drm/i915/evict: Ensure we completely cleanup on failure
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71
CW
58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
30dbf0c0
CW
78int
79i915_gem_check_is_wedged(struct drm_device *dev)
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
93 /* Success, we reset the GPU! */
94 if (!atomic_read(&dev_priv->mm.wedged))
95 return 0;
96
97 /* GPU is hung, bump the completion count to account for
98 * the token we just consumed so that we never hit zero and
99 * end up waiting upon a subsequent completion event that
100 * will never happen.
101 */
102 spin_lock_irqsave(&x->wait.lock, flags);
103 x->done++;
104 spin_unlock_irqrestore(&x->wait.lock, flags);
105 return -EIO;
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1
CW
109{
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
112
113 ret = i915_gem_check_is_wedged(dev);
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
121 if (atomic_read(&dev_priv->mm.wedged)) {
122 mutex_unlock(&dev->struct_mutex);
123 return -EAGAIN;
124 }
125
23bc5982 126 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
127 return 0;
128}
30dbf0c0 129
7d1c4804 130static inline bool
05394f39 131i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 132{
05394f39 133 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
134}
135
2021746e
CW
136void i915_gem_do_init(struct drm_device *dev,
137 unsigned long start,
138 unsigned long mappable_end,
139 unsigned long end)
673a394b
EA
140{
141 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 142
79e53945
JB
143 drm_mm_init(&dev_priv->mm.gtt_space, start,
144 end - start);
673a394b 145
73aa808f 146 dev_priv->mm.gtt_total = end - start;
fb7d516a 147 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 148 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945 149}
673a394b 150
79e53945
JB
151int
152i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 153 struct drm_file *file)
79e53945
JB
154{
155 struct drm_i915_gem_init *args = data;
2021746e
CW
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945
JB
160
161 mutex_lock(&dev->struct_mutex);
2021746e 162 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
163 mutex_unlock(&dev->struct_mutex);
164
2021746e 165 return 0;
673a394b
EA
166}
167
5a125c3c
EA
168int
169i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
5a125c3c 171{
73aa808f 172 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 173 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
5a125c3c
EA
176
177 if (!(dev->driver->driver_features & DRIVER_GEM))
178 return -ENODEV;
179
6299f992 180 pinned = 0;
73aa808f 181 mutex_lock(&dev->struct_mutex);
6299f992
CW
182 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
183 pinned += obj->gtt_space->size;
73aa808f 184 mutex_unlock(&dev->struct_mutex);
5a125c3c 185
6299f992
CW
186 args->aper_size = dev_priv->mm.gtt_total;
187 args->aper_available_size = args->aper_size -pinned;
188
5a125c3c
EA
189 return 0;
190}
191
673a394b
EA
192/**
193 * Creates a new mm object and returns a handle to it.
194 */
195int
196i915_gem_create_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
673a394b
EA
198{
199 struct drm_i915_gem_create *args = data;
05394f39 200 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
201 int ret;
202 u32 handle;
673a394b
EA
203
204 args->size = roundup(args->size, PAGE_SIZE);
205
206 /* Allocate the new object */
ac52bc56 207 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
208 if (obj == NULL)
209 return -ENOMEM;
210
05394f39 211 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 212 if (ret) {
05394f39
CW
213 drm_gem_object_release(&obj->base);
214 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 215 kfree(obj);
673a394b 216 return ret;
1dfd9754 217 }
673a394b 218
202f2fef 219 /* drop reference from allocate - handle holds it now */
05394f39 220 drm_gem_object_unreference(&obj->base);
202f2fef
CW
221 trace_i915_gem_object_create(obj);
222
1dfd9754 223 args->handle = handle;
673a394b
EA
224 return 0;
225}
226
05394f39 227static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 228{
05394f39 229 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
230
231 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 232 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
233}
234
99a03df5 235static inline void
40123c1f
EA
236slow_shmem_copy(struct page *dst_page,
237 int dst_offset,
238 struct page *src_page,
239 int src_offset,
240 int length)
241{
242 char *dst_vaddr, *src_vaddr;
243
99a03df5
CW
244 dst_vaddr = kmap(dst_page);
245 src_vaddr = kmap(src_page);
40123c1f
EA
246
247 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
248
99a03df5
CW
249 kunmap(src_page);
250 kunmap(dst_page);
40123c1f
EA
251}
252
99a03df5 253static inline void
280b713b
EA
254slow_shmem_bit17_copy(struct page *gpu_page,
255 int gpu_offset,
256 struct page *cpu_page,
257 int cpu_offset,
258 int length,
259 int is_read)
260{
261 char *gpu_vaddr, *cpu_vaddr;
262
263 /* Use the unswizzled path if this page isn't affected. */
264 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
265 if (is_read)
266 return slow_shmem_copy(cpu_page, cpu_offset,
267 gpu_page, gpu_offset, length);
268 else
269 return slow_shmem_copy(gpu_page, gpu_offset,
270 cpu_page, cpu_offset, length);
271 }
272
99a03df5
CW
273 gpu_vaddr = kmap(gpu_page);
274 cpu_vaddr = kmap(cpu_page);
280b713b
EA
275
276 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
277 * XORing with the other bits (A9 for Y, A9 and A10 for X)
278 */
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284 if (is_read) {
285 memcpy(cpu_vaddr + cpu_offset,
286 gpu_vaddr + swizzled_gpu_offset,
287 this_length);
288 } else {
289 memcpy(gpu_vaddr + swizzled_gpu_offset,
290 cpu_vaddr + cpu_offset,
291 this_length);
292 }
293 cpu_offset += this_length;
294 gpu_offset += this_length;
295 length -= this_length;
296 }
297
99a03df5
CW
298 kunmap(cpu_page);
299 kunmap(gpu_page);
280b713b
EA
300}
301
eb01459f
EA
302/**
303 * This is the fast shmem pread path, which attempts to copy_from_user directly
304 * from the backing pages of the object to the user's address space. On a
305 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
306 */
307static int
05394f39
CW
308i915_gem_shmem_pread_fast(struct drm_device *dev,
309 struct drm_i915_gem_object *obj,
eb01459f 310 struct drm_i915_gem_pread *args,
05394f39 311 struct drm_file *file)
eb01459f 312{
05394f39 313 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 314 ssize_t remain;
e5281ccd 315 loff_t offset;
eb01459f
EA
316 char __user *user_data;
317 int page_offset, page_length;
eb01459f
EA
318
319 user_data = (char __user *) (uintptr_t) args->data_ptr;
320 remain = args->size;
321
eb01459f
EA
322 offset = args->offset;
323
324 while (remain > 0) {
e5281ccd
CW
325 struct page *page;
326 char *vaddr;
327 int ret;
328
eb01459f
EA
329 /* Operation in this page
330 *
eb01459f
EA
331 * page_offset = offset within page
332 * page_length = bytes to copy for this page
333 */
eb01459f
EA
334 page_offset = offset & (PAGE_SIZE-1);
335 page_length = remain;
336 if ((page_offset + remain) > PAGE_SIZE)
337 page_length = PAGE_SIZE - page_offset;
338
e5281ccd
CW
339 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
340 GFP_HIGHUSER | __GFP_RECLAIMABLE);
341 if (IS_ERR(page))
342 return PTR_ERR(page);
343
344 vaddr = kmap_atomic(page);
345 ret = __copy_to_user_inatomic(user_data,
346 vaddr + page_offset,
347 page_length);
348 kunmap_atomic(vaddr);
349
350 mark_page_accessed(page);
351 page_cache_release(page);
352 if (ret)
4f27b75d 353 return -EFAULT;
eb01459f
EA
354
355 remain -= page_length;
356 user_data += page_length;
357 offset += page_length;
358 }
359
4f27b75d 360 return 0;
eb01459f
EA
361}
362
363/**
364 * This is the fallback shmem pread path, which allocates temporary storage
365 * in kernel space to copy_to_user into outside of the struct_mutex, so we
366 * can copy out of the object's backing pages while holding the struct mutex
367 * and not take page faults.
368 */
369static int
05394f39
CW
370i915_gem_shmem_pread_slow(struct drm_device *dev,
371 struct drm_i915_gem_object *obj,
eb01459f 372 struct drm_i915_gem_pread *args,
05394f39 373 struct drm_file *file)
eb01459f 374{
05394f39 375 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
376 struct mm_struct *mm = current->mm;
377 struct page **user_pages;
378 ssize_t remain;
379 loff_t offset, pinned_pages, i;
380 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
381 int shmem_page_offset;
382 int data_page_index, data_page_offset;
eb01459f
EA
383 int page_length;
384 int ret;
385 uint64_t data_ptr = args->data_ptr;
280b713b 386 int do_bit17_swizzling;
eb01459f
EA
387
388 remain = args->size;
389
390 /* Pin the user pages containing the data. We can't fault while
391 * holding the struct mutex, yet we want to hold it while
392 * dereferencing the user data.
393 */
394 first_data_page = data_ptr / PAGE_SIZE;
395 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
396 num_pages = last_data_page - first_data_page + 1;
397
4f27b75d 398 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
399 if (user_pages == NULL)
400 return -ENOMEM;
401
4f27b75d 402 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
403 down_read(&mm->mmap_sem);
404 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 405 num_pages, 1, 0, user_pages, NULL);
eb01459f 406 up_read(&mm->mmap_sem);
4f27b75d 407 mutex_lock(&dev->struct_mutex);
eb01459f
EA
408 if (pinned_pages < num_pages) {
409 ret = -EFAULT;
4f27b75d 410 goto out;
eb01459f
EA
411 }
412
4f27b75d
CW
413 ret = i915_gem_object_set_cpu_read_domain_range(obj,
414 args->offset,
415 args->size);
07f73f69 416 if (ret)
4f27b75d 417 goto out;
eb01459f 418
4f27b75d 419 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 420
eb01459f
EA
421 offset = args->offset;
422
423 while (remain > 0) {
e5281ccd
CW
424 struct page *page;
425
eb01459f
EA
426 /* Operation in this page
427 *
eb01459f
EA
428 * shmem_page_offset = offset within page in shmem file
429 * data_page_index = page number in get_user_pages return
430 * data_page_offset = offset with data_page_index page.
431 * page_length = bytes to copy for this page
432 */
eb01459f
EA
433 shmem_page_offset = offset & ~PAGE_MASK;
434 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
435 data_page_offset = data_ptr & ~PAGE_MASK;
436
437 page_length = remain;
438 if ((shmem_page_offset + page_length) > PAGE_SIZE)
439 page_length = PAGE_SIZE - shmem_page_offset;
440 if ((data_page_offset + page_length) > PAGE_SIZE)
441 page_length = PAGE_SIZE - data_page_offset;
442
e5281ccd
CW
443 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
444 GFP_HIGHUSER | __GFP_RECLAIMABLE);
445 if (IS_ERR(page))
446 return PTR_ERR(page);
447
280b713b 448 if (do_bit17_swizzling) {
e5281ccd 449 slow_shmem_bit17_copy(page,
280b713b 450 shmem_page_offset,
99a03df5
CW
451 user_pages[data_page_index],
452 data_page_offset,
453 page_length,
454 1);
455 } else {
456 slow_shmem_copy(user_pages[data_page_index],
457 data_page_offset,
e5281ccd 458 page,
99a03df5
CW
459 shmem_page_offset,
460 page_length);
280b713b 461 }
eb01459f 462
e5281ccd
CW
463 mark_page_accessed(page);
464 page_cache_release(page);
465
eb01459f
EA
466 remain -= page_length;
467 data_ptr += page_length;
468 offset += page_length;
469 }
470
4f27b75d 471out:
eb01459f
EA
472 for (i = 0; i < pinned_pages; i++) {
473 SetPageDirty(user_pages[i]);
e5281ccd 474 mark_page_accessed(user_pages[i]);
eb01459f
EA
475 page_cache_release(user_pages[i]);
476 }
8e7d2b2c 477 drm_free_large(user_pages);
eb01459f
EA
478
479 return ret;
480}
481
673a394b
EA
482/**
483 * Reads data from the object referenced by handle.
484 *
485 * On error, the contents of *data are undefined.
486 */
487int
488i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 489 struct drm_file *file)
673a394b
EA
490{
491 struct drm_i915_gem_pread *args = data;
05394f39 492 struct drm_i915_gem_object *obj;
35b62a89 493 int ret = 0;
673a394b 494
51311d0a
CW
495 if (args->size == 0)
496 return 0;
497
498 if (!access_ok(VERIFY_WRITE,
499 (char __user *)(uintptr_t)args->data_ptr,
500 args->size))
501 return -EFAULT;
502
503 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
504 args->size);
505 if (ret)
506 return -EFAULT;
507
4f27b75d 508 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 509 if (ret)
4f27b75d 510 return ret;
673a394b 511
05394f39 512 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
513 if (obj == NULL) {
514 ret = -ENOENT;
515 goto unlock;
4f27b75d 516 }
673a394b 517
7dcd2499 518 /* Bounds check source. */
05394f39
CW
519 if (args->offset > obj->base.size ||
520 args->size > obj->base.size - args->offset) {
ce9d419d 521 ret = -EINVAL;
35b62a89 522 goto out;
ce9d419d
CW
523 }
524
4f27b75d
CW
525 ret = i915_gem_object_set_cpu_read_domain_range(obj,
526 args->offset,
527 args->size);
528 if (ret)
e5281ccd 529 goto out;
4f27b75d
CW
530
531 ret = -EFAULT;
532 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 533 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 534 if (ret == -EFAULT)
05394f39 535 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 536
35b62a89 537out:
05394f39 538 drm_gem_object_unreference(&obj->base);
1d7cfea1 539unlock:
4f27b75d 540 mutex_unlock(&dev->struct_mutex);
eb01459f 541 return ret;
673a394b
EA
542}
543
0839ccb8
KP
544/* This is the fast write path which cannot handle
545 * page faults in the source data
9b7530cc 546 */
0839ccb8
KP
547
548static inline int
549fast_user_write(struct io_mapping *mapping,
550 loff_t page_base, int page_offset,
551 char __user *user_data,
552 int length)
9b7530cc 553{
9b7530cc 554 char *vaddr_atomic;
0839ccb8 555 unsigned long unwritten;
9b7530cc 556
3e4d3af5 557 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
558 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
559 user_data, length);
3e4d3af5 560 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 561 return unwritten;
0839ccb8
KP
562}
563
564/* Here's the write path which can sleep for
565 * page faults
566 */
567
ab34c226 568static inline void
3de09aa3
EA
569slow_kernel_write(struct io_mapping *mapping,
570 loff_t gtt_base, int gtt_offset,
571 struct page *user_page, int user_offset,
572 int length)
0839ccb8 573{
ab34c226
CW
574 char __iomem *dst_vaddr;
575 char *src_vaddr;
0839ccb8 576
ab34c226
CW
577 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
578 src_vaddr = kmap(user_page);
579
580 memcpy_toio(dst_vaddr + gtt_offset,
581 src_vaddr + user_offset,
582 length);
583
584 kunmap(user_page);
585 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
586}
587
3de09aa3
EA
588/**
589 * This is the fast pwrite path, where we copy the data directly from the
590 * user into the GTT, uncached.
591 */
673a394b 592static int
05394f39
CW
593i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594 struct drm_i915_gem_object *obj,
3de09aa3 595 struct drm_i915_gem_pwrite *args,
05394f39 596 struct drm_file *file)
673a394b 597{
0839ccb8 598 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 599 ssize_t remain;
0839ccb8 600 loff_t offset, page_base;
673a394b 601 char __user *user_data;
0839ccb8 602 int page_offset, page_length;
673a394b
EA
603
604 user_data = (char __user *) (uintptr_t) args->data_ptr;
605 remain = args->size;
673a394b 606
05394f39 607 offset = obj->gtt_offset + args->offset;
673a394b
EA
608
609 while (remain > 0) {
610 /* Operation in this page
611 *
0839ccb8
KP
612 * page_base = page offset within aperture
613 * page_offset = offset within page
614 * page_length = bytes to copy for this page
673a394b 615 */
0839ccb8
KP
616 page_base = (offset & ~(PAGE_SIZE-1));
617 page_offset = offset & (PAGE_SIZE-1);
618 page_length = remain;
619 if ((page_offset + remain) > PAGE_SIZE)
620 page_length = PAGE_SIZE - page_offset;
621
0839ccb8 622 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
623 * source page isn't available. Return the error and we'll
624 * retry in the slow path.
0839ccb8 625 */
fbd5a26d
CW
626 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
627 page_offset, user_data, page_length))
628
629 return -EFAULT;
673a394b 630
0839ccb8
KP
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
673a394b 634 }
673a394b 635
fbd5a26d 636 return 0;
673a394b
EA
637}
638
3de09aa3
EA
639/**
640 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
641 * the memory and maps it using kmap_atomic for copying.
642 *
643 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
644 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
645 */
3043c60c 646static int
05394f39
CW
647i915_gem_gtt_pwrite_slow(struct drm_device *dev,
648 struct drm_i915_gem_object *obj,
3de09aa3 649 struct drm_i915_gem_pwrite *args,
05394f39 650 struct drm_file *file)
673a394b 651{
3de09aa3
EA
652 drm_i915_private_t *dev_priv = dev->dev_private;
653 ssize_t remain;
654 loff_t gtt_page_base, offset;
655 loff_t first_data_page, last_data_page, num_pages;
656 loff_t pinned_pages, i;
657 struct page **user_pages;
658 struct mm_struct *mm = current->mm;
659 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 660 int ret;
3de09aa3
EA
661 uint64_t data_ptr = args->data_ptr;
662
663 remain = args->size;
664
665 /* Pin the user pages containing the data. We can't fault while
666 * holding the struct mutex, and all of the pwrite implementations
667 * want to hold it while dereferencing the user data.
668 */
669 first_data_page = data_ptr / PAGE_SIZE;
670 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
671 num_pages = last_data_page - first_data_page + 1;
672
fbd5a26d 673 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
674 if (user_pages == NULL)
675 return -ENOMEM;
676
fbd5a26d 677 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
678 down_read(&mm->mmap_sem);
679 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
680 num_pages, 0, 0, user_pages, NULL);
681 up_read(&mm->mmap_sem);
fbd5a26d 682 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
683 if (pinned_pages < num_pages) {
684 ret = -EFAULT;
685 goto out_unpin_pages;
686 }
673a394b 687
d9e86c0e
CW
688 ret = i915_gem_object_set_to_gtt_domain(obj, true);
689 if (ret)
690 goto out_unpin_pages;
691
692 ret = i915_gem_object_put_fence(obj);
3de09aa3 693 if (ret)
fbd5a26d 694 goto out_unpin_pages;
3de09aa3 695
05394f39 696 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
697
698 while (remain > 0) {
699 /* Operation in this page
700 *
701 * gtt_page_base = page offset within aperture
702 * gtt_page_offset = offset within page in aperture
703 * data_page_index = page number in get_user_pages return
704 * data_page_offset = offset with data_page_index page.
705 * page_length = bytes to copy for this page
706 */
707 gtt_page_base = offset & PAGE_MASK;
708 gtt_page_offset = offset & ~PAGE_MASK;
709 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
710 data_page_offset = data_ptr & ~PAGE_MASK;
711
712 page_length = remain;
713 if ((gtt_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - gtt_page_offset;
715 if ((data_page_offset + page_length) > PAGE_SIZE)
716 page_length = PAGE_SIZE - data_page_offset;
717
ab34c226
CW
718 slow_kernel_write(dev_priv->mm.gtt_mapping,
719 gtt_page_base, gtt_page_offset,
720 user_pages[data_page_index],
721 data_page_offset,
722 page_length);
3de09aa3
EA
723
724 remain -= page_length;
725 offset += page_length;
726 data_ptr += page_length;
727 }
728
3de09aa3
EA
729out_unpin_pages:
730 for (i = 0; i < pinned_pages; i++)
731 page_cache_release(user_pages[i]);
8e7d2b2c 732 drm_free_large(user_pages);
3de09aa3
EA
733
734 return ret;
735}
736
40123c1f
EA
737/**
738 * This is the fast shmem pwrite path, which attempts to directly
739 * copy_from_user into the kmapped pages backing the object.
740 */
3043c60c 741static int
05394f39
CW
742i915_gem_shmem_pwrite_fast(struct drm_device *dev,
743 struct drm_i915_gem_object *obj,
40123c1f 744 struct drm_i915_gem_pwrite *args,
05394f39 745 struct drm_file *file)
673a394b 746{
05394f39 747 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 748 ssize_t remain;
e5281ccd 749 loff_t offset;
40123c1f
EA
750 char __user *user_data;
751 int page_offset, page_length;
40123c1f
EA
752
753 user_data = (char __user *) (uintptr_t) args->data_ptr;
754 remain = args->size;
673a394b 755
40123c1f 756 offset = args->offset;
05394f39 757 obj->dirty = 1;
40123c1f
EA
758
759 while (remain > 0) {
e5281ccd
CW
760 struct page *page;
761 char *vaddr;
762 int ret;
763
40123c1f
EA
764 /* Operation in this page
765 *
40123c1f
EA
766 * page_offset = offset within page
767 * page_length = bytes to copy for this page
768 */
40123c1f
EA
769 page_offset = offset & (PAGE_SIZE-1);
770 page_length = remain;
771 if ((page_offset + remain) > PAGE_SIZE)
772 page_length = PAGE_SIZE - page_offset;
773
e5281ccd
CW
774 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
775 GFP_HIGHUSER | __GFP_RECLAIMABLE);
776 if (IS_ERR(page))
777 return PTR_ERR(page);
778
779 vaddr = kmap_atomic(page, KM_USER0);
780 ret = __copy_from_user_inatomic(vaddr + page_offset,
781 user_data,
782 page_length);
783 kunmap_atomic(vaddr, KM_USER0);
784
785 set_page_dirty(page);
786 mark_page_accessed(page);
787 page_cache_release(page);
788
789 /* If we get a fault while copying data, then (presumably) our
790 * source page isn't available. Return the error and we'll
791 * retry in the slow path.
792 */
793 if (ret)
fbd5a26d 794 return -EFAULT;
40123c1f
EA
795
796 remain -= page_length;
797 user_data += page_length;
798 offset += page_length;
799 }
800
fbd5a26d 801 return 0;
40123c1f
EA
802}
803
804/**
805 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
806 * the memory and maps it using kmap_atomic for copying.
807 *
808 * This avoids taking mmap_sem for faulting on the user's address while the
809 * struct_mutex is held.
810 */
811static int
05394f39
CW
812i915_gem_shmem_pwrite_slow(struct drm_device *dev,
813 struct drm_i915_gem_object *obj,
40123c1f 814 struct drm_i915_gem_pwrite *args,
05394f39 815 struct drm_file *file)
40123c1f 816{
05394f39 817 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 823 int shmem_page_offset;
40123c1f
EA
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
280b713b 828 int do_bit17_swizzling;
40123c1f
EA
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
4f27b75d 840 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
841 if (user_pages == NULL)
842 return -ENOMEM;
843
fbd5a26d 844 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
845 down_read(&mm->mmap_sem);
846 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
847 num_pages, 0, 0, user_pages, NULL);
848 up_read(&mm->mmap_sem);
fbd5a26d 849 mutex_lock(&dev->struct_mutex);
40123c1f
EA
850 if (pinned_pages < num_pages) {
851 ret = -EFAULT;
fbd5a26d 852 goto out;
673a394b
EA
853 }
854
fbd5a26d 855 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 856 if (ret)
fbd5a26d 857 goto out;
40123c1f 858
fbd5a26d 859 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 860
673a394b 861 offset = args->offset;
05394f39 862 obj->dirty = 1;
673a394b 863
40123c1f 864 while (remain > 0) {
e5281ccd
CW
865 struct page *page;
866
40123c1f
EA
867 /* Operation in this page
868 *
40123c1f
EA
869 * shmem_page_offset = offset within page in shmem file
870 * data_page_index = page number in get_user_pages return
871 * data_page_offset = offset with data_page_index page.
872 * page_length = bytes to copy for this page
873 */
40123c1f
EA
874 shmem_page_offset = offset & ~PAGE_MASK;
875 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
876 data_page_offset = data_ptr & ~PAGE_MASK;
877
878 page_length = remain;
879 if ((shmem_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - shmem_page_offset;
881 if ((data_page_offset + page_length) > PAGE_SIZE)
882 page_length = PAGE_SIZE - data_page_offset;
883
e5281ccd
CW
884 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
885 GFP_HIGHUSER | __GFP_RECLAIMABLE);
886 if (IS_ERR(page)) {
887 ret = PTR_ERR(page);
888 goto out;
889 }
890
280b713b 891 if (do_bit17_swizzling) {
e5281ccd 892 slow_shmem_bit17_copy(page,
280b713b
EA
893 shmem_page_offset,
894 user_pages[data_page_index],
895 data_page_offset,
99a03df5
CW
896 page_length,
897 0);
898 } else {
e5281ccd 899 slow_shmem_copy(page,
99a03df5
CW
900 shmem_page_offset,
901 user_pages[data_page_index],
902 data_page_offset,
903 page_length);
280b713b 904 }
40123c1f 905
e5281ccd
CW
906 set_page_dirty(page);
907 mark_page_accessed(page);
908 page_cache_release(page);
909
40123c1f
EA
910 remain -= page_length;
911 data_ptr += page_length;
912 offset += page_length;
673a394b
EA
913 }
914
fbd5a26d 915out:
40123c1f
EA
916 for (i = 0; i < pinned_pages; i++)
917 page_cache_release(user_pages[i]);
8e7d2b2c 918 drm_free_large(user_pages);
673a394b 919
40123c1f 920 return ret;
673a394b
EA
921}
922
923/**
924 * Writes data to the object referenced by handle.
925 *
926 * On error, the contents of the buffer that were to be modified are undefined.
927 */
928int
929i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 930 struct drm_file *file)
673a394b
EA
931{
932 struct drm_i915_gem_pwrite *args = data;
05394f39 933 struct drm_i915_gem_object *obj;
51311d0a
CW
934 int ret;
935
936 if (args->size == 0)
937 return 0;
938
939 if (!access_ok(VERIFY_READ,
940 (char __user *)(uintptr_t)args->data_ptr,
941 args->size))
942 return -EFAULT;
943
944 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
945 args->size);
946 if (ret)
947 return -EFAULT;
673a394b 948
fbd5a26d 949 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 950 if (ret)
fbd5a26d 951 return ret;
1d7cfea1 952
05394f39 953 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
954 if (obj == NULL) {
955 ret = -ENOENT;
956 goto unlock;
fbd5a26d 957 }
673a394b 958
7dcd2499 959 /* Bounds check destination. */
05394f39
CW
960 if (args->offset > obj->base.size ||
961 args->size > obj->base.size - args->offset) {
ce9d419d 962 ret = -EINVAL;
35b62a89 963 goto out;
ce9d419d
CW
964 }
965
673a394b
EA
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
05394f39 972 if (obj->phys_obj)
fbd5a26d 973 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 974 else if (obj->gtt_space &&
05394f39 975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 976 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
977 if (ret)
978 goto out;
979
d9e86c0e
CW
980 ret = i915_gem_object_set_to_gtt_domain(obj, true);
981 if (ret)
982 goto out_unpin;
983
984 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
985 if (ret)
986 goto out_unpin;
987
988 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
989 if (ret == -EFAULT)
990 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
991
992out_unpin:
993 i915_gem_object_unpin(obj);
40123c1f 994 } else {
fbd5a26d
CW
995 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
996 if (ret)
e5281ccd 997 goto out;
673a394b 998
fbd5a26d
CW
999 ret = -EFAULT;
1000 if (!i915_gem_object_needs_bit17_swizzle(obj))
1001 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1002 if (ret == -EFAULT)
1003 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1004 }
673a394b 1005
35b62a89 1006out:
05394f39 1007 drm_gem_object_unreference(&obj->base);
1d7cfea1 1008unlock:
fbd5a26d 1009 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1010 return ret;
1011}
1012
1013/**
2ef7eeaa
EA
1014 * Called when user space prepares to use an object with the CPU, either
1015 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1016 */
1017int
1018i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1019 struct drm_file *file)
673a394b
EA
1020{
1021 struct drm_i915_gem_set_domain *args = data;
05394f39 1022 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1023 uint32_t read_domains = args->read_domains;
1024 uint32_t write_domain = args->write_domain;
673a394b
EA
1025 int ret;
1026
1027 if (!(dev->driver->driver_features & DRIVER_GEM))
1028 return -ENODEV;
1029
2ef7eeaa 1030 /* Only handle setting domains to types used by the CPU. */
21d509e3 1031 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1032 return -EINVAL;
1033
21d509e3 1034 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1035 return -EINVAL;
1036
1037 /* Having something in the write domain implies it's in the read
1038 * domain, and only that read domain. Enforce that in the request.
1039 */
1040 if (write_domain != 0 && read_domains != write_domain)
1041 return -EINVAL;
1042
76c1dec1 1043 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1044 if (ret)
76c1dec1 1045 return ret;
1d7cfea1 1046
05394f39 1047 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1048 if (obj == NULL) {
1049 ret = -ENOENT;
1050 goto unlock;
76c1dec1 1051 }
673a394b 1052
2ef7eeaa
EA
1053 if (read_domains & I915_GEM_DOMAIN_GTT) {
1054 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1055
1056 /* Silently promote "you're not bound, there was nothing to do"
1057 * to success, since the client was just asking us to
1058 * make sure everything was done.
1059 */
1060 if (ret == -EINVAL)
1061 ret = 0;
2ef7eeaa 1062 } else {
e47c68e9 1063 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1064 }
1065
05394f39 1066 drm_gem_object_unreference(&obj->base);
1d7cfea1 1067unlock:
673a394b
EA
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070}
1071
1072/**
1073 * Called when user space has done writes to this buffer
1074 */
1075int
1076i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1077 struct drm_file *file)
673a394b
EA
1078{
1079 struct drm_i915_gem_sw_finish *args = data;
05394f39 1080 struct drm_i915_gem_object *obj;
673a394b
EA
1081 int ret = 0;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
76c1dec1 1086 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1087 if (ret)
76c1dec1 1088 return ret;
1d7cfea1 1089
05394f39 1090 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 1091 if (obj == NULL) {
1d7cfea1
CW
1092 ret = -ENOENT;
1093 goto unlock;
673a394b
EA
1094 }
1095
673a394b 1096 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1097 if (obj->pin_count)
e47c68e9
EA
1098 i915_gem_object_flush_cpu_write_domain(obj);
1099
05394f39 1100 drm_gem_object_unreference(&obj->base);
1d7cfea1 1101unlock:
673a394b
EA
1102 mutex_unlock(&dev->struct_mutex);
1103 return ret;
1104}
1105
1106/**
1107 * Maps the contents of an object, returning the address it is mapped
1108 * into.
1109 *
1110 * While the mapping holds a reference on the contents of the object, it doesn't
1111 * imply a ref on the object itself.
1112 */
1113int
1114i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1115 struct drm_file *file)
673a394b 1116{
da761a6e 1117 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1118 struct drm_i915_gem_mmap *args = data;
1119 struct drm_gem_object *obj;
1120 loff_t offset;
1121 unsigned long addr;
1122
1123 if (!(dev->driver->driver_features & DRIVER_GEM))
1124 return -ENODEV;
1125
05394f39 1126 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1127 if (obj == NULL)
bf79cb91 1128 return -ENOENT;
673a394b 1129
da761a6e
CW
1130 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1131 drm_gem_object_unreference_unlocked(obj);
1132 return -E2BIG;
1133 }
1134
673a394b
EA
1135 offset = args->offset;
1136
1137 down_write(&current->mm->mmap_sem);
1138 addr = do_mmap(obj->filp, 0, args->size,
1139 PROT_READ | PROT_WRITE, MAP_SHARED,
1140 args->offset);
1141 up_write(&current->mm->mmap_sem);
bc9025bd 1142 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1143 if (IS_ERR((void *)addr))
1144 return addr;
1145
1146 args->addr_ptr = (uint64_t) addr;
1147
1148 return 0;
1149}
1150
de151cf6
JB
1151/**
1152 * i915_gem_fault - fault a page into the GTT
1153 * vma: VMA in question
1154 * vmf: fault info
1155 *
1156 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1157 * from userspace. The fault handler takes care of binding the object to
1158 * the GTT (if needed), allocating and programming a fence register (again,
1159 * only if needed based on whether the old reg is still valid or the object
1160 * is tiled) and inserting a new PTE into the faulting process.
1161 *
1162 * Note that the faulting process may involve evicting existing objects
1163 * from the GTT and/or fence registers to make room. So performance may
1164 * suffer if the GTT working set is large or there are few fence registers
1165 * left.
1166 */
1167int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1168{
05394f39
CW
1169 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1170 struct drm_device *dev = obj->base.dev;
7d1c4804 1171 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1172 pgoff_t page_offset;
1173 unsigned long pfn;
1174 int ret = 0;
0f973f27 1175 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1176
1177 /* We don't use vmf->pgoff since that has the fake offset */
1178 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1179 PAGE_SHIFT;
1180
1181 /* Now bind it into the GTT if needed */
1182 mutex_lock(&dev->struct_mutex);
a00b10c3 1183
919926ae
CW
1184 if (!obj->map_and_fenceable) {
1185 ret = i915_gem_object_unbind(obj);
1186 if (ret)
1187 goto unlock;
a00b10c3 1188 }
05394f39 1189 if (!obj->gtt_space) {
75e9e915 1190 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1191 if (ret)
1192 goto unlock;
de151cf6
JB
1193 }
1194
4a684a41
CW
1195 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1196 if (ret)
1197 goto unlock;
1198
d9e86c0e
CW
1199 if (obj->tiling_mode == I915_TILING_NONE)
1200 ret = i915_gem_object_put_fence(obj);
1201 else
1202 ret = i915_gem_object_get_fence(obj, NULL, true);
1203 if (ret)
1204 goto unlock;
de151cf6 1205
05394f39
CW
1206 if (i915_gem_object_is_inactive(obj))
1207 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1208
6299f992
CW
1209 obj->fault_mappable = true;
1210
05394f39 1211 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1212 page_offset;
1213
1214 /* Finally, remap it using the new GTT offset */
1215 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1216unlock:
de151cf6
JB
1217 mutex_unlock(&dev->struct_mutex);
1218
1219 switch (ret) {
045e769a
CW
1220 case -EAGAIN:
1221 set_need_resched();
c715089f
CW
1222 case 0:
1223 case -ERESTARTSYS:
1224 return VM_FAULT_NOPAGE;
de151cf6 1225 case -ENOMEM:
de151cf6 1226 return VM_FAULT_OOM;
de151cf6 1227 default:
c715089f 1228 return VM_FAULT_SIGBUS;
de151cf6
JB
1229 }
1230}
1231
1232/**
1233 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1234 * @obj: obj in question
1235 *
1236 * GEM memory mapping works by handing back to userspace a fake mmap offset
1237 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1238 * up the object based on the offset and sets up the various memory mapping
1239 * structures.
1240 *
1241 * This routine allocates and attaches a fake offset for @obj.
1242 */
1243static int
05394f39 1244i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1245{
05394f39 1246 struct drm_device *dev = obj->base.dev;
de151cf6 1247 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1248 struct drm_map_list *list;
f77d390c 1249 struct drm_local_map *map;
de151cf6
JB
1250 int ret = 0;
1251
1252 /* Set the object up for mmap'ing */
05394f39 1253 list = &obj->base.map_list;
9a298b2a 1254 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1255 if (!list->map)
1256 return -ENOMEM;
1257
1258 map = list->map;
1259 map->type = _DRM_GEM;
05394f39 1260 map->size = obj->base.size;
de151cf6
JB
1261 map->handle = obj;
1262
1263 /* Get a DRM GEM mmap offset allocated... */
1264 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1265 obj->base.size / PAGE_SIZE,
1266 0, 0);
de151cf6 1267 if (!list->file_offset_node) {
05394f39
CW
1268 DRM_ERROR("failed to allocate offset for bo %d\n",
1269 obj->base.name);
9e0ae534 1270 ret = -ENOSPC;
de151cf6
JB
1271 goto out_free_list;
1272 }
1273
1274 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1275 obj->base.size / PAGE_SIZE,
1276 0);
de151cf6
JB
1277 if (!list->file_offset_node) {
1278 ret = -ENOMEM;
1279 goto out_free_list;
1280 }
1281
1282 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1283 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1284 if (ret) {
de151cf6
JB
1285 DRM_ERROR("failed to add to map hash\n");
1286 goto out_free_mm;
1287 }
1288
de151cf6
JB
1289 return 0;
1290
1291out_free_mm:
1292 drm_mm_put_block(list->file_offset_node);
1293out_free_list:
9a298b2a 1294 kfree(list->map);
39a01d1f 1295 list->map = NULL;
de151cf6
JB
1296
1297 return ret;
1298}
1299
901782b2
CW
1300/**
1301 * i915_gem_release_mmap - remove physical page mappings
1302 * @obj: obj in question
1303 *
af901ca1 1304 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1305 * relinquish ownership of the pages back to the system.
1306 *
1307 * It is vital that we remove the page mapping if we have mapped a tiled
1308 * object through the GTT and then lose the fence register due to
1309 * resource pressure. Similarly if the object has been moved out of the
1310 * aperture, than pages mapped into userspace must be revoked. Removing the
1311 * mapping will then trigger a page fault on the next user access, allowing
1312 * fixup by i915_gem_fault().
1313 */
d05ca301 1314void
05394f39 1315i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1316{
6299f992
CW
1317 if (!obj->fault_mappable)
1318 return;
901782b2 1319
6299f992
CW
1320 unmap_mapping_range(obj->base.dev->dev_mapping,
1321 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1322 obj->base.size, 1);
fb7d516a 1323
6299f992 1324 obj->fault_mappable = false;
901782b2
CW
1325}
1326
ab00b3e5 1327static void
05394f39 1328i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1329{
05394f39 1330 struct drm_device *dev = obj->base.dev;
ab00b3e5 1331 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1332 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1333
ab00b3e5 1334 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1335 drm_mm_put_block(list->file_offset_node);
1336 kfree(list->map);
1337 list->map = NULL;
ab00b3e5
JB
1338}
1339
92b88aeb
CW
1340static uint32_t
1341i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1342{
1343 struct drm_device *dev = obj->base.dev;
1344 uint32_t size;
1345
1346 if (INTEL_INFO(dev)->gen >= 4 ||
1347 obj->tiling_mode == I915_TILING_NONE)
1348 return obj->base.size;
1349
1350 /* Previous chips need a power-of-two fence region when tiling */
1351 if (INTEL_INFO(dev)->gen == 3)
1352 size = 1024*1024;
1353 else
1354 size = 512*1024;
1355
1356 while (size < obj->base.size)
1357 size <<= 1;
1358
1359 return size;
1360}
1361
de151cf6
JB
1362/**
1363 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1364 * @obj: object to check
1365 *
1366 * Return the required GTT alignment for an object, taking into account
5e783301 1367 * potential fence register mapping.
de151cf6
JB
1368 */
1369static uint32_t
05394f39 1370i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1371{
05394f39 1372 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1373
1374 /*
1375 * Minimum alignment is 4k (GTT page size), but might be greater
1376 * if a fence register is needed for the object.
1377 */
a00b10c3 1378 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1379 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1380 return 4096;
1381
a00b10c3
CW
1382 /*
1383 * Previous chips need to be aligned to the size of the smallest
1384 * fence register that can contain the object.
1385 */
05394f39 1386 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1387}
1388
5e783301
DV
1389/**
1390 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1391 * unfenced object
1392 * @obj: object to check
1393 *
1394 * Return the required GTT alignment for an object, only taking into account
1395 * unfenced tiled surface requirements.
1396 */
1397static uint32_t
05394f39 1398i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1399{
05394f39 1400 struct drm_device *dev = obj->base.dev;
5e783301
DV
1401 int tile_height;
1402
1403 /*
1404 * Minimum alignment is 4k (GTT page size) for sane hw.
1405 */
1406 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1407 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1408 return 4096;
1409
1410 /*
1411 * Older chips need unfenced tiled buffers to be aligned to the left
1412 * edge of an even tile row (where tile rows are counted as if the bo is
1413 * placed in a fenced gtt region).
1414 */
1415 if (IS_GEN2(dev) ||
05394f39 1416 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1417 tile_height = 32;
1418 else
1419 tile_height = 8;
1420
05394f39 1421 return tile_height * obj->stride * 2;
5e783301
DV
1422}
1423
de151cf6
JB
1424/**
1425 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1426 * @dev: DRM device
1427 * @data: GTT mapping ioctl data
05394f39 1428 * @file: GEM object info
de151cf6
JB
1429 *
1430 * Simply returns the fake offset to userspace so it can mmap it.
1431 * The mmap call will end up in drm_gem_mmap(), which will set things
1432 * up so we can get faults in the handler above.
1433 *
1434 * The fault handler will take care of binding the object into the GTT
1435 * (since it may have been evicted to make room for something), allocating
1436 * a fence register, and mapping the appropriate aperture address into
1437 * userspace.
1438 */
1439int
1440i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
05394f39 1441 struct drm_file *file)
de151cf6 1442{
da761a6e 1443 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1444 struct drm_i915_gem_mmap_gtt *args = data;
05394f39 1445 struct drm_i915_gem_object *obj;
de151cf6
JB
1446 int ret;
1447
1448 if (!(dev->driver->driver_features & DRIVER_GEM))
1449 return -ENODEV;
1450
76c1dec1 1451 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1452 if (ret)
76c1dec1 1453 return ret;
de151cf6 1454
05394f39 1455 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1456 if (obj == NULL) {
1457 ret = -ENOENT;
1458 goto unlock;
1459 }
de151cf6 1460
05394f39 1461 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1462 ret = -E2BIG;
1463 goto unlock;
1464 }
1465
05394f39 1466 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1467 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1468 ret = -EINVAL;
1469 goto out;
ab18282d
CW
1470 }
1471
05394f39 1472 if (!obj->base.map_list.map) {
de151cf6 1473 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1474 if (ret)
1475 goto out;
de151cf6
JB
1476 }
1477
05394f39 1478 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1479
1d7cfea1 1480out:
05394f39 1481 drm_gem_object_unreference(&obj->base);
1d7cfea1 1482unlock:
de151cf6 1483 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1484 return ret;
de151cf6
JB
1485}
1486
e5281ccd 1487static int
05394f39 1488i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1489 gfp_t gfpmask)
1490{
e5281ccd
CW
1491 int page_count, i;
1492 struct address_space *mapping;
1493 struct inode *inode;
1494 struct page *page;
1495
1496 /* Get the list of pages out of our struct file. They'll be pinned
1497 * at this point until we release them.
1498 */
05394f39
CW
1499 page_count = obj->base.size / PAGE_SIZE;
1500 BUG_ON(obj->pages != NULL);
1501 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1502 if (obj->pages == NULL)
e5281ccd
CW
1503 return -ENOMEM;
1504
05394f39 1505 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1506 mapping = inode->i_mapping;
1507 for (i = 0; i < page_count; i++) {
1508 page = read_cache_page_gfp(mapping, i,
1509 GFP_HIGHUSER |
1510 __GFP_COLD |
1511 __GFP_RECLAIMABLE |
1512 gfpmask);
1513 if (IS_ERR(page))
1514 goto err_pages;
1515
05394f39 1516 obj->pages[i] = page;
e5281ccd
CW
1517 }
1518
05394f39 1519 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1520 i915_gem_object_do_bit_17_swizzle(obj);
1521
1522 return 0;
1523
1524err_pages:
1525 while (i--)
05394f39 1526 page_cache_release(obj->pages[i]);
e5281ccd 1527
05394f39
CW
1528 drm_free_large(obj->pages);
1529 obj->pages = NULL;
e5281ccd
CW
1530 return PTR_ERR(page);
1531}
1532
5cdf5881 1533static void
05394f39 1534i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1535{
05394f39 1536 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1537 int i;
1538
05394f39 1539 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1540
05394f39 1541 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1542 i915_gem_object_save_bit_17_swizzle(obj);
1543
05394f39
CW
1544 if (obj->madv == I915_MADV_DONTNEED)
1545 obj->dirty = 0;
3ef94daa
CW
1546
1547 for (i = 0; i < page_count; i++) {
05394f39
CW
1548 if (obj->dirty)
1549 set_page_dirty(obj->pages[i]);
3ef94daa 1550
05394f39
CW
1551 if (obj->madv == I915_MADV_WILLNEED)
1552 mark_page_accessed(obj->pages[i]);
3ef94daa 1553
05394f39 1554 page_cache_release(obj->pages[i]);
3ef94daa 1555 }
05394f39 1556 obj->dirty = 0;
673a394b 1557
05394f39
CW
1558 drm_free_large(obj->pages);
1559 obj->pages = NULL;
673a394b
EA
1560}
1561
54cf91dc 1562void
05394f39 1563i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1564 struct intel_ring_buffer *ring,
1565 u32 seqno)
673a394b 1566{
05394f39 1567 struct drm_device *dev = obj->base.dev;
69dc4987 1568 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1569
852835f3 1570 BUG_ON(ring == NULL);
05394f39 1571 obj->ring = ring;
673a394b
EA
1572
1573 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1574 if (!obj->active) {
1575 drm_gem_object_reference(&obj->base);
1576 obj->active = 1;
673a394b 1577 }
e35a41de 1578
673a394b 1579 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1580 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1581 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1582
05394f39 1583 obj->last_rendering_seqno = seqno;
caea7476
CW
1584 if (obj->fenced_gpu_access) {
1585 struct drm_i915_fence_reg *reg;
1586
1587 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1588
1589 obj->last_fenced_seqno = seqno;
1590 obj->last_fenced_ring = ring;
1591
1592 reg = &dev_priv->fence_regs[obj->fence_reg];
1593 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1594 }
1595}
1596
1597static void
1598i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1599{
1600 list_del_init(&obj->ring_list);
1601 obj->last_rendering_seqno = 0;
673a394b
EA
1602}
1603
ce44b0ea 1604static void
05394f39 1605i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1606{
05394f39 1607 struct drm_device *dev = obj->base.dev;
ce44b0ea 1608 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1609
05394f39
CW
1610 BUG_ON(!obj->active);
1611 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1612
1613 i915_gem_object_move_off_active(obj);
1614}
1615
1616static void
1617i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1618{
1619 struct drm_device *dev = obj->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621
1622 if (obj->pin_count != 0)
1623 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1624 else
1625 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1626
1627 BUG_ON(!list_empty(&obj->gpu_write_list));
1628 BUG_ON(!obj->active);
1629 obj->ring = NULL;
1630
1631 i915_gem_object_move_off_active(obj);
1632 obj->fenced_gpu_access = false;
caea7476
CW
1633
1634 obj->active = 0;
87ca9c8a 1635 obj->pending_gpu_write = false;
caea7476
CW
1636 drm_gem_object_unreference(&obj->base);
1637
1638 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1639}
673a394b 1640
963b4836
CW
1641/* Immediately discard the backing storage */
1642static void
05394f39 1643i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1644{
bb6baf76 1645 struct inode *inode;
963b4836 1646
ae9fed6b
CW
1647 /* Our goal here is to return as much of the memory as
1648 * is possible back to the system as we are called from OOM.
1649 * To do this we must instruct the shmfs to drop all of its
1650 * backing pages, *now*. Here we mirror the actions taken
1651 * when by shmem_delete_inode() to release the backing store.
1652 */
05394f39 1653 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1654 truncate_inode_pages(inode->i_mapping, 0);
1655 if (inode->i_op->truncate_range)
1656 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1657
05394f39 1658 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1659}
1660
1661static inline int
05394f39 1662i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1663{
05394f39 1664 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1665}
1666
63560396
DV
1667static void
1668i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1669 uint32_t flush_domains,
852835f3 1670 struct intel_ring_buffer *ring)
63560396 1671{
05394f39 1672 struct drm_i915_gem_object *obj, *next;
63560396 1673
05394f39 1674 list_for_each_entry_safe(obj, next,
64193406 1675 &ring->gpu_write_list,
63560396 1676 gpu_write_list) {
05394f39
CW
1677 if (obj->base.write_domain & flush_domains) {
1678 uint32_t old_write_domain = obj->base.write_domain;
63560396 1679
05394f39
CW
1680 obj->base.write_domain = 0;
1681 list_del_init(&obj->gpu_write_list);
1ec14ad3
CW
1682 i915_gem_object_move_to_active(obj, ring,
1683 i915_gem_next_request_seqno(dev, ring));
63560396 1684
63560396 1685 trace_i915_gem_object_change_domain(obj,
05394f39 1686 obj->base.read_domains,
63560396
DV
1687 old_write_domain);
1688 }
1689 }
1690}
8187a2b7 1691
3cce469c 1692int
8a1a49f9 1693i915_add_request(struct drm_device *dev,
f787a5f5 1694 struct drm_file *file,
8dc5d147 1695 struct drm_i915_gem_request *request,
8a1a49f9 1696 struct intel_ring_buffer *ring)
673a394b
EA
1697{
1698 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1699 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1700 uint32_t seqno;
1701 int was_empty;
3cce469c
CW
1702 int ret;
1703
1704 BUG_ON(request == NULL);
673a394b 1705
f787a5f5
CW
1706 if (file != NULL)
1707 file_priv = file->driver_priv;
b962442e 1708
3cce469c
CW
1709 ret = ring->add_request(ring, &seqno);
1710 if (ret)
1711 return ret;
673a394b 1712
a56ba56c 1713 ring->outstanding_lazy_request = false;
673a394b
EA
1714
1715 request->seqno = seqno;
852835f3 1716 request->ring = ring;
673a394b 1717 request->emitted_jiffies = jiffies;
852835f3
ZN
1718 was_empty = list_empty(&ring->request_list);
1719 list_add_tail(&request->list, &ring->request_list);
1720
f787a5f5 1721 if (file_priv) {
1c25595f 1722 spin_lock(&file_priv->mm.lock);
f787a5f5 1723 request->file_priv = file_priv;
b962442e 1724 list_add_tail(&request->client_list,
f787a5f5 1725 &file_priv->mm.request_list);
1c25595f 1726 spin_unlock(&file_priv->mm.lock);
b962442e 1727 }
673a394b 1728
f65d9421 1729 if (!dev_priv->mm.suspended) {
b3b079db
CW
1730 mod_timer(&dev_priv->hangcheck_timer,
1731 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1732 if (was_empty)
b3b079db
CW
1733 queue_delayed_work(dev_priv->wq,
1734 &dev_priv->mm.retire_work, HZ);
f65d9421 1735 }
3cce469c 1736 return 0;
673a394b
EA
1737}
1738
f787a5f5
CW
1739static inline void
1740i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1741{
1c25595f 1742 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1743
1c25595f
CW
1744 if (!file_priv)
1745 return;
1c5d22f7 1746
1c25595f
CW
1747 spin_lock(&file_priv->mm.lock);
1748 list_del(&request->client_list);
1749 request->file_priv = NULL;
1750 spin_unlock(&file_priv->mm.lock);
673a394b 1751}
673a394b 1752
dfaae392
CW
1753static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1754 struct intel_ring_buffer *ring)
9375e446 1755{
dfaae392
CW
1756 while (!list_empty(&ring->request_list)) {
1757 struct drm_i915_gem_request *request;
673a394b 1758
dfaae392
CW
1759 request = list_first_entry(&ring->request_list,
1760 struct drm_i915_gem_request,
1761 list);
de151cf6 1762
dfaae392 1763 list_del(&request->list);
f787a5f5 1764 i915_gem_request_remove_from_client(request);
dfaae392
CW
1765 kfree(request);
1766 }
673a394b 1767
dfaae392 1768 while (!list_empty(&ring->active_list)) {
05394f39 1769 struct drm_i915_gem_object *obj;
9375e446 1770
05394f39
CW
1771 obj = list_first_entry(&ring->active_list,
1772 struct drm_i915_gem_object,
1773 ring_list);
9375e446 1774
05394f39
CW
1775 obj->base.write_domain = 0;
1776 list_del_init(&obj->gpu_write_list);
1777 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1778 }
1779}
1780
312817a3
CW
1781static void i915_gem_reset_fences(struct drm_device *dev)
1782{
1783 struct drm_i915_private *dev_priv = dev->dev_private;
1784 int i;
1785
1786 for (i = 0; i < 16; i++) {
1787 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1788 struct drm_i915_gem_object *obj = reg->obj;
1789
1790 if (!obj)
1791 continue;
1792
1793 if (obj->tiling_mode)
1794 i915_gem_release_mmap(obj);
1795
d9e86c0e
CW
1796 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1797 reg->obj->fenced_gpu_access = false;
1798 reg->obj->last_fenced_seqno = 0;
1799 reg->obj->last_fenced_ring = NULL;
1800 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1801 }
1802}
1803
069efc1d 1804void i915_gem_reset(struct drm_device *dev)
673a394b 1805{
77f01230 1806 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1807 struct drm_i915_gem_object *obj;
1ec14ad3 1808 int i;
673a394b 1809
1ec14ad3
CW
1810 for (i = 0; i < I915_NUM_RINGS; i++)
1811 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1812
1813 /* Remove anything from the flushing lists. The GPU cache is likely
1814 * to be lost on reset along with the data, so simply move the
1815 * lost bo to the inactive list.
1816 */
1817 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1818 obj= list_first_entry(&dev_priv->mm.flushing_list,
1819 struct drm_i915_gem_object,
1820 mm_list);
dfaae392 1821
05394f39
CW
1822 obj->base.write_domain = 0;
1823 list_del_init(&obj->gpu_write_list);
1824 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1825 }
1826
1827 /* Move everything out of the GPU domains to ensure we do any
1828 * necessary invalidation upon reuse.
1829 */
05394f39 1830 list_for_each_entry(obj,
77f01230 1831 &dev_priv->mm.inactive_list,
69dc4987 1832 mm_list)
77f01230 1833 {
05394f39 1834 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1835 }
069efc1d
CW
1836
1837 /* The fence registers are invalidated so clear them out */
312817a3 1838 i915_gem_reset_fences(dev);
673a394b
EA
1839}
1840
1841/**
1842 * This function clears the request list as sequence numbers are passed.
1843 */
b09a1fec
CW
1844static void
1845i915_gem_retire_requests_ring(struct drm_device *dev,
1846 struct intel_ring_buffer *ring)
673a394b
EA
1847{
1848 drm_i915_private_t *dev_priv = dev->dev_private;
1849 uint32_t seqno;
1ec14ad3 1850 int i;
673a394b 1851
b84d5f0c
CW
1852 if (!ring->status_page.page_addr ||
1853 list_empty(&ring->request_list))
6c0594a3
KW
1854 return;
1855
23bc5982 1856 WARN_ON(i915_verify_lists(dev));
673a394b 1857
78501eac 1858 seqno = ring->get_seqno(ring);
1ec14ad3
CW
1859
1860 for (i = 0; i < I915_NUM_RINGS; i++)
1861 if (seqno >= ring->sync_seqno[i])
1862 ring->sync_seqno[i] = 0;
1863
852835f3 1864 while (!list_empty(&ring->request_list)) {
673a394b 1865 struct drm_i915_gem_request *request;
673a394b 1866
852835f3 1867 request = list_first_entry(&ring->request_list,
673a394b
EA
1868 struct drm_i915_gem_request,
1869 list);
673a394b 1870
dfaae392 1871 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1872 break;
1873
1874 trace_i915_gem_request_retire(dev, request->seqno);
1875
1876 list_del(&request->list);
f787a5f5 1877 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1878 kfree(request);
1879 }
673a394b 1880
b84d5f0c
CW
1881 /* Move any buffers on the active list that are no longer referenced
1882 * by the ringbuffer to the flushing/inactive lists as appropriate.
1883 */
1884 while (!list_empty(&ring->active_list)) {
05394f39 1885 struct drm_i915_gem_object *obj;
b84d5f0c 1886
05394f39
CW
1887 obj= list_first_entry(&ring->active_list,
1888 struct drm_i915_gem_object,
1889 ring_list);
673a394b 1890
05394f39 1891 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1892 break;
b84d5f0c 1893
05394f39 1894 if (obj->base.write_domain != 0)
b84d5f0c
CW
1895 i915_gem_object_move_to_flushing(obj);
1896 else
1897 i915_gem_object_move_to_inactive(obj);
673a394b 1898 }
9d34e5db
CW
1899
1900 if (unlikely (dev_priv->trace_irq_seqno &&
1901 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1ec14ad3 1902 ring->irq_put(ring);
9d34e5db
CW
1903 dev_priv->trace_irq_seqno = 0;
1904 }
23bc5982
CW
1905
1906 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1907}
1908
b09a1fec
CW
1909void
1910i915_gem_retire_requests(struct drm_device *dev)
1911{
1912 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1913 int i;
b09a1fec 1914
be72615b 1915 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1916 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1917
1918 /* We must be careful that during unbind() we do not
1919 * accidentally infinitely recurse into retire requests.
1920 * Currently:
1921 * retire -> free -> unbind -> wait -> retire_ring
1922 */
05394f39 1923 list_for_each_entry_safe(obj, next,
be72615b 1924 &dev_priv->mm.deferred_free_list,
69dc4987 1925 mm_list)
05394f39 1926 i915_gem_free_object_tail(obj);
be72615b
CW
1927 }
1928
1ec14ad3
CW
1929 for (i = 0; i < I915_NUM_RINGS; i++)
1930 i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
b09a1fec
CW
1931}
1932
75ef9da2 1933static void
673a394b
EA
1934i915_gem_retire_work_handler(struct work_struct *work)
1935{
1936 drm_i915_private_t *dev_priv;
1937 struct drm_device *dev;
0a58705b
CW
1938 bool idle;
1939 int i;
673a394b
EA
1940
1941 dev_priv = container_of(work, drm_i915_private_t,
1942 mm.retire_work.work);
1943 dev = dev_priv->dev;
1944
891b48cf
CW
1945 /* Come back later if the device is busy... */
1946 if (!mutex_trylock(&dev->struct_mutex)) {
1947 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1948 return;
1949 }
1950
b09a1fec 1951 i915_gem_retire_requests(dev);
d1b851fc 1952
0a58705b
CW
1953 /* Send a periodic flush down the ring so we don't hold onto GEM
1954 * objects indefinitely.
1955 */
1956 idle = true;
1957 for (i = 0; i < I915_NUM_RINGS; i++) {
1958 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1959
1960 if (!list_empty(&ring->gpu_write_list)) {
1961 struct drm_i915_gem_request *request;
1962 int ret;
1963
1964 ret = i915_gem_flush_ring(dev, ring, 0,
1965 I915_GEM_GPU_DOMAINS);
1966 request = kzalloc(sizeof(*request), GFP_KERNEL);
1967 if (ret || request == NULL ||
1968 i915_add_request(dev, NULL, request, ring))
1969 kfree(request);
1970 }
1971
1972 idle &= list_empty(&ring->request_list);
1973 }
1974
1975 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1976 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1977
673a394b
EA
1978 mutex_unlock(&dev->struct_mutex);
1979}
1980
5a5a0c64 1981int
852835f3 1982i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1983 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1984{
1985 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1986 u32 ier;
673a394b
EA
1987 int ret = 0;
1988
1989 BUG_ON(seqno == 0);
1990
ba1234d1 1991 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
1992 return -EAGAIN;
1993
5d97eb69 1994 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1995 struct drm_i915_gem_request *request;
1996
1997 request = kzalloc(sizeof(*request), GFP_KERNEL);
1998 if (request == NULL)
e35a41de 1999 return -ENOMEM;
3cce469c
CW
2000
2001 ret = i915_add_request(dev, NULL, request, ring);
2002 if (ret) {
2003 kfree(request);
2004 return ret;
2005 }
2006
2007 seqno = request->seqno;
e35a41de 2008 }
ffed1d09 2009
78501eac 2010 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2011 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2012 ier = I915_READ(DEIER) | I915_READ(GTIER);
2013 else
2014 ier = I915_READ(IER);
802c7eb6
JB
2015 if (!ier) {
2016 DRM_ERROR("something (likely vbetool) disabled "
2017 "interrupts, re-enabling\n");
2018 i915_driver_irq_preinstall(dev);
2019 i915_driver_irq_postinstall(dev);
2020 }
2021
1c5d22f7
CW
2022 trace_i915_gem_request_wait_begin(dev, seqno);
2023
b2223497 2024 ring->waiting_seqno = seqno;
b13c2b96
CW
2025 if (ring->irq_get(ring)) {
2026 if (interruptible)
2027 ret = wait_event_interruptible(ring->irq_queue,
2028 i915_seqno_passed(ring->get_seqno(ring), seqno)
2029 || atomic_read(&dev_priv->mm.wedged));
2030 else
2031 wait_event(ring->irq_queue,
2032 i915_seqno_passed(ring->get_seqno(ring), seqno)
2033 || atomic_read(&dev_priv->mm.wedged));
2034
2035 ring->irq_put(ring);
b5ba177d
CW
2036 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2037 seqno) ||
2038 atomic_read(&dev_priv->mm.wedged), 3000))
2039 ret = -EBUSY;
b2223497 2040 ring->waiting_seqno = 0;
1c5d22f7
CW
2041
2042 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2043 }
ba1234d1 2044 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2045 ret = -EAGAIN;
673a394b
EA
2046
2047 if (ret && ret != -ERESTARTSYS)
8bff917c 2048 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2049 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2050 dev_priv->next_seqno);
673a394b
EA
2051
2052 /* Directly dispatch request retiring. While we have the work queue
2053 * to handle this, the waiter on a request often wants an associated
2054 * buffer to have made it to the inactive list, and we would need
2055 * a separate wait queue to handle that.
2056 */
2057 if (ret == 0)
b09a1fec 2058 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2059
2060 return ret;
2061}
2062
48764bf4
DV
2063/**
2064 * Waits for a sequence number to be signaled, and cleans up the
2065 * request and object lists appropriately for that event.
2066 */
2067static int
852835f3 2068i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2069 struct intel_ring_buffer *ring)
48764bf4 2070{
852835f3 2071 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2072}
2073
673a394b
EA
2074/**
2075 * Ensures that all rendering to the object has completed and the object is
2076 * safe to unbind from the GTT or access from the CPU.
2077 */
54cf91dc 2078int
05394f39 2079i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 2080 bool interruptible)
673a394b 2081{
05394f39 2082 struct drm_device *dev = obj->base.dev;
673a394b
EA
2083 int ret;
2084
e47c68e9
EA
2085 /* This function only exists to support waiting for existing rendering,
2086 * not for emitting required flushes.
673a394b 2087 */
05394f39 2088 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2089
2090 /* If there is rendering queued on the buffer being evicted, wait for
2091 * it.
2092 */
05394f39 2093 if (obj->active) {
2cf34d7b 2094 ret = i915_do_wait_request(dev,
05394f39 2095 obj->last_rendering_seqno,
2cf34d7b 2096 interruptible,
05394f39 2097 obj->ring);
2cf34d7b 2098 if (ret)
673a394b
EA
2099 return ret;
2100 }
2101
2102 return 0;
2103}
2104
2105/**
2106 * Unbinds an object from the GTT aperture.
2107 */
0f973f27 2108int
05394f39 2109i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2110{
673a394b
EA
2111 int ret = 0;
2112
05394f39 2113 if (obj->gtt_space == NULL)
673a394b
EA
2114 return 0;
2115
05394f39 2116 if (obj->pin_count != 0) {
673a394b
EA
2117 DRM_ERROR("Attempting to unbind pinned buffer\n");
2118 return -EINVAL;
2119 }
2120
5323fd04
EA
2121 /* blow away mappings if mapped through GTT */
2122 i915_gem_release_mmap(obj);
2123
673a394b
EA
2124 /* Move the object to the CPU domain to ensure that
2125 * any possible CPU writes while it's not in the GTT
2126 * are flushed when we go to remap it. This will
2127 * also ensure that all pending GPU writes are finished
2128 * before we unbind.
2129 */
e47c68e9 2130 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2131 if (ret == -ERESTARTSYS)
673a394b 2132 return ret;
8dc1775d
CW
2133 /* Continue on if we fail due to EIO, the GPU is hung so we
2134 * should be safe and we need to cleanup or else we might
2135 * cause memory corruption through use-after-free.
2136 */
812ed492
CW
2137 if (ret) {
2138 i915_gem_clflush_object(obj);
05394f39 2139 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2140 }
673a394b 2141
96b47b65 2142 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2143 ret = i915_gem_object_put_fence(obj);
2144 if (ret == -ERESTARTSYS)
2145 return ret;
96b47b65 2146
7c2e6fdf 2147 i915_gem_gtt_unbind_object(obj);
e5281ccd 2148 i915_gem_object_put_pages_gtt(obj);
673a394b 2149
6299f992 2150 list_del_init(&obj->gtt_list);
05394f39 2151 list_del_init(&obj->mm_list);
75e9e915 2152 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2153 obj->map_and_fenceable = true;
673a394b 2154
05394f39
CW
2155 drm_mm_put_block(obj->gtt_space);
2156 obj->gtt_space = NULL;
2157 obj->gtt_offset = 0;
673a394b 2158
05394f39 2159 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2160 i915_gem_object_truncate(obj);
2161
1c5d22f7
CW
2162 trace_i915_gem_object_unbind(obj);
2163
8dc1775d 2164 return ret;
673a394b
EA
2165}
2166
88241785 2167int
54cf91dc
CW
2168i915_gem_flush_ring(struct drm_device *dev,
2169 struct intel_ring_buffer *ring,
2170 uint32_t invalidate_domains,
2171 uint32_t flush_domains)
2172{
88241785
CW
2173 int ret;
2174
2175 ret = ring->flush(ring, invalidate_domains, flush_domains);
2176 if (ret)
2177 return ret;
2178
2179 i915_gem_process_flushing_list(dev, flush_domains, ring);
2180 return 0;
54cf91dc
CW
2181}
2182
a56ba56c
CW
2183static int i915_ring_idle(struct drm_device *dev,
2184 struct intel_ring_buffer *ring)
2185{
88241785
CW
2186 int ret;
2187
395b70be 2188 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2189 return 0;
2190
88241785
CW
2191 if (!list_empty(&ring->gpu_write_list)) {
2192 ret = i915_gem_flush_ring(dev, ring,
0ac74c6b 2193 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2194 if (ret)
2195 return ret;
2196 }
2197
a56ba56c
CW
2198 return i915_wait_request(dev,
2199 i915_gem_next_request_seqno(dev, ring),
2200 ring);
2201}
2202
b47eb4a2 2203int
4df2faf4
DV
2204i915_gpu_idle(struct drm_device *dev)
2205{
2206 drm_i915_private_t *dev_priv = dev->dev_private;
2207 bool lists_empty;
1ec14ad3 2208 int ret, i;
4df2faf4 2209
d1b851fc 2210 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2211 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2212 if (lists_empty)
2213 return 0;
2214
2215 /* Flush everything onto the inactive list. */
1ec14ad3
CW
2216 for (i = 0; i < I915_NUM_RINGS; i++) {
2217 ret = i915_ring_idle(dev, &dev_priv->ring[i]);
2218 if (ret)
2219 return ret;
2220 }
4df2faf4 2221
8a1a49f9 2222 return 0;
4df2faf4
DV
2223}
2224
c6642782
DV
2225static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2226 struct intel_ring_buffer *pipelined)
4e901fdc 2227{
05394f39 2228 struct drm_device *dev = obj->base.dev;
4e901fdc 2229 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2230 u32 size = obj->gtt_space->size;
2231 int regnum = obj->fence_reg;
4e901fdc
EA
2232 uint64_t val;
2233
05394f39 2234 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2235 0xfffff000) << 32;
05394f39
CW
2236 val |= obj->gtt_offset & 0xfffff000;
2237 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2238 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2239
05394f39 2240 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2241 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2242 val |= I965_FENCE_REG_VALID;
2243
c6642782
DV
2244 if (pipelined) {
2245 int ret = intel_ring_begin(pipelined, 6);
2246 if (ret)
2247 return ret;
2248
2249 intel_ring_emit(pipelined, MI_NOOP);
2250 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2251 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2252 intel_ring_emit(pipelined, (u32)val);
2253 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2254 intel_ring_emit(pipelined, (u32)(val >> 32));
2255 intel_ring_advance(pipelined);
2256 } else
2257 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2258
2259 return 0;
4e901fdc
EA
2260}
2261
c6642782
DV
2262static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2263 struct intel_ring_buffer *pipelined)
de151cf6 2264{
05394f39 2265 struct drm_device *dev = obj->base.dev;
de151cf6 2266 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2267 u32 size = obj->gtt_space->size;
2268 int regnum = obj->fence_reg;
de151cf6
JB
2269 uint64_t val;
2270
05394f39 2271 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2272 0xfffff000) << 32;
05394f39
CW
2273 val |= obj->gtt_offset & 0xfffff000;
2274 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2275 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2276 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2277 val |= I965_FENCE_REG_VALID;
2278
c6642782
DV
2279 if (pipelined) {
2280 int ret = intel_ring_begin(pipelined, 6);
2281 if (ret)
2282 return ret;
2283
2284 intel_ring_emit(pipelined, MI_NOOP);
2285 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2286 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2287 intel_ring_emit(pipelined, (u32)val);
2288 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2289 intel_ring_emit(pipelined, (u32)(val >> 32));
2290 intel_ring_advance(pipelined);
2291 } else
2292 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2293
2294 return 0;
de151cf6
JB
2295}
2296
c6642782
DV
2297static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2298 struct intel_ring_buffer *pipelined)
de151cf6 2299{
05394f39 2300 struct drm_device *dev = obj->base.dev;
de151cf6 2301 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2302 u32 size = obj->gtt_space->size;
c6642782 2303 u32 fence_reg, val, pitch_val;
0f973f27 2304 int tile_width;
de151cf6 2305
c6642782
DV
2306 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2307 (size & -size) != size ||
2308 (obj->gtt_offset & (size - 1)),
2309 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2310 obj->gtt_offset, obj->map_and_fenceable, size))
2311 return -EINVAL;
de151cf6 2312
c6642782 2313 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2314 tile_width = 128;
de151cf6 2315 else
0f973f27
JB
2316 tile_width = 512;
2317
2318 /* Note: pitch better be a power of two tile widths */
05394f39 2319 pitch_val = obj->stride / tile_width;
0f973f27 2320 pitch_val = ffs(pitch_val) - 1;
de151cf6 2321
05394f39
CW
2322 val = obj->gtt_offset;
2323 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2324 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2325 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2326 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2327 val |= I830_FENCE_REG_VALID;
2328
05394f39 2329 fence_reg = obj->fence_reg;
a00b10c3
CW
2330 if (fence_reg < 8)
2331 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2332 else
a00b10c3 2333 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2334
2335 if (pipelined) {
2336 int ret = intel_ring_begin(pipelined, 4);
2337 if (ret)
2338 return ret;
2339
2340 intel_ring_emit(pipelined, MI_NOOP);
2341 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2342 intel_ring_emit(pipelined, fence_reg);
2343 intel_ring_emit(pipelined, val);
2344 intel_ring_advance(pipelined);
2345 } else
2346 I915_WRITE(fence_reg, val);
2347
2348 return 0;
de151cf6
JB
2349}
2350
c6642782
DV
2351static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2352 struct intel_ring_buffer *pipelined)
de151cf6 2353{
05394f39 2354 struct drm_device *dev = obj->base.dev;
de151cf6 2355 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2356 u32 size = obj->gtt_space->size;
2357 int regnum = obj->fence_reg;
de151cf6
JB
2358 uint32_t val;
2359 uint32_t pitch_val;
2360
c6642782
DV
2361 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2362 (size & -size) != size ||
2363 (obj->gtt_offset & (size - 1)),
2364 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2365 obj->gtt_offset, size))
2366 return -EINVAL;
de151cf6 2367
05394f39 2368 pitch_val = obj->stride / 128;
e76a16de 2369 pitch_val = ffs(pitch_val) - 1;
e76a16de 2370
05394f39
CW
2371 val = obj->gtt_offset;
2372 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2373 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2374 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2375 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2376 val |= I830_FENCE_REG_VALID;
2377
c6642782
DV
2378 if (pipelined) {
2379 int ret = intel_ring_begin(pipelined, 4);
2380 if (ret)
2381 return ret;
2382
2383 intel_ring_emit(pipelined, MI_NOOP);
2384 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2385 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2386 intel_ring_emit(pipelined, val);
2387 intel_ring_advance(pipelined);
2388 } else
2389 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2390
2391 return 0;
de151cf6
JB
2392}
2393
d9e86c0e
CW
2394static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2395{
2396 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2397}
2398
2399static int
2400i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2401 struct intel_ring_buffer *pipelined,
2402 bool interruptible)
2403{
2404 int ret;
2405
2406 if (obj->fenced_gpu_access) {
88241785
CW
2407 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2408 ret = i915_gem_flush_ring(obj->base.dev,
2409 obj->last_fenced_ring,
2410 0, obj->base.write_domain);
2411 if (ret)
2412 return ret;
2413 }
d9e86c0e
CW
2414
2415 obj->fenced_gpu_access = false;
2416 }
2417
2418 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2419 if (!ring_passed_seqno(obj->last_fenced_ring,
2420 obj->last_fenced_seqno)) {
2421 ret = i915_do_wait_request(obj->base.dev,
2422 obj->last_fenced_seqno,
2423 interruptible,
2424 obj->last_fenced_ring);
2425 if (ret)
2426 return ret;
2427 }
2428
2429 obj->last_fenced_seqno = 0;
2430 obj->last_fenced_ring = NULL;
2431 }
2432
63256ec5
CW
2433 /* Ensure that all CPU reads are completed before installing a fence
2434 * and all writes before removing the fence.
2435 */
2436 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2437 mb();
2438
d9e86c0e
CW
2439 return 0;
2440}
2441
2442int
2443i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2444{
2445 int ret;
2446
2447 if (obj->tiling_mode)
2448 i915_gem_release_mmap(obj);
2449
2450 ret = i915_gem_object_flush_fence(obj, NULL, true);
2451 if (ret)
2452 return ret;
2453
2454 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2455 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2456 i915_gem_clear_fence_reg(obj->base.dev,
2457 &dev_priv->fence_regs[obj->fence_reg]);
2458
2459 obj->fence_reg = I915_FENCE_REG_NONE;
2460 }
2461
2462 return 0;
2463}
2464
2465static struct drm_i915_fence_reg *
2466i915_find_fence_reg(struct drm_device *dev,
2467 struct intel_ring_buffer *pipelined)
ae3db24a 2468{
ae3db24a 2469 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2470 struct drm_i915_fence_reg *reg, *first, *avail;
2471 int i;
ae3db24a
DV
2472
2473 /* First try to find a free reg */
d9e86c0e 2474 avail = NULL;
ae3db24a
DV
2475 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2476 reg = &dev_priv->fence_regs[i];
2477 if (!reg->obj)
d9e86c0e 2478 return reg;
ae3db24a 2479
05394f39 2480 if (!reg->obj->pin_count)
d9e86c0e 2481 avail = reg;
ae3db24a
DV
2482 }
2483
d9e86c0e
CW
2484 if (avail == NULL)
2485 return NULL;
ae3db24a
DV
2486
2487 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2488 avail = first = NULL;
2489 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2490 if (reg->obj->pin_count)
ae3db24a
DV
2491 continue;
2492
d9e86c0e
CW
2493 if (first == NULL)
2494 first = reg;
2495
2496 if (!pipelined ||
2497 !reg->obj->last_fenced_ring ||
2498 reg->obj->last_fenced_ring == pipelined) {
2499 avail = reg;
2500 break;
2501 }
ae3db24a
DV
2502 }
2503
d9e86c0e
CW
2504 if (avail == NULL)
2505 avail = first;
ae3db24a 2506
a00b10c3 2507 return avail;
ae3db24a
DV
2508}
2509
de151cf6 2510/**
d9e86c0e 2511 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2512 * @obj: object to map through a fence reg
d9e86c0e
CW
2513 * @pipelined: ring on which to queue the change, or NULL for CPU access
2514 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2515 *
2516 * When mapping objects through the GTT, userspace wants to be able to write
2517 * to them without having to worry about swizzling if the object is tiled.
2518 *
2519 * This function walks the fence regs looking for a free one for @obj,
2520 * stealing one if it can't find any.
2521 *
2522 * It then sets up the reg based on the object's properties: address, pitch
2523 * and tiling format.
2524 */
8c4b8c3f 2525int
d9e86c0e
CW
2526i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2527 struct intel_ring_buffer *pipelined,
2528 bool interruptible)
de151cf6 2529{
05394f39 2530 struct drm_device *dev = obj->base.dev;
79e53945 2531 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2532 struct drm_i915_fence_reg *reg;
ae3db24a 2533 int ret;
de151cf6 2534
6bda10d1
CW
2535 /* XXX disable pipelining. There are bugs. Shocking. */
2536 pipelined = NULL;
2537
d9e86c0e 2538 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2539 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2540 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2541 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e
CW
2542
2543 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2544 pipelined = NULL;
2545
2546 if (!pipelined) {
2547 if (reg->setup_seqno) {
2548 if (!ring_passed_seqno(obj->last_fenced_ring,
2549 reg->setup_seqno)) {
2550 ret = i915_do_wait_request(obj->base.dev,
2551 reg->setup_seqno,
2552 interruptible,
2553 obj->last_fenced_ring);
2554 if (ret)
2555 return ret;
2556 }
2557
2558 reg->setup_seqno = 0;
2559 }
2560 } else if (obj->last_fenced_ring &&
2561 obj->last_fenced_ring != pipelined) {
2562 ret = i915_gem_object_flush_fence(obj,
2563 pipelined,
2564 interruptible);
2565 if (ret)
2566 return ret;
2567 } else if (obj->tiling_changed) {
2568 if (obj->fenced_gpu_access) {
88241785
CW
2569 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2570 ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
2571 0, obj->base.write_domain);
2572 if (ret)
2573 return ret;
2574 }
d9e86c0e
CW
2575
2576 obj->fenced_gpu_access = false;
2577 }
2578 }
2579
2580 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2581 pipelined = NULL;
2582 BUG_ON(!pipelined && reg->setup_seqno);
2583
2584 if (obj->tiling_changed) {
2585 if (pipelined) {
2586 reg->setup_seqno =
2587 i915_gem_next_request_seqno(dev, pipelined);
2588 obj->last_fenced_seqno = reg->setup_seqno;
2589 obj->last_fenced_ring = pipelined;
2590 }
2591 goto update;
2592 }
2593
a09ba7fa
EA
2594 return 0;
2595 }
2596
d9e86c0e
CW
2597 reg = i915_find_fence_reg(dev, pipelined);
2598 if (reg == NULL)
2599 return -ENOSPC;
de151cf6 2600
d9e86c0e
CW
2601 ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
2602 if (ret)
ae3db24a 2603 return ret;
de151cf6 2604
d9e86c0e
CW
2605 if (reg->obj) {
2606 struct drm_i915_gem_object *old = reg->obj;
2607
2608 drm_gem_object_reference(&old->base);
2609
2610 if (old->tiling_mode)
2611 i915_gem_release_mmap(old);
2612
d9e86c0e 2613 ret = i915_gem_object_flush_fence(old,
6bda10d1 2614 pipelined,
d9e86c0e
CW
2615 interruptible);
2616 if (ret) {
2617 drm_gem_object_unreference(&old->base);
2618 return ret;
2619 }
2620
2621 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2622 pipelined = NULL;
2623
2624 old->fence_reg = I915_FENCE_REG_NONE;
2625 old->last_fenced_ring = pipelined;
2626 old->last_fenced_seqno =
2627 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2628
2629 drm_gem_object_unreference(&old->base);
2630 } else if (obj->last_fenced_seqno == 0)
2631 pipelined = NULL;
a09ba7fa 2632
de151cf6 2633 reg->obj = obj;
d9e86c0e
CW
2634 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2635 obj->fence_reg = reg - dev_priv->fence_regs;
2636 obj->last_fenced_ring = pipelined;
de151cf6 2637
d9e86c0e
CW
2638 reg->setup_seqno =
2639 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2640 obj->last_fenced_seqno = reg->setup_seqno;
2641
2642update:
2643 obj->tiling_changed = false;
e259befd
CW
2644 switch (INTEL_INFO(dev)->gen) {
2645 case 6:
c6642782 2646 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2647 break;
2648 case 5:
2649 case 4:
c6642782 2650 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2651 break;
2652 case 3:
c6642782 2653 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2654 break;
2655 case 2:
c6642782 2656 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2657 break;
2658 }
d9ddcb96 2659
c6642782 2660 return ret;
de151cf6
JB
2661}
2662
2663/**
2664 * i915_gem_clear_fence_reg - clear out fence register info
2665 * @obj: object to clear
2666 *
2667 * Zeroes out the fence register itself and clears out the associated
05394f39 2668 * data structures in dev_priv and obj.
de151cf6
JB
2669 */
2670static void
d9e86c0e
CW
2671i915_gem_clear_fence_reg(struct drm_device *dev,
2672 struct drm_i915_fence_reg *reg)
de151cf6 2673{
79e53945 2674 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2675 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2676
e259befd
CW
2677 switch (INTEL_INFO(dev)->gen) {
2678 case 6:
d9e86c0e 2679 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2680 break;
2681 case 5:
2682 case 4:
d9e86c0e 2683 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2684 break;
2685 case 3:
d9e86c0e
CW
2686 if (fence_reg >= 8)
2687 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2688 else
e259befd 2689 case 2:
d9e86c0e 2690 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2691
2692 I915_WRITE(fence_reg, 0);
e259befd 2693 break;
dc529a4f 2694 }
de151cf6 2695
007cc8ac 2696 list_del_init(&reg->lru_list);
d9e86c0e
CW
2697 reg->obj = NULL;
2698 reg->setup_seqno = 0;
52dc7d32
CW
2699}
2700
673a394b
EA
2701/**
2702 * Finds free space in the GTT aperture and binds the object there.
2703 */
2704static int
05394f39 2705i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2706 unsigned alignment,
75e9e915 2707 bool map_and_fenceable)
673a394b 2708{
05394f39 2709 struct drm_device *dev = obj->base.dev;
673a394b 2710 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2711 struct drm_mm_node *free_space;
a00b10c3 2712 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2713 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2714 bool mappable, fenceable;
07f73f69 2715 int ret;
673a394b 2716
05394f39 2717 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2718 DRM_ERROR("Attempting to bind a purgeable object\n");
2719 return -EINVAL;
2720 }
2721
05394f39
CW
2722 fence_size = i915_gem_get_gtt_size(obj);
2723 fence_alignment = i915_gem_get_gtt_alignment(obj);
2724 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2725
673a394b 2726 if (alignment == 0)
5e783301
DV
2727 alignment = map_and_fenceable ? fence_alignment :
2728 unfenced_alignment;
75e9e915 2729 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2730 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2731 return -EINVAL;
2732 }
2733
05394f39 2734 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2735
654fc607
CW
2736 /* If the object is bigger than the entire aperture, reject it early
2737 * before evicting everything in a vain attempt to find space.
2738 */
05394f39 2739 if (obj->base.size >
75e9e915 2740 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2741 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2742 return -E2BIG;
2743 }
2744
673a394b 2745 search_free:
75e9e915 2746 if (map_and_fenceable)
920afa77
DV
2747 free_space =
2748 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2749 size, alignment, 0,
920afa77
DV
2750 dev_priv->mm.gtt_mappable_end,
2751 0);
2752 else
2753 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2754 size, alignment, 0);
920afa77
DV
2755
2756 if (free_space != NULL) {
75e9e915 2757 if (map_and_fenceable)
05394f39 2758 obj->gtt_space =
920afa77 2759 drm_mm_get_block_range_generic(free_space,
a00b10c3 2760 size, alignment, 0,
920afa77
DV
2761 dev_priv->mm.gtt_mappable_end,
2762 0);
2763 else
05394f39 2764 obj->gtt_space =
a00b10c3 2765 drm_mm_get_block(free_space, size, alignment);
920afa77 2766 }
05394f39 2767 if (obj->gtt_space == NULL) {
673a394b
EA
2768 /* If the gtt is empty and we're still having trouble
2769 * fitting our object in, we're out of memory.
2770 */
75e9e915
DV
2771 ret = i915_gem_evict_something(dev, size, alignment,
2772 map_and_fenceable);
9731129c 2773 if (ret)
673a394b 2774 return ret;
9731129c 2775
673a394b
EA
2776 goto search_free;
2777 }
2778
e5281ccd 2779 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2780 if (ret) {
05394f39
CW
2781 drm_mm_put_block(obj->gtt_space);
2782 obj->gtt_space = NULL;
07f73f69
CW
2783
2784 if (ret == -ENOMEM) {
2785 /* first try to clear up some space from the GTT */
a00b10c3 2786 ret = i915_gem_evict_something(dev, size,
75e9e915
DV
2787 alignment,
2788 map_and_fenceable);
07f73f69 2789 if (ret) {
07f73f69 2790 /* now try to shrink everyone else */
4bdadb97
CW
2791 if (gfpmask) {
2792 gfpmask = 0;
2793 goto search_free;
07f73f69
CW
2794 }
2795
2796 return ret;
2797 }
2798
2799 goto search_free;
2800 }
2801
673a394b
EA
2802 return ret;
2803 }
2804
7c2e6fdf
DV
2805 ret = i915_gem_gtt_bind_object(obj);
2806 if (ret) {
e5281ccd 2807 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2808 drm_mm_put_block(obj->gtt_space);
2809 obj->gtt_space = NULL;
07f73f69 2810
a00b10c3 2811 ret = i915_gem_evict_something(dev, size,
75e9e915 2812 alignment, map_and_fenceable);
9731129c 2813 if (ret)
07f73f69 2814 return ret;
07f73f69
CW
2815
2816 goto search_free;
673a394b 2817 }
673a394b 2818
6299f992 2819 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2820 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2821
673a394b
EA
2822 /* Assert that the object is not currently in any GPU domain. As it
2823 * wasn't in the GTT, there shouldn't be any way it could have been in
2824 * a GPU cache
2825 */
05394f39
CW
2826 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2827 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2828
6299f992 2829 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2830
75e9e915 2831 fenceable =
05394f39
CW
2832 obj->gtt_space->size == fence_size &&
2833 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2834
75e9e915 2835 mappable =
05394f39 2836 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2837
05394f39 2838 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2839
6299f992 2840 trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
673a394b
EA
2841 return 0;
2842}
2843
2844void
05394f39 2845i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2846{
673a394b
EA
2847 /* If we don't have a page list set up, then we're not pinned
2848 * to GPU, and we can ignore the cache flush because it'll happen
2849 * again at bind time.
2850 */
05394f39 2851 if (obj->pages == NULL)
673a394b
EA
2852 return;
2853
1c5d22f7 2854 trace_i915_gem_object_clflush(obj);
cfa16a0d 2855
05394f39 2856 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2857}
2858
e47c68e9 2859/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2860static int
3619df03 2861i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2862{
05394f39 2863 struct drm_device *dev = obj->base.dev;
e47c68e9 2864
05394f39 2865 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2866 return 0;
e47c68e9
EA
2867
2868 /* Queue the GPU write cache flushing we need. */
88241785 2869 return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2870}
2871
2872/** Flushes the GTT write domain for the object if it's dirty. */
2873static void
05394f39 2874i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2875{
1c5d22f7
CW
2876 uint32_t old_write_domain;
2877
05394f39 2878 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2879 return;
2880
63256ec5 2881 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2882 * to it immediately go to main memory as far as we know, so there's
2883 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2884 *
2885 * However, we do have to enforce the order so that all writes through
2886 * the GTT land before any writes to the device, such as updates to
2887 * the GATT itself.
e47c68e9 2888 */
63256ec5
CW
2889 wmb();
2890
4a684a41
CW
2891 i915_gem_release_mmap(obj);
2892
05394f39
CW
2893 old_write_domain = obj->base.write_domain;
2894 obj->base.write_domain = 0;
1c5d22f7
CW
2895
2896 trace_i915_gem_object_change_domain(obj,
05394f39 2897 obj->base.read_domains,
1c5d22f7 2898 old_write_domain);
e47c68e9
EA
2899}
2900
2901/** Flushes the CPU write domain for the object if it's dirty. */
2902static void
05394f39 2903i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2904{
1c5d22f7 2905 uint32_t old_write_domain;
e47c68e9 2906
05394f39 2907 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2908 return;
2909
2910 i915_gem_clflush_object(obj);
40ce6575 2911 intel_gtt_chipset_flush();
05394f39
CW
2912 old_write_domain = obj->base.write_domain;
2913 obj->base.write_domain = 0;
1c5d22f7
CW
2914
2915 trace_i915_gem_object_change_domain(obj,
05394f39 2916 obj->base.read_domains,
1c5d22f7 2917 old_write_domain);
e47c68e9
EA
2918}
2919
2ef7eeaa
EA
2920/**
2921 * Moves a single object to the GTT read, and possibly write domain.
2922 *
2923 * This function returns when the move is complete, including waiting on
2924 * flushes to occur.
2925 */
79e53945 2926int
2021746e 2927i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2928{
1c5d22f7 2929 uint32_t old_write_domain, old_read_domains;
e47c68e9 2930 int ret;
2ef7eeaa 2931
02354392 2932 /* Not valid to be called on unbound objects. */
05394f39 2933 if (obj->gtt_space == NULL)
02354392
EA
2934 return -EINVAL;
2935
88241785
CW
2936 ret = i915_gem_object_flush_gpu_write_domain(obj);
2937 if (ret)
2938 return ret;
2939
87ca9c8a
CW
2940 if (obj->pending_gpu_write || write) {
2941 ret = i915_gem_object_wait_rendering(obj, true);
2942 if (ret)
2943 return ret;
2944 }
2dafb1e0 2945
7213342d 2946 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2947
05394f39
CW
2948 old_write_domain = obj->base.write_domain;
2949 old_read_domains = obj->base.read_domains;
1c5d22f7 2950
e47c68e9
EA
2951 /* It should now be out of any other write domains, and we can update
2952 * the domain values for our changes.
2953 */
05394f39
CW
2954 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2955 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2956 if (write) {
05394f39
CW
2957 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2958 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2959 obj->dirty = 1;
2ef7eeaa
EA
2960 }
2961
1c5d22f7
CW
2962 trace_i915_gem_object_change_domain(obj,
2963 old_read_domains,
2964 old_write_domain);
2965
e47c68e9
EA
2966 return 0;
2967}
2968
b9241ea3
ZW
2969/*
2970 * Prepare buffer for display plane. Use uninterruptible for possible flush
2971 * wait, as in modesetting process we're not supposed to be interrupted.
2972 */
2973int
05394f39 2974i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 2975 struct intel_ring_buffer *pipelined)
b9241ea3 2976{
ba3d8d74 2977 uint32_t old_read_domains;
b9241ea3
ZW
2978 int ret;
2979
2980 /* Not valid to be called on unbound objects. */
05394f39 2981 if (obj->gtt_space == NULL)
b9241ea3
ZW
2982 return -EINVAL;
2983
88241785
CW
2984 ret = i915_gem_object_flush_gpu_write_domain(obj);
2985 if (ret)
2986 return ret;
2987
b9241ea3 2988
ced270fa 2989 /* Currently, we are always called from an non-interruptible context. */
0be73284 2990 if (pipelined != obj->ring) {
ced270fa
CW
2991 ret = i915_gem_object_wait_rendering(obj, false);
2992 if (ret)
b9241ea3
ZW
2993 return ret;
2994 }
2995
b118c1e3
CW
2996 i915_gem_object_flush_cpu_write_domain(obj);
2997
05394f39
CW
2998 old_read_domains = obj->base.read_domains;
2999 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3000
3001 trace_i915_gem_object_change_domain(obj,
3002 old_read_domains,
05394f39 3003 obj->base.write_domain);
b9241ea3
ZW
3004
3005 return 0;
3006}
3007
85345517
CW
3008int
3009i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3010 bool interruptible)
3011{
88241785
CW
3012 int ret;
3013
85345517
CW
3014 if (!obj->active)
3015 return 0;
3016
88241785
CW
3017 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3018 ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
3019 0, obj->base.write_domain);
3020 if (ret)
3021 return ret;
3022 }
85345517 3023
05394f39 3024 return i915_gem_object_wait_rendering(obj, interruptible);
85345517
CW
3025}
3026
e47c68e9
EA
3027/**
3028 * Moves a single object to the CPU read, and possibly write domain.
3029 *
3030 * This function returns when the move is complete, including waiting on
3031 * flushes to occur.
3032 */
3033static int
919926ae 3034i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3035{
1c5d22f7 3036 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3037 int ret;
3038
88241785
CW
3039 ret = i915_gem_object_flush_gpu_write_domain(obj);
3040 if (ret)
3041 return ret;
3042
de18a29e
DV
3043 ret = i915_gem_object_wait_rendering(obj, true);
3044 if (ret)
e47c68e9 3045 return ret;
2ef7eeaa 3046
e47c68e9 3047 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3048
e47c68e9
EA
3049 /* If we have a partially-valid cache of the object in the CPU,
3050 * finish invalidating it and free the per-page flags.
2ef7eeaa 3051 */
e47c68e9 3052 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3053
05394f39
CW
3054 old_write_domain = obj->base.write_domain;
3055 old_read_domains = obj->base.read_domains;
1c5d22f7 3056
e47c68e9 3057 /* Flush the CPU cache if it's still invalid. */
05394f39 3058 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3059 i915_gem_clflush_object(obj);
2ef7eeaa 3060
05394f39 3061 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3062 }
3063
3064 /* It should now be out of any other write domains, and we can update
3065 * the domain values for our changes.
3066 */
05394f39 3067 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3068
3069 /* If we're writing through the CPU, then the GPU read domains will
3070 * need to be invalidated at next use.
3071 */
3072 if (write) {
05394f39
CW
3073 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3074 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3075 }
2ef7eeaa 3076
1c5d22f7
CW
3077 trace_i915_gem_object_change_domain(obj,
3078 old_read_domains,
3079 old_write_domain);
3080
2ef7eeaa
EA
3081 return 0;
3082}
3083
673a394b 3084/**
e47c68e9 3085 * Moves the object from a partially CPU read to a full one.
673a394b 3086 *
e47c68e9
EA
3087 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3088 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3089 */
e47c68e9 3090static void
05394f39 3091i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3092{
05394f39 3093 if (!obj->page_cpu_valid)
e47c68e9
EA
3094 return;
3095
3096 /* If we're partially in the CPU read domain, finish moving it in.
3097 */
05394f39 3098 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3099 int i;
3100
05394f39
CW
3101 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3102 if (obj->page_cpu_valid[i])
e47c68e9 3103 continue;
05394f39 3104 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3105 }
e47c68e9
EA
3106 }
3107
3108 /* Free the page_cpu_valid mappings which are now stale, whether
3109 * or not we've got I915_GEM_DOMAIN_CPU.
3110 */
05394f39
CW
3111 kfree(obj->page_cpu_valid);
3112 obj->page_cpu_valid = NULL;
e47c68e9
EA
3113}
3114
3115/**
3116 * Set the CPU read domain on a range of the object.
3117 *
3118 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3119 * not entirely valid. The page_cpu_valid member of the object flags which
3120 * pages have been flushed, and will be respected by
3121 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3122 * of the whole object.
3123 *
3124 * This function returns when the move is complete, including waiting on
3125 * flushes to occur.
3126 */
3127static int
05394f39 3128i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3129 uint64_t offset, uint64_t size)
3130{
1c5d22f7 3131 uint32_t old_read_domains;
e47c68e9 3132 int i, ret;
673a394b 3133
05394f39 3134 if (offset == 0 && size == obj->base.size)
e47c68e9 3135 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3136
88241785
CW
3137 ret = i915_gem_object_flush_gpu_write_domain(obj);
3138 if (ret)
3139 return ret;
3140
de18a29e
DV
3141 ret = i915_gem_object_wait_rendering(obj, true);
3142 if (ret)
6a47baa6 3143 return ret;
de18a29e 3144
e47c68e9
EA
3145 i915_gem_object_flush_gtt_write_domain(obj);
3146
3147 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3148 if (obj->page_cpu_valid == NULL &&
3149 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3150 return 0;
673a394b 3151
e47c68e9
EA
3152 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3153 * newly adding I915_GEM_DOMAIN_CPU
3154 */
05394f39
CW
3155 if (obj->page_cpu_valid == NULL) {
3156 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3157 GFP_KERNEL);
3158 if (obj->page_cpu_valid == NULL)
e47c68e9 3159 return -ENOMEM;
05394f39
CW
3160 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3161 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3162
3163 /* Flush the cache on any pages that are still invalid from the CPU's
3164 * perspective.
3165 */
e47c68e9
EA
3166 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3167 i++) {
05394f39 3168 if (obj->page_cpu_valid[i])
673a394b
EA
3169 continue;
3170
05394f39 3171 drm_clflush_pages(obj->pages + i, 1);
673a394b 3172
05394f39 3173 obj->page_cpu_valid[i] = 1;
673a394b
EA
3174 }
3175
e47c68e9
EA
3176 /* It should now be out of any other write domains, and we can update
3177 * the domain values for our changes.
3178 */
05394f39 3179 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3180
05394f39
CW
3181 old_read_domains = obj->base.read_domains;
3182 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3183
1c5d22f7
CW
3184 trace_i915_gem_object_change_domain(obj,
3185 old_read_domains,
05394f39 3186 obj->base.write_domain);
1c5d22f7 3187
673a394b
EA
3188 return 0;
3189}
3190
673a394b
EA
3191/* Throttle our rendering by waiting until the ring has completed our requests
3192 * emitted over 20 msec ago.
3193 *
b962442e
EA
3194 * Note that if we were to use the current jiffies each time around the loop,
3195 * we wouldn't escape the function with any frames outstanding if the time to
3196 * render a frame was over 20ms.
3197 *
673a394b
EA
3198 * This should get us reasonable parallelism between CPU and GPU but also
3199 * relatively low latency when blocking on a particular request to finish.
3200 */
40a5f0de 3201static int
f787a5f5 3202i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3203{
f787a5f5
CW
3204 struct drm_i915_private *dev_priv = dev->dev_private;
3205 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3206 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3207 struct drm_i915_gem_request *request;
3208 struct intel_ring_buffer *ring = NULL;
3209 u32 seqno = 0;
3210 int ret;
93533c29 3211
1c25595f 3212 spin_lock(&file_priv->mm.lock);
f787a5f5 3213 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3214 if (time_after_eq(request->emitted_jiffies, recent_enough))
3215 break;
40a5f0de 3216
f787a5f5
CW
3217 ring = request->ring;
3218 seqno = request->seqno;
b962442e 3219 }
1c25595f 3220 spin_unlock(&file_priv->mm.lock);
40a5f0de 3221
f787a5f5
CW
3222 if (seqno == 0)
3223 return 0;
2bc43b5c 3224
f787a5f5 3225 ret = 0;
78501eac 3226 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3227 /* And wait for the seqno passing without holding any locks and
3228 * causing extra latency for others. This is safe as the irq
3229 * generation is designed to be run atomically and so is
3230 * lockless.
3231 */
b13c2b96
CW
3232 if (ring->irq_get(ring)) {
3233 ret = wait_event_interruptible(ring->irq_queue,
3234 i915_seqno_passed(ring->get_seqno(ring), seqno)
3235 || atomic_read(&dev_priv->mm.wedged));
3236 ring->irq_put(ring);
40a5f0de 3237
b13c2b96
CW
3238 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3239 ret = -EIO;
3240 }
40a5f0de
EA
3241 }
3242
f787a5f5
CW
3243 if (ret == 0)
3244 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3245
3246 return ret;
3247}
3248
673a394b 3249int
05394f39
CW
3250i915_gem_object_pin(struct drm_i915_gem_object *obj,
3251 uint32_t alignment,
75e9e915 3252 bool map_and_fenceable)
673a394b 3253{
05394f39 3254 struct drm_device *dev = obj->base.dev;
f13d3f73 3255 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3256 int ret;
3257
05394f39 3258 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3259 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3260
05394f39
CW
3261 if (obj->gtt_space != NULL) {
3262 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3263 (map_and_fenceable && !obj->map_and_fenceable)) {
3264 WARN(obj->pin_count,
ae7d49d8 3265 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3266 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3267 " obj->map_and_fenceable=%d\n",
05394f39 3268 obj->gtt_offset, alignment,
75e9e915 3269 map_and_fenceable,
05394f39 3270 obj->map_and_fenceable);
ac0c6b5a
CW
3271 ret = i915_gem_object_unbind(obj);
3272 if (ret)
3273 return ret;
3274 }
3275 }
3276
05394f39 3277 if (obj->gtt_space == NULL) {
a00b10c3 3278 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3279 map_and_fenceable);
9731129c 3280 if (ret)
673a394b 3281 return ret;
22c344e9 3282 }
76446cac 3283
05394f39 3284 if (obj->pin_count++ == 0) {
05394f39
CW
3285 if (!obj->active)
3286 list_move_tail(&obj->mm_list,
f13d3f73 3287 &dev_priv->mm.pinned_list);
673a394b 3288 }
6299f992 3289 obj->pin_mappable |= map_and_fenceable;
673a394b 3290
23bc5982 3291 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3292 return 0;
3293}
3294
3295void
05394f39 3296i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3297{
05394f39 3298 struct drm_device *dev = obj->base.dev;
673a394b 3299 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3300
23bc5982 3301 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3302 BUG_ON(obj->pin_count == 0);
3303 BUG_ON(obj->gtt_space == NULL);
673a394b 3304
05394f39
CW
3305 if (--obj->pin_count == 0) {
3306 if (!obj->active)
3307 list_move_tail(&obj->mm_list,
673a394b 3308 &dev_priv->mm.inactive_list);
6299f992 3309 obj->pin_mappable = false;
673a394b 3310 }
23bc5982 3311 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3312}
3313
3314int
3315i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3316 struct drm_file *file)
673a394b
EA
3317{
3318 struct drm_i915_gem_pin *args = data;
05394f39 3319 struct drm_i915_gem_object *obj;
673a394b
EA
3320 int ret;
3321
1d7cfea1
CW
3322 ret = i915_mutex_lock_interruptible(dev);
3323 if (ret)
3324 return ret;
673a394b 3325
05394f39 3326 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3327 if (obj == NULL) {
1d7cfea1
CW
3328 ret = -ENOENT;
3329 goto unlock;
673a394b 3330 }
673a394b 3331
05394f39 3332 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3333 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3334 ret = -EINVAL;
3335 goto out;
3ef94daa
CW
3336 }
3337
05394f39 3338 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3339 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3340 args->handle);
1d7cfea1
CW
3341 ret = -EINVAL;
3342 goto out;
79e53945
JB
3343 }
3344
05394f39
CW
3345 obj->user_pin_count++;
3346 obj->pin_filp = file;
3347 if (obj->user_pin_count == 1) {
75e9e915 3348 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3349 if (ret)
3350 goto out;
673a394b
EA
3351 }
3352
3353 /* XXX - flush the CPU caches for pinned objects
3354 * as the X server doesn't manage domains yet
3355 */
e47c68e9 3356 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3357 args->offset = obj->gtt_offset;
1d7cfea1 3358out:
05394f39 3359 drm_gem_object_unreference(&obj->base);
1d7cfea1 3360unlock:
673a394b 3361 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3362 return ret;
673a394b
EA
3363}
3364
3365int
3366i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3367 struct drm_file *file)
673a394b
EA
3368{
3369 struct drm_i915_gem_pin *args = data;
05394f39 3370 struct drm_i915_gem_object *obj;
76c1dec1 3371 int ret;
673a394b 3372
1d7cfea1
CW
3373 ret = i915_mutex_lock_interruptible(dev);
3374 if (ret)
3375 return ret;
673a394b 3376
05394f39 3377 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3378 if (obj == NULL) {
1d7cfea1
CW
3379 ret = -ENOENT;
3380 goto unlock;
673a394b 3381 }
76c1dec1 3382
05394f39 3383 if (obj->pin_filp != file) {
79e53945
JB
3384 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3385 args->handle);
1d7cfea1
CW
3386 ret = -EINVAL;
3387 goto out;
79e53945 3388 }
05394f39
CW
3389 obj->user_pin_count--;
3390 if (obj->user_pin_count == 0) {
3391 obj->pin_filp = NULL;
79e53945
JB
3392 i915_gem_object_unpin(obj);
3393 }
673a394b 3394
1d7cfea1 3395out:
05394f39 3396 drm_gem_object_unreference(&obj->base);
1d7cfea1 3397unlock:
673a394b 3398 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3399 return ret;
673a394b
EA
3400}
3401
3402int
3403i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3404 struct drm_file *file)
673a394b
EA
3405{
3406 struct drm_i915_gem_busy *args = data;
05394f39 3407 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3408 int ret;
3409
76c1dec1 3410 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3411 if (ret)
76c1dec1 3412 return ret;
673a394b 3413
05394f39 3414 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3415 if (obj == NULL) {
1d7cfea1
CW
3416 ret = -ENOENT;
3417 goto unlock;
673a394b 3418 }
d1b851fc 3419
0be555b6
CW
3420 /* Count all active objects as busy, even if they are currently not used
3421 * by the gpu. Users of this interface expect objects to eventually
3422 * become non-busy without any further actions, therefore emit any
3423 * necessary flushes here.
c4de0a5d 3424 */
05394f39 3425 args->busy = obj->active;
0be555b6
CW
3426 if (args->busy) {
3427 /* Unconditionally flush objects, even when the gpu still uses this
3428 * object. Userspace calling this function indicates that it wants to
3429 * use this buffer rather sooner than later, so issuing the required
3430 * flush earlier is beneficial.
3431 */
1a1c6976 3432 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
88241785
CW
3433 ret = i915_gem_flush_ring(dev, obj->ring,
3434 0, obj->base.write_domain);
1a1c6976
CW
3435 } else if (obj->ring->outstanding_lazy_request ==
3436 obj->last_rendering_seqno) {
3437 struct drm_i915_gem_request *request;
3438
7a194876
CW
3439 /* This ring is not being cleared by active usage,
3440 * so emit a request to do so.
3441 */
1a1c6976
CW
3442 request = kzalloc(sizeof(*request), GFP_KERNEL);
3443 if (request)
3444 ret = i915_add_request(dev,
3445 NULL, request,
3446 obj->ring);
3447 else
7a194876
CW
3448 ret = -ENOMEM;
3449 }
0be555b6
CW
3450
3451 /* Update the active list for the hardware's current position.
3452 * Otherwise this only updates on a delayed timer or when irqs
3453 * are actually unmasked, and our working set ends up being
3454 * larger than required.
3455 */
05394f39 3456 i915_gem_retire_requests_ring(dev, obj->ring);
0be555b6 3457
05394f39 3458 args->busy = obj->active;
0be555b6 3459 }
673a394b 3460
05394f39 3461 drm_gem_object_unreference(&obj->base);
1d7cfea1 3462unlock:
673a394b 3463 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3464 return ret;
673a394b
EA
3465}
3466
3467int
3468i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3469 struct drm_file *file_priv)
3470{
3471 return i915_gem_ring_throttle(dev, file_priv);
3472}
3473
3ef94daa
CW
3474int
3475i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3476 struct drm_file *file_priv)
3477{
3478 struct drm_i915_gem_madvise *args = data;
05394f39 3479 struct drm_i915_gem_object *obj;
76c1dec1 3480 int ret;
3ef94daa
CW
3481
3482 switch (args->madv) {
3483 case I915_MADV_DONTNEED:
3484 case I915_MADV_WILLNEED:
3485 break;
3486 default:
3487 return -EINVAL;
3488 }
3489
1d7cfea1
CW
3490 ret = i915_mutex_lock_interruptible(dev);
3491 if (ret)
3492 return ret;
3493
05394f39 3494 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3ef94daa 3495 if (obj == NULL) {
1d7cfea1
CW
3496 ret = -ENOENT;
3497 goto unlock;
3ef94daa 3498 }
3ef94daa 3499
05394f39 3500 if (obj->pin_count) {
1d7cfea1
CW
3501 ret = -EINVAL;
3502 goto out;
3ef94daa
CW
3503 }
3504
05394f39
CW
3505 if (obj->madv != __I915_MADV_PURGED)
3506 obj->madv = args->madv;
3ef94daa 3507
2d7ef395 3508 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3509 if (i915_gem_object_is_purgeable(obj) &&
3510 obj->gtt_space == NULL)
2d7ef395
CW
3511 i915_gem_object_truncate(obj);
3512
05394f39 3513 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3514
1d7cfea1 3515out:
05394f39 3516 drm_gem_object_unreference(&obj->base);
1d7cfea1 3517unlock:
3ef94daa 3518 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3519 return ret;
3ef94daa
CW
3520}
3521
05394f39
CW
3522struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3523 size_t size)
ac52bc56 3524{
73aa808f 3525 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3526 struct drm_i915_gem_object *obj;
ac52bc56 3527
c397b908
DV
3528 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3529 if (obj == NULL)
3530 return NULL;
673a394b 3531
c397b908
DV
3532 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3533 kfree(obj);
3534 return NULL;
3535 }
673a394b 3536
73aa808f
CW
3537 i915_gem_info_add_obj(dev_priv, size);
3538
c397b908
DV
3539 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3540 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3541
c397b908 3542 obj->agp_type = AGP_USER_MEMORY;
62b8b215 3543 obj->base.driver_private = NULL;
c397b908 3544 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3545 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3546 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3547 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3548 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3549 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3550 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3551 /* Avoid an unnecessary call to unbind on the first bind. */
3552 obj->map_and_fenceable = true;
de151cf6 3553
05394f39 3554 return obj;
c397b908
DV
3555}
3556
3557int i915_gem_init_object(struct drm_gem_object *obj)
3558{
3559 BUG();
de151cf6 3560
673a394b
EA
3561 return 0;
3562}
3563
05394f39 3564static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3565{
05394f39 3566 struct drm_device *dev = obj->base.dev;
be72615b 3567 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3568 int ret;
673a394b 3569
be72615b
CW
3570 ret = i915_gem_object_unbind(obj);
3571 if (ret == -ERESTARTSYS) {
05394f39 3572 list_move(&obj->mm_list,
be72615b
CW
3573 &dev_priv->mm.deferred_free_list);
3574 return;
3575 }
673a394b 3576
05394f39 3577 if (obj->base.map_list.map)
7e616158 3578 i915_gem_free_mmap_offset(obj);
de151cf6 3579
05394f39
CW
3580 drm_gem_object_release(&obj->base);
3581 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3582
05394f39
CW
3583 kfree(obj->page_cpu_valid);
3584 kfree(obj->bit_17);
3585 kfree(obj);
673a394b
EA
3586}
3587
05394f39 3588void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3589{
05394f39
CW
3590 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3591 struct drm_device *dev = obj->base.dev;
be72615b
CW
3592
3593 trace_i915_gem_object_destroy(obj);
3594
05394f39 3595 while (obj->pin_count > 0)
be72615b
CW
3596 i915_gem_object_unpin(obj);
3597
05394f39 3598 if (obj->phys_obj)
be72615b
CW
3599 i915_gem_detach_phys_object(dev, obj);
3600
3601 i915_gem_free_object_tail(obj);
3602}
3603
29105ccc
CW
3604int
3605i915_gem_idle(struct drm_device *dev)
3606{
3607 drm_i915_private_t *dev_priv = dev->dev_private;
3608 int ret;
28dfe52a 3609
29105ccc 3610 mutex_lock(&dev->struct_mutex);
1c5d22f7 3611
87acb0a5 3612 if (dev_priv->mm.suspended) {
29105ccc
CW
3613 mutex_unlock(&dev->struct_mutex);
3614 return 0;
28dfe52a
EA
3615 }
3616
29105ccc 3617 ret = i915_gpu_idle(dev);
6dbe2772
KP
3618 if (ret) {
3619 mutex_unlock(&dev->struct_mutex);
673a394b 3620 return ret;
6dbe2772 3621 }
673a394b 3622
29105ccc
CW
3623 /* Under UMS, be paranoid and evict. */
3624 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3625 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3626 if (ret) {
3627 mutex_unlock(&dev->struct_mutex);
3628 return ret;
3629 }
3630 }
3631
312817a3
CW
3632 i915_gem_reset_fences(dev);
3633
29105ccc
CW
3634 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3635 * We need to replace this with a semaphore, or something.
3636 * And not confound mm.suspended!
3637 */
3638 dev_priv->mm.suspended = 1;
bc0c7f14 3639 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3640
3641 i915_kernel_lost_context(dev);
6dbe2772 3642 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3643
6dbe2772
KP
3644 mutex_unlock(&dev->struct_mutex);
3645
29105ccc
CW
3646 /* Cancel the retire work handler, which should be idle now. */
3647 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3648
673a394b
EA
3649 return 0;
3650}
3651
8187a2b7
ZN
3652int
3653i915_gem_init_ringbuffer(struct drm_device *dev)
3654{
3655 drm_i915_private_t *dev_priv = dev->dev_private;
3656 int ret;
68f95ba9 3657
5c1143bb 3658 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3659 if (ret)
b6913e4b 3660 return ret;
68f95ba9
CW
3661
3662 if (HAS_BSD(dev)) {
5c1143bb 3663 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3664 if (ret)
3665 goto cleanup_render_ring;
d1b851fc 3666 }
68f95ba9 3667
549f7365
CW
3668 if (HAS_BLT(dev)) {
3669 ret = intel_init_blt_ring_buffer(dev);
3670 if (ret)
3671 goto cleanup_bsd_ring;
3672 }
3673
6f392d54
CW
3674 dev_priv->next_seqno = 1;
3675
68f95ba9
CW
3676 return 0;
3677
549f7365 3678cleanup_bsd_ring:
1ec14ad3 3679 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3680cleanup_render_ring:
1ec14ad3 3681 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3682 return ret;
3683}
3684
3685void
3686i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3687{
3688 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3689 int i;
8187a2b7 3690
1ec14ad3
CW
3691 for (i = 0; i < I915_NUM_RINGS; i++)
3692 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3693}
3694
673a394b
EA
3695int
3696i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3697 struct drm_file *file_priv)
3698{
3699 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3700 int ret, i;
673a394b 3701
79e53945
JB
3702 if (drm_core_check_feature(dev, DRIVER_MODESET))
3703 return 0;
3704
ba1234d1 3705 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3706 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3707 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3708 }
3709
673a394b 3710 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3711 dev_priv->mm.suspended = 0;
3712
3713 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3714 if (ret != 0) {
3715 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3716 return ret;
d816f6ac 3717 }
9bb2d6f9 3718
69dc4987 3719 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3720 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3721 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3722 for (i = 0; i < I915_NUM_RINGS; i++) {
3723 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3724 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3725 }
673a394b 3726 mutex_unlock(&dev->struct_mutex);
dbb19d30 3727
5f35308b
CW
3728 ret = drm_irq_install(dev);
3729 if (ret)
3730 goto cleanup_ringbuffer;
dbb19d30 3731
673a394b 3732 return 0;
5f35308b
CW
3733
3734cleanup_ringbuffer:
3735 mutex_lock(&dev->struct_mutex);
3736 i915_gem_cleanup_ringbuffer(dev);
3737 dev_priv->mm.suspended = 1;
3738 mutex_unlock(&dev->struct_mutex);
3739
3740 return ret;
673a394b
EA
3741}
3742
3743int
3744i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3745 struct drm_file *file_priv)
3746{
79e53945
JB
3747 if (drm_core_check_feature(dev, DRIVER_MODESET))
3748 return 0;
3749
dbb19d30 3750 drm_irq_uninstall(dev);
e6890f6f 3751 return i915_gem_idle(dev);
673a394b
EA
3752}
3753
3754void
3755i915_gem_lastclose(struct drm_device *dev)
3756{
3757 int ret;
673a394b 3758
e806b495
EA
3759 if (drm_core_check_feature(dev, DRIVER_MODESET))
3760 return;
3761
6dbe2772
KP
3762 ret = i915_gem_idle(dev);
3763 if (ret)
3764 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3765}
3766
64193406
CW
3767static void
3768init_ring_lists(struct intel_ring_buffer *ring)
3769{
3770 INIT_LIST_HEAD(&ring->active_list);
3771 INIT_LIST_HEAD(&ring->request_list);
3772 INIT_LIST_HEAD(&ring->gpu_write_list);
3773}
3774
673a394b
EA
3775void
3776i915_gem_load(struct drm_device *dev)
3777{
b5aa8a0f 3778 int i;
673a394b
EA
3779 drm_i915_private_t *dev_priv = dev->dev_private;
3780
69dc4987 3781 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3782 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3783 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3784 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3785 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3786 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3787 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3788 for (i = 0; i < I915_NUM_RINGS; i++)
3789 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3790 for (i = 0; i < 16; i++)
3791 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3792 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3793 i915_gem_retire_work_handler);
30dbf0c0 3794 init_completion(&dev_priv->error_completion);
31169714 3795
94400120
DA
3796 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3797 if (IS_GEN3(dev)) {
3798 u32 tmp = I915_READ(MI_ARB_STATE);
3799 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3800 /* arb state is a masked write, so set bit + bit in mask */
3801 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3802 I915_WRITE(MI_ARB_STATE, tmp);
3803 }
3804 }
3805
72bfa19c
CW
3806 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3807
de151cf6 3808 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3809 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3810 dev_priv->fence_reg_start = 3;
de151cf6 3811
a6c45cf0 3812 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3813 dev_priv->num_fence_regs = 16;
3814 else
3815 dev_priv->num_fence_regs = 8;
3816
b5aa8a0f 3817 /* Initialize fence registers to zero */
a6c45cf0
CW
3818 switch (INTEL_INFO(dev)->gen) {
3819 case 6:
3820 for (i = 0; i < 16; i++)
3821 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3822 break;
3823 case 5:
3824 case 4:
b5aa8a0f
GH
3825 for (i = 0; i < 16; i++)
3826 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
3827 break;
3828 case 3:
b5aa8a0f
GH
3829 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3830 for (i = 0; i < 8; i++)
3831 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
3832 case 2:
3833 for (i = 0; i < 8; i++)
3834 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3835 break;
b5aa8a0f 3836 }
673a394b 3837 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3838 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
3839
3840 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3841 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3842 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3843}
71acb5eb
DA
3844
3845/*
3846 * Create a physically contiguous memory object for this object
3847 * e.g. for cursor + overlay regs
3848 */
995b6762
CW
3849static int i915_gem_init_phys_object(struct drm_device *dev,
3850 int id, int size, int align)
71acb5eb
DA
3851{
3852 drm_i915_private_t *dev_priv = dev->dev_private;
3853 struct drm_i915_gem_phys_object *phys_obj;
3854 int ret;
3855
3856 if (dev_priv->mm.phys_objs[id - 1] || !size)
3857 return 0;
3858
9a298b2a 3859 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3860 if (!phys_obj)
3861 return -ENOMEM;
3862
3863 phys_obj->id = id;
3864
6eeefaf3 3865 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3866 if (!phys_obj->handle) {
3867 ret = -ENOMEM;
3868 goto kfree_obj;
3869 }
3870#ifdef CONFIG_X86
3871 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3872#endif
3873
3874 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3875
3876 return 0;
3877kfree_obj:
9a298b2a 3878 kfree(phys_obj);
71acb5eb
DA
3879 return ret;
3880}
3881
995b6762 3882static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3883{
3884 drm_i915_private_t *dev_priv = dev->dev_private;
3885 struct drm_i915_gem_phys_object *phys_obj;
3886
3887 if (!dev_priv->mm.phys_objs[id - 1])
3888 return;
3889
3890 phys_obj = dev_priv->mm.phys_objs[id - 1];
3891 if (phys_obj->cur_obj) {
3892 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3893 }
3894
3895#ifdef CONFIG_X86
3896 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3897#endif
3898 drm_pci_free(dev, phys_obj->handle);
3899 kfree(phys_obj);
3900 dev_priv->mm.phys_objs[id - 1] = NULL;
3901}
3902
3903void i915_gem_free_all_phys_object(struct drm_device *dev)
3904{
3905 int i;
3906
260883c8 3907 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3908 i915_gem_free_phys_object(dev, i);
3909}
3910
3911void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3912 struct drm_i915_gem_object *obj)
71acb5eb 3913{
05394f39 3914 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3915 char *vaddr;
71acb5eb 3916 int i;
71acb5eb
DA
3917 int page_count;
3918
05394f39 3919 if (!obj->phys_obj)
71acb5eb 3920 return;
05394f39 3921 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3922
05394f39 3923 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3924 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3925 struct page *page = read_cache_page_gfp(mapping, i,
3926 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3927 if (!IS_ERR(page)) {
3928 char *dst = kmap_atomic(page);
3929 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3930 kunmap_atomic(dst);
3931
3932 drm_clflush_pages(&page, 1);
3933
3934 set_page_dirty(page);
3935 mark_page_accessed(page);
3936 page_cache_release(page);
3937 }
71acb5eb 3938 }
40ce6575 3939 intel_gtt_chipset_flush();
d78b47b9 3940
05394f39
CW
3941 obj->phys_obj->cur_obj = NULL;
3942 obj->phys_obj = NULL;
71acb5eb
DA
3943}
3944
3945int
3946i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3947 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3948 int id,
3949 int align)
71acb5eb 3950{
05394f39 3951 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3952 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3953 int ret = 0;
3954 int page_count;
3955 int i;
3956
3957 if (id > I915_MAX_PHYS_OBJECT)
3958 return -EINVAL;
3959
05394f39
CW
3960 if (obj->phys_obj) {
3961 if (obj->phys_obj->id == id)
71acb5eb
DA
3962 return 0;
3963 i915_gem_detach_phys_object(dev, obj);
3964 }
3965
71acb5eb
DA
3966 /* create a new object */
3967 if (!dev_priv->mm.phys_objs[id - 1]) {
3968 ret = i915_gem_init_phys_object(dev, id,
05394f39 3969 obj->base.size, align);
71acb5eb 3970 if (ret) {
05394f39
CW
3971 DRM_ERROR("failed to init phys object %d size: %zu\n",
3972 id, obj->base.size);
e5281ccd 3973 return ret;
71acb5eb
DA
3974 }
3975 }
3976
3977 /* bind to the object */
05394f39
CW
3978 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3979 obj->phys_obj->cur_obj = obj;
71acb5eb 3980
05394f39 3981 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3982
3983 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3984 struct page *page;
3985 char *dst, *src;
3986
3987 page = read_cache_page_gfp(mapping, i,
3988 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3989 if (IS_ERR(page))
3990 return PTR_ERR(page);
71acb5eb 3991
ff75b9bc 3992 src = kmap_atomic(page);
05394f39 3993 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3994 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3995 kunmap_atomic(src);
71acb5eb 3996
e5281ccd
CW
3997 mark_page_accessed(page);
3998 page_cache_release(page);
3999 }
d78b47b9 4000
71acb5eb 4001 return 0;
71acb5eb
DA
4002}
4003
4004static int
05394f39
CW
4005i915_gem_phys_pwrite(struct drm_device *dev,
4006 struct drm_i915_gem_object *obj,
71acb5eb
DA
4007 struct drm_i915_gem_pwrite *args,
4008 struct drm_file *file_priv)
4009{
05394f39 4010 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4011 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4012
b47b30cc
CW
4013 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4014 unsigned long unwritten;
4015
4016 /* The physical object once assigned is fixed for the lifetime
4017 * of the obj, so we can safely drop the lock and continue
4018 * to access vaddr.
4019 */
4020 mutex_unlock(&dev->struct_mutex);
4021 unwritten = copy_from_user(vaddr, user_data, args->size);
4022 mutex_lock(&dev->struct_mutex);
4023 if (unwritten)
4024 return -EFAULT;
4025 }
71acb5eb 4026
40ce6575 4027 intel_gtt_chipset_flush();
71acb5eb
DA
4028 return 0;
4029}
b962442e 4030
f787a5f5 4031void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4032{
f787a5f5 4033 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4034
4035 /* Clean up our request list when the client is going away, so that
4036 * later retire_requests won't dereference our soon-to-be-gone
4037 * file_priv.
4038 */
1c25595f 4039 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4040 while (!list_empty(&file_priv->mm.request_list)) {
4041 struct drm_i915_gem_request *request;
4042
4043 request = list_first_entry(&file_priv->mm.request_list,
4044 struct drm_i915_gem_request,
4045 client_list);
4046 list_del(&request->client_list);
4047 request->file_priv = NULL;
4048 }
1c25595f 4049 spin_unlock(&file_priv->mm.lock);
b962442e 4050}
31169714 4051
1637ef41
CW
4052static int
4053i915_gpu_is_active(struct drm_device *dev)
4054{
4055 drm_i915_private_t *dev_priv = dev->dev_private;
4056 int lists_empty;
4057
1637ef41 4058 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4059 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4060
4061 return !lists_empty;
4062}
4063
31169714 4064static int
17250b71
CW
4065i915_gem_inactive_shrink(struct shrinker *shrinker,
4066 int nr_to_scan,
4067 gfp_t gfp_mask)
31169714 4068{
17250b71
CW
4069 struct drm_i915_private *dev_priv =
4070 container_of(shrinker,
4071 struct drm_i915_private,
4072 mm.inactive_shrinker);
4073 struct drm_device *dev = dev_priv->dev;
4074 struct drm_i915_gem_object *obj, *next;
4075 int cnt;
4076
4077 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4078 return 0;
31169714
CW
4079
4080 /* "fast-path" to count number of available objects */
4081 if (nr_to_scan == 0) {
17250b71
CW
4082 cnt = 0;
4083 list_for_each_entry(obj,
4084 &dev_priv->mm.inactive_list,
4085 mm_list)
4086 cnt++;
4087 mutex_unlock(&dev->struct_mutex);
4088 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4089 }
4090
1637ef41 4091rescan:
31169714 4092 /* first scan for clean buffers */
17250b71 4093 i915_gem_retire_requests(dev);
31169714 4094
17250b71
CW
4095 list_for_each_entry_safe(obj, next,
4096 &dev_priv->mm.inactive_list,
4097 mm_list) {
4098 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4099 if (i915_gem_object_unbind(obj) == 0 &&
4100 --nr_to_scan == 0)
17250b71 4101 break;
31169714 4102 }
31169714
CW
4103 }
4104
4105 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4106 cnt = 0;
4107 list_for_each_entry_safe(obj, next,
4108 &dev_priv->mm.inactive_list,
4109 mm_list) {
2021746e
CW
4110 if (nr_to_scan &&
4111 i915_gem_object_unbind(obj) == 0)
17250b71 4112 nr_to_scan--;
2021746e 4113 else
17250b71
CW
4114 cnt++;
4115 }
4116
4117 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4118 /*
4119 * We are desperate for pages, so as a last resort, wait
4120 * for the GPU to finish and discard whatever we can.
4121 * This has a dramatic impact to reduce the number of
4122 * OOM-killer events whilst running the GPU aggressively.
4123 */
17250b71 4124 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4125 goto rescan;
4126 }
17250b71
CW
4127 mutex_unlock(&dev->struct_mutex);
4128 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4129}
This page took 0.909962 seconds and 5 git commands to generate.