
1c5d22f7
CW
3522 uint32_t old_write_domain;
3523
05394f39 3524 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3525 return;
3526
63256ec5 3527 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3528 * to it immediately go to main memory as far as we know, so there's
3529 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3530 *
3531 * However, we do have to enforce the order so that all writes through
3532 * the GTT land before any writes to the device, such as updates to
3533 * the GATT itself.
e47c68e9 3534 */
63256ec5
CW
3535 wmb();
3536
05394f39
CW
3537 old_write_domain = obj->base.write_domain;
3538 obj->base.write_domain = 0;
1c5d22f7 3539
de152b62 3540 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3541
1c5d22f7 3542 trace_i915_gem_object_change_domain(obj,
05394f39 3543 obj->base.read_domains,
1c5d22f7 3544 old_write_domain);
e47c68e9
EA
3545}
3546
3547/** Flushes the CPU write domain for the object if it's dirty. */
3548static void
e62b59e4 3549i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3550{
1c5d22f7 3551 uint32_t old_write_domain;
e47c68e9 3552
05394f39 3553 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3554 return;
3555
e62b59e4 3556 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3557 i915_gem_chipset_flush(obj->base.dev);
3558
05394f39
CW
3559 old_write_domain = obj->base.write_domain;
3560 obj->base.write_domain = 0;
1c5d22f7 3561
de152b62 3562 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3563
1c5d22f7 3564 trace_i915_gem_object_change_domain(obj,
05394f39 3565 obj->base.read_domains,
1c5d22f7 3566 old_write_domain);
e47c68e9
EA
3567}
3568
2ef7eeaa
EA
3569/**
3570 * Moves a single object to the GTT read, and possibly write domain.
3571 *
3572 * This function returns when the move is complete, including waiting on
3573 * flushes to occur.
3574 */
79e53945 3575int
2021746e 3576i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3577{
1c5d22f7 3578 uint32_t old_write_domain, old_read_domains;
43566ded 3579 struct i915_vma *vma;
e47c68e9 3580 int ret;
2ef7eeaa 3581
8d7e3de1
CW
3582 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3583 return 0;
3584
0201f1ec 3585 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3586 if (ret)
3587 return ret;
3588
43566ded
CW
3589 /* Flush and acquire obj->pages so that we are coherent through
3590 * direct access in memory with previous cached writes through
3591 * shmemfs and that our cache domain tracking remains valid.
3592 * For example, if the obj->filp was moved to swap without us
3593 * being notified and releasing the pages, we would mistakenly
3594 * continue to assume that the obj remained out of the CPU cached
3595 * domain.
3596 */
3597 ret = i915_gem_object_get_pages(obj);
3598 if (ret)
3599 return ret;
3600
e62b59e4 3601 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3602
d0a57789
CW
3603 /* Serialise direct access to this object with the barriers for
3604 * coherent writes from the GPU, by effectively invalidating the
3605 * GTT domain upon first access.
3606 */
3607 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3608 mb();
3609
05394f39
CW
3610 old_write_domain = obj->base.write_domain;
3611 old_read_domains = obj->base.read_domains;
1c5d22f7 3612
e47c68e9
EA
3613 /* It should now be out of any other write domains, and we can update
3614 * the domain values for our changes.
3615 */
05394f39
CW
3616 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3617 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3618 if (write) {
05394f39
CW
3619 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3620 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3621 obj->dirty = 1;
2ef7eeaa
EA
3622 }
3623
1c5d22f7
CW
3624 trace_i915_gem_object_change_domain(obj,
3625 old_read_domains,
3626 old_write_domain);
3627
8325a09d 3628 /* And bump the LRU for this access */
43566ded
CW
3629 vma = i915_gem_obj_to_ggtt(obj);
3630 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3631 list_move_tail(&vma->mm_list,
43566ded 3632 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3633
e47c68e9
EA
3634 return 0;
3635}
3636
e4ffd173
CW
3637int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3638 enum i915_cache_level cache_level)
3639{
7bddb01f 3640 struct drm_device *dev = obj->base.dev;
df6f783a 3641 struct i915_vma *vma, *next;
e4ffd173
CW
3642 int ret;
3643
3644 if (obj->cache_level == cache_level)
3645 return 0;
3646
d7f46fc4 3647 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3648 DRM_DEBUG("can not change the cache level of pinned objects\n");
3649 return -EBUSY;
3650 }
3651
df6f783a 3652 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3653 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3654 ret = i915_vma_unbind(vma);
3089c6f2
BW
3655 if (ret)
3656 return ret;
3089c6f2 3657 }
42d6ab48
CW
3658 }
3659
3089c6f2 3660 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 3661 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3662 if (ret)
3663 return ret;
3664
3665 i915_gem_object_finish_gtt(obj);
3666
3667 /* Before SandyBridge, you could not use tiling or fence
3668 * registers with snooped memory, so relinquish any fences
3669 * currently pointing to our region in the aperture.
3670 */
42d6ab48 3671 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3672 ret = i915_gem_object_put_fence(obj);
3673 if (ret)
3674 return ret;
3675 }
3676
6f65e29a 3677 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3678 if (drm_mm_node_allocated(&vma->node)) {
3679 ret = i915_vma_bind(vma, cache_level,
0875546c 3680 PIN_UPDATE);
fe14d5f4
TU
3681 if (ret)
3682 return ret;
3683 }
e4ffd173
CW
3684 }
3685
2c22569b
CW
3686 list_for_each_entry(vma, &obj->vma_list, vma_link)
3687 vma->node.color = cache_level;
3688 obj->cache_level = cache_level;
3689
0f71979a
CW
3690 if (obj->cache_dirty &&
3691 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3692 cpu_write_needs_clflush(obj)) {
3693 if (i915_gem_clflush_object(obj, true))
3694 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3695 }
3696
e4ffd173
CW
3697 return 0;
3698}
3699
199adf40
BW
3700int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3701 struct drm_file *file)
e6994aee 3702{
199adf40 3703 struct drm_i915_gem_caching *args = data;
e6994aee 3704 struct drm_i915_gem_object *obj;
e6994aee
CW
3705
3706 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3707 if (&obj->base == NULL)
3708 return -ENOENT;
e6994aee 3709
651d794f
CW
3710 switch (obj->cache_level) {
3711 case I915_CACHE_LLC:
3712 case I915_CACHE_L3_LLC:
3713 args->caching = I915_CACHING_CACHED;
3714 break;
3715
4257d3ba
CW
3716 case I915_CACHE_WT:
3717 args->caching = I915_CACHING_DISPLAY;
3718 break;
3719
651d794f
CW
3720 default:
3721 args->caching = I915_CACHING_NONE;
3722 break;
3723 }
e6994aee 3724
432be69d
CW
3725 drm_gem_object_unreference_unlocked(&obj->base);
3726 return 0;
e6994aee
CW
3727}
3728
199adf40
BW
3729int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3730 struct drm_file *file)
e6994aee 3731{
199adf40 3732 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3733 struct drm_i915_gem_object *obj;
3734 enum i915_cache_level level;
3735 int ret;
3736
199adf40
BW
3737 switch (args->caching) {
3738 case I915_CACHING_NONE:
e6994aee
CW
3739 level = I915_CACHE_NONE;
3740 break;
199adf40 3741 case I915_CACHING_CACHED:
e6994aee
CW
3742 level = I915_CACHE_LLC;
3743 break;
4257d3ba
CW
3744 case I915_CACHING_DISPLAY:
3745 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3746 break;
e6994aee
CW
3747 default:
3748 return -EINVAL;
3749 }
3750
3bc2913e
BW
3751 ret = i915_mutex_lock_interruptible(dev);
3752 if (ret)
3753 return ret;
3754
e6994aee
CW
3755 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3756 if (&obj->base == NULL) {
3757 ret = -ENOENT;
3758 goto unlock;
3759 }
3760
3761 ret = i915_gem_object_set_cache_level(obj, level);
3762
3763 drm_gem_object_unreference(&obj->base);
3764unlock:
3765 mutex_unlock(&dev->struct_mutex);
3766 return ret;
3767}
3768
b9241ea3 3769/*
2da3b9b9
CW
3770 * Prepare buffer for display plane (scanout, cursors, etc).
3771 * Can be called from an uninterruptible phase (modesetting) and allows
3772 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3773 */
3774int
2da3b9b9
CW
3775i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3776 u32 alignment,
e6617330 3777 struct intel_engine_cs *pipelined,
91af127f 3778 struct drm_i915_gem_request **pipelined_request,
e6617330 3779 const struct i915_ggtt_view *view)
b9241ea3 3780{
2da3b9b9 3781 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3782 int ret;
3783
91af127f 3784 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
b4716185
CW
3785 if (ret)
3786 return ret;
b9241ea3 3787
cc98b413
CW
3788 /* Mark the pin_display early so that we account for the
3789 * display coherency whilst setting up the cache domains.
3790 */
8a0c39b1 3791 obj->pin_display++;
cc98b413 3792
a7ef0640
EA
3793 /* The display engine is not coherent with the LLC cache on gen6. As
3794 * a result, we make sure that the pinning that is about to occur is
3795 * done with uncached PTEs. This is lowest common denominator for all
3796 * chipsets.
3797 *
3798 * However for gen6+, we could do better by using the GFDT bit instead
3799 * of uncaching, which would allow us to flush all the LLC-cached data
3800 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3801 */
651d794f
CW
3802 ret = i915_gem_object_set_cache_level(obj,
3803 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3804 if (ret)
cc98b413 3805 goto err_unpin_display;
a7ef0640 3806
2da3b9b9
CW
3807 /* As the user may map the buffer once pinned in the display plane
3808 * (e.g. libkms for the bootup splash), we have to ensure that we
3809 * always use map_and_fenceable for all scanout buffers.
3810 */
50470bb0
TU
3811 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3812 view->type == I915_GGTT_VIEW_NORMAL ?
3813 PIN_MAPPABLE : 0);
2da3b9b9 3814 if (ret)
cc98b413 3815 goto err_unpin_display;
2da3b9b9 3816
e62b59e4 3817 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3818
2da3b9b9 3819 old_write_domain = obj->base.write_domain;
05394f39 3820 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3821
3822 /* It should now be out of any other write domains, and we can update
3823 * the domain values for our changes.
3824 */
e5f1d962 3825 obj->base.write_domain = 0;
05394f39 3826 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3827
3828 trace_i915_gem_object_change_domain(obj,
3829 old_read_domains,
2da3b9b9 3830 old_write_domain);
b9241ea3
ZW
3831
3832 return 0;
cc98b413
CW
3833
3834err_unpin_display:
8a0c39b1 3835 obj->pin_display--;
cc98b413
CW
3836 return ret;
3837}
3838
3839void
e6617330
TU
3840i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3841 const struct i915_ggtt_view *view)
cc98b413 3842{
8a0c39b1
TU
3843 if (WARN_ON(obj->pin_display == 0))
3844 return;
3845
e6617330
TU
3846 i915_gem_object_ggtt_unpin_view(obj, view);
3847
8a0c39b1 3848 obj->pin_display--;
b9241ea3
ZW
3849}
3850
e47c68e9
EA
3851/**
3852 * Moves a single object to the CPU read, and possibly write domain.
3853 *
3854 * This function returns when the move is complete, including waiting on
3855 * flushes to occur.
3856 */
dabdfe02 3857int
919926ae 3858i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3859{
1c5d22f7 3860 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3861 int ret;
3862
8d7e3de1
CW
3863 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3864 return 0;
3865
0201f1ec 3866 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3867 if (ret)
3868 return ret;
3869
e47c68e9 3870 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3871
05394f39
CW
3872 old_write_domain = obj->base.write_domain;
3873 old_read_domains = obj->base.read_domains;
1c5d22f7 3874
e47c68e9 3875 /* Flush the CPU cache if it's still invalid. */
05394f39 3876 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3877 i915_gem_clflush_object(obj, false);
2ef7eeaa 3878
05394f39 3879 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3880 }
3881
3882 /* It should now be out of any other write domains, and we can update
3883 * the domain values for our changes.
3884 */
05394f39 3885 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3886
3887 /* If we're writing through the CPU, then the GPU read domains will
3888 * need to be invalidated at next use.
3889 */
3890 if (write) {
05394f39
CW
3891 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3892 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3893 }
2ef7eeaa 3894
1c5d22f7
CW
3895 trace_i915_gem_object_change_domain(obj,
3896 old_read_domains,
3897 old_write_domain);
3898
2ef7eeaa
EA
3899 return 0;
3900}
3901
673a394b
EA
3902/* Throttle our rendering by waiting until the ring has completed our requests
3903 * emitted over 20 msec ago.
3904 *
b962442e
EA
3905 * Note that if we were to use the current jiffies each time around the loop,
3906 * we wouldn't escape the function with any frames outstanding if the time to
3907 * render a frame was over 20ms.
3908 *
673a394b
EA
3909 * This should get us reasonable parallelism between CPU and GPU but also
3910 * relatively low latency when blocking on a particular request to finish.
3911 */
40a5f0de 3912static int
f787a5f5 3913i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3914{
f787a5f5
CW
3915 struct drm_i915_private *dev_priv = dev->dev_private;
3916 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3917 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3918 struct drm_i915_gem_request *request, *target = NULL;
f69061be 3919 unsigned reset_counter;
f787a5f5 3920 int ret;
93533c29 3921
308887aa
DV
3922 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3923 if (ret)
3924 return ret;
3925
3926 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3927 if (ret)
3928 return ret;
e110e8d6 3929
1c25595f 3930 spin_lock(&file_priv->mm.lock);
f787a5f5 3931 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3932 if (time_after_eq(request->emitted_jiffies, recent_enough))
3933 break;
40a5f0de 3934
fcfa423c
JH
3935 /*
3936 * Note that the request might not have been submitted yet.
3937 * In which case emitted_jiffies will be zero.
3938 */
3939 if (!request->emitted_jiffies)
3940 continue;
3941
54fb2411 3942 target = request;
b962442e 3943 }
f69061be 3944 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
3945 if (target)
3946 i915_gem_request_reference(target);
1c25595f 3947 spin_unlock(&file_priv->mm.lock);
40a5f0de 3948
54fb2411 3949 if (target == NULL)
f787a5f5 3950 return 0;
2bc43b5c 3951
9c654818 3952 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
3953 if (ret == 0)
3954 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 3955
41037f9f 3956 i915_gem_request_unreference__unlocked(target);
ff865885 3957
40a5f0de
EA
3958 return ret;
3959}
3960
d23db88c
CW
3961static bool
3962i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3963{
3964 struct drm_i915_gem_object *obj = vma->obj;
3965
3966 if (alignment &&
3967 vma->node.start & (alignment - 1))
3968 return true;
3969
3970 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3971 return true;
3972
3973 if (flags & PIN_OFFSET_BIAS &&
3974 vma->node.start < (flags & PIN_OFFSET_MASK))
3975 return true;
3976
3977 return false;
3978}
3979
ec7adb6e
JL
3980static int
3981i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3982 struct i915_address_space *vm,
3983 const struct i915_ggtt_view *ggtt_view,
3984 uint32_t alignment,
3985 uint64_t flags)
673a394b 3986{
6e7186af 3987 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 3988 struct i915_vma *vma;
ef79e17c 3989 unsigned bound;
673a394b
EA
3990 int ret;
3991
6e7186af
BW
3992 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3993 return -ENODEV;
3994
bf3d149b 3995 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3996 return -EINVAL;
07fe0b12 3997
c826c449
CW
3998 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3999 return -EINVAL;
4000
ec7adb6e
JL
4001 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4002 return -EINVAL;
4003
4004 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4005 i915_gem_obj_to_vma(obj, vm);
4006
4007 if (IS_ERR(vma))
4008 return PTR_ERR(vma);
4009
07fe0b12 4010 if (vma) {
d7f46fc4
BW
4011 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4012 return -EBUSY;
4013
d23db88c 4014 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4015 WARN(vma->pin_count,
ec7adb6e 4016 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4017 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4018 " obj->map_and_fenceable=%d\n",
ec7adb6e 4019 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4020 upper_32_bits(vma->node.start),
4021 lower_32_bits(vma->node.start),
fe14d5f4 4022 alignment,
d23db88c 4023 !!(flags & PIN_MAPPABLE),
05394f39 4024 obj->map_and_fenceable);
07fe0b12 4025 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4026 if (ret)
4027 return ret;
8ea99c92
DV
4028
4029 vma = NULL;
ac0c6b5a
CW
4030 }
4031 }
4032
ef79e17c 4033 bound = vma ? vma->bound : 0;
8ea99c92 4034 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4035 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4036 flags);
262de145
DV
4037 if (IS_ERR(vma))
4038 return PTR_ERR(vma);
0875546c
DV
4039 } else {
4040 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4041 if (ret)
4042 return ret;
4043 }
74898d7e 4044
91e6711e
JL
4045 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4046 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4047 bool mappable, fenceable;
4048 u32 fence_size, fence_alignment;
4049
4050 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4051 obj->base.size,
4052 obj->tiling_mode);
4053 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4054 obj->base.size,
4055 obj->tiling_mode,
4056 true);
4057
4058 fenceable = (vma->node.size == fence_size &&
4059 (vma->node.start & (fence_alignment - 1)) == 0);
4060
e8dec1dd 4061 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4062 dev_priv->gtt.mappable_end);
4063
4064 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4065
91e6711e
JL
4066 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4067 }
ef79e17c 4068
8ea99c92 4069 vma->pin_count++;
673a394b
EA
4070 return 0;
4071}
4072
ec7adb6e
JL
4073int
4074i915_gem_object_pin(struct drm_i915_gem_object *obj,
4075 struct i915_address_space *vm,
4076 uint32_t alignment,
4077 uint64_t flags)
4078{
4079 return i915_gem_object_do_pin(obj, vm,
4080 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4081 alignment, flags);
4082}
4083
4084int
4085i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4086 const struct i915_ggtt_view *view,
4087 uint32_t alignment,
4088 uint64_t flags)
4089{
4090 if (WARN_ONCE(!view, "no view specified"))
4091 return -EINVAL;
4092
4093 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4094 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4095}
4096
673a394b 4097void
e6617330
TU
4098i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4099 const struct i915_ggtt_view *view)
673a394b 4100{
e6617330 4101 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4102
d7f46fc4 4103 BUG_ON(!vma);
e6617330 4104 WARN_ON(vma->pin_count == 0);
9abc4648 4105 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4106
30154650 4107 --vma->pin_count;
673a394b
EA
4108}
4109
673a394b
EA
4110int
4111i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4112 struct drm_file *file)
673a394b
EA
4113{
4114 struct drm_i915_gem_busy *args = data;
05394f39 4115 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4116 int ret;
4117
76c1dec1 4118 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4119 if (ret)
76c1dec1 4120 return ret;
673a394b 4121
05394f39 4122 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4123 if (&obj->base == NULL) {
1d7cfea1
CW
4124 ret = -ENOENT;
4125 goto unlock;
673a394b 4126 }
d1b851fc 4127
0be555b6
CW
4128 /* Count all active objects as busy, even if they are currently not used
4129 * by the gpu. Users of this interface expect objects to eventually
4130 * become non-busy without any further actions, therefore emit any
4131 * necessary flushes here.
c4de0a5d 4132 */
30dfebf3 4133 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4134 if (ret)
4135 goto unref;
0be555b6 4136
b4716185
CW
4137 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4138 args->busy = obj->active << 16;
4139 if (obj->last_write_req)
4140 args->busy |= obj->last_write_req->ring->id;
673a394b 4141
b4716185 4142unref:
05394f39 4143 drm_gem_object_unreference(&obj->base);
1d7cfea1 4144unlock:
673a394b 4145 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4146 return ret;
673a394b
EA
4147}
4148
4149int
4150i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4151 struct drm_file *file_priv)
4152{
0206e353 4153 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4154}
4155
3ef94daa
CW
4156int
4157i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4158 struct drm_file *file_priv)
4159{
656bfa3a 4160 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4161 struct drm_i915_gem_madvise *args = data;
05394f39 4162 struct drm_i915_gem_object *obj;
76c1dec1 4163 int ret;
3ef94daa
CW
4164
4165 switch (args->madv) {
4166 case I915_MADV_DONTNEED:
4167 case I915_MADV_WILLNEED:
4168 break;
4169 default:
4170 return -EINVAL;
4171 }
4172
1d7cfea1
CW
4173 ret = i915_mutex_lock_interruptible(dev);
4174 if (ret)
4175 return ret;
4176
05394f39 4177 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4178 if (&obj->base == NULL) {
1d7cfea1
CW
4179 ret = -ENOENT;
4180 goto unlock;
3ef94daa 4181 }
3ef94daa 4182
d7f46fc4 4183 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4184 ret = -EINVAL;
4185 goto out;
3ef94daa
CW
4186 }
4187
656bfa3a
DV
4188 if (obj->pages &&
4189 obj->tiling_mode != I915_TILING_NONE &&
4190 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4191 if (obj->madv == I915_MADV_WILLNEED)
4192 i915_gem_object_unpin_pages(obj);
4193 if (args->madv == I915_MADV_WILLNEED)
4194 i915_gem_object_pin_pages(obj);
4195 }
4196
05394f39
CW
4197 if (obj->madv != __I915_MADV_PURGED)
4198 obj->madv = args->madv;
3ef94daa 4199
6c085a72 4200 /* if the object is no longer attached, discard its backing storage */
be6a0376 4201 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4202 i915_gem_object_truncate(obj);
4203
05394f39 4204 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4205
1d7cfea1 4206out:
05394f39 4207 drm_gem_object_unreference(&obj->base);
1d7cfea1 4208unlock:
3ef94daa 4209 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4210 return ret;
3ef94daa
CW
4211}
4212
37e680a1
CW
4213void i915_gem_object_init(struct drm_i915_gem_object *obj,
4214 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4215{
b4716185
CW
4216 int i;
4217
35c20a60 4218 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4219 for (i = 0; i < I915_NUM_RINGS; i++)
4220 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4221 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4222 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4223 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4224
37e680a1
CW
4225 obj->ops = ops;
4226
0327d6ba
CW
4227 obj->fence_reg = I915_FENCE_REG_NONE;
4228 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4229
4230 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4231}
4232
37e680a1
CW
4233static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4234 .get_pages = i915_gem_object_get_pages_gtt,
4235 .put_pages = i915_gem_object_put_pages_gtt,
4236};
4237
05394f39
CW
4238struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4239 size_t size)
ac52bc56 4240{
c397b908 4241 struct drm_i915_gem_object *obj;
5949eac4 4242 struct address_space *mapping;
1a240d4d 4243 gfp_t mask;
ac52bc56 4244
42dcedd4 4245 obj = i915_gem_object_alloc(dev);
c397b908
DV
4246 if (obj == NULL)
4247 return NULL;
673a394b 4248
c397b908 4249 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4250 i915_gem_object_free(obj);
c397b908
DV
4251 return NULL;
4252 }
673a394b 4253
bed1ea95
CW
4254 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4255 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4256 /* 965gm cannot relocate objects above 4GiB. */
4257 mask &= ~__GFP_HIGHMEM;
4258 mask |= __GFP_DMA32;
4259 }
4260
496ad9aa 4261 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4262 mapping_set_gfp_mask(mapping, mask);
5949eac4 4263
37e680a1 4264 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4265
c397b908
DV
4266 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4267 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4268
3d29b842
ED
4269 if (HAS_LLC(dev)) {
4270 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4271 * cache) for about a 10% performance improvement
4272 * compared to uncached. Graphics requests other than
4273 * display scanout are coherent with the CPU in
4274 * accessing this cache. This means in this mode we
4275 * don't need to clflush on the CPU side, and on the
4276 * GPU side we only need to flush internal caches to
4277 * get data visible to the CPU.
4278 *
4279 * However, we maintain the display planes as UC, and so
4280 * need to rebind when first used as such.
4281 */
4282 obj->cache_level = I915_CACHE_LLC;
4283 } else
4284 obj->cache_level = I915_CACHE_NONE;
4285
d861e338
DV
4286 trace_i915_gem_object_create(obj);
4287
05394f39 4288 return obj;
c397b908
DV
4289}
4290
340fbd8c
CW
4291static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4292{
4293 /* If we are the last user of the backing storage (be it shmemfs
4294 * pages or stolen etc), we know that the pages are going to be
4295 * immediately released. In this case, we can then skip copying
4296 * back the contents from the GPU.
4297 */
4298
4299 if (obj->madv != I915_MADV_WILLNEED)
4300 return false;
4301
4302 if (obj->base.filp == NULL)
4303 return true;
4304
4305 /* At first glance, this looks racy, but then again so would be
4306 * userspace racing mmap against close. However, the first external
4307 * reference to the filp can only be obtained through the
4308 * i915_gem_mmap_ioctl() which safeguards us against the user
4309 * acquiring such a reference whilst we are in the middle of
4310 * freeing the object.
4311 */
4312 return atomic_long_read(&obj->base.filp->f_count) == 1;
4313}
4314
1488fc08 4315void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4316{
1488fc08 4317 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4318 struct drm_device *dev = obj->base.dev;
3e31c6c0 4319 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4320 struct i915_vma *vma, *next;
673a394b 4321
f65c9168
PZ
4322 intel_runtime_pm_get(dev_priv);
4323
26e12f89
CW
4324 trace_i915_gem_object_destroy(obj);
4325
07fe0b12 4326 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4327 int ret;
4328
4329 vma->pin_count = 0;
4330 ret = i915_vma_unbind(vma);
07fe0b12
BW
4331 if (WARN_ON(ret == -ERESTARTSYS)) {
4332 bool was_interruptible;
1488fc08 4333
07fe0b12
BW
4334 was_interruptible = dev_priv->mm.interruptible;
4335 dev_priv->mm.interruptible = false;
1488fc08 4336
07fe0b12 4337 WARN_ON(i915_vma_unbind(vma));
1488fc08 4338
07fe0b12
BW
4339 dev_priv->mm.interruptible = was_interruptible;
4340 }
1488fc08
CW
4341 }
4342
1d64ae71
BW
4343 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4344 * before progressing. */
4345 if (obj->stolen)
4346 i915_gem_object_unpin_pages(obj);
4347
a071fa00
DV
4348 WARN_ON(obj->frontbuffer_bits);
4349
656bfa3a
DV
4350 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4351 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4352 obj->tiling_mode != I915_TILING_NONE)
4353 i915_gem_object_unpin_pages(obj);
4354
401c29f6
BW
4355 if (WARN_ON(obj->pages_pin_count))
4356 obj->pages_pin_count = 0;
340fbd8c 4357 if (discard_backing_storage(obj))
5537252b 4358 obj->madv = I915_MADV_DONTNEED;
37e680a1 4359 i915_gem_object_put_pages(obj);
d8cb5086 4360 i915_gem_object_free_mmap_offset(obj);
de151cf6 4361
9da3da66
CW
4362 BUG_ON(obj->pages);
4363
2f745ad3
CW
4364 if (obj->base.import_attach)
4365 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4366
5cc9ed4b
CW
4367 if (obj->ops->release)
4368 obj->ops->release(obj);
4369
05394f39
CW
4370 drm_gem_object_release(&obj->base);
4371 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4372
05394f39 4373 kfree(obj->bit_17);
42dcedd4 4374 i915_gem_object_free(obj);
f65c9168
PZ
4375
4376 intel_runtime_pm_put(dev_priv);
673a394b
EA
4377}
4378
ec7adb6e
JL
4379struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4380 struct i915_address_space *vm)
e656a6cb
DV
4381{
4382 struct i915_vma *vma;
ec7adb6e
JL
4383 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4384 if (i915_is_ggtt(vma->vm) &&
4385 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4386 continue;
4387 if (vma->vm == vm)
e656a6cb 4388 return vma;
ec7adb6e
JL
4389 }
4390 return NULL;
4391}
4392
4393struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4394 const struct i915_ggtt_view *view)
4395{
4396 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4397 struct i915_vma *vma;
e656a6cb 4398
ec7adb6e
JL
4399 if (WARN_ONCE(!view, "no view specified"))
4400 return ERR_PTR(-EINVAL);
4401
4402 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4403 if (vma->vm == ggtt &&
4404 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4405 return vma;
e656a6cb
DV
4406 return NULL;
4407}
4408
2f633156
BW
4409void i915_gem_vma_destroy(struct i915_vma *vma)
4410{
b9d06dd9 4411 struct i915_address_space *vm = NULL;
2f633156 4412 WARN_ON(vma->node.allocated);
aaa05667
CW
4413
4414 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4415 if (!list_empty(&vma->exec_list))
4416 return;
4417
b9d06dd9 4418 vm = vma->vm;
b9d06dd9 4419
841cd773
DV
4420 if (!i915_is_ggtt(vm))
4421 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4422
8b9c2b94 4423 list_del(&vma->vma_link);
b93dab6e 4424
e20d2ab7 4425 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4426}
4427
e3efda49
CW
4428static void
4429i915_gem_stop_ringbuffers(struct drm_device *dev)
4430{
4431 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4432 struct intel_engine_cs *ring;
e3efda49
CW
4433 int i;
4434
4435 for_each_ring(ring, dev_priv, i)
a83014d3 4436 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4437}
4438
29105ccc 4439int
45c5f202 4440i915_gem_suspend(struct drm_device *dev)
29105ccc 4441{
3e31c6c0 4442 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4443 int ret = 0;
28dfe52a 4444
45c5f202 4445 mutex_lock(&dev->struct_mutex);
b2da9fe5 4446 ret = i915_gpu_idle(dev);
f7403347 4447 if (ret)
45c5f202 4448 goto err;
f7403347 4449
b2da9fe5 4450 i915_gem_retire_requests(dev);
673a394b 4451
e3efda49 4452 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4453 mutex_unlock(&dev->struct_mutex);
4454
737b1506 4455 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4456 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4457 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4458
bdcf120b
CW
4459 /* Assert that we sucessfully flushed all the work and
4460 * reset the GPU back to its idle, low power state.
4461 */
4462 WARN_ON(dev_priv->mm.busy);
4463
673a394b 4464 return 0;
45c5f202
CW
4465
4466err:
4467 mutex_unlock(&dev->struct_mutex);
4468 return ret;
673a394b
EA
4469}
4470
6909a666 4471int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4472{
6909a666 4473 struct intel_engine_cs *ring = req->ring;
c3787e2e 4474 struct drm_device *dev = ring->dev;
3e31c6c0 4475 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4476 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4477 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4478 int i, ret;
b9524a1e 4479
040d2baa 4480 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4481 return 0;
b9524a1e 4482
5fb9de1a 4483 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4484 if (ret)
4485 return ret;
b9524a1e 4486
c3787e2e
BW
4487 /*
4488 * Note: We do not worry about the concurrent register cacheline hang
4489 * here because no other code should access these registers other than
4490 * at initialization time.
4491 */
b9524a1e 4492 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4493 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4494 intel_ring_emit(ring, reg_base + i);
4495 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4496 }
4497
c3787e2e 4498 intel_ring_advance(ring);
b9524a1e 4499
c3787e2e 4500 return ret;
b9524a1e
BW
4501}
4502
f691e2f4
DV
4503void i915_gem_init_swizzling(struct drm_device *dev)
4504{
3e31c6c0 4505 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4506
11782b02 4507 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4508 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4509 return;
4510
4511 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4512 DISP_TILE_SURFACE_SWIZZLING);
4513
11782b02
DV
4514 if (IS_GEN5(dev))
4515 return;
4516
f691e2f4
DV
4517 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4518 if (IS_GEN6(dev))
6b26c86d 4519 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4520 else if (IS_GEN7(dev))
6b26c86d 4521 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4522 else if (IS_GEN8(dev))
4523 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4524 else
4525 BUG();
f691e2f4 4526}
e21af88d 4527
67b1b571
CW
4528static bool
4529intel_enable_blt(struct drm_device *dev)
4530{
4531 if (!HAS_BLT(dev))
4532 return false;
4533
4534 /* The blitter was dysfunctional on early prototypes */
4535 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4536 DRM_INFO("BLT not supported on this pre-production hardware;"
4537 " graphics performance will be degraded.\n");
4538 return false;
4539 }
4540
4541 return true;
4542}
4543
81e7f200
VS
4544static void init_unused_ring(struct drm_device *dev, u32 base)
4545{
4546 struct drm_i915_private *dev_priv = dev->dev_private;
4547
4548 I915_WRITE(RING_CTL(base), 0);
4549 I915_WRITE(RING_HEAD(base), 0);
4550 I915_WRITE(RING_TAIL(base), 0);
4551 I915_WRITE(RING_START(base), 0);
4552}
4553
4554static void init_unused_rings(struct drm_device *dev)
4555{
4556 if (IS_I830(dev)) {
4557 init_unused_ring(dev, PRB1_BASE);
4558 init_unused_ring(dev, SRB0_BASE);
4559 init_unused_ring(dev, SRB1_BASE);
4560 init_unused_ring(dev, SRB2_BASE);
4561 init_unused_ring(dev, SRB3_BASE);
4562 } else if (IS_GEN2(dev)) {
4563 init_unused_ring(dev, SRB0_BASE);
4564 init_unused_ring(dev, SRB1_BASE);
4565 } else if (IS_GEN3(dev)) {
4566 init_unused_ring(dev, PRB1_BASE);
4567 init_unused_ring(dev, PRB2_BASE);
4568 }
4569}
4570
a83014d3 4571int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4572{
4fc7c971 4573 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4574 int ret;
68f95ba9 4575
5c1143bb 4576 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4577 if (ret)
b6913e4b 4578 return ret;
68f95ba9
CW
4579
4580 if (HAS_BSD(dev)) {
5c1143bb 4581 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4582 if (ret)
4583 goto cleanup_render_ring;
d1b851fc 4584 }
68f95ba9 4585
67b1b571 4586 if (intel_enable_blt(dev)) {
549f7365
CW
4587 ret = intel_init_blt_ring_buffer(dev);
4588 if (ret)
4589 goto cleanup_bsd_ring;
4590 }
4591
9a8a2213
BW
4592 if (HAS_VEBOX(dev)) {
4593 ret = intel_init_vebox_ring_buffer(dev);
4594 if (ret)
4595 goto cleanup_blt_ring;
4596 }
4597
845f74a7
ZY
4598 if (HAS_BSD2(dev)) {
4599 ret = intel_init_bsd2_ring_buffer(dev);
4600 if (ret)
4601 goto cleanup_vebox_ring;
4602 }
9a8a2213 4603
99433931 4604 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4605 if (ret)
845f74a7 4606 goto cleanup_bsd2_ring;
4fc7c971
BW
4607
4608 return 0;
4609
845f74a7
ZY
4610cleanup_bsd2_ring:
4611 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4612cleanup_vebox_ring:
4613 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4614cleanup_blt_ring:
4615 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4616cleanup_bsd_ring:
4617 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4618cleanup_render_ring:
4619 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4620
4621 return ret;
4622}
4623
4624int
4625i915_gem_init_hw(struct drm_device *dev)
4626{
3e31c6c0 4627 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4628 struct intel_engine_cs *ring;
4ad2fd88 4629 int ret, i, j;
4fc7c971
BW
4630
4631 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4632 return -EIO;
4633
5e4f5189
CW
4634 /* Double layer security blanket, see i915_gem_init() */
4635 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4636
59124506 4637 if (dev_priv->ellc_size)
05e21cc4 4638 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4639
0bf21347
VS
4640 if (IS_HASWELL(dev))
4641 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4642 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4643
88a2b2a3 4644 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4645 if (IS_IVYBRIDGE(dev)) {
4646 u32 temp = I915_READ(GEN7_MSG_CTL);
4647 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4648 I915_WRITE(GEN7_MSG_CTL, temp);
4649 } else if (INTEL_INFO(dev)->gen >= 7) {
4650 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4651 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4652 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4653 }
88a2b2a3
BW
4654 }
4655
4fc7c971
BW
4656 i915_gem_init_swizzling(dev);
4657
d5abdfda
DV
4658 /*
4659 * At least 830 can leave some of the unused rings
4660 * "active" (ie. head != tail) after resume which
4661 * will prevent c3 entry. Makes sure all unused rings
4662 * are totally idle.
4663 */
4664 init_unused_rings(dev);
4665
90638cc1
JH
4666 BUG_ON(!dev_priv->ring[RCS].default_context);
4667
4ad2fd88
JH
4668 ret = i915_ppgtt_init_hw(dev);
4669 if (ret) {
4670 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4671 goto out;
4672 }
4673
4674 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4675 for_each_ring(ring, dev_priv, i) {
4676 ret = ring->init_hw(ring);
4677 if (ret)
5e4f5189 4678 goto out;
35a57ffb 4679 }
99433931 4680
4ad2fd88
JH
4681 /* Now it is safe to go back round and do everything else: */
4682 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4683 struct drm_i915_gem_request *req;
4684
90638cc1
JH
4685 WARN_ON(!ring->default_context);
4686
dc4be607
JH
4687 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4688 if (ret) {
4689 i915_gem_cleanup_ringbuffer(dev);
4690 goto out;
4691 }
4692
4ad2fd88
JH
4693 if (ring->id == RCS) {
4694 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4695 i915_gem_l3_remap(req, j);
4ad2fd88 4696 }
c3787e2e 4697
b3dd6b96 4698 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4699 if (ret && ret != -EIO) {
4700 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4701 i915_gem_request_cancel(req);
4ad2fd88
JH
4702 i915_gem_cleanup_ringbuffer(dev);
4703 goto out;
4704 }
82460d97 4705
b3dd6b96 4706 ret = i915_gem_context_enable(req);
90638cc1
JH
4707 if (ret && ret != -EIO) {
4708 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4709 i915_gem_request_cancel(req);
90638cc1
JH
4710 i915_gem_cleanup_ringbuffer(dev);
4711 goto out;
4712 }
dc4be607 4713
75289874 4714 i915_add_request_no_flush(req);
b7c36d25 4715 }
e21af88d 4716
5e4f5189
CW
4717out:
4718 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4719 return ret;
8187a2b7
ZN
4720}
4721
1070a42b
CW
4722int i915_gem_init(struct drm_device *dev)
4723{
4724 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4725 int ret;
4726
127f1003
OM
4727 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4728 i915.enable_execlists);
4729
1070a42b 4730 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4731
4732 if (IS_VALLEYVIEW(dev)) {
4733 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4734 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4735 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4736 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4737 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4738 }
4739
a83014d3 4740 if (!i915.enable_execlists) {
f3dc74c0 4741 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4742 dev_priv->gt.init_rings = i915_gem_init_rings;
4743 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4744 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4745 } else {
f3dc74c0 4746 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4747 dev_priv->gt.init_rings = intel_logical_rings_init;
4748 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4749 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4750 }
4751
5e4f5189
CW
4752 /* This is just a security blanket to placate dragons.
4753 * On some systems, we very sporadically observe that the first TLBs
4754 * used by the CS may be stale, despite us poking the TLB reset. If
4755 * we hold the forcewake during initialisation these problems
4756 * just magically go away.
4757 */
4758 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4759
6c5566a8 4760 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4761 if (ret)
4762 goto out_unlock;
6c5566a8 4763
d7e5008f 4764 i915_gem_init_global_gtt(dev);
d62b4892 4765
2fa48d8d 4766 ret = i915_gem_context_init(dev);
7bcc3777
JN
4767 if (ret)
4768 goto out_unlock;
2fa48d8d 4769
35a57ffb
DV
4770 ret = dev_priv->gt.init_rings(dev);
4771 if (ret)
7bcc3777 4772 goto out_unlock;
2fa48d8d 4773
1070a42b 4774 ret = i915_gem_init_hw(dev);
60990320
CW
4775 if (ret == -EIO) {
4776 /* Allow ring initialisation to fail by marking the GPU as
4777 * wedged. But we only want to do this where the GPU is angry,
4778 * for all other failure, such as an allocation failure, bail.
4779 */
4780 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4781 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4782 ret = 0;
1070a42b 4783 }
7bcc3777
JN
4784
4785out_unlock:
5e4f5189 4786 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4787 mutex_unlock(&dev->struct_mutex);
1070a42b 4788
60990320 4789 return ret;
1070a42b
CW
4790}
4791
8187a2b7
ZN
4792void
4793i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4794{
3e31c6c0 4795 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4796 struct intel_engine_cs *ring;
1ec14ad3 4797 int i;
8187a2b7 4798
b4519513 4799 for_each_ring(ring, dev_priv, i)
a83014d3 4800 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
4801
4802 if (i915.enable_execlists)
4803 /*
4804 * Neither the BIOS, ourselves or any other kernel
4805 * expects the system to be in execlists mode on startup,
4806 * so we need to reset the GPU back to legacy mode.
4807 */
4808 intel_gpu_reset(dev);
8187a2b7
ZN
4809}
4810
64193406 4811static void
a4872ba6 4812init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4813{
4814 INIT_LIST_HEAD(&ring->active_list);
4815 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4816}
4817
7e0d96bc
BW
4818void i915_init_vm(struct drm_i915_private *dev_priv,
4819 struct i915_address_space *vm)
fc8c067e 4820{
7e0d96bc
BW
4821 if (!i915_is_ggtt(vm))
4822 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4823 vm->dev = dev_priv->dev;
4824 INIT_LIST_HEAD(&vm->active_list);
4825 INIT_LIST_HEAD(&vm->inactive_list);
4826 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4827 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4828}
4829
673a394b
EA
4830void
4831i915_gem_load(struct drm_device *dev)
4832{
3e31c6c0 4833 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4834 int i;
4835
efab6d8d 4836 dev_priv->objects =
42dcedd4
CW
4837 kmem_cache_create("i915_gem_object",
4838 sizeof(struct drm_i915_gem_object), 0,
4839 SLAB_HWCACHE_ALIGN,
4840 NULL);
e20d2ab7
CW
4841 dev_priv->vmas =
4842 kmem_cache_create("i915_gem_vma",
4843 sizeof(struct i915_vma), 0,
4844 SLAB_HWCACHE_ALIGN,
4845 NULL);
efab6d8d
CW
4846 dev_priv->requests =
4847 kmem_cache_create("i915_gem_request",
4848 sizeof(struct drm_i915_gem_request), 0,
4849 SLAB_HWCACHE_ALIGN,
4850 NULL);
673a394b 4851
fc8c067e
BW
4852 INIT_LIST_HEAD(&dev_priv->vm_list);
4853 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4854
a33afea5 4855 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4856 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4857 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4858 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4859 for (i = 0; i < I915_NUM_RINGS; i++)
4860 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4861 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4862 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4863 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4864 i915_gem_retire_work_handler);
b29c19b6
CW
4865 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4866 i915_gem_idle_work_handler);
1f83fee0 4867 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4868
72bfa19c
CW
4869 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4870
42b5aeab
VS
4871 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4872 dev_priv->num_fence_regs = 32;
4873 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4874 dev_priv->num_fence_regs = 16;
4875 else
4876 dev_priv->num_fence_regs = 8;
4877
eb82289a
YZ
4878 if (intel_vgpu_active(dev))
4879 dev_priv->num_fence_regs =
4880 I915_READ(vgtif_reg(avail_rs.fence_num));
4881
b5aa8a0f 4882 /* Initialize fence registers to zero */
19b2dbde
CW
4883 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4884 i915_gem_restore_fences(dev);
10ed13e4 4885
673a394b 4886 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4887 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4888
ce453d81
CW
4889 dev_priv->mm.interruptible = true;
4890
be6a0376 4891 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
4892
4893 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4894}
71acb5eb 4895
f787a5f5 4896void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4897{
f787a5f5 4898 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4899
4900 /* Clean up our request list when the client is going away, so that
4901 * later retire_requests won't dereference our soon-to-be-gone
4902 * file_priv.
4903 */
1c25595f 4904 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4905 while (!list_empty(&file_priv->mm.request_list)) {
4906 struct drm_i915_gem_request *request;
4907
4908 request = list_first_entry(&file_priv->mm.request_list,
4909 struct drm_i915_gem_request,
4910 client_list);
4911 list_del(&request->client_list);
4912 request->file_priv = NULL;
4913 }
1c25595f 4914 spin_unlock(&file_priv->mm.lock);
b29c19b6 4915
2e1b8730 4916 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4917 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4918 list_del(&file_priv->rps.link);
8d3afd7d 4919 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4920 }
b29c19b6
CW
4921}
4922
4923int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4924{
4925 struct drm_i915_file_private *file_priv;
e422b888 4926 int ret;
b29c19b6
CW
4927
4928 DRM_DEBUG_DRIVER("\n");
4929
4930 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4931 if (!file_priv)
4932 return -ENOMEM;
4933
4934 file->driver_priv = file_priv;
4935 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4936 file_priv->file = file;
2e1b8730 4937 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4938
4939 spin_lock_init(&file_priv->mm.lock);
4940 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4941
e422b888
BW
4942 ret = i915_gem_context_open(dev, file);
4943 if (ret)
4944 kfree(file_priv);
b29c19b6 4945
e422b888 4946 return ret;
b29c19b6
CW
4947}
4948
b680c37a
DV
4949/**
4950 * i915_gem_track_fb - update frontbuffer tracking
4951 * old: current GEM buffer for the frontbuffer slots
4952 * new: new GEM buffer for the frontbuffer slots
4953 * frontbuffer_bits: bitmask of frontbuffer slots
4954 *
4955 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4956 * from @old and setting them in @new. Both @old and @new can be NULL.
4957 */
a071fa00
DV
4958void i915_gem_track_fb(struct drm_i915_gem_object *old,
4959 struct drm_i915_gem_object *new,
4960 unsigned frontbuffer_bits)
4961{
4962 if (old) {
4963 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4964 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4965 old->frontbuffer_bits &= ~frontbuffer_bits;
4966 }
4967
4968 if (new) {
4969 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4970 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4971 new->frontbuffer_bits |= frontbuffer_bits;
4972 }
4973}
4974
a70a3148 4975/* All the new VM stuff */
088e0df4
MT
4976u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4977 struct i915_address_space *vm)
a70a3148
BW
4978{
4979 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4980 struct i915_vma *vma;
4981
896ab1a5 4982 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 4983
a70a3148 4984 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
4985 if (i915_is_ggtt(vma->vm) &&
4986 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4987 continue;
4988 if (vma->vm == vm)
a70a3148 4989 return vma->node.start;
a70a3148 4990 }
ec7adb6e 4991
f25748ea
DV
4992 WARN(1, "%s vma for this object not found.\n",
4993 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
4994 return -1;
4995}
4996
088e0df4
MT
4997u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4998 const struct i915_ggtt_view *view)
a70a3148 4999{
ec7adb6e 5000 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5001 struct i915_vma *vma;
5002
5003 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5004 if (vma->vm == ggtt &&
5005 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5006 return vma->node.start;
5007
5678ad73 5008 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5009 return -1;
5010}
5011
5012bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5013 struct i915_address_space *vm)
5014{
5015 struct i915_vma *vma;
5016
5017 list_for_each_entry(vma, &o->vma_list, vma_link) {
5018 if (i915_is_ggtt(vma->vm) &&
5019 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5020 continue;
5021 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5022 return true;
5023 }
5024
5025 return false;
5026}
5027
5028bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5029 const struct i915_ggtt_view *view)
ec7adb6e
JL
5030{
5031 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5032 struct i915_vma *vma;
5033
5034 list_for_each_entry(vma, &o->vma_list, vma_link)
5035 if (vma->vm == ggtt &&
9abc4648 5036 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5037 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5038 return true;
5039
5040 return false;
5041}
5042
5043bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5044{
5a1d5eb0 5045 struct i915_vma *vma;
a70a3148 5046
5a1d5eb0
CW
5047 list_for_each_entry(vma, &o->vma_list, vma_link)
5048 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5049 return true;
5050
5051 return false;
5052}
5053
5054unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5055 struct i915_address_space *vm)
5056{
5057 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5058 struct i915_vma *vma;
5059
896ab1a5 5060 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5061
5062 BUG_ON(list_empty(&o->vma_list));
5063
ec7adb6e
JL
5064 list_for_each_entry(vma, &o->vma_list, vma_link) {
5065 if (i915_is_ggtt(vma->vm) &&
5066 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5067 continue;
a70a3148
BW
5068 if (vma->vm == vm)
5069 return vma->node.size;
ec7adb6e 5070 }
a70a3148
BW
5071 return 0;
5072}
5073
ec7adb6e 5074bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5075{
5076 struct i915_vma *vma;
a6631ae1 5077 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5078 if (vma->pin_count > 0)
5079 return true;
a6631ae1 5080
ec7adb6e 5081 return false;
5c2abbea 5082}
ea70299d
DG
5083
5084/* Allocate a new GEM object and fill it with the supplied data */
5085struct drm_i915_gem_object *
5086i915_gem_object_create_from_data(struct drm_device *dev,
5087 const void *data, size_t size)
5088{
5089 struct drm_i915_gem_object *obj;
5090 struct sg_table *sg;
5091 size_t bytes;
5092 int ret;
5093
5094 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5095 if (IS_ERR_OR_NULL(obj))
5096 return obj;
5097
5098 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5099 if (ret)
5100 goto fail;
5101
5102 ret = i915_gem_object_get_pages(obj);
5103 if (ret)
5104 goto fail;
5105
5106 i915_gem_object_pin_pages(obj);
5107 sg = obj->pages;
5108 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5109 i915_gem_object_unpin_pages(obj);
5110
5111 if (WARN_ON(bytes != size)) {
5112 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5113 ret = -EFAULT;
5114 goto fail;
5115 }
5116
5117 return obj;
5118
5119fail:
5120 drm_gem_object_unreference(&obj->base);
5121 return ERR_PTR(ret);
5122}
This page took 2.002534 seconds and 5 git commands to generate.