drm/i915: Don't skip request retirement if the active list is empty
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
c8725f3d
CW
46static void
47i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232
CW
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
6a2c4232 260 page_cache_release(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
063e4e6b 353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
00731155 371 i915_gem_chipset_flush(dev);
063e4e6b
PZ
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 381 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->slab, obj);
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
ff72145b 405 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
406 if (obj == NULL)
407 return -ENOMEM;
408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
63ed2cb2 439
ff72145b 440 return i915_gem_create(file, dev,
da6b51d0 441 args->size, &args->handle);
ff72145b
DA
442}
443
8461d226
DV
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
8c59967c 470static inline int
4f0c7cfb
BW
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
8c59967c
DV
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
4c914c0c
BV
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
c8725f3d
CW
521
522 i915_gem_object_retire(obj);
4c914c0c
BV
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532}
533
d174bd64
DV
534/* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
eb01459f 537static int
d174bd64
DV
538shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541{
542 char *vaddr;
543 int ret;
544
e7e58eb5 545 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
f60d7f0c 557 return ret ? -EFAULT : 0;
d174bd64
DV
558}
559
23c18c71
DV
560static void
561shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563{
e7e58eb5 564 if (unlikely(swizzled)) {
23c18c71
DV
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580}
581
d174bd64
DV
582/* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584static int
585shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588{
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
23c18c71
DV
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
d174bd64
DV
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
f60d7f0c 608 return ret ? - EFAULT : 0;
d174bd64
DV
609}
610
eb01459f 611static int
dbf7bff0
DV
612i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
eb01459f 616{
8461d226 617 char __user *user_data;
eb01459f 618 ssize_t remain;
8461d226 619 loff_t offset;
eb2c0c81 620 int shmem_page_offset, page_length, ret = 0;
8461d226 621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 622 int prefaulted = 0;
8489731c 623 int needs_clflush = 0;
67d5a50c 624 struct sg_page_iter sg_iter;
eb01459f 625
2bb4629a 626 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
627 remain = args->size;
628
8461d226 629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 630
4c914c0c 631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
632 if (ret)
633 return ret;
634
8461d226 635 offset = args->offset;
eb01459f 636
67d5a50c
ID
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
2db76d7c 639 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
640
641 if (remain <= 0)
642 break;
643
eb01459f
EA
644 /* Operation in this page
645 *
eb01459f 646 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
647 * page_length = bytes to copy for this page
648 */
c8cbbb8b 649 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 653
8461d226
DV
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
d174bd64
DV
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
dbf7bff0 662
dbf7bff0
DV
663 mutex_unlock(&dev->struct_mutex);
664
d330a953 665 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 666 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
eb01459f 674
d174bd64
DV
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
eb01459f 678
dbf7bff0 679 mutex_lock(&dev->struct_mutex);
f60d7f0c 680
f60d7f0c 681 if (ret)
8461d226 682 goto out;
8461d226 683
17793c9a 684next_page:
eb01459f 685 remain -= page_length;
8461d226 686 user_data += page_length;
eb01459f
EA
687 offset += page_length;
688 }
689
4f27b75d 690out:
f60d7f0c
CW
691 i915_gem_object_unpin_pages(obj);
692
eb01459f
EA
693 return ret;
694}
695
673a394b
EA
696/**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701int
702i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 703 struct drm_file *file)
673a394b
EA
704{
705 struct drm_i915_gem_pread *args = data;
05394f39 706 struct drm_i915_gem_object *obj;
35b62a89 707 int ret = 0;
673a394b 708
51311d0a
CW
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
2bb4629a 713 to_user_ptr(args->data_ptr),
51311d0a
CW
714 args->size))
715 return -EFAULT;
716
4f27b75d 717 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 718 if (ret)
4f27b75d 719 return ret;
673a394b 720
05394f39 721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 722 if (&obj->base == NULL) {
1d7cfea1
CW
723 ret = -ENOENT;
724 goto unlock;
4f27b75d 725 }
673a394b 726
7dcd2499 727 /* Bounds check source. */
05394f39
CW
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
ce9d419d 730 ret = -EINVAL;
35b62a89 731 goto out;
ce9d419d
CW
732 }
733
1286ff73
DV
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
db53a302
CW
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
dbf7bff0 744 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 745
35b62a89 746out:
05394f39 747 drm_gem_object_unreference(&obj->base);
1d7cfea1 748unlock:
4f27b75d 749 mutex_unlock(&dev->struct_mutex);
eb01459f 750 return ret;
673a394b
EA
751}
752
0839ccb8
KP
753/* This is the fast write path which cannot handle
754 * page faults in the source data
9b7530cc 755 */
0839ccb8
KP
756
757static inline int
758fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
9b7530cc 762{
4f0c7cfb
BW
763 void __iomem *vaddr_atomic;
764 void *vaddr;
0839ccb8 765 unsigned long unwritten;
9b7530cc 766
3e4d3af5 767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 771 user_data, length);
3e4d3af5 772 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 773 return unwritten;
0839ccb8
KP
774}
775
3de09aa3
EA
776/**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
673a394b 780static int
05394f39
CW
781i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
3de09aa3 783 struct drm_i915_gem_pwrite *args,
05394f39 784 struct drm_file *file)
673a394b 785{
3e31c6c0 786 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 787 ssize_t remain;
0839ccb8 788 loff_t offset, page_base;
673a394b 789 char __user *user_data;
935aaa69
DV
790 int page_offset, page_length, ret;
791
1ec9e26d 792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
673a394b 803
2bb4629a 804 user_data = to_user_ptr(args->data_ptr);
673a394b 805 remain = args->size;
673a394b 806
f343c5f6 807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 808
063e4e6b
PZ
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
673a394b
EA
811 while (remain > 0) {
812 /* Operation in this page
813 *
0839ccb8
KP
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
673a394b 817 */
c8cbbb8b
CW
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
0839ccb8
KP
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
0839ccb8 824 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
0839ccb8 827 */
5d4545ae 828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
063e4e6b 831 goto out_flush;
935aaa69 832 }
673a394b 833
0839ccb8
KP
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
673a394b 837 }
673a394b 838
063e4e6b
PZ
839out_flush:
840 intel_fb_obj_flush(obj, false);
935aaa69 841out_unpin:
d7f46fc4 842 i915_gem_object_ggtt_unpin(obj);
935aaa69 843out:
3de09aa3 844 return ret;
673a394b
EA
845}
846
d174bd64
DV
847/* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
3043c60c 851static int
d174bd64
DV
852shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
673a394b 857{
d174bd64 858 char *vaddr;
673a394b 859 int ret;
3de09aa3 860
e7e58eb5 861 if (unlikely(page_do_bit17_swizzling))
d174bd64 862 return -EINVAL;
3de09aa3 863
d174bd64
DV
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
c2831a94
CW
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
d174bd64
DV
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
3de09aa3 874
755d2218 875 return ret ? -EFAULT : 0;
3de09aa3
EA
876}
877
d174bd64
DV
878/* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
3043c60c 880static int
d174bd64
DV
881shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
673a394b 886{
d174bd64
DV
887 char *vaddr;
888 int ret;
e5281ccd 889
d174bd64 890 vaddr = kmap(page);
e7e58eb5 891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
d174bd64
DV
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
897 user_data,
898 page_length);
d174bd64
DV
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
23c18c71
DV
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
d174bd64 907 kunmap(page);
40123c1f 908
755d2218 909 return ret ? -EFAULT : 0;
40123c1f
EA
910}
911
40123c1f 912static int
e244a443
DV
913i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
40123c1f 917{
40123c1f 918 ssize_t remain;
8c59967c
DV
919 loff_t offset;
920 char __user *user_data;
eb2c0c81 921 int shmem_page_offset, page_length, ret = 0;
8c59967c 922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 923 int hit_slowpath = 0;
58642885
DV
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
67d5a50c 926 struct sg_page_iter sg_iter;
40123c1f 927
2bb4629a 928 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
929 remain = args->size;
930
8c59967c 931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 932
58642885
DV
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
2c22569b 938 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
c8725f3d
CW
942
943 i915_gem_object_retire(obj);
58642885 944 }
c76ce038
CW
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 950
755d2218
CW
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
063e4e6b
PZ
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
755d2218
CW
957 i915_gem_object_pin_pages(obj);
958
673a394b 959 offset = args->offset;
05394f39 960 obj->dirty = 1;
673a394b 961
67d5a50c
ID
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
2db76d7c 964 struct page *page = sg_page_iter_page(&sg_iter);
58642885 965 int partial_cacheline_write;
e5281ccd 966
9da3da66
CW
967 if (remain <= 0)
968 break;
969
40123c1f
EA
970 /* Operation in this page
971 *
40123c1f 972 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
973 * page_length = bytes to copy for this page
974 */
c8cbbb8b 975 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 980
58642885
DV
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
8c59967c
DV
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
d174bd64
DV
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
e244a443
DV
997
998 hit_slowpath = 1;
e244a443 999 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
40123c1f 1004
e244a443 1005 mutex_lock(&dev->struct_mutex);
755d2218 1006
755d2218 1007 if (ret)
8c59967c 1008 goto out;
8c59967c 1009
17793c9a 1010next_page:
40123c1f 1011 remain -= page_length;
8c59967c 1012 user_data += page_length;
40123c1f 1013 offset += page_length;
673a394b
EA
1014 }
1015
fbd5a26d 1016out:
755d2218
CW
1017 i915_gem_object_unpin_pages(obj);
1018
e244a443 1019 if (hit_slowpath) {
8dcf015e
DV
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
e244a443 1029 }
8c59967c 1030 }
673a394b 1031
58642885 1032 if (needs_clflush_after)
e76e9aeb 1033 i915_gem_chipset_flush(dev);
58642885 1034
063e4e6b 1035 intel_fb_obj_flush(obj, false);
40123c1f 1036 return ret;
673a394b
EA
1037}
1038
1039/**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044int
1045i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1046 struct drm_file *file)
673a394b 1047{
5d77d9c5 1048 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1049 struct drm_i915_gem_pwrite *args = data;
05394f39 1050 struct drm_i915_gem_object *obj;
51311d0a
CW
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
2bb4629a 1057 to_user_ptr(args->data_ptr),
51311d0a
CW
1058 args->size))
1059 return -EFAULT;
1060
d330a953 1061 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
673a394b 1067
5d77d9c5
ID
1068 intel_runtime_pm_get(dev_priv);
1069
fbd5a26d 1070 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1071 if (ret)
5d77d9c5 1072 goto put_rpm;
1d7cfea1 1073
05394f39 1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1075 if (&obj->base == NULL) {
1d7cfea1
CW
1076 ret = -ENOENT;
1077 goto unlock;
fbd5a26d 1078 }
673a394b 1079
7dcd2499 1080 /* Bounds check destination. */
05394f39
CW
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
ce9d419d 1083 ret = -EINVAL;
35b62a89 1084 goto out;
ce9d419d
CW
1085 }
1086
1286ff73
DV
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
db53a302
CW
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
935aaa69 1097 ret = -EFAULT;
673a394b
EA
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
2c22569b
CW
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
fbd5a26d 1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1111 }
673a394b 1112
6a2c4232
CW
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
5c0480f2 1119
35b62a89 1120out:
05394f39 1121 drm_gem_object_unreference(&obj->base);
1d7cfea1 1122unlock:
fbd5a26d 1123 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1124put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
673a394b
EA
1127 return ret;
1128}
1129
b361237b 1130int
33196ded 1131i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1132 bool interruptible)
1133{
1f83fee0 1134 if (i915_reset_in_progress(error)) {
b361237b
CW
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1f83fee0
DV
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
b361237b
CW
1142 return -EIO;
1143
6689c167
MA
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
b361237b
CW
1151 }
1152
1153 return 0;
1154}
1155
1156/*
b6660d59 1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1158 */
84c33a64 1159int
b6660d59 1160i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1161{
1162 int ret;
1163
b6660d59 1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1165
1166 ret = 0;
b6660d59 1167 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1168 ret = i915_add_request(req->ring);
b361237b
CW
1169
1170 return ret;
1171}
1172
094f9a54
CW
1173static void fake_irq(unsigned long data)
1174{
1175 wake_up_process((struct task_struct *)data);
1176}
1177
1178static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1179 struct intel_engine_cs *ring)
094f9a54
CW
1180{
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182}
1183
b29c19b6
CW
1184static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185{
1186 if (file_priv == NULL)
1187 return true;
1188
1189 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190}
1191
b361237b 1192/**
9c654818
JH
1193 * __i915_wait_request - wait until execution of request has finished
1194 * @req: duh!
1195 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1196 * @interruptible: do an interruptible wait (normally yes)
1197 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1198 *
f69061be
DV
1199 * Note: It is of utmost importance that the passed in seqno and reset_counter
1200 * values have been read by the caller in an smp safe manner. Where read-side
1201 * locks are involved, it is sufficient to read the reset_counter before
1202 * unlocking the lock that protects the seqno. For lockless tricks, the
1203 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1204 * inserted.
1205 *
9c654818 1206 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1207 * errno with remaining time filled in timeout argument.
1208 */
9c654818 1209int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1210 unsigned reset_counter,
b29c19b6 1211 bool interruptible,
5ed0bdf2 1212 s64 *timeout,
b29c19b6 1213 struct drm_i915_file_private *file_priv)
b361237b 1214{
9c654818 1215 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1216 struct drm_device *dev = ring->dev;
3e31c6c0 1217 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1218 const bool irq_test_in_progress =
1219 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1220 DEFINE_WAIT(wait);
47e9766d 1221 unsigned long timeout_expire;
5ed0bdf2 1222 s64 before, now;
b361237b
CW
1223 int ret;
1224
9df7575f 1225 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1226
1b5a433a 1227 if (i915_gem_request_completed(req, true))
b361237b
CW
1228 return 0;
1229
7bd0e226
DV
1230 timeout_expire = timeout ?
1231 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1232
ec5cc0f9 1233 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1234 gen6_rps_boost(dev_priv);
1235 if (file_priv)
1236 mod_delayed_work(dev_priv->wq,
1237 &file_priv->mm.idle_work,
1238 msecs_to_jiffies(100));
1239 }
1240
168c3f21 1241 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1242 return -ENODEV;
1243
094f9a54 1244 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1245 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1246 before = ktime_get_raw_ns();
094f9a54
CW
1247 for (;;) {
1248 struct timer_list timer;
b361237b 1249
094f9a54
CW
1250 prepare_to_wait(&ring->irq_queue, &wait,
1251 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1252
f69061be
DV
1253 /* We need to check whether any gpu reset happened in between
1254 * the caller grabbing the seqno and now ... */
094f9a54
CW
1255 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257 * is truely gone. */
1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 if (ret == 0)
1260 ret = -EAGAIN;
1261 break;
1262 }
f69061be 1263
1b5a433a 1264 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1265 ret = 0;
1266 break;
1267 }
b361237b 1268
094f9a54
CW
1269 if (interruptible && signal_pending(current)) {
1270 ret = -ERESTARTSYS;
1271 break;
1272 }
1273
47e9766d 1274 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1275 ret = -ETIME;
1276 break;
1277 }
1278
1279 timer.function = NULL;
1280 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1281 unsigned long expire;
1282
094f9a54 1283 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1284 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1285 mod_timer(&timer, expire);
1286 }
1287
5035c275 1288 io_schedule();
094f9a54 1289
094f9a54
CW
1290 if (timer.function) {
1291 del_singleshot_timer_sync(&timer);
1292 destroy_timer_on_stack(&timer);
1293 }
1294 }
5ed0bdf2 1295 now = ktime_get_raw_ns();
74328ee5 1296 trace_i915_gem_request_wait_end(req);
b361237b 1297
168c3f21
MK
1298 if (!irq_test_in_progress)
1299 ring->irq_put(ring);
094f9a54
CW
1300
1301 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1302
1303 if (timeout) {
5ed0bdf2
TG
1304 s64 tres = *timeout - (now - before);
1305
1306 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1307
1308 /*
1309 * Apparently ktime isn't accurate enough and occasionally has a
1310 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1311 * things up to make the test happy. We allow up to 1 jiffy.
1312 *
1313 * This is a regrssion from the timespec->ktime conversion.
1314 */
1315 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1316 *timeout = 0;
b361237b
CW
1317 }
1318
094f9a54 1319 return ret;
b361237b
CW
1320}
1321
1322/**
a4b3a571 1323 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1324 * request and object lists appropriately for that event.
1325 */
1326int
a4b3a571 1327i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1328{
a4b3a571
DV
1329 struct drm_device *dev;
1330 struct drm_i915_private *dev_priv;
1331 bool interruptible;
16e9a21f 1332 unsigned reset_counter;
b361237b
CW
1333 int ret;
1334
a4b3a571
DV
1335 BUG_ON(req == NULL);
1336
1337 dev = req->ring->dev;
1338 dev_priv = dev->dev_private;
1339 interruptible = dev_priv->mm.interruptible;
1340
b361237b 1341 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1342
33196ded 1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1344 if (ret)
1345 return ret;
1346
a4b3a571 1347 ret = i915_gem_check_olr(req);
b361237b
CW
1348 if (ret)
1349 return ret;
1350
16e9a21f 1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1352 i915_gem_request_reference(req);
9c654818
JH
1353 ret = __i915_wait_request(req, reset_counter,
1354 interruptible, NULL, NULL);
a4b3a571
DV
1355 i915_gem_request_unreference(req);
1356 return ret;
b361237b
CW
1357}
1358
d26e3af8 1359static int
8e639549 1360i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1361{
c8725f3d
CW
1362 if (!obj->active)
1363 return 0;
d26e3af8
CW
1364
1365 /* Manually manage the write flush as we may have not yet
1366 * retired the buffer.
1367 *
97b2a6a1
JH
1368 * Note that the last_write_req is always the earlier of
1369 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1370 * we know we have passed the last write.
1371 */
97b2a6a1 1372 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1373
1374 return 0;
1375}
1376
b361237b
CW
1377/**
1378 * Ensures that all rendering to the object has completed and the object is
1379 * safe to unbind from the GTT or access from the CPU.
1380 */
1381static __must_check int
1382i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1383 bool readonly)
1384{
97b2a6a1 1385 struct drm_i915_gem_request *req;
b361237b
CW
1386 int ret;
1387
97b2a6a1
JH
1388 req = readonly ? obj->last_write_req : obj->last_read_req;
1389 if (!req)
b361237b
CW
1390 return 0;
1391
a4b3a571 1392 ret = i915_wait_request(req);
b361237b
CW
1393 if (ret)
1394 return ret;
1395
8e639549 1396 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1397}
1398
3236f57a
CW
1399/* A nonblocking variant of the above wait. This is a highly dangerous routine
1400 * as the object state may change during this call.
1401 */
1402static __must_check int
1403i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1404 struct drm_i915_file_private *file_priv,
3236f57a
CW
1405 bool readonly)
1406{
97b2a6a1 1407 struct drm_i915_gem_request *req;
3236f57a
CW
1408 struct drm_device *dev = obj->base.dev;
1409 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1410 unsigned reset_counter;
3236f57a
CW
1411 int ret;
1412
1413 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1414 BUG_ON(!dev_priv->mm.interruptible);
1415
97b2a6a1
JH
1416 req = readonly ? obj->last_write_req : obj->last_read_req;
1417 if (!req)
3236f57a
CW
1418 return 0;
1419
33196ded 1420 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1421 if (ret)
1422 return ret;
1423
b6660d59 1424 ret = i915_gem_check_olr(req);
3236f57a
CW
1425 if (ret)
1426 return ret;
1427
f69061be 1428 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1429 i915_gem_request_reference(req);
3236f57a 1430 mutex_unlock(&dev->struct_mutex);
9c654818 1431 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1432 mutex_lock(&dev->struct_mutex);
ff865885 1433 i915_gem_request_unreference(req);
d26e3af8
CW
1434 if (ret)
1435 return ret;
3236f57a 1436
8e639549 1437 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1438}
1439
673a394b 1440/**
2ef7eeaa
EA
1441 * Called when user space prepares to use an object with the CPU, either
1442 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1443 */
1444int
1445i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1446 struct drm_file *file)
673a394b
EA
1447{
1448 struct drm_i915_gem_set_domain *args = data;
05394f39 1449 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1450 uint32_t read_domains = args->read_domains;
1451 uint32_t write_domain = args->write_domain;
673a394b
EA
1452 int ret;
1453
2ef7eeaa 1454 /* Only handle setting domains to types used by the CPU. */
21d509e3 1455 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1456 return -EINVAL;
1457
21d509e3 1458 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1459 return -EINVAL;
1460
1461 /* Having something in the write domain implies it's in the read
1462 * domain, and only that read domain. Enforce that in the request.
1463 */
1464 if (write_domain != 0 && read_domains != write_domain)
1465 return -EINVAL;
1466
76c1dec1 1467 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1468 if (ret)
76c1dec1 1469 return ret;
1d7cfea1 1470
05394f39 1471 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1472 if (&obj->base == NULL) {
1d7cfea1
CW
1473 ret = -ENOENT;
1474 goto unlock;
76c1dec1 1475 }
673a394b 1476
3236f57a
CW
1477 /* Try to flush the object off the GPU without holding the lock.
1478 * We will repeat the flush holding the lock in the normal manner
1479 * to catch cases where we are gazumped.
1480 */
6e4930f6
CW
1481 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1482 file->driver_priv,
1483 !write_domain);
3236f57a
CW
1484 if (ret)
1485 goto unref;
1486
43566ded 1487 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1488 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1489 else
e47c68e9 1490 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1491
3236f57a 1492unref:
05394f39 1493 drm_gem_object_unreference(&obj->base);
1d7cfea1 1494unlock:
673a394b
EA
1495 mutex_unlock(&dev->struct_mutex);
1496 return ret;
1497}
1498
1499/**
1500 * Called when user space has done writes to this buffer
1501 */
1502int
1503i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1504 struct drm_file *file)
673a394b
EA
1505{
1506 struct drm_i915_gem_sw_finish *args = data;
05394f39 1507 struct drm_i915_gem_object *obj;
673a394b
EA
1508 int ret = 0;
1509
76c1dec1 1510 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1511 if (ret)
76c1dec1 1512 return ret;
1d7cfea1 1513
05394f39 1514 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1515 if (&obj->base == NULL) {
1d7cfea1
CW
1516 ret = -ENOENT;
1517 goto unlock;
673a394b
EA
1518 }
1519
673a394b 1520 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1521 if (obj->pin_display)
e62b59e4 1522 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1523
05394f39 1524 drm_gem_object_unreference(&obj->base);
1d7cfea1 1525unlock:
673a394b
EA
1526 mutex_unlock(&dev->struct_mutex);
1527 return ret;
1528}
1529
1530/**
1531 * Maps the contents of an object, returning the address it is mapped
1532 * into.
1533 *
1534 * While the mapping holds a reference on the contents of the object, it doesn't
1535 * imply a ref on the object itself.
34367381
DV
1536 *
1537 * IMPORTANT:
1538 *
1539 * DRM driver writers who look a this function as an example for how to do GEM
1540 * mmap support, please don't implement mmap support like here. The modern way
1541 * to implement DRM mmap support is with an mmap offset ioctl (like
1542 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1543 * That way debug tooling like valgrind will understand what's going on, hiding
1544 * the mmap call in a driver private ioctl will break that. The i915 driver only
1545 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1546 */
1547int
1548i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1549 struct drm_file *file)
673a394b
EA
1550{
1551 struct drm_i915_gem_mmap *args = data;
1552 struct drm_gem_object *obj;
673a394b
EA
1553 unsigned long addr;
1554
1816f923
AG
1555 if (args->flags & ~(I915_MMAP_WC))
1556 return -EINVAL;
1557
1558 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1559 return -ENODEV;
1560
05394f39 1561 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1562 if (obj == NULL)
bf79cb91 1563 return -ENOENT;
673a394b 1564
1286ff73
DV
1565 /* prime objects have no backing filp to GEM mmap
1566 * pages from.
1567 */
1568 if (!obj->filp) {
1569 drm_gem_object_unreference_unlocked(obj);
1570 return -EINVAL;
1571 }
1572
6be5ceb0 1573 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1574 PROT_READ | PROT_WRITE, MAP_SHARED,
1575 args->offset);
1816f923
AG
1576 if (args->flags & I915_MMAP_WC) {
1577 struct mm_struct *mm = current->mm;
1578 struct vm_area_struct *vma;
1579
1580 down_write(&mm->mmap_sem);
1581 vma = find_vma(mm, addr);
1582 if (vma)
1583 vma->vm_page_prot =
1584 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1585 else
1586 addr = -ENOMEM;
1587 up_write(&mm->mmap_sem);
1588 }
bc9025bd 1589 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1590 if (IS_ERR((void *)addr))
1591 return addr;
1592
1593 args->addr_ptr = (uint64_t) addr;
1594
1595 return 0;
1596}
1597
de151cf6
JB
1598/**
1599 * i915_gem_fault - fault a page into the GTT
1600 * vma: VMA in question
1601 * vmf: fault info
1602 *
1603 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1604 * from userspace. The fault handler takes care of binding the object to
1605 * the GTT (if needed), allocating and programming a fence register (again,
1606 * only if needed based on whether the old reg is still valid or the object
1607 * is tiled) and inserting a new PTE into the faulting process.
1608 *
1609 * Note that the faulting process may involve evicting existing objects
1610 * from the GTT and/or fence registers to make room. So performance may
1611 * suffer if the GTT working set is large or there are few fence registers
1612 * left.
1613 */
1614int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1615{
05394f39
CW
1616 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1617 struct drm_device *dev = obj->base.dev;
3e31c6c0 1618 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1619 pgoff_t page_offset;
1620 unsigned long pfn;
1621 int ret = 0;
0f973f27 1622 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1623
f65c9168
PZ
1624 intel_runtime_pm_get(dev_priv);
1625
de151cf6
JB
1626 /* We don't use vmf->pgoff since that has the fake offset */
1627 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1628 PAGE_SHIFT;
1629
d9bc7e9f
CW
1630 ret = i915_mutex_lock_interruptible(dev);
1631 if (ret)
1632 goto out;
a00b10c3 1633
db53a302
CW
1634 trace_i915_gem_object_fault(obj, page_offset, true, write);
1635
6e4930f6
CW
1636 /* Try to flush the object off the GPU first without holding the lock.
1637 * Upon reacquiring the lock, we will perform our sanity checks and then
1638 * repeat the flush holding the lock in the normal manner to catch cases
1639 * where we are gazumped.
1640 */
1641 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1642 if (ret)
1643 goto unlock;
1644
eb119bd6
CW
1645 /* Access to snoopable pages through the GTT is incoherent. */
1646 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1647 ret = -EFAULT;
eb119bd6
CW
1648 goto unlock;
1649 }
1650
d9bc7e9f 1651 /* Now bind it into the GTT if needed */
1ec9e26d 1652 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1653 if (ret)
1654 goto unlock;
4a684a41 1655
c9839303
CW
1656 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1657 if (ret)
1658 goto unpin;
74898d7e 1659
06d98131 1660 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1661 if (ret)
c9839303 1662 goto unpin;
7d1c4804 1663
b90b91d8 1664 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1665 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1666 pfn >>= PAGE_SHIFT;
de151cf6 1667
b90b91d8 1668 if (!obj->fault_mappable) {
beff0d0f
VS
1669 unsigned long size = min_t(unsigned long,
1670 vma->vm_end - vma->vm_start,
1671 obj->base.size);
b90b91d8
CW
1672 int i;
1673
beff0d0f 1674 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1675 ret = vm_insert_pfn(vma,
1676 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1677 pfn + i);
1678 if (ret)
1679 break;
1680 }
1681
1682 obj->fault_mappable = true;
1683 } else
1684 ret = vm_insert_pfn(vma,
1685 (unsigned long)vmf->virtual_address,
1686 pfn + page_offset);
c9839303 1687unpin:
d7f46fc4 1688 i915_gem_object_ggtt_unpin(obj);
c715089f 1689unlock:
de151cf6 1690 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1691out:
de151cf6 1692 switch (ret) {
d9bc7e9f 1693 case -EIO:
2232f031
DV
1694 /*
1695 * We eat errors when the gpu is terminally wedged to avoid
1696 * userspace unduly crashing (gl has no provisions for mmaps to
1697 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1698 * and so needs to be reported.
1699 */
1700 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1701 ret = VM_FAULT_SIGBUS;
1702 break;
1703 }
045e769a 1704 case -EAGAIN:
571c608d
DV
1705 /*
1706 * EAGAIN means the gpu is hung and we'll wait for the error
1707 * handler to reset everything when re-faulting in
1708 * i915_mutex_lock_interruptible.
d9bc7e9f 1709 */
c715089f
CW
1710 case 0:
1711 case -ERESTARTSYS:
bed636ab 1712 case -EINTR:
e79e0fe3
DR
1713 case -EBUSY:
1714 /*
1715 * EBUSY is ok: this just means that another thread
1716 * already did the job.
1717 */
f65c9168
PZ
1718 ret = VM_FAULT_NOPAGE;
1719 break;
de151cf6 1720 case -ENOMEM:
f65c9168
PZ
1721 ret = VM_FAULT_OOM;
1722 break;
a7c2e1aa 1723 case -ENOSPC:
45d67817 1724 case -EFAULT:
f65c9168
PZ
1725 ret = VM_FAULT_SIGBUS;
1726 break;
de151cf6 1727 default:
a7c2e1aa 1728 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1729 ret = VM_FAULT_SIGBUS;
1730 break;
de151cf6 1731 }
f65c9168
PZ
1732
1733 intel_runtime_pm_put(dev_priv);
1734 return ret;
de151cf6
JB
1735}
1736
901782b2
CW
1737/**
1738 * i915_gem_release_mmap - remove physical page mappings
1739 * @obj: obj in question
1740 *
af901ca1 1741 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1742 * relinquish ownership of the pages back to the system.
1743 *
1744 * It is vital that we remove the page mapping if we have mapped a tiled
1745 * object through the GTT and then lose the fence register due to
1746 * resource pressure. Similarly if the object has been moved out of the
1747 * aperture, than pages mapped into userspace must be revoked. Removing the
1748 * mapping will then trigger a page fault on the next user access, allowing
1749 * fixup by i915_gem_fault().
1750 */
d05ca301 1751void
05394f39 1752i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1753{
6299f992
CW
1754 if (!obj->fault_mappable)
1755 return;
901782b2 1756
6796cb16
DH
1757 drm_vma_node_unmap(&obj->base.vma_node,
1758 obj->base.dev->anon_inode->i_mapping);
6299f992 1759 obj->fault_mappable = false;
901782b2
CW
1760}
1761
eedd10f4
CW
1762void
1763i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1764{
1765 struct drm_i915_gem_object *obj;
1766
1767 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1768 i915_gem_release_mmap(obj);
1769}
1770
0fa87796 1771uint32_t
e28f8711 1772i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1773{
e28f8711 1774 uint32_t gtt_size;
92b88aeb
CW
1775
1776 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1777 tiling_mode == I915_TILING_NONE)
1778 return size;
92b88aeb
CW
1779
1780 /* Previous chips need a power-of-two fence region when tiling */
1781 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1782 gtt_size = 1024*1024;
92b88aeb 1783 else
e28f8711 1784 gtt_size = 512*1024;
92b88aeb 1785
e28f8711
CW
1786 while (gtt_size < size)
1787 gtt_size <<= 1;
92b88aeb 1788
e28f8711 1789 return gtt_size;
92b88aeb
CW
1790}
1791
de151cf6
JB
1792/**
1793 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1794 * @obj: object to check
1795 *
1796 * Return the required GTT alignment for an object, taking into account
5e783301 1797 * potential fence register mapping.
de151cf6 1798 */
d865110c
ID
1799uint32_t
1800i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1801 int tiling_mode, bool fenced)
de151cf6 1802{
de151cf6
JB
1803 /*
1804 * Minimum alignment is 4k (GTT page size), but might be greater
1805 * if a fence register is needed for the object.
1806 */
d865110c 1807 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1808 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1809 return 4096;
1810
a00b10c3
CW
1811 /*
1812 * Previous chips need to be aligned to the size of the smallest
1813 * fence register that can contain the object.
1814 */
e28f8711 1815 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1816}
1817
d8cb5086
CW
1818static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1819{
1820 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1821 int ret;
1822
0de23977 1823 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1824 return 0;
1825
da494d7c
DV
1826 dev_priv->mm.shrinker_no_lock_stealing = true;
1827
d8cb5086
CW
1828 ret = drm_gem_create_mmap_offset(&obj->base);
1829 if (ret != -ENOSPC)
da494d7c 1830 goto out;
d8cb5086
CW
1831
1832 /* Badly fragmented mmap space? The only way we can recover
1833 * space is by destroying unwanted objects. We can't randomly release
1834 * mmap_offsets as userspace expects them to be persistent for the
1835 * lifetime of the objects. The closest we can is to release the
1836 * offsets on purgeable objects by truncating it and marking it purged,
1837 * which prevents userspace from ever using that object again.
1838 */
21ab4e74
CW
1839 i915_gem_shrink(dev_priv,
1840 obj->base.size >> PAGE_SHIFT,
1841 I915_SHRINK_BOUND |
1842 I915_SHRINK_UNBOUND |
1843 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1844 ret = drm_gem_create_mmap_offset(&obj->base);
1845 if (ret != -ENOSPC)
da494d7c 1846 goto out;
d8cb5086
CW
1847
1848 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1849 ret = drm_gem_create_mmap_offset(&obj->base);
1850out:
1851 dev_priv->mm.shrinker_no_lock_stealing = false;
1852
1853 return ret;
d8cb5086
CW
1854}
1855
1856static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1857{
d8cb5086
CW
1858 drm_gem_free_mmap_offset(&obj->base);
1859}
1860
da6b51d0 1861int
ff72145b
DA
1862i915_gem_mmap_gtt(struct drm_file *file,
1863 struct drm_device *dev,
da6b51d0 1864 uint32_t handle,
ff72145b 1865 uint64_t *offset)
de151cf6 1866{
da761a6e 1867 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1868 struct drm_i915_gem_object *obj;
de151cf6
JB
1869 int ret;
1870
76c1dec1 1871 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1872 if (ret)
76c1dec1 1873 return ret;
de151cf6 1874
ff72145b 1875 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1876 if (&obj->base == NULL) {
1d7cfea1
CW
1877 ret = -ENOENT;
1878 goto unlock;
1879 }
de151cf6 1880
5d4545ae 1881 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1882 ret = -E2BIG;
ff56b0bc 1883 goto out;
da761a6e
CW
1884 }
1885
05394f39 1886 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1887 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1888 ret = -EFAULT;
1d7cfea1 1889 goto out;
ab18282d
CW
1890 }
1891
d8cb5086
CW
1892 ret = i915_gem_object_create_mmap_offset(obj);
1893 if (ret)
1894 goto out;
de151cf6 1895
0de23977 1896 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1897
1d7cfea1 1898out:
05394f39 1899 drm_gem_object_unreference(&obj->base);
1d7cfea1 1900unlock:
de151cf6 1901 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1902 return ret;
de151cf6
JB
1903}
1904
ff72145b
DA
1905/**
1906 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1907 * @dev: DRM device
1908 * @data: GTT mapping ioctl data
1909 * @file: GEM object info
1910 *
1911 * Simply returns the fake offset to userspace so it can mmap it.
1912 * The mmap call will end up in drm_gem_mmap(), which will set things
1913 * up so we can get faults in the handler above.
1914 *
1915 * The fault handler will take care of binding the object into the GTT
1916 * (since it may have been evicted to make room for something), allocating
1917 * a fence register, and mapping the appropriate aperture address into
1918 * userspace.
1919 */
1920int
1921i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1922 struct drm_file *file)
1923{
1924 struct drm_i915_gem_mmap_gtt *args = data;
1925
da6b51d0 1926 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1927}
1928
225067ee
DV
1929/* Immediately discard the backing storage */
1930static void
1931i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1932{
4d6294bf 1933 i915_gem_object_free_mmap_offset(obj);
1286ff73 1934
4d6294bf
CW
1935 if (obj->base.filp == NULL)
1936 return;
e5281ccd 1937
225067ee
DV
1938 /* Our goal here is to return as much of the memory as
1939 * is possible back to the system as we are called from OOM.
1940 * To do this we must instruct the shmfs to drop all of its
1941 * backing pages, *now*.
1942 */
5537252b 1943 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1944 obj->madv = __I915_MADV_PURGED;
1945}
e5281ccd 1946
5537252b
CW
1947/* Try to discard unwanted pages */
1948static void
1949i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1950{
5537252b
CW
1951 struct address_space *mapping;
1952
1953 switch (obj->madv) {
1954 case I915_MADV_DONTNEED:
1955 i915_gem_object_truncate(obj);
1956 case __I915_MADV_PURGED:
1957 return;
1958 }
1959
1960 if (obj->base.filp == NULL)
1961 return;
1962
1963 mapping = file_inode(obj->base.filp)->i_mapping,
1964 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1965}
1966
5cdf5881 1967static void
05394f39 1968i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1969{
90797e6d
ID
1970 struct sg_page_iter sg_iter;
1971 int ret;
1286ff73 1972
05394f39 1973 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1974
6c085a72
CW
1975 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1976 if (ret) {
1977 /* In the event of a disaster, abandon all caches and
1978 * hope for the best.
1979 */
1980 WARN_ON(ret != -EIO);
2c22569b 1981 i915_gem_clflush_object(obj, true);
6c085a72
CW
1982 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1983 }
1984
6dacfd2f 1985 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1986 i915_gem_object_save_bit_17_swizzle(obj);
1987
05394f39
CW
1988 if (obj->madv == I915_MADV_DONTNEED)
1989 obj->dirty = 0;
3ef94daa 1990
90797e6d 1991 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1992 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1993
05394f39 1994 if (obj->dirty)
9da3da66 1995 set_page_dirty(page);
3ef94daa 1996
05394f39 1997 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1998 mark_page_accessed(page);
3ef94daa 1999
9da3da66 2000 page_cache_release(page);
3ef94daa 2001 }
05394f39 2002 obj->dirty = 0;
673a394b 2003
9da3da66
CW
2004 sg_free_table(obj->pages);
2005 kfree(obj->pages);
37e680a1 2006}
6c085a72 2007
dd624afd 2008int
37e680a1
CW
2009i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2010{
2011 const struct drm_i915_gem_object_ops *ops = obj->ops;
2012
2f745ad3 2013 if (obj->pages == NULL)
37e680a1
CW
2014 return 0;
2015
a5570178
CW
2016 if (obj->pages_pin_count)
2017 return -EBUSY;
2018
9843877d 2019 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2020
a2165e31
CW
2021 /* ->put_pages might need to allocate memory for the bit17 swizzle
2022 * array, hence protect them from being reaped by removing them from gtt
2023 * lists early. */
35c20a60 2024 list_del(&obj->global_list);
a2165e31 2025
37e680a1 2026 ops->put_pages(obj);
05394f39 2027 obj->pages = NULL;
37e680a1 2028
5537252b 2029 i915_gem_object_invalidate(obj);
6c085a72
CW
2030
2031 return 0;
2032}
2033
37e680a1 2034static int
6c085a72 2035i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2036{
6c085a72 2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2038 int page_count, i;
2039 struct address_space *mapping;
9da3da66
CW
2040 struct sg_table *st;
2041 struct scatterlist *sg;
90797e6d 2042 struct sg_page_iter sg_iter;
e5281ccd 2043 struct page *page;
90797e6d 2044 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2045 gfp_t gfp;
e5281ccd 2046
6c085a72
CW
2047 /* Assert that the object is not currently in any GPU domain. As it
2048 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 * a GPU cache
2050 */
2051 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
9da3da66
CW
2054 st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 if (st == NULL)
2056 return -ENOMEM;
2057
05394f39 2058 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2059 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2060 kfree(st);
e5281ccd 2061 return -ENOMEM;
9da3da66 2062 }
e5281ccd 2063
9da3da66
CW
2064 /* Get the list of pages out of our struct file. They'll be pinned
2065 * at this point until we release them.
2066 *
2067 * Fail silently without starting the shrinker
2068 */
496ad9aa 2069 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2070 gfp = mapping_gfp_mask(mapping);
caf49191 2071 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2072 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2073 sg = st->sgl;
2074 st->nents = 0;
2075 for (i = 0; i < page_count; i++) {
6c085a72
CW
2076 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 if (IS_ERR(page)) {
21ab4e74
CW
2078 i915_gem_shrink(dev_priv,
2079 page_count,
2080 I915_SHRINK_BOUND |
2081 I915_SHRINK_UNBOUND |
2082 I915_SHRINK_PURGEABLE);
6c085a72
CW
2083 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 }
2085 if (IS_ERR(page)) {
2086 /* We've tried hard to allocate the memory by reaping
2087 * our own buffer, now let the real VM do its job and
2088 * go down in flames if truly OOM.
2089 */
6c085a72 2090 i915_gem_shrink_all(dev_priv);
f461d1be 2091 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2092 if (IS_ERR(page))
2093 goto err_pages;
6c085a72 2094 }
426729dc
KRW
2095#ifdef CONFIG_SWIOTLB
2096 if (swiotlb_nr_tbl()) {
2097 st->nents++;
2098 sg_set_page(sg, page, PAGE_SIZE, 0);
2099 sg = sg_next(sg);
2100 continue;
2101 }
2102#endif
90797e6d
ID
2103 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 if (i)
2105 sg = sg_next(sg);
2106 st->nents++;
2107 sg_set_page(sg, page, PAGE_SIZE, 0);
2108 } else {
2109 sg->length += PAGE_SIZE;
2110 }
2111 last_pfn = page_to_pfn(page);
3bbbe706
DV
2112
2113 /* Check that the i965g/gm workaround works. */
2114 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2115 }
426729dc
KRW
2116#ifdef CONFIG_SWIOTLB
2117 if (!swiotlb_nr_tbl())
2118#endif
2119 sg_mark_end(sg);
74ce6b6c
CW
2120 obj->pages = st;
2121
6dacfd2f 2122 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2123 i915_gem_object_do_bit_17_swizzle(obj);
2124
656bfa3a
DV
2125 if (obj->tiling_mode != I915_TILING_NONE &&
2126 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2127 i915_gem_object_pin_pages(obj);
2128
e5281ccd
CW
2129 return 0;
2130
2131err_pages:
90797e6d
ID
2132 sg_mark_end(sg);
2133 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2134 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2135 sg_free_table(st);
2136 kfree(st);
0820baf3
CW
2137
2138 /* shmemfs first checks if there is enough memory to allocate the page
2139 * and reports ENOSPC should there be insufficient, along with the usual
2140 * ENOMEM for a genuine allocation failure.
2141 *
2142 * We use ENOSPC in our driver to mean that we have run out of aperture
2143 * space and so want to translate the error from shmemfs back to our
2144 * usual understanding of ENOMEM.
2145 */
2146 if (PTR_ERR(page) == -ENOSPC)
2147 return -ENOMEM;
2148 else
2149 return PTR_ERR(page);
673a394b
EA
2150}
2151
37e680a1
CW
2152/* Ensure that the associated pages are gathered from the backing storage
2153 * and pinned into our object. i915_gem_object_get_pages() may be called
2154 * multiple times before they are released by a single call to
2155 * i915_gem_object_put_pages() - once the pages are no longer referenced
2156 * either as a result of memory pressure (reaping pages under the shrinker)
2157 * or as the object is itself released.
2158 */
2159int
2160i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2161{
2162 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2163 const struct drm_i915_gem_object_ops *ops = obj->ops;
2164 int ret;
2165
2f745ad3 2166 if (obj->pages)
37e680a1
CW
2167 return 0;
2168
43e28f09 2169 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2170 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2171 return -EFAULT;
43e28f09
CW
2172 }
2173
a5570178
CW
2174 BUG_ON(obj->pages_pin_count);
2175
37e680a1
CW
2176 ret = ops->get_pages(obj);
2177 if (ret)
2178 return ret;
2179
35c20a60 2180 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2181 return 0;
673a394b
EA
2182}
2183
e2d05a8b 2184static void
05394f39 2185i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2186 struct intel_engine_cs *ring)
673a394b 2187{
41c52415
JH
2188 struct drm_i915_gem_request *req;
2189 struct intel_engine_cs *old_ring;
617dbe27 2190
852835f3 2191 BUG_ON(ring == NULL);
41c52415
JH
2192
2193 req = intel_ring_get_request(ring);
2194 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2195
2196 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2197 /* Keep the request relative to the current ring */
2198 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2199 }
673a394b
EA
2200
2201 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2202 if (!obj->active) {
2203 drm_gem_object_reference(&obj->base);
2204 obj->active = 1;
673a394b 2205 }
e35a41de 2206
05394f39 2207 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2208
97b2a6a1 2209 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2210}
2211
e2d05a8b 2212void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2213 struct intel_engine_cs *ring)
e2d05a8b
BW
2214{
2215 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2216 return i915_gem_object_move_to_active(vma->obj, ring);
2217}
2218
caea7476 2219static void
caea7476 2220i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2221{
feb822cf 2222 struct i915_vma *vma;
ce44b0ea 2223
65ce3027 2224 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2225 BUG_ON(!obj->active);
caea7476 2226
fe14d5f4
TU
2227 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2228 if (!list_empty(&vma->mm_list))
2229 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2230 }
caea7476 2231
f99d7069
DV
2232 intel_fb_obj_flush(obj, true);
2233
65ce3027 2234 list_del_init(&obj->ring_list);
caea7476 2235
97b2a6a1
JH
2236 i915_gem_request_assign(&obj->last_read_req, NULL);
2237 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2238 obj->base.write_domain = 0;
2239
97b2a6a1 2240 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2241
2242 obj->active = 0;
2243 drm_gem_object_unreference(&obj->base);
2244
2245 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2246}
673a394b 2247
c8725f3d
CW
2248static void
2249i915_gem_object_retire(struct drm_i915_gem_object *obj)
2250{
41c52415 2251 if (obj->last_read_req == NULL)
c8725f3d
CW
2252 return;
2253
1b5a433a 2254 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2255 i915_gem_object_move_to_inactive(obj);
2256}
2257
9d773091 2258static int
fca26bb4 2259i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2260{
9d773091 2261 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2262 struct intel_engine_cs *ring;
9d773091 2263 int ret, i, j;
53d227f2 2264
107f27a5 2265 /* Carefully retire all requests without writing to the rings */
9d773091 2266 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2267 ret = intel_ring_idle(ring);
2268 if (ret)
2269 return ret;
9d773091 2270 }
9d773091 2271 i915_gem_retire_requests(dev);
107f27a5
CW
2272
2273 /* Finally reset hw state */
9d773091 2274 for_each_ring(ring, dev_priv, i) {
fca26bb4 2275 intel_ring_init_seqno(ring, seqno);
498d2ac1 2276
ebc348b2
BW
2277 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2278 ring->semaphore.sync_seqno[j] = 0;
9d773091 2279 }
53d227f2 2280
9d773091 2281 return 0;
53d227f2
DV
2282}
2283
fca26bb4
MK
2284int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2285{
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 int ret;
2288
2289 if (seqno == 0)
2290 return -EINVAL;
2291
2292 /* HWS page needs to be set less than what we
2293 * will inject to ring
2294 */
2295 ret = i915_gem_init_seqno(dev, seqno - 1);
2296 if (ret)
2297 return ret;
2298
2299 /* Carefully set the last_seqno value so that wrap
2300 * detection still works
2301 */
2302 dev_priv->next_seqno = seqno;
2303 dev_priv->last_seqno = seqno - 1;
2304 if (dev_priv->last_seqno == 0)
2305 dev_priv->last_seqno--;
2306
2307 return 0;
2308}
2309
9d773091
CW
2310int
2311i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2312{
9d773091
CW
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314
2315 /* reserve 0 for non-seqno */
2316 if (dev_priv->next_seqno == 0) {
fca26bb4 2317 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2318 if (ret)
2319 return ret;
53d227f2 2320
9d773091
CW
2321 dev_priv->next_seqno = 1;
2322 }
53d227f2 2323
f72b3435 2324 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2325 return 0;
53d227f2
DV
2326}
2327
a4872ba6 2328int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2329 struct drm_file *file,
9400ae5c 2330 struct drm_i915_gem_object *obj)
673a394b 2331{
3e31c6c0 2332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2333 struct drm_i915_gem_request *request;
48e29f55 2334 struct intel_ringbuffer *ringbuf;
6d3d8274 2335 u32 request_start;
3cce469c
CW
2336 int ret;
2337
6259cead 2338 request = ring->outstanding_lazy_request;
48e29f55
OM
2339 if (WARN_ON(request == NULL))
2340 return -ENOMEM;
2341
2342 if (i915.enable_execlists) {
21076372 2343 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2344 } else
2345 ringbuf = ring->buffer;
2346
2347 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2348 /*
2349 * Emit any outstanding flushes - execbuf can fail to emit the flush
2350 * after having emitted the batchbuffer command. Hence we need to fix
2351 * things up similar to emitting the lazy request. The difference here
2352 * is that the flush _must_ happen before the next request, no matter
2353 * what.
2354 */
48e29f55 2355 if (i915.enable_execlists) {
21076372 2356 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2357 if (ret)
2358 return ret;
2359 } else {
2360 ret = intel_ring_flush_all_caches(ring);
2361 if (ret)
2362 return ret;
2363 }
cc889e0f 2364
a71d8d94
CW
2365 /* Record the position of the start of the request so that
2366 * should we detect the updated seqno part-way through the
2367 * GPU processing the request, we never over-estimate the
2368 * position of the head.
2369 */
6d3d8274 2370 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2371
48e29f55 2372 if (i915.enable_execlists) {
72f95afa 2373 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2374 if (ret)
2375 return ret;
2376 } else {
2377 ret = ring->add_request(ring);
2378 if (ret)
2379 return ret;
53292cdb
MT
2380
2381 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2382 }
673a394b 2383
7d736f4f 2384 request->head = request_start;
7d736f4f
MK
2385
2386 /* Whilst this request exists, batch_obj will be on the
2387 * active_list, and so will hold the active reference. Only when this
2388 * request is retired will the the batch_obj be moved onto the
2389 * inactive_list and lose its active reference. Hence we do not need
2390 * to explicitly hold another reference here.
2391 */
9a7e0c2a 2392 request->batch_obj = obj;
0e50e96b 2393
48e29f55
OM
2394 if (!i915.enable_execlists) {
2395 /* Hold a reference to the current context so that we can inspect
2396 * it later in case a hangcheck error event fires.
2397 */
2398 request->ctx = ring->last_context;
2399 if (request->ctx)
2400 i915_gem_context_reference(request->ctx);
2401 }
0e50e96b 2402
673a394b 2403 request->emitted_jiffies = jiffies;
852835f3 2404 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2405 request->file_priv = NULL;
852835f3 2406
db53a302
CW
2407 if (file) {
2408 struct drm_i915_file_private *file_priv = file->driver_priv;
2409
1c25595f 2410 spin_lock(&file_priv->mm.lock);
f787a5f5 2411 request->file_priv = file_priv;
b962442e 2412 list_add_tail(&request->client_list,
f787a5f5 2413 &file_priv->mm.request_list);
1c25595f 2414 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2415
2416 request->pid = get_pid(task_pid(current));
b962442e 2417 }
673a394b 2418
74328ee5 2419 trace_i915_gem_request_add(request);
6259cead 2420 ring->outstanding_lazy_request = NULL;
db53a302 2421
87255483 2422 i915_queue_hangcheck(ring->dev);
10cd45b6 2423
87255483
DV
2424 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2425 queue_delayed_work(dev_priv->wq,
2426 &dev_priv->mm.retire_work,
2427 round_jiffies_up_relative(HZ));
2428 intel_mark_busy(dev_priv->dev);
cc889e0f 2429
3cce469c 2430 return 0;
673a394b
EA
2431}
2432
f787a5f5
CW
2433static inline void
2434i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2435{
1c25595f 2436 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2437
1c25595f
CW
2438 if (!file_priv)
2439 return;
1c5d22f7 2440
1c25595f 2441 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2442 list_del(&request->client_list);
2443 request->file_priv = NULL;
1c25595f 2444 spin_unlock(&file_priv->mm.lock);
673a394b 2445}
673a394b 2446
939fd762 2447static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2448 const struct intel_context *ctx)
be62acb4 2449{
44e2c070 2450 unsigned long elapsed;
be62acb4 2451
44e2c070
MK
2452 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2453
2454 if (ctx->hang_stats.banned)
be62acb4
MK
2455 return true;
2456
676fa572
CW
2457 if (ctx->hang_stats.ban_period_seconds &&
2458 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2459 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2460 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2461 return true;
88b4aa87
MK
2462 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2463 if (i915_stop_ring_allow_warn(dev_priv))
2464 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2465 return true;
3fac8978 2466 }
be62acb4
MK
2467 }
2468
2469 return false;
2470}
2471
939fd762 2472static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2473 struct intel_context *ctx,
b6b0fac0 2474 const bool guilty)
aa60c664 2475{
44e2c070
MK
2476 struct i915_ctx_hang_stats *hs;
2477
2478 if (WARN_ON(!ctx))
2479 return;
aa60c664 2480
44e2c070
MK
2481 hs = &ctx->hang_stats;
2482
2483 if (guilty) {
939fd762 2484 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2485 hs->batch_active++;
2486 hs->guilty_ts = get_seconds();
2487 } else {
2488 hs->batch_pending++;
aa60c664
MK
2489 }
2490}
2491
0e50e96b
MK
2492static void i915_gem_free_request(struct drm_i915_gem_request *request)
2493{
2494 list_del(&request->list);
2495 i915_gem_request_remove_from_client(request);
2496
071c92de
MK
2497 put_pid(request->pid);
2498
abfe262a
JH
2499 i915_gem_request_unreference(request);
2500}
2501
2502void i915_gem_request_free(struct kref *req_ref)
2503{
2504 struct drm_i915_gem_request *req = container_of(req_ref,
2505 typeof(*req), ref);
2506 struct intel_context *ctx = req->ctx;
2507
0794aed3
TD
2508 if (ctx) {
2509 if (i915.enable_execlists) {
abfe262a 2510 struct intel_engine_cs *ring = req->ring;
0e50e96b 2511
0794aed3
TD
2512 if (ctx != ring->default_context)
2513 intel_lr_context_unpin(ring, ctx);
2514 }
abfe262a 2515
dcb4c12a
OM
2516 i915_gem_context_unreference(ctx);
2517 }
abfe262a
JH
2518
2519 kfree(req);
0e50e96b
MK
2520}
2521
8d9fc7fd 2522struct drm_i915_gem_request *
a4872ba6 2523i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2524{
4db080f9
CW
2525 struct drm_i915_gem_request *request;
2526
2527 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2528 if (i915_gem_request_completed(request, false))
4db080f9 2529 continue;
aa60c664 2530
b6b0fac0 2531 return request;
4db080f9 2532 }
b6b0fac0
MK
2533
2534 return NULL;
2535}
2536
2537static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2538 struct intel_engine_cs *ring)
b6b0fac0
MK
2539{
2540 struct drm_i915_gem_request *request;
2541 bool ring_hung;
2542
8d9fc7fd 2543 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2544
2545 if (request == NULL)
2546 return;
2547
2548 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2549
939fd762 2550 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2551
2552 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2553 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2554}
aa60c664 2555
4db080f9 2556static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2557 struct intel_engine_cs *ring)
4db080f9 2558{
dfaae392 2559 while (!list_empty(&ring->active_list)) {
05394f39 2560 struct drm_i915_gem_object *obj;
9375e446 2561
05394f39
CW
2562 obj = list_first_entry(&ring->active_list,
2563 struct drm_i915_gem_object,
2564 ring_list);
9375e446 2565
05394f39 2566 i915_gem_object_move_to_inactive(obj);
673a394b 2567 }
1d62beea 2568
dcb4c12a
OM
2569 /*
2570 * Clear the execlists queue up before freeing the requests, as those
2571 * are the ones that keep the context and ringbuffer backing objects
2572 * pinned in place.
2573 */
2574 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2575 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2576
2577 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2578 struct drm_i915_gem_request,
dcb4c12a
OM
2579 execlist_link);
2580 list_del(&submit_req->execlist_link);
2581 intel_runtime_pm_put(dev_priv);
1197b4f2
MK
2582
2583 if (submit_req->ctx != ring->default_context)
2584 intel_lr_context_unpin(ring, submit_req->ctx);
2585
b3a38998 2586 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2587 }
2588
1d62beea
BW
2589 /*
2590 * We must free the requests after all the corresponding objects have
2591 * been moved off active lists. Which is the same order as the normal
2592 * retire_requests function does. This is important if object hold
2593 * implicit references on things like e.g. ppgtt address spaces through
2594 * the request.
2595 */
2596 while (!list_empty(&ring->request_list)) {
2597 struct drm_i915_gem_request *request;
2598
2599 request = list_first_entry(&ring->request_list,
2600 struct drm_i915_gem_request,
2601 list);
2602
2603 i915_gem_free_request(request);
2604 }
e3efda49 2605
6259cead
JH
2606 /* This may not have been flushed before the reset, so clean it now */
2607 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2608}
2609
19b2dbde 2610void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2611{
2612 struct drm_i915_private *dev_priv = dev->dev_private;
2613 int i;
2614
4b9de737 2615 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2616 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2617
94a335db
DV
2618 /*
2619 * Commit delayed tiling changes if we have an object still
2620 * attached to the fence, otherwise just clear the fence.
2621 */
2622 if (reg->obj) {
2623 i915_gem_object_update_fence(reg->obj, reg,
2624 reg->obj->tiling_mode);
2625 } else {
2626 i915_gem_write_fence(dev, i, NULL);
2627 }
312817a3
CW
2628 }
2629}
2630
069efc1d 2631void i915_gem_reset(struct drm_device *dev)
673a394b 2632{
77f01230 2633 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2634 struct intel_engine_cs *ring;
1ec14ad3 2635 int i;
673a394b 2636
4db080f9
CW
2637 /*
2638 * Before we free the objects from the requests, we need to inspect
2639 * them for finding the guilty party. As the requests only borrow
2640 * their reference to the objects, the inspection must be done first.
2641 */
2642 for_each_ring(ring, dev_priv, i)
2643 i915_gem_reset_ring_status(dev_priv, ring);
2644
b4519513 2645 for_each_ring(ring, dev_priv, i)
4db080f9 2646 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2647
acce9ffa
BW
2648 i915_gem_context_reset(dev);
2649
19b2dbde 2650 i915_gem_restore_fences(dev);
673a394b
EA
2651}
2652
2653/**
2654 * This function clears the request list as sequence numbers are passed.
2655 */
1cf0ba14 2656void
a4872ba6 2657i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2658{
db53a302 2659 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2660
832a3aad
CW
2661 /* Retire requests first as we use it above for the early return.
2662 * If we retire requests last, we may use a later seqno and so clear
2663 * the requests lists without clearing the active list, leading to
2664 * confusion.
e9103038 2665 */
852835f3 2666 while (!list_empty(&ring->request_list)) {
673a394b 2667 struct drm_i915_gem_request *request;
673a394b 2668
852835f3 2669 request = list_first_entry(&ring->request_list,
673a394b
EA
2670 struct drm_i915_gem_request,
2671 list);
673a394b 2672
1b5a433a 2673 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2674 break;
2675
74328ee5 2676 trace_i915_gem_request_retire(request);
48e29f55 2677
a71d8d94
CW
2678 /* We know the GPU must have read the request to have
2679 * sent us the seqno + interrupt, so use the position
2680 * of tail of the request to update the last known position
2681 * of the GPU head.
2682 */
98e1bd4a 2683 request->ringbuf->last_retired_head = request->postfix;
b84d5f0c 2684
0e50e96b 2685 i915_gem_free_request(request);
b84d5f0c 2686 }
673a394b 2687
832a3aad
CW
2688 /* Move any buffers on the active list that are no longer referenced
2689 * by the ringbuffer to the flushing/inactive lists as appropriate,
2690 * before we free the context associated with the requests.
2691 */
2692 while (!list_empty(&ring->active_list)) {
2693 struct drm_i915_gem_object *obj;
2694
2695 obj = list_first_entry(&ring->active_list,
2696 struct drm_i915_gem_object,
2697 ring_list);
2698
2699 if (!i915_gem_request_completed(obj->last_read_req, true))
2700 break;
2701
2702 i915_gem_object_move_to_inactive(obj);
2703 }
2704
581c26e8
JH
2705 if (unlikely(ring->trace_irq_req &&
2706 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2707 ring->irq_put(ring);
581c26e8 2708 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2709 }
23bc5982 2710
db53a302 2711 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2712}
2713
b29c19b6 2714bool
b09a1fec
CW
2715i915_gem_retire_requests(struct drm_device *dev)
2716{
3e31c6c0 2717 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2718 struct intel_engine_cs *ring;
b29c19b6 2719 bool idle = true;
1ec14ad3 2720 int i;
b09a1fec 2721
b29c19b6 2722 for_each_ring(ring, dev_priv, i) {
b4519513 2723 i915_gem_retire_requests_ring(ring);
b29c19b6 2724 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2725 if (i915.enable_execlists) {
2726 unsigned long flags;
2727
2728 spin_lock_irqsave(&ring->execlist_lock, flags);
2729 idle &= list_empty(&ring->execlist_queue);
2730 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2731
2732 intel_execlists_retire_requests(ring);
2733 }
b29c19b6
CW
2734 }
2735
2736 if (idle)
2737 mod_delayed_work(dev_priv->wq,
2738 &dev_priv->mm.idle_work,
2739 msecs_to_jiffies(100));
2740
2741 return idle;
b09a1fec
CW
2742}
2743
75ef9da2 2744static void
673a394b
EA
2745i915_gem_retire_work_handler(struct work_struct *work)
2746{
b29c19b6
CW
2747 struct drm_i915_private *dev_priv =
2748 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2749 struct drm_device *dev = dev_priv->dev;
0a58705b 2750 bool idle;
673a394b 2751
891b48cf 2752 /* Come back later if the device is busy... */
b29c19b6
CW
2753 idle = false;
2754 if (mutex_trylock(&dev->struct_mutex)) {
2755 idle = i915_gem_retire_requests(dev);
2756 mutex_unlock(&dev->struct_mutex);
673a394b 2757 }
b29c19b6 2758 if (!idle)
bcb45086
CW
2759 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2760 round_jiffies_up_relative(HZ));
b29c19b6 2761}
0a58705b 2762
b29c19b6
CW
2763static void
2764i915_gem_idle_work_handler(struct work_struct *work)
2765{
2766 struct drm_i915_private *dev_priv =
2767 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2768
2769 intel_mark_idle(dev_priv->dev);
673a394b
EA
2770}
2771
30dfebf3
DV
2772/**
2773 * Ensures that an object will eventually get non-busy by flushing any required
2774 * write domains, emitting any outstanding lazy request and retiring and
2775 * completed requests.
2776 */
2777static int
2778i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2779{
41c52415 2780 struct intel_engine_cs *ring;
30dfebf3
DV
2781 int ret;
2782
2783 if (obj->active) {
41c52415
JH
2784 ring = i915_gem_request_get_ring(obj->last_read_req);
2785
b6660d59 2786 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2787 if (ret)
2788 return ret;
2789
41c52415 2790 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2791 }
2792
2793 return 0;
2794}
2795
23ba4fd0
BW
2796/**
2797 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2798 * @DRM_IOCTL_ARGS: standard ioctl arguments
2799 *
2800 * Returns 0 if successful, else an error is returned with the remaining time in
2801 * the timeout parameter.
2802 * -ETIME: object is still busy after timeout
2803 * -ERESTARTSYS: signal interrupted the wait
2804 * -ENONENT: object doesn't exist
2805 * Also possible, but rare:
2806 * -EAGAIN: GPU wedged
2807 * -ENOMEM: damn
2808 * -ENODEV: Internal IRQ fail
2809 * -E?: The add request failed
2810 *
2811 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2812 * non-zero timeout parameter the wait ioctl will wait for the given number of
2813 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2814 * without holding struct_mutex the object may become re-busied before this
2815 * function completes. A similar but shorter * race condition exists in the busy
2816 * ioctl
2817 */
2818int
2819i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2820{
3e31c6c0 2821 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2822 struct drm_i915_gem_wait *args = data;
2823 struct drm_i915_gem_object *obj;
ff865885 2824 struct drm_i915_gem_request *req;
f69061be 2825 unsigned reset_counter;
23ba4fd0
BW
2826 int ret = 0;
2827
11b5d511
DV
2828 if (args->flags != 0)
2829 return -EINVAL;
2830
23ba4fd0
BW
2831 ret = i915_mutex_lock_interruptible(dev);
2832 if (ret)
2833 return ret;
2834
2835 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2836 if (&obj->base == NULL) {
2837 mutex_unlock(&dev->struct_mutex);
2838 return -ENOENT;
2839 }
2840
30dfebf3
DV
2841 /* Need to make sure the object gets inactive eventually. */
2842 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2843 if (ret)
2844 goto out;
2845
97b2a6a1
JH
2846 if (!obj->active || !obj->last_read_req)
2847 goto out;
23ba4fd0 2848
ff865885 2849 req = obj->last_read_req;
23ba4fd0 2850
23ba4fd0 2851 /* Do this after OLR check to make sure we make forward progress polling
762e4583 2852 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 2853 */
762e4583 2854 if (args->timeout_ns == 0) {
23ba4fd0
BW
2855 ret = -ETIME;
2856 goto out;
2857 }
2858
2859 drm_gem_object_unreference(&obj->base);
f69061be 2860 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2861 i915_gem_request_reference(req);
23ba4fd0
BW
2862 mutex_unlock(&dev->struct_mutex);
2863
762e4583
CW
2864 ret = __i915_wait_request(req, reset_counter, true,
2865 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
9c654818 2866 file->driver_priv);
ff865885
JH
2867 mutex_lock(&dev->struct_mutex);
2868 i915_gem_request_unreference(req);
2869 mutex_unlock(&dev->struct_mutex);
2870 return ret;
23ba4fd0
BW
2871
2872out:
2873 drm_gem_object_unreference(&obj->base);
2874 mutex_unlock(&dev->struct_mutex);
2875 return ret;
2876}
2877
5816d648
BW
2878/**
2879 * i915_gem_object_sync - sync an object to a ring.
2880 *
2881 * @obj: object which may be in use on another ring.
2882 * @to: ring we wish to use the object on. May be NULL.
2883 *
2884 * This code is meant to abstract object synchronization with the GPU.
2885 * Calling with NULL implies synchronizing the object with the CPU
2886 * rather than a particular GPU ring.
2887 *
2888 * Returns 0 if successful, else propagates up the lower layer error.
2889 */
2911a35b
BW
2890int
2891i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2892 struct intel_engine_cs *to)
2911a35b 2893{
41c52415 2894 struct intel_engine_cs *from;
2911a35b
BW
2895 u32 seqno;
2896 int ret, idx;
2897
41c52415
JH
2898 from = i915_gem_request_get_ring(obj->last_read_req);
2899
2911a35b
BW
2900 if (from == NULL || to == from)
2901 return 0;
2902
5816d648 2903 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2904 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2905
2906 idx = intel_ring_sync_index(from, to);
2907
97b2a6a1 2908 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2909 /* Optimization: Avoid semaphore sync when we are sure we already
2910 * waited for an object with higher seqno */
ebc348b2 2911 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2912 return 0;
2913
b6660d59 2914 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
2915 if (ret)
2916 return ret;
2911a35b 2917
74328ee5 2918 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 2919 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2920 if (!ret)
97b2a6a1 2921 /* We use last_read_req because sync_to()
7b01e260
MK
2922 * might have just caused seqno wrap under
2923 * the radar.
2924 */
97b2a6a1
JH
2925 from->semaphore.sync_seqno[idx] =
2926 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 2927
e3a5a225 2928 return ret;
2911a35b
BW
2929}
2930
b5ffc9bc
CW
2931static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2932{
2933 u32 old_write_domain, old_read_domains;
2934
b5ffc9bc
CW
2935 /* Force a pagefault for domain tracking on next user access */
2936 i915_gem_release_mmap(obj);
2937
b97c3d9c
KP
2938 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2939 return;
2940
97c809fd
CW
2941 /* Wait for any direct GTT access to complete */
2942 mb();
2943
b5ffc9bc
CW
2944 old_read_domains = obj->base.read_domains;
2945 old_write_domain = obj->base.write_domain;
2946
2947 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2948 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2949
2950 trace_i915_gem_object_change_domain(obj,
2951 old_read_domains,
2952 old_write_domain);
2953}
2954
07fe0b12 2955int i915_vma_unbind(struct i915_vma *vma)
673a394b 2956{
07fe0b12 2957 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2958 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2959 int ret;
673a394b 2960
07fe0b12 2961 if (list_empty(&vma->vma_link))
673a394b
EA
2962 return 0;
2963
0ff501cb
DV
2964 if (!drm_mm_node_allocated(&vma->node)) {
2965 i915_gem_vma_destroy(vma);
0ff501cb
DV
2966 return 0;
2967 }
433544bd 2968
d7f46fc4 2969 if (vma->pin_count)
31d8d651 2970 return -EBUSY;
673a394b 2971
c4670ad0
CW
2972 BUG_ON(obj->pages == NULL);
2973
a8198eea 2974 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2975 if (ret)
a8198eea
CW
2976 return ret;
2977 /* Continue on if we fail due to EIO, the GPU is hung so we
2978 * should be safe and we need to cleanup or else we might
2979 * cause memory corruption through use-after-free.
2980 */
2981
fe14d5f4
TU
2982 if (i915_is_ggtt(vma->vm) &&
2983 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 2984 i915_gem_object_finish_gtt(obj);
5323fd04 2985
8b1bc9b4
DV
2986 /* release the fence reg _after_ flushing */
2987 ret = i915_gem_object_put_fence(obj);
2988 if (ret)
2989 return ret;
2990 }
96b47b65 2991
07fe0b12 2992 trace_i915_vma_unbind(vma);
db53a302 2993
6f65e29a
BW
2994 vma->unbind_vma(vma);
2995
64bf9303 2996 list_del_init(&vma->mm_list);
fe14d5f4
TU
2997 if (i915_is_ggtt(vma->vm)) {
2998 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2999 obj->map_and_fenceable = false;
3000 } else if (vma->ggtt_view.pages) {
3001 sg_free_table(vma->ggtt_view.pages);
3002 kfree(vma->ggtt_view.pages);
3003 vma->ggtt_view.pages = NULL;
3004 }
3005 }
673a394b 3006
2f633156
BW
3007 drm_mm_remove_node(&vma->node);
3008 i915_gem_vma_destroy(vma);
3009
3010 /* Since the unbound list is global, only move to that list if
b93dab6e 3011 * no more VMAs exist. */
9490edb5 3012 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3013 /* Throw away the active reference before
3014 * moving to the unbound list. */
3015 i915_gem_object_retire(obj);
3016
9490edb5 3017 i915_gem_gtt_finish_object(obj);
2f633156 3018 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3019 }
673a394b 3020
70903c3b
CW
3021 /* And finally now the object is completely decoupled from this vma,
3022 * we can drop its hold on the backing storage and allow it to be
3023 * reaped by the shrinker.
3024 */
3025 i915_gem_object_unpin_pages(obj);
3026
88241785 3027 return 0;
54cf91dc
CW
3028}
3029
b2da9fe5 3030int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3031{
3e31c6c0 3032 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3033 struct intel_engine_cs *ring;
1ec14ad3 3034 int ret, i;
4df2faf4 3035
4df2faf4 3036 /* Flush everything onto the inactive list. */
b4519513 3037 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3038 if (!i915.enable_execlists) {
3039 ret = i915_switch_context(ring, ring->default_context);
3040 if (ret)
3041 return ret;
3042 }
b6c7488d 3043
3e960501 3044 ret = intel_ring_idle(ring);
1ec14ad3
CW
3045 if (ret)
3046 return ret;
3047 }
4df2faf4 3048
8a1a49f9 3049 return 0;
4df2faf4
DV
3050}
3051
9ce079e4
CW
3052static void i965_write_fence_reg(struct drm_device *dev, int reg,
3053 struct drm_i915_gem_object *obj)
de151cf6 3054{
3e31c6c0 3055 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3056 int fence_reg;
3057 int fence_pitch_shift;
de151cf6 3058
56c844e5
ID
3059 if (INTEL_INFO(dev)->gen >= 6) {
3060 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3061 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3062 } else {
3063 fence_reg = FENCE_REG_965_0;
3064 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3065 }
3066
d18b9619
CW
3067 fence_reg += reg * 8;
3068
3069 /* To w/a incoherency with non-atomic 64-bit register updates,
3070 * we split the 64-bit update into two 32-bit writes. In order
3071 * for a partial fence not to be evaluated between writes, we
3072 * precede the update with write to turn off the fence register,
3073 * and only enable the fence as the last step.
3074 *
3075 * For extra levels of paranoia, we make sure each step lands
3076 * before applying the next step.
3077 */
3078 I915_WRITE(fence_reg, 0);
3079 POSTING_READ(fence_reg);
3080
9ce079e4 3081 if (obj) {
f343c5f6 3082 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3083 uint64_t val;
de151cf6 3084
af1a7301
BP
3085 /* Adjust fence size to match tiled area */
3086 if (obj->tiling_mode != I915_TILING_NONE) {
3087 uint32_t row_size = obj->stride *
3088 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3089 size = (size / row_size) * row_size;
3090 }
3091
f343c5f6 3092 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3093 0xfffff000) << 32;
f343c5f6 3094 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3095 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3096 if (obj->tiling_mode == I915_TILING_Y)
3097 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3098 val |= I965_FENCE_REG_VALID;
c6642782 3099
d18b9619
CW
3100 I915_WRITE(fence_reg + 4, val >> 32);
3101 POSTING_READ(fence_reg + 4);
3102
3103 I915_WRITE(fence_reg + 0, val);
3104 POSTING_READ(fence_reg);
3105 } else {
3106 I915_WRITE(fence_reg + 4, 0);
3107 POSTING_READ(fence_reg + 4);
3108 }
de151cf6
JB
3109}
3110
9ce079e4
CW
3111static void i915_write_fence_reg(struct drm_device *dev, int reg,
3112 struct drm_i915_gem_object *obj)
de151cf6 3113{
3e31c6c0 3114 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3115 u32 val;
de151cf6 3116
9ce079e4 3117 if (obj) {
f343c5f6 3118 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3119 int pitch_val;
3120 int tile_width;
c6642782 3121
f343c5f6 3122 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3123 (size & -size) != size ||
f343c5f6
BW
3124 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3125 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3126 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3127
9ce079e4
CW
3128 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3129 tile_width = 128;
3130 else
3131 tile_width = 512;
3132
3133 /* Note: pitch better be a power of two tile widths */
3134 pitch_val = obj->stride / tile_width;
3135 pitch_val = ffs(pitch_val) - 1;
3136
f343c5f6 3137 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3138 if (obj->tiling_mode == I915_TILING_Y)
3139 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3140 val |= I915_FENCE_SIZE_BITS(size);
3141 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3142 val |= I830_FENCE_REG_VALID;
3143 } else
3144 val = 0;
3145
3146 if (reg < 8)
3147 reg = FENCE_REG_830_0 + reg * 4;
3148 else
3149 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3150
3151 I915_WRITE(reg, val);
3152 POSTING_READ(reg);
de151cf6
JB
3153}
3154
9ce079e4
CW
3155static void i830_write_fence_reg(struct drm_device *dev, int reg,
3156 struct drm_i915_gem_object *obj)
de151cf6 3157{
3e31c6c0 3158 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3159 uint32_t val;
de151cf6 3160
9ce079e4 3161 if (obj) {
f343c5f6 3162 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3163 uint32_t pitch_val;
de151cf6 3164
f343c5f6 3165 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3166 (size & -size) != size ||
f343c5f6
BW
3167 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3168 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3169 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3170
9ce079e4
CW
3171 pitch_val = obj->stride / 128;
3172 pitch_val = ffs(pitch_val) - 1;
de151cf6 3173
f343c5f6 3174 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3175 if (obj->tiling_mode == I915_TILING_Y)
3176 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3177 val |= I830_FENCE_SIZE_BITS(size);
3178 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3179 val |= I830_FENCE_REG_VALID;
3180 } else
3181 val = 0;
c6642782 3182
9ce079e4
CW
3183 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3184 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3185}
3186
d0a57789
CW
3187inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3188{
3189 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3190}
3191
9ce079e4
CW
3192static void i915_gem_write_fence(struct drm_device *dev, int reg,
3193 struct drm_i915_gem_object *obj)
3194{
d0a57789
CW
3195 struct drm_i915_private *dev_priv = dev->dev_private;
3196
3197 /* Ensure that all CPU reads are completed before installing a fence
3198 * and all writes before removing the fence.
3199 */
3200 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3201 mb();
3202
94a335db
DV
3203 WARN(obj && (!obj->stride || !obj->tiling_mode),
3204 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3205 obj->stride, obj->tiling_mode);
3206
ce38ab05
RV
3207 if (IS_GEN2(dev))
3208 i830_write_fence_reg(dev, reg, obj);
3209 else if (IS_GEN3(dev))
3210 i915_write_fence_reg(dev, reg, obj);
3211 else if (INTEL_INFO(dev)->gen >= 4)
3212 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3213
3214 /* And similarly be paranoid that no direct access to this region
3215 * is reordered to before the fence is installed.
3216 */
3217 if (i915_gem_object_needs_mb(obj))
3218 mb();
de151cf6
JB
3219}
3220
61050808
CW
3221static inline int fence_number(struct drm_i915_private *dev_priv,
3222 struct drm_i915_fence_reg *fence)
3223{
3224 return fence - dev_priv->fence_regs;
3225}
3226
3227static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3228 struct drm_i915_fence_reg *fence,
3229 bool enable)
3230{
2dc8aae0 3231 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3232 int reg = fence_number(dev_priv, fence);
3233
3234 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3235
3236 if (enable) {
46a0b638 3237 obj->fence_reg = reg;
61050808
CW
3238 fence->obj = obj;
3239 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3240 } else {
3241 obj->fence_reg = I915_FENCE_REG_NONE;
3242 fence->obj = NULL;
3243 list_del_init(&fence->lru_list);
3244 }
94a335db 3245 obj->fence_dirty = false;
61050808
CW
3246}
3247
d9e86c0e 3248static int
d0a57789 3249i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3250{
97b2a6a1 3251 if (obj->last_fenced_req) {
a4b3a571 3252 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3253 if (ret)
3254 return ret;
d9e86c0e 3255
97b2a6a1 3256 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3257 }
3258
3259 return 0;
3260}
3261
3262int
3263i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3264{
61050808 3265 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3266 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3267 int ret;
3268
d0a57789 3269 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3270 if (ret)
3271 return ret;
3272
61050808
CW
3273 if (obj->fence_reg == I915_FENCE_REG_NONE)
3274 return 0;
d9e86c0e 3275
f9c513e9
CW
3276 fence = &dev_priv->fence_regs[obj->fence_reg];
3277
aff10b30
DV
3278 if (WARN_ON(fence->pin_count))
3279 return -EBUSY;
3280
61050808 3281 i915_gem_object_fence_lost(obj);
f9c513e9 3282 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3283
3284 return 0;
3285}
3286
3287static struct drm_i915_fence_reg *
a360bb1a 3288i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3289{
ae3db24a 3290 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3291 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3292 int i;
ae3db24a
DV
3293
3294 /* First try to find a free reg */
d9e86c0e 3295 avail = NULL;
ae3db24a
DV
3296 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3297 reg = &dev_priv->fence_regs[i];
3298 if (!reg->obj)
d9e86c0e 3299 return reg;
ae3db24a 3300
1690e1eb 3301 if (!reg->pin_count)
d9e86c0e 3302 avail = reg;
ae3db24a
DV
3303 }
3304
d9e86c0e 3305 if (avail == NULL)
5dce5b93 3306 goto deadlock;
ae3db24a
DV
3307
3308 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3309 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3310 if (reg->pin_count)
ae3db24a
DV
3311 continue;
3312
8fe301ad 3313 return reg;
ae3db24a
DV
3314 }
3315
5dce5b93
CW
3316deadlock:
3317 /* Wait for completion of pending flips which consume fences */
3318 if (intel_has_pending_fb_unpin(dev))
3319 return ERR_PTR(-EAGAIN);
3320
3321 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3322}
3323
de151cf6 3324/**
9a5a53b3 3325 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3326 * @obj: object to map through a fence reg
3327 *
3328 * When mapping objects through the GTT, userspace wants to be able to write
3329 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3330 * This function walks the fence regs looking for a free one for @obj,
3331 * stealing one if it can't find any.
3332 *
3333 * It then sets up the reg based on the object's properties: address, pitch
3334 * and tiling format.
9a5a53b3
CW
3335 *
3336 * For an untiled surface, this removes any existing fence.
de151cf6 3337 */
8c4b8c3f 3338int
06d98131 3339i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3340{
05394f39 3341 struct drm_device *dev = obj->base.dev;
79e53945 3342 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3343 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3344 struct drm_i915_fence_reg *reg;
ae3db24a 3345 int ret;
de151cf6 3346
14415745
CW
3347 /* Have we updated the tiling parameters upon the object and so
3348 * will need to serialise the write to the associated fence register?
3349 */
5d82e3e6 3350 if (obj->fence_dirty) {
d0a57789 3351 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3352 if (ret)
3353 return ret;
3354 }
9a5a53b3 3355
d9e86c0e 3356 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3357 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3358 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3359 if (!obj->fence_dirty) {
14415745
CW
3360 list_move_tail(&reg->lru_list,
3361 &dev_priv->mm.fence_list);
3362 return 0;
3363 }
3364 } else if (enable) {
e6a84468
CW
3365 if (WARN_ON(!obj->map_and_fenceable))
3366 return -EINVAL;
3367
14415745 3368 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3369 if (IS_ERR(reg))
3370 return PTR_ERR(reg);
d9e86c0e 3371
14415745
CW
3372 if (reg->obj) {
3373 struct drm_i915_gem_object *old = reg->obj;
3374
d0a57789 3375 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3376 if (ret)
3377 return ret;
3378
14415745 3379 i915_gem_object_fence_lost(old);
29c5a587 3380 }
14415745 3381 } else
a09ba7fa 3382 return 0;
a09ba7fa 3383
14415745 3384 i915_gem_object_update_fence(obj, reg, enable);
14415745 3385
9ce079e4 3386 return 0;
de151cf6
JB
3387}
3388
4144f9b5 3389static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3390 unsigned long cache_level)
3391{
4144f9b5 3392 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3393 struct drm_mm_node *other;
3394
4144f9b5
CW
3395 /*
3396 * On some machines we have to be careful when putting differing types
3397 * of snoopable memory together to avoid the prefetcher crossing memory
3398 * domains and dying. During vm initialisation, we decide whether or not
3399 * these constraints apply and set the drm_mm.color_adjust
3400 * appropriately.
42d6ab48 3401 */
4144f9b5 3402 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3403 return true;
3404
c6cfb325 3405 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3406 return true;
3407
3408 if (list_empty(&gtt_space->node_list))
3409 return true;
3410
3411 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3412 if (other->allocated && !other->hole_follows && other->color != cache_level)
3413 return false;
3414
3415 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3416 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3417 return false;
3418
3419 return true;
3420}
3421
673a394b
EA
3422/**
3423 * Finds free space in the GTT aperture and binds the object there.
3424 */
262de145 3425static struct i915_vma *
07fe0b12
BW
3426i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3427 struct i915_address_space *vm,
ec7adb6e 3428 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3429 unsigned alignment,
ec7adb6e 3430 uint64_t flags)
673a394b 3431{
05394f39 3432 struct drm_device *dev = obj->base.dev;
3e31c6c0 3433 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3434 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3435 unsigned long start =
3436 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3437 unsigned long end =
1ec9e26d 3438 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3439 struct i915_vma *vma;
07f73f69 3440 int ret;
673a394b 3441
ec7adb6e
JL
3442 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3443 return ERR_PTR(-EINVAL);
3444
e28f8711
CW
3445 fence_size = i915_gem_get_gtt_size(dev,
3446 obj->base.size,
3447 obj->tiling_mode);
3448 fence_alignment = i915_gem_get_gtt_alignment(dev,
3449 obj->base.size,
d865110c 3450 obj->tiling_mode, true);
e28f8711 3451 unfenced_alignment =
d865110c 3452 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3453 obj->base.size,
3454 obj->tiling_mode, false);
a00b10c3 3455
673a394b 3456 if (alignment == 0)
1ec9e26d 3457 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3458 unfenced_alignment;
1ec9e26d 3459 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3460 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3461 return ERR_PTR(-EINVAL);
673a394b
EA
3462 }
3463
1ec9e26d 3464 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3465
654fc607
CW
3466 /* If the object is bigger than the entire aperture, reject it early
3467 * before evicting everything in a vain attempt to find space.
3468 */
d23db88c
CW
3469 if (obj->base.size > end) {
3470 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3471 obj->base.size,
1ec9e26d 3472 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3473 end);
262de145 3474 return ERR_PTR(-E2BIG);
654fc607
CW
3475 }
3476
37e680a1 3477 ret = i915_gem_object_get_pages(obj);
6c085a72 3478 if (ret)
262de145 3479 return ERR_PTR(ret);
6c085a72 3480
fbdda6fb
CW
3481 i915_gem_object_pin_pages(obj);
3482
ec7adb6e
JL
3483 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3484 i915_gem_obj_lookup_or_create_vma(obj, vm);
3485
262de145 3486 if (IS_ERR(vma))
bc6bc15b 3487 goto err_unpin;
2f633156 3488
0a9ae0d7 3489search_free:
07fe0b12 3490 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3491 size, alignment,
d23db88c
CW
3492 obj->cache_level,
3493 start, end,
62347f9e
LK
3494 DRM_MM_SEARCH_DEFAULT,
3495 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3496 if (ret) {
f6cd1f15 3497 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3498 obj->cache_level,
3499 start, end,
3500 flags);
dc9dd7a2
CW
3501 if (ret == 0)
3502 goto search_free;
9731129c 3503
bc6bc15b 3504 goto err_free_vma;
673a394b 3505 }
4144f9b5 3506 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3507 ret = -EINVAL;
bc6bc15b 3508 goto err_remove_node;
673a394b
EA
3509 }
3510
74163907 3511 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3512 if (ret)
bc6bc15b 3513 goto err_remove_node;
673a394b 3514
678d96fb
BW
3515 /* allocate before insert / bind */
3516 if (vma->vm->allocate_va_range) {
72744cb1
MT
3517 trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3518 VM_TO_TRACE_NAME(vma->vm));
678d96fb
BW
3519 ret = vma->vm->allocate_va_range(vma->vm,
3520 vma->node.start,
3521 vma->node.size);
3522 if (ret)
3523 goto err_remove_node;
3524 }
3525
fe14d5f4
TU
3526 trace_i915_vma_bind(vma, flags);
3527 ret = i915_vma_bind(vma, obj->cache_level,
3528 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3529 if (ret)
3530 goto err_finish_gtt;
3531
35c20a60 3532 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3533 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3534
262de145 3535 return vma;
2f633156 3536
fe14d5f4
TU
3537err_finish_gtt:
3538 i915_gem_gtt_finish_object(obj);
bc6bc15b 3539err_remove_node:
6286ef9b 3540 drm_mm_remove_node(&vma->node);
bc6bc15b 3541err_free_vma:
2f633156 3542 i915_gem_vma_destroy(vma);
262de145 3543 vma = ERR_PTR(ret);
bc6bc15b 3544err_unpin:
2f633156 3545 i915_gem_object_unpin_pages(obj);
262de145 3546 return vma;
673a394b
EA
3547}
3548
000433b6 3549bool
2c22569b
CW
3550i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3551 bool force)
673a394b 3552{
673a394b
EA
3553 /* If we don't have a page list set up, then we're not pinned
3554 * to GPU, and we can ignore the cache flush because it'll happen
3555 * again at bind time.
3556 */
05394f39 3557 if (obj->pages == NULL)
000433b6 3558 return false;
673a394b 3559
769ce464
ID
3560 /*
3561 * Stolen memory is always coherent with the GPU as it is explicitly
3562 * marked as wc by the system, or the system is cache-coherent.
3563 */
6a2c4232 3564 if (obj->stolen || obj->phys_handle)
000433b6 3565 return false;
769ce464 3566
9c23f7fc
CW
3567 /* If the GPU is snooping the contents of the CPU cache,
3568 * we do not need to manually clear the CPU cache lines. However,
3569 * the caches are only snooped when the render cache is
3570 * flushed/invalidated. As we always have to emit invalidations
3571 * and flushes when moving into and out of the RENDER domain, correct
3572 * snooping behaviour occurs naturally as the result of our domain
3573 * tracking.
3574 */
0f71979a
CW
3575 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3576 obj->cache_dirty = true;
000433b6 3577 return false;
0f71979a 3578 }
9c23f7fc 3579
1c5d22f7 3580 trace_i915_gem_object_clflush(obj);
9da3da66 3581 drm_clflush_sg(obj->pages);
0f71979a 3582 obj->cache_dirty = false;
000433b6
CW
3583
3584 return true;
e47c68e9
EA
3585}
3586
3587/** Flushes the GTT write domain for the object if it's dirty. */
3588static void
05394f39 3589i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3590{
1c5d22f7
CW
3591 uint32_t old_write_domain;
3592
05394f39 3593 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3594 return;
3595
63256ec5 3596 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3597 * to it immediately go to main memory as far as we know, so there's
3598 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3599 *
3600 * However, we do have to enforce the order so that all writes through
3601 * the GTT land before any writes to the device, such as updates to
3602 * the GATT itself.
e47c68e9 3603 */
63256ec5
CW
3604 wmb();
3605
05394f39
CW
3606 old_write_domain = obj->base.write_domain;
3607 obj->base.write_domain = 0;
1c5d22f7 3608
f99d7069
DV
3609 intel_fb_obj_flush(obj, false);
3610
1c5d22f7 3611 trace_i915_gem_object_change_domain(obj,
05394f39 3612 obj->base.read_domains,
1c5d22f7 3613 old_write_domain);
e47c68e9
EA
3614}
3615
3616/** Flushes the CPU write domain for the object if it's dirty. */
3617static void
e62b59e4 3618i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3619{
1c5d22f7 3620 uint32_t old_write_domain;
e47c68e9 3621
05394f39 3622 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3623 return;
3624
e62b59e4 3625 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3626 i915_gem_chipset_flush(obj->base.dev);
3627
05394f39
CW
3628 old_write_domain = obj->base.write_domain;
3629 obj->base.write_domain = 0;
1c5d22f7 3630
f99d7069
DV
3631 intel_fb_obj_flush(obj, false);
3632
1c5d22f7 3633 trace_i915_gem_object_change_domain(obj,
05394f39 3634 obj->base.read_domains,
1c5d22f7 3635 old_write_domain);
e47c68e9
EA
3636}
3637
2ef7eeaa
EA
3638/**
3639 * Moves a single object to the GTT read, and possibly write domain.
3640 *
3641 * This function returns when the move is complete, including waiting on
3642 * flushes to occur.
3643 */
79e53945 3644int
2021746e 3645i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3646{
1c5d22f7 3647 uint32_t old_write_domain, old_read_domains;
43566ded 3648 struct i915_vma *vma;
e47c68e9 3649 int ret;
2ef7eeaa 3650
8d7e3de1
CW
3651 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3652 return 0;
3653
0201f1ec 3654 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3655 if (ret)
3656 return ret;
3657
c8725f3d 3658 i915_gem_object_retire(obj);
43566ded
CW
3659
3660 /* Flush and acquire obj->pages so that we are coherent through
3661 * direct access in memory with previous cached writes through
3662 * shmemfs and that our cache domain tracking remains valid.
3663 * For example, if the obj->filp was moved to swap without us
3664 * being notified and releasing the pages, we would mistakenly
3665 * continue to assume that the obj remained out of the CPU cached
3666 * domain.
3667 */
3668 ret = i915_gem_object_get_pages(obj);
3669 if (ret)
3670 return ret;
3671
e62b59e4 3672 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3673
d0a57789
CW
3674 /* Serialise direct access to this object with the barriers for
3675 * coherent writes from the GPU, by effectively invalidating the
3676 * GTT domain upon first access.
3677 */
3678 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3679 mb();
3680
05394f39
CW
3681 old_write_domain = obj->base.write_domain;
3682 old_read_domains = obj->base.read_domains;
1c5d22f7 3683
e47c68e9
EA
3684 /* It should now be out of any other write domains, and we can update
3685 * the domain values for our changes.
3686 */
05394f39
CW
3687 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3688 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3689 if (write) {
05394f39
CW
3690 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3691 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3692 obj->dirty = 1;
2ef7eeaa
EA
3693 }
3694
f99d7069 3695 if (write)
a4001f1b 3696 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
f99d7069 3697
1c5d22f7
CW
3698 trace_i915_gem_object_change_domain(obj,
3699 old_read_domains,
3700 old_write_domain);
3701
8325a09d 3702 /* And bump the LRU for this access */
43566ded
CW
3703 vma = i915_gem_obj_to_ggtt(obj);
3704 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3705 list_move_tail(&vma->mm_list,
43566ded 3706 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3707
e47c68e9
EA
3708 return 0;
3709}
3710
e4ffd173
CW
3711int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3712 enum i915_cache_level cache_level)
3713{
7bddb01f 3714 struct drm_device *dev = obj->base.dev;
df6f783a 3715 struct i915_vma *vma, *next;
e4ffd173
CW
3716 int ret;
3717
3718 if (obj->cache_level == cache_level)
3719 return 0;
3720
d7f46fc4 3721 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3722 DRM_DEBUG("can not change the cache level of pinned objects\n");
3723 return -EBUSY;
3724 }
3725
df6f783a 3726 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3727 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3728 ret = i915_vma_unbind(vma);
3089c6f2
BW
3729 if (ret)
3730 return ret;
3089c6f2 3731 }
42d6ab48
CW
3732 }
3733
3089c6f2 3734 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3735 ret = i915_gem_object_finish_gpu(obj);
3736 if (ret)
3737 return ret;
3738
3739 i915_gem_object_finish_gtt(obj);
3740
3741 /* Before SandyBridge, you could not use tiling or fence
3742 * registers with snooped memory, so relinquish any fences
3743 * currently pointing to our region in the aperture.
3744 */
42d6ab48 3745 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3746 ret = i915_gem_object_put_fence(obj);
3747 if (ret)
3748 return ret;
3749 }
3750
6f65e29a 3751 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3752 if (drm_mm_node_allocated(&vma->node)) {
3753 ret = i915_vma_bind(vma, cache_level,
3754 vma->bound & GLOBAL_BIND);
3755 if (ret)
3756 return ret;
3757 }
e4ffd173
CW
3758 }
3759
2c22569b
CW
3760 list_for_each_entry(vma, &obj->vma_list, vma_link)
3761 vma->node.color = cache_level;
3762 obj->cache_level = cache_level;
3763
0f71979a
CW
3764 if (obj->cache_dirty &&
3765 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3766 cpu_write_needs_clflush(obj)) {
3767 if (i915_gem_clflush_object(obj, true))
3768 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3769 }
3770
e4ffd173
CW
3771 return 0;
3772}
3773
199adf40
BW
3774int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3775 struct drm_file *file)
e6994aee 3776{
199adf40 3777 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3778 struct drm_i915_gem_object *obj;
3779 int ret;
3780
3781 ret = i915_mutex_lock_interruptible(dev);
3782 if (ret)
3783 return ret;
3784
3785 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3786 if (&obj->base == NULL) {
3787 ret = -ENOENT;
3788 goto unlock;
3789 }
3790
651d794f
CW
3791 switch (obj->cache_level) {
3792 case I915_CACHE_LLC:
3793 case I915_CACHE_L3_LLC:
3794 args->caching = I915_CACHING_CACHED;
3795 break;
3796
4257d3ba
CW
3797 case I915_CACHE_WT:
3798 args->caching = I915_CACHING_DISPLAY;
3799 break;
3800
651d794f
CW
3801 default:
3802 args->caching = I915_CACHING_NONE;
3803 break;
3804 }
e6994aee
CW
3805
3806 drm_gem_object_unreference(&obj->base);
3807unlock:
3808 mutex_unlock(&dev->struct_mutex);
3809 return ret;
3810}
3811
199adf40
BW
3812int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3813 struct drm_file *file)
e6994aee 3814{
199adf40 3815 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3816 struct drm_i915_gem_object *obj;
3817 enum i915_cache_level level;
3818 int ret;
3819
199adf40
BW
3820 switch (args->caching) {
3821 case I915_CACHING_NONE:
e6994aee
CW
3822 level = I915_CACHE_NONE;
3823 break;
199adf40 3824 case I915_CACHING_CACHED:
e6994aee
CW
3825 level = I915_CACHE_LLC;
3826 break;
4257d3ba
CW
3827 case I915_CACHING_DISPLAY:
3828 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3829 break;
e6994aee
CW
3830 default:
3831 return -EINVAL;
3832 }
3833
3bc2913e
BW
3834 ret = i915_mutex_lock_interruptible(dev);
3835 if (ret)
3836 return ret;
3837
e6994aee
CW
3838 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3839 if (&obj->base == NULL) {
3840 ret = -ENOENT;
3841 goto unlock;
3842 }
3843
3844 ret = i915_gem_object_set_cache_level(obj, level);
3845
3846 drm_gem_object_unreference(&obj->base);
3847unlock:
3848 mutex_unlock(&dev->struct_mutex);
3849 return ret;
3850}
3851
cc98b413
CW
3852static bool is_pin_display(struct drm_i915_gem_object *obj)
3853{
19656430
OM
3854 struct i915_vma *vma;
3855
19656430
OM
3856 vma = i915_gem_obj_to_ggtt(obj);
3857 if (!vma)
3858 return false;
3859
4feb7659 3860 /* There are 2 sources that pin objects:
cc98b413
CW
3861 * 1. The display engine (scanouts, sprites, cursors);
3862 * 2. Reservations for execbuffer;
cc98b413
CW
3863 *
3864 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3865 * are only called outside of the reservation path.
cc98b413 3866 */
4feb7659 3867 return vma->pin_count;
cc98b413
CW
3868}
3869
b9241ea3 3870/*
2da3b9b9
CW
3871 * Prepare buffer for display plane (scanout, cursors, etc).
3872 * Can be called from an uninterruptible phase (modesetting) and allows
3873 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3874 */
3875int
2da3b9b9
CW
3876i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3877 u32 alignment,
e6617330
TU
3878 struct intel_engine_cs *pipelined,
3879 const struct i915_ggtt_view *view)
b9241ea3 3880{
2da3b9b9 3881 u32 old_read_domains, old_write_domain;
19656430 3882 bool was_pin_display;
b9241ea3
ZW
3883 int ret;
3884
41c52415 3885 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3886 ret = i915_gem_object_sync(obj, pipelined);
3887 if (ret)
b9241ea3
ZW
3888 return ret;
3889 }
3890
cc98b413
CW
3891 /* Mark the pin_display early so that we account for the
3892 * display coherency whilst setting up the cache domains.
3893 */
19656430 3894 was_pin_display = obj->pin_display;
cc98b413
CW
3895 obj->pin_display = true;
3896
a7ef0640
EA
3897 /* The display engine is not coherent with the LLC cache on gen6. As
3898 * a result, we make sure that the pinning that is about to occur is
3899 * done with uncached PTEs. This is lowest common denominator for all
3900 * chipsets.
3901 *
3902 * However for gen6+, we could do better by using the GFDT bit instead
3903 * of uncaching, which would allow us to flush all the LLC-cached data
3904 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3905 */
651d794f
CW
3906 ret = i915_gem_object_set_cache_level(obj,
3907 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3908 if (ret)
cc98b413 3909 goto err_unpin_display;
a7ef0640 3910
2da3b9b9
CW
3911 /* As the user may map the buffer once pinned in the display plane
3912 * (e.g. libkms for the bootup splash), we have to ensure that we
3913 * always use map_and_fenceable for all scanout buffers.
3914 */
50470bb0
TU
3915 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3916 view->type == I915_GGTT_VIEW_NORMAL ?
3917 PIN_MAPPABLE : 0);
2da3b9b9 3918 if (ret)
cc98b413 3919 goto err_unpin_display;
2da3b9b9 3920
e62b59e4 3921 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3922
2da3b9b9 3923 old_write_domain = obj->base.write_domain;
05394f39 3924 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3925
3926 /* It should now be out of any other write domains, and we can update
3927 * the domain values for our changes.
3928 */
e5f1d962 3929 obj->base.write_domain = 0;
05394f39 3930 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3931
3932 trace_i915_gem_object_change_domain(obj,
3933 old_read_domains,
2da3b9b9 3934 old_write_domain);
b9241ea3
ZW
3935
3936 return 0;
cc98b413
CW
3937
3938err_unpin_display:
19656430
OM
3939 WARN_ON(was_pin_display != is_pin_display(obj));
3940 obj->pin_display = was_pin_display;
cc98b413
CW
3941 return ret;
3942}
3943
3944void
e6617330
TU
3945i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3946 const struct i915_ggtt_view *view)
cc98b413 3947{
e6617330
TU
3948 i915_gem_object_ggtt_unpin_view(obj, view);
3949
cc98b413 3950 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3951}
3952
85345517 3953int
a8198eea 3954i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3955{
88241785
CW
3956 int ret;
3957
a8198eea 3958 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3959 return 0;
3960
0201f1ec 3961 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3962 if (ret)
3963 return ret;
3964
a8198eea
CW
3965 /* Ensure that we invalidate the GPU's caches and TLBs. */
3966 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3967 return 0;
85345517
CW
3968}
3969
e47c68e9
EA
3970/**
3971 * Moves a single object to the CPU read, and possibly write domain.
3972 *
3973 * This function returns when the move is complete, including waiting on
3974 * flushes to occur.
3975 */
dabdfe02 3976int
919926ae 3977i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3978{
1c5d22f7 3979 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3980 int ret;
3981
8d7e3de1
CW
3982 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3983 return 0;
3984
0201f1ec 3985 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3986 if (ret)
3987 return ret;
3988
c8725f3d 3989 i915_gem_object_retire(obj);
e47c68e9 3990 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3991
05394f39
CW
3992 old_write_domain = obj->base.write_domain;
3993 old_read_domains = obj->base.read_domains;
1c5d22f7 3994
e47c68e9 3995 /* Flush the CPU cache if it's still invalid. */
05394f39 3996 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3997 i915_gem_clflush_object(obj, false);
2ef7eeaa 3998
05394f39 3999 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4000 }
4001
4002 /* It should now be out of any other write domains, and we can update
4003 * the domain values for our changes.
4004 */
05394f39 4005 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4006
4007 /* If we're writing through the CPU, then the GPU read domains will
4008 * need to be invalidated at next use.
4009 */
4010 if (write) {
05394f39
CW
4011 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4012 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4013 }
2ef7eeaa 4014
f99d7069 4015 if (write)
a4001f1b 4016 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
f99d7069 4017
1c5d22f7
CW
4018 trace_i915_gem_object_change_domain(obj,
4019 old_read_domains,
4020 old_write_domain);
4021
2ef7eeaa
EA
4022 return 0;
4023}
4024
673a394b
EA
4025/* Throttle our rendering by waiting until the ring has completed our requests
4026 * emitted over 20 msec ago.
4027 *
b962442e
EA
4028 * Note that if we were to use the current jiffies each time around the loop,
4029 * we wouldn't escape the function with any frames outstanding if the time to
4030 * render a frame was over 20ms.
4031 *
673a394b
EA
4032 * This should get us reasonable parallelism between CPU and GPU but also
4033 * relatively low latency when blocking on a particular request to finish.
4034 */
40a5f0de 4035static int
f787a5f5 4036i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4037{
f787a5f5
CW
4038 struct drm_i915_private *dev_priv = dev->dev_private;
4039 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4040 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4041 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4042 unsigned reset_counter;
f787a5f5 4043 int ret;
93533c29 4044
308887aa
DV
4045 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4046 if (ret)
4047 return ret;
4048
4049 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4050 if (ret)
4051 return ret;
e110e8d6 4052
1c25595f 4053 spin_lock(&file_priv->mm.lock);
f787a5f5 4054 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4055 if (time_after_eq(request->emitted_jiffies, recent_enough))
4056 break;
40a5f0de 4057
54fb2411 4058 target = request;
b962442e 4059 }
f69061be 4060 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4061 if (target)
4062 i915_gem_request_reference(target);
1c25595f 4063 spin_unlock(&file_priv->mm.lock);
40a5f0de 4064
54fb2411 4065 if (target == NULL)
f787a5f5 4066 return 0;
2bc43b5c 4067
9c654818 4068 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4069 if (ret == 0)
4070 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4071
ff865885
JH
4072 mutex_lock(&dev->struct_mutex);
4073 i915_gem_request_unreference(target);
4074 mutex_unlock(&dev->struct_mutex);
4075
40a5f0de
EA
4076 return ret;
4077}
4078
d23db88c
CW
4079static bool
4080i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4081{
4082 struct drm_i915_gem_object *obj = vma->obj;
4083
4084 if (alignment &&
4085 vma->node.start & (alignment - 1))
4086 return true;
4087
4088 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4089 return true;
4090
4091 if (flags & PIN_OFFSET_BIAS &&
4092 vma->node.start < (flags & PIN_OFFSET_MASK))
4093 return true;
4094
4095 return false;
4096}
4097
ec7adb6e
JL
4098static int
4099i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4100 struct i915_address_space *vm,
4101 const struct i915_ggtt_view *ggtt_view,
4102 uint32_t alignment,
4103 uint64_t flags)
673a394b 4104{
6e7186af 4105 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4106 struct i915_vma *vma;
ef79e17c 4107 unsigned bound;
673a394b
EA
4108 int ret;
4109
6e7186af
BW
4110 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4111 return -ENODEV;
4112
bf3d149b 4113 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4114 return -EINVAL;
07fe0b12 4115
c826c449
CW
4116 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4117 return -EINVAL;
4118
ec7adb6e
JL
4119 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4120 return -EINVAL;
4121
4122 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4123 i915_gem_obj_to_vma(obj, vm);
4124
4125 if (IS_ERR(vma))
4126 return PTR_ERR(vma);
4127
07fe0b12 4128 if (vma) {
d7f46fc4
BW
4129 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4130 return -EBUSY;
4131
d23db88c 4132 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4133 unsigned long offset;
9abc4648 4134 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4135 i915_gem_obj_offset(obj, vm);
d7f46fc4 4136 WARN(vma->pin_count,
ec7adb6e 4137 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4138 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4139 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4140 ggtt_view ? "ggtt" : "ppgtt",
4141 offset,
fe14d5f4 4142 alignment,
d23db88c 4143 !!(flags & PIN_MAPPABLE),
05394f39 4144 obj->map_and_fenceable);
07fe0b12 4145 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4146 if (ret)
4147 return ret;
8ea99c92
DV
4148
4149 vma = NULL;
ac0c6b5a
CW
4150 }
4151 }
4152
ef79e17c 4153 bound = vma ? vma->bound : 0;
8ea99c92 4154 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
563222a7
BW
4155 /* In true PPGTT, bind has possibly changed PDEs, which
4156 * means we must do a context switch before the GPU can
4157 * accurately read some of the VMAs.
4158 */
ec7adb6e
JL
4159 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4160 flags);
262de145
DV
4161 if (IS_ERR(vma))
4162 return PTR_ERR(vma);
22c344e9 4163 }
76446cac 4164
fe14d5f4
TU
4165 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4166 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4167 if (ret)
4168 return ret;
4169 }
74898d7e 4170
ef79e17c
CW
4171 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4172 bool mappable, fenceable;
4173 u32 fence_size, fence_alignment;
4174
4175 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4176 obj->base.size,
4177 obj->tiling_mode);
4178 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4179 obj->base.size,
4180 obj->tiling_mode,
4181 true);
4182
4183 fenceable = (vma->node.size == fence_size &&
4184 (vma->node.start & (fence_alignment - 1)) == 0);
4185
e8dec1dd 4186 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4187 dev_priv->gtt.mappable_end);
4188
4189 obj->map_and_fenceable = mappable && fenceable;
4190 }
4191
4192 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4193
8ea99c92 4194 vma->pin_count++;
1ec9e26d
DV
4195 if (flags & PIN_MAPPABLE)
4196 obj->pin_mappable |= true;
673a394b
EA
4197
4198 return 0;
4199}
4200
ec7adb6e
JL
4201int
4202i915_gem_object_pin(struct drm_i915_gem_object *obj,
4203 struct i915_address_space *vm,
4204 uint32_t alignment,
4205 uint64_t flags)
4206{
4207 return i915_gem_object_do_pin(obj, vm,
4208 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4209 alignment, flags);
4210}
4211
4212int
4213i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4214 const struct i915_ggtt_view *view,
4215 uint32_t alignment,
4216 uint64_t flags)
4217{
4218 if (WARN_ONCE(!view, "no view specified"))
4219 return -EINVAL;
4220
4221 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4222 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4223}
4224
673a394b 4225void
e6617330
TU
4226i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4227 const struct i915_ggtt_view *view)
673a394b 4228{
e6617330 4229 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4230
d7f46fc4 4231 BUG_ON(!vma);
e6617330 4232 WARN_ON(vma->pin_count == 0);
9abc4648 4233 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4234
e6617330 4235 if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
6299f992 4236 obj->pin_mappable = false;
673a394b
EA
4237}
4238
d8ffa60b
DV
4239bool
4240i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4241{
4242 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4244 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4245
4246 WARN_ON(!ggtt_vma ||
4247 dev_priv->fence_regs[obj->fence_reg].pin_count >
4248 ggtt_vma->pin_count);
4249 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4250 return true;
4251 } else
4252 return false;
4253}
4254
4255void
4256i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4257{
4258 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4259 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4260 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4261 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4262 }
4263}
4264
673a394b
EA
4265int
4266i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4267 struct drm_file *file)
673a394b
EA
4268{
4269 struct drm_i915_gem_busy *args = data;
05394f39 4270 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4271 int ret;
4272
76c1dec1 4273 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4274 if (ret)
76c1dec1 4275 return ret;
673a394b 4276
05394f39 4277 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4278 if (&obj->base == NULL) {
1d7cfea1
CW
4279 ret = -ENOENT;
4280 goto unlock;
673a394b 4281 }
d1b851fc 4282
0be555b6
CW
4283 /* Count all active objects as busy, even if they are currently not used
4284 * by the gpu. Users of this interface expect objects to eventually
4285 * become non-busy without any further actions, therefore emit any
4286 * necessary flushes here.
c4de0a5d 4287 */
30dfebf3 4288 ret = i915_gem_object_flush_active(obj);
0be555b6 4289
30dfebf3 4290 args->busy = obj->active;
41c52415
JH
4291 if (obj->last_read_req) {
4292 struct intel_engine_cs *ring;
e9808edd 4293 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4294 ring = i915_gem_request_get_ring(obj->last_read_req);
4295 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4296 }
673a394b 4297
05394f39 4298 drm_gem_object_unreference(&obj->base);
1d7cfea1 4299unlock:
673a394b 4300 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4301 return ret;
673a394b
EA
4302}
4303
4304int
4305i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4306 struct drm_file *file_priv)
4307{
0206e353 4308 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4309}
4310
3ef94daa
CW
4311int
4312i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4313 struct drm_file *file_priv)
4314{
656bfa3a 4315 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4316 struct drm_i915_gem_madvise *args = data;
05394f39 4317 struct drm_i915_gem_object *obj;
76c1dec1 4318 int ret;
3ef94daa
CW
4319
4320 switch (args->madv) {
4321 case I915_MADV_DONTNEED:
4322 case I915_MADV_WILLNEED:
4323 break;
4324 default:
4325 return -EINVAL;
4326 }
4327
1d7cfea1
CW
4328 ret = i915_mutex_lock_interruptible(dev);
4329 if (ret)
4330 return ret;
4331
05394f39 4332 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4333 if (&obj->base == NULL) {
1d7cfea1
CW
4334 ret = -ENOENT;
4335 goto unlock;
3ef94daa 4336 }
3ef94daa 4337
d7f46fc4 4338 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4339 ret = -EINVAL;
4340 goto out;
3ef94daa
CW
4341 }
4342
656bfa3a
DV
4343 if (obj->pages &&
4344 obj->tiling_mode != I915_TILING_NONE &&
4345 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4346 if (obj->madv == I915_MADV_WILLNEED)
4347 i915_gem_object_unpin_pages(obj);
4348 if (args->madv == I915_MADV_WILLNEED)
4349 i915_gem_object_pin_pages(obj);
4350 }
4351
05394f39
CW
4352 if (obj->madv != __I915_MADV_PURGED)
4353 obj->madv = args->madv;
3ef94daa 4354
6c085a72 4355 /* if the object is no longer attached, discard its backing storage */
be6a0376 4356 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4357 i915_gem_object_truncate(obj);
4358
05394f39 4359 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4360
1d7cfea1 4361out:
05394f39 4362 drm_gem_object_unreference(&obj->base);
1d7cfea1 4363unlock:
3ef94daa 4364 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4365 return ret;
3ef94daa
CW
4366}
4367
37e680a1
CW
4368void i915_gem_object_init(struct drm_i915_gem_object *obj,
4369 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4370{
35c20a60 4371 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4372 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4373 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4374 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4375 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4376
37e680a1
CW
4377 obj->ops = ops;
4378
0327d6ba
CW
4379 obj->fence_reg = I915_FENCE_REG_NONE;
4380 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4381
4382 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4383}
4384
37e680a1
CW
4385static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4386 .get_pages = i915_gem_object_get_pages_gtt,
4387 .put_pages = i915_gem_object_put_pages_gtt,
4388};
4389
05394f39
CW
4390struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4391 size_t size)
ac52bc56 4392{
c397b908 4393 struct drm_i915_gem_object *obj;
5949eac4 4394 struct address_space *mapping;
1a240d4d 4395 gfp_t mask;
ac52bc56 4396
42dcedd4 4397 obj = i915_gem_object_alloc(dev);
c397b908
DV
4398 if (obj == NULL)
4399 return NULL;
673a394b 4400
c397b908 4401 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4402 i915_gem_object_free(obj);
c397b908
DV
4403 return NULL;
4404 }
673a394b 4405
bed1ea95
CW
4406 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4407 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4408 /* 965gm cannot relocate objects above 4GiB. */
4409 mask &= ~__GFP_HIGHMEM;
4410 mask |= __GFP_DMA32;
4411 }
4412
496ad9aa 4413 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4414 mapping_set_gfp_mask(mapping, mask);
5949eac4 4415
37e680a1 4416 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4417
c397b908
DV
4418 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4419 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4420
3d29b842
ED
4421 if (HAS_LLC(dev)) {
4422 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4423 * cache) for about a 10% performance improvement
4424 * compared to uncached. Graphics requests other than
4425 * display scanout are coherent with the CPU in
4426 * accessing this cache. This means in this mode we
4427 * don't need to clflush on the CPU side, and on the
4428 * GPU side we only need to flush internal caches to
4429 * get data visible to the CPU.
4430 *
4431 * However, we maintain the display planes as UC, and so
4432 * need to rebind when first used as such.
4433 */
4434 obj->cache_level = I915_CACHE_LLC;
4435 } else
4436 obj->cache_level = I915_CACHE_NONE;
4437
d861e338
DV
4438 trace_i915_gem_object_create(obj);
4439
05394f39 4440 return obj;
c397b908
DV
4441}
4442
340fbd8c
CW
4443static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4444{
4445 /* If we are the last user of the backing storage (be it shmemfs
4446 * pages or stolen etc), we know that the pages are going to be
4447 * immediately released. In this case, we can then skip copying
4448 * back the contents from the GPU.
4449 */
4450
4451 if (obj->madv != I915_MADV_WILLNEED)
4452 return false;
4453
4454 if (obj->base.filp == NULL)
4455 return true;
4456
4457 /* At first glance, this looks racy, but then again so would be
4458 * userspace racing mmap against close. However, the first external
4459 * reference to the filp can only be obtained through the
4460 * i915_gem_mmap_ioctl() which safeguards us against the user
4461 * acquiring such a reference whilst we are in the middle of
4462 * freeing the object.
4463 */
4464 return atomic_long_read(&obj->base.filp->f_count) == 1;
4465}
4466
1488fc08 4467void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4468{
1488fc08 4469 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4470 struct drm_device *dev = obj->base.dev;
3e31c6c0 4471 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4472 struct i915_vma *vma, *next;
673a394b 4473
f65c9168
PZ
4474 intel_runtime_pm_get(dev_priv);
4475
26e12f89
CW
4476 trace_i915_gem_object_destroy(obj);
4477
07fe0b12 4478 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4479 int ret;
4480
4481 vma->pin_count = 0;
4482 ret = i915_vma_unbind(vma);
07fe0b12
BW
4483 if (WARN_ON(ret == -ERESTARTSYS)) {
4484 bool was_interruptible;
1488fc08 4485
07fe0b12
BW
4486 was_interruptible = dev_priv->mm.interruptible;
4487 dev_priv->mm.interruptible = false;
1488fc08 4488
07fe0b12 4489 WARN_ON(i915_vma_unbind(vma));
1488fc08 4490
07fe0b12
BW
4491 dev_priv->mm.interruptible = was_interruptible;
4492 }
1488fc08
CW
4493 }
4494
1d64ae71
BW
4495 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4496 * before progressing. */
4497 if (obj->stolen)
4498 i915_gem_object_unpin_pages(obj);
4499
a071fa00
DV
4500 WARN_ON(obj->frontbuffer_bits);
4501
656bfa3a
DV
4502 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4503 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4504 obj->tiling_mode != I915_TILING_NONE)
4505 i915_gem_object_unpin_pages(obj);
4506
401c29f6
BW
4507 if (WARN_ON(obj->pages_pin_count))
4508 obj->pages_pin_count = 0;
340fbd8c 4509 if (discard_backing_storage(obj))
5537252b 4510 obj->madv = I915_MADV_DONTNEED;
37e680a1 4511 i915_gem_object_put_pages(obj);
d8cb5086 4512 i915_gem_object_free_mmap_offset(obj);
de151cf6 4513
9da3da66
CW
4514 BUG_ON(obj->pages);
4515
2f745ad3
CW
4516 if (obj->base.import_attach)
4517 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4518
5cc9ed4b
CW
4519 if (obj->ops->release)
4520 obj->ops->release(obj);
4521
05394f39
CW
4522 drm_gem_object_release(&obj->base);
4523 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4524
05394f39 4525 kfree(obj->bit_17);
42dcedd4 4526 i915_gem_object_free(obj);
f65c9168
PZ
4527
4528 intel_runtime_pm_put(dev_priv);
673a394b
EA
4529}
4530
ec7adb6e
JL
4531struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4532 struct i915_address_space *vm)
e656a6cb
DV
4533{
4534 struct i915_vma *vma;
ec7adb6e
JL
4535 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4536 if (i915_is_ggtt(vma->vm) &&
4537 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4538 continue;
4539 if (vma->vm == vm)
e656a6cb 4540 return vma;
ec7adb6e
JL
4541 }
4542 return NULL;
4543}
4544
4545struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4546 const struct i915_ggtt_view *view)
4547{
4548 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4549 struct i915_vma *vma;
e656a6cb 4550
ec7adb6e
JL
4551 if (WARN_ONCE(!view, "no view specified"))
4552 return ERR_PTR(-EINVAL);
4553
4554 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4555 if (vma->vm == ggtt &&
4556 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4557 return vma;
e656a6cb
DV
4558 return NULL;
4559}
4560
2f633156
BW
4561void i915_gem_vma_destroy(struct i915_vma *vma)
4562{
b9d06dd9 4563 struct i915_address_space *vm = NULL;
2f633156 4564 WARN_ON(vma->node.allocated);
aaa05667
CW
4565
4566 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4567 if (!list_empty(&vma->exec_list))
4568 return;
4569
b9d06dd9 4570 vm = vma->vm;
b9d06dd9 4571
841cd773
DV
4572 if (!i915_is_ggtt(vm))
4573 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4574
8b9c2b94 4575 list_del(&vma->vma_link);
b93dab6e 4576
2f633156
BW
4577 kfree(vma);
4578}
4579
e3efda49
CW
4580static void
4581i915_gem_stop_ringbuffers(struct drm_device *dev)
4582{
4583 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4584 struct intel_engine_cs *ring;
e3efda49
CW
4585 int i;
4586
4587 for_each_ring(ring, dev_priv, i)
a83014d3 4588 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4589}
4590
29105ccc 4591int
45c5f202 4592i915_gem_suspend(struct drm_device *dev)
29105ccc 4593{
3e31c6c0 4594 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4595 int ret = 0;
28dfe52a 4596
45c5f202 4597 mutex_lock(&dev->struct_mutex);
b2da9fe5 4598 ret = i915_gpu_idle(dev);
f7403347 4599 if (ret)
45c5f202 4600 goto err;
f7403347 4601
b2da9fe5 4602 i915_gem_retire_requests(dev);
673a394b 4603
e3efda49 4604 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4605 mutex_unlock(&dev->struct_mutex);
4606
737b1506 4607 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4608 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4609 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4610
bdcf120b
CW
4611 /* Assert that we sucessfully flushed all the work and
4612 * reset the GPU back to its idle, low power state.
4613 */
4614 WARN_ON(dev_priv->mm.busy);
4615
673a394b 4616 return 0;
45c5f202
CW
4617
4618err:
4619 mutex_unlock(&dev->struct_mutex);
4620 return ret;
673a394b
EA
4621}
4622
a4872ba6 4623int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4624{
c3787e2e 4625 struct drm_device *dev = ring->dev;
3e31c6c0 4626 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4627 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4628 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4629 int i, ret;
b9524a1e 4630
040d2baa 4631 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4632 return 0;
b9524a1e 4633
c3787e2e
BW
4634 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4635 if (ret)
4636 return ret;
b9524a1e 4637
c3787e2e
BW
4638 /*
4639 * Note: We do not worry about the concurrent register cacheline hang
4640 * here because no other code should access these registers other than
4641 * at initialization time.
4642 */
b9524a1e 4643 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4644 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4645 intel_ring_emit(ring, reg_base + i);
4646 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4647 }
4648
c3787e2e 4649 intel_ring_advance(ring);
b9524a1e 4650
c3787e2e 4651 return ret;
b9524a1e
BW
4652}
4653
f691e2f4
DV
4654void i915_gem_init_swizzling(struct drm_device *dev)
4655{
3e31c6c0 4656 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4657
11782b02 4658 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4659 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4660 return;
4661
4662 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4663 DISP_TILE_SURFACE_SWIZZLING);
4664
11782b02
DV
4665 if (IS_GEN5(dev))
4666 return;
4667
f691e2f4
DV
4668 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4669 if (IS_GEN6(dev))
6b26c86d 4670 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4671 else if (IS_GEN7(dev))
6b26c86d 4672 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4673 else if (IS_GEN8(dev))
4674 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4675 else
4676 BUG();
f691e2f4 4677}
e21af88d 4678
67b1b571
CW
4679static bool
4680intel_enable_blt(struct drm_device *dev)
4681{
4682 if (!HAS_BLT(dev))
4683 return false;
4684
4685 /* The blitter was dysfunctional on early prototypes */
4686 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4687 DRM_INFO("BLT not supported on this pre-production hardware;"
4688 " graphics performance will be degraded.\n");
4689 return false;
4690 }
4691
4692 return true;
4693}
4694
81e7f200
VS
4695static void init_unused_ring(struct drm_device *dev, u32 base)
4696{
4697 struct drm_i915_private *dev_priv = dev->dev_private;
4698
4699 I915_WRITE(RING_CTL(base), 0);
4700 I915_WRITE(RING_HEAD(base), 0);
4701 I915_WRITE(RING_TAIL(base), 0);
4702 I915_WRITE(RING_START(base), 0);
4703}
4704
4705static void init_unused_rings(struct drm_device *dev)
4706{
4707 if (IS_I830(dev)) {
4708 init_unused_ring(dev, PRB1_BASE);
4709 init_unused_ring(dev, SRB0_BASE);
4710 init_unused_ring(dev, SRB1_BASE);
4711 init_unused_ring(dev, SRB2_BASE);
4712 init_unused_ring(dev, SRB3_BASE);
4713 } else if (IS_GEN2(dev)) {
4714 init_unused_ring(dev, SRB0_BASE);
4715 init_unused_ring(dev, SRB1_BASE);
4716 } else if (IS_GEN3(dev)) {
4717 init_unused_ring(dev, PRB1_BASE);
4718 init_unused_ring(dev, PRB2_BASE);
4719 }
4720}
4721
a83014d3 4722int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4723{
4fc7c971 4724 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4725 int ret;
68f95ba9 4726
5c1143bb 4727 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4728 if (ret)
b6913e4b 4729 return ret;
68f95ba9
CW
4730
4731 if (HAS_BSD(dev)) {
5c1143bb 4732 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4733 if (ret)
4734 goto cleanup_render_ring;
d1b851fc 4735 }
68f95ba9 4736
67b1b571 4737 if (intel_enable_blt(dev)) {
549f7365
CW
4738 ret = intel_init_blt_ring_buffer(dev);
4739 if (ret)
4740 goto cleanup_bsd_ring;
4741 }
4742
9a8a2213
BW
4743 if (HAS_VEBOX(dev)) {
4744 ret = intel_init_vebox_ring_buffer(dev);
4745 if (ret)
4746 goto cleanup_blt_ring;
4747 }
4748
845f74a7
ZY
4749 if (HAS_BSD2(dev)) {
4750 ret = intel_init_bsd2_ring_buffer(dev);
4751 if (ret)
4752 goto cleanup_vebox_ring;
4753 }
9a8a2213 4754
99433931 4755 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4756 if (ret)
845f74a7 4757 goto cleanup_bsd2_ring;
4fc7c971
BW
4758
4759 return 0;
4760
845f74a7
ZY
4761cleanup_bsd2_ring:
4762 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4763cleanup_vebox_ring:
4764 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4765cleanup_blt_ring:
4766 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4767cleanup_bsd_ring:
4768 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4769cleanup_render_ring:
4770 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4771
4772 return ret;
4773}
4774
4775int
4776i915_gem_init_hw(struct drm_device *dev)
4777{
3e31c6c0 4778 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4779 struct intel_engine_cs *ring;
35a85ac6 4780 int ret, i;
4fc7c971
BW
4781
4782 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4783 return -EIO;
4784
5e4f5189
CW
4785 /* Double layer security blanket, see i915_gem_init() */
4786 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4787
59124506 4788 if (dev_priv->ellc_size)
05e21cc4 4789 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4790
0bf21347
VS
4791 if (IS_HASWELL(dev))
4792 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4793 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4794
88a2b2a3 4795 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4796 if (IS_IVYBRIDGE(dev)) {
4797 u32 temp = I915_READ(GEN7_MSG_CTL);
4798 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4799 I915_WRITE(GEN7_MSG_CTL, temp);
4800 } else if (INTEL_INFO(dev)->gen >= 7) {
4801 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4802 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4803 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4804 }
88a2b2a3
BW
4805 }
4806
4fc7c971
BW
4807 i915_gem_init_swizzling(dev);
4808
d5abdfda
DV
4809 /*
4810 * At least 830 can leave some of the unused rings
4811 * "active" (ie. head != tail) after resume which
4812 * will prevent c3 entry. Makes sure all unused rings
4813 * are totally idle.
4814 */
4815 init_unused_rings(dev);
4816
35a57ffb
DV
4817 for_each_ring(ring, dev_priv, i) {
4818 ret = ring->init_hw(ring);
4819 if (ret)
5e4f5189 4820 goto out;
35a57ffb 4821 }
99433931 4822
c3787e2e
BW
4823 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4824 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4825
f48a0165 4826 ret = i915_ppgtt_init_hw(dev);
60990320 4827 if (ret && ret != -EIO) {
f48a0165 4828 DRM_ERROR("PPGTT enable failed %d\n", ret);
60990320 4829 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4830 }
4831
f48a0165 4832 ret = i915_gem_context_enable(dev_priv);
82460d97 4833 if (ret && ret != -EIO) {
f48a0165 4834 DRM_ERROR("Context enable failed %d\n", ret);
82460d97 4835 i915_gem_cleanup_ringbuffer(dev);
f48a0165 4836
5e4f5189 4837 goto out;
b7c36d25 4838 }
e21af88d 4839
5e4f5189
CW
4840out:
4841 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4842 return ret;
8187a2b7
ZN
4843}
4844
1070a42b
CW
4845int i915_gem_init(struct drm_device *dev)
4846{
4847 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4848 int ret;
4849
127f1003
OM
4850 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4851 i915.enable_execlists);
4852
1070a42b 4853 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4854
4855 if (IS_VALLEYVIEW(dev)) {
4856 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4857 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4858 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4859 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4860 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4861 }
4862
a83014d3
OM
4863 if (!i915.enable_execlists) {
4864 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4865 dev_priv->gt.init_rings = i915_gem_init_rings;
4866 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4867 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4868 } else {
4869 dev_priv->gt.do_execbuf = intel_execlists_submission;
4870 dev_priv->gt.init_rings = intel_logical_rings_init;
4871 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4872 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4873 }
4874
5e4f5189
CW
4875 /* This is just a security blanket to placate dragons.
4876 * On some systems, we very sporadically observe that the first TLBs
4877 * used by the CS may be stale, despite us poking the TLB reset. If
4878 * we hold the forcewake during initialisation these problems
4879 * just magically go away.
4880 */
4881 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4882
6c5566a8 4883 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4884 if (ret)
4885 goto out_unlock;
6c5566a8 4886
d7e5008f 4887 i915_gem_init_global_gtt(dev);
d62b4892 4888
2fa48d8d 4889 ret = i915_gem_context_init(dev);
7bcc3777
JN
4890 if (ret)
4891 goto out_unlock;
2fa48d8d 4892
35a57ffb
DV
4893 ret = dev_priv->gt.init_rings(dev);
4894 if (ret)
7bcc3777 4895 goto out_unlock;
2fa48d8d 4896
1070a42b 4897 ret = i915_gem_init_hw(dev);
60990320
CW
4898 if (ret == -EIO) {
4899 /* Allow ring initialisation to fail by marking the GPU as
4900 * wedged. But we only want to do this where the GPU is angry,
4901 * for all other failure, such as an allocation failure, bail.
4902 */
4903 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4904 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4905 ret = 0;
1070a42b 4906 }
7bcc3777
JN
4907
4908out_unlock:
5e4f5189 4909 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4910 mutex_unlock(&dev->struct_mutex);
1070a42b 4911
60990320 4912 return ret;
1070a42b
CW
4913}
4914
8187a2b7
ZN
4915void
4916i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4917{
3e31c6c0 4918 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4919 struct intel_engine_cs *ring;
1ec14ad3 4920 int i;
8187a2b7 4921
b4519513 4922 for_each_ring(ring, dev_priv, i)
a83014d3 4923 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4924}
4925
64193406 4926static void
a4872ba6 4927init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4928{
4929 INIT_LIST_HEAD(&ring->active_list);
4930 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4931}
4932
7e0d96bc
BW
4933void i915_init_vm(struct drm_i915_private *dev_priv,
4934 struct i915_address_space *vm)
fc8c067e 4935{
7e0d96bc
BW
4936 if (!i915_is_ggtt(vm))
4937 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4938 vm->dev = dev_priv->dev;
4939 INIT_LIST_HEAD(&vm->active_list);
4940 INIT_LIST_HEAD(&vm->inactive_list);
4941 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4942 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4943}
4944
673a394b
EA
4945void
4946i915_gem_load(struct drm_device *dev)
4947{
3e31c6c0 4948 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4949 int i;
4950
4951 dev_priv->slab =
4952 kmem_cache_create("i915_gem_object",
4953 sizeof(struct drm_i915_gem_object), 0,
4954 SLAB_HWCACHE_ALIGN,
4955 NULL);
673a394b 4956
fc8c067e
BW
4957 INIT_LIST_HEAD(&dev_priv->vm_list);
4958 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4959
a33afea5 4960 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4961 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4962 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4963 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4964 for (i = 0; i < I915_NUM_RINGS; i++)
4965 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4966 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4967 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4968 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4969 i915_gem_retire_work_handler);
b29c19b6
CW
4970 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4971 i915_gem_idle_work_handler);
1f83fee0 4972 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4973
72bfa19c
CW
4974 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4975
42b5aeab
VS
4976 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4977 dev_priv->num_fence_regs = 32;
4978 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4979 dev_priv->num_fence_regs = 16;
4980 else
4981 dev_priv->num_fence_regs = 8;
4982
eb82289a
YZ
4983 if (intel_vgpu_active(dev))
4984 dev_priv->num_fence_regs =
4985 I915_READ(vgtif_reg(avail_rs.fence_num));
4986
b5aa8a0f 4987 /* Initialize fence registers to zero */
19b2dbde
CW
4988 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4989 i915_gem_restore_fences(dev);
10ed13e4 4990
673a394b 4991 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4992 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4993
ce453d81
CW
4994 dev_priv->mm.interruptible = true;
4995
be6a0376 4996 i915_gem_shrinker_init(dev_priv);
f99d7069 4997
78a42377
BV
4998 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
4999
f99d7069 5000 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5001}
71acb5eb 5002
f787a5f5 5003void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5004{
f787a5f5 5005 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5006
b29c19b6
CW
5007 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5008
b962442e
EA
5009 /* Clean up our request list when the client is going away, so that
5010 * later retire_requests won't dereference our soon-to-be-gone
5011 * file_priv.
5012 */
1c25595f 5013 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5014 while (!list_empty(&file_priv->mm.request_list)) {
5015 struct drm_i915_gem_request *request;
5016
5017 request = list_first_entry(&file_priv->mm.request_list,
5018 struct drm_i915_gem_request,
5019 client_list);
5020 list_del(&request->client_list);
5021 request->file_priv = NULL;
5022 }
1c25595f 5023 spin_unlock(&file_priv->mm.lock);
b962442e 5024}
31169714 5025
b29c19b6
CW
5026static void
5027i915_gem_file_idle_work_handler(struct work_struct *work)
5028{
5029 struct drm_i915_file_private *file_priv =
5030 container_of(work, typeof(*file_priv), mm.idle_work.work);
5031
5032 atomic_set(&file_priv->rps_wait_boost, false);
5033}
5034
5035int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5036{
5037 struct drm_i915_file_private *file_priv;
e422b888 5038 int ret;
b29c19b6
CW
5039
5040 DRM_DEBUG_DRIVER("\n");
5041
5042 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5043 if (!file_priv)
5044 return -ENOMEM;
5045
5046 file->driver_priv = file_priv;
5047 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5048 file_priv->file = file;
b29c19b6
CW
5049
5050 spin_lock_init(&file_priv->mm.lock);
5051 INIT_LIST_HEAD(&file_priv->mm.request_list);
5052 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5053 i915_gem_file_idle_work_handler);
5054
e422b888
BW
5055 ret = i915_gem_context_open(dev, file);
5056 if (ret)
5057 kfree(file_priv);
b29c19b6 5058
e422b888 5059 return ret;
b29c19b6
CW
5060}
5061
b680c37a
DV
5062/**
5063 * i915_gem_track_fb - update frontbuffer tracking
5064 * old: current GEM buffer for the frontbuffer slots
5065 * new: new GEM buffer for the frontbuffer slots
5066 * frontbuffer_bits: bitmask of frontbuffer slots
5067 *
5068 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5069 * from @old and setting them in @new. Both @old and @new can be NULL.
5070 */
a071fa00
DV
5071void i915_gem_track_fb(struct drm_i915_gem_object *old,
5072 struct drm_i915_gem_object *new,
5073 unsigned frontbuffer_bits)
5074{
5075 if (old) {
5076 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5077 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5078 old->frontbuffer_bits &= ~frontbuffer_bits;
5079 }
5080
5081 if (new) {
5082 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5083 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5084 new->frontbuffer_bits |= frontbuffer_bits;
5085 }
5086}
5087
a70a3148 5088/* All the new VM stuff */
ec7adb6e
JL
5089unsigned long
5090i915_gem_obj_offset(struct drm_i915_gem_object *o,
5091 struct i915_address_space *vm)
a70a3148
BW
5092{
5093 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5094 struct i915_vma *vma;
5095
896ab1a5 5096 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5097
a70a3148 5098 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5099 if (i915_is_ggtt(vma->vm) &&
5100 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5101 continue;
5102 if (vma->vm == vm)
a70a3148 5103 return vma->node.start;
a70a3148 5104 }
ec7adb6e 5105
f25748ea
DV
5106 WARN(1, "%s vma for this object not found.\n",
5107 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5108 return -1;
5109}
5110
ec7adb6e
JL
5111unsigned long
5112i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5113 const struct i915_ggtt_view *view)
a70a3148 5114{
ec7adb6e 5115 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5116 struct i915_vma *vma;
5117
5118 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5119 if (vma->vm == ggtt &&
5120 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5121 return vma->node.start;
5122
5123 WARN(1, "global vma for this object not found.\n");
5124 return -1;
5125}
5126
5127bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5128 struct i915_address_space *vm)
5129{
5130 struct i915_vma *vma;
5131
5132 list_for_each_entry(vma, &o->vma_list, vma_link) {
5133 if (i915_is_ggtt(vma->vm) &&
5134 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5135 continue;
5136 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5137 return true;
5138 }
5139
5140 return false;
5141}
5142
5143bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5144 const struct i915_ggtt_view *view)
ec7adb6e
JL
5145{
5146 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5147 struct i915_vma *vma;
5148
5149 list_for_each_entry(vma, &o->vma_list, vma_link)
5150 if (vma->vm == ggtt &&
9abc4648 5151 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5152 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5153 return true;
5154
5155 return false;
5156}
5157
5158bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5159{
5a1d5eb0 5160 struct i915_vma *vma;
a70a3148 5161
5a1d5eb0
CW
5162 list_for_each_entry(vma, &o->vma_list, vma_link)
5163 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5164 return true;
5165
5166 return false;
5167}
5168
5169unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5170 struct i915_address_space *vm)
5171{
5172 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5173 struct i915_vma *vma;
5174
896ab1a5 5175 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5176
5177 BUG_ON(list_empty(&o->vma_list));
5178
ec7adb6e
JL
5179 list_for_each_entry(vma, &o->vma_list, vma_link) {
5180 if (i915_is_ggtt(vma->vm) &&
5181 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5182 continue;
a70a3148
BW
5183 if (vma->vm == vm)
5184 return vma->node.size;
ec7adb6e 5185 }
a70a3148
BW
5186 return 0;
5187}
5188
ec7adb6e 5189bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5190{
5191 struct i915_vma *vma;
ec7adb6e
JL
5192 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5193 if (i915_is_ggtt(vma->vm) &&
5194 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5195 continue;
5196 if (vma->pin_count > 0)
5197 return true;
5198 }
5199 return false;
5c2abbea 5200}
ec7adb6e 5201
This page took 1.341363 seconds and 5 git commands to generate.