Merge tag 'fbdev-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tomba/linux
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
79e53945
JB
162int
163i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
79e53945 165{
93d18799 166 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 167 struct drm_i915_gem_init *args = data;
2021746e 168
7bb6fb8d
DV
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
2021746e
CW
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
79e53945 175
f534bc0b
DV
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
79e53945 180 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
93d18799 183 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
184 mutex_unlock(&dev->struct_mutex);
185
2021746e 186 return 0;
673a394b
EA
187}
188
5a125c3c
EA
189int
190i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 191 struct drm_file *file)
5a125c3c 192{
73aa808f 193 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 194 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
5a125c3c 197
6299f992 198 pinned = 0;
73aa808f 199 mutex_lock(&dev->struct_mutex);
35c20a60 200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 201 if (i915_gem_obj_is_pinned(obj))
f343c5f6 202 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 203 mutex_unlock(&dev->struct_mutex);
5a125c3c 204
853ba5d2 205 args->aper_size = dev_priv->gtt.base.total;
0206e353 206 args->aper_available_size = args->aper_size - pinned;
6299f992 207
5a125c3c
EA
208 return 0;
209}
210
00731155
CW
211static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212{
213 drm_dma_handle_t *phys = obj->phys_handle;
214
215 if (!phys)
216 return;
217
218 if (obj->madv == I915_MADV_WILLNEED) {
219 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220 char *vaddr = phys->vaddr;
221 int i;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page = shmem_read_mapping_page(mapping, i);
225 if (!IS_ERR(page)) {
226 char *dst = kmap_atomic(page);
227 memcpy(dst, vaddr, PAGE_SIZE);
228 drm_clflush_virt_range(dst, PAGE_SIZE);
229 kunmap_atomic(dst);
230
231 set_page_dirty(page);
232 mark_page_accessed(page);
233 page_cache_release(page);
234 }
235 vaddr += PAGE_SIZE;
236 }
237 i915_gem_chipset_flush(obj->base.dev);
238 }
239
240#ifdef CONFIG_X86
241 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242#endif
243 drm_pci_free(obj->base.dev, phys);
244 obj->phys_handle = NULL;
245}
246
247int
248i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249 int align)
250{
251 drm_dma_handle_t *phys;
252 struct address_space *mapping;
253 char *vaddr;
254 int i;
255
256 if (obj->phys_handle) {
257 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258 return -EBUSY;
259
260 return 0;
261 }
262
263 if (obj->madv != I915_MADV_WILLNEED)
264 return -EFAULT;
265
266 if (obj->base.filp == NULL)
267 return -EINVAL;
268
269 /* create a new object */
270 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271 if (!phys)
272 return -ENOMEM;
273
274 vaddr = phys->vaddr;
275#ifdef CONFIG_X86
276 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277#endif
278 mapping = file_inode(obj->base.filp)->i_mapping;
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page;
281 char *src;
282
283 page = shmem_read_mapping_page(mapping, i);
284 if (IS_ERR(page)) {
285#ifdef CONFIG_X86
286 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287#endif
288 drm_pci_free(obj->base.dev, phys);
289 return PTR_ERR(page);
290 }
291
292 src = kmap_atomic(page);
293 memcpy(vaddr, src, PAGE_SIZE);
294 kunmap_atomic(src);
295
296 mark_page_accessed(page);
297 page_cache_release(page);
298
299 vaddr += PAGE_SIZE;
300 }
301
302 obj->phys_handle = phys;
303 return 0;
304}
305
306static int
307i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308 struct drm_i915_gem_pwrite *args,
309 struct drm_file *file_priv)
310{
311 struct drm_device *dev = obj->base.dev;
312 void *vaddr = obj->phys_handle->vaddr + args->offset;
313 char __user *user_data = to_user_ptr(args->data_ptr);
314
315 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316 unsigned long unwritten;
317
318 /* The physical object once assigned is fixed for the lifetime
319 * of the obj, so we can safely drop the lock and continue
320 * to access vaddr.
321 */
322 mutex_unlock(&dev->struct_mutex);
323 unwritten = copy_from_user(vaddr, user_data, args->size);
324 mutex_lock(&dev->struct_mutex);
325 if (unwritten)
326 return -EFAULT;
327 }
328
329 i915_gem_chipset_flush(dev);
330 return 0;
331}
332
42dcedd4
CW
333void *i915_gem_object_alloc(struct drm_device *dev)
334{
335 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 336 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
337}
338
339void i915_gem_object_free(struct drm_i915_gem_object *obj)
340{
341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342 kmem_cache_free(dev_priv->slab, obj);
343}
344
ff72145b
DA
345static int
346i915_gem_create(struct drm_file *file,
347 struct drm_device *dev,
348 uint64_t size,
349 uint32_t *handle_p)
673a394b 350{
05394f39 351 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
352 int ret;
353 u32 handle;
673a394b 354
ff72145b 355 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
356 if (size == 0)
357 return -EINVAL;
673a394b
EA
358
359 /* Allocate the new object */
ff72145b 360 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
361 if (obj == NULL)
362 return -ENOMEM;
363
05394f39 364 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 365 /* drop reference from allocate - handle holds it now */
d861e338
DV
366 drm_gem_object_unreference_unlocked(&obj->base);
367 if (ret)
368 return ret;
202f2fef 369
ff72145b 370 *handle_p = handle;
673a394b
EA
371 return 0;
372}
373
ff72145b
DA
374int
375i915_gem_dumb_create(struct drm_file *file,
376 struct drm_device *dev,
377 struct drm_mode_create_dumb *args)
378{
379 /* have to work out size/pitch and return them */
de45eaf7 380 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
381 args->size = args->pitch * args->height;
382 return i915_gem_create(file, dev,
383 args->size, &args->handle);
384}
385
ff72145b
DA
386/**
387 * Creates a new mm object and returns a handle to it.
388 */
389int
390i915_gem_create_ioctl(struct drm_device *dev, void *data,
391 struct drm_file *file)
392{
393 struct drm_i915_gem_create *args = data;
63ed2cb2 394
ff72145b
DA
395 return i915_gem_create(file, dev,
396 args->size, &args->handle);
397}
398
8461d226
DV
399static inline int
400__copy_to_user_swizzled(char __user *cpu_vaddr,
401 const char *gpu_vaddr, int gpu_offset,
402 int length)
403{
404 int ret, cpu_offset = 0;
405
406 while (length > 0) {
407 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408 int this_length = min(cacheline_end - gpu_offset, length);
409 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412 gpu_vaddr + swizzled_gpu_offset,
413 this_length);
414 if (ret)
415 return ret + length;
416
417 cpu_offset += this_length;
418 gpu_offset += this_length;
419 length -= this_length;
420 }
421
422 return 0;
423}
424
8c59967c 425static inline int
4f0c7cfb
BW
426__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427 const char __user *cpu_vaddr,
8c59967c
DV
428 int length)
429{
430 int ret, cpu_offset = 0;
431
432 while (length > 0) {
433 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434 int this_length = min(cacheline_end - gpu_offset, length);
435 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438 cpu_vaddr + cpu_offset,
439 this_length);
440 if (ret)
441 return ret + length;
442
443 cpu_offset += this_length;
444 gpu_offset += this_length;
445 length -= this_length;
446 }
447
448 return 0;
449}
450
4c914c0c
BV
451/*
452 * Pins the specified object's pages and synchronizes the object with
453 * GPU accesses. Sets needs_clflush to non-zero if the caller should
454 * flush the object from the CPU cache.
455 */
456int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457 int *needs_clflush)
458{
459 int ret;
460
461 *needs_clflush = 0;
462
463 if (!obj->base.filp)
464 return -EINVAL;
465
466 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467 /* If we're not in the cpu read domain, set ourself into the gtt
468 * read domain and manually flush cachelines (if required). This
469 * optimizes for the case when the gpu will dirty the data
470 * anyway again before the next pread happens. */
471 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472 obj->cache_level);
473 ret = i915_gem_object_wait_rendering(obj, true);
474 if (ret)
475 return ret;
c8725f3d
CW
476
477 i915_gem_object_retire(obj);
4c914c0c
BV
478 }
479
480 ret = i915_gem_object_get_pages(obj);
481 if (ret)
482 return ret;
483
484 i915_gem_object_pin_pages(obj);
485
486 return ret;
487}
488
d174bd64
DV
489/* Per-page copy function for the shmem pread fastpath.
490 * Flushes invalid cachelines before reading the target if
491 * needs_clflush is set. */
eb01459f 492static int
d174bd64
DV
493shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494 char __user *user_data,
495 bool page_do_bit17_swizzling, bool needs_clflush)
496{
497 char *vaddr;
498 int ret;
499
e7e58eb5 500 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
501 return -EINVAL;
502
503 vaddr = kmap_atomic(page);
504 if (needs_clflush)
505 drm_clflush_virt_range(vaddr + shmem_page_offset,
506 page_length);
507 ret = __copy_to_user_inatomic(user_data,
508 vaddr + shmem_page_offset,
509 page_length);
510 kunmap_atomic(vaddr);
511
f60d7f0c 512 return ret ? -EFAULT : 0;
d174bd64
DV
513}
514
23c18c71
DV
515static void
516shmem_clflush_swizzled_range(char *addr, unsigned long length,
517 bool swizzled)
518{
e7e58eb5 519 if (unlikely(swizzled)) {
23c18c71
DV
520 unsigned long start = (unsigned long) addr;
521 unsigned long end = (unsigned long) addr + length;
522
523 /* For swizzling simply ensure that we always flush both
524 * channels. Lame, but simple and it works. Swizzled
525 * pwrite/pread is far from a hotpath - current userspace
526 * doesn't use it at all. */
527 start = round_down(start, 128);
528 end = round_up(end, 128);
529
530 drm_clflush_virt_range((void *)start, end - start);
531 } else {
532 drm_clflush_virt_range(addr, length);
533 }
534
535}
536
d174bd64
DV
537/* Only difference to the fast-path function is that this can handle bit17
538 * and uses non-atomic copy and kmap functions. */
539static int
540shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543{
544 char *vaddr;
545 int ret;
546
547 vaddr = kmap(page);
548 if (needs_clflush)
23c18c71
DV
549 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550 page_length,
551 page_do_bit17_swizzling);
d174bd64
DV
552
553 if (page_do_bit17_swizzling)
554 ret = __copy_to_user_swizzled(user_data,
555 vaddr, shmem_page_offset,
556 page_length);
557 else
558 ret = __copy_to_user(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap(page);
562
f60d7f0c 563 return ret ? - EFAULT : 0;
d174bd64
DV
564}
565
eb01459f 566static int
dbf7bff0
DV
567i915_gem_shmem_pread(struct drm_device *dev,
568 struct drm_i915_gem_object *obj,
569 struct drm_i915_gem_pread *args,
570 struct drm_file *file)
eb01459f 571{
8461d226 572 char __user *user_data;
eb01459f 573 ssize_t remain;
8461d226 574 loff_t offset;
eb2c0c81 575 int shmem_page_offset, page_length, ret = 0;
8461d226 576 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 577 int prefaulted = 0;
8489731c 578 int needs_clflush = 0;
67d5a50c 579 struct sg_page_iter sg_iter;
eb01459f 580
2bb4629a 581 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
582 remain = args->size;
583
8461d226 584 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 585
4c914c0c 586 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
587 if (ret)
588 return ret;
589
8461d226 590 offset = args->offset;
eb01459f 591
67d5a50c
ID
592 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593 offset >> PAGE_SHIFT) {
2db76d7c 594 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
595
596 if (remain <= 0)
597 break;
598
eb01459f
EA
599 /* Operation in this page
600 *
eb01459f 601 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
602 * page_length = bytes to copy for this page
603 */
c8cbbb8b 604 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
605 page_length = remain;
606 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 608
8461d226
DV
609 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610 (page_to_phys(page) & (1 << 17)) != 0;
611
d174bd64
DV
612 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613 user_data, page_do_bit17_swizzling,
614 needs_clflush);
615 if (ret == 0)
616 goto next_page;
dbf7bff0 617
dbf7bff0
DV
618 mutex_unlock(&dev->struct_mutex);
619
d330a953 620 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 621 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
622 /* Userspace is tricking us, but we've already clobbered
623 * its pages with the prefault and promised to write the
624 * data up to the first fault. Hence ignore any errors
625 * and just continue. */
626 (void)ret;
627 prefaulted = 1;
628 }
eb01459f 629
d174bd64
DV
630 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631 user_data, page_do_bit17_swizzling,
632 needs_clflush);
eb01459f 633
dbf7bff0 634 mutex_lock(&dev->struct_mutex);
f60d7f0c 635
f60d7f0c 636 if (ret)
8461d226 637 goto out;
8461d226 638
17793c9a 639next_page:
eb01459f 640 remain -= page_length;
8461d226 641 user_data += page_length;
eb01459f
EA
642 offset += page_length;
643 }
644
4f27b75d 645out:
f60d7f0c
CW
646 i915_gem_object_unpin_pages(obj);
647
eb01459f
EA
648 return ret;
649}
650
673a394b
EA
651/**
652 * Reads data from the object referenced by handle.
653 *
654 * On error, the contents of *data are undefined.
655 */
656int
657i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 658 struct drm_file *file)
673a394b
EA
659{
660 struct drm_i915_gem_pread *args = data;
05394f39 661 struct drm_i915_gem_object *obj;
35b62a89 662 int ret = 0;
673a394b 663
51311d0a
CW
664 if (args->size == 0)
665 return 0;
666
667 if (!access_ok(VERIFY_WRITE,
2bb4629a 668 to_user_ptr(args->data_ptr),
51311d0a
CW
669 args->size))
670 return -EFAULT;
671
4f27b75d 672 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 673 if (ret)
4f27b75d 674 return ret;
673a394b 675
05394f39 676 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 677 if (&obj->base == NULL) {
1d7cfea1
CW
678 ret = -ENOENT;
679 goto unlock;
4f27b75d 680 }
673a394b 681
7dcd2499 682 /* Bounds check source. */
05394f39
CW
683 if (args->offset > obj->base.size ||
684 args->size > obj->base.size - args->offset) {
ce9d419d 685 ret = -EINVAL;
35b62a89 686 goto out;
ce9d419d
CW
687 }
688
1286ff73
DV
689 /* prime objects have no backing filp to GEM pread/pwrite
690 * pages from.
691 */
692 if (!obj->base.filp) {
693 ret = -EINVAL;
694 goto out;
695 }
696
db53a302
CW
697 trace_i915_gem_object_pread(obj, args->offset, args->size);
698
dbf7bff0 699 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 700
35b62a89 701out:
05394f39 702 drm_gem_object_unreference(&obj->base);
1d7cfea1 703unlock:
4f27b75d 704 mutex_unlock(&dev->struct_mutex);
eb01459f 705 return ret;
673a394b
EA
706}
707
0839ccb8
KP
708/* This is the fast write path which cannot handle
709 * page faults in the source data
9b7530cc 710 */
0839ccb8
KP
711
712static inline int
713fast_user_write(struct io_mapping *mapping,
714 loff_t page_base, int page_offset,
715 char __user *user_data,
716 int length)
9b7530cc 717{
4f0c7cfb
BW
718 void __iomem *vaddr_atomic;
719 void *vaddr;
0839ccb8 720 unsigned long unwritten;
9b7530cc 721
3e4d3af5 722 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
723 /* We can use the cpu mem copy function because this is X86. */
724 vaddr = (void __force*)vaddr_atomic + page_offset;
725 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 726 user_data, length);
3e4d3af5 727 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 728 return unwritten;
0839ccb8
KP
729}
730
3de09aa3
EA
731/**
732 * This is the fast pwrite path, where we copy the data directly from the
733 * user into the GTT, uncached.
734 */
673a394b 735static int
05394f39
CW
736i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737 struct drm_i915_gem_object *obj,
3de09aa3 738 struct drm_i915_gem_pwrite *args,
05394f39 739 struct drm_file *file)
673a394b 740{
3e31c6c0 741 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 742 ssize_t remain;
0839ccb8 743 loff_t offset, page_base;
673a394b 744 char __user *user_data;
935aaa69
DV
745 int page_offset, page_length, ret;
746
1ec9e26d 747 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
748 if (ret)
749 goto out;
750
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 goto out_unpin;
754
755 ret = i915_gem_object_put_fence(obj);
756 if (ret)
757 goto out_unpin;
673a394b 758
2bb4629a 759 user_data = to_user_ptr(args->data_ptr);
673a394b 760 remain = args->size;
673a394b 761
f343c5f6 762 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
763
764 while (remain > 0) {
765 /* Operation in this page
766 *
0839ccb8
KP
767 * page_base = page offset within aperture
768 * page_offset = offset within page
769 * page_length = bytes to copy for this page
673a394b 770 */
c8cbbb8b
CW
771 page_base = offset & PAGE_MASK;
772 page_offset = offset_in_page(offset);
0839ccb8
KP
773 page_length = remain;
774 if ((page_offset + remain) > PAGE_SIZE)
775 page_length = PAGE_SIZE - page_offset;
776
0839ccb8 777 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
778 * source page isn't available. Return the error and we'll
779 * retry in the slow path.
0839ccb8 780 */
5d4545ae 781 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
782 page_offset, user_data, page_length)) {
783 ret = -EFAULT;
784 goto out_unpin;
785 }
673a394b 786
0839ccb8
KP
787 remain -= page_length;
788 user_data += page_length;
789 offset += page_length;
673a394b 790 }
673a394b 791
935aaa69 792out_unpin:
d7f46fc4 793 i915_gem_object_ggtt_unpin(obj);
935aaa69 794out:
3de09aa3 795 return ret;
673a394b
EA
796}
797
d174bd64
DV
798/* Per-page copy function for the shmem pwrite fastpath.
799 * Flushes invalid cachelines before writing to the target if
800 * needs_clflush_before is set and flushes out any written cachelines after
801 * writing if needs_clflush is set. */
3043c60c 802static int
d174bd64
DV
803shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804 char __user *user_data,
805 bool page_do_bit17_swizzling,
806 bool needs_clflush_before,
807 bool needs_clflush_after)
673a394b 808{
d174bd64 809 char *vaddr;
673a394b 810 int ret;
3de09aa3 811
e7e58eb5 812 if (unlikely(page_do_bit17_swizzling))
d174bd64 813 return -EINVAL;
3de09aa3 814
d174bd64
DV
815 vaddr = kmap_atomic(page);
816 if (needs_clflush_before)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
c2831a94
CW
819 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820 user_data, page_length);
d174bd64
DV
821 if (needs_clflush_after)
822 drm_clflush_virt_range(vaddr + shmem_page_offset,
823 page_length);
824 kunmap_atomic(vaddr);
3de09aa3 825
755d2218 826 return ret ? -EFAULT : 0;
3de09aa3
EA
827}
828
d174bd64
DV
829/* Only difference to the fast-path function is that this can handle bit17
830 * and uses non-atomic copy and kmap functions. */
3043c60c 831static int
d174bd64
DV
832shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833 char __user *user_data,
834 bool page_do_bit17_swizzling,
835 bool needs_clflush_before,
836 bool needs_clflush_after)
673a394b 837{
d174bd64
DV
838 char *vaddr;
839 int ret;
e5281ccd 840
d174bd64 841 vaddr = kmap(page);
e7e58eb5 842 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
843 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844 page_length,
845 page_do_bit17_swizzling);
d174bd64
DV
846 if (page_do_bit17_swizzling)
847 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
848 user_data,
849 page_length);
d174bd64
DV
850 else
851 ret = __copy_from_user(vaddr + shmem_page_offset,
852 user_data,
853 page_length);
854 if (needs_clflush_after)
23c18c71
DV
855 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856 page_length,
857 page_do_bit17_swizzling);
d174bd64 858 kunmap(page);
40123c1f 859
755d2218 860 return ret ? -EFAULT : 0;
40123c1f
EA
861}
862
40123c1f 863static int
e244a443
DV
864i915_gem_shmem_pwrite(struct drm_device *dev,
865 struct drm_i915_gem_object *obj,
866 struct drm_i915_gem_pwrite *args,
867 struct drm_file *file)
40123c1f 868{
40123c1f 869 ssize_t remain;
8c59967c
DV
870 loff_t offset;
871 char __user *user_data;
eb2c0c81 872 int shmem_page_offset, page_length, ret = 0;
8c59967c 873 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 874 int hit_slowpath = 0;
58642885
DV
875 int needs_clflush_after = 0;
876 int needs_clflush_before = 0;
67d5a50c 877 struct sg_page_iter sg_iter;
40123c1f 878
2bb4629a 879 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
880 remain = args->size;
881
8c59967c 882 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 883
58642885
DV
884 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885 /* If we're not in the cpu write domain, set ourself into the gtt
886 * write domain and manually flush cachelines (if required). This
887 * optimizes for the case when the gpu will use the data
888 * right away and we therefore have to clflush anyway. */
2c22569b 889 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
890 ret = i915_gem_object_wait_rendering(obj, false);
891 if (ret)
892 return ret;
c8725f3d
CW
893
894 i915_gem_object_retire(obj);
58642885 895 }
c76ce038
CW
896 /* Same trick applies to invalidate partially written cachelines read
897 * before writing. */
898 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899 needs_clflush_before =
900 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 901
755d2218
CW
902 ret = i915_gem_object_get_pages(obj);
903 if (ret)
904 return ret;
905
906 i915_gem_object_pin_pages(obj);
907
673a394b 908 offset = args->offset;
05394f39 909 obj->dirty = 1;
673a394b 910
67d5a50c
ID
911 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912 offset >> PAGE_SHIFT) {
2db76d7c 913 struct page *page = sg_page_iter_page(&sg_iter);
58642885 914 int partial_cacheline_write;
e5281ccd 915
9da3da66
CW
916 if (remain <= 0)
917 break;
918
40123c1f
EA
919 /* Operation in this page
920 *
40123c1f 921 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
922 * page_length = bytes to copy for this page
923 */
c8cbbb8b 924 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
925
926 page_length = remain;
927 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 929
58642885
DV
930 /* If we don't overwrite a cacheline completely we need to be
931 * careful to have up-to-date data by first clflushing. Don't
932 * overcomplicate things and flush the entire patch. */
933 partial_cacheline_write = needs_clflush_before &&
934 ((shmem_page_offset | page_length)
935 & (boot_cpu_data.x86_clflush_size - 1));
936
8c59967c
DV
937 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938 (page_to_phys(page) & (1 << 17)) != 0;
939
d174bd64
DV
940 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941 user_data, page_do_bit17_swizzling,
942 partial_cacheline_write,
943 needs_clflush_after);
944 if (ret == 0)
945 goto next_page;
e244a443
DV
946
947 hit_slowpath = 1;
e244a443 948 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
949 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950 user_data, page_do_bit17_swizzling,
951 partial_cacheline_write,
952 needs_clflush_after);
40123c1f 953
e244a443 954 mutex_lock(&dev->struct_mutex);
755d2218 955
755d2218 956 if (ret)
8c59967c 957 goto out;
8c59967c 958
17793c9a 959next_page:
40123c1f 960 remain -= page_length;
8c59967c 961 user_data += page_length;
40123c1f 962 offset += page_length;
673a394b
EA
963 }
964
fbd5a26d 965out:
755d2218
CW
966 i915_gem_object_unpin_pages(obj);
967
e244a443 968 if (hit_slowpath) {
8dcf015e
DV
969 /*
970 * Fixup: Flush cpu caches in case we didn't flush the dirty
971 * cachelines in-line while writing and the object moved
972 * out of the cpu write domain while we've dropped the lock.
973 */
974 if (!needs_clflush_after &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
976 if (i915_gem_clflush_object(obj, obj->pin_display))
977 i915_gem_chipset_flush(dev);
e244a443 978 }
8c59967c 979 }
673a394b 980
58642885 981 if (needs_clflush_after)
e76e9aeb 982 i915_gem_chipset_flush(dev);
58642885 983
40123c1f 984 return ret;
673a394b
EA
985}
986
987/**
988 * Writes data to the object referenced by handle.
989 *
990 * On error, the contents of the buffer that were to be modified are undefined.
991 */
992int
993i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 994 struct drm_file *file)
673a394b
EA
995{
996 struct drm_i915_gem_pwrite *args = data;
05394f39 997 struct drm_i915_gem_object *obj;
51311d0a
CW
998 int ret;
999
1000 if (args->size == 0)
1001 return 0;
1002
1003 if (!access_ok(VERIFY_READ,
2bb4629a 1004 to_user_ptr(args->data_ptr),
51311d0a
CW
1005 args->size))
1006 return -EFAULT;
1007
d330a953 1008 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1009 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010 args->size);
1011 if (ret)
1012 return -EFAULT;
1013 }
673a394b 1014
fbd5a26d 1015 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1016 if (ret)
fbd5a26d 1017 return ret;
1d7cfea1 1018
05394f39 1019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1020 if (&obj->base == NULL) {
1d7cfea1
CW
1021 ret = -ENOENT;
1022 goto unlock;
fbd5a26d 1023 }
673a394b 1024
7dcd2499 1025 /* Bounds check destination. */
05394f39
CW
1026 if (args->offset > obj->base.size ||
1027 args->size > obj->base.size - args->offset) {
ce9d419d 1028 ret = -EINVAL;
35b62a89 1029 goto out;
ce9d419d
CW
1030 }
1031
1286ff73
DV
1032 /* prime objects have no backing filp to GEM pread/pwrite
1033 * pages from.
1034 */
1035 if (!obj->base.filp) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039
db53a302
CW
1040 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
935aaa69 1042 ret = -EFAULT;
673a394b
EA
1043 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044 * it would end up going through the fenced access, and we'll get
1045 * different detiling behavior between reading and writing.
1046 * pread/pwrite currently are reading and writing from the CPU
1047 * perspective, requiring manual detiling by the client.
1048 */
00731155
CW
1049 if (obj->phys_handle) {
1050 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1051 goto out;
1052 }
1053
2c22569b
CW
1054 if (obj->tiling_mode == I915_TILING_NONE &&
1055 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056 cpu_write_needs_clflush(obj)) {
fbd5a26d 1057 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1058 /* Note that the gtt paths might fail with non-page-backed user
1059 * pointers (e.g. gtt mappings when moving data between
1060 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1061 }
673a394b 1062
86a1ee26 1063 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1064 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1065
35b62a89 1066out:
05394f39 1067 drm_gem_object_unreference(&obj->base);
1d7cfea1 1068unlock:
fbd5a26d 1069 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1070 return ret;
1071}
1072
b361237b 1073int
33196ded 1074i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1075 bool interruptible)
1076{
1f83fee0 1077 if (i915_reset_in_progress(error)) {
b361237b
CW
1078 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079 * -EIO unconditionally for these. */
1080 if (!interruptible)
1081 return -EIO;
1082
1f83fee0
DV
1083 /* Recovery complete, but the reset failed ... */
1084 if (i915_terminally_wedged(error))
b361237b
CW
1085 return -EIO;
1086
6689c167
MA
1087 /*
1088 * Check if GPU Reset is in progress - we need intel_ring_begin
1089 * to work properly to reinit the hw state while the gpu is
1090 * still marked as reset-in-progress. Handle this with a flag.
1091 */
1092 if (!error->reload_in_reset)
1093 return -EAGAIN;
b361237b
CW
1094 }
1095
1096 return 0;
1097}
1098
1099/*
1100 * Compare seqno against outstanding lazy request. Emit a request if they are
1101 * equal.
1102 */
84c33a64 1103int
a4872ba6 1104i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1105{
1106 int ret;
1107
1108 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110 ret = 0;
1823521d 1111 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1112 ret = i915_add_request(ring, NULL);
b361237b
CW
1113
1114 return ret;
1115}
1116
094f9a54
CW
1117static void fake_irq(unsigned long data)
1118{
1119 wake_up_process((struct task_struct *)data);
1120}
1121
1122static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1123 struct intel_engine_cs *ring)
094f9a54
CW
1124{
1125 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126}
1127
b29c19b6
CW
1128static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129{
1130 if (file_priv == NULL)
1131 return true;
1132
1133 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134}
1135
b361237b
CW
1136/**
1137 * __wait_seqno - wait until execution of seqno has finished
1138 * @ring: the ring expected to report seqno
1139 * @seqno: duh!
f69061be 1140 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1141 * @interruptible: do an interruptible wait (normally yes)
1142 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143 *
f69061be
DV
1144 * Note: It is of utmost importance that the passed in seqno and reset_counter
1145 * values have been read by the caller in an smp safe manner. Where read-side
1146 * locks are involved, it is sufficient to read the reset_counter before
1147 * unlocking the lock that protects the seqno. For lockless tricks, the
1148 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149 * inserted.
1150 *
b361237b
CW
1151 * Returns 0 if the seqno was found within the alloted time. Else returns the
1152 * errno with remaining time filled in timeout argument.
1153 */
a4872ba6 1154static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1155 unsigned reset_counter,
b29c19b6 1156 bool interruptible,
5ed0bdf2 1157 s64 *timeout,
b29c19b6 1158 struct drm_i915_file_private *file_priv)
b361237b 1159{
3d13ef2e 1160 struct drm_device *dev = ring->dev;
3e31c6c0 1161 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1162 const bool irq_test_in_progress =
1163 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1164 DEFINE_WAIT(wait);
47e9766d 1165 unsigned long timeout_expire;
5ed0bdf2 1166 s64 before, now;
b361237b
CW
1167 int ret;
1168
9df7575f 1169 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1170
b361237b
CW
1171 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172 return 0;
1173
5ed0bdf2 1174 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1175
ec5cc0f9 1176 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1177 gen6_rps_boost(dev_priv);
1178 if (file_priv)
1179 mod_delayed_work(dev_priv->wq,
1180 &file_priv->mm.idle_work,
1181 msecs_to_jiffies(100));
1182 }
1183
168c3f21 1184 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1185 return -ENODEV;
1186
094f9a54
CW
1187 /* Record current time in case interrupted by signal, or wedged */
1188 trace_i915_gem_request_wait_begin(ring, seqno);
5ed0bdf2 1189 before = ktime_get_raw_ns();
094f9a54
CW
1190 for (;;) {
1191 struct timer_list timer;
b361237b 1192
094f9a54
CW
1193 prepare_to_wait(&ring->irq_queue, &wait,
1194 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1195
f69061be
DV
1196 /* We need to check whether any gpu reset happened in between
1197 * the caller grabbing the seqno and now ... */
094f9a54
CW
1198 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200 * is truely gone. */
1201 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 if (ret == 0)
1203 ret = -EAGAIN;
1204 break;
1205 }
f69061be 1206
094f9a54
CW
1207 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208 ret = 0;
1209 break;
1210 }
b361237b 1211
094f9a54
CW
1212 if (interruptible && signal_pending(current)) {
1213 ret = -ERESTARTSYS;
1214 break;
1215 }
1216
47e9766d 1217 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1218 ret = -ETIME;
1219 break;
1220 }
1221
1222 timer.function = NULL;
1223 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1224 unsigned long expire;
1225
094f9a54 1226 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1227 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1228 mod_timer(&timer, expire);
1229 }
1230
5035c275 1231 io_schedule();
094f9a54 1232
094f9a54
CW
1233 if (timer.function) {
1234 del_singleshot_timer_sync(&timer);
1235 destroy_timer_on_stack(&timer);
1236 }
1237 }
5ed0bdf2 1238 now = ktime_get_raw_ns();
094f9a54 1239 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1240
168c3f21
MK
1241 if (!irq_test_in_progress)
1242 ring->irq_put(ring);
094f9a54
CW
1243
1244 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1245
1246 if (timeout) {
5ed0bdf2
TG
1247 s64 tres = *timeout - (now - before);
1248
1249 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1250 }
1251
094f9a54 1252 return ret;
b361237b
CW
1253}
1254
1255/**
1256 * Waits for a sequence number to be signaled, and cleans up the
1257 * request and object lists appropriately for that event.
1258 */
1259int
a4872ba6 1260i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1261{
1262 struct drm_device *dev = ring->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 bool interruptible = dev_priv->mm.interruptible;
1265 int ret;
1266
1267 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268 BUG_ON(seqno == 0);
1269
33196ded 1270 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1271 if (ret)
1272 return ret;
1273
1274 ret = i915_gem_check_olr(ring, seqno);
1275 if (ret)
1276 return ret;
1277
f69061be
DV
1278 return __wait_seqno(ring, seqno,
1279 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1280 interruptible, NULL, NULL);
b361237b
CW
1281}
1282
d26e3af8
CW
1283static int
1284i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1285 struct intel_engine_cs *ring)
d26e3af8 1286{
c8725f3d
CW
1287 if (!obj->active)
1288 return 0;
d26e3af8
CW
1289
1290 /* Manually manage the write flush as we may have not yet
1291 * retired the buffer.
1292 *
1293 * Note that the last_write_seqno is always the earlier of
1294 * the two (read/write) seqno, so if we haved successfully waited,
1295 * we know we have passed the last write.
1296 */
1297 obj->last_write_seqno = 0;
d26e3af8
CW
1298
1299 return 0;
1300}
1301
b361237b
CW
1302/**
1303 * Ensures that all rendering to the object has completed and the object is
1304 * safe to unbind from the GTT or access from the CPU.
1305 */
1306static __must_check int
1307i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308 bool readonly)
1309{
a4872ba6 1310 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1311 u32 seqno;
1312 int ret;
1313
1314 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315 if (seqno == 0)
1316 return 0;
1317
1318 ret = i915_wait_seqno(ring, seqno);
1319 if (ret)
1320 return ret;
1321
d26e3af8 1322 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1323}
1324
3236f57a
CW
1325/* A nonblocking variant of the above wait. This is a highly dangerous routine
1326 * as the object state may change during this call.
1327 */
1328static __must_check int
1329i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1330 struct drm_i915_file_private *file_priv,
3236f57a
CW
1331 bool readonly)
1332{
1333 struct drm_device *dev = obj->base.dev;
1334 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1335 struct intel_engine_cs *ring = obj->ring;
f69061be 1336 unsigned reset_counter;
3236f57a
CW
1337 u32 seqno;
1338 int ret;
1339
1340 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341 BUG_ON(!dev_priv->mm.interruptible);
1342
1343 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344 if (seqno == 0)
1345 return 0;
1346
33196ded 1347 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1348 if (ret)
1349 return ret;
1350
1351 ret = i915_gem_check_olr(ring, seqno);
1352 if (ret)
1353 return ret;
1354
f69061be 1355 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1356 mutex_unlock(&dev->struct_mutex);
6e4930f6 1357 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1358 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1359 if (ret)
1360 return ret;
3236f57a 1361
d26e3af8 1362 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1363}
1364
673a394b 1365/**
2ef7eeaa
EA
1366 * Called when user space prepares to use an object with the CPU, either
1367 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1368 */
1369int
1370i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1371 struct drm_file *file)
673a394b
EA
1372{
1373 struct drm_i915_gem_set_domain *args = data;
05394f39 1374 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1375 uint32_t read_domains = args->read_domains;
1376 uint32_t write_domain = args->write_domain;
673a394b
EA
1377 int ret;
1378
2ef7eeaa 1379 /* Only handle setting domains to types used by the CPU. */
21d509e3 1380 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1381 return -EINVAL;
1382
21d509e3 1383 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1384 return -EINVAL;
1385
1386 /* Having something in the write domain implies it's in the read
1387 * domain, and only that read domain. Enforce that in the request.
1388 */
1389 if (write_domain != 0 && read_domains != write_domain)
1390 return -EINVAL;
1391
76c1dec1 1392 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1393 if (ret)
76c1dec1 1394 return ret;
1d7cfea1 1395
05394f39 1396 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1397 if (&obj->base == NULL) {
1d7cfea1
CW
1398 ret = -ENOENT;
1399 goto unlock;
76c1dec1 1400 }
673a394b 1401
3236f57a
CW
1402 /* Try to flush the object off the GPU without holding the lock.
1403 * We will repeat the flush holding the lock in the normal manner
1404 * to catch cases where we are gazumped.
1405 */
6e4930f6
CW
1406 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407 file->driver_priv,
1408 !write_domain);
3236f57a
CW
1409 if (ret)
1410 goto unref;
1411
2ef7eeaa
EA
1412 if (read_domains & I915_GEM_DOMAIN_GTT) {
1413 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1414
1415 /* Silently promote "you're not bound, there was nothing to do"
1416 * to success, since the client was just asking us to
1417 * make sure everything was done.
1418 */
1419 if (ret == -EINVAL)
1420 ret = 0;
2ef7eeaa 1421 } else {
e47c68e9 1422 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1423 }
1424
3236f57a 1425unref:
05394f39 1426 drm_gem_object_unreference(&obj->base);
1d7cfea1 1427unlock:
673a394b
EA
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430}
1431
1432/**
1433 * Called when user space has done writes to this buffer
1434 */
1435int
1436i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1437 struct drm_file *file)
673a394b
EA
1438{
1439 struct drm_i915_gem_sw_finish *args = data;
05394f39 1440 struct drm_i915_gem_object *obj;
673a394b
EA
1441 int ret = 0;
1442
76c1dec1 1443 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1444 if (ret)
76c1dec1 1445 return ret;
1d7cfea1 1446
05394f39 1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1448 if (&obj->base == NULL) {
1d7cfea1
CW
1449 ret = -ENOENT;
1450 goto unlock;
673a394b
EA
1451 }
1452
673a394b 1453 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1456
05394f39 1457 drm_gem_object_unreference(&obj->base);
1d7cfea1 1458unlock:
673a394b
EA
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1461}
1462
1463/**
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1466 *
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1469 */
1470int
1471i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1472 struct drm_file *file)
673a394b
EA
1473{
1474 struct drm_i915_gem_mmap *args = data;
1475 struct drm_gem_object *obj;
673a394b
EA
1476 unsigned long addr;
1477
05394f39 1478 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1479 if (obj == NULL)
bf79cb91 1480 return -ENOENT;
673a394b 1481
1286ff73
DV
1482 /* prime objects have no backing filp to GEM mmap
1483 * pages from.
1484 */
1485 if (!obj->filp) {
1486 drm_gem_object_unreference_unlocked(obj);
1487 return -EINVAL;
1488 }
1489
6be5ceb0 1490 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1491 PROT_READ | PROT_WRITE, MAP_SHARED,
1492 args->offset);
bc9025bd 1493 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1494 if (IS_ERR((void *)addr))
1495 return addr;
1496
1497 args->addr_ptr = (uint64_t) addr;
1498
1499 return 0;
1500}
1501
de151cf6
JB
1502/**
1503 * i915_gem_fault - fault a page into the GTT
1504 * vma: VMA in question
1505 * vmf: fault info
1506 *
1507 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508 * from userspace. The fault handler takes care of binding the object to
1509 * the GTT (if needed), allocating and programming a fence register (again,
1510 * only if needed based on whether the old reg is still valid or the object
1511 * is tiled) and inserting a new PTE into the faulting process.
1512 *
1513 * Note that the faulting process may involve evicting existing objects
1514 * from the GTT and/or fence registers to make room. So performance may
1515 * suffer if the GTT working set is large or there are few fence registers
1516 * left.
1517 */
1518int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519{
05394f39
CW
1520 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 struct drm_device *dev = obj->base.dev;
3e31c6c0 1522 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1523 pgoff_t page_offset;
1524 unsigned long pfn;
1525 int ret = 0;
0f973f27 1526 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1527
f65c9168
PZ
1528 intel_runtime_pm_get(dev_priv);
1529
de151cf6
JB
1530 /* We don't use vmf->pgoff since that has the fake offset */
1531 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 PAGE_SHIFT;
1533
d9bc7e9f
CW
1534 ret = i915_mutex_lock_interruptible(dev);
1535 if (ret)
1536 goto out;
a00b10c3 1537
db53a302
CW
1538 trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
6e4930f6
CW
1540 /* Try to flush the object off the GPU first without holding the lock.
1541 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 * repeat the flush holding the lock in the normal manner to catch cases
1543 * where we are gazumped.
1544 */
1545 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 if (ret)
1547 goto unlock;
1548
eb119bd6
CW
1549 /* Access to snoopable pages through the GTT is incoherent. */
1550 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1551 ret = -EFAULT;
eb119bd6
CW
1552 goto unlock;
1553 }
1554
d9bc7e9f 1555 /* Now bind it into the GTT if needed */
1ec9e26d 1556 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1557 if (ret)
1558 goto unlock;
4a684a41 1559
c9839303
CW
1560 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 if (ret)
1562 goto unpin;
74898d7e 1563
06d98131 1564 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1565 if (ret)
c9839303 1566 goto unpin;
7d1c4804 1567
b90b91d8 1568 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1569 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 pfn >>= PAGE_SHIFT;
de151cf6 1571
b90b91d8 1572 if (!obj->fault_mappable) {
beff0d0f
VS
1573 unsigned long size = min_t(unsigned long,
1574 vma->vm_end - vma->vm_start,
1575 obj->base.size);
b90b91d8
CW
1576 int i;
1577
beff0d0f 1578 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1579 ret = vm_insert_pfn(vma,
1580 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581 pfn + i);
1582 if (ret)
1583 break;
1584 }
1585
1586 obj->fault_mappable = true;
1587 } else
1588 ret = vm_insert_pfn(vma,
1589 (unsigned long)vmf->virtual_address,
1590 pfn + page_offset);
c9839303 1591unpin:
d7f46fc4 1592 i915_gem_object_ggtt_unpin(obj);
c715089f 1593unlock:
de151cf6 1594 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1595out:
de151cf6 1596 switch (ret) {
d9bc7e9f 1597 case -EIO:
2232f031
DV
1598 /*
1599 * We eat errors when the gpu is terminally wedged to avoid
1600 * userspace unduly crashing (gl has no provisions for mmaps to
1601 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1602 * and so needs to be reported.
1603 */
1604 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1605 ret = VM_FAULT_SIGBUS;
1606 break;
1607 }
045e769a 1608 case -EAGAIN:
571c608d
DV
1609 /*
1610 * EAGAIN means the gpu is hung and we'll wait for the error
1611 * handler to reset everything when re-faulting in
1612 * i915_mutex_lock_interruptible.
d9bc7e9f 1613 */
c715089f
CW
1614 case 0:
1615 case -ERESTARTSYS:
bed636ab 1616 case -EINTR:
e79e0fe3
DR
1617 case -EBUSY:
1618 /*
1619 * EBUSY is ok: this just means that another thread
1620 * already did the job.
1621 */
f65c9168
PZ
1622 ret = VM_FAULT_NOPAGE;
1623 break;
de151cf6 1624 case -ENOMEM:
f65c9168
PZ
1625 ret = VM_FAULT_OOM;
1626 break;
a7c2e1aa 1627 case -ENOSPC:
45d67817 1628 case -EFAULT:
f65c9168
PZ
1629 ret = VM_FAULT_SIGBUS;
1630 break;
de151cf6 1631 default:
a7c2e1aa 1632 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1633 ret = VM_FAULT_SIGBUS;
1634 break;
de151cf6 1635 }
f65c9168
PZ
1636
1637 intel_runtime_pm_put(dev_priv);
1638 return ret;
de151cf6
JB
1639}
1640
901782b2
CW
1641/**
1642 * i915_gem_release_mmap - remove physical page mappings
1643 * @obj: obj in question
1644 *
af901ca1 1645 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1646 * relinquish ownership of the pages back to the system.
1647 *
1648 * It is vital that we remove the page mapping if we have mapped a tiled
1649 * object through the GTT and then lose the fence register due to
1650 * resource pressure. Similarly if the object has been moved out of the
1651 * aperture, than pages mapped into userspace must be revoked. Removing the
1652 * mapping will then trigger a page fault on the next user access, allowing
1653 * fixup by i915_gem_fault().
1654 */
d05ca301 1655void
05394f39 1656i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1657{
6299f992
CW
1658 if (!obj->fault_mappable)
1659 return;
901782b2 1660
6796cb16
DH
1661 drm_vma_node_unmap(&obj->base.vma_node,
1662 obj->base.dev->anon_inode->i_mapping);
6299f992 1663 obj->fault_mappable = false;
901782b2
CW
1664}
1665
eedd10f4
CW
1666void
1667i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1668{
1669 struct drm_i915_gem_object *obj;
1670
1671 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1672 i915_gem_release_mmap(obj);
1673}
1674
0fa87796 1675uint32_t
e28f8711 1676i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1677{
e28f8711 1678 uint32_t gtt_size;
92b88aeb
CW
1679
1680 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1681 tiling_mode == I915_TILING_NONE)
1682 return size;
92b88aeb
CW
1683
1684 /* Previous chips need a power-of-two fence region when tiling */
1685 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1686 gtt_size = 1024*1024;
92b88aeb 1687 else
e28f8711 1688 gtt_size = 512*1024;
92b88aeb 1689
e28f8711
CW
1690 while (gtt_size < size)
1691 gtt_size <<= 1;
92b88aeb 1692
e28f8711 1693 return gtt_size;
92b88aeb
CW
1694}
1695
de151cf6
JB
1696/**
1697 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1698 * @obj: object to check
1699 *
1700 * Return the required GTT alignment for an object, taking into account
5e783301 1701 * potential fence register mapping.
de151cf6 1702 */
d865110c
ID
1703uint32_t
1704i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1705 int tiling_mode, bool fenced)
de151cf6 1706{
de151cf6
JB
1707 /*
1708 * Minimum alignment is 4k (GTT page size), but might be greater
1709 * if a fence register is needed for the object.
1710 */
d865110c 1711 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1712 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1713 return 4096;
1714
a00b10c3
CW
1715 /*
1716 * Previous chips need to be aligned to the size of the smallest
1717 * fence register that can contain the object.
1718 */
e28f8711 1719 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1720}
1721
d8cb5086
CW
1722static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1723{
1724 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1725 int ret;
1726
0de23977 1727 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1728 return 0;
1729
da494d7c
DV
1730 dev_priv->mm.shrinker_no_lock_stealing = true;
1731
d8cb5086
CW
1732 ret = drm_gem_create_mmap_offset(&obj->base);
1733 if (ret != -ENOSPC)
da494d7c 1734 goto out;
d8cb5086
CW
1735
1736 /* Badly fragmented mmap space? The only way we can recover
1737 * space is by destroying unwanted objects. We can't randomly release
1738 * mmap_offsets as userspace expects them to be persistent for the
1739 * lifetime of the objects. The closest we can is to release the
1740 * offsets on purgeable objects by truncating it and marking it purged,
1741 * which prevents userspace from ever using that object again.
1742 */
21ab4e74
CW
1743 i915_gem_shrink(dev_priv,
1744 obj->base.size >> PAGE_SHIFT,
1745 I915_SHRINK_BOUND |
1746 I915_SHRINK_UNBOUND |
1747 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1748 ret = drm_gem_create_mmap_offset(&obj->base);
1749 if (ret != -ENOSPC)
da494d7c 1750 goto out;
d8cb5086
CW
1751
1752 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1753 ret = drm_gem_create_mmap_offset(&obj->base);
1754out:
1755 dev_priv->mm.shrinker_no_lock_stealing = false;
1756
1757 return ret;
d8cb5086
CW
1758}
1759
1760static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1761{
d8cb5086
CW
1762 drm_gem_free_mmap_offset(&obj->base);
1763}
1764
de151cf6 1765int
ff72145b
DA
1766i915_gem_mmap_gtt(struct drm_file *file,
1767 struct drm_device *dev,
1768 uint32_t handle,
1769 uint64_t *offset)
de151cf6 1770{
da761a6e 1771 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1772 struct drm_i915_gem_object *obj;
de151cf6
JB
1773 int ret;
1774
76c1dec1 1775 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1776 if (ret)
76c1dec1 1777 return ret;
de151cf6 1778
ff72145b 1779 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1780 if (&obj->base == NULL) {
1d7cfea1
CW
1781 ret = -ENOENT;
1782 goto unlock;
1783 }
de151cf6 1784
5d4545ae 1785 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1786 ret = -E2BIG;
ff56b0bc 1787 goto out;
da761a6e
CW
1788 }
1789
05394f39 1790 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1791 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1792 ret = -EFAULT;
1d7cfea1 1793 goto out;
ab18282d
CW
1794 }
1795
d8cb5086
CW
1796 ret = i915_gem_object_create_mmap_offset(obj);
1797 if (ret)
1798 goto out;
de151cf6 1799
0de23977 1800 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1801
1d7cfea1 1802out:
05394f39 1803 drm_gem_object_unreference(&obj->base);
1d7cfea1 1804unlock:
de151cf6 1805 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1806 return ret;
de151cf6
JB
1807}
1808
ff72145b
DA
1809/**
1810 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1811 * @dev: DRM device
1812 * @data: GTT mapping ioctl data
1813 * @file: GEM object info
1814 *
1815 * Simply returns the fake offset to userspace so it can mmap it.
1816 * The mmap call will end up in drm_gem_mmap(), which will set things
1817 * up so we can get faults in the handler above.
1818 *
1819 * The fault handler will take care of binding the object into the GTT
1820 * (since it may have been evicted to make room for something), allocating
1821 * a fence register, and mapping the appropriate aperture address into
1822 * userspace.
1823 */
1824int
1825i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1826 struct drm_file *file)
1827{
1828 struct drm_i915_gem_mmap_gtt *args = data;
1829
ff72145b
DA
1830 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1831}
1832
5537252b
CW
1833static inline int
1834i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1835{
1836 return obj->madv == I915_MADV_DONTNEED;
1837}
1838
225067ee
DV
1839/* Immediately discard the backing storage */
1840static void
1841i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1842{
4d6294bf 1843 i915_gem_object_free_mmap_offset(obj);
1286ff73 1844
4d6294bf
CW
1845 if (obj->base.filp == NULL)
1846 return;
e5281ccd 1847
225067ee
DV
1848 /* Our goal here is to return as much of the memory as
1849 * is possible back to the system as we are called from OOM.
1850 * To do this we must instruct the shmfs to drop all of its
1851 * backing pages, *now*.
1852 */
5537252b 1853 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1854 obj->madv = __I915_MADV_PURGED;
1855}
e5281ccd 1856
5537252b
CW
1857/* Try to discard unwanted pages */
1858static void
1859i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1860{
5537252b
CW
1861 struct address_space *mapping;
1862
1863 switch (obj->madv) {
1864 case I915_MADV_DONTNEED:
1865 i915_gem_object_truncate(obj);
1866 case __I915_MADV_PURGED:
1867 return;
1868 }
1869
1870 if (obj->base.filp == NULL)
1871 return;
1872
1873 mapping = file_inode(obj->base.filp)->i_mapping,
1874 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1875}
1876
5cdf5881 1877static void
05394f39 1878i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1879{
90797e6d
ID
1880 struct sg_page_iter sg_iter;
1881 int ret;
1286ff73 1882
05394f39 1883 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1884
6c085a72
CW
1885 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1886 if (ret) {
1887 /* In the event of a disaster, abandon all caches and
1888 * hope for the best.
1889 */
1890 WARN_ON(ret != -EIO);
2c22569b 1891 i915_gem_clflush_object(obj, true);
6c085a72
CW
1892 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1893 }
1894
6dacfd2f 1895 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1896 i915_gem_object_save_bit_17_swizzle(obj);
1897
05394f39
CW
1898 if (obj->madv == I915_MADV_DONTNEED)
1899 obj->dirty = 0;
3ef94daa 1900
90797e6d 1901 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1902 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1903
05394f39 1904 if (obj->dirty)
9da3da66 1905 set_page_dirty(page);
3ef94daa 1906
05394f39 1907 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1908 mark_page_accessed(page);
3ef94daa 1909
9da3da66 1910 page_cache_release(page);
3ef94daa 1911 }
05394f39 1912 obj->dirty = 0;
673a394b 1913
9da3da66
CW
1914 sg_free_table(obj->pages);
1915 kfree(obj->pages);
37e680a1 1916}
6c085a72 1917
dd624afd 1918int
37e680a1
CW
1919i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1920{
1921 const struct drm_i915_gem_object_ops *ops = obj->ops;
1922
2f745ad3 1923 if (obj->pages == NULL)
37e680a1
CW
1924 return 0;
1925
a5570178
CW
1926 if (obj->pages_pin_count)
1927 return -EBUSY;
1928
9843877d 1929 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1930
a2165e31
CW
1931 /* ->put_pages might need to allocate memory for the bit17 swizzle
1932 * array, hence protect them from being reaped by removing them from gtt
1933 * lists early. */
35c20a60 1934 list_del(&obj->global_list);
a2165e31 1935
37e680a1 1936 ops->put_pages(obj);
05394f39 1937 obj->pages = NULL;
37e680a1 1938
5537252b 1939 i915_gem_object_invalidate(obj);
6c085a72
CW
1940
1941 return 0;
1942}
1943
21ab4e74
CW
1944unsigned long
1945i915_gem_shrink(struct drm_i915_private *dev_priv,
1946 long target, unsigned flags)
6c085a72 1947{
21ab4e74 1948 const bool purgeable_only = flags & I915_SHRINK_PURGEABLE;
d9973b43 1949 unsigned long count = 0;
6c085a72 1950
57094f82 1951 /*
c8725f3d 1952 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1953 * (due to retiring requests) we have to strictly process only
1954 * one element of the list at the time, and recheck the list
1955 * on every iteration.
c8725f3d
CW
1956 *
1957 * In particular, we must hold a reference whilst removing the
1958 * object as we may end up waiting for and/or retiring the objects.
1959 * This might release the final reference (held by the active list)
1960 * and result in the object being freed from under us. This is
1961 * similar to the precautions the eviction code must take whilst
1962 * removing objects.
1963 *
1964 * Also note that although these lists do not hold a reference to
1965 * the object we can safely grab one here: The final object
1966 * unreferencing and the bound_list are both protected by the
1967 * dev->struct_mutex and so we won't ever be able to observe an
1968 * object on the bound_list with a reference count equals 0.
57094f82 1969 */
21ab4e74
CW
1970 if (flags & I915_SHRINK_UNBOUND) {
1971 struct list_head still_in_list;
c8725f3d 1972
21ab4e74
CW
1973 INIT_LIST_HEAD(&still_in_list);
1974 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1975 struct drm_i915_gem_object *obj;
c8725f3d 1976
21ab4e74
CW
1977 obj = list_first_entry(&dev_priv->mm.unbound_list,
1978 typeof(*obj), global_list);
1979 list_move_tail(&obj->global_list, &still_in_list);
c8725f3d 1980
21ab4e74
CW
1981 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1982 continue;
c8725f3d 1983
21ab4e74
CW
1984 drm_gem_object_reference(&obj->base);
1985
1986 if (i915_gem_object_put_pages(obj) == 0)
1987 count += obj->base.size >> PAGE_SHIFT;
1988
1989 drm_gem_object_unreference(&obj->base);
1990 }
1991 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
c8725f3d 1992 }
c8725f3d 1993
21ab4e74
CW
1994 if (flags & I915_SHRINK_BOUND) {
1995 struct list_head still_in_list;
80dcfdbd 1996
21ab4e74
CW
1997 INIT_LIST_HEAD(&still_in_list);
1998 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1999 struct drm_i915_gem_object *obj;
2000 struct i915_vma *vma, *v;
57094f82 2001
21ab4e74
CW
2002 obj = list_first_entry(&dev_priv->mm.bound_list,
2003 typeof(*obj), global_list);
2004 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2005
21ab4e74
CW
2006 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2007 continue;
57094f82 2008
21ab4e74 2009 drm_gem_object_reference(&obj->base);
80dcfdbd 2010
21ab4e74
CW
2011 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2012 if (i915_vma_unbind(vma))
2013 break;
57094f82 2014
21ab4e74
CW
2015 if (i915_gem_object_put_pages(obj) == 0)
2016 count += obj->base.size >> PAGE_SHIFT;
2017
2018 drm_gem_object_unreference(&obj->base);
2019 }
2020 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
2021 }
2022
2023 return count;
2024}
2025
d9973b43 2026static unsigned long
6c085a72
CW
2027i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2028{
6c085a72 2029 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2030 return i915_gem_shrink(dev_priv, LONG_MAX,
2031 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2032}
2033
37e680a1 2034static int
6c085a72 2035i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2036{
6c085a72 2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2038 int page_count, i;
2039 struct address_space *mapping;
9da3da66
CW
2040 struct sg_table *st;
2041 struct scatterlist *sg;
90797e6d 2042 struct sg_page_iter sg_iter;
e5281ccd 2043 struct page *page;
90797e6d 2044 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2045 gfp_t gfp;
e5281ccd 2046
6c085a72
CW
2047 /* Assert that the object is not currently in any GPU domain. As it
2048 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 * a GPU cache
2050 */
2051 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
9da3da66
CW
2054 st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 if (st == NULL)
2056 return -ENOMEM;
2057
05394f39 2058 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2059 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2060 kfree(st);
e5281ccd 2061 return -ENOMEM;
9da3da66 2062 }
e5281ccd 2063
9da3da66
CW
2064 /* Get the list of pages out of our struct file. They'll be pinned
2065 * at this point until we release them.
2066 *
2067 * Fail silently without starting the shrinker
2068 */
496ad9aa 2069 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2070 gfp = mapping_gfp_mask(mapping);
caf49191 2071 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2072 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2073 sg = st->sgl;
2074 st->nents = 0;
2075 for (i = 0; i < page_count; i++) {
6c085a72
CW
2076 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 if (IS_ERR(page)) {
21ab4e74
CW
2078 i915_gem_shrink(dev_priv,
2079 page_count,
2080 I915_SHRINK_BOUND |
2081 I915_SHRINK_UNBOUND |
2082 I915_SHRINK_PURGEABLE);
6c085a72
CW
2083 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 }
2085 if (IS_ERR(page)) {
2086 /* We've tried hard to allocate the memory by reaping
2087 * our own buffer, now let the real VM do its job and
2088 * go down in flames if truly OOM.
2089 */
6c085a72 2090 i915_gem_shrink_all(dev_priv);
f461d1be 2091 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2092 if (IS_ERR(page))
2093 goto err_pages;
6c085a72 2094 }
426729dc
KRW
2095#ifdef CONFIG_SWIOTLB
2096 if (swiotlb_nr_tbl()) {
2097 st->nents++;
2098 sg_set_page(sg, page, PAGE_SIZE, 0);
2099 sg = sg_next(sg);
2100 continue;
2101 }
2102#endif
90797e6d
ID
2103 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 if (i)
2105 sg = sg_next(sg);
2106 st->nents++;
2107 sg_set_page(sg, page, PAGE_SIZE, 0);
2108 } else {
2109 sg->length += PAGE_SIZE;
2110 }
2111 last_pfn = page_to_pfn(page);
3bbbe706
DV
2112
2113 /* Check that the i965g/gm workaround works. */
2114 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2115 }
426729dc
KRW
2116#ifdef CONFIG_SWIOTLB
2117 if (!swiotlb_nr_tbl())
2118#endif
2119 sg_mark_end(sg);
74ce6b6c
CW
2120 obj->pages = st;
2121
6dacfd2f 2122 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2123 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125 return 0;
2126
2127err_pages:
90797e6d
ID
2128 sg_mark_end(sg);
2129 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2130 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2131 sg_free_table(st);
2132 kfree(st);
0820baf3
CW
2133
2134 /* shmemfs first checks if there is enough memory to allocate the page
2135 * and reports ENOSPC should there be insufficient, along with the usual
2136 * ENOMEM for a genuine allocation failure.
2137 *
2138 * We use ENOSPC in our driver to mean that we have run out of aperture
2139 * space and so want to translate the error from shmemfs back to our
2140 * usual understanding of ENOMEM.
2141 */
2142 if (PTR_ERR(page) == -ENOSPC)
2143 return -ENOMEM;
2144 else
2145 return PTR_ERR(page);
673a394b
EA
2146}
2147
37e680a1
CW
2148/* Ensure that the associated pages are gathered from the backing storage
2149 * and pinned into our object. i915_gem_object_get_pages() may be called
2150 * multiple times before they are released by a single call to
2151 * i915_gem_object_put_pages() - once the pages are no longer referenced
2152 * either as a result of memory pressure (reaping pages under the shrinker)
2153 * or as the object is itself released.
2154 */
2155int
2156i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2157{
2158 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2159 const struct drm_i915_gem_object_ops *ops = obj->ops;
2160 int ret;
2161
2f745ad3 2162 if (obj->pages)
37e680a1
CW
2163 return 0;
2164
43e28f09 2165 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2166 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2167 return -EFAULT;
43e28f09
CW
2168 }
2169
a5570178
CW
2170 BUG_ON(obj->pages_pin_count);
2171
37e680a1
CW
2172 ret = ops->get_pages(obj);
2173 if (ret)
2174 return ret;
2175
35c20a60 2176 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2177 return 0;
673a394b
EA
2178}
2179
e2d05a8b 2180static void
05394f39 2181i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2182 struct intel_engine_cs *ring)
673a394b 2183{
9d773091 2184 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2185
852835f3 2186 BUG_ON(ring == NULL);
02978ff5
CW
2187 if (obj->ring != ring && obj->last_write_seqno) {
2188 /* Keep the seqno relative to the current ring */
2189 obj->last_write_seqno = seqno;
2190 }
05394f39 2191 obj->ring = ring;
673a394b
EA
2192
2193 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2194 if (!obj->active) {
2195 drm_gem_object_reference(&obj->base);
2196 obj->active = 1;
673a394b 2197 }
e35a41de 2198
05394f39 2199 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2200
0201f1ec 2201 obj->last_read_seqno = seqno;
caea7476
CW
2202}
2203
e2d05a8b 2204void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2205 struct intel_engine_cs *ring)
e2d05a8b
BW
2206{
2207 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2208 return i915_gem_object_move_to_active(vma->obj, ring);
2209}
2210
caea7476 2211static void
caea7476 2212i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2213{
ca191b13 2214 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2215 struct i915_address_space *vm;
2216 struct i915_vma *vma;
ce44b0ea 2217
65ce3027 2218 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2219 BUG_ON(!obj->active);
caea7476 2220
feb822cf
BW
2221 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2222 vma = i915_gem_obj_to_vma(obj, vm);
2223 if (vma && !list_empty(&vma->mm_list))
2224 list_move_tail(&vma->mm_list, &vm->inactive_list);
2225 }
caea7476 2226
f99d7069
DV
2227 intel_fb_obj_flush(obj, true);
2228
65ce3027 2229 list_del_init(&obj->ring_list);
caea7476
CW
2230 obj->ring = NULL;
2231
65ce3027
CW
2232 obj->last_read_seqno = 0;
2233 obj->last_write_seqno = 0;
2234 obj->base.write_domain = 0;
2235
2236 obj->last_fenced_seqno = 0;
caea7476
CW
2237
2238 obj->active = 0;
2239 drm_gem_object_unreference(&obj->base);
2240
2241 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2242}
673a394b 2243
c8725f3d
CW
2244static void
2245i915_gem_object_retire(struct drm_i915_gem_object *obj)
2246{
a4872ba6 2247 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2248
2249 if (ring == NULL)
2250 return;
2251
2252 if (i915_seqno_passed(ring->get_seqno(ring, true),
2253 obj->last_read_seqno))
2254 i915_gem_object_move_to_inactive(obj);
2255}
2256
9d773091 2257static int
fca26bb4 2258i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2259{
9d773091 2260 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2261 struct intel_engine_cs *ring;
9d773091 2262 int ret, i, j;
53d227f2 2263
107f27a5 2264 /* Carefully retire all requests without writing to the rings */
9d773091 2265 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2266 ret = intel_ring_idle(ring);
2267 if (ret)
2268 return ret;
9d773091 2269 }
9d773091 2270 i915_gem_retire_requests(dev);
107f27a5
CW
2271
2272 /* Finally reset hw state */
9d773091 2273 for_each_ring(ring, dev_priv, i) {
fca26bb4 2274 intel_ring_init_seqno(ring, seqno);
498d2ac1 2275
ebc348b2
BW
2276 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2277 ring->semaphore.sync_seqno[j] = 0;
9d773091 2278 }
53d227f2 2279
9d773091 2280 return 0;
53d227f2
DV
2281}
2282
fca26bb4
MK
2283int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2284{
2285 struct drm_i915_private *dev_priv = dev->dev_private;
2286 int ret;
2287
2288 if (seqno == 0)
2289 return -EINVAL;
2290
2291 /* HWS page needs to be set less than what we
2292 * will inject to ring
2293 */
2294 ret = i915_gem_init_seqno(dev, seqno - 1);
2295 if (ret)
2296 return ret;
2297
2298 /* Carefully set the last_seqno value so that wrap
2299 * detection still works
2300 */
2301 dev_priv->next_seqno = seqno;
2302 dev_priv->last_seqno = seqno - 1;
2303 if (dev_priv->last_seqno == 0)
2304 dev_priv->last_seqno--;
2305
2306 return 0;
2307}
2308
9d773091
CW
2309int
2310i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2311{
9d773091
CW
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313
2314 /* reserve 0 for non-seqno */
2315 if (dev_priv->next_seqno == 0) {
fca26bb4 2316 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2317 if (ret)
2318 return ret;
53d227f2 2319
9d773091
CW
2320 dev_priv->next_seqno = 1;
2321 }
53d227f2 2322
f72b3435 2323 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2324 return 0;
53d227f2
DV
2325}
2326
a4872ba6 2327int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2328 struct drm_file *file,
7d736f4f 2329 struct drm_i915_gem_object *obj,
0025c077 2330 u32 *out_seqno)
673a394b 2331{
3e31c6c0 2332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2333 struct drm_i915_gem_request *request;
48e29f55 2334 struct intel_ringbuffer *ringbuf;
7d736f4f 2335 u32 request_ring_position, request_start;
3cce469c
CW
2336 int ret;
2337
48e29f55
OM
2338 request = ring->preallocated_lazy_request;
2339 if (WARN_ON(request == NULL))
2340 return -ENOMEM;
2341
2342 if (i915.enable_execlists) {
2343 struct intel_context *ctx = request->ctx;
2344 ringbuf = ctx->engine[ring->id].ringbuf;
2345 } else
2346 ringbuf = ring->buffer;
2347
2348 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2349 /*
2350 * Emit any outstanding flushes - execbuf can fail to emit the flush
2351 * after having emitted the batchbuffer command. Hence we need to fix
2352 * things up similar to emitting the lazy request. The difference here
2353 * is that the flush _must_ happen before the next request, no matter
2354 * what.
2355 */
48e29f55
OM
2356 if (i915.enable_execlists) {
2357 ret = logical_ring_flush_all_caches(ringbuf);
2358 if (ret)
2359 return ret;
2360 } else {
2361 ret = intel_ring_flush_all_caches(ring);
2362 if (ret)
2363 return ret;
2364 }
cc889e0f 2365
a71d8d94
CW
2366 /* Record the position of the start of the request so that
2367 * should we detect the updated seqno part-way through the
2368 * GPU processing the request, we never over-estimate the
2369 * position of the head.
2370 */
48e29f55 2371 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2372
48e29f55
OM
2373 if (i915.enable_execlists) {
2374 ret = ring->emit_request(ringbuf);
2375 if (ret)
2376 return ret;
2377 } else {
2378 ret = ring->add_request(ring);
2379 if (ret)
2380 return ret;
2381 }
673a394b 2382
9d773091 2383 request->seqno = intel_ring_get_seqno(ring);
852835f3 2384 request->ring = ring;
7d736f4f 2385 request->head = request_start;
a71d8d94 2386 request->tail = request_ring_position;
7d736f4f
MK
2387
2388 /* Whilst this request exists, batch_obj will be on the
2389 * active_list, and so will hold the active reference. Only when this
2390 * request is retired will the the batch_obj be moved onto the
2391 * inactive_list and lose its active reference. Hence we do not need
2392 * to explicitly hold another reference here.
2393 */
9a7e0c2a 2394 request->batch_obj = obj;
0e50e96b 2395
48e29f55
OM
2396 if (!i915.enable_execlists) {
2397 /* Hold a reference to the current context so that we can inspect
2398 * it later in case a hangcheck error event fires.
2399 */
2400 request->ctx = ring->last_context;
2401 if (request->ctx)
2402 i915_gem_context_reference(request->ctx);
2403 }
0e50e96b 2404
673a394b 2405 request->emitted_jiffies = jiffies;
852835f3 2406 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2407 request->file_priv = NULL;
852835f3 2408
db53a302
CW
2409 if (file) {
2410 struct drm_i915_file_private *file_priv = file->driver_priv;
2411
1c25595f 2412 spin_lock(&file_priv->mm.lock);
f787a5f5 2413 request->file_priv = file_priv;
b962442e 2414 list_add_tail(&request->client_list,
f787a5f5 2415 &file_priv->mm.request_list);
1c25595f 2416 spin_unlock(&file_priv->mm.lock);
b962442e 2417 }
673a394b 2418
9d773091 2419 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2420 ring->outstanding_lazy_seqno = 0;
3c0e234c 2421 ring->preallocated_lazy_request = NULL;
db53a302 2422
db1b76ca 2423 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2424 i915_queue_hangcheck(ring->dev);
2425
f62a0076
CW
2426 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2427 queue_delayed_work(dev_priv->wq,
2428 &dev_priv->mm.retire_work,
2429 round_jiffies_up_relative(HZ));
2430 intel_mark_busy(dev_priv->dev);
f65d9421 2431 }
cc889e0f 2432
acb868d3 2433 if (out_seqno)
9d773091 2434 *out_seqno = request->seqno;
3cce469c 2435 return 0;
673a394b
EA
2436}
2437
f787a5f5
CW
2438static inline void
2439i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2440{
1c25595f 2441 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2442
1c25595f
CW
2443 if (!file_priv)
2444 return;
1c5d22f7 2445
1c25595f 2446 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2447 list_del(&request->client_list);
2448 request->file_priv = NULL;
1c25595f 2449 spin_unlock(&file_priv->mm.lock);
673a394b 2450}
673a394b 2451
939fd762 2452static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2453 const struct intel_context *ctx)
be62acb4 2454{
44e2c070 2455 unsigned long elapsed;
be62acb4 2456
44e2c070
MK
2457 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2458
2459 if (ctx->hang_stats.banned)
be62acb4
MK
2460 return true;
2461
2462 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2463 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2464 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2465 return true;
88b4aa87
MK
2466 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2467 if (i915_stop_ring_allow_warn(dev_priv))
2468 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2469 return true;
3fac8978 2470 }
be62acb4
MK
2471 }
2472
2473 return false;
2474}
2475
939fd762 2476static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2477 struct intel_context *ctx,
b6b0fac0 2478 const bool guilty)
aa60c664 2479{
44e2c070
MK
2480 struct i915_ctx_hang_stats *hs;
2481
2482 if (WARN_ON(!ctx))
2483 return;
aa60c664 2484
44e2c070
MK
2485 hs = &ctx->hang_stats;
2486
2487 if (guilty) {
939fd762 2488 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2489 hs->batch_active++;
2490 hs->guilty_ts = get_seconds();
2491 } else {
2492 hs->batch_pending++;
aa60c664
MK
2493 }
2494}
2495
0e50e96b
MK
2496static void i915_gem_free_request(struct drm_i915_gem_request *request)
2497{
2498 list_del(&request->list);
2499 i915_gem_request_remove_from_client(request);
2500
2501 if (request->ctx)
2502 i915_gem_context_unreference(request->ctx);
2503
2504 kfree(request);
2505}
2506
8d9fc7fd 2507struct drm_i915_gem_request *
a4872ba6 2508i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2509{
4db080f9 2510 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2511 u32 completed_seqno;
2512
2513 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2514
2515 list_for_each_entry(request, &ring->request_list, list) {
2516 if (i915_seqno_passed(completed_seqno, request->seqno))
2517 continue;
aa60c664 2518
b6b0fac0 2519 return request;
4db080f9 2520 }
b6b0fac0
MK
2521
2522 return NULL;
2523}
2524
2525static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2526 struct intel_engine_cs *ring)
b6b0fac0
MK
2527{
2528 struct drm_i915_gem_request *request;
2529 bool ring_hung;
2530
8d9fc7fd 2531 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2532
2533 if (request == NULL)
2534 return;
2535
2536 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2537
939fd762 2538 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2539
2540 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2541 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2542}
aa60c664 2543
4db080f9 2544static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2545 struct intel_engine_cs *ring)
4db080f9 2546{
dfaae392 2547 while (!list_empty(&ring->active_list)) {
05394f39 2548 struct drm_i915_gem_object *obj;
9375e446 2549
05394f39
CW
2550 obj = list_first_entry(&ring->active_list,
2551 struct drm_i915_gem_object,
2552 ring_list);
9375e446 2553
05394f39 2554 i915_gem_object_move_to_inactive(obj);
673a394b 2555 }
1d62beea
BW
2556
2557 /*
2558 * We must free the requests after all the corresponding objects have
2559 * been moved off active lists. Which is the same order as the normal
2560 * retire_requests function does. This is important if object hold
2561 * implicit references on things like e.g. ppgtt address spaces through
2562 * the request.
2563 */
2564 while (!list_empty(&ring->request_list)) {
2565 struct drm_i915_gem_request *request;
2566
2567 request = list_first_entry(&ring->request_list,
2568 struct drm_i915_gem_request,
2569 list);
2570
2571 i915_gem_free_request(request);
2572 }
e3efda49 2573
cc9130be
OM
2574 while (!list_empty(&ring->execlist_queue)) {
2575 struct intel_ctx_submit_request *submit_req;
2576
2577 submit_req = list_first_entry(&ring->execlist_queue,
2578 struct intel_ctx_submit_request,
2579 execlist_link);
2580 list_del(&submit_req->execlist_link);
2581 intel_runtime_pm_put(dev_priv);
2582 i915_gem_context_unreference(submit_req->ctx);
2583 kfree(submit_req);
2584 }
2585
e3efda49
CW
2586 /* These may not have been flush before the reset, do so now */
2587 kfree(ring->preallocated_lazy_request);
2588 ring->preallocated_lazy_request = NULL;
2589 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2590}
2591
19b2dbde 2592void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2593{
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 int i;
2596
4b9de737 2597 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2598 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2599
94a335db
DV
2600 /*
2601 * Commit delayed tiling changes if we have an object still
2602 * attached to the fence, otherwise just clear the fence.
2603 */
2604 if (reg->obj) {
2605 i915_gem_object_update_fence(reg->obj, reg,
2606 reg->obj->tiling_mode);
2607 } else {
2608 i915_gem_write_fence(dev, i, NULL);
2609 }
312817a3
CW
2610 }
2611}
2612
069efc1d 2613void i915_gem_reset(struct drm_device *dev)
673a394b 2614{
77f01230 2615 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2616 struct intel_engine_cs *ring;
1ec14ad3 2617 int i;
673a394b 2618
4db080f9
CW
2619 /*
2620 * Before we free the objects from the requests, we need to inspect
2621 * them for finding the guilty party. As the requests only borrow
2622 * their reference to the objects, the inspection must be done first.
2623 */
2624 for_each_ring(ring, dev_priv, i)
2625 i915_gem_reset_ring_status(dev_priv, ring);
2626
b4519513 2627 for_each_ring(ring, dev_priv, i)
4db080f9 2628 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2629
acce9ffa
BW
2630 i915_gem_context_reset(dev);
2631
19b2dbde 2632 i915_gem_restore_fences(dev);
673a394b
EA
2633}
2634
2635/**
2636 * This function clears the request list as sequence numbers are passed.
2637 */
1cf0ba14 2638void
a4872ba6 2639i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2640{
673a394b
EA
2641 uint32_t seqno;
2642
db53a302 2643 if (list_empty(&ring->request_list))
6c0594a3
KW
2644 return;
2645
db53a302 2646 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2647
b2eadbc8 2648 seqno = ring->get_seqno(ring, true);
1ec14ad3 2649
e9103038
CW
2650 /* Move any buffers on the active list that are no longer referenced
2651 * by the ringbuffer to the flushing/inactive lists as appropriate,
2652 * before we free the context associated with the requests.
2653 */
2654 while (!list_empty(&ring->active_list)) {
2655 struct drm_i915_gem_object *obj;
2656
2657 obj = list_first_entry(&ring->active_list,
2658 struct drm_i915_gem_object,
2659 ring_list);
2660
2661 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2662 break;
2663
2664 i915_gem_object_move_to_inactive(obj);
2665 }
2666
2667
852835f3 2668 while (!list_empty(&ring->request_list)) {
673a394b 2669 struct drm_i915_gem_request *request;
48e29f55 2670 struct intel_ringbuffer *ringbuf;
673a394b 2671
852835f3 2672 request = list_first_entry(&ring->request_list,
673a394b
EA
2673 struct drm_i915_gem_request,
2674 list);
673a394b 2675
dfaae392 2676 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2677 break;
2678
db53a302 2679 trace_i915_gem_request_retire(ring, request->seqno);
48e29f55
OM
2680
2681 /* This is one of the few common intersection points
2682 * between legacy ringbuffer submission and execlists:
2683 * we need to tell them apart in order to find the correct
2684 * ringbuffer to which the request belongs to.
2685 */
2686 if (i915.enable_execlists) {
2687 struct intel_context *ctx = request->ctx;
2688 ringbuf = ctx->engine[ring->id].ringbuf;
2689 } else
2690 ringbuf = ring->buffer;
2691
a71d8d94
CW
2692 /* We know the GPU must have read the request to have
2693 * sent us the seqno + interrupt, so use the position
2694 * of tail of the request to update the last known position
2695 * of the GPU head.
2696 */
48e29f55 2697 ringbuf->last_retired_head = request->tail;
b84d5f0c 2698
0e50e96b 2699 i915_gem_free_request(request);
b84d5f0c 2700 }
673a394b 2701
db53a302
CW
2702 if (unlikely(ring->trace_irq_seqno &&
2703 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2704 ring->irq_put(ring);
db53a302 2705 ring->trace_irq_seqno = 0;
9d34e5db 2706 }
23bc5982 2707
db53a302 2708 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2709}
2710
b29c19b6 2711bool
b09a1fec
CW
2712i915_gem_retire_requests(struct drm_device *dev)
2713{
3e31c6c0 2714 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2715 struct intel_engine_cs *ring;
b29c19b6 2716 bool idle = true;
1ec14ad3 2717 int i;
b09a1fec 2718
b29c19b6 2719 for_each_ring(ring, dev_priv, i) {
b4519513 2720 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2721 idle &= list_empty(&ring->request_list);
2722 }
2723
2724 if (idle)
2725 mod_delayed_work(dev_priv->wq,
2726 &dev_priv->mm.idle_work,
2727 msecs_to_jiffies(100));
2728
2729 return idle;
b09a1fec
CW
2730}
2731
75ef9da2 2732static void
673a394b
EA
2733i915_gem_retire_work_handler(struct work_struct *work)
2734{
b29c19b6
CW
2735 struct drm_i915_private *dev_priv =
2736 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2737 struct drm_device *dev = dev_priv->dev;
0a58705b 2738 bool idle;
673a394b 2739
891b48cf 2740 /* Come back later if the device is busy... */
b29c19b6
CW
2741 idle = false;
2742 if (mutex_trylock(&dev->struct_mutex)) {
2743 idle = i915_gem_retire_requests(dev);
2744 mutex_unlock(&dev->struct_mutex);
673a394b 2745 }
b29c19b6 2746 if (!idle)
bcb45086
CW
2747 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2748 round_jiffies_up_relative(HZ));
b29c19b6 2749}
0a58705b 2750
b29c19b6
CW
2751static void
2752i915_gem_idle_work_handler(struct work_struct *work)
2753{
2754 struct drm_i915_private *dev_priv =
2755 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2756
2757 intel_mark_idle(dev_priv->dev);
673a394b
EA
2758}
2759
30dfebf3
DV
2760/**
2761 * Ensures that an object will eventually get non-busy by flushing any required
2762 * write domains, emitting any outstanding lazy request and retiring and
2763 * completed requests.
2764 */
2765static int
2766i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2767{
2768 int ret;
2769
2770 if (obj->active) {
0201f1ec 2771 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2772 if (ret)
2773 return ret;
2774
30dfebf3
DV
2775 i915_gem_retire_requests_ring(obj->ring);
2776 }
2777
2778 return 0;
2779}
2780
23ba4fd0
BW
2781/**
2782 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2783 * @DRM_IOCTL_ARGS: standard ioctl arguments
2784 *
2785 * Returns 0 if successful, else an error is returned with the remaining time in
2786 * the timeout parameter.
2787 * -ETIME: object is still busy after timeout
2788 * -ERESTARTSYS: signal interrupted the wait
2789 * -ENONENT: object doesn't exist
2790 * Also possible, but rare:
2791 * -EAGAIN: GPU wedged
2792 * -ENOMEM: damn
2793 * -ENODEV: Internal IRQ fail
2794 * -E?: The add request failed
2795 *
2796 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2797 * non-zero timeout parameter the wait ioctl will wait for the given number of
2798 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2799 * without holding struct_mutex the object may become re-busied before this
2800 * function completes. A similar but shorter * race condition exists in the busy
2801 * ioctl
2802 */
2803int
2804i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2805{
3e31c6c0 2806 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2807 struct drm_i915_gem_wait *args = data;
2808 struct drm_i915_gem_object *obj;
a4872ba6 2809 struct intel_engine_cs *ring = NULL;
f69061be 2810 unsigned reset_counter;
23ba4fd0
BW
2811 u32 seqno = 0;
2812 int ret = 0;
2813
23ba4fd0
BW
2814 ret = i915_mutex_lock_interruptible(dev);
2815 if (ret)
2816 return ret;
2817
2818 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2819 if (&obj->base == NULL) {
2820 mutex_unlock(&dev->struct_mutex);
2821 return -ENOENT;
2822 }
2823
30dfebf3
DV
2824 /* Need to make sure the object gets inactive eventually. */
2825 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2826 if (ret)
2827 goto out;
2828
2829 if (obj->active) {
0201f1ec 2830 seqno = obj->last_read_seqno;
23ba4fd0
BW
2831 ring = obj->ring;
2832 }
2833
2834 if (seqno == 0)
2835 goto out;
2836
23ba4fd0 2837 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2838 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2839 */
5ed0bdf2 2840 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2841 ret = -ETIME;
2842 goto out;
2843 }
2844
2845 drm_gem_object_unreference(&obj->base);
f69061be 2846 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2847 mutex_unlock(&dev->struct_mutex);
2848
5ed0bdf2
TG
2849 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2850 file->driver_priv);
23ba4fd0
BW
2851
2852out:
2853 drm_gem_object_unreference(&obj->base);
2854 mutex_unlock(&dev->struct_mutex);
2855 return ret;
2856}
2857
5816d648
BW
2858/**
2859 * i915_gem_object_sync - sync an object to a ring.
2860 *
2861 * @obj: object which may be in use on another ring.
2862 * @to: ring we wish to use the object on. May be NULL.
2863 *
2864 * This code is meant to abstract object synchronization with the GPU.
2865 * Calling with NULL implies synchronizing the object with the CPU
2866 * rather than a particular GPU ring.
2867 *
2868 * Returns 0 if successful, else propagates up the lower layer error.
2869 */
2911a35b
BW
2870int
2871i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2872 struct intel_engine_cs *to)
2911a35b 2873{
a4872ba6 2874 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2875 u32 seqno;
2876 int ret, idx;
2877
2878 if (from == NULL || to == from)
2879 return 0;
2880
5816d648 2881 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2882 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2883
2884 idx = intel_ring_sync_index(from, to);
2885
0201f1ec 2886 seqno = obj->last_read_seqno;
ddd4dbc6
RV
2887 /* Optimization: Avoid semaphore sync when we are sure we already
2888 * waited for an object with higher seqno */
ebc348b2 2889 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2890 return 0;
2891
b4aca010
BW
2892 ret = i915_gem_check_olr(obj->ring, seqno);
2893 if (ret)
2894 return ret;
2911a35b 2895
b52b89da 2896 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2897 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2898 if (!ret)
7b01e260
MK
2899 /* We use last_read_seqno because sync_to()
2900 * might have just caused seqno wrap under
2901 * the radar.
2902 */
ebc348b2 2903 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2904
e3a5a225 2905 return ret;
2911a35b
BW
2906}
2907
b5ffc9bc
CW
2908static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2909{
2910 u32 old_write_domain, old_read_domains;
2911
b5ffc9bc
CW
2912 /* Force a pagefault for domain tracking on next user access */
2913 i915_gem_release_mmap(obj);
2914
b97c3d9c
KP
2915 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2916 return;
2917
97c809fd
CW
2918 /* Wait for any direct GTT access to complete */
2919 mb();
2920
b5ffc9bc
CW
2921 old_read_domains = obj->base.read_domains;
2922 old_write_domain = obj->base.write_domain;
2923
2924 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2925 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2926
2927 trace_i915_gem_object_change_domain(obj,
2928 old_read_domains,
2929 old_write_domain);
2930}
2931
07fe0b12 2932int i915_vma_unbind(struct i915_vma *vma)
673a394b 2933{
07fe0b12 2934 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2935 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2936 int ret;
673a394b 2937
07fe0b12 2938 if (list_empty(&vma->vma_link))
673a394b
EA
2939 return 0;
2940
0ff501cb
DV
2941 if (!drm_mm_node_allocated(&vma->node)) {
2942 i915_gem_vma_destroy(vma);
0ff501cb
DV
2943 return 0;
2944 }
433544bd 2945
d7f46fc4 2946 if (vma->pin_count)
31d8d651 2947 return -EBUSY;
673a394b 2948
c4670ad0
CW
2949 BUG_ON(obj->pages == NULL);
2950
a8198eea 2951 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2952 if (ret)
a8198eea
CW
2953 return ret;
2954 /* Continue on if we fail due to EIO, the GPU is hung so we
2955 * should be safe and we need to cleanup or else we might
2956 * cause memory corruption through use-after-free.
2957 */
2958
1d1ef21d
CW
2959 /* Throw away the active reference before moving to the unbound list */
2960 i915_gem_object_retire(obj);
2961
8b1bc9b4
DV
2962 if (i915_is_ggtt(vma->vm)) {
2963 i915_gem_object_finish_gtt(obj);
5323fd04 2964
8b1bc9b4
DV
2965 /* release the fence reg _after_ flushing */
2966 ret = i915_gem_object_put_fence(obj);
2967 if (ret)
2968 return ret;
2969 }
96b47b65 2970
07fe0b12 2971 trace_i915_vma_unbind(vma);
db53a302 2972
6f65e29a
BW
2973 vma->unbind_vma(vma);
2974
64bf9303 2975 list_del_init(&vma->mm_list);
5cacaac7 2976 if (i915_is_ggtt(vma->vm))
e6a84468 2977 obj->map_and_fenceable = false;
673a394b 2978
2f633156
BW
2979 drm_mm_remove_node(&vma->node);
2980 i915_gem_vma_destroy(vma);
2981
2982 /* Since the unbound list is global, only move to that list if
b93dab6e 2983 * no more VMAs exist. */
9490edb5
AR
2984 if (list_empty(&obj->vma_list)) {
2985 i915_gem_gtt_finish_object(obj);
2f633156 2986 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 2987 }
673a394b 2988
70903c3b
CW
2989 /* And finally now the object is completely decoupled from this vma,
2990 * we can drop its hold on the backing storage and allow it to be
2991 * reaped by the shrinker.
2992 */
2993 i915_gem_object_unpin_pages(obj);
2994
88241785 2995 return 0;
54cf91dc
CW
2996}
2997
b2da9fe5 2998int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2999{
3e31c6c0 3000 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3001 struct intel_engine_cs *ring;
1ec14ad3 3002 int ret, i;
4df2faf4 3003
4df2faf4 3004 /* Flush everything onto the inactive list. */
b4519513 3005 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3006 if (!i915.enable_execlists) {
3007 ret = i915_switch_context(ring, ring->default_context);
3008 if (ret)
3009 return ret;
3010 }
b6c7488d 3011
3e960501 3012 ret = intel_ring_idle(ring);
1ec14ad3
CW
3013 if (ret)
3014 return ret;
3015 }
4df2faf4 3016
8a1a49f9 3017 return 0;
4df2faf4
DV
3018}
3019
9ce079e4
CW
3020static void i965_write_fence_reg(struct drm_device *dev, int reg,
3021 struct drm_i915_gem_object *obj)
de151cf6 3022{
3e31c6c0 3023 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3024 int fence_reg;
3025 int fence_pitch_shift;
de151cf6 3026
56c844e5
ID
3027 if (INTEL_INFO(dev)->gen >= 6) {
3028 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3029 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3030 } else {
3031 fence_reg = FENCE_REG_965_0;
3032 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3033 }
3034
d18b9619
CW
3035 fence_reg += reg * 8;
3036
3037 /* To w/a incoherency with non-atomic 64-bit register updates,
3038 * we split the 64-bit update into two 32-bit writes. In order
3039 * for a partial fence not to be evaluated between writes, we
3040 * precede the update with write to turn off the fence register,
3041 * and only enable the fence as the last step.
3042 *
3043 * For extra levels of paranoia, we make sure each step lands
3044 * before applying the next step.
3045 */
3046 I915_WRITE(fence_reg, 0);
3047 POSTING_READ(fence_reg);
3048
9ce079e4 3049 if (obj) {
f343c5f6 3050 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3051 uint64_t val;
de151cf6 3052
f343c5f6 3053 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3054 0xfffff000) << 32;
f343c5f6 3055 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3056 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3057 if (obj->tiling_mode == I915_TILING_Y)
3058 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3059 val |= I965_FENCE_REG_VALID;
c6642782 3060
d18b9619
CW
3061 I915_WRITE(fence_reg + 4, val >> 32);
3062 POSTING_READ(fence_reg + 4);
3063
3064 I915_WRITE(fence_reg + 0, val);
3065 POSTING_READ(fence_reg);
3066 } else {
3067 I915_WRITE(fence_reg + 4, 0);
3068 POSTING_READ(fence_reg + 4);
3069 }
de151cf6
JB
3070}
3071
9ce079e4
CW
3072static void i915_write_fence_reg(struct drm_device *dev, int reg,
3073 struct drm_i915_gem_object *obj)
de151cf6 3074{
3e31c6c0 3075 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3076 u32 val;
de151cf6 3077
9ce079e4 3078 if (obj) {
f343c5f6 3079 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3080 int pitch_val;
3081 int tile_width;
c6642782 3082
f343c5f6 3083 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3084 (size & -size) != size ||
f343c5f6
BW
3085 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3086 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3087 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3088
9ce079e4
CW
3089 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3090 tile_width = 128;
3091 else
3092 tile_width = 512;
3093
3094 /* Note: pitch better be a power of two tile widths */
3095 pitch_val = obj->stride / tile_width;
3096 pitch_val = ffs(pitch_val) - 1;
3097
f343c5f6 3098 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3099 if (obj->tiling_mode == I915_TILING_Y)
3100 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3101 val |= I915_FENCE_SIZE_BITS(size);
3102 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3103 val |= I830_FENCE_REG_VALID;
3104 } else
3105 val = 0;
3106
3107 if (reg < 8)
3108 reg = FENCE_REG_830_0 + reg * 4;
3109 else
3110 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3111
3112 I915_WRITE(reg, val);
3113 POSTING_READ(reg);
de151cf6
JB
3114}
3115
9ce079e4
CW
3116static void i830_write_fence_reg(struct drm_device *dev, int reg,
3117 struct drm_i915_gem_object *obj)
de151cf6 3118{
3e31c6c0 3119 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3120 uint32_t val;
de151cf6 3121
9ce079e4 3122 if (obj) {
f343c5f6 3123 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3124 uint32_t pitch_val;
de151cf6 3125
f343c5f6 3126 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3127 (size & -size) != size ||
f343c5f6
BW
3128 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3129 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3130 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3131
9ce079e4
CW
3132 pitch_val = obj->stride / 128;
3133 pitch_val = ffs(pitch_val) - 1;
de151cf6 3134
f343c5f6 3135 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3136 if (obj->tiling_mode == I915_TILING_Y)
3137 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3138 val |= I830_FENCE_SIZE_BITS(size);
3139 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3140 val |= I830_FENCE_REG_VALID;
3141 } else
3142 val = 0;
c6642782 3143
9ce079e4
CW
3144 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3145 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3146}
3147
d0a57789
CW
3148inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3149{
3150 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3151}
3152
9ce079e4
CW
3153static void i915_gem_write_fence(struct drm_device *dev, int reg,
3154 struct drm_i915_gem_object *obj)
3155{
d0a57789
CW
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157
3158 /* Ensure that all CPU reads are completed before installing a fence
3159 * and all writes before removing the fence.
3160 */
3161 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3162 mb();
3163
94a335db
DV
3164 WARN(obj && (!obj->stride || !obj->tiling_mode),
3165 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3166 obj->stride, obj->tiling_mode);
3167
9ce079e4 3168 switch (INTEL_INFO(dev)->gen) {
5ab31333 3169 case 8:
9ce079e4 3170 case 7:
56c844e5 3171 case 6:
9ce079e4
CW
3172 case 5:
3173 case 4: i965_write_fence_reg(dev, reg, obj); break;
3174 case 3: i915_write_fence_reg(dev, reg, obj); break;
3175 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3176 default: BUG();
9ce079e4 3177 }
d0a57789
CW
3178
3179 /* And similarly be paranoid that no direct access to this region
3180 * is reordered to before the fence is installed.
3181 */
3182 if (i915_gem_object_needs_mb(obj))
3183 mb();
de151cf6
JB
3184}
3185
61050808
CW
3186static inline int fence_number(struct drm_i915_private *dev_priv,
3187 struct drm_i915_fence_reg *fence)
3188{
3189 return fence - dev_priv->fence_regs;
3190}
3191
3192static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3193 struct drm_i915_fence_reg *fence,
3194 bool enable)
3195{
2dc8aae0 3196 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3197 int reg = fence_number(dev_priv, fence);
3198
3199 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3200
3201 if (enable) {
46a0b638 3202 obj->fence_reg = reg;
61050808
CW
3203 fence->obj = obj;
3204 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3205 } else {
3206 obj->fence_reg = I915_FENCE_REG_NONE;
3207 fence->obj = NULL;
3208 list_del_init(&fence->lru_list);
3209 }
94a335db 3210 obj->fence_dirty = false;
61050808
CW
3211}
3212
d9e86c0e 3213static int
d0a57789 3214i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3215{
1c293ea3 3216 if (obj->last_fenced_seqno) {
86d5bc37 3217 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3218 if (ret)
3219 return ret;
d9e86c0e
CW
3220
3221 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3222 }
3223
3224 return 0;
3225}
3226
3227int
3228i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3229{
61050808 3230 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3231 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3232 int ret;
3233
d0a57789 3234 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3235 if (ret)
3236 return ret;
3237
61050808
CW
3238 if (obj->fence_reg == I915_FENCE_REG_NONE)
3239 return 0;
d9e86c0e 3240
f9c513e9
CW
3241 fence = &dev_priv->fence_regs[obj->fence_reg];
3242
aff10b30
DV
3243 if (WARN_ON(fence->pin_count))
3244 return -EBUSY;
3245
61050808 3246 i915_gem_object_fence_lost(obj);
f9c513e9 3247 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3248
3249 return 0;
3250}
3251
3252static struct drm_i915_fence_reg *
a360bb1a 3253i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3254{
ae3db24a 3255 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3256 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3257 int i;
ae3db24a
DV
3258
3259 /* First try to find a free reg */
d9e86c0e 3260 avail = NULL;
ae3db24a
DV
3261 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3262 reg = &dev_priv->fence_regs[i];
3263 if (!reg->obj)
d9e86c0e 3264 return reg;
ae3db24a 3265
1690e1eb 3266 if (!reg->pin_count)
d9e86c0e 3267 avail = reg;
ae3db24a
DV
3268 }
3269
d9e86c0e 3270 if (avail == NULL)
5dce5b93 3271 goto deadlock;
ae3db24a
DV
3272
3273 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3274 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3275 if (reg->pin_count)
ae3db24a
DV
3276 continue;
3277
8fe301ad 3278 return reg;
ae3db24a
DV
3279 }
3280
5dce5b93
CW
3281deadlock:
3282 /* Wait for completion of pending flips which consume fences */
3283 if (intel_has_pending_fb_unpin(dev))
3284 return ERR_PTR(-EAGAIN);
3285
3286 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3287}
3288
de151cf6 3289/**
9a5a53b3 3290 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3291 * @obj: object to map through a fence reg
3292 *
3293 * When mapping objects through the GTT, userspace wants to be able to write
3294 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3295 * This function walks the fence regs looking for a free one for @obj,
3296 * stealing one if it can't find any.
3297 *
3298 * It then sets up the reg based on the object's properties: address, pitch
3299 * and tiling format.
9a5a53b3
CW
3300 *
3301 * For an untiled surface, this removes any existing fence.
de151cf6 3302 */
8c4b8c3f 3303int
06d98131 3304i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3305{
05394f39 3306 struct drm_device *dev = obj->base.dev;
79e53945 3307 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3308 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3309 struct drm_i915_fence_reg *reg;
ae3db24a 3310 int ret;
de151cf6 3311
14415745
CW
3312 /* Have we updated the tiling parameters upon the object and so
3313 * will need to serialise the write to the associated fence register?
3314 */
5d82e3e6 3315 if (obj->fence_dirty) {
d0a57789 3316 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3317 if (ret)
3318 return ret;
3319 }
9a5a53b3 3320
d9e86c0e 3321 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3322 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3323 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3324 if (!obj->fence_dirty) {
14415745
CW
3325 list_move_tail(&reg->lru_list,
3326 &dev_priv->mm.fence_list);
3327 return 0;
3328 }
3329 } else if (enable) {
e6a84468
CW
3330 if (WARN_ON(!obj->map_and_fenceable))
3331 return -EINVAL;
3332
14415745 3333 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3334 if (IS_ERR(reg))
3335 return PTR_ERR(reg);
d9e86c0e 3336
14415745
CW
3337 if (reg->obj) {
3338 struct drm_i915_gem_object *old = reg->obj;
3339
d0a57789 3340 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3341 if (ret)
3342 return ret;
3343
14415745 3344 i915_gem_object_fence_lost(old);
29c5a587 3345 }
14415745 3346 } else
a09ba7fa 3347 return 0;
a09ba7fa 3348
14415745 3349 i915_gem_object_update_fence(obj, reg, enable);
14415745 3350
9ce079e4 3351 return 0;
de151cf6
JB
3352}
3353
4144f9b5 3354static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3355 unsigned long cache_level)
3356{
4144f9b5 3357 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3358 struct drm_mm_node *other;
3359
4144f9b5
CW
3360 /*
3361 * On some machines we have to be careful when putting differing types
3362 * of snoopable memory together to avoid the prefetcher crossing memory
3363 * domains and dying. During vm initialisation, we decide whether or not
3364 * these constraints apply and set the drm_mm.color_adjust
3365 * appropriately.
42d6ab48 3366 */
4144f9b5 3367 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3368 return true;
3369
c6cfb325 3370 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3371 return true;
3372
3373 if (list_empty(&gtt_space->node_list))
3374 return true;
3375
3376 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3377 if (other->allocated && !other->hole_follows && other->color != cache_level)
3378 return false;
3379
3380 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3381 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3382 return false;
3383
3384 return true;
3385}
3386
3387static void i915_gem_verify_gtt(struct drm_device *dev)
3388{
3389#if WATCH_GTT
3390 struct drm_i915_private *dev_priv = dev->dev_private;
3391 struct drm_i915_gem_object *obj;
3392 int err = 0;
3393
35c20a60 3394 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3395 if (obj->gtt_space == NULL) {
3396 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3397 err++;
3398 continue;
3399 }
3400
3401 if (obj->cache_level != obj->gtt_space->color) {
3402 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3403 i915_gem_obj_ggtt_offset(obj),
3404 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3405 obj->cache_level,
3406 obj->gtt_space->color);
3407 err++;
3408 continue;
3409 }
3410
3411 if (!i915_gem_valid_gtt_space(dev,
3412 obj->gtt_space,
3413 obj->cache_level)) {
3414 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3415 i915_gem_obj_ggtt_offset(obj),
3416 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3417 obj->cache_level);
3418 err++;
3419 continue;
3420 }
3421 }
3422
3423 WARN_ON(err);
3424#endif
3425}
3426
673a394b
EA
3427/**
3428 * Finds free space in the GTT aperture and binds the object there.
3429 */
262de145 3430static struct i915_vma *
07fe0b12
BW
3431i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3432 struct i915_address_space *vm,
3433 unsigned alignment,
d23db88c 3434 uint64_t flags)
673a394b 3435{
05394f39 3436 struct drm_device *dev = obj->base.dev;
3e31c6c0 3437 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3438 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3439 unsigned long start =
3440 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3441 unsigned long end =
1ec9e26d 3442 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3443 struct i915_vma *vma;
07f73f69 3444 int ret;
673a394b 3445
e28f8711
CW
3446 fence_size = i915_gem_get_gtt_size(dev,
3447 obj->base.size,
3448 obj->tiling_mode);
3449 fence_alignment = i915_gem_get_gtt_alignment(dev,
3450 obj->base.size,
d865110c 3451 obj->tiling_mode, true);
e28f8711 3452 unfenced_alignment =
d865110c 3453 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3454 obj->base.size,
3455 obj->tiling_mode, false);
a00b10c3 3456
673a394b 3457 if (alignment == 0)
1ec9e26d 3458 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3459 unfenced_alignment;
1ec9e26d 3460 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3461 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3462 return ERR_PTR(-EINVAL);
673a394b
EA
3463 }
3464
1ec9e26d 3465 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3466
654fc607
CW
3467 /* If the object is bigger than the entire aperture, reject it early
3468 * before evicting everything in a vain attempt to find space.
3469 */
d23db88c
CW
3470 if (obj->base.size > end) {
3471 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3472 obj->base.size,
1ec9e26d 3473 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3474 end);
262de145 3475 return ERR_PTR(-E2BIG);
654fc607
CW
3476 }
3477
37e680a1 3478 ret = i915_gem_object_get_pages(obj);
6c085a72 3479 if (ret)
262de145 3480 return ERR_PTR(ret);
6c085a72 3481
fbdda6fb
CW
3482 i915_gem_object_pin_pages(obj);
3483
accfef2e 3484 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3485 if (IS_ERR(vma))
bc6bc15b 3486 goto err_unpin;
2f633156 3487
0a9ae0d7 3488search_free:
07fe0b12 3489 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3490 size, alignment,
d23db88c
CW
3491 obj->cache_level,
3492 start, end,
62347f9e
LK
3493 DRM_MM_SEARCH_DEFAULT,
3494 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3495 if (ret) {
f6cd1f15 3496 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3497 obj->cache_level,
3498 start, end,
3499 flags);
dc9dd7a2
CW
3500 if (ret == 0)
3501 goto search_free;
9731129c 3502
bc6bc15b 3503 goto err_free_vma;
673a394b 3504 }
4144f9b5 3505 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3506 ret = -EINVAL;
bc6bc15b 3507 goto err_remove_node;
673a394b
EA
3508 }
3509
74163907 3510 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3511 if (ret)
bc6bc15b 3512 goto err_remove_node;
673a394b 3513
35c20a60 3514 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3515 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3516
4bd561b3
BW
3517 if (i915_is_ggtt(vm)) {
3518 bool mappable, fenceable;
a00b10c3 3519
49987099
DV
3520 fenceable = (vma->node.size == fence_size &&
3521 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3522
49987099
DV
3523 mappable = (vma->node.start + obj->base.size <=
3524 dev_priv->gtt.mappable_end);
a00b10c3 3525
5cacaac7 3526 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3527 }
75e9e915 3528
1ec9e26d 3529 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3530
1ec9e26d 3531 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3532 vma->bind_vma(vma, obj->cache_level,
3533 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3534
42d6ab48 3535 i915_gem_verify_gtt(dev);
262de145 3536 return vma;
2f633156 3537
bc6bc15b 3538err_remove_node:
6286ef9b 3539 drm_mm_remove_node(&vma->node);
bc6bc15b 3540err_free_vma:
2f633156 3541 i915_gem_vma_destroy(vma);
262de145 3542 vma = ERR_PTR(ret);
bc6bc15b 3543err_unpin:
2f633156 3544 i915_gem_object_unpin_pages(obj);
262de145 3545 return vma;
673a394b
EA
3546}
3547
000433b6 3548bool
2c22569b
CW
3549i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3550 bool force)
673a394b 3551{
673a394b
EA
3552 /* If we don't have a page list set up, then we're not pinned
3553 * to GPU, and we can ignore the cache flush because it'll happen
3554 * again at bind time.
3555 */
05394f39 3556 if (obj->pages == NULL)
000433b6 3557 return false;
673a394b 3558
769ce464
ID
3559 /*
3560 * Stolen memory is always coherent with the GPU as it is explicitly
3561 * marked as wc by the system, or the system is cache-coherent.
3562 */
3563 if (obj->stolen)
000433b6 3564 return false;
769ce464 3565
9c23f7fc
CW
3566 /* If the GPU is snooping the contents of the CPU cache,
3567 * we do not need to manually clear the CPU cache lines. However,
3568 * the caches are only snooped when the render cache is
3569 * flushed/invalidated. As we always have to emit invalidations
3570 * and flushes when moving into and out of the RENDER domain, correct
3571 * snooping behaviour occurs naturally as the result of our domain
3572 * tracking.
3573 */
2c22569b 3574 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3575 return false;
9c23f7fc 3576
1c5d22f7 3577 trace_i915_gem_object_clflush(obj);
9da3da66 3578 drm_clflush_sg(obj->pages);
000433b6
CW
3579
3580 return true;
e47c68e9
EA
3581}
3582
3583/** Flushes the GTT write domain for the object if it's dirty. */
3584static void
05394f39 3585i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3586{
1c5d22f7
CW
3587 uint32_t old_write_domain;
3588
05394f39 3589 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3590 return;
3591
63256ec5 3592 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3593 * to it immediately go to main memory as far as we know, so there's
3594 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3595 *
3596 * However, we do have to enforce the order so that all writes through
3597 * the GTT land before any writes to the device, such as updates to
3598 * the GATT itself.
e47c68e9 3599 */
63256ec5
CW
3600 wmb();
3601
05394f39
CW
3602 old_write_domain = obj->base.write_domain;
3603 obj->base.write_domain = 0;
1c5d22f7 3604
f99d7069
DV
3605 intel_fb_obj_flush(obj, false);
3606
1c5d22f7 3607 trace_i915_gem_object_change_domain(obj,
05394f39 3608 obj->base.read_domains,
1c5d22f7 3609 old_write_domain);
e47c68e9
EA
3610}
3611
3612/** Flushes the CPU write domain for the object if it's dirty. */
3613static void
2c22569b
CW
3614i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3615 bool force)
e47c68e9 3616{
1c5d22f7 3617 uint32_t old_write_domain;
e47c68e9 3618
05394f39 3619 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3620 return;
3621
000433b6
CW
3622 if (i915_gem_clflush_object(obj, force))
3623 i915_gem_chipset_flush(obj->base.dev);
3624
05394f39
CW
3625 old_write_domain = obj->base.write_domain;
3626 obj->base.write_domain = 0;
1c5d22f7 3627
f99d7069
DV
3628 intel_fb_obj_flush(obj, false);
3629
1c5d22f7 3630 trace_i915_gem_object_change_domain(obj,
05394f39 3631 obj->base.read_domains,
1c5d22f7 3632 old_write_domain);
e47c68e9
EA
3633}
3634
2ef7eeaa
EA
3635/**
3636 * Moves a single object to the GTT read, and possibly write domain.
3637 *
3638 * This function returns when the move is complete, including waiting on
3639 * flushes to occur.
3640 */
79e53945 3641int
2021746e 3642i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3643{
3e31c6c0 3644 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3645 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3646 uint32_t old_write_domain, old_read_domains;
e47c68e9 3647 int ret;
2ef7eeaa 3648
02354392 3649 /* Not valid to be called on unbound objects. */
dc8cd1e7 3650 if (vma == NULL)
02354392
EA
3651 return -EINVAL;
3652
8d7e3de1
CW
3653 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3654 return 0;
3655
0201f1ec 3656 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3657 if (ret)
3658 return ret;
3659
c8725f3d 3660 i915_gem_object_retire(obj);
2c22569b 3661 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3662
d0a57789
CW
3663 /* Serialise direct access to this object with the barriers for
3664 * coherent writes from the GPU, by effectively invalidating the
3665 * GTT domain upon first access.
3666 */
3667 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3668 mb();
3669
05394f39
CW
3670 old_write_domain = obj->base.write_domain;
3671 old_read_domains = obj->base.read_domains;
1c5d22f7 3672
e47c68e9
EA
3673 /* It should now be out of any other write domains, and we can update
3674 * the domain values for our changes.
3675 */
05394f39
CW
3676 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3677 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3678 if (write) {
05394f39
CW
3679 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3680 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3681 obj->dirty = 1;
2ef7eeaa
EA
3682 }
3683
f99d7069
DV
3684 if (write)
3685 intel_fb_obj_invalidate(obj, NULL);
3686
1c5d22f7
CW
3687 trace_i915_gem_object_change_domain(obj,
3688 old_read_domains,
3689 old_write_domain);
3690
8325a09d 3691 /* And bump the LRU for this access */
dc8cd1e7
CW
3692 if (i915_gem_object_is_inactive(obj))
3693 list_move_tail(&vma->mm_list,
3694 &dev_priv->gtt.base.inactive_list);
8325a09d 3695
e47c68e9
EA
3696 return 0;
3697}
3698
e4ffd173
CW
3699int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3700 enum i915_cache_level cache_level)
3701{
7bddb01f 3702 struct drm_device *dev = obj->base.dev;
df6f783a 3703 struct i915_vma *vma, *next;
e4ffd173
CW
3704 int ret;
3705
3706 if (obj->cache_level == cache_level)
3707 return 0;
3708
d7f46fc4 3709 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3710 DRM_DEBUG("can not change the cache level of pinned objects\n");
3711 return -EBUSY;
3712 }
3713
df6f783a 3714 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3715 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3716 ret = i915_vma_unbind(vma);
3089c6f2
BW
3717 if (ret)
3718 return ret;
3089c6f2 3719 }
42d6ab48
CW
3720 }
3721
3089c6f2 3722 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3723 ret = i915_gem_object_finish_gpu(obj);
3724 if (ret)
3725 return ret;
3726
3727 i915_gem_object_finish_gtt(obj);
3728
3729 /* Before SandyBridge, you could not use tiling or fence
3730 * registers with snooped memory, so relinquish any fences
3731 * currently pointing to our region in the aperture.
3732 */
42d6ab48 3733 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3734 ret = i915_gem_object_put_fence(obj);
3735 if (ret)
3736 return ret;
3737 }
3738
6f65e29a 3739 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3740 if (drm_mm_node_allocated(&vma->node))
3741 vma->bind_vma(vma, cache_level,
3742 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3743 }
3744
2c22569b
CW
3745 list_for_each_entry(vma, &obj->vma_list, vma_link)
3746 vma->node.color = cache_level;
3747 obj->cache_level = cache_level;
3748
3749 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3750 u32 old_read_domains, old_write_domain;
3751
3752 /* If we're coming from LLC cached, then we haven't
3753 * actually been tracking whether the data is in the
3754 * CPU cache or not, since we only allow one bit set
3755 * in obj->write_domain and have been skipping the clflushes.
3756 * Just set it to the CPU cache for now.
3757 */
c8725f3d 3758 i915_gem_object_retire(obj);
e4ffd173 3759 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3760
3761 old_read_domains = obj->base.read_domains;
3762 old_write_domain = obj->base.write_domain;
3763
3764 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3765 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3766
3767 trace_i915_gem_object_change_domain(obj,
3768 old_read_domains,
3769 old_write_domain);
3770 }
3771
42d6ab48 3772 i915_gem_verify_gtt(dev);
e4ffd173
CW
3773 return 0;
3774}
3775
199adf40
BW
3776int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3777 struct drm_file *file)
e6994aee 3778{
199adf40 3779 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3780 struct drm_i915_gem_object *obj;
3781 int ret;
3782
3783 ret = i915_mutex_lock_interruptible(dev);
3784 if (ret)
3785 return ret;
3786
3787 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3788 if (&obj->base == NULL) {
3789 ret = -ENOENT;
3790 goto unlock;
3791 }
3792
651d794f
CW
3793 switch (obj->cache_level) {
3794 case I915_CACHE_LLC:
3795 case I915_CACHE_L3_LLC:
3796 args->caching = I915_CACHING_CACHED;
3797 break;
3798
4257d3ba
CW
3799 case I915_CACHE_WT:
3800 args->caching = I915_CACHING_DISPLAY;
3801 break;
3802
651d794f
CW
3803 default:
3804 args->caching = I915_CACHING_NONE;
3805 break;
3806 }
e6994aee
CW
3807
3808 drm_gem_object_unreference(&obj->base);
3809unlock:
3810 mutex_unlock(&dev->struct_mutex);
3811 return ret;
3812}
3813
199adf40
BW
3814int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3815 struct drm_file *file)
e6994aee 3816{
199adf40 3817 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3818 struct drm_i915_gem_object *obj;
3819 enum i915_cache_level level;
3820 int ret;
3821
199adf40
BW
3822 switch (args->caching) {
3823 case I915_CACHING_NONE:
e6994aee
CW
3824 level = I915_CACHE_NONE;
3825 break;
199adf40 3826 case I915_CACHING_CACHED:
e6994aee
CW
3827 level = I915_CACHE_LLC;
3828 break;
4257d3ba
CW
3829 case I915_CACHING_DISPLAY:
3830 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3831 break;
e6994aee
CW
3832 default:
3833 return -EINVAL;
3834 }
3835
3bc2913e
BW
3836 ret = i915_mutex_lock_interruptible(dev);
3837 if (ret)
3838 return ret;
3839
e6994aee
CW
3840 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3841 if (&obj->base == NULL) {
3842 ret = -ENOENT;
3843 goto unlock;
3844 }
3845
3846 ret = i915_gem_object_set_cache_level(obj, level);
3847
3848 drm_gem_object_unreference(&obj->base);
3849unlock:
3850 mutex_unlock(&dev->struct_mutex);
3851 return ret;
3852}
3853
cc98b413
CW
3854static bool is_pin_display(struct drm_i915_gem_object *obj)
3855{
19656430
OM
3856 struct i915_vma *vma;
3857
19656430
OM
3858 vma = i915_gem_obj_to_ggtt(obj);
3859 if (!vma)
3860 return false;
3861
cc98b413
CW
3862 /* There are 3 sources that pin objects:
3863 * 1. The display engine (scanouts, sprites, cursors);
3864 * 2. Reservations for execbuffer;
3865 * 3. The user.
3866 *
3867 * We can ignore reservations as we hold the struct_mutex and
3868 * are only called outside of the reservation path. The user
3869 * can only increment pin_count once, and so if after
3870 * subtracting the potential reference by the user, any pin_count
3871 * remains, it must be due to another use by the display engine.
3872 */
19656430 3873 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3874}
3875
b9241ea3 3876/*
2da3b9b9
CW
3877 * Prepare buffer for display plane (scanout, cursors, etc).
3878 * Can be called from an uninterruptible phase (modesetting) and allows
3879 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3880 */
3881int
2da3b9b9
CW
3882i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3883 u32 alignment,
a4872ba6 3884 struct intel_engine_cs *pipelined)
b9241ea3 3885{
2da3b9b9 3886 u32 old_read_domains, old_write_domain;
19656430 3887 bool was_pin_display;
b9241ea3
ZW
3888 int ret;
3889
0be73284 3890 if (pipelined != obj->ring) {
2911a35b
BW
3891 ret = i915_gem_object_sync(obj, pipelined);
3892 if (ret)
b9241ea3
ZW
3893 return ret;
3894 }
3895
cc98b413
CW
3896 /* Mark the pin_display early so that we account for the
3897 * display coherency whilst setting up the cache domains.
3898 */
19656430 3899 was_pin_display = obj->pin_display;
cc98b413
CW
3900 obj->pin_display = true;
3901
a7ef0640
EA
3902 /* The display engine is not coherent with the LLC cache on gen6. As
3903 * a result, we make sure that the pinning that is about to occur is
3904 * done with uncached PTEs. This is lowest common denominator for all
3905 * chipsets.
3906 *
3907 * However for gen6+, we could do better by using the GFDT bit instead
3908 * of uncaching, which would allow us to flush all the LLC-cached data
3909 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3910 */
651d794f
CW
3911 ret = i915_gem_object_set_cache_level(obj,
3912 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3913 if (ret)
cc98b413 3914 goto err_unpin_display;
a7ef0640 3915
2da3b9b9
CW
3916 /* As the user may map the buffer once pinned in the display plane
3917 * (e.g. libkms for the bootup splash), we have to ensure that we
3918 * always use map_and_fenceable for all scanout buffers.
3919 */
1ec9e26d 3920 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3921 if (ret)
cc98b413 3922 goto err_unpin_display;
2da3b9b9 3923
2c22569b 3924 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3925
2da3b9b9 3926 old_write_domain = obj->base.write_domain;
05394f39 3927 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3928
3929 /* It should now be out of any other write domains, and we can update
3930 * the domain values for our changes.
3931 */
e5f1d962 3932 obj->base.write_domain = 0;
05394f39 3933 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3934
3935 trace_i915_gem_object_change_domain(obj,
3936 old_read_domains,
2da3b9b9 3937 old_write_domain);
b9241ea3
ZW
3938
3939 return 0;
cc98b413
CW
3940
3941err_unpin_display:
19656430
OM
3942 WARN_ON(was_pin_display != is_pin_display(obj));
3943 obj->pin_display = was_pin_display;
cc98b413
CW
3944 return ret;
3945}
3946
3947void
3948i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3949{
d7f46fc4 3950 i915_gem_object_ggtt_unpin(obj);
cc98b413 3951 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3952}
3953
85345517 3954int
a8198eea 3955i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3956{
88241785
CW
3957 int ret;
3958
a8198eea 3959 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3960 return 0;
3961
0201f1ec 3962 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3963 if (ret)
3964 return ret;
3965
a8198eea
CW
3966 /* Ensure that we invalidate the GPU's caches and TLBs. */
3967 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3968 return 0;
85345517
CW
3969}
3970
e47c68e9
EA
3971/**
3972 * Moves a single object to the CPU read, and possibly write domain.
3973 *
3974 * This function returns when the move is complete, including waiting on
3975 * flushes to occur.
3976 */
dabdfe02 3977int
919926ae 3978i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3979{
1c5d22f7 3980 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3981 int ret;
3982
8d7e3de1
CW
3983 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3984 return 0;
3985
0201f1ec 3986 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3987 if (ret)
3988 return ret;
3989
c8725f3d 3990 i915_gem_object_retire(obj);
e47c68e9 3991 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3992
05394f39
CW
3993 old_write_domain = obj->base.write_domain;
3994 old_read_domains = obj->base.read_domains;
1c5d22f7 3995
e47c68e9 3996 /* Flush the CPU cache if it's still invalid. */
05394f39 3997 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3998 i915_gem_clflush_object(obj, false);
2ef7eeaa 3999
05394f39 4000 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4001 }
4002
4003 /* It should now be out of any other write domains, and we can update
4004 * the domain values for our changes.
4005 */
05394f39 4006 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4007
4008 /* If we're writing through the CPU, then the GPU read domains will
4009 * need to be invalidated at next use.
4010 */
4011 if (write) {
05394f39
CW
4012 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4013 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4014 }
2ef7eeaa 4015
f99d7069
DV
4016 if (write)
4017 intel_fb_obj_invalidate(obj, NULL);
4018
1c5d22f7
CW
4019 trace_i915_gem_object_change_domain(obj,
4020 old_read_domains,
4021 old_write_domain);
4022
2ef7eeaa
EA
4023 return 0;
4024}
4025
673a394b
EA
4026/* Throttle our rendering by waiting until the ring has completed our requests
4027 * emitted over 20 msec ago.
4028 *
b962442e
EA
4029 * Note that if we were to use the current jiffies each time around the loop,
4030 * we wouldn't escape the function with any frames outstanding if the time to
4031 * render a frame was over 20ms.
4032 *
673a394b
EA
4033 * This should get us reasonable parallelism between CPU and GPU but also
4034 * relatively low latency when blocking on a particular request to finish.
4035 */
40a5f0de 4036static int
f787a5f5 4037i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4038{
f787a5f5
CW
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4041 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 4042 struct drm_i915_gem_request *request;
a4872ba6 4043 struct intel_engine_cs *ring = NULL;
f69061be 4044 unsigned reset_counter;
f787a5f5
CW
4045 u32 seqno = 0;
4046 int ret;
93533c29 4047
308887aa
DV
4048 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4049 if (ret)
4050 return ret;
4051
4052 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4053 if (ret)
4054 return ret;
e110e8d6 4055
1c25595f 4056 spin_lock(&file_priv->mm.lock);
f787a5f5 4057 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4058 if (time_after_eq(request->emitted_jiffies, recent_enough))
4059 break;
40a5f0de 4060
f787a5f5
CW
4061 ring = request->ring;
4062 seqno = request->seqno;
b962442e 4063 }
f69061be 4064 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4065 spin_unlock(&file_priv->mm.lock);
40a5f0de 4066
f787a5f5
CW
4067 if (seqno == 0)
4068 return 0;
2bc43b5c 4069
b29c19b6 4070 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4071 if (ret == 0)
4072 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4073
4074 return ret;
4075}
4076
d23db88c
CW
4077static bool
4078i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4079{
4080 struct drm_i915_gem_object *obj = vma->obj;
4081
4082 if (alignment &&
4083 vma->node.start & (alignment - 1))
4084 return true;
4085
4086 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4087 return true;
4088
4089 if (flags & PIN_OFFSET_BIAS &&
4090 vma->node.start < (flags & PIN_OFFSET_MASK))
4091 return true;
4092
4093 return false;
4094}
4095
673a394b 4096int
05394f39 4097i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4098 struct i915_address_space *vm,
05394f39 4099 uint32_t alignment,
d23db88c 4100 uint64_t flags)
673a394b 4101{
6e7186af 4102 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4103 struct i915_vma *vma;
673a394b
EA
4104 int ret;
4105
6e7186af
BW
4106 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4107 return -ENODEV;
4108
bf3d149b 4109 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4110 return -EINVAL;
07fe0b12
BW
4111
4112 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4113 if (vma) {
d7f46fc4
BW
4114 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4115 return -EBUSY;
4116
d23db88c 4117 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4118 WARN(vma->pin_count,
ae7d49d8 4119 "bo is already pinned with incorrect alignment:"
f343c5f6 4120 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4121 " obj->map_and_fenceable=%d\n",
07fe0b12 4122 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4123 !!(flags & PIN_MAPPABLE),
05394f39 4124 obj->map_and_fenceable);
07fe0b12 4125 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4126 if (ret)
4127 return ret;
8ea99c92
DV
4128
4129 vma = NULL;
ac0c6b5a
CW
4130 }
4131 }
4132
8ea99c92 4133 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4134 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4135 if (IS_ERR(vma))
4136 return PTR_ERR(vma);
22c344e9 4137 }
76446cac 4138
8ea99c92
DV
4139 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4140 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4141
8ea99c92 4142 vma->pin_count++;
1ec9e26d
DV
4143 if (flags & PIN_MAPPABLE)
4144 obj->pin_mappable |= true;
673a394b
EA
4145
4146 return 0;
4147}
4148
4149void
d7f46fc4 4150i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4151{
d7f46fc4 4152 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4153
d7f46fc4
BW
4154 BUG_ON(!vma);
4155 BUG_ON(vma->pin_count == 0);
4156 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4157
4158 if (--vma->pin_count == 0)
6299f992 4159 obj->pin_mappable = false;
673a394b
EA
4160}
4161
d8ffa60b
DV
4162bool
4163i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4164{
4165 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4166 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4167 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4168
4169 WARN_ON(!ggtt_vma ||
4170 dev_priv->fence_regs[obj->fence_reg].pin_count >
4171 ggtt_vma->pin_count);
4172 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4173 return true;
4174 } else
4175 return false;
4176}
4177
4178void
4179i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4180{
4181 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4182 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4183 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4184 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4185 }
4186}
4187
673a394b
EA
4188int
4189i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4190 struct drm_file *file)
673a394b
EA
4191{
4192 struct drm_i915_gem_pin *args = data;
05394f39 4193 struct drm_i915_gem_object *obj;
673a394b
EA
4194 int ret;
4195
02f6bccc
DV
4196 if (INTEL_INFO(dev)->gen >= 6)
4197 return -ENODEV;
4198
1d7cfea1
CW
4199 ret = i915_mutex_lock_interruptible(dev);
4200 if (ret)
4201 return ret;
673a394b 4202
05394f39 4203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4204 if (&obj->base == NULL) {
1d7cfea1
CW
4205 ret = -ENOENT;
4206 goto unlock;
673a394b 4207 }
673a394b 4208
05394f39 4209 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4210 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4211 ret = -EFAULT;
1d7cfea1 4212 goto out;
3ef94daa
CW
4213 }
4214
05394f39 4215 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4216 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4217 args->handle);
1d7cfea1
CW
4218 ret = -EINVAL;
4219 goto out;
79e53945
JB
4220 }
4221
aa5f8021
DV
4222 if (obj->user_pin_count == ULONG_MAX) {
4223 ret = -EBUSY;
4224 goto out;
4225 }
4226
93be8788 4227 if (obj->user_pin_count == 0) {
1ec9e26d 4228 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4229 if (ret)
4230 goto out;
673a394b
EA
4231 }
4232
93be8788
CW
4233 obj->user_pin_count++;
4234 obj->pin_filp = file;
4235
f343c5f6 4236 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4237out:
05394f39 4238 drm_gem_object_unreference(&obj->base);
1d7cfea1 4239unlock:
673a394b 4240 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4241 return ret;
673a394b
EA
4242}
4243
4244int
4245i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4246 struct drm_file *file)
673a394b
EA
4247{
4248 struct drm_i915_gem_pin *args = data;
05394f39 4249 struct drm_i915_gem_object *obj;
76c1dec1 4250 int ret;
673a394b 4251
1d7cfea1
CW
4252 ret = i915_mutex_lock_interruptible(dev);
4253 if (ret)
4254 return ret;
673a394b 4255
05394f39 4256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4257 if (&obj->base == NULL) {
1d7cfea1
CW
4258 ret = -ENOENT;
4259 goto unlock;
673a394b 4260 }
76c1dec1 4261
05394f39 4262 if (obj->pin_filp != file) {
bd9b6a4e 4263 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4264 args->handle);
1d7cfea1
CW
4265 ret = -EINVAL;
4266 goto out;
79e53945 4267 }
05394f39
CW
4268 obj->user_pin_count--;
4269 if (obj->user_pin_count == 0) {
4270 obj->pin_filp = NULL;
d7f46fc4 4271 i915_gem_object_ggtt_unpin(obj);
79e53945 4272 }
673a394b 4273
1d7cfea1 4274out:
05394f39 4275 drm_gem_object_unreference(&obj->base);
1d7cfea1 4276unlock:
673a394b 4277 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4278 return ret;
673a394b
EA
4279}
4280
4281int
4282i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4283 struct drm_file *file)
673a394b
EA
4284{
4285 struct drm_i915_gem_busy *args = data;
05394f39 4286 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4287 int ret;
4288
76c1dec1 4289 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4290 if (ret)
76c1dec1 4291 return ret;
673a394b 4292
05394f39 4293 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4294 if (&obj->base == NULL) {
1d7cfea1
CW
4295 ret = -ENOENT;
4296 goto unlock;
673a394b 4297 }
d1b851fc 4298
0be555b6
CW
4299 /* Count all active objects as busy, even if they are currently not used
4300 * by the gpu. Users of this interface expect objects to eventually
4301 * become non-busy without any further actions, therefore emit any
4302 * necessary flushes here.
c4de0a5d 4303 */
30dfebf3 4304 ret = i915_gem_object_flush_active(obj);
0be555b6 4305
30dfebf3 4306 args->busy = obj->active;
e9808edd
CW
4307 if (obj->ring) {
4308 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4309 args->busy |= intel_ring_flag(obj->ring) << 16;
4310 }
673a394b 4311
05394f39 4312 drm_gem_object_unreference(&obj->base);
1d7cfea1 4313unlock:
673a394b 4314 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4315 return ret;
673a394b
EA
4316}
4317
4318int
4319i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4320 struct drm_file *file_priv)
4321{
0206e353 4322 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4323}
4324
3ef94daa
CW
4325int
4326i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4327 struct drm_file *file_priv)
4328{
4329 struct drm_i915_gem_madvise *args = data;
05394f39 4330 struct drm_i915_gem_object *obj;
76c1dec1 4331 int ret;
3ef94daa
CW
4332
4333 switch (args->madv) {
4334 case I915_MADV_DONTNEED:
4335 case I915_MADV_WILLNEED:
4336 break;
4337 default:
4338 return -EINVAL;
4339 }
4340
1d7cfea1
CW
4341 ret = i915_mutex_lock_interruptible(dev);
4342 if (ret)
4343 return ret;
4344
05394f39 4345 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4346 if (&obj->base == NULL) {
1d7cfea1
CW
4347 ret = -ENOENT;
4348 goto unlock;
3ef94daa 4349 }
3ef94daa 4350
d7f46fc4 4351 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4352 ret = -EINVAL;
4353 goto out;
3ef94daa
CW
4354 }
4355
05394f39
CW
4356 if (obj->madv != __I915_MADV_PURGED)
4357 obj->madv = args->madv;
3ef94daa 4358
6c085a72
CW
4359 /* if the object is no longer attached, discard its backing storage */
4360 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4361 i915_gem_object_truncate(obj);
4362
05394f39 4363 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4364
1d7cfea1 4365out:
05394f39 4366 drm_gem_object_unreference(&obj->base);
1d7cfea1 4367unlock:
3ef94daa 4368 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4369 return ret;
3ef94daa
CW
4370}
4371
37e680a1
CW
4372void i915_gem_object_init(struct drm_i915_gem_object *obj,
4373 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4374{
35c20a60 4375 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4376 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4377 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4378 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4379
37e680a1
CW
4380 obj->ops = ops;
4381
0327d6ba
CW
4382 obj->fence_reg = I915_FENCE_REG_NONE;
4383 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4384
4385 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4386}
4387
37e680a1
CW
4388static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4389 .get_pages = i915_gem_object_get_pages_gtt,
4390 .put_pages = i915_gem_object_put_pages_gtt,
4391};
4392
05394f39
CW
4393struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4394 size_t size)
ac52bc56 4395{
c397b908 4396 struct drm_i915_gem_object *obj;
5949eac4 4397 struct address_space *mapping;
1a240d4d 4398 gfp_t mask;
ac52bc56 4399
42dcedd4 4400 obj = i915_gem_object_alloc(dev);
c397b908
DV
4401 if (obj == NULL)
4402 return NULL;
673a394b 4403
c397b908 4404 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4405 i915_gem_object_free(obj);
c397b908
DV
4406 return NULL;
4407 }
673a394b 4408
bed1ea95
CW
4409 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4410 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4411 /* 965gm cannot relocate objects above 4GiB. */
4412 mask &= ~__GFP_HIGHMEM;
4413 mask |= __GFP_DMA32;
4414 }
4415
496ad9aa 4416 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4417 mapping_set_gfp_mask(mapping, mask);
5949eac4 4418
37e680a1 4419 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4420
c397b908
DV
4421 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4423
3d29b842
ED
4424 if (HAS_LLC(dev)) {
4425 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4426 * cache) for about a 10% performance improvement
4427 * compared to uncached. Graphics requests other than
4428 * display scanout are coherent with the CPU in
4429 * accessing this cache. This means in this mode we
4430 * don't need to clflush on the CPU side, and on the
4431 * GPU side we only need to flush internal caches to
4432 * get data visible to the CPU.
4433 *
4434 * However, we maintain the display planes as UC, and so
4435 * need to rebind when first used as such.
4436 */
4437 obj->cache_level = I915_CACHE_LLC;
4438 } else
4439 obj->cache_level = I915_CACHE_NONE;
4440
d861e338
DV
4441 trace_i915_gem_object_create(obj);
4442
05394f39 4443 return obj;
c397b908
DV
4444}
4445
340fbd8c
CW
4446static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4447{
4448 /* If we are the last user of the backing storage (be it shmemfs
4449 * pages or stolen etc), we know that the pages are going to be
4450 * immediately released. In this case, we can then skip copying
4451 * back the contents from the GPU.
4452 */
4453
4454 if (obj->madv != I915_MADV_WILLNEED)
4455 return false;
4456
4457 if (obj->base.filp == NULL)
4458 return true;
4459
4460 /* At first glance, this looks racy, but then again so would be
4461 * userspace racing mmap against close. However, the first external
4462 * reference to the filp can only be obtained through the
4463 * i915_gem_mmap_ioctl() which safeguards us against the user
4464 * acquiring such a reference whilst we are in the middle of
4465 * freeing the object.
4466 */
4467 return atomic_long_read(&obj->base.filp->f_count) == 1;
4468}
4469
1488fc08 4470void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4471{
1488fc08 4472 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4473 struct drm_device *dev = obj->base.dev;
3e31c6c0 4474 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4475 struct i915_vma *vma, *next;
673a394b 4476
f65c9168
PZ
4477 intel_runtime_pm_get(dev_priv);
4478
26e12f89
CW
4479 trace_i915_gem_object_destroy(obj);
4480
07fe0b12 4481 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4482 int ret;
4483
4484 vma->pin_count = 0;
4485 ret = i915_vma_unbind(vma);
07fe0b12
BW
4486 if (WARN_ON(ret == -ERESTARTSYS)) {
4487 bool was_interruptible;
1488fc08 4488
07fe0b12
BW
4489 was_interruptible = dev_priv->mm.interruptible;
4490 dev_priv->mm.interruptible = false;
1488fc08 4491
07fe0b12 4492 WARN_ON(i915_vma_unbind(vma));
1488fc08 4493
07fe0b12
BW
4494 dev_priv->mm.interruptible = was_interruptible;
4495 }
1488fc08
CW
4496 }
4497
00731155
CW
4498 i915_gem_object_detach_phys(obj);
4499
1d64ae71
BW
4500 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4501 * before progressing. */
4502 if (obj->stolen)
4503 i915_gem_object_unpin_pages(obj);
4504
a071fa00
DV
4505 WARN_ON(obj->frontbuffer_bits);
4506
401c29f6
BW
4507 if (WARN_ON(obj->pages_pin_count))
4508 obj->pages_pin_count = 0;
340fbd8c 4509 if (discard_backing_storage(obj))
5537252b 4510 obj->madv = I915_MADV_DONTNEED;
37e680a1 4511 i915_gem_object_put_pages(obj);
d8cb5086 4512 i915_gem_object_free_mmap_offset(obj);
de151cf6 4513
9da3da66
CW
4514 BUG_ON(obj->pages);
4515
2f745ad3
CW
4516 if (obj->base.import_attach)
4517 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4518
5cc9ed4b
CW
4519 if (obj->ops->release)
4520 obj->ops->release(obj);
4521
05394f39
CW
4522 drm_gem_object_release(&obj->base);
4523 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4524
05394f39 4525 kfree(obj->bit_17);
42dcedd4 4526 i915_gem_object_free(obj);
f65c9168
PZ
4527
4528 intel_runtime_pm_put(dev_priv);
673a394b
EA
4529}
4530
e656a6cb 4531struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4532 struct i915_address_space *vm)
e656a6cb
DV
4533{
4534 struct i915_vma *vma;
4535 list_for_each_entry(vma, &obj->vma_list, vma_link)
4536 if (vma->vm == vm)
4537 return vma;
4538
4539 return NULL;
4540}
4541
2f633156
BW
4542void i915_gem_vma_destroy(struct i915_vma *vma)
4543{
b9d06dd9 4544 struct i915_address_space *vm = NULL;
2f633156 4545 WARN_ON(vma->node.allocated);
aaa05667
CW
4546
4547 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4548 if (!list_empty(&vma->exec_list))
4549 return;
4550
b9d06dd9 4551 vm = vma->vm;
b9d06dd9 4552
841cd773
DV
4553 if (!i915_is_ggtt(vm))
4554 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4555
8b9c2b94 4556 list_del(&vma->vma_link);
b93dab6e 4557
2f633156
BW
4558 kfree(vma);
4559}
4560
e3efda49
CW
4561static void
4562i915_gem_stop_ringbuffers(struct drm_device *dev)
4563{
4564 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4565 struct intel_engine_cs *ring;
e3efda49
CW
4566 int i;
4567
4568 for_each_ring(ring, dev_priv, i)
a83014d3 4569 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4570}
4571
29105ccc 4572int
45c5f202 4573i915_gem_suspend(struct drm_device *dev)
29105ccc 4574{
3e31c6c0 4575 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4576 int ret = 0;
28dfe52a 4577
45c5f202 4578 mutex_lock(&dev->struct_mutex);
f7403347 4579 if (dev_priv->ums.mm_suspended)
45c5f202 4580 goto err;
28dfe52a 4581
b2da9fe5 4582 ret = i915_gpu_idle(dev);
f7403347 4583 if (ret)
45c5f202 4584 goto err;
f7403347 4585
b2da9fe5 4586 i915_gem_retire_requests(dev);
673a394b 4587
29105ccc 4588 /* Under UMS, be paranoid and evict. */
a39d7efc 4589 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4590 i915_gem_evict_everything(dev);
29105ccc 4591
29105ccc 4592 i915_kernel_lost_context(dev);
e3efda49 4593 i915_gem_stop_ringbuffers(dev);
29105ccc 4594
45c5f202
CW
4595 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4596 * We need to replace this with a semaphore, or something.
4597 * And not confound ums.mm_suspended!
4598 */
4599 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4600 DRIVER_MODESET);
4601 mutex_unlock(&dev->struct_mutex);
4602
4603 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4604 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4605 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4606
673a394b 4607 return 0;
45c5f202
CW
4608
4609err:
4610 mutex_unlock(&dev->struct_mutex);
4611 return ret;
673a394b
EA
4612}
4613
a4872ba6 4614int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4615{
c3787e2e 4616 struct drm_device *dev = ring->dev;
3e31c6c0 4617 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4618 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4619 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4620 int i, ret;
b9524a1e 4621
040d2baa 4622 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4623 return 0;
b9524a1e 4624
c3787e2e
BW
4625 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4626 if (ret)
4627 return ret;
b9524a1e 4628
c3787e2e
BW
4629 /*
4630 * Note: We do not worry about the concurrent register cacheline hang
4631 * here because no other code should access these registers other than
4632 * at initialization time.
4633 */
b9524a1e 4634 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4635 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4636 intel_ring_emit(ring, reg_base + i);
4637 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4638 }
4639
c3787e2e 4640 intel_ring_advance(ring);
b9524a1e 4641
c3787e2e 4642 return ret;
b9524a1e
BW
4643}
4644
f691e2f4
DV
4645void i915_gem_init_swizzling(struct drm_device *dev)
4646{
3e31c6c0 4647 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4648
11782b02 4649 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4650 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4651 return;
4652
4653 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4654 DISP_TILE_SURFACE_SWIZZLING);
4655
11782b02
DV
4656 if (IS_GEN5(dev))
4657 return;
4658
f691e2f4
DV
4659 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4660 if (IS_GEN6(dev))
6b26c86d 4661 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4662 else if (IS_GEN7(dev))
6b26c86d 4663 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4664 else if (IS_GEN8(dev))
4665 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4666 else
4667 BUG();
f691e2f4 4668}
e21af88d 4669
67b1b571
CW
4670static bool
4671intel_enable_blt(struct drm_device *dev)
4672{
4673 if (!HAS_BLT(dev))
4674 return false;
4675
4676 /* The blitter was dysfunctional on early prototypes */
4677 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4678 DRM_INFO("BLT not supported on this pre-production hardware;"
4679 " graphics performance will be degraded.\n");
4680 return false;
4681 }
4682
4683 return true;
4684}
4685
81e7f200
VS
4686static void init_unused_ring(struct drm_device *dev, u32 base)
4687{
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690 I915_WRITE(RING_CTL(base), 0);
4691 I915_WRITE(RING_HEAD(base), 0);
4692 I915_WRITE(RING_TAIL(base), 0);
4693 I915_WRITE(RING_START(base), 0);
4694}
4695
4696static void init_unused_rings(struct drm_device *dev)
4697{
4698 if (IS_I830(dev)) {
4699 init_unused_ring(dev, PRB1_BASE);
4700 init_unused_ring(dev, SRB0_BASE);
4701 init_unused_ring(dev, SRB1_BASE);
4702 init_unused_ring(dev, SRB2_BASE);
4703 init_unused_ring(dev, SRB3_BASE);
4704 } else if (IS_GEN2(dev)) {
4705 init_unused_ring(dev, SRB0_BASE);
4706 init_unused_ring(dev, SRB1_BASE);
4707 } else if (IS_GEN3(dev)) {
4708 init_unused_ring(dev, PRB1_BASE);
4709 init_unused_ring(dev, PRB2_BASE);
4710 }
4711}
4712
a83014d3 4713int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4714{
4fc7c971 4715 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4716 int ret;
68f95ba9 4717
81e7f200
VS
4718 /*
4719 * At least 830 can leave some of the unused rings
4720 * "active" (ie. head != tail) after resume which
4721 * will prevent c3 entry. Makes sure all unused rings
4722 * are totally idle.
4723 */
4724 init_unused_rings(dev);
4725
5c1143bb 4726 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4727 if (ret)
b6913e4b 4728 return ret;
68f95ba9
CW
4729
4730 if (HAS_BSD(dev)) {
5c1143bb 4731 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4732 if (ret)
4733 goto cleanup_render_ring;
d1b851fc 4734 }
68f95ba9 4735
67b1b571 4736 if (intel_enable_blt(dev)) {
549f7365
CW
4737 ret = intel_init_blt_ring_buffer(dev);
4738 if (ret)
4739 goto cleanup_bsd_ring;
4740 }
4741
9a8a2213
BW
4742 if (HAS_VEBOX(dev)) {
4743 ret = intel_init_vebox_ring_buffer(dev);
4744 if (ret)
4745 goto cleanup_blt_ring;
4746 }
4747
845f74a7
ZY
4748 if (HAS_BSD2(dev)) {
4749 ret = intel_init_bsd2_ring_buffer(dev);
4750 if (ret)
4751 goto cleanup_vebox_ring;
4752 }
9a8a2213 4753
99433931 4754 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4755 if (ret)
845f74a7 4756 goto cleanup_bsd2_ring;
4fc7c971
BW
4757
4758 return 0;
4759
845f74a7
ZY
4760cleanup_bsd2_ring:
4761 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4762cleanup_vebox_ring:
4763 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4764cleanup_blt_ring:
4765 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4766cleanup_bsd_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4768cleanup_render_ring:
4769 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4770
4771 return ret;
4772}
4773
4774int
4775i915_gem_init_hw(struct drm_device *dev)
4776{
3e31c6c0 4777 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4778 int ret, i;
4fc7c971
BW
4779
4780 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4781 return -EIO;
4782
59124506 4783 if (dev_priv->ellc_size)
05e21cc4 4784 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4785
0bf21347
VS
4786 if (IS_HASWELL(dev))
4787 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4788 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4789
88a2b2a3 4790 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4791 if (IS_IVYBRIDGE(dev)) {
4792 u32 temp = I915_READ(GEN7_MSG_CTL);
4793 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4794 I915_WRITE(GEN7_MSG_CTL, temp);
4795 } else if (INTEL_INFO(dev)->gen >= 7) {
4796 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4797 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4798 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4799 }
88a2b2a3
BW
4800 }
4801
4fc7c971
BW
4802 i915_gem_init_swizzling(dev);
4803
a83014d3 4804 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4805 if (ret)
4806 return ret;
4807
c3787e2e
BW
4808 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4809 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4810
254f965c 4811 /*
2fa48d8d
BW
4812 * XXX: Contexts should only be initialized once. Doing a switch to the
4813 * default context switch however is something we'd like to do after
4814 * reset or thaw (the latter may not actually be necessary for HW, but
4815 * goes with our code better). Context switching requires rings (for
4816 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4817 */
2fa48d8d 4818 ret = i915_gem_context_enable(dev_priv);
60990320 4819 if (ret && ret != -EIO) {
2fa48d8d 4820 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4821 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4822
4823 return ret;
4824 }
4825
4826 ret = i915_ppgtt_init_hw(dev);
4827 if (ret && ret != -EIO) {
4828 DRM_ERROR("PPGTT enable failed %d\n", ret);
4829 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4830 }
e21af88d 4831
2fa48d8d 4832 return ret;
8187a2b7
ZN
4833}
4834
1070a42b
CW
4835int i915_gem_init(struct drm_device *dev)
4836{
4837 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4838 int ret;
4839
127f1003
OM
4840 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4841 i915.enable_execlists);
4842
1070a42b 4843 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4844
4845 if (IS_VALLEYVIEW(dev)) {
4846 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4847 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4848 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4849 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4850 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4851 }
4852
a83014d3
OM
4853 if (!i915.enable_execlists) {
4854 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4855 dev_priv->gt.init_rings = i915_gem_init_rings;
4856 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4857 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4858 } else {
4859 dev_priv->gt.do_execbuf = intel_execlists_submission;
4860 dev_priv->gt.init_rings = intel_logical_rings_init;
4861 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4862 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4863 }
4864
6c5566a8
DV
4865 ret = i915_gem_init_userptr(dev);
4866 if (ret) {
4867 mutex_unlock(&dev->struct_mutex);
4868 return ret;
4869 }
4870
d7e5008f 4871 i915_gem_init_global_gtt(dev);
d62b4892 4872
2fa48d8d 4873 ret = i915_gem_context_init(dev);
e3848694
MK
4874 if (ret) {
4875 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4876 return ret;
e3848694 4877 }
2fa48d8d 4878
1070a42b 4879 ret = i915_gem_init_hw(dev);
60990320
CW
4880 if (ret == -EIO) {
4881 /* Allow ring initialisation to fail by marking the GPU as
4882 * wedged. But we only want to do this where the GPU is angry,
4883 * for all other failure, such as an allocation failure, bail.
4884 */
4885 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4886 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4887 ret = 0;
1070a42b 4888 }
60990320 4889 mutex_unlock(&dev->struct_mutex);
1070a42b 4890
53ca26ca
DV
4891 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4892 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4893 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4894 return ret;
1070a42b
CW
4895}
4896
8187a2b7
ZN
4897void
4898i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4899{
3e31c6c0 4900 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4901 struct intel_engine_cs *ring;
1ec14ad3 4902 int i;
8187a2b7 4903
b4519513 4904 for_each_ring(ring, dev_priv, i)
a83014d3 4905 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4906}
4907
673a394b
EA
4908int
4909i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4910 struct drm_file *file_priv)
4911{
db1b76ca 4912 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4913 int ret;
673a394b 4914
79e53945
JB
4915 if (drm_core_check_feature(dev, DRIVER_MODESET))
4916 return 0;
4917
1f83fee0 4918 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4919 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4920 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4921 }
4922
673a394b 4923 mutex_lock(&dev->struct_mutex);
db1b76ca 4924 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4925
f691e2f4 4926 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4927 if (ret != 0) {
4928 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4929 return ret;
d816f6ac 4930 }
9bb2d6f9 4931
5cef07e1 4932 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4933
bb0f1b5c 4934 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4935 if (ret)
4936 goto cleanup_ringbuffer;
e090c53b 4937 mutex_unlock(&dev->struct_mutex);
dbb19d30 4938
673a394b 4939 return 0;
5f35308b
CW
4940
4941cleanup_ringbuffer:
5f35308b 4942 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4943 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4944 mutex_unlock(&dev->struct_mutex);
4945
4946 return ret;
673a394b
EA
4947}
4948
4949int
4950i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4951 struct drm_file *file_priv)
4952{
79e53945
JB
4953 if (drm_core_check_feature(dev, DRIVER_MODESET))
4954 return 0;
4955
e090c53b 4956 mutex_lock(&dev->struct_mutex);
dbb19d30 4957 drm_irq_uninstall(dev);
e090c53b 4958 mutex_unlock(&dev->struct_mutex);
db1b76ca 4959
45c5f202 4960 return i915_gem_suspend(dev);
673a394b
EA
4961}
4962
4963void
4964i915_gem_lastclose(struct drm_device *dev)
4965{
4966 int ret;
673a394b 4967
e806b495
EA
4968 if (drm_core_check_feature(dev, DRIVER_MODESET))
4969 return;
4970
45c5f202 4971 ret = i915_gem_suspend(dev);
6dbe2772
KP
4972 if (ret)
4973 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4974}
4975
64193406 4976static void
a4872ba6 4977init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4978{
4979 INIT_LIST_HEAD(&ring->active_list);
4980 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4981}
4982
7e0d96bc
BW
4983void i915_init_vm(struct drm_i915_private *dev_priv,
4984 struct i915_address_space *vm)
fc8c067e 4985{
7e0d96bc
BW
4986 if (!i915_is_ggtt(vm))
4987 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4988 vm->dev = dev_priv->dev;
4989 INIT_LIST_HEAD(&vm->active_list);
4990 INIT_LIST_HEAD(&vm->inactive_list);
4991 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4992 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4993}
4994
673a394b
EA
4995void
4996i915_gem_load(struct drm_device *dev)
4997{
3e31c6c0 4998 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4999 int i;
5000
5001 dev_priv->slab =
5002 kmem_cache_create("i915_gem_object",
5003 sizeof(struct drm_i915_gem_object), 0,
5004 SLAB_HWCACHE_ALIGN,
5005 NULL);
673a394b 5006
fc8c067e
BW
5007 INIT_LIST_HEAD(&dev_priv->vm_list);
5008 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5009
a33afea5 5010 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5011 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5012 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5013 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5014 for (i = 0; i < I915_NUM_RINGS; i++)
5015 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5016 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5017 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5018 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5019 i915_gem_retire_work_handler);
b29c19b6
CW
5020 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5021 i915_gem_idle_work_handler);
1f83fee0 5022 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5023
94400120 5024 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 5025 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
5026 I915_WRITE(MI_ARB_STATE,
5027 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
5028 }
5029
72bfa19c
CW
5030 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5031
de151cf6 5032 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
5033 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5034 dev_priv->fence_reg_start = 3;
de151cf6 5035
42b5aeab
VS
5036 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5037 dev_priv->num_fence_regs = 32;
5038 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5039 dev_priv->num_fence_regs = 16;
5040 else
5041 dev_priv->num_fence_regs = 8;
5042
b5aa8a0f 5043 /* Initialize fence registers to zero */
19b2dbde
CW
5044 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5045 i915_gem_restore_fences(dev);
10ed13e4 5046
673a394b 5047 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5048 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5049
ce453d81
CW
5050 dev_priv->mm.interruptible = true;
5051
ceabbba5
CW
5052 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5053 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5054 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5055 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5056
5057 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5058 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
5059
5060 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5061}
71acb5eb 5062
f787a5f5 5063void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5064{
f787a5f5 5065 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5066
b29c19b6
CW
5067 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5068
b962442e
EA
5069 /* Clean up our request list when the client is going away, so that
5070 * later retire_requests won't dereference our soon-to-be-gone
5071 * file_priv.
5072 */
1c25595f 5073 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5074 while (!list_empty(&file_priv->mm.request_list)) {
5075 struct drm_i915_gem_request *request;
5076
5077 request = list_first_entry(&file_priv->mm.request_list,
5078 struct drm_i915_gem_request,
5079 client_list);
5080 list_del(&request->client_list);
5081 request->file_priv = NULL;
5082 }
1c25595f 5083 spin_unlock(&file_priv->mm.lock);
b962442e 5084}
31169714 5085
b29c19b6
CW
5086static void
5087i915_gem_file_idle_work_handler(struct work_struct *work)
5088{
5089 struct drm_i915_file_private *file_priv =
5090 container_of(work, typeof(*file_priv), mm.idle_work.work);
5091
5092 atomic_set(&file_priv->rps_wait_boost, false);
5093}
5094
5095int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5096{
5097 struct drm_i915_file_private *file_priv;
e422b888 5098 int ret;
b29c19b6
CW
5099
5100 DRM_DEBUG_DRIVER("\n");
5101
5102 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5103 if (!file_priv)
5104 return -ENOMEM;
5105
5106 file->driver_priv = file_priv;
5107 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5108 file_priv->file = file;
b29c19b6
CW
5109
5110 spin_lock_init(&file_priv->mm.lock);
5111 INIT_LIST_HEAD(&file_priv->mm.request_list);
5112 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5113 i915_gem_file_idle_work_handler);
5114
e422b888
BW
5115 ret = i915_gem_context_open(dev, file);
5116 if (ret)
5117 kfree(file_priv);
b29c19b6 5118
e422b888 5119 return ret;
b29c19b6
CW
5120}
5121
a071fa00
DV
5122void i915_gem_track_fb(struct drm_i915_gem_object *old,
5123 struct drm_i915_gem_object *new,
5124 unsigned frontbuffer_bits)
5125{
5126 if (old) {
5127 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5128 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5129 old->frontbuffer_bits &= ~frontbuffer_bits;
5130 }
5131
5132 if (new) {
5133 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5134 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5135 new->frontbuffer_bits |= frontbuffer_bits;
5136 }
5137}
5138
5774506f
CW
5139static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5140{
5141 if (!mutex_is_locked(mutex))
5142 return false;
5143
5144#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5145 return mutex->owner == task;
5146#else
5147 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5148 return false;
5149#endif
5150}
5151
b453c4db
CW
5152static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5153{
5154 if (!mutex_trylock(&dev->struct_mutex)) {
5155 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5156 return false;
5157
5158 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5159 return false;
5160
5161 *unlock = false;
5162 } else
5163 *unlock = true;
5164
5165 return true;
5166}
5167
ceabbba5
CW
5168static int num_vma_bound(struct drm_i915_gem_object *obj)
5169{
5170 struct i915_vma *vma;
5171 int count = 0;
5172
5173 list_for_each_entry(vma, &obj->vma_list, vma_link)
5174 if (drm_mm_node_allocated(&vma->node))
5175 count++;
5176
5177 return count;
5178}
5179
7dc19d5a 5180static unsigned long
ceabbba5 5181i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5182{
17250b71 5183 struct drm_i915_private *dev_priv =
ceabbba5 5184 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5185 struct drm_device *dev = dev_priv->dev;
6c085a72 5186 struct drm_i915_gem_object *obj;
7dc19d5a 5187 unsigned long count;
b453c4db 5188 bool unlock;
17250b71 5189
b453c4db
CW
5190 if (!i915_gem_shrinker_lock(dev, &unlock))
5191 return 0;
31169714 5192
7dc19d5a 5193 count = 0;
35c20a60 5194 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5195 if (obj->pages_pin_count == 0)
7dc19d5a 5196 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5197
5198 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5199 if (!i915_gem_obj_is_pinned(obj) &&
5200 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5201 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5202 }
17250b71 5203
5774506f
CW
5204 if (unlock)
5205 mutex_unlock(&dev->struct_mutex);
d9973b43 5206
7dc19d5a 5207 return count;
31169714 5208}
a70a3148
BW
5209
5210/* All the new VM stuff */
5211unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5212 struct i915_address_space *vm)
5213{
5214 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5215 struct i915_vma *vma;
5216
896ab1a5 5217 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5218
a70a3148
BW
5219 list_for_each_entry(vma, &o->vma_list, vma_link) {
5220 if (vma->vm == vm)
5221 return vma->node.start;
5222
5223 }
f25748ea
DV
5224 WARN(1, "%s vma for this object not found.\n",
5225 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5226 return -1;
5227}
5228
5229bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5230 struct i915_address_space *vm)
5231{
5232 struct i915_vma *vma;
5233
5234 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5235 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5236 return true;
5237
5238 return false;
5239}
5240
5241bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5242{
5a1d5eb0 5243 struct i915_vma *vma;
a70a3148 5244
5a1d5eb0
CW
5245 list_for_each_entry(vma, &o->vma_list, vma_link)
5246 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5247 return true;
5248
5249 return false;
5250}
5251
5252unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5253 struct i915_address_space *vm)
5254{
5255 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5256 struct i915_vma *vma;
5257
896ab1a5 5258 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5259
5260 BUG_ON(list_empty(&o->vma_list));
5261
5262 list_for_each_entry(vma, &o->vma_list, vma_link)
5263 if (vma->vm == vm)
5264 return vma->node.size;
5265
5266 return 0;
5267}
5268
7dc19d5a 5269static unsigned long
ceabbba5 5270i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5271{
5272 struct drm_i915_private *dev_priv =
ceabbba5 5273 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5274 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5275 unsigned long freed;
b453c4db 5276 bool unlock;
7dc19d5a 5277
b453c4db
CW
5278 if (!i915_gem_shrinker_lock(dev, &unlock))
5279 return SHRINK_STOP;
7dc19d5a 5280
21ab4e74
CW
5281 freed = i915_gem_shrink(dev_priv,
5282 sc->nr_to_scan,
5283 I915_SHRINK_BOUND |
5284 I915_SHRINK_UNBOUND |
5285 I915_SHRINK_PURGEABLE);
d9973b43 5286 if (freed < sc->nr_to_scan)
21ab4e74
CW
5287 freed += i915_gem_shrink(dev_priv,
5288 sc->nr_to_scan - freed,
5289 I915_SHRINK_BOUND |
5290 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5291 if (unlock)
5292 mutex_unlock(&dev->struct_mutex);
d9973b43 5293
7dc19d5a
DC
5294 return freed;
5295}
5c2abbea 5296
2cfcd32a
CW
5297static int
5298i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5299{
5300 struct drm_i915_private *dev_priv =
5301 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5302 struct drm_device *dev = dev_priv->dev;
5303 struct drm_i915_gem_object *obj;
5304 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5305 unsigned long pinned, bound, unbound, freed;
5306 bool was_interruptible;
5307 bool unlock;
5308
a1db2fa7 5309 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5310 schedule_timeout_killable(1);
a1db2fa7
CW
5311 if (fatal_signal_pending(current))
5312 return NOTIFY_DONE;
5313 }
2cfcd32a
CW
5314 if (timeout == 0) {
5315 pr_err("Unable to purge GPU memory due lock contention.\n");
5316 return NOTIFY_DONE;
5317 }
5318
5319 was_interruptible = dev_priv->mm.interruptible;
5320 dev_priv->mm.interruptible = false;
5321
5322 freed = i915_gem_shrink_all(dev_priv);
5323
5324 dev_priv->mm.interruptible = was_interruptible;
5325
5326 /* Because we may be allocating inside our own driver, we cannot
5327 * assert that there are no objects with pinned pages that are not
5328 * being pointed to by hardware.
5329 */
5330 unbound = bound = pinned = 0;
5331 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5332 if (!obj->base.filp) /* not backed by a freeable object */
5333 continue;
5334
5335 if (obj->pages_pin_count)
5336 pinned += obj->base.size;
5337 else
5338 unbound += obj->base.size;
5339 }
5340 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5341 if (!obj->base.filp)
5342 continue;
5343
5344 if (obj->pages_pin_count)
5345 pinned += obj->base.size;
5346 else
5347 bound += obj->base.size;
5348 }
5349
5350 if (unlock)
5351 mutex_unlock(&dev->struct_mutex);
5352
5353 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5354 freed, pinned);
5355 if (unbound || bound)
5356 pr_err("%lu and %lu bytes still available in the "
5357 "bound and unbound GPU page lists.\n",
5358 bound, unbound);
5359
5360 *(unsigned long *)ptr += freed;
5361 return NOTIFY_DONE;
5362}
5363
5c2abbea
BW
5364struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5365{
5366 struct i915_vma *vma;
5367
5c2abbea 5368 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5dc383b0 5369 if (vma->vm != i915_obj_to_ggtt(obj))
5c2abbea
BW
5370 return NULL;
5371
5372 return vma;
5373}
This page took 1.228388 seconds and 5 git commands to generate.