drm/i915/ppgtt: Defer request freeing on reset
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
d9973b43
CW
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 207 if (obj->pin_count)
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
de45eaf7 264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
0b74b508 479 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
0b74b508
XZ
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
094f9a54
CW
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
b29c19b6
CW
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
b361237b
CW
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
f69061be 997 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
f69061be
DV
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
b361237b
CW
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1012 unsigned reset_counter,
b29c19b6
CW
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
b361237b
CW
1016{
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
168c3f21
MK
1018 const bool irq_test_in_progress =
1019 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1020 struct timespec before, now;
1021 DEFINE_WAIT(wait);
47e9766d 1022 unsigned long timeout_expire;
b361237b
CW
1023 int ret;
1024
c67a470b
PZ
1025 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
b361237b
CW
1027 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028 return 0;
1029
47e9766d 1030 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1031
b29c19b6
CW
1032 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033 gen6_rps_boost(dev_priv);
1034 if (file_priv)
1035 mod_delayed_work(dev_priv->wq,
1036 &file_priv->mm.idle_work,
1037 msecs_to_jiffies(100));
1038 }
1039
168c3f21 1040 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1041 return -ENODEV;
1042
094f9a54
CW
1043 /* Record current time in case interrupted by signal, or wedged */
1044 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1045 getrawmonotonic(&before);
094f9a54
CW
1046 for (;;) {
1047 struct timer_list timer;
b361237b 1048
094f9a54
CW
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1051
f69061be
DV
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
094f9a54
CW
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
f69061be 1062
094f9a54
CW
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
b361237b 1067
094f9a54
CW
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
47e9766d 1073 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1080 unsigned long expire;
1081
094f9a54 1082 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1083 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1084 mod_timer(&timer, expire);
1085 }
1086
5035c275 1087 io_schedule();
094f9a54 1088
094f9a54
CW
1089 if (timer.function) {
1090 del_singleshot_timer_sync(&timer);
1091 destroy_timer_on_stack(&timer);
1092 }
1093 }
b361237b 1094 getrawmonotonic(&now);
094f9a54 1095 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1096
168c3f21
MK
1097 if (!irq_test_in_progress)
1098 ring->irq_put(ring);
094f9a54
CW
1099
1100 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1107 }
1108
094f9a54 1109 return ret;
b361237b
CW
1110}
1111
1112/**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116int
1117i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118{
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
33196ded 1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
f69061be
DV
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1137 interruptible, NULL, NULL);
b361237b
CW
1138}
1139
d26e3af8
CW
1140static int
1141i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143{
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157}
1158
b361237b
CW
1159/**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163static __must_check int
1164i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166{
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1180}
1181
3236f57a
CW
1182/* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
b29c19b6 1187 struct drm_file *file,
3236f57a
CW
1188 bool readonly)
1189{
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
f69061be 1193 unsigned reset_counter;
3236f57a
CW
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
33196ded 1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
f69061be 1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1213 mutex_unlock(&dev->struct_mutex);
b29c19b6 1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
3236f57a 1215 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1216 if (ret)
1217 return ret;
3236f57a 1218
d26e3af8 1219 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1220}
1221
673a394b 1222/**
2ef7eeaa
EA
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1225 */
1226int
1227i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1228 struct drm_file *file)
673a394b
EA
1229{
1230 struct drm_i915_gem_set_domain *args = data;
05394f39 1231 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
673a394b
EA
1234 int ret;
1235
2ef7eeaa 1236 /* Only handle setting domains to types used by the CPU. */
21d509e3 1237 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1238 return -EINVAL;
1239
21d509e3 1240 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
76c1dec1 1257 }
673a394b 1258
3236f57a
CW
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
b29c19b6 1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
3236f57a
CW
1264 if (ret)
1265 goto unref;
1266
2ef7eeaa
EA
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
2ef7eeaa 1276 } else {
e47c68e9 1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1278 }
1279
3236f57a 1280unref:
05394f39 1281 drm_gem_object_unreference(&obj->base);
1d7cfea1 1282unlock:
673a394b
EA
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285}
1286
1287/**
1288 * Called when user space has done writes to this buffer
1289 */
1290int
1291i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1292 struct drm_file *file)
673a394b
EA
1293{
1294 struct drm_i915_gem_sw_finish *args = data;
05394f39 1295 struct drm_i915_gem_object *obj;
673a394b
EA
1296 int ret = 0;
1297
76c1dec1 1298 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1299 if (ret)
76c1dec1 1300 return ret;
1d7cfea1 1301
05394f39 1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1303 if (&obj->base == NULL) {
1d7cfea1
CW
1304 ret = -ENOENT;
1305 goto unlock;
673a394b
EA
1306 }
1307
673a394b 1308 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1311
05394f39 1312 drm_gem_object_unreference(&obj->base);
1d7cfea1 1313unlock:
673a394b
EA
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325int
1326i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1327 struct drm_file *file)
673a394b
EA
1328{
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
673a394b
EA
1331 unsigned long addr;
1332
05394f39 1333 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1334 if (obj == NULL)
bf79cb91 1335 return -ENOENT;
673a394b 1336
1286ff73
DV
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
6be5ceb0 1345 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
bc9025bd 1348 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355}
1356
de151cf6
JB
1357/**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374{
05394f39
CW
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
7d1c4804 1377 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
0f973f27 1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1382
f65c9168
PZ
1383 intel_runtime_pm_get(dev_priv);
1384
de151cf6
JB
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1388
d9bc7e9f
CW
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
a00b10c3 1392
db53a302
CW
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
eb119bd6
CW
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1399 }
1400
d9bc7e9f 1401 /* Now bind it into the GTT if needed */
c37e2204 1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1403 if (ret)
1404 goto unlock;
4a684a41 1405
c9839303
CW
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
74898d7e 1409
06d98131 1410 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1411 if (ret)
c9839303 1412 goto unpin;
7d1c4804 1413
6299f992
CW
1414 obj->fault_mappable = true;
1415
f343c5f6
BW
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
de151cf6
JB
1419
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1422unpin:
1423 i915_gem_object_unpin(obj);
c715089f 1424unlock:
de151cf6 1425 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1426out:
de151cf6 1427 switch (ret) {
d9bc7e9f 1428 case -EIO:
a9340cca
DV
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
f65c9168
PZ
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1435 }
045e769a 1436 case -EAGAIN:
571c608d
DV
1437 /*
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
d9bc7e9f 1441 */
c715089f
CW
1442 case 0:
1443 case -ERESTARTSYS:
bed636ab 1444 case -EINTR:
e79e0fe3
DR
1445 case -EBUSY:
1446 /*
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1449 */
f65c9168
PZ
1450 ret = VM_FAULT_NOPAGE;
1451 break;
de151cf6 1452 case -ENOMEM:
f65c9168
PZ
1453 ret = VM_FAULT_OOM;
1454 break;
a7c2e1aa 1455 case -ENOSPC:
f65c9168
PZ
1456 ret = VM_FAULT_SIGBUS;
1457 break;
de151cf6 1458 default:
a7c2e1aa 1459 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1460 ret = VM_FAULT_SIGBUS;
1461 break;
de151cf6 1462 }
f65c9168
PZ
1463
1464 intel_runtime_pm_put(dev_priv);
1465 return ret;
de151cf6
JB
1466}
1467
48018a57
PZ
1468void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1469{
1470 struct i915_vma *vma;
1471
1472 /*
1473 * Only the global gtt is relevant for gtt memory mappings, so restrict
1474 * list traversal to objects bound into the global address space. Note
1475 * that the active list should be empty, but better safe than sorry.
1476 */
1477 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1478 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1479 i915_gem_release_mmap(vma->obj);
1480 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1481 i915_gem_release_mmap(vma->obj);
1482}
1483
901782b2
CW
1484/**
1485 * i915_gem_release_mmap - remove physical page mappings
1486 * @obj: obj in question
1487 *
af901ca1 1488 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1489 * relinquish ownership of the pages back to the system.
1490 *
1491 * It is vital that we remove the page mapping if we have mapped a tiled
1492 * object through the GTT and then lose the fence register due to
1493 * resource pressure. Similarly if the object has been moved out of the
1494 * aperture, than pages mapped into userspace must be revoked. Removing the
1495 * mapping will then trigger a page fault on the next user access, allowing
1496 * fixup by i915_gem_fault().
1497 */
d05ca301 1498void
05394f39 1499i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1500{
6299f992
CW
1501 if (!obj->fault_mappable)
1502 return;
901782b2 1503
51335df9 1504 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1505 obj->fault_mappable = false;
901782b2
CW
1506}
1507
0fa87796 1508uint32_t
e28f8711 1509i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1510{
e28f8711 1511 uint32_t gtt_size;
92b88aeb
CW
1512
1513 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1514 tiling_mode == I915_TILING_NONE)
1515 return size;
92b88aeb
CW
1516
1517 /* Previous chips need a power-of-two fence region when tiling */
1518 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1519 gtt_size = 1024*1024;
92b88aeb 1520 else
e28f8711 1521 gtt_size = 512*1024;
92b88aeb 1522
e28f8711
CW
1523 while (gtt_size < size)
1524 gtt_size <<= 1;
92b88aeb 1525
e28f8711 1526 return gtt_size;
92b88aeb
CW
1527}
1528
de151cf6
JB
1529/**
1530 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1531 * @obj: object to check
1532 *
1533 * Return the required GTT alignment for an object, taking into account
5e783301 1534 * potential fence register mapping.
de151cf6 1535 */
d865110c
ID
1536uint32_t
1537i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1538 int tiling_mode, bool fenced)
de151cf6 1539{
de151cf6
JB
1540 /*
1541 * Minimum alignment is 4k (GTT page size), but might be greater
1542 * if a fence register is needed for the object.
1543 */
d865110c 1544 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1545 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1546 return 4096;
1547
a00b10c3
CW
1548 /*
1549 * Previous chips need to be aligned to the size of the smallest
1550 * fence register that can contain the object.
1551 */
e28f8711 1552 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1553}
1554
d8cb5086
CW
1555static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1556{
1557 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1558 int ret;
1559
0de23977 1560 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1561 return 0;
1562
da494d7c
DV
1563 dev_priv->mm.shrinker_no_lock_stealing = true;
1564
d8cb5086
CW
1565 ret = drm_gem_create_mmap_offset(&obj->base);
1566 if (ret != -ENOSPC)
da494d7c 1567 goto out;
d8cb5086
CW
1568
1569 /* Badly fragmented mmap space? The only way we can recover
1570 * space is by destroying unwanted objects. We can't randomly release
1571 * mmap_offsets as userspace expects them to be persistent for the
1572 * lifetime of the objects. The closest we can is to release the
1573 * offsets on purgeable objects by truncating it and marking it purged,
1574 * which prevents userspace from ever using that object again.
1575 */
1576 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1577 ret = drm_gem_create_mmap_offset(&obj->base);
1578 if (ret != -ENOSPC)
da494d7c 1579 goto out;
d8cb5086
CW
1580
1581 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1582 ret = drm_gem_create_mmap_offset(&obj->base);
1583out:
1584 dev_priv->mm.shrinker_no_lock_stealing = false;
1585
1586 return ret;
d8cb5086
CW
1587}
1588
1589static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1590{
d8cb5086
CW
1591 drm_gem_free_mmap_offset(&obj->base);
1592}
1593
de151cf6 1594int
ff72145b
DA
1595i915_gem_mmap_gtt(struct drm_file *file,
1596 struct drm_device *dev,
1597 uint32_t handle,
1598 uint64_t *offset)
de151cf6 1599{
da761a6e 1600 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1601 struct drm_i915_gem_object *obj;
de151cf6
JB
1602 int ret;
1603
76c1dec1 1604 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1605 if (ret)
76c1dec1 1606 return ret;
de151cf6 1607
ff72145b 1608 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1609 if (&obj->base == NULL) {
1d7cfea1
CW
1610 ret = -ENOENT;
1611 goto unlock;
1612 }
de151cf6 1613
5d4545ae 1614 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1615 ret = -E2BIG;
ff56b0bc 1616 goto out;
da761a6e
CW
1617 }
1618
05394f39 1619 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1620 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1621 ret = -EINVAL;
1622 goto out;
ab18282d
CW
1623 }
1624
d8cb5086
CW
1625 ret = i915_gem_object_create_mmap_offset(obj);
1626 if (ret)
1627 goto out;
de151cf6 1628
0de23977 1629 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1630
1d7cfea1 1631out:
05394f39 1632 drm_gem_object_unreference(&obj->base);
1d7cfea1 1633unlock:
de151cf6 1634 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1635 return ret;
de151cf6
JB
1636}
1637
ff72145b
DA
1638/**
1639 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1640 * @dev: DRM device
1641 * @data: GTT mapping ioctl data
1642 * @file: GEM object info
1643 *
1644 * Simply returns the fake offset to userspace so it can mmap it.
1645 * The mmap call will end up in drm_gem_mmap(), which will set things
1646 * up so we can get faults in the handler above.
1647 *
1648 * The fault handler will take care of binding the object into the GTT
1649 * (since it may have been evicted to make room for something), allocating
1650 * a fence register, and mapping the appropriate aperture address into
1651 * userspace.
1652 */
1653int
1654i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1655 struct drm_file *file)
1656{
1657 struct drm_i915_gem_mmap_gtt *args = data;
1658
ff72145b
DA
1659 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1660}
1661
225067ee
DV
1662/* Immediately discard the backing storage */
1663static void
1664i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1665{
e5281ccd 1666 struct inode *inode;
e5281ccd 1667
4d6294bf 1668 i915_gem_object_free_mmap_offset(obj);
1286ff73 1669
4d6294bf
CW
1670 if (obj->base.filp == NULL)
1671 return;
e5281ccd 1672
225067ee
DV
1673 /* Our goal here is to return as much of the memory as
1674 * is possible back to the system as we are called from OOM.
1675 * To do this we must instruct the shmfs to drop all of its
1676 * backing pages, *now*.
1677 */
496ad9aa 1678 inode = file_inode(obj->base.filp);
225067ee 1679 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1680
225067ee
DV
1681 obj->madv = __I915_MADV_PURGED;
1682}
e5281ccd 1683
225067ee
DV
1684static inline int
1685i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1686{
1687 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1688}
1689
5cdf5881 1690static void
05394f39 1691i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1692{
90797e6d
ID
1693 struct sg_page_iter sg_iter;
1694 int ret;
1286ff73 1695
05394f39 1696 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1697
6c085a72
CW
1698 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1699 if (ret) {
1700 /* In the event of a disaster, abandon all caches and
1701 * hope for the best.
1702 */
1703 WARN_ON(ret != -EIO);
2c22569b 1704 i915_gem_clflush_object(obj, true);
6c085a72
CW
1705 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1706 }
1707
6dacfd2f 1708 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1709 i915_gem_object_save_bit_17_swizzle(obj);
1710
05394f39
CW
1711 if (obj->madv == I915_MADV_DONTNEED)
1712 obj->dirty = 0;
3ef94daa 1713
90797e6d 1714 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1715 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1716
05394f39 1717 if (obj->dirty)
9da3da66 1718 set_page_dirty(page);
3ef94daa 1719
05394f39 1720 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1721 mark_page_accessed(page);
3ef94daa 1722
9da3da66 1723 page_cache_release(page);
3ef94daa 1724 }
05394f39 1725 obj->dirty = 0;
673a394b 1726
9da3da66
CW
1727 sg_free_table(obj->pages);
1728 kfree(obj->pages);
37e680a1 1729}
6c085a72 1730
dd624afd 1731int
37e680a1
CW
1732i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1733{
1734 const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
2f745ad3 1736 if (obj->pages == NULL)
37e680a1
CW
1737 return 0;
1738
a5570178
CW
1739 if (obj->pages_pin_count)
1740 return -EBUSY;
1741
9843877d 1742 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1743
a2165e31
CW
1744 /* ->put_pages might need to allocate memory for the bit17 swizzle
1745 * array, hence protect them from being reaped by removing them from gtt
1746 * lists early. */
35c20a60 1747 list_del(&obj->global_list);
a2165e31 1748
37e680a1 1749 ops->put_pages(obj);
05394f39 1750 obj->pages = NULL;
37e680a1 1751
6c085a72
CW
1752 if (i915_gem_object_is_purgeable(obj))
1753 i915_gem_object_truncate(obj);
1754
1755 return 0;
1756}
1757
d9973b43 1758static unsigned long
93927ca5
DV
1759__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1760 bool purgeable_only)
6c085a72 1761{
57094f82 1762 struct list_head still_bound_list;
6c085a72 1763 struct drm_i915_gem_object *obj, *next;
d9973b43 1764 unsigned long count = 0;
6c085a72
CW
1765
1766 list_for_each_entry_safe(obj, next,
1767 &dev_priv->mm.unbound_list,
35c20a60 1768 global_list) {
93927ca5 1769 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1770 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1771 count += obj->base.size >> PAGE_SHIFT;
1772 if (count >= target)
1773 return count;
1774 }
1775 }
1776
57094f82
CW
1777 /*
1778 * As we may completely rewrite the bound list whilst unbinding
1779 * (due to retiring requests) we have to strictly process only
1780 * one element of the list at the time, and recheck the list
1781 * on every iteration.
1782 */
1783 INIT_LIST_HEAD(&still_bound_list);
1784 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1785 struct i915_vma *vma, *v;
80dcfdbd 1786
57094f82
CW
1787 obj = list_first_entry(&dev_priv->mm.bound_list,
1788 typeof(*obj), global_list);
1789 list_move_tail(&obj->global_list, &still_bound_list);
1790
80dcfdbd
BW
1791 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1792 continue;
1793
57094f82
CW
1794 /*
1795 * Hold a reference whilst we unbind this object, as we may
1796 * end up waiting for and retiring requests. This might
1797 * release the final reference (held by the active list)
1798 * and result in the object being freed from under us.
1799 * in this object being freed.
1800 *
1801 * Note 1: Shrinking the bound list is special since only active
1802 * (and hence bound objects) can contain such limbo objects, so
1803 * we don't need special tricks for shrinking the unbound list.
1804 * The only other place where we have to be careful with active
1805 * objects suddenly disappearing due to retiring requests is the
1806 * eviction code.
1807 *
1808 * Note 2: Even though the bound list doesn't hold a reference
1809 * to the object we can safely grab one here: The final object
1810 * unreferencing and the bound_list are both protected by the
1811 * dev->struct_mutex and so we won't ever be able to observe an
1812 * object on the bound_list with a reference count equals 0.
1813 */
1814 drm_gem_object_reference(&obj->base);
1815
07fe0b12
BW
1816 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1817 if (i915_vma_unbind(vma))
1818 break;
80dcfdbd 1819
57094f82 1820 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1821 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1822
1823 drm_gem_object_unreference(&obj->base);
6c085a72 1824 }
57094f82 1825 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1826
1827 return count;
1828}
1829
d9973b43 1830static unsigned long
93927ca5
DV
1831i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1832{
1833 return __i915_gem_shrink(dev_priv, target, true);
1834}
1835
d9973b43 1836static unsigned long
6c085a72
CW
1837i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1838{
1839 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1840 long freed = 0;
6c085a72
CW
1841
1842 i915_gem_evict_everything(dev_priv->dev);
1843
35c20a60 1844 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1845 global_list) {
d9973b43 1846 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1847 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1848 }
1849 return freed;
225067ee
DV
1850}
1851
37e680a1 1852static int
6c085a72 1853i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1854{
6c085a72 1855 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1856 int page_count, i;
1857 struct address_space *mapping;
9da3da66
CW
1858 struct sg_table *st;
1859 struct scatterlist *sg;
90797e6d 1860 struct sg_page_iter sg_iter;
e5281ccd 1861 struct page *page;
90797e6d 1862 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1863 gfp_t gfp;
e5281ccd 1864
6c085a72
CW
1865 /* Assert that the object is not currently in any GPU domain. As it
1866 * wasn't in the GTT, there shouldn't be any way it could have been in
1867 * a GPU cache
1868 */
1869 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1870 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1871
9da3da66
CW
1872 st = kmalloc(sizeof(*st), GFP_KERNEL);
1873 if (st == NULL)
1874 return -ENOMEM;
1875
05394f39 1876 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1877 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1878 kfree(st);
e5281ccd 1879 return -ENOMEM;
9da3da66 1880 }
e5281ccd 1881
9da3da66
CW
1882 /* Get the list of pages out of our struct file. They'll be pinned
1883 * at this point until we release them.
1884 *
1885 * Fail silently without starting the shrinker
1886 */
496ad9aa 1887 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1888 gfp = mapping_gfp_mask(mapping);
caf49191 1889 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1890 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1891 sg = st->sgl;
1892 st->nents = 0;
1893 for (i = 0; i < page_count; i++) {
6c085a72
CW
1894 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1895 if (IS_ERR(page)) {
1896 i915_gem_purge(dev_priv, page_count);
1897 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1898 }
1899 if (IS_ERR(page)) {
1900 /* We've tried hard to allocate the memory by reaping
1901 * our own buffer, now let the real VM do its job and
1902 * go down in flames if truly OOM.
1903 */
caf49191 1904 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1905 gfp |= __GFP_IO | __GFP_WAIT;
1906
1907 i915_gem_shrink_all(dev_priv);
1908 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1909 if (IS_ERR(page))
1910 goto err_pages;
1911
caf49191 1912 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1913 gfp &= ~(__GFP_IO | __GFP_WAIT);
1914 }
426729dc
KRW
1915#ifdef CONFIG_SWIOTLB
1916 if (swiotlb_nr_tbl()) {
1917 st->nents++;
1918 sg_set_page(sg, page, PAGE_SIZE, 0);
1919 sg = sg_next(sg);
1920 continue;
1921 }
1922#endif
90797e6d
ID
1923 if (!i || page_to_pfn(page) != last_pfn + 1) {
1924 if (i)
1925 sg = sg_next(sg);
1926 st->nents++;
1927 sg_set_page(sg, page, PAGE_SIZE, 0);
1928 } else {
1929 sg->length += PAGE_SIZE;
1930 }
1931 last_pfn = page_to_pfn(page);
3bbbe706
DV
1932
1933 /* Check that the i965g/gm workaround works. */
1934 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1935 }
426729dc
KRW
1936#ifdef CONFIG_SWIOTLB
1937 if (!swiotlb_nr_tbl())
1938#endif
1939 sg_mark_end(sg);
74ce6b6c
CW
1940 obj->pages = st;
1941
6dacfd2f 1942 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1943 i915_gem_object_do_bit_17_swizzle(obj);
1944
1945 return 0;
1946
1947err_pages:
90797e6d
ID
1948 sg_mark_end(sg);
1949 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1950 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1951 sg_free_table(st);
1952 kfree(st);
e5281ccd 1953 return PTR_ERR(page);
673a394b
EA
1954}
1955
37e680a1
CW
1956/* Ensure that the associated pages are gathered from the backing storage
1957 * and pinned into our object. i915_gem_object_get_pages() may be called
1958 * multiple times before they are released by a single call to
1959 * i915_gem_object_put_pages() - once the pages are no longer referenced
1960 * either as a result of memory pressure (reaping pages under the shrinker)
1961 * or as the object is itself released.
1962 */
1963int
1964i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1965{
1966 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967 const struct drm_i915_gem_object_ops *ops = obj->ops;
1968 int ret;
1969
2f745ad3 1970 if (obj->pages)
37e680a1
CW
1971 return 0;
1972
43e28f09
CW
1973 if (obj->madv != I915_MADV_WILLNEED) {
1974 DRM_ERROR("Attempting to obtain a purgeable object\n");
1975 return -EINVAL;
1976 }
1977
a5570178
CW
1978 BUG_ON(obj->pages_pin_count);
1979
37e680a1
CW
1980 ret = ops->get_pages(obj);
1981 if (ret)
1982 return ret;
1983
35c20a60 1984 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1985 return 0;
673a394b
EA
1986}
1987
e2d05a8b 1988static void
05394f39 1989i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1990 struct intel_ring_buffer *ring)
673a394b 1991{
05394f39 1992 struct drm_device *dev = obj->base.dev;
69dc4987 1993 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1994 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1995
852835f3 1996 BUG_ON(ring == NULL);
02978ff5
CW
1997 if (obj->ring != ring && obj->last_write_seqno) {
1998 /* Keep the seqno relative to the current ring */
1999 obj->last_write_seqno = seqno;
2000 }
05394f39 2001 obj->ring = ring;
673a394b
EA
2002
2003 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2004 if (!obj->active) {
2005 drm_gem_object_reference(&obj->base);
2006 obj->active = 1;
673a394b 2007 }
e35a41de 2008
05394f39 2009 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2010
0201f1ec 2011 obj->last_read_seqno = seqno;
caea7476 2012
7dd49065 2013 if (obj->fenced_gpu_access) {
caea7476 2014 obj->last_fenced_seqno = seqno;
caea7476 2015
7dd49065
CW
2016 /* Bump MRU to take account of the delayed flush */
2017 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2018 struct drm_i915_fence_reg *reg;
2019
2020 reg = &dev_priv->fence_regs[obj->fence_reg];
2021 list_move_tail(&reg->lru_list,
2022 &dev_priv->mm.fence_list);
2023 }
caea7476
CW
2024 }
2025}
2026
e2d05a8b
BW
2027void i915_vma_move_to_active(struct i915_vma *vma,
2028 struct intel_ring_buffer *ring)
2029{
2030 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2031 return i915_gem_object_move_to_active(vma->obj, ring);
2032}
2033
caea7476 2034static void
caea7476 2035i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2036{
ca191b13
BW
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2039 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 2040
65ce3027 2041 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2042 BUG_ON(!obj->active);
caea7476 2043
ca191b13 2044 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 2045
65ce3027 2046 list_del_init(&obj->ring_list);
caea7476
CW
2047 obj->ring = NULL;
2048
65ce3027
CW
2049 obj->last_read_seqno = 0;
2050 obj->last_write_seqno = 0;
2051 obj->base.write_domain = 0;
2052
2053 obj->last_fenced_seqno = 0;
caea7476 2054 obj->fenced_gpu_access = false;
caea7476
CW
2055
2056 obj->active = 0;
2057 drm_gem_object_unreference(&obj->base);
2058
2059 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2060}
673a394b 2061
9d773091 2062static int
fca26bb4 2063i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2064{
9d773091
CW
2065 struct drm_i915_private *dev_priv = dev->dev_private;
2066 struct intel_ring_buffer *ring;
2067 int ret, i, j;
53d227f2 2068
107f27a5 2069 /* Carefully retire all requests without writing to the rings */
9d773091 2070 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2071 ret = intel_ring_idle(ring);
2072 if (ret)
2073 return ret;
9d773091 2074 }
9d773091 2075 i915_gem_retire_requests(dev);
107f27a5
CW
2076
2077 /* Finally reset hw state */
9d773091 2078 for_each_ring(ring, dev_priv, i) {
fca26bb4 2079 intel_ring_init_seqno(ring, seqno);
498d2ac1 2080
9d773091
CW
2081 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2082 ring->sync_seqno[j] = 0;
2083 }
53d227f2 2084
9d773091 2085 return 0;
53d227f2
DV
2086}
2087
fca26bb4
MK
2088int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2089{
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091 int ret;
2092
2093 if (seqno == 0)
2094 return -EINVAL;
2095
2096 /* HWS page needs to be set less than what we
2097 * will inject to ring
2098 */
2099 ret = i915_gem_init_seqno(dev, seqno - 1);
2100 if (ret)
2101 return ret;
2102
2103 /* Carefully set the last_seqno value so that wrap
2104 * detection still works
2105 */
2106 dev_priv->next_seqno = seqno;
2107 dev_priv->last_seqno = seqno - 1;
2108 if (dev_priv->last_seqno == 0)
2109 dev_priv->last_seqno--;
2110
2111 return 0;
2112}
2113
9d773091
CW
2114int
2115i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2116{
9d773091
CW
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119 /* reserve 0 for non-seqno */
2120 if (dev_priv->next_seqno == 0) {
fca26bb4 2121 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2122 if (ret)
2123 return ret;
53d227f2 2124
9d773091
CW
2125 dev_priv->next_seqno = 1;
2126 }
53d227f2 2127
f72b3435 2128 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2129 return 0;
53d227f2
DV
2130}
2131
0025c077
MK
2132int __i915_add_request(struct intel_ring_buffer *ring,
2133 struct drm_file *file,
7d736f4f 2134 struct drm_i915_gem_object *obj,
0025c077 2135 u32 *out_seqno)
673a394b 2136{
db53a302 2137 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2138 struct drm_i915_gem_request *request;
7d736f4f 2139 u32 request_ring_position, request_start;
673a394b 2140 int was_empty;
3cce469c
CW
2141 int ret;
2142
7d736f4f 2143 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2144 /*
2145 * Emit any outstanding flushes - execbuf can fail to emit the flush
2146 * after having emitted the batchbuffer command. Hence we need to fix
2147 * things up similar to emitting the lazy request. The difference here
2148 * is that the flush _must_ happen before the next request, no matter
2149 * what.
2150 */
a7b9761d
CW
2151 ret = intel_ring_flush_all_caches(ring);
2152 if (ret)
2153 return ret;
cc889e0f 2154
3c0e234c
CW
2155 request = ring->preallocated_lazy_request;
2156 if (WARN_ON(request == NULL))
acb868d3 2157 return -ENOMEM;
cc889e0f 2158
a71d8d94
CW
2159 /* Record the position of the start of the request so that
2160 * should we detect the updated seqno part-way through the
2161 * GPU processing the request, we never over-estimate the
2162 * position of the head.
2163 */
2164 request_ring_position = intel_ring_get_tail(ring);
2165
9d773091 2166 ret = ring->add_request(ring);
3c0e234c 2167 if (ret)
3bb73aba 2168 return ret;
673a394b 2169
9d773091 2170 request->seqno = intel_ring_get_seqno(ring);
852835f3 2171 request->ring = ring;
7d736f4f 2172 request->head = request_start;
a71d8d94 2173 request->tail = request_ring_position;
7d736f4f
MK
2174
2175 /* Whilst this request exists, batch_obj will be on the
2176 * active_list, and so will hold the active reference. Only when this
2177 * request is retired will the the batch_obj be moved onto the
2178 * inactive_list and lose its active reference. Hence we do not need
2179 * to explicitly hold another reference here.
2180 */
9a7e0c2a 2181 request->batch_obj = obj;
0e50e96b 2182
9a7e0c2a
CW
2183 /* Hold a reference to the current context so that we can inspect
2184 * it later in case a hangcheck error event fires.
2185 */
2186 request->ctx = ring->last_context;
0e50e96b
MK
2187 if (request->ctx)
2188 i915_gem_context_reference(request->ctx);
2189
673a394b 2190 request->emitted_jiffies = jiffies;
852835f3
ZN
2191 was_empty = list_empty(&ring->request_list);
2192 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2193 request->file_priv = NULL;
852835f3 2194
db53a302
CW
2195 if (file) {
2196 struct drm_i915_file_private *file_priv = file->driver_priv;
2197
1c25595f 2198 spin_lock(&file_priv->mm.lock);
f787a5f5 2199 request->file_priv = file_priv;
b962442e 2200 list_add_tail(&request->client_list,
f787a5f5 2201 &file_priv->mm.request_list);
1c25595f 2202 spin_unlock(&file_priv->mm.lock);
b962442e 2203 }
673a394b 2204
9d773091 2205 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2206 ring->outstanding_lazy_seqno = 0;
3c0e234c 2207 ring->preallocated_lazy_request = NULL;
db53a302 2208
db1b76ca 2209 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2210 i915_queue_hangcheck(ring->dev);
2211
f047e395 2212 if (was_empty) {
b29c19b6 2213 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2214 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2215 &dev_priv->mm.retire_work,
2216 round_jiffies_up_relative(HZ));
f047e395
CW
2217 intel_mark_busy(dev_priv->dev);
2218 }
f65d9421 2219 }
cc889e0f 2220
acb868d3 2221 if (out_seqno)
9d773091 2222 *out_seqno = request->seqno;
3cce469c 2223 return 0;
673a394b
EA
2224}
2225
f787a5f5
CW
2226static inline void
2227i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2228{
1c25595f 2229 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2230
1c25595f
CW
2231 if (!file_priv)
2232 return;
1c5d22f7 2233
1c25595f 2234 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2235 list_del(&request->client_list);
2236 request->file_priv = NULL;
1c25595f 2237 spin_unlock(&file_priv->mm.lock);
673a394b 2238}
673a394b 2239
d1ccbb5d
BW
2240static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2241 struct i915_address_space *vm)
aa60c664 2242{
d1ccbb5d
BW
2243 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2244 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2245 return true;
2246
2247 return false;
2248}
2249
2250static bool i915_head_inside_request(const u32 acthd_unmasked,
2251 const u32 request_start,
2252 const u32 request_end)
2253{
2254 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2255
2256 if (request_start < request_end) {
2257 if (acthd >= request_start && acthd < request_end)
2258 return true;
2259 } else if (request_start > request_end) {
2260 if (acthd >= request_start || acthd < request_end)
2261 return true;
2262 }
2263
2264 return false;
2265}
2266
d1ccbb5d
BW
2267static struct i915_address_space *
2268request_to_vm(struct drm_i915_gem_request *request)
2269{
2270 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2271 struct i915_address_space *vm;
2272
2273 vm = &dev_priv->gtt.base;
2274
2275 return vm;
2276}
2277
aa60c664
MK
2278static bool i915_request_guilty(struct drm_i915_gem_request *request,
2279 const u32 acthd, bool *inside)
2280{
2281 /* There is a possibility that unmasked head address
2282 * pointing inside the ring, matches the batch_obj address range.
2283 * However this is extremely unlikely.
2284 */
aa60c664 2285 if (request->batch_obj) {
d1ccbb5d
BW
2286 if (i915_head_inside_object(acthd, request->batch_obj,
2287 request_to_vm(request))) {
aa60c664
MK
2288 *inside = true;
2289 return true;
2290 }
2291 }
2292
2293 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2294 *inside = false;
2295 return true;
2296 }
2297
2298 return false;
2299}
2300
be62acb4
MK
2301static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2302{
2303 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2304
2305 if (hs->banned)
2306 return true;
2307
2308 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2309 DRM_ERROR("context hanging too fast, declaring banned!\n");
2310 return true;
2311 }
2312
2313 return false;
2314}
2315
aa60c664
MK
2316static void i915_set_reset_status(struct intel_ring_buffer *ring,
2317 struct drm_i915_gem_request *request,
2318 u32 acthd)
2319{
2320 struct i915_ctx_hang_stats *hs = NULL;
2321 bool inside, guilty;
d1ccbb5d 2322 unsigned long offset = 0;
aa60c664
MK
2323
2324 /* Innocent until proven guilty */
2325 guilty = false;
2326
d1ccbb5d
BW
2327 if (request->batch_obj)
2328 offset = i915_gem_obj_offset(request->batch_obj,
2329 request_to_vm(request));
2330
f2f4d82f 2331 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2332 i915_request_guilty(request, acthd, &inside)) {
86648500 2333 DRM_DEBUG("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2334 ring->name,
2335 inside ? "inside" : "flushing",
d1ccbb5d 2336 offset,
aa60c664
MK
2337 request->ctx ? request->ctx->id : 0,
2338 acthd);
2339
2340 guilty = true;
2341 }
2342
2343 /* If contexts are disabled or this is the default context, use
2344 * file_priv->reset_state
2345 */
2346 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2347 hs = &request->ctx->hang_stats;
2348 else if (request->file_priv)
2349 hs = &request->file_priv->hang_stats;
2350
2351 if (hs) {
be62acb4
MK
2352 if (guilty) {
2353 hs->banned = i915_context_is_banned(hs);
aa60c664 2354 hs->batch_active++;
be62acb4
MK
2355 hs->guilty_ts = get_seconds();
2356 } else {
aa60c664 2357 hs->batch_pending++;
be62acb4 2358 }
aa60c664
MK
2359 }
2360}
2361
0e50e96b
MK
2362static void i915_gem_free_request(struct drm_i915_gem_request *request)
2363{
2364 list_del(&request->list);
2365 i915_gem_request_remove_from_client(request);
2366
2367 if (request->ctx)
2368 i915_gem_context_unreference(request->ctx);
2369
2370 kfree(request);
2371}
2372
4db080f9
CW
2373static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2374 struct intel_ring_buffer *ring)
9375e446 2375{
4db080f9
CW
2376 u32 completed_seqno = ring->get_seqno(ring, false);
2377 u32 acthd = intel_ring_get_active_head(ring);
2378 struct drm_i915_gem_request *request;
2379
2380 list_for_each_entry(request, &ring->request_list, list) {
2381 if (i915_seqno_passed(completed_seqno, request->seqno))
2382 continue;
aa60c664 2383
4db080f9
CW
2384 i915_set_reset_status(ring, request, acthd);
2385 }
2386}
aa60c664 2387
4db080f9
CW
2388static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2389 struct intel_ring_buffer *ring)
2390{
dfaae392 2391 while (!list_empty(&ring->active_list)) {
05394f39 2392 struct drm_i915_gem_object *obj;
9375e446 2393
05394f39
CW
2394 obj = list_first_entry(&ring->active_list,
2395 struct drm_i915_gem_object,
2396 ring_list);
9375e446 2397
05394f39 2398 i915_gem_object_move_to_inactive(obj);
673a394b 2399 }
1d62beea
BW
2400
2401 /*
2402 * We must free the requests after all the corresponding objects have
2403 * been moved off active lists. Which is the same order as the normal
2404 * retire_requests function does. This is important if object hold
2405 * implicit references on things like e.g. ppgtt address spaces through
2406 * the request.
2407 */
2408 while (!list_empty(&ring->request_list)) {
2409 struct drm_i915_gem_request *request;
2410
2411 request = list_first_entry(&ring->request_list,
2412 struct drm_i915_gem_request,
2413 list);
2414
2415 i915_gem_free_request(request);
2416 }
673a394b
EA
2417}
2418
19b2dbde 2419void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2420{
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 int i;
2423
4b9de737 2424 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2425 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2426
94a335db
DV
2427 /*
2428 * Commit delayed tiling changes if we have an object still
2429 * attached to the fence, otherwise just clear the fence.
2430 */
2431 if (reg->obj) {
2432 i915_gem_object_update_fence(reg->obj, reg,
2433 reg->obj->tiling_mode);
2434 } else {
2435 i915_gem_write_fence(dev, i, NULL);
2436 }
312817a3
CW
2437 }
2438}
2439
069efc1d 2440void i915_gem_reset(struct drm_device *dev)
673a394b 2441{
77f01230 2442 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2443 struct intel_ring_buffer *ring;
1ec14ad3 2444 int i;
673a394b 2445
4db080f9
CW
2446 /*
2447 * Before we free the objects from the requests, we need to inspect
2448 * them for finding the guilty party. As the requests only borrow
2449 * their reference to the objects, the inspection must be done first.
2450 */
2451 for_each_ring(ring, dev_priv, i)
2452 i915_gem_reset_ring_status(dev_priv, ring);
2453
b4519513 2454 for_each_ring(ring, dev_priv, i)
4db080f9 2455 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2456
3d57e5bd
BW
2457 i915_gem_cleanup_ringbuffer(dev);
2458
19b2dbde 2459 i915_gem_restore_fences(dev);
673a394b
EA
2460}
2461
2462/**
2463 * This function clears the request list as sequence numbers are passed.
2464 */
a71d8d94 2465void
db53a302 2466i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2467{
673a394b
EA
2468 uint32_t seqno;
2469
db53a302 2470 if (list_empty(&ring->request_list))
6c0594a3
KW
2471 return;
2472
db53a302 2473 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2474
b2eadbc8 2475 seqno = ring->get_seqno(ring, true);
1ec14ad3 2476
852835f3 2477 while (!list_empty(&ring->request_list)) {
673a394b 2478 struct drm_i915_gem_request *request;
673a394b 2479
852835f3 2480 request = list_first_entry(&ring->request_list,
673a394b
EA
2481 struct drm_i915_gem_request,
2482 list);
673a394b 2483
dfaae392 2484 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2485 break;
2486
db53a302 2487 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2488 /* We know the GPU must have read the request to have
2489 * sent us the seqno + interrupt, so use the position
2490 * of tail of the request to update the last known position
2491 * of the GPU head.
2492 */
2493 ring->last_retired_head = request->tail;
b84d5f0c 2494
0e50e96b 2495 i915_gem_free_request(request);
b84d5f0c 2496 }
673a394b 2497
b84d5f0c
CW
2498 /* Move any buffers on the active list that are no longer referenced
2499 * by the ringbuffer to the flushing/inactive lists as appropriate.
2500 */
2501 while (!list_empty(&ring->active_list)) {
05394f39 2502 struct drm_i915_gem_object *obj;
b84d5f0c 2503
0206e353 2504 obj = list_first_entry(&ring->active_list,
05394f39
CW
2505 struct drm_i915_gem_object,
2506 ring_list);
673a394b 2507
0201f1ec 2508 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2509 break;
b84d5f0c 2510
65ce3027 2511 i915_gem_object_move_to_inactive(obj);
673a394b 2512 }
9d34e5db 2513
db53a302
CW
2514 if (unlikely(ring->trace_irq_seqno &&
2515 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2516 ring->irq_put(ring);
db53a302 2517 ring->trace_irq_seqno = 0;
9d34e5db 2518 }
23bc5982 2519
db53a302 2520 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2521}
2522
b29c19b6 2523bool
b09a1fec
CW
2524i915_gem_retire_requests(struct drm_device *dev)
2525{
2526 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2527 struct intel_ring_buffer *ring;
b29c19b6 2528 bool idle = true;
1ec14ad3 2529 int i;
b09a1fec 2530
b29c19b6 2531 for_each_ring(ring, dev_priv, i) {
b4519513 2532 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2533 idle &= list_empty(&ring->request_list);
2534 }
2535
2536 if (idle)
2537 mod_delayed_work(dev_priv->wq,
2538 &dev_priv->mm.idle_work,
2539 msecs_to_jiffies(100));
2540
2541 return idle;
b09a1fec
CW
2542}
2543
75ef9da2 2544static void
673a394b
EA
2545i915_gem_retire_work_handler(struct work_struct *work)
2546{
b29c19b6
CW
2547 struct drm_i915_private *dev_priv =
2548 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2549 struct drm_device *dev = dev_priv->dev;
0a58705b 2550 bool idle;
673a394b 2551
891b48cf 2552 /* Come back later if the device is busy... */
b29c19b6
CW
2553 idle = false;
2554 if (mutex_trylock(&dev->struct_mutex)) {
2555 idle = i915_gem_retire_requests(dev);
2556 mutex_unlock(&dev->struct_mutex);
673a394b 2557 }
b29c19b6 2558 if (!idle)
bcb45086
CW
2559 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2560 round_jiffies_up_relative(HZ));
b29c19b6 2561}
0a58705b 2562
b29c19b6
CW
2563static void
2564i915_gem_idle_work_handler(struct work_struct *work)
2565{
2566 struct drm_i915_private *dev_priv =
2567 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2568
2569 intel_mark_idle(dev_priv->dev);
673a394b
EA
2570}
2571
30dfebf3
DV
2572/**
2573 * Ensures that an object will eventually get non-busy by flushing any required
2574 * write domains, emitting any outstanding lazy request and retiring and
2575 * completed requests.
2576 */
2577static int
2578i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2579{
2580 int ret;
2581
2582 if (obj->active) {
0201f1ec 2583 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2584 if (ret)
2585 return ret;
2586
30dfebf3
DV
2587 i915_gem_retire_requests_ring(obj->ring);
2588 }
2589
2590 return 0;
2591}
2592
23ba4fd0
BW
2593/**
2594 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2595 * @DRM_IOCTL_ARGS: standard ioctl arguments
2596 *
2597 * Returns 0 if successful, else an error is returned with the remaining time in
2598 * the timeout parameter.
2599 * -ETIME: object is still busy after timeout
2600 * -ERESTARTSYS: signal interrupted the wait
2601 * -ENONENT: object doesn't exist
2602 * Also possible, but rare:
2603 * -EAGAIN: GPU wedged
2604 * -ENOMEM: damn
2605 * -ENODEV: Internal IRQ fail
2606 * -E?: The add request failed
2607 *
2608 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2609 * non-zero timeout parameter the wait ioctl will wait for the given number of
2610 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2611 * without holding struct_mutex the object may become re-busied before this
2612 * function completes. A similar but shorter * race condition exists in the busy
2613 * ioctl
2614 */
2615int
2616i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2617{
f69061be 2618 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2619 struct drm_i915_gem_wait *args = data;
2620 struct drm_i915_gem_object *obj;
2621 struct intel_ring_buffer *ring = NULL;
eac1f14f 2622 struct timespec timeout_stack, *timeout = NULL;
f69061be 2623 unsigned reset_counter;
23ba4fd0
BW
2624 u32 seqno = 0;
2625 int ret = 0;
2626
eac1f14f
BW
2627 if (args->timeout_ns >= 0) {
2628 timeout_stack = ns_to_timespec(args->timeout_ns);
2629 timeout = &timeout_stack;
2630 }
23ba4fd0
BW
2631
2632 ret = i915_mutex_lock_interruptible(dev);
2633 if (ret)
2634 return ret;
2635
2636 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2637 if (&obj->base == NULL) {
2638 mutex_unlock(&dev->struct_mutex);
2639 return -ENOENT;
2640 }
2641
30dfebf3
DV
2642 /* Need to make sure the object gets inactive eventually. */
2643 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2644 if (ret)
2645 goto out;
2646
2647 if (obj->active) {
0201f1ec 2648 seqno = obj->last_read_seqno;
23ba4fd0
BW
2649 ring = obj->ring;
2650 }
2651
2652 if (seqno == 0)
2653 goto out;
2654
23ba4fd0
BW
2655 /* Do this after OLR check to make sure we make forward progress polling
2656 * on this IOCTL with a 0 timeout (like busy ioctl)
2657 */
2658 if (!args->timeout_ns) {
2659 ret = -ETIME;
2660 goto out;
2661 }
2662
2663 drm_gem_object_unreference(&obj->base);
f69061be 2664 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2665 mutex_unlock(&dev->struct_mutex);
2666
b29c19b6 2667 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2668 if (timeout)
eac1f14f 2669 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2670 return ret;
2671
2672out:
2673 drm_gem_object_unreference(&obj->base);
2674 mutex_unlock(&dev->struct_mutex);
2675 return ret;
2676}
2677
5816d648
BW
2678/**
2679 * i915_gem_object_sync - sync an object to a ring.
2680 *
2681 * @obj: object which may be in use on another ring.
2682 * @to: ring we wish to use the object on. May be NULL.
2683 *
2684 * This code is meant to abstract object synchronization with the GPU.
2685 * Calling with NULL implies synchronizing the object with the CPU
2686 * rather than a particular GPU ring.
2687 *
2688 * Returns 0 if successful, else propagates up the lower layer error.
2689 */
2911a35b
BW
2690int
2691i915_gem_object_sync(struct drm_i915_gem_object *obj,
2692 struct intel_ring_buffer *to)
2693{
2694 struct intel_ring_buffer *from = obj->ring;
2695 u32 seqno;
2696 int ret, idx;
2697
2698 if (from == NULL || to == from)
2699 return 0;
2700
5816d648 2701 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2702 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2703
2704 idx = intel_ring_sync_index(from, to);
2705
0201f1ec 2706 seqno = obj->last_read_seqno;
2911a35b
BW
2707 if (seqno <= from->sync_seqno[idx])
2708 return 0;
2709
b4aca010
BW
2710 ret = i915_gem_check_olr(obj->ring, seqno);
2711 if (ret)
2712 return ret;
2911a35b 2713
b52b89da 2714 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2715 ret = to->sync_to(to, from, seqno);
e3a5a225 2716 if (!ret)
7b01e260
MK
2717 /* We use last_read_seqno because sync_to()
2718 * might have just caused seqno wrap under
2719 * the radar.
2720 */
2721 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2722
e3a5a225 2723 return ret;
2911a35b
BW
2724}
2725
b5ffc9bc
CW
2726static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2727{
2728 u32 old_write_domain, old_read_domains;
2729
b5ffc9bc
CW
2730 /* Force a pagefault for domain tracking on next user access */
2731 i915_gem_release_mmap(obj);
2732
b97c3d9c
KP
2733 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2734 return;
2735
97c809fd
CW
2736 /* Wait for any direct GTT access to complete */
2737 mb();
2738
b5ffc9bc
CW
2739 old_read_domains = obj->base.read_domains;
2740 old_write_domain = obj->base.write_domain;
2741
2742 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2743 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2744
2745 trace_i915_gem_object_change_domain(obj,
2746 old_read_domains,
2747 old_write_domain);
2748}
2749
07fe0b12 2750int i915_vma_unbind(struct i915_vma *vma)
673a394b 2751{
07fe0b12 2752 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2753 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2754 int ret;
673a394b 2755
b93dab6e
DV
2756 /* For now we only ever use 1 vma per object */
2757 WARN_ON(!list_is_singular(&obj->vma_list));
2758
07fe0b12 2759 if (list_empty(&vma->vma_link))
673a394b
EA
2760 return 0;
2761
0ff501cb
DV
2762 if (!drm_mm_node_allocated(&vma->node)) {
2763 i915_gem_vma_destroy(vma);
2764
2765 return 0;
2766 }
433544bd 2767
31d8d651
CW
2768 if (obj->pin_count)
2769 return -EBUSY;
673a394b 2770
c4670ad0
CW
2771 BUG_ON(obj->pages == NULL);
2772
a8198eea 2773 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2774 if (ret)
a8198eea
CW
2775 return ret;
2776 /* Continue on if we fail due to EIO, the GPU is hung so we
2777 * should be safe and we need to cleanup or else we might
2778 * cause memory corruption through use-after-free.
2779 */
2780
b5ffc9bc 2781 i915_gem_object_finish_gtt(obj);
5323fd04 2782
96b47b65 2783 /* release the fence reg _after_ flushing */
d9e86c0e 2784 ret = i915_gem_object_put_fence(obj);
1488fc08 2785 if (ret)
d9e86c0e 2786 return ret;
96b47b65 2787
07fe0b12 2788 trace_i915_vma_unbind(vma);
db53a302 2789
74898d7e
DV
2790 if (obj->has_global_gtt_mapping)
2791 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2792 if (obj->has_aliasing_ppgtt_mapping) {
2793 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2794 obj->has_aliasing_ppgtt_mapping = 0;
2795 }
74163907 2796 i915_gem_gtt_finish_object(obj);
7bddb01f 2797
ca191b13 2798 list_del(&vma->mm_list);
75e9e915 2799 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2800 if (i915_is_ggtt(vma->vm))
2801 obj->map_and_fenceable = true;
673a394b 2802
2f633156
BW
2803 drm_mm_remove_node(&vma->node);
2804 i915_gem_vma_destroy(vma);
2805
2806 /* Since the unbound list is global, only move to that list if
b93dab6e 2807 * no more VMAs exist. */
2f633156
BW
2808 if (list_empty(&obj->vma_list))
2809 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2810
70903c3b
CW
2811 /* And finally now the object is completely decoupled from this vma,
2812 * we can drop its hold on the backing storage and allow it to be
2813 * reaped by the shrinker.
2814 */
2815 i915_gem_object_unpin_pages(obj);
2816
88241785 2817 return 0;
54cf91dc
CW
2818}
2819
07fe0b12
BW
2820/**
2821 * Unbinds an object from the global GTT aperture.
2822 */
2823int
2824i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2825{
2826 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2827 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2828
58e73e15 2829 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2830 return 0;
2831
2832 if (obj->pin_count)
2833 return -EBUSY;
2834
2835 BUG_ON(obj->pages == NULL);
2836
2837 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2838}
2839
b2da9fe5 2840int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2841{
2842 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2843 struct intel_ring_buffer *ring;
1ec14ad3 2844 int ret, i;
4df2faf4 2845
4df2faf4 2846 /* Flush everything onto the inactive list. */
b4519513 2847 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2848 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2849 if (ret)
2850 return ret;
2851
3e960501 2852 ret = intel_ring_idle(ring);
1ec14ad3
CW
2853 if (ret)
2854 return ret;
2855 }
4df2faf4 2856
8a1a49f9 2857 return 0;
4df2faf4
DV
2858}
2859
9ce079e4
CW
2860static void i965_write_fence_reg(struct drm_device *dev, int reg,
2861 struct drm_i915_gem_object *obj)
de151cf6 2862{
de151cf6 2863 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2864 int fence_reg;
2865 int fence_pitch_shift;
de151cf6 2866
56c844e5
ID
2867 if (INTEL_INFO(dev)->gen >= 6) {
2868 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2869 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2870 } else {
2871 fence_reg = FENCE_REG_965_0;
2872 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2873 }
2874
d18b9619
CW
2875 fence_reg += reg * 8;
2876
2877 /* To w/a incoherency with non-atomic 64-bit register updates,
2878 * we split the 64-bit update into two 32-bit writes. In order
2879 * for a partial fence not to be evaluated between writes, we
2880 * precede the update with write to turn off the fence register,
2881 * and only enable the fence as the last step.
2882 *
2883 * For extra levels of paranoia, we make sure each step lands
2884 * before applying the next step.
2885 */
2886 I915_WRITE(fence_reg, 0);
2887 POSTING_READ(fence_reg);
2888
9ce079e4 2889 if (obj) {
f343c5f6 2890 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2891 uint64_t val;
de151cf6 2892
f343c5f6 2893 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2894 0xfffff000) << 32;
f343c5f6 2895 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2896 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2897 if (obj->tiling_mode == I915_TILING_Y)
2898 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2899 val |= I965_FENCE_REG_VALID;
c6642782 2900
d18b9619
CW
2901 I915_WRITE(fence_reg + 4, val >> 32);
2902 POSTING_READ(fence_reg + 4);
2903
2904 I915_WRITE(fence_reg + 0, val);
2905 POSTING_READ(fence_reg);
2906 } else {
2907 I915_WRITE(fence_reg + 4, 0);
2908 POSTING_READ(fence_reg + 4);
2909 }
de151cf6
JB
2910}
2911
9ce079e4
CW
2912static void i915_write_fence_reg(struct drm_device *dev, int reg,
2913 struct drm_i915_gem_object *obj)
de151cf6 2914{
de151cf6 2915 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2916 u32 val;
de151cf6 2917
9ce079e4 2918 if (obj) {
f343c5f6 2919 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2920 int pitch_val;
2921 int tile_width;
c6642782 2922
f343c5f6 2923 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2924 (size & -size) != size ||
f343c5f6
BW
2925 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2926 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2927 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2928
9ce079e4
CW
2929 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2930 tile_width = 128;
2931 else
2932 tile_width = 512;
2933
2934 /* Note: pitch better be a power of two tile widths */
2935 pitch_val = obj->stride / tile_width;
2936 pitch_val = ffs(pitch_val) - 1;
2937
f343c5f6 2938 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2939 if (obj->tiling_mode == I915_TILING_Y)
2940 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2941 val |= I915_FENCE_SIZE_BITS(size);
2942 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2943 val |= I830_FENCE_REG_VALID;
2944 } else
2945 val = 0;
2946
2947 if (reg < 8)
2948 reg = FENCE_REG_830_0 + reg * 4;
2949 else
2950 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2951
2952 I915_WRITE(reg, val);
2953 POSTING_READ(reg);
de151cf6
JB
2954}
2955
9ce079e4
CW
2956static void i830_write_fence_reg(struct drm_device *dev, int reg,
2957 struct drm_i915_gem_object *obj)
de151cf6 2958{
de151cf6 2959 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2960 uint32_t val;
de151cf6 2961
9ce079e4 2962 if (obj) {
f343c5f6 2963 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2964 uint32_t pitch_val;
de151cf6 2965
f343c5f6 2966 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2967 (size & -size) != size ||
f343c5f6
BW
2968 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2969 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2970 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2971
9ce079e4
CW
2972 pitch_val = obj->stride / 128;
2973 pitch_val = ffs(pitch_val) - 1;
de151cf6 2974
f343c5f6 2975 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2976 if (obj->tiling_mode == I915_TILING_Y)
2977 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2978 val |= I830_FENCE_SIZE_BITS(size);
2979 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2980 val |= I830_FENCE_REG_VALID;
2981 } else
2982 val = 0;
c6642782 2983
9ce079e4
CW
2984 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2985 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2986}
2987
d0a57789
CW
2988inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2989{
2990 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2991}
2992
9ce079e4
CW
2993static void i915_gem_write_fence(struct drm_device *dev, int reg,
2994 struct drm_i915_gem_object *obj)
2995{
d0a57789
CW
2996 struct drm_i915_private *dev_priv = dev->dev_private;
2997
2998 /* Ensure that all CPU reads are completed before installing a fence
2999 * and all writes before removing the fence.
3000 */
3001 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3002 mb();
3003
94a335db
DV
3004 WARN(obj && (!obj->stride || !obj->tiling_mode),
3005 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3006 obj->stride, obj->tiling_mode);
3007
9ce079e4 3008 switch (INTEL_INFO(dev)->gen) {
5ab31333 3009 case 8:
9ce079e4 3010 case 7:
56c844e5 3011 case 6:
9ce079e4
CW
3012 case 5:
3013 case 4: i965_write_fence_reg(dev, reg, obj); break;
3014 case 3: i915_write_fence_reg(dev, reg, obj); break;
3015 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3016 default: BUG();
9ce079e4 3017 }
d0a57789
CW
3018
3019 /* And similarly be paranoid that no direct access to this region
3020 * is reordered to before the fence is installed.
3021 */
3022 if (i915_gem_object_needs_mb(obj))
3023 mb();
de151cf6
JB
3024}
3025
61050808
CW
3026static inline int fence_number(struct drm_i915_private *dev_priv,
3027 struct drm_i915_fence_reg *fence)
3028{
3029 return fence - dev_priv->fence_regs;
3030}
3031
3032static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3033 struct drm_i915_fence_reg *fence,
3034 bool enable)
3035{
2dc8aae0 3036 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3037 int reg = fence_number(dev_priv, fence);
3038
3039 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3040
3041 if (enable) {
46a0b638 3042 obj->fence_reg = reg;
61050808
CW
3043 fence->obj = obj;
3044 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3045 } else {
3046 obj->fence_reg = I915_FENCE_REG_NONE;
3047 fence->obj = NULL;
3048 list_del_init(&fence->lru_list);
3049 }
94a335db 3050 obj->fence_dirty = false;
61050808
CW
3051}
3052
d9e86c0e 3053static int
d0a57789 3054i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3055{
1c293ea3 3056 if (obj->last_fenced_seqno) {
86d5bc37 3057 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3058 if (ret)
3059 return ret;
d9e86c0e
CW
3060
3061 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3062 }
3063
86d5bc37 3064 obj->fenced_gpu_access = false;
d9e86c0e
CW
3065 return 0;
3066}
3067
3068int
3069i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3070{
61050808 3071 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3072 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3073 int ret;
3074
d0a57789 3075 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3076 if (ret)
3077 return ret;
3078
61050808
CW
3079 if (obj->fence_reg == I915_FENCE_REG_NONE)
3080 return 0;
d9e86c0e 3081
f9c513e9
CW
3082 fence = &dev_priv->fence_regs[obj->fence_reg];
3083
61050808 3084 i915_gem_object_fence_lost(obj);
f9c513e9 3085 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3086
3087 return 0;
3088}
3089
3090static struct drm_i915_fence_reg *
a360bb1a 3091i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3092{
ae3db24a 3093 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3094 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3095 int i;
ae3db24a
DV
3096
3097 /* First try to find a free reg */
d9e86c0e 3098 avail = NULL;
ae3db24a
DV
3099 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3100 reg = &dev_priv->fence_regs[i];
3101 if (!reg->obj)
d9e86c0e 3102 return reg;
ae3db24a 3103
1690e1eb 3104 if (!reg->pin_count)
d9e86c0e 3105 avail = reg;
ae3db24a
DV
3106 }
3107
d9e86c0e
CW
3108 if (avail == NULL)
3109 return NULL;
ae3db24a
DV
3110
3111 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3112 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3113 if (reg->pin_count)
ae3db24a
DV
3114 continue;
3115
8fe301ad 3116 return reg;
ae3db24a
DV
3117 }
3118
8fe301ad 3119 return NULL;
ae3db24a
DV
3120}
3121
de151cf6 3122/**
9a5a53b3 3123 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3124 * @obj: object to map through a fence reg
3125 *
3126 * When mapping objects through the GTT, userspace wants to be able to write
3127 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3128 * This function walks the fence regs looking for a free one for @obj,
3129 * stealing one if it can't find any.
3130 *
3131 * It then sets up the reg based on the object's properties: address, pitch
3132 * and tiling format.
9a5a53b3
CW
3133 *
3134 * For an untiled surface, this removes any existing fence.
de151cf6 3135 */
8c4b8c3f 3136int
06d98131 3137i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3138{
05394f39 3139 struct drm_device *dev = obj->base.dev;
79e53945 3140 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3141 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3142 struct drm_i915_fence_reg *reg;
ae3db24a 3143 int ret;
de151cf6 3144
14415745
CW
3145 /* Have we updated the tiling parameters upon the object and so
3146 * will need to serialise the write to the associated fence register?
3147 */
5d82e3e6 3148 if (obj->fence_dirty) {
d0a57789 3149 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3150 if (ret)
3151 return ret;
3152 }
9a5a53b3 3153
d9e86c0e 3154 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3155 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3156 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3157 if (!obj->fence_dirty) {
14415745
CW
3158 list_move_tail(&reg->lru_list,
3159 &dev_priv->mm.fence_list);
3160 return 0;
3161 }
3162 } else if (enable) {
3163 reg = i915_find_fence_reg(dev);
3164 if (reg == NULL)
3165 return -EDEADLK;
d9e86c0e 3166
14415745
CW
3167 if (reg->obj) {
3168 struct drm_i915_gem_object *old = reg->obj;
3169
d0a57789 3170 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3171 if (ret)
3172 return ret;
3173
14415745 3174 i915_gem_object_fence_lost(old);
29c5a587 3175 }
14415745 3176 } else
a09ba7fa 3177 return 0;
a09ba7fa 3178
14415745 3179 i915_gem_object_update_fence(obj, reg, enable);
14415745 3180
9ce079e4 3181 return 0;
de151cf6
JB
3182}
3183
42d6ab48
CW
3184static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3185 struct drm_mm_node *gtt_space,
3186 unsigned long cache_level)
3187{
3188 struct drm_mm_node *other;
3189
3190 /* On non-LLC machines we have to be careful when putting differing
3191 * types of snoopable memory together to avoid the prefetcher
4239ca77 3192 * crossing memory domains and dying.
42d6ab48
CW
3193 */
3194 if (HAS_LLC(dev))
3195 return true;
3196
c6cfb325 3197 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3198 return true;
3199
3200 if (list_empty(&gtt_space->node_list))
3201 return true;
3202
3203 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3204 if (other->allocated && !other->hole_follows && other->color != cache_level)
3205 return false;
3206
3207 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3208 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3209 return false;
3210
3211 return true;
3212}
3213
3214static void i915_gem_verify_gtt(struct drm_device *dev)
3215{
3216#if WATCH_GTT
3217 struct drm_i915_private *dev_priv = dev->dev_private;
3218 struct drm_i915_gem_object *obj;
3219 int err = 0;
3220
35c20a60 3221 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3222 if (obj->gtt_space == NULL) {
3223 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3224 err++;
3225 continue;
3226 }
3227
3228 if (obj->cache_level != obj->gtt_space->color) {
3229 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3230 i915_gem_obj_ggtt_offset(obj),
3231 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3232 obj->cache_level,
3233 obj->gtt_space->color);
3234 err++;
3235 continue;
3236 }
3237
3238 if (!i915_gem_valid_gtt_space(dev,
3239 obj->gtt_space,
3240 obj->cache_level)) {
3241 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3242 i915_gem_obj_ggtt_offset(obj),
3243 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3244 obj->cache_level);
3245 err++;
3246 continue;
3247 }
3248 }
3249
3250 WARN_ON(err);
3251#endif
3252}
3253
673a394b
EA
3254/**
3255 * Finds free space in the GTT aperture and binds the object there.
3256 */
3257static int
07fe0b12
BW
3258i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3259 struct i915_address_space *vm,
3260 unsigned alignment,
3261 bool map_and_fenceable,
3262 bool nonblocking)
673a394b 3263{
05394f39 3264 struct drm_device *dev = obj->base.dev;
673a394b 3265 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3266 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3267 size_t gtt_max =
3268 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3269 struct i915_vma *vma;
07f73f69 3270 int ret;
673a394b 3271
e28f8711
CW
3272 fence_size = i915_gem_get_gtt_size(dev,
3273 obj->base.size,
3274 obj->tiling_mode);
3275 fence_alignment = i915_gem_get_gtt_alignment(dev,
3276 obj->base.size,
d865110c 3277 obj->tiling_mode, true);
e28f8711 3278 unfenced_alignment =
d865110c 3279 i915_gem_get_gtt_alignment(dev,
e28f8711 3280 obj->base.size,
d865110c 3281 obj->tiling_mode, false);
a00b10c3 3282
673a394b 3283 if (alignment == 0)
5e783301
DV
3284 alignment = map_and_fenceable ? fence_alignment :
3285 unfenced_alignment;
75e9e915 3286 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3287 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3288 return -EINVAL;
3289 }
3290
05394f39 3291 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3292
654fc607
CW
3293 /* If the object is bigger than the entire aperture, reject it early
3294 * before evicting everything in a vain attempt to find space.
3295 */
0a9ae0d7 3296 if (obj->base.size > gtt_max) {
3765f304 3297 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3298 obj->base.size,
3299 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3300 gtt_max);
654fc607
CW
3301 return -E2BIG;
3302 }
3303
37e680a1 3304 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3305 if (ret)
3306 return ret;
3307
fbdda6fb
CW
3308 i915_gem_object_pin_pages(obj);
3309
07fe0b12 3310 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3311
accfef2e 3312 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3313 if (IS_ERR(vma)) {
bc6bc15b
DV
3314 ret = PTR_ERR(vma);
3315 goto err_unpin;
2f633156
BW
3316 }
3317
accfef2e
BW
3318 /* For now we only ever use 1 vma per object */
3319 WARN_ON(!list_is_singular(&obj->vma_list));
3320
0a9ae0d7 3321search_free:
07fe0b12 3322 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3323 size, alignment,
31e5d7c6
DH
3324 obj->cache_level, 0, gtt_max,
3325 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3326 if (ret) {
f6cd1f15 3327 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3328 obj->cache_level,
86a1ee26
CW
3329 map_and_fenceable,
3330 nonblocking);
dc9dd7a2
CW
3331 if (ret == 0)
3332 goto search_free;
9731129c 3333
bc6bc15b 3334 goto err_free_vma;
673a394b 3335 }
2f633156 3336 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3337 obj->cache_level))) {
2f633156 3338 ret = -EINVAL;
bc6bc15b 3339 goto err_remove_node;
673a394b
EA
3340 }
3341
74163907 3342 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3343 if (ret)
bc6bc15b 3344 goto err_remove_node;
673a394b 3345
35c20a60 3346 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3347 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3348
4bd561b3
BW
3349 if (i915_is_ggtt(vm)) {
3350 bool mappable, fenceable;
a00b10c3 3351
49987099
DV
3352 fenceable = (vma->node.size == fence_size &&
3353 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3354
49987099
DV
3355 mappable = (vma->node.start + obj->base.size <=
3356 dev_priv->gtt.mappable_end);
a00b10c3 3357
5cacaac7 3358 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3359 }
75e9e915 3360
7ace7ef2 3361 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3362
07fe0b12 3363 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3364 i915_gem_verify_gtt(dev);
673a394b 3365 return 0;
2f633156 3366
bc6bc15b 3367err_remove_node:
6286ef9b 3368 drm_mm_remove_node(&vma->node);
bc6bc15b 3369err_free_vma:
2f633156 3370 i915_gem_vma_destroy(vma);
bc6bc15b 3371err_unpin:
2f633156 3372 i915_gem_object_unpin_pages(obj);
2f633156 3373 return ret;
673a394b
EA
3374}
3375
000433b6 3376bool
2c22569b
CW
3377i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3378 bool force)
673a394b 3379{
673a394b
EA
3380 /* If we don't have a page list set up, then we're not pinned
3381 * to GPU, and we can ignore the cache flush because it'll happen
3382 * again at bind time.
3383 */
05394f39 3384 if (obj->pages == NULL)
000433b6 3385 return false;
673a394b 3386
769ce464
ID
3387 /*
3388 * Stolen memory is always coherent with the GPU as it is explicitly
3389 * marked as wc by the system, or the system is cache-coherent.
3390 */
3391 if (obj->stolen)
000433b6 3392 return false;
769ce464 3393
9c23f7fc
CW
3394 /* If the GPU is snooping the contents of the CPU cache,
3395 * we do not need to manually clear the CPU cache lines. However,
3396 * the caches are only snooped when the render cache is
3397 * flushed/invalidated. As we always have to emit invalidations
3398 * and flushes when moving into and out of the RENDER domain, correct
3399 * snooping behaviour occurs naturally as the result of our domain
3400 * tracking.
3401 */
2c22569b 3402 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3403 return false;
9c23f7fc 3404
1c5d22f7 3405 trace_i915_gem_object_clflush(obj);
9da3da66 3406 drm_clflush_sg(obj->pages);
000433b6
CW
3407
3408 return true;
e47c68e9
EA
3409}
3410
3411/** Flushes the GTT write domain for the object if it's dirty. */
3412static void
05394f39 3413i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3414{
1c5d22f7
CW
3415 uint32_t old_write_domain;
3416
05394f39 3417 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3418 return;
3419
63256ec5 3420 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3421 * to it immediately go to main memory as far as we know, so there's
3422 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3423 *
3424 * However, we do have to enforce the order so that all writes through
3425 * the GTT land before any writes to the device, such as updates to
3426 * the GATT itself.
e47c68e9 3427 */
63256ec5
CW
3428 wmb();
3429
05394f39
CW
3430 old_write_domain = obj->base.write_domain;
3431 obj->base.write_domain = 0;
1c5d22f7
CW
3432
3433 trace_i915_gem_object_change_domain(obj,
05394f39 3434 obj->base.read_domains,
1c5d22f7 3435 old_write_domain);
e47c68e9
EA
3436}
3437
3438/** Flushes the CPU write domain for the object if it's dirty. */
3439static void
2c22569b
CW
3440i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3441 bool force)
e47c68e9 3442{
1c5d22f7 3443 uint32_t old_write_domain;
e47c68e9 3444
05394f39 3445 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3446 return;
3447
000433b6
CW
3448 if (i915_gem_clflush_object(obj, force))
3449 i915_gem_chipset_flush(obj->base.dev);
3450
05394f39
CW
3451 old_write_domain = obj->base.write_domain;
3452 obj->base.write_domain = 0;
1c5d22f7
CW
3453
3454 trace_i915_gem_object_change_domain(obj,
05394f39 3455 obj->base.read_domains,
1c5d22f7 3456 old_write_domain);
e47c68e9
EA
3457}
3458
2ef7eeaa
EA
3459/**
3460 * Moves a single object to the GTT read, and possibly write domain.
3461 *
3462 * This function returns when the move is complete, including waiting on
3463 * flushes to occur.
3464 */
79e53945 3465int
2021746e 3466i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3467{
8325a09d 3468 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3469 uint32_t old_write_domain, old_read_domains;
e47c68e9 3470 int ret;
2ef7eeaa 3471
02354392 3472 /* Not valid to be called on unbound objects. */
9843877d 3473 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3474 return -EINVAL;
3475
8d7e3de1
CW
3476 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3477 return 0;
3478
0201f1ec 3479 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3480 if (ret)
3481 return ret;
3482
2c22569b 3483 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3484
d0a57789
CW
3485 /* Serialise direct access to this object with the barriers for
3486 * coherent writes from the GPU, by effectively invalidating the
3487 * GTT domain upon first access.
3488 */
3489 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3490 mb();
3491
05394f39
CW
3492 old_write_domain = obj->base.write_domain;
3493 old_read_domains = obj->base.read_domains;
1c5d22f7 3494
e47c68e9
EA
3495 /* It should now be out of any other write domains, and we can update
3496 * the domain values for our changes.
3497 */
05394f39
CW
3498 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3499 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3500 if (write) {
05394f39
CW
3501 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3502 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3503 obj->dirty = 1;
2ef7eeaa
EA
3504 }
3505
1c5d22f7
CW
3506 trace_i915_gem_object_change_domain(obj,
3507 old_read_domains,
3508 old_write_domain);
3509
8325a09d 3510 /* And bump the LRU for this access */
ca191b13 3511 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3512 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3513 if (vma)
3514 list_move_tail(&vma->mm_list,
3515 &dev_priv->gtt.base.inactive_list);
3516
3517 }
8325a09d 3518
e47c68e9
EA
3519 return 0;
3520}
3521
e4ffd173
CW
3522int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3523 enum i915_cache_level cache_level)
3524{
7bddb01f
DV
3525 struct drm_device *dev = obj->base.dev;
3526 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3527 struct i915_vma *vma;
e4ffd173
CW
3528 int ret;
3529
3530 if (obj->cache_level == cache_level)
3531 return 0;
3532
3533 if (obj->pin_count) {
3534 DRM_DEBUG("can not change the cache level of pinned objects\n");
3535 return -EBUSY;
3536 }
3537
3089c6f2
BW
3538 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3539 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3540 ret = i915_vma_unbind(vma);
3089c6f2
BW
3541 if (ret)
3542 return ret;
3543
3544 break;
3545 }
42d6ab48
CW
3546 }
3547
3089c6f2 3548 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3549 ret = i915_gem_object_finish_gpu(obj);
3550 if (ret)
3551 return ret;
3552
3553 i915_gem_object_finish_gtt(obj);
3554
3555 /* Before SandyBridge, you could not use tiling or fence
3556 * registers with snooped memory, so relinquish any fences
3557 * currently pointing to our region in the aperture.
3558 */
42d6ab48 3559 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3560 ret = i915_gem_object_put_fence(obj);
3561 if (ret)
3562 return ret;
3563 }
3564
74898d7e
DV
3565 if (obj->has_global_gtt_mapping)
3566 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3567 if (obj->has_aliasing_ppgtt_mapping)
3568 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3569 obj, cache_level);
e4ffd173
CW
3570 }
3571
2c22569b
CW
3572 list_for_each_entry(vma, &obj->vma_list, vma_link)
3573 vma->node.color = cache_level;
3574 obj->cache_level = cache_level;
3575
3576 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3577 u32 old_read_domains, old_write_domain;
3578
3579 /* If we're coming from LLC cached, then we haven't
3580 * actually been tracking whether the data is in the
3581 * CPU cache or not, since we only allow one bit set
3582 * in obj->write_domain and have been skipping the clflushes.
3583 * Just set it to the CPU cache for now.
3584 */
3585 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3586
3587 old_read_domains = obj->base.read_domains;
3588 old_write_domain = obj->base.write_domain;
3589
3590 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3591 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3592
3593 trace_i915_gem_object_change_domain(obj,
3594 old_read_domains,
3595 old_write_domain);
3596 }
3597
42d6ab48 3598 i915_gem_verify_gtt(dev);
e4ffd173
CW
3599 return 0;
3600}
3601
199adf40
BW
3602int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3603 struct drm_file *file)
e6994aee 3604{
199adf40 3605 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3606 struct drm_i915_gem_object *obj;
3607 int ret;
3608
3609 ret = i915_mutex_lock_interruptible(dev);
3610 if (ret)
3611 return ret;
3612
3613 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3614 if (&obj->base == NULL) {
3615 ret = -ENOENT;
3616 goto unlock;
3617 }
3618
651d794f
CW
3619 switch (obj->cache_level) {
3620 case I915_CACHE_LLC:
3621 case I915_CACHE_L3_LLC:
3622 args->caching = I915_CACHING_CACHED;
3623 break;
3624
4257d3ba
CW
3625 case I915_CACHE_WT:
3626 args->caching = I915_CACHING_DISPLAY;
3627 break;
3628
651d794f
CW
3629 default:
3630 args->caching = I915_CACHING_NONE;
3631 break;
3632 }
e6994aee
CW
3633
3634 drm_gem_object_unreference(&obj->base);
3635unlock:
3636 mutex_unlock(&dev->struct_mutex);
3637 return ret;
3638}
3639
199adf40
BW
3640int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3641 struct drm_file *file)
e6994aee 3642{
199adf40 3643 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3644 struct drm_i915_gem_object *obj;
3645 enum i915_cache_level level;
3646 int ret;
3647
199adf40
BW
3648 switch (args->caching) {
3649 case I915_CACHING_NONE:
e6994aee
CW
3650 level = I915_CACHE_NONE;
3651 break;
199adf40 3652 case I915_CACHING_CACHED:
e6994aee
CW
3653 level = I915_CACHE_LLC;
3654 break;
4257d3ba
CW
3655 case I915_CACHING_DISPLAY:
3656 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3657 break;
e6994aee
CW
3658 default:
3659 return -EINVAL;
3660 }
3661
3bc2913e
BW
3662 ret = i915_mutex_lock_interruptible(dev);
3663 if (ret)
3664 return ret;
3665
e6994aee
CW
3666 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3667 if (&obj->base == NULL) {
3668 ret = -ENOENT;
3669 goto unlock;
3670 }
3671
3672 ret = i915_gem_object_set_cache_level(obj, level);
3673
3674 drm_gem_object_unreference(&obj->base);
3675unlock:
3676 mutex_unlock(&dev->struct_mutex);
3677 return ret;
3678}
3679
cc98b413
CW
3680static bool is_pin_display(struct drm_i915_gem_object *obj)
3681{
3682 /* There are 3 sources that pin objects:
3683 * 1. The display engine (scanouts, sprites, cursors);
3684 * 2. Reservations for execbuffer;
3685 * 3. The user.
3686 *
3687 * We can ignore reservations as we hold the struct_mutex and
3688 * are only called outside of the reservation path. The user
3689 * can only increment pin_count once, and so if after
3690 * subtracting the potential reference by the user, any pin_count
3691 * remains, it must be due to another use by the display engine.
3692 */
3693 return obj->pin_count - !!obj->user_pin_count;
3694}
3695
b9241ea3 3696/*
2da3b9b9
CW
3697 * Prepare buffer for display plane (scanout, cursors, etc).
3698 * Can be called from an uninterruptible phase (modesetting) and allows
3699 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3700 */
3701int
2da3b9b9
CW
3702i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3703 u32 alignment,
919926ae 3704 struct intel_ring_buffer *pipelined)
b9241ea3 3705{
2da3b9b9 3706 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3707 int ret;
3708
0be73284 3709 if (pipelined != obj->ring) {
2911a35b
BW
3710 ret = i915_gem_object_sync(obj, pipelined);
3711 if (ret)
b9241ea3
ZW
3712 return ret;
3713 }
3714
cc98b413
CW
3715 /* Mark the pin_display early so that we account for the
3716 * display coherency whilst setting up the cache domains.
3717 */
3718 obj->pin_display = true;
3719
a7ef0640
EA
3720 /* The display engine is not coherent with the LLC cache on gen6. As
3721 * a result, we make sure that the pinning that is about to occur is
3722 * done with uncached PTEs. This is lowest common denominator for all
3723 * chipsets.
3724 *
3725 * However for gen6+, we could do better by using the GFDT bit instead
3726 * of uncaching, which would allow us to flush all the LLC-cached data
3727 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3728 */
651d794f
CW
3729 ret = i915_gem_object_set_cache_level(obj,
3730 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3731 if (ret)
cc98b413 3732 goto err_unpin_display;
a7ef0640 3733
2da3b9b9
CW
3734 /* As the user may map the buffer once pinned in the display plane
3735 * (e.g. libkms for the bootup splash), we have to ensure that we
3736 * always use map_and_fenceable for all scanout buffers.
3737 */
c37e2204 3738 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3739 if (ret)
cc98b413 3740 goto err_unpin_display;
2da3b9b9 3741
2c22569b 3742 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3743
2da3b9b9 3744 old_write_domain = obj->base.write_domain;
05394f39 3745 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3746
3747 /* It should now be out of any other write domains, and we can update
3748 * the domain values for our changes.
3749 */
e5f1d962 3750 obj->base.write_domain = 0;
05394f39 3751 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3752
3753 trace_i915_gem_object_change_domain(obj,
3754 old_read_domains,
2da3b9b9 3755 old_write_domain);
b9241ea3
ZW
3756
3757 return 0;
cc98b413
CW
3758
3759err_unpin_display:
3760 obj->pin_display = is_pin_display(obj);
3761 return ret;
3762}
3763
3764void
3765i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3766{
3767 i915_gem_object_unpin(obj);
3768 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3769}
3770
85345517 3771int
a8198eea 3772i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3773{
88241785
CW
3774 int ret;
3775
a8198eea 3776 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3777 return 0;
3778
0201f1ec 3779 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3780 if (ret)
3781 return ret;
3782
a8198eea
CW
3783 /* Ensure that we invalidate the GPU's caches and TLBs. */
3784 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3785 return 0;
85345517
CW
3786}
3787
e47c68e9
EA
3788/**
3789 * Moves a single object to the CPU read, and possibly write domain.
3790 *
3791 * This function returns when the move is complete, including waiting on
3792 * flushes to occur.
3793 */
dabdfe02 3794int
919926ae 3795i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3796{
1c5d22f7 3797 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3798 int ret;
3799
8d7e3de1
CW
3800 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3801 return 0;
3802
0201f1ec 3803 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3804 if (ret)
3805 return ret;
3806
e47c68e9 3807 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3808
05394f39
CW
3809 old_write_domain = obj->base.write_domain;
3810 old_read_domains = obj->base.read_domains;
1c5d22f7 3811
e47c68e9 3812 /* Flush the CPU cache if it's still invalid. */
05394f39 3813 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3814 i915_gem_clflush_object(obj, false);
2ef7eeaa 3815
05394f39 3816 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3817 }
3818
3819 /* It should now be out of any other write domains, and we can update
3820 * the domain values for our changes.
3821 */
05394f39 3822 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3823
3824 /* If we're writing through the CPU, then the GPU read domains will
3825 * need to be invalidated at next use.
3826 */
3827 if (write) {
05394f39
CW
3828 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3829 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3830 }
2ef7eeaa 3831
1c5d22f7
CW
3832 trace_i915_gem_object_change_domain(obj,
3833 old_read_domains,
3834 old_write_domain);
3835
2ef7eeaa
EA
3836 return 0;
3837}
3838
673a394b
EA
3839/* Throttle our rendering by waiting until the ring has completed our requests
3840 * emitted over 20 msec ago.
3841 *
b962442e
EA
3842 * Note that if we were to use the current jiffies each time around the loop,
3843 * we wouldn't escape the function with any frames outstanding if the time to
3844 * render a frame was over 20ms.
3845 *
673a394b
EA
3846 * This should get us reasonable parallelism between CPU and GPU but also
3847 * relatively low latency when blocking on a particular request to finish.
3848 */
40a5f0de 3849static int
f787a5f5 3850i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3851{
f787a5f5
CW
3852 struct drm_i915_private *dev_priv = dev->dev_private;
3853 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3854 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3855 struct drm_i915_gem_request *request;
3856 struct intel_ring_buffer *ring = NULL;
f69061be 3857 unsigned reset_counter;
f787a5f5
CW
3858 u32 seqno = 0;
3859 int ret;
93533c29 3860
308887aa
DV
3861 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3862 if (ret)
3863 return ret;
3864
3865 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3866 if (ret)
3867 return ret;
e110e8d6 3868
1c25595f 3869 spin_lock(&file_priv->mm.lock);
f787a5f5 3870 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3871 if (time_after_eq(request->emitted_jiffies, recent_enough))
3872 break;
40a5f0de 3873
f787a5f5
CW
3874 ring = request->ring;
3875 seqno = request->seqno;
b962442e 3876 }
f69061be 3877 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3878 spin_unlock(&file_priv->mm.lock);
40a5f0de 3879
f787a5f5
CW
3880 if (seqno == 0)
3881 return 0;
2bc43b5c 3882
b29c19b6 3883 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3884 if (ret == 0)
3885 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3886
3887 return ret;
3888}
3889
673a394b 3890int
05394f39 3891i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3892 struct i915_address_space *vm,
05394f39 3893 uint32_t alignment,
86a1ee26
CW
3894 bool map_and_fenceable,
3895 bool nonblocking)
673a394b 3896{
07fe0b12 3897 struct i915_vma *vma;
673a394b
EA
3898 int ret;
3899
7e81a42e
CW
3900 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3901 return -EBUSY;
ac0c6b5a 3902
07fe0b12
BW
3903 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3904
3905 vma = i915_gem_obj_to_vma(obj, vm);
3906
3907 if (vma) {
3908 if ((alignment &&
3909 vma->node.start & (alignment - 1)) ||
05394f39
CW
3910 (map_and_fenceable && !obj->map_and_fenceable)) {
3911 WARN(obj->pin_count,
ae7d49d8 3912 "bo is already pinned with incorrect alignment:"
f343c5f6 3913 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3914 " obj->map_and_fenceable=%d\n",
07fe0b12 3915 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3916 map_and_fenceable,
05394f39 3917 obj->map_and_fenceable);
07fe0b12 3918 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3919 if (ret)
3920 return ret;
3921 }
3922 }
3923
07fe0b12 3924 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3925 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3926
07fe0b12
BW
3927 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3928 map_and_fenceable,
3929 nonblocking);
9731129c 3930 if (ret)
673a394b 3931 return ret;
8742267a
CW
3932
3933 if (!dev_priv->mm.aliasing_ppgtt)
3934 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3935 }
76446cac 3936
74898d7e
DV
3937 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3938 i915_gem_gtt_bind_object(obj, obj->cache_level);
3939
1b50247a 3940 obj->pin_count++;
6299f992 3941 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3942
3943 return 0;
3944}
3945
3946void
05394f39 3947i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3948{
05394f39 3949 BUG_ON(obj->pin_count == 0);
9843877d 3950 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3951
1b50247a 3952 if (--obj->pin_count == 0)
6299f992 3953 obj->pin_mappable = false;
673a394b
EA
3954}
3955
3956int
3957i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3958 struct drm_file *file)
673a394b
EA
3959{
3960 struct drm_i915_gem_pin *args = data;
05394f39 3961 struct drm_i915_gem_object *obj;
673a394b
EA
3962 int ret;
3963
1d7cfea1
CW
3964 ret = i915_mutex_lock_interruptible(dev);
3965 if (ret)
3966 return ret;
673a394b 3967
05394f39 3968 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3969 if (&obj->base == NULL) {
1d7cfea1
CW
3970 ret = -ENOENT;
3971 goto unlock;
673a394b 3972 }
673a394b 3973
05394f39 3974 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3975 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3976 ret = -EINVAL;
3977 goto out;
3ef94daa
CW
3978 }
3979
05394f39 3980 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3981 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3982 args->handle);
1d7cfea1
CW
3983 ret = -EINVAL;
3984 goto out;
79e53945
JB
3985 }
3986
aa5f8021
DV
3987 if (obj->user_pin_count == ULONG_MAX) {
3988 ret = -EBUSY;
3989 goto out;
3990 }
3991
93be8788 3992 if (obj->user_pin_count == 0) {
c37e2204 3993 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3994 if (ret)
3995 goto out;
673a394b
EA
3996 }
3997
93be8788
CW
3998 obj->user_pin_count++;
3999 obj->pin_filp = file;
4000
f343c5f6 4001 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4002out:
05394f39 4003 drm_gem_object_unreference(&obj->base);
1d7cfea1 4004unlock:
673a394b 4005 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4006 return ret;
673a394b
EA
4007}
4008
4009int
4010i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4011 struct drm_file *file)
673a394b
EA
4012{
4013 struct drm_i915_gem_pin *args = data;
05394f39 4014 struct drm_i915_gem_object *obj;
76c1dec1 4015 int ret;
673a394b 4016
1d7cfea1
CW
4017 ret = i915_mutex_lock_interruptible(dev);
4018 if (ret)
4019 return ret;
673a394b 4020
05394f39 4021 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4022 if (&obj->base == NULL) {
1d7cfea1
CW
4023 ret = -ENOENT;
4024 goto unlock;
673a394b 4025 }
76c1dec1 4026
05394f39 4027 if (obj->pin_filp != file) {
79e53945
JB
4028 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4029 args->handle);
1d7cfea1
CW
4030 ret = -EINVAL;
4031 goto out;
79e53945 4032 }
05394f39
CW
4033 obj->user_pin_count--;
4034 if (obj->user_pin_count == 0) {
4035 obj->pin_filp = NULL;
79e53945
JB
4036 i915_gem_object_unpin(obj);
4037 }
673a394b 4038
1d7cfea1 4039out:
05394f39 4040 drm_gem_object_unreference(&obj->base);
1d7cfea1 4041unlock:
673a394b 4042 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4043 return ret;
673a394b
EA
4044}
4045
4046int
4047i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4048 struct drm_file *file)
673a394b
EA
4049{
4050 struct drm_i915_gem_busy *args = data;
05394f39 4051 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4052 int ret;
4053
76c1dec1 4054 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4055 if (ret)
76c1dec1 4056 return ret;
673a394b 4057
05394f39 4058 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4059 if (&obj->base == NULL) {
1d7cfea1
CW
4060 ret = -ENOENT;
4061 goto unlock;
673a394b 4062 }
d1b851fc 4063
0be555b6
CW
4064 /* Count all active objects as busy, even if they are currently not used
4065 * by the gpu. Users of this interface expect objects to eventually
4066 * become non-busy without any further actions, therefore emit any
4067 * necessary flushes here.
c4de0a5d 4068 */
30dfebf3 4069 ret = i915_gem_object_flush_active(obj);
0be555b6 4070
30dfebf3 4071 args->busy = obj->active;
e9808edd
CW
4072 if (obj->ring) {
4073 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4074 args->busy |= intel_ring_flag(obj->ring) << 16;
4075 }
673a394b 4076
05394f39 4077 drm_gem_object_unreference(&obj->base);
1d7cfea1 4078unlock:
673a394b 4079 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4080 return ret;
673a394b
EA
4081}
4082
4083int
4084i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4085 struct drm_file *file_priv)
4086{
0206e353 4087 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4088}
4089
3ef94daa
CW
4090int
4091i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4092 struct drm_file *file_priv)
4093{
4094 struct drm_i915_gem_madvise *args = data;
05394f39 4095 struct drm_i915_gem_object *obj;
76c1dec1 4096 int ret;
3ef94daa
CW
4097
4098 switch (args->madv) {
4099 case I915_MADV_DONTNEED:
4100 case I915_MADV_WILLNEED:
4101 break;
4102 default:
4103 return -EINVAL;
4104 }
4105
1d7cfea1
CW
4106 ret = i915_mutex_lock_interruptible(dev);
4107 if (ret)
4108 return ret;
4109
05394f39 4110 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4111 if (&obj->base == NULL) {
1d7cfea1
CW
4112 ret = -ENOENT;
4113 goto unlock;
3ef94daa 4114 }
3ef94daa 4115
05394f39 4116 if (obj->pin_count) {
1d7cfea1
CW
4117 ret = -EINVAL;
4118 goto out;
3ef94daa
CW
4119 }
4120
05394f39
CW
4121 if (obj->madv != __I915_MADV_PURGED)
4122 obj->madv = args->madv;
3ef94daa 4123
6c085a72
CW
4124 /* if the object is no longer attached, discard its backing storage */
4125 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4126 i915_gem_object_truncate(obj);
4127
05394f39 4128 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4129
1d7cfea1 4130out:
05394f39 4131 drm_gem_object_unreference(&obj->base);
1d7cfea1 4132unlock:
3ef94daa 4133 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4134 return ret;
3ef94daa
CW
4135}
4136
37e680a1
CW
4137void i915_gem_object_init(struct drm_i915_gem_object *obj,
4138 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4139{
35c20a60 4140 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4141 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4142 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4143 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4144
37e680a1
CW
4145 obj->ops = ops;
4146
0327d6ba
CW
4147 obj->fence_reg = I915_FENCE_REG_NONE;
4148 obj->madv = I915_MADV_WILLNEED;
4149 /* Avoid an unnecessary call to unbind on the first bind. */
4150 obj->map_and_fenceable = true;
4151
4152 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4153}
4154
37e680a1
CW
4155static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4156 .get_pages = i915_gem_object_get_pages_gtt,
4157 .put_pages = i915_gem_object_put_pages_gtt,
4158};
4159
05394f39
CW
4160struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4161 size_t size)
ac52bc56 4162{
c397b908 4163 struct drm_i915_gem_object *obj;
5949eac4 4164 struct address_space *mapping;
1a240d4d 4165 gfp_t mask;
ac52bc56 4166
42dcedd4 4167 obj = i915_gem_object_alloc(dev);
c397b908
DV
4168 if (obj == NULL)
4169 return NULL;
673a394b 4170
c397b908 4171 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4172 i915_gem_object_free(obj);
c397b908
DV
4173 return NULL;
4174 }
673a394b 4175
bed1ea95
CW
4176 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4177 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4178 /* 965gm cannot relocate objects above 4GiB. */
4179 mask &= ~__GFP_HIGHMEM;
4180 mask |= __GFP_DMA32;
4181 }
4182
496ad9aa 4183 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4184 mapping_set_gfp_mask(mapping, mask);
5949eac4 4185
37e680a1 4186 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4187
c397b908
DV
4188 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4189 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4190
3d29b842
ED
4191 if (HAS_LLC(dev)) {
4192 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4193 * cache) for about a 10% performance improvement
4194 * compared to uncached. Graphics requests other than
4195 * display scanout are coherent with the CPU in
4196 * accessing this cache. This means in this mode we
4197 * don't need to clflush on the CPU side, and on the
4198 * GPU side we only need to flush internal caches to
4199 * get data visible to the CPU.
4200 *
4201 * However, we maintain the display planes as UC, and so
4202 * need to rebind when first used as such.
4203 */
4204 obj->cache_level = I915_CACHE_LLC;
4205 } else
4206 obj->cache_level = I915_CACHE_NONE;
4207
d861e338
DV
4208 trace_i915_gem_object_create(obj);
4209
05394f39 4210 return obj;
c397b908
DV
4211}
4212
1488fc08 4213void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4214{
1488fc08 4215 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4216 struct drm_device *dev = obj->base.dev;
be72615b 4217 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4218 struct i915_vma *vma, *next;
673a394b 4219
f65c9168
PZ
4220 intel_runtime_pm_get(dev_priv);
4221
26e12f89
CW
4222 trace_i915_gem_object_destroy(obj);
4223
1488fc08
CW
4224 if (obj->phys_obj)
4225 i915_gem_detach_phys_object(dev, obj);
4226
4227 obj->pin_count = 0;
07fe0b12
BW
4228 /* NB: 0 or 1 elements */
4229 WARN_ON(!list_empty(&obj->vma_list) &&
4230 !list_is_singular(&obj->vma_list));
4231 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4232 int ret = i915_vma_unbind(vma);
4233 if (WARN_ON(ret == -ERESTARTSYS)) {
4234 bool was_interruptible;
1488fc08 4235
07fe0b12
BW
4236 was_interruptible = dev_priv->mm.interruptible;
4237 dev_priv->mm.interruptible = false;
1488fc08 4238
07fe0b12 4239 WARN_ON(i915_vma_unbind(vma));
1488fc08 4240
07fe0b12
BW
4241 dev_priv->mm.interruptible = was_interruptible;
4242 }
1488fc08
CW
4243 }
4244
1d64ae71
BW
4245 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4246 * before progressing. */
4247 if (obj->stolen)
4248 i915_gem_object_unpin_pages(obj);
4249
401c29f6
BW
4250 if (WARN_ON(obj->pages_pin_count))
4251 obj->pages_pin_count = 0;
37e680a1 4252 i915_gem_object_put_pages(obj);
d8cb5086 4253 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4254 i915_gem_object_release_stolen(obj);
de151cf6 4255
9da3da66
CW
4256 BUG_ON(obj->pages);
4257
2f745ad3
CW
4258 if (obj->base.import_attach)
4259 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4260
05394f39
CW
4261 drm_gem_object_release(&obj->base);
4262 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4263
05394f39 4264 kfree(obj->bit_17);
42dcedd4 4265 i915_gem_object_free(obj);
f65c9168
PZ
4266
4267 intel_runtime_pm_put(dev_priv);
673a394b
EA
4268}
4269
e656a6cb 4270struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4271 struct i915_address_space *vm)
e656a6cb
DV
4272{
4273 struct i915_vma *vma;
4274 list_for_each_entry(vma, &obj->vma_list, vma_link)
4275 if (vma->vm == vm)
4276 return vma;
4277
4278 return NULL;
4279}
4280
4281static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4282 struct i915_address_space *vm)
2f633156
BW
4283{
4284 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4285 if (vma == NULL)
4286 return ERR_PTR(-ENOMEM);
4287
4288 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4289 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4290 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4291 vma->vm = vm;
4292 vma->obj = obj;
4293
8b9c2b94
BW
4294 /* Keep GGTT vmas first to make debug easier */
4295 if (i915_is_ggtt(vm))
4296 list_add(&vma->vma_link, &obj->vma_list);
4297 else
4298 list_add_tail(&vma->vma_link, &obj->vma_list);
4299
2f633156
BW
4300 return vma;
4301}
4302
e656a6cb
DV
4303struct i915_vma *
4304i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4305 struct i915_address_space *vm)
4306{
4307 struct i915_vma *vma;
4308
4309 vma = i915_gem_obj_to_vma(obj, vm);
4310 if (!vma)
4311 vma = __i915_gem_vma_create(obj, vm);
4312
4313 return vma;
4314}
4315
2f633156
BW
4316void i915_gem_vma_destroy(struct i915_vma *vma)
4317{
4318 WARN_ON(vma->node.allocated);
aaa05667
CW
4319
4320 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4321 if (!list_empty(&vma->exec_list))
4322 return;
4323
8b9c2b94 4324 list_del(&vma->vma_link);
b93dab6e 4325
2f633156
BW
4326 kfree(vma);
4327}
4328
29105ccc 4329int
45c5f202 4330i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4331{
4332 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4333 int ret = 0;
28dfe52a 4334
45c5f202 4335 mutex_lock(&dev->struct_mutex);
f7403347 4336 if (dev_priv->ums.mm_suspended)
45c5f202 4337 goto err;
28dfe52a 4338
b2da9fe5 4339 ret = i915_gpu_idle(dev);
f7403347 4340 if (ret)
45c5f202 4341 goto err;
f7403347 4342
b2da9fe5 4343 i915_gem_retire_requests(dev);
673a394b 4344
29105ccc 4345 /* Under UMS, be paranoid and evict. */
a39d7efc 4346 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4347 i915_gem_evict_everything(dev);
29105ccc 4348
29105ccc 4349 i915_kernel_lost_context(dev);
6dbe2772 4350 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4351
45c5f202
CW
4352 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4353 * We need to replace this with a semaphore, or something.
4354 * And not confound ums.mm_suspended!
4355 */
4356 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4357 DRIVER_MODESET);
4358 mutex_unlock(&dev->struct_mutex);
4359
4360 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4361 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4362 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4363
673a394b 4364 return 0;
45c5f202
CW
4365
4366err:
4367 mutex_unlock(&dev->struct_mutex);
4368 return ret;
673a394b
EA
4369}
4370
c3787e2e 4371int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4372{
c3787e2e 4373 struct drm_device *dev = ring->dev;
b9524a1e 4374 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4375 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4376 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4377 int i, ret;
b9524a1e 4378
040d2baa 4379 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4380 return 0;
b9524a1e 4381
c3787e2e
BW
4382 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4383 if (ret)
4384 return ret;
b9524a1e 4385
c3787e2e
BW
4386 /*
4387 * Note: We do not worry about the concurrent register cacheline hang
4388 * here because no other code should access these registers other than
4389 * at initialization time.
4390 */
b9524a1e 4391 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4392 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4393 intel_ring_emit(ring, reg_base + i);
4394 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4395 }
4396
c3787e2e 4397 intel_ring_advance(ring);
b9524a1e 4398
c3787e2e 4399 return ret;
b9524a1e
BW
4400}
4401
f691e2f4
DV
4402void i915_gem_init_swizzling(struct drm_device *dev)
4403{
4404 drm_i915_private_t *dev_priv = dev->dev_private;
4405
11782b02 4406 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4407 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4408 return;
4409
4410 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4411 DISP_TILE_SURFACE_SWIZZLING);
4412
11782b02
DV
4413 if (IS_GEN5(dev))
4414 return;
4415
f691e2f4
DV
4416 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4417 if (IS_GEN6(dev))
6b26c86d 4418 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4419 else if (IS_GEN7(dev))
6b26c86d 4420 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4421 else if (IS_GEN8(dev))
4422 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4423 else
4424 BUG();
f691e2f4 4425}
e21af88d 4426
67b1b571
CW
4427static bool
4428intel_enable_blt(struct drm_device *dev)
4429{
4430 if (!HAS_BLT(dev))
4431 return false;
4432
4433 /* The blitter was dysfunctional on early prototypes */
4434 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4435 DRM_INFO("BLT not supported on this pre-production hardware;"
4436 " graphics performance will be degraded.\n");
4437 return false;
4438 }
4439
4440 return true;
4441}
4442
4fc7c971 4443static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4444{
4fc7c971 4445 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4446 int ret;
68f95ba9 4447
5c1143bb 4448 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4449 if (ret)
b6913e4b 4450 return ret;
68f95ba9
CW
4451
4452 if (HAS_BSD(dev)) {
5c1143bb 4453 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4454 if (ret)
4455 goto cleanup_render_ring;
d1b851fc 4456 }
68f95ba9 4457
67b1b571 4458 if (intel_enable_blt(dev)) {
549f7365
CW
4459 ret = intel_init_blt_ring_buffer(dev);
4460 if (ret)
4461 goto cleanup_bsd_ring;
4462 }
4463
9a8a2213
BW
4464 if (HAS_VEBOX(dev)) {
4465 ret = intel_init_vebox_ring_buffer(dev);
4466 if (ret)
4467 goto cleanup_blt_ring;
4468 }
4469
4470
99433931 4471 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4472 if (ret)
9a8a2213 4473 goto cleanup_vebox_ring;
4fc7c971
BW
4474
4475 return 0;
4476
9a8a2213
BW
4477cleanup_vebox_ring:
4478 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4479cleanup_blt_ring:
4480 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4481cleanup_bsd_ring:
4482 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4483cleanup_render_ring:
4484 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4485
4486 return ret;
4487}
4488
4489int
4490i915_gem_init_hw(struct drm_device *dev)
4491{
4492 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4493 int ret, i;
4fc7c971
BW
4494
4495 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4496 return -EIO;
4497
59124506 4498 if (dev_priv->ellc_size)
05e21cc4 4499 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4500
0bf21347
VS
4501 if (IS_HASWELL(dev))
4502 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4503 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4504
88a2b2a3
BW
4505 if (HAS_PCH_NOP(dev)) {
4506 u32 temp = I915_READ(GEN7_MSG_CTL);
4507 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4508 I915_WRITE(GEN7_MSG_CTL, temp);
4509 }
4510
4fc7c971
BW
4511 i915_gem_init_swizzling(dev);
4512
4513 ret = i915_gem_init_rings(dev);
99433931
MK
4514 if (ret)
4515 return ret;
4516
c3787e2e
BW
4517 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4518 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4519
254f965c
BW
4520 /*
4521 * XXX: There was some w/a described somewhere suggesting loading
4522 * contexts before PPGTT.
4523 */
8245be31
BW
4524 ret = i915_gem_context_init(dev);
4525 if (ret) {
4526 i915_gem_cleanup_ringbuffer(dev);
4527 DRM_ERROR("Context initialization failed %d\n", ret);
4528 return ret;
4529 }
4530
b7c36d25
BW
4531 if (dev_priv->mm.aliasing_ppgtt) {
4532 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4533 if (ret) {
4534 i915_gem_cleanup_aliasing_ppgtt(dev);
4535 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4536 }
4537 }
e21af88d 4538
68f95ba9 4539 return 0;
8187a2b7
ZN
4540}
4541
1070a42b
CW
4542int i915_gem_init(struct drm_device *dev)
4543{
4544 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4545 int ret;
4546
1070a42b 4547 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4548
4549 if (IS_VALLEYVIEW(dev)) {
4550 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4551 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4552 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4553 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4554 }
4555
d7e5008f 4556 i915_gem_init_global_gtt(dev);
d62b4892 4557
1070a42b
CW
4558 ret = i915_gem_init_hw(dev);
4559 mutex_unlock(&dev->struct_mutex);
4560 if (ret) {
4561 i915_gem_cleanup_aliasing_ppgtt(dev);
4562 return ret;
4563 }
4564
53ca26ca
DV
4565 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4566 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4567 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4568 return 0;
4569}
4570
8187a2b7
ZN
4571void
4572i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4573{
4574 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4575 struct intel_ring_buffer *ring;
1ec14ad3 4576 int i;
8187a2b7 4577
b4519513
CW
4578 for_each_ring(ring, dev_priv, i)
4579 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4580}
4581
673a394b
EA
4582int
4583i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4584 struct drm_file *file_priv)
4585{
db1b76ca 4586 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4587 int ret;
673a394b 4588
79e53945
JB
4589 if (drm_core_check_feature(dev, DRIVER_MODESET))
4590 return 0;
4591
1f83fee0 4592 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4593 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4594 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4595 }
4596
673a394b 4597 mutex_lock(&dev->struct_mutex);
db1b76ca 4598 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4599
f691e2f4 4600 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4601 if (ret != 0) {
4602 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4603 return ret;
d816f6ac 4604 }
9bb2d6f9 4605
5cef07e1 4606 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4607 mutex_unlock(&dev->struct_mutex);
dbb19d30 4608
5f35308b
CW
4609 ret = drm_irq_install(dev);
4610 if (ret)
4611 goto cleanup_ringbuffer;
dbb19d30 4612
673a394b 4613 return 0;
5f35308b
CW
4614
4615cleanup_ringbuffer:
4616 mutex_lock(&dev->struct_mutex);
4617 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4618 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4619 mutex_unlock(&dev->struct_mutex);
4620
4621 return ret;
673a394b
EA
4622}
4623
4624int
4625i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4626 struct drm_file *file_priv)
4627{
79e53945
JB
4628 if (drm_core_check_feature(dev, DRIVER_MODESET))
4629 return 0;
4630
dbb19d30 4631 drm_irq_uninstall(dev);
db1b76ca 4632
45c5f202 4633 return i915_gem_suspend(dev);
673a394b
EA
4634}
4635
4636void
4637i915_gem_lastclose(struct drm_device *dev)
4638{
4639 int ret;
673a394b 4640
e806b495
EA
4641 if (drm_core_check_feature(dev, DRIVER_MODESET))
4642 return;
4643
45c5f202 4644 ret = i915_gem_suspend(dev);
6dbe2772
KP
4645 if (ret)
4646 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4647}
4648
64193406
CW
4649static void
4650init_ring_lists(struct intel_ring_buffer *ring)
4651{
4652 INIT_LIST_HEAD(&ring->active_list);
4653 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4654}
4655
fc8c067e
BW
4656static void i915_init_vm(struct drm_i915_private *dev_priv,
4657 struct i915_address_space *vm)
4658{
4659 vm->dev = dev_priv->dev;
4660 INIT_LIST_HEAD(&vm->active_list);
4661 INIT_LIST_HEAD(&vm->inactive_list);
4662 INIT_LIST_HEAD(&vm->global_link);
4663 list_add(&vm->global_link, &dev_priv->vm_list);
4664}
4665
673a394b
EA
4666void
4667i915_gem_load(struct drm_device *dev)
4668{
4669 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4670 int i;
4671
4672 dev_priv->slab =
4673 kmem_cache_create("i915_gem_object",
4674 sizeof(struct drm_i915_gem_object), 0,
4675 SLAB_HWCACHE_ALIGN,
4676 NULL);
673a394b 4677
fc8c067e
BW
4678 INIT_LIST_HEAD(&dev_priv->vm_list);
4679 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4680
a33afea5 4681 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4682 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4683 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4684 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4685 for (i = 0; i < I915_NUM_RINGS; i++)
4686 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4687 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4688 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4689 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4690 i915_gem_retire_work_handler);
b29c19b6
CW
4691 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4692 i915_gem_idle_work_handler);
1f83fee0 4693 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4694
94400120
DA
4695 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4696 if (IS_GEN3(dev)) {
50743298
DV
4697 I915_WRITE(MI_ARB_STATE,
4698 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4699 }
4700
72bfa19c
CW
4701 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4702
de151cf6 4703 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4704 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4705 dev_priv->fence_reg_start = 3;
de151cf6 4706
42b5aeab
VS
4707 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4708 dev_priv->num_fence_regs = 32;
4709 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4710 dev_priv->num_fence_regs = 16;
4711 else
4712 dev_priv->num_fence_regs = 8;
4713
b5aa8a0f 4714 /* Initialize fence registers to zero */
19b2dbde
CW
4715 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4716 i915_gem_restore_fences(dev);
10ed13e4 4717
673a394b 4718 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4719 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4720
ce453d81
CW
4721 dev_priv->mm.interruptible = true;
4722
7dc19d5a
DC
4723 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4724 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4725 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4726 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4727}
71acb5eb
DA
4728
4729/*
4730 * Create a physically contiguous memory object for this object
4731 * e.g. for cursor + overlay regs
4732 */
995b6762
CW
4733static int i915_gem_init_phys_object(struct drm_device *dev,
4734 int id, int size, int align)
71acb5eb
DA
4735{
4736 drm_i915_private_t *dev_priv = dev->dev_private;
4737 struct drm_i915_gem_phys_object *phys_obj;
4738 int ret;
4739
4740 if (dev_priv->mm.phys_objs[id - 1] || !size)
4741 return 0;
4742
b14c5679 4743 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4744 if (!phys_obj)
4745 return -ENOMEM;
4746
4747 phys_obj->id = id;
4748
6eeefaf3 4749 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4750 if (!phys_obj->handle) {
4751 ret = -ENOMEM;
4752 goto kfree_obj;
4753 }
4754#ifdef CONFIG_X86
4755 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4756#endif
4757
4758 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4759
4760 return 0;
4761kfree_obj:
9a298b2a 4762 kfree(phys_obj);
71acb5eb
DA
4763 return ret;
4764}
4765
995b6762 4766static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4767{
4768 drm_i915_private_t *dev_priv = dev->dev_private;
4769 struct drm_i915_gem_phys_object *phys_obj;
4770
4771 if (!dev_priv->mm.phys_objs[id - 1])
4772 return;
4773
4774 phys_obj = dev_priv->mm.phys_objs[id - 1];
4775 if (phys_obj->cur_obj) {
4776 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4777 }
4778
4779#ifdef CONFIG_X86
4780 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4781#endif
4782 drm_pci_free(dev, phys_obj->handle);
4783 kfree(phys_obj);
4784 dev_priv->mm.phys_objs[id - 1] = NULL;
4785}
4786
4787void i915_gem_free_all_phys_object(struct drm_device *dev)
4788{
4789 int i;
4790
260883c8 4791 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4792 i915_gem_free_phys_object(dev, i);
4793}
4794
4795void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4796 struct drm_i915_gem_object *obj)
71acb5eb 4797{
496ad9aa 4798 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4799 char *vaddr;
71acb5eb 4800 int i;
71acb5eb
DA
4801 int page_count;
4802
05394f39 4803 if (!obj->phys_obj)
71acb5eb 4804 return;
05394f39 4805 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4806
05394f39 4807 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4808 for (i = 0; i < page_count; i++) {
5949eac4 4809 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4810 if (!IS_ERR(page)) {
4811 char *dst = kmap_atomic(page);
4812 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4813 kunmap_atomic(dst);
4814
4815 drm_clflush_pages(&page, 1);
4816
4817 set_page_dirty(page);
4818 mark_page_accessed(page);
4819 page_cache_release(page);
4820 }
71acb5eb 4821 }
e76e9aeb 4822 i915_gem_chipset_flush(dev);
d78b47b9 4823
05394f39
CW
4824 obj->phys_obj->cur_obj = NULL;
4825 obj->phys_obj = NULL;
71acb5eb
DA
4826}
4827
4828int
4829i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4830 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4831 int id,
4832 int align)
71acb5eb 4833{
496ad9aa 4834 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4835 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4836 int ret = 0;
4837 int page_count;
4838 int i;
4839
4840 if (id > I915_MAX_PHYS_OBJECT)
4841 return -EINVAL;
4842
05394f39
CW
4843 if (obj->phys_obj) {
4844 if (obj->phys_obj->id == id)
71acb5eb
DA
4845 return 0;
4846 i915_gem_detach_phys_object(dev, obj);
4847 }
4848
71acb5eb
DA
4849 /* create a new object */
4850 if (!dev_priv->mm.phys_objs[id - 1]) {
4851 ret = i915_gem_init_phys_object(dev, id,
05394f39 4852 obj->base.size, align);
71acb5eb 4853 if (ret) {
05394f39
CW
4854 DRM_ERROR("failed to init phys object %d size: %zu\n",
4855 id, obj->base.size);
e5281ccd 4856 return ret;
71acb5eb
DA
4857 }
4858 }
4859
4860 /* bind to the object */
05394f39
CW
4861 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4862 obj->phys_obj->cur_obj = obj;
71acb5eb 4863
05394f39 4864 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4865
4866 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4867 struct page *page;
4868 char *dst, *src;
4869
5949eac4 4870 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4871 if (IS_ERR(page))
4872 return PTR_ERR(page);
71acb5eb 4873
ff75b9bc 4874 src = kmap_atomic(page);
05394f39 4875 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4876 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4877 kunmap_atomic(src);
71acb5eb 4878
e5281ccd
CW
4879 mark_page_accessed(page);
4880 page_cache_release(page);
4881 }
d78b47b9 4882
71acb5eb 4883 return 0;
71acb5eb
DA
4884}
4885
4886static int
05394f39
CW
4887i915_gem_phys_pwrite(struct drm_device *dev,
4888 struct drm_i915_gem_object *obj,
71acb5eb
DA
4889 struct drm_i915_gem_pwrite *args,
4890 struct drm_file *file_priv)
4891{
05394f39 4892 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4893 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4894
b47b30cc
CW
4895 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4896 unsigned long unwritten;
4897
4898 /* The physical object once assigned is fixed for the lifetime
4899 * of the obj, so we can safely drop the lock and continue
4900 * to access vaddr.
4901 */
4902 mutex_unlock(&dev->struct_mutex);
4903 unwritten = copy_from_user(vaddr, user_data, args->size);
4904 mutex_lock(&dev->struct_mutex);
4905 if (unwritten)
4906 return -EFAULT;
4907 }
71acb5eb 4908
e76e9aeb 4909 i915_gem_chipset_flush(dev);
71acb5eb
DA
4910 return 0;
4911}
b962442e 4912
f787a5f5 4913void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4914{
f787a5f5 4915 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4916
b29c19b6
CW
4917 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4918
b962442e
EA
4919 /* Clean up our request list when the client is going away, so that
4920 * later retire_requests won't dereference our soon-to-be-gone
4921 * file_priv.
4922 */
1c25595f 4923 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4924 while (!list_empty(&file_priv->mm.request_list)) {
4925 struct drm_i915_gem_request *request;
4926
4927 request = list_first_entry(&file_priv->mm.request_list,
4928 struct drm_i915_gem_request,
4929 client_list);
4930 list_del(&request->client_list);
4931 request->file_priv = NULL;
4932 }
1c25595f 4933 spin_unlock(&file_priv->mm.lock);
b962442e 4934}
31169714 4935
b29c19b6
CW
4936static void
4937i915_gem_file_idle_work_handler(struct work_struct *work)
4938{
4939 struct drm_i915_file_private *file_priv =
4940 container_of(work, typeof(*file_priv), mm.idle_work.work);
4941
4942 atomic_set(&file_priv->rps_wait_boost, false);
4943}
4944
4945int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4946{
4947 struct drm_i915_file_private *file_priv;
4948
4949 DRM_DEBUG_DRIVER("\n");
4950
4951 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4952 if (!file_priv)
4953 return -ENOMEM;
4954
4955 file->driver_priv = file_priv;
4956 file_priv->dev_priv = dev->dev_private;
4957
4958 spin_lock_init(&file_priv->mm.lock);
4959 INIT_LIST_HEAD(&file_priv->mm.request_list);
4960 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4961 i915_gem_file_idle_work_handler);
4962
4963 idr_init(&file_priv->context_idr);
4964
4965 return 0;
4966}
4967
5774506f
CW
4968static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4969{
4970 if (!mutex_is_locked(mutex))
4971 return false;
4972
4973#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4974 return mutex->owner == task;
4975#else
4976 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4977 return false;
4978#endif
4979}
4980
7dc19d5a
DC
4981static unsigned long
4982i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4983{
17250b71
CW
4984 struct drm_i915_private *dev_priv =
4985 container_of(shrinker,
4986 struct drm_i915_private,
4987 mm.inactive_shrinker);
4988 struct drm_device *dev = dev_priv->dev;
6c085a72 4989 struct drm_i915_gem_object *obj;
5774506f 4990 bool unlock = true;
7dc19d5a 4991 unsigned long count;
17250b71 4992
5774506f
CW
4993 if (!mutex_trylock(&dev->struct_mutex)) {
4994 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4995 return 0;
5774506f 4996
677feac2 4997 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4998 return 0;
677feac2 4999
5774506f
CW
5000 unlock = false;
5001 }
31169714 5002
7dc19d5a 5003 count = 0;
35c20a60 5004 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5005 if (obj->pages_pin_count == 0)
7dc19d5a 5006 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5007
5008 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5009 if (obj->active)
5010 continue;
5011
a5570178 5012 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
7dc19d5a 5013 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5014 }
17250b71 5015
5774506f
CW
5016 if (unlock)
5017 mutex_unlock(&dev->struct_mutex);
d9973b43 5018
7dc19d5a 5019 return count;
31169714 5020}
a70a3148
BW
5021
5022/* All the new VM stuff */
5023unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5024 struct i915_address_space *vm)
5025{
5026 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5027 struct i915_vma *vma;
5028
5029 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5030 vm = &dev_priv->gtt.base;
5031
5032 BUG_ON(list_empty(&o->vma_list));
5033 list_for_each_entry(vma, &o->vma_list, vma_link) {
5034 if (vma->vm == vm)
5035 return vma->node.start;
5036
5037 }
5038 return -1;
5039}
5040
5041bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5042 struct i915_address_space *vm)
5043{
5044 struct i915_vma *vma;
5045
5046 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5047 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5048 return true;
5049
5050 return false;
5051}
5052
5053bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5054{
5a1d5eb0 5055 struct i915_vma *vma;
a70a3148 5056
5a1d5eb0
CW
5057 list_for_each_entry(vma, &o->vma_list, vma_link)
5058 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5059 return true;
5060
5061 return false;
5062}
5063
5064unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5065 struct i915_address_space *vm)
5066{
5067 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5068 struct i915_vma *vma;
5069
5070 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5071 vm = &dev_priv->gtt.base;
5072
5073 BUG_ON(list_empty(&o->vma_list));
5074
5075 list_for_each_entry(vma, &o->vma_list, vma_link)
5076 if (vma->vm == vm)
5077 return vma->node.size;
5078
5079 return 0;
5080}
5081
7dc19d5a
DC
5082static unsigned long
5083i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5084{
5085 struct drm_i915_private *dev_priv =
5086 container_of(shrinker,
5087 struct drm_i915_private,
5088 mm.inactive_shrinker);
5089 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5090 unsigned long freed;
5091 bool unlock = true;
5092
5093 if (!mutex_trylock(&dev->struct_mutex)) {
5094 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5095 return SHRINK_STOP;
7dc19d5a
DC
5096
5097 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5098 return SHRINK_STOP;
7dc19d5a
DC
5099
5100 unlock = false;
5101 }
5102
d9973b43
CW
5103 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5104 if (freed < sc->nr_to_scan)
5105 freed += __i915_gem_shrink(dev_priv,
5106 sc->nr_to_scan - freed,
5107 false);
5108 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5109 freed += i915_gem_shrink_all(dev_priv);
5110
5111 if (unlock)
5112 mutex_unlock(&dev->struct_mutex);
d9973b43 5113
7dc19d5a
DC
5114 return freed;
5115}
5c2abbea
BW
5116
5117struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5118{
5119 struct i915_vma *vma;
5120
5121 if (WARN_ON(list_empty(&obj->vma_list)))
5122 return NULL;
5123
5124 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5125 if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5126 return NULL;
5127
5128 return vma;
5129}
This page took 1.006463 seconds and 5 git commands to generate.