drm/i810: remove the BKL
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71
CW
58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
30dbf0c0
CW
78int
79i915_gem_check_is_wedged(struct drm_device *dev)
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
93 /* Success, we reset the GPU! */
94 if (!atomic_read(&dev_priv->mm.wedged))
95 return 0;
96
97 /* GPU is hung, bump the completion count to account for
98 * the token we just consumed so that we never hit zero and
99 * end up waiting upon a subsequent completion event that
100 * will never happen.
101 */
102 spin_lock_irqsave(&x->wait.lock, flags);
103 x->done++;
104 spin_unlock_irqrestore(&x->wait.lock, flags);
105 return -EIO;
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1
CW
109{
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
112
113 ret = i915_gem_check_is_wedged(dev);
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
121 if (atomic_read(&dev_priv->mm.wedged)) {
122 mutex_unlock(&dev->struct_mutex);
123 return -EAGAIN;
124 }
125
23bc5982 126 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
127 return 0;
128}
30dbf0c0 129
7d1c4804 130static inline bool
05394f39 131i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 132{
05394f39 133 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
134}
135
2021746e
CW
136void i915_gem_do_init(struct drm_device *dev,
137 unsigned long start,
138 unsigned long mappable_end,
139 unsigned long end)
673a394b
EA
140{
141 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 142
bee4a186 143 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 144
bee4a186
CW
145 dev_priv->mm.gtt_start = start;
146 dev_priv->mm.gtt_mappable_end = mappable_end;
147 dev_priv->mm.gtt_end = end;
73aa808f 148 dev_priv->mm.gtt_total = end - start;
fb7d516a 149 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
150
151 /* Take over this portion of the GTT */
152 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 153}
673a394b 154
79e53945
JB
155int
156i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 157 struct drm_file *file)
79e53945
JB
158{
159 struct drm_i915_gem_init *args = data;
2021746e
CW
160
161 if (args->gtt_start >= args->gtt_end ||
162 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
163 return -EINVAL;
79e53945
JB
164
165 mutex_lock(&dev->struct_mutex);
2021746e 166 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
167 mutex_unlock(&dev->struct_mutex);
168
2021746e 169 return 0;
673a394b
EA
170}
171
5a125c3c
EA
172int
173i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 174 struct drm_file *file)
5a125c3c 175{
73aa808f 176 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 177 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
5a125c3c
EA
180
181 if (!(dev->driver->driver_features & DRIVER_GEM))
182 return -ENODEV;
183
6299f992 184 pinned = 0;
73aa808f 185 mutex_lock(&dev->struct_mutex);
6299f992
CW
186 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
187 pinned += obj->gtt_space->size;
73aa808f 188 mutex_unlock(&dev->struct_mutex);
5a125c3c 189
6299f992
CW
190 args->aper_size = dev_priv->mm.gtt_total;
191 args->aper_available_size = args->aper_size -pinned;
192
5a125c3c
EA
193 return 0;
194}
195
673a394b
EA
196/**
197 * Creates a new mm object and returns a handle to it.
198 */
199int
200i915_gem_create_ioctl(struct drm_device *dev, void *data,
05394f39 201 struct drm_file *file)
673a394b
EA
202{
203 struct drm_i915_gem_create *args = data;
05394f39 204 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
205 int ret;
206 u32 handle;
673a394b
EA
207
208 args->size = roundup(args->size, PAGE_SIZE);
209
210 /* Allocate the new object */
ac52bc56 211 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
212 if (obj == NULL)
213 return -ENOMEM;
214
05394f39 215 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 216 if (ret) {
05394f39
CW
217 drm_gem_object_release(&obj->base);
218 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 219 kfree(obj);
673a394b 220 return ret;
1dfd9754 221 }
673a394b 222
202f2fef 223 /* drop reference from allocate - handle holds it now */
05394f39 224 drm_gem_object_unreference(&obj->base);
202f2fef
CW
225 trace_i915_gem_object_create(obj);
226
1dfd9754 227 args->handle = handle;
673a394b
EA
228 return 0;
229}
230
05394f39 231static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 232{
05394f39 233 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
234
235 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 236 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
237}
238
99a03df5 239static inline void
40123c1f
EA
240slow_shmem_copy(struct page *dst_page,
241 int dst_offset,
242 struct page *src_page,
243 int src_offset,
244 int length)
245{
246 char *dst_vaddr, *src_vaddr;
247
99a03df5
CW
248 dst_vaddr = kmap(dst_page);
249 src_vaddr = kmap(src_page);
40123c1f
EA
250
251 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
252
99a03df5
CW
253 kunmap(src_page);
254 kunmap(dst_page);
40123c1f
EA
255}
256
99a03df5 257static inline void
280b713b
EA
258slow_shmem_bit17_copy(struct page *gpu_page,
259 int gpu_offset,
260 struct page *cpu_page,
261 int cpu_offset,
262 int length,
263 int is_read)
264{
265 char *gpu_vaddr, *cpu_vaddr;
266
267 /* Use the unswizzled path if this page isn't affected. */
268 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
269 if (is_read)
270 return slow_shmem_copy(cpu_page, cpu_offset,
271 gpu_page, gpu_offset, length);
272 else
273 return slow_shmem_copy(gpu_page, gpu_offset,
274 cpu_page, cpu_offset, length);
275 }
276
99a03df5
CW
277 gpu_vaddr = kmap(gpu_page);
278 cpu_vaddr = kmap(cpu_page);
280b713b
EA
279
280 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
281 * XORing with the other bits (A9 for Y, A9 and A10 for X)
282 */
283 while (length > 0) {
284 int cacheline_end = ALIGN(gpu_offset + 1, 64);
285 int this_length = min(cacheline_end - gpu_offset, length);
286 int swizzled_gpu_offset = gpu_offset ^ 64;
287
288 if (is_read) {
289 memcpy(cpu_vaddr + cpu_offset,
290 gpu_vaddr + swizzled_gpu_offset,
291 this_length);
292 } else {
293 memcpy(gpu_vaddr + swizzled_gpu_offset,
294 cpu_vaddr + cpu_offset,
295 this_length);
296 }
297 cpu_offset += this_length;
298 gpu_offset += this_length;
299 length -= this_length;
300 }
301
99a03df5
CW
302 kunmap(cpu_page);
303 kunmap(gpu_page);
280b713b
EA
304}
305
eb01459f
EA
306/**
307 * This is the fast shmem pread path, which attempts to copy_from_user directly
308 * from the backing pages of the object to the user's address space. On a
309 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
310 */
311static int
05394f39
CW
312i915_gem_shmem_pread_fast(struct drm_device *dev,
313 struct drm_i915_gem_object *obj,
eb01459f 314 struct drm_i915_gem_pread *args,
05394f39 315 struct drm_file *file)
eb01459f 316{
05394f39 317 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 318 ssize_t remain;
e5281ccd 319 loff_t offset;
eb01459f
EA
320 char __user *user_data;
321 int page_offset, page_length;
eb01459f
EA
322
323 user_data = (char __user *) (uintptr_t) args->data_ptr;
324 remain = args->size;
325
eb01459f
EA
326 offset = args->offset;
327
328 while (remain > 0) {
e5281ccd
CW
329 struct page *page;
330 char *vaddr;
331 int ret;
332
eb01459f
EA
333 /* Operation in this page
334 *
eb01459f
EA
335 * page_offset = offset within page
336 * page_length = bytes to copy for this page
337 */
eb01459f
EA
338 page_offset = offset & (PAGE_SIZE-1);
339 page_length = remain;
340 if ((page_offset + remain) > PAGE_SIZE)
341 page_length = PAGE_SIZE - page_offset;
342
e5281ccd
CW
343 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
344 GFP_HIGHUSER | __GFP_RECLAIMABLE);
345 if (IS_ERR(page))
346 return PTR_ERR(page);
347
348 vaddr = kmap_atomic(page);
349 ret = __copy_to_user_inatomic(user_data,
350 vaddr + page_offset,
351 page_length);
352 kunmap_atomic(vaddr);
353
354 mark_page_accessed(page);
355 page_cache_release(page);
356 if (ret)
4f27b75d 357 return -EFAULT;
eb01459f
EA
358
359 remain -= page_length;
360 user_data += page_length;
361 offset += page_length;
362 }
363
4f27b75d 364 return 0;
eb01459f
EA
365}
366
367/**
368 * This is the fallback shmem pread path, which allocates temporary storage
369 * in kernel space to copy_to_user into outside of the struct_mutex, so we
370 * can copy out of the object's backing pages while holding the struct mutex
371 * and not take page faults.
372 */
373static int
05394f39
CW
374i915_gem_shmem_pread_slow(struct drm_device *dev,
375 struct drm_i915_gem_object *obj,
eb01459f 376 struct drm_i915_gem_pread *args,
05394f39 377 struct drm_file *file)
eb01459f 378{
05394f39 379 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
380 struct mm_struct *mm = current->mm;
381 struct page **user_pages;
382 ssize_t remain;
383 loff_t offset, pinned_pages, i;
384 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
385 int shmem_page_offset;
386 int data_page_index, data_page_offset;
eb01459f
EA
387 int page_length;
388 int ret;
389 uint64_t data_ptr = args->data_ptr;
280b713b 390 int do_bit17_swizzling;
eb01459f
EA
391
392 remain = args->size;
393
394 /* Pin the user pages containing the data. We can't fault while
395 * holding the struct mutex, yet we want to hold it while
396 * dereferencing the user data.
397 */
398 first_data_page = data_ptr / PAGE_SIZE;
399 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
400 num_pages = last_data_page - first_data_page + 1;
401
4f27b75d 402 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
403 if (user_pages == NULL)
404 return -ENOMEM;
405
4f27b75d 406 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
407 down_read(&mm->mmap_sem);
408 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 409 num_pages, 1, 0, user_pages, NULL);
eb01459f 410 up_read(&mm->mmap_sem);
4f27b75d 411 mutex_lock(&dev->struct_mutex);
eb01459f
EA
412 if (pinned_pages < num_pages) {
413 ret = -EFAULT;
4f27b75d 414 goto out;
eb01459f
EA
415 }
416
4f27b75d
CW
417 ret = i915_gem_object_set_cpu_read_domain_range(obj,
418 args->offset,
419 args->size);
07f73f69 420 if (ret)
4f27b75d 421 goto out;
eb01459f 422
4f27b75d 423 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 424
eb01459f
EA
425 offset = args->offset;
426
427 while (remain > 0) {
e5281ccd
CW
428 struct page *page;
429
eb01459f
EA
430 /* Operation in this page
431 *
eb01459f
EA
432 * shmem_page_offset = offset within page in shmem file
433 * data_page_index = page number in get_user_pages return
434 * data_page_offset = offset with data_page_index page.
435 * page_length = bytes to copy for this page
436 */
eb01459f
EA
437 shmem_page_offset = offset & ~PAGE_MASK;
438 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
439 data_page_offset = data_ptr & ~PAGE_MASK;
440
441 page_length = remain;
442 if ((shmem_page_offset + page_length) > PAGE_SIZE)
443 page_length = PAGE_SIZE - shmem_page_offset;
444 if ((data_page_offset + page_length) > PAGE_SIZE)
445 page_length = PAGE_SIZE - data_page_offset;
446
e5281ccd
CW
447 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
448 GFP_HIGHUSER | __GFP_RECLAIMABLE);
449 if (IS_ERR(page))
450 return PTR_ERR(page);
451
280b713b 452 if (do_bit17_swizzling) {
e5281ccd 453 slow_shmem_bit17_copy(page,
280b713b 454 shmem_page_offset,
99a03df5
CW
455 user_pages[data_page_index],
456 data_page_offset,
457 page_length,
458 1);
459 } else {
460 slow_shmem_copy(user_pages[data_page_index],
461 data_page_offset,
e5281ccd 462 page,
99a03df5
CW
463 shmem_page_offset,
464 page_length);
280b713b 465 }
eb01459f 466
e5281ccd
CW
467 mark_page_accessed(page);
468 page_cache_release(page);
469
eb01459f
EA
470 remain -= page_length;
471 data_ptr += page_length;
472 offset += page_length;
473 }
474
4f27b75d 475out:
eb01459f
EA
476 for (i = 0; i < pinned_pages; i++) {
477 SetPageDirty(user_pages[i]);
e5281ccd 478 mark_page_accessed(user_pages[i]);
eb01459f
EA
479 page_cache_release(user_pages[i]);
480 }
8e7d2b2c 481 drm_free_large(user_pages);
eb01459f
EA
482
483 return ret;
484}
485
673a394b
EA
486/**
487 * Reads data from the object referenced by handle.
488 *
489 * On error, the contents of *data are undefined.
490 */
491int
492i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 493 struct drm_file *file)
673a394b
EA
494{
495 struct drm_i915_gem_pread *args = data;
05394f39 496 struct drm_i915_gem_object *obj;
35b62a89 497 int ret = 0;
673a394b 498
51311d0a
CW
499 if (args->size == 0)
500 return 0;
501
502 if (!access_ok(VERIFY_WRITE,
503 (char __user *)(uintptr_t)args->data_ptr,
504 args->size))
505 return -EFAULT;
506
507 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
508 args->size);
509 if (ret)
510 return -EFAULT;
511
4f27b75d 512 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 513 if (ret)
4f27b75d 514 return ret;
673a394b 515
05394f39 516 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
517 if (obj == NULL) {
518 ret = -ENOENT;
519 goto unlock;
4f27b75d 520 }
673a394b 521
7dcd2499 522 /* Bounds check source. */
05394f39
CW
523 if (args->offset > obj->base.size ||
524 args->size > obj->base.size - args->offset) {
ce9d419d 525 ret = -EINVAL;
35b62a89 526 goto out;
ce9d419d
CW
527 }
528
4f27b75d
CW
529 ret = i915_gem_object_set_cpu_read_domain_range(obj,
530 args->offset,
531 args->size);
532 if (ret)
e5281ccd 533 goto out;
4f27b75d
CW
534
535 ret = -EFAULT;
536 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 537 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 538 if (ret == -EFAULT)
05394f39 539 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 540
35b62a89 541out:
05394f39 542 drm_gem_object_unreference(&obj->base);
1d7cfea1 543unlock:
4f27b75d 544 mutex_unlock(&dev->struct_mutex);
eb01459f 545 return ret;
673a394b
EA
546}
547
0839ccb8
KP
548/* This is the fast write path which cannot handle
549 * page faults in the source data
9b7530cc 550 */
0839ccb8
KP
551
552static inline int
553fast_user_write(struct io_mapping *mapping,
554 loff_t page_base, int page_offset,
555 char __user *user_data,
556 int length)
9b7530cc 557{
9b7530cc 558 char *vaddr_atomic;
0839ccb8 559 unsigned long unwritten;
9b7530cc 560
3e4d3af5 561 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
562 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
563 user_data, length);
3e4d3af5 564 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 565 return unwritten;
0839ccb8
KP
566}
567
568/* Here's the write path which can sleep for
569 * page faults
570 */
571
ab34c226 572static inline void
3de09aa3
EA
573slow_kernel_write(struct io_mapping *mapping,
574 loff_t gtt_base, int gtt_offset,
575 struct page *user_page, int user_offset,
576 int length)
0839ccb8 577{
ab34c226
CW
578 char __iomem *dst_vaddr;
579 char *src_vaddr;
0839ccb8 580
ab34c226
CW
581 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
582 src_vaddr = kmap(user_page);
583
584 memcpy_toio(dst_vaddr + gtt_offset,
585 src_vaddr + user_offset,
586 length);
587
588 kunmap(user_page);
589 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
0839ccb8 606 int page_offset, page_length;
673a394b
EA
607
608 user_data = (char __user *) (uintptr_t) args->data_ptr;
609 remain = args->size;
673a394b 610
05394f39 611 offset = obj->gtt_offset + args->offset;
673a394b
EA
612
613 while (remain > 0) {
614 /* Operation in this page
615 *
0839ccb8
KP
616 * page_base = page offset within aperture
617 * page_offset = offset within page
618 * page_length = bytes to copy for this page
673a394b 619 */
0839ccb8
KP
620 page_base = (offset & ~(PAGE_SIZE-1));
621 page_offset = offset & (PAGE_SIZE-1);
622 page_length = remain;
623 if ((page_offset + remain) > PAGE_SIZE)
624 page_length = PAGE_SIZE - page_offset;
625
0839ccb8 626 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
0839ccb8 629 */
fbd5a26d
CW
630 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
631 page_offset, user_data, page_length))
632
633 return -EFAULT;
673a394b 634
0839ccb8
KP
635 remain -= page_length;
636 user_data += page_length;
637 offset += page_length;
673a394b 638 }
673a394b 639
fbd5a26d 640 return 0;
673a394b
EA
641}
642
3de09aa3
EA
643/**
644 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
645 * the memory and maps it using kmap_atomic for copying.
646 *
647 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
648 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
649 */
3043c60c 650static int
05394f39
CW
651i915_gem_gtt_pwrite_slow(struct drm_device *dev,
652 struct drm_i915_gem_object *obj,
3de09aa3 653 struct drm_i915_gem_pwrite *args,
05394f39 654 struct drm_file *file)
673a394b 655{
3de09aa3
EA
656 drm_i915_private_t *dev_priv = dev->dev_private;
657 ssize_t remain;
658 loff_t gtt_page_base, offset;
659 loff_t first_data_page, last_data_page, num_pages;
660 loff_t pinned_pages, i;
661 struct page **user_pages;
662 struct mm_struct *mm = current->mm;
663 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 664 int ret;
3de09aa3
EA
665 uint64_t data_ptr = args->data_ptr;
666
667 remain = args->size;
668
669 /* Pin the user pages containing the data. We can't fault while
670 * holding the struct mutex, and all of the pwrite implementations
671 * want to hold it while dereferencing the user data.
672 */
673 first_data_page = data_ptr / PAGE_SIZE;
674 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
675 num_pages = last_data_page - first_data_page + 1;
676
fbd5a26d 677 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
678 if (user_pages == NULL)
679 return -ENOMEM;
680
fbd5a26d 681 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
682 down_read(&mm->mmap_sem);
683 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
684 num_pages, 0, 0, user_pages, NULL);
685 up_read(&mm->mmap_sem);
fbd5a26d 686 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
673a394b 691
d9e86c0e
CW
692 ret = i915_gem_object_set_to_gtt_domain(obj, true);
693 if (ret)
694 goto out_unpin_pages;
695
696 ret = i915_gem_object_put_fence(obj);
3de09aa3 697 if (ret)
fbd5a26d 698 goto out_unpin_pages;
3de09aa3 699
05394f39 700 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
701
702 while (remain > 0) {
703 /* Operation in this page
704 *
705 * gtt_page_base = page offset within aperture
706 * gtt_page_offset = offset within page in aperture
707 * data_page_index = page number in get_user_pages return
708 * data_page_offset = offset with data_page_index page.
709 * page_length = bytes to copy for this page
710 */
711 gtt_page_base = offset & PAGE_MASK;
712 gtt_page_offset = offset & ~PAGE_MASK;
713 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
714 data_page_offset = data_ptr & ~PAGE_MASK;
715
716 page_length = remain;
717 if ((gtt_page_offset + page_length) > PAGE_SIZE)
718 page_length = PAGE_SIZE - gtt_page_offset;
719 if ((data_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - data_page_offset;
721
ab34c226
CW
722 slow_kernel_write(dev_priv->mm.gtt_mapping,
723 gtt_page_base, gtt_page_offset,
724 user_pages[data_page_index],
725 data_page_offset,
726 page_length);
3de09aa3
EA
727
728 remain -= page_length;
729 offset += page_length;
730 data_ptr += page_length;
731 }
732
3de09aa3
EA
733out_unpin_pages:
734 for (i = 0; i < pinned_pages; i++)
735 page_cache_release(user_pages[i]);
8e7d2b2c 736 drm_free_large(user_pages);
3de09aa3
EA
737
738 return ret;
739}
740
40123c1f
EA
741/**
742 * This is the fast shmem pwrite path, which attempts to directly
743 * copy_from_user into the kmapped pages backing the object.
744 */
3043c60c 745static int
05394f39
CW
746i915_gem_shmem_pwrite_fast(struct drm_device *dev,
747 struct drm_i915_gem_object *obj,
40123c1f 748 struct drm_i915_gem_pwrite *args,
05394f39 749 struct drm_file *file)
673a394b 750{
05394f39 751 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 752 ssize_t remain;
e5281ccd 753 loff_t offset;
40123c1f
EA
754 char __user *user_data;
755 int page_offset, page_length;
40123c1f
EA
756
757 user_data = (char __user *) (uintptr_t) args->data_ptr;
758 remain = args->size;
673a394b 759
40123c1f 760 offset = args->offset;
05394f39 761 obj->dirty = 1;
40123c1f
EA
762
763 while (remain > 0) {
e5281ccd
CW
764 struct page *page;
765 char *vaddr;
766 int ret;
767
40123c1f
EA
768 /* Operation in this page
769 *
40123c1f
EA
770 * page_offset = offset within page
771 * page_length = bytes to copy for this page
772 */
40123c1f
EA
773 page_offset = offset & (PAGE_SIZE-1);
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
e5281ccd
CW
778 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
779 GFP_HIGHUSER | __GFP_RECLAIMABLE);
780 if (IS_ERR(page))
781 return PTR_ERR(page);
782
783 vaddr = kmap_atomic(page, KM_USER0);
784 ret = __copy_from_user_inatomic(vaddr + page_offset,
785 user_data,
786 page_length);
787 kunmap_atomic(vaddr, KM_USER0);
788
789 set_page_dirty(page);
790 mark_page_accessed(page);
791 page_cache_release(page);
792
793 /* If we get a fault while copying data, then (presumably) our
794 * source page isn't available. Return the error and we'll
795 * retry in the slow path.
796 */
797 if (ret)
fbd5a26d 798 return -EFAULT;
40123c1f
EA
799
800 remain -= page_length;
801 user_data += page_length;
802 offset += page_length;
803 }
804
fbd5a26d 805 return 0;
40123c1f
EA
806}
807
808/**
809 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
810 * the memory and maps it using kmap_atomic for copying.
811 *
812 * This avoids taking mmap_sem for faulting on the user's address while the
813 * struct_mutex is held.
814 */
815static int
05394f39
CW
816i915_gem_shmem_pwrite_slow(struct drm_device *dev,
817 struct drm_i915_gem_object *obj,
40123c1f 818 struct drm_i915_gem_pwrite *args,
05394f39 819 struct drm_file *file)
40123c1f 820{
05394f39 821 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
822 struct mm_struct *mm = current->mm;
823 struct page **user_pages;
824 ssize_t remain;
825 loff_t offset, pinned_pages, i;
826 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 827 int shmem_page_offset;
40123c1f
EA
828 int data_page_index, data_page_offset;
829 int page_length;
830 int ret;
831 uint64_t data_ptr = args->data_ptr;
280b713b 832 int do_bit17_swizzling;
40123c1f
EA
833
834 remain = args->size;
835
836 /* Pin the user pages containing the data. We can't fault while
837 * holding the struct mutex, and all of the pwrite implementations
838 * want to hold it while dereferencing the user data.
839 */
840 first_data_page = data_ptr / PAGE_SIZE;
841 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
842 num_pages = last_data_page - first_data_page + 1;
843
4f27b75d 844 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
845 if (user_pages == NULL)
846 return -ENOMEM;
847
fbd5a26d 848 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
849 down_read(&mm->mmap_sem);
850 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
851 num_pages, 0, 0, user_pages, NULL);
852 up_read(&mm->mmap_sem);
fbd5a26d 853 mutex_lock(&dev->struct_mutex);
40123c1f
EA
854 if (pinned_pages < num_pages) {
855 ret = -EFAULT;
fbd5a26d 856 goto out;
673a394b
EA
857 }
858
fbd5a26d 859 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 860 if (ret)
fbd5a26d 861 goto out;
40123c1f 862
fbd5a26d 863 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 864
673a394b 865 offset = args->offset;
05394f39 866 obj->dirty = 1;
673a394b 867
40123c1f 868 while (remain > 0) {
e5281ccd
CW
869 struct page *page;
870
40123c1f
EA
871 /* Operation in this page
872 *
40123c1f
EA
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
40123c1f
EA
878 shmem_page_offset = offset & ~PAGE_MASK;
879 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
880 data_page_offset = data_ptr & ~PAGE_MASK;
881
882 page_length = remain;
883 if ((shmem_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - shmem_page_offset;
885 if ((data_page_offset + page_length) > PAGE_SIZE)
886 page_length = PAGE_SIZE - data_page_offset;
887
e5281ccd
CW
888 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
889 GFP_HIGHUSER | __GFP_RECLAIMABLE);
890 if (IS_ERR(page)) {
891 ret = PTR_ERR(page);
892 goto out;
893 }
894
280b713b 895 if (do_bit17_swizzling) {
e5281ccd 896 slow_shmem_bit17_copy(page,
280b713b
EA
897 shmem_page_offset,
898 user_pages[data_page_index],
899 data_page_offset,
99a03df5
CW
900 page_length,
901 0);
902 } else {
e5281ccd 903 slow_shmem_copy(page,
99a03df5
CW
904 shmem_page_offset,
905 user_pages[data_page_index],
906 data_page_offset,
907 page_length);
280b713b 908 }
40123c1f 909
e5281ccd
CW
910 set_page_dirty(page);
911 mark_page_accessed(page);
912 page_cache_release(page);
913
40123c1f
EA
914 remain -= page_length;
915 data_ptr += page_length;
916 offset += page_length;
673a394b
EA
917 }
918
fbd5a26d 919out:
40123c1f
EA
920 for (i = 0; i < pinned_pages; i++)
921 page_cache_release(user_pages[i]);
8e7d2b2c 922 drm_free_large(user_pages);
673a394b 923
40123c1f 924 return ret;
673a394b
EA
925}
926
927/**
928 * Writes data to the object referenced by handle.
929 *
930 * On error, the contents of the buffer that were to be modified are undefined.
931 */
932int
933i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 934 struct drm_file *file)
673a394b
EA
935{
936 struct drm_i915_gem_pwrite *args = data;
05394f39 937 struct drm_i915_gem_object *obj;
51311d0a
CW
938 int ret;
939
940 if (args->size == 0)
941 return 0;
942
943 if (!access_ok(VERIFY_READ,
944 (char __user *)(uintptr_t)args->data_ptr,
945 args->size))
946 return -EFAULT;
947
948 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
949 args->size);
950 if (ret)
951 return -EFAULT;
673a394b 952
fbd5a26d 953 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 954 if (ret)
fbd5a26d 955 return ret;
1d7cfea1 956
05394f39 957 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
958 if (obj == NULL) {
959 ret = -ENOENT;
960 goto unlock;
fbd5a26d 961 }
673a394b 962
7dcd2499 963 /* Bounds check destination. */
05394f39
CW
964 if (args->offset > obj->base.size ||
965 args->size > obj->base.size - args->offset) {
ce9d419d 966 ret = -EINVAL;
35b62a89 967 goto out;
ce9d419d
CW
968 }
969
673a394b
EA
970 /* We can only do the GTT pwrite on untiled buffers, as otherwise
971 * it would end up going through the fenced access, and we'll get
972 * different detiling behavior between reading and writing.
973 * pread/pwrite currently are reading and writing from the CPU
974 * perspective, requiring manual detiling by the client.
975 */
05394f39 976 if (obj->phys_obj)
fbd5a26d 977 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 978 else if (obj->gtt_space &&
05394f39 979 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 980 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
981 if (ret)
982 goto out;
983
d9e86c0e
CW
984 ret = i915_gem_object_set_to_gtt_domain(obj, true);
985 if (ret)
986 goto out_unpin;
987
988 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
989 if (ret)
990 goto out_unpin;
991
992 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
993 if (ret == -EFAULT)
994 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
995
996out_unpin:
997 i915_gem_object_unpin(obj);
40123c1f 998 } else {
fbd5a26d
CW
999 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1000 if (ret)
e5281ccd 1001 goto out;
673a394b 1002
fbd5a26d
CW
1003 ret = -EFAULT;
1004 if (!i915_gem_object_needs_bit17_swizzle(obj))
1005 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1006 if (ret == -EFAULT)
1007 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1008 }
673a394b 1009
35b62a89 1010out:
05394f39 1011 drm_gem_object_unreference(&obj->base);
1d7cfea1 1012unlock:
fbd5a26d 1013 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1014 return ret;
1015}
1016
1017/**
2ef7eeaa
EA
1018 * Called when user space prepares to use an object with the CPU, either
1019 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1020 */
1021int
1022i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1023 struct drm_file *file)
673a394b
EA
1024{
1025 struct drm_i915_gem_set_domain *args = data;
05394f39 1026 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1027 uint32_t read_domains = args->read_domains;
1028 uint32_t write_domain = args->write_domain;
673a394b
EA
1029 int ret;
1030
1031 if (!(dev->driver->driver_features & DRIVER_GEM))
1032 return -ENODEV;
1033
2ef7eeaa 1034 /* Only handle setting domains to types used by the CPU. */
21d509e3 1035 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1036 return -EINVAL;
1037
21d509e3 1038 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1039 return -EINVAL;
1040
1041 /* Having something in the write domain implies it's in the read
1042 * domain, and only that read domain. Enforce that in the request.
1043 */
1044 if (write_domain != 0 && read_domains != write_domain)
1045 return -EINVAL;
1046
76c1dec1 1047 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1048 if (ret)
76c1dec1 1049 return ret;
1d7cfea1 1050
05394f39 1051 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1052 if (obj == NULL) {
1053 ret = -ENOENT;
1054 goto unlock;
76c1dec1 1055 }
673a394b 1056
2ef7eeaa
EA
1057 if (read_domains & I915_GEM_DOMAIN_GTT) {
1058 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1059
1060 /* Silently promote "you're not bound, there was nothing to do"
1061 * to success, since the client was just asking us to
1062 * make sure everything was done.
1063 */
1064 if (ret == -EINVAL)
1065 ret = 0;
2ef7eeaa 1066 } else {
e47c68e9 1067 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1068 }
1069
05394f39 1070 drm_gem_object_unreference(&obj->base);
1d7cfea1 1071unlock:
673a394b
EA
1072 mutex_unlock(&dev->struct_mutex);
1073 return ret;
1074}
1075
1076/**
1077 * Called when user space has done writes to this buffer
1078 */
1079int
1080i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1081 struct drm_file *file)
673a394b
EA
1082{
1083 struct drm_i915_gem_sw_finish *args = data;
05394f39 1084 struct drm_i915_gem_object *obj;
673a394b
EA
1085 int ret = 0;
1086
1087 if (!(dev->driver->driver_features & DRIVER_GEM))
1088 return -ENODEV;
1089
76c1dec1 1090 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1091 if (ret)
76c1dec1 1092 return ret;
1d7cfea1 1093
05394f39 1094 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 1095 if (obj == NULL) {
1d7cfea1
CW
1096 ret = -ENOENT;
1097 goto unlock;
673a394b
EA
1098 }
1099
673a394b 1100 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1101 if (obj->pin_count)
e47c68e9
EA
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
05394f39 1104 drm_gem_object_unreference(&obj->base);
1d7cfea1 1105unlock:
673a394b
EA
1106 mutex_unlock(&dev->struct_mutex);
1107 return ret;
1108}
1109
1110/**
1111 * Maps the contents of an object, returning the address it is mapped
1112 * into.
1113 *
1114 * While the mapping holds a reference on the contents of the object, it doesn't
1115 * imply a ref on the object itself.
1116 */
1117int
1118i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1119 struct drm_file *file)
673a394b 1120{
da761a6e 1121 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1122 struct drm_i915_gem_mmap *args = data;
1123 struct drm_gem_object *obj;
1124 loff_t offset;
1125 unsigned long addr;
1126
1127 if (!(dev->driver->driver_features & DRIVER_GEM))
1128 return -ENODEV;
1129
05394f39 1130 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1131 if (obj == NULL)
bf79cb91 1132 return -ENOENT;
673a394b 1133
da761a6e
CW
1134 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1135 drm_gem_object_unreference_unlocked(obj);
1136 return -E2BIG;
1137 }
1138
673a394b
EA
1139 offset = args->offset;
1140
1141 down_write(&current->mm->mmap_sem);
1142 addr = do_mmap(obj->filp, 0, args->size,
1143 PROT_READ | PROT_WRITE, MAP_SHARED,
1144 args->offset);
1145 up_write(&current->mm->mmap_sem);
bc9025bd 1146 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1147 if (IS_ERR((void *)addr))
1148 return addr;
1149
1150 args->addr_ptr = (uint64_t) addr;
1151
1152 return 0;
1153}
1154
de151cf6
JB
1155/**
1156 * i915_gem_fault - fault a page into the GTT
1157 * vma: VMA in question
1158 * vmf: fault info
1159 *
1160 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1161 * from userspace. The fault handler takes care of binding the object to
1162 * the GTT (if needed), allocating and programming a fence register (again,
1163 * only if needed based on whether the old reg is still valid or the object
1164 * is tiled) and inserting a new PTE into the faulting process.
1165 *
1166 * Note that the faulting process may involve evicting existing objects
1167 * from the GTT and/or fence registers to make room. So performance may
1168 * suffer if the GTT working set is large or there are few fence registers
1169 * left.
1170 */
1171int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1172{
05394f39
CW
1173 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1174 struct drm_device *dev = obj->base.dev;
7d1c4804 1175 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1176 pgoff_t page_offset;
1177 unsigned long pfn;
1178 int ret = 0;
0f973f27 1179 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1180
1181 /* We don't use vmf->pgoff since that has the fake offset */
1182 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1183 PAGE_SHIFT;
1184
1185 /* Now bind it into the GTT if needed */
1186 mutex_lock(&dev->struct_mutex);
a00b10c3 1187
919926ae
CW
1188 if (!obj->map_and_fenceable) {
1189 ret = i915_gem_object_unbind(obj);
1190 if (ret)
1191 goto unlock;
a00b10c3 1192 }
05394f39 1193 if (!obj->gtt_space) {
75e9e915 1194 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1195 if (ret)
1196 goto unlock;
de151cf6
JB
1197 }
1198
4a684a41
CW
1199 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1200 if (ret)
1201 goto unlock;
1202
d9e86c0e
CW
1203 if (obj->tiling_mode == I915_TILING_NONE)
1204 ret = i915_gem_object_put_fence(obj);
1205 else
1206 ret = i915_gem_object_get_fence(obj, NULL, true);
1207 if (ret)
1208 goto unlock;
de151cf6 1209
05394f39
CW
1210 if (i915_gem_object_is_inactive(obj))
1211 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1212
6299f992
CW
1213 obj->fault_mappable = true;
1214
05394f39 1215 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1216 page_offset;
1217
1218 /* Finally, remap it using the new GTT offset */
1219 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1220unlock:
de151cf6
JB
1221 mutex_unlock(&dev->struct_mutex);
1222
1223 switch (ret) {
045e769a
CW
1224 case -EAGAIN:
1225 set_need_resched();
c715089f
CW
1226 case 0:
1227 case -ERESTARTSYS:
1228 return VM_FAULT_NOPAGE;
de151cf6 1229 case -ENOMEM:
de151cf6 1230 return VM_FAULT_OOM;
de151cf6 1231 default:
c715089f 1232 return VM_FAULT_SIGBUS;
de151cf6
JB
1233 }
1234}
1235
1236/**
1237 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1238 * @obj: obj in question
1239 *
1240 * GEM memory mapping works by handing back to userspace a fake mmap offset
1241 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1242 * up the object based on the offset and sets up the various memory mapping
1243 * structures.
1244 *
1245 * This routine allocates and attaches a fake offset for @obj.
1246 */
1247static int
05394f39 1248i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1249{
05394f39 1250 struct drm_device *dev = obj->base.dev;
de151cf6 1251 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1252 struct drm_map_list *list;
f77d390c 1253 struct drm_local_map *map;
de151cf6
JB
1254 int ret = 0;
1255
1256 /* Set the object up for mmap'ing */
05394f39 1257 list = &obj->base.map_list;
9a298b2a 1258 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1259 if (!list->map)
1260 return -ENOMEM;
1261
1262 map = list->map;
1263 map->type = _DRM_GEM;
05394f39 1264 map->size = obj->base.size;
de151cf6
JB
1265 map->handle = obj;
1266
1267 /* Get a DRM GEM mmap offset allocated... */
1268 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1269 obj->base.size / PAGE_SIZE,
1270 0, 0);
de151cf6 1271 if (!list->file_offset_node) {
05394f39
CW
1272 DRM_ERROR("failed to allocate offset for bo %d\n",
1273 obj->base.name);
9e0ae534 1274 ret = -ENOSPC;
de151cf6
JB
1275 goto out_free_list;
1276 }
1277
1278 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1279 obj->base.size / PAGE_SIZE,
1280 0);
de151cf6
JB
1281 if (!list->file_offset_node) {
1282 ret = -ENOMEM;
1283 goto out_free_list;
1284 }
1285
1286 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1287 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1288 if (ret) {
de151cf6
JB
1289 DRM_ERROR("failed to add to map hash\n");
1290 goto out_free_mm;
1291 }
1292
de151cf6
JB
1293 return 0;
1294
1295out_free_mm:
1296 drm_mm_put_block(list->file_offset_node);
1297out_free_list:
9a298b2a 1298 kfree(list->map);
39a01d1f 1299 list->map = NULL;
de151cf6
JB
1300
1301 return ret;
1302}
1303
901782b2
CW
1304/**
1305 * i915_gem_release_mmap - remove physical page mappings
1306 * @obj: obj in question
1307 *
af901ca1 1308 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1309 * relinquish ownership of the pages back to the system.
1310 *
1311 * It is vital that we remove the page mapping if we have mapped a tiled
1312 * object through the GTT and then lose the fence register due to
1313 * resource pressure. Similarly if the object has been moved out of the
1314 * aperture, than pages mapped into userspace must be revoked. Removing the
1315 * mapping will then trigger a page fault on the next user access, allowing
1316 * fixup by i915_gem_fault().
1317 */
d05ca301 1318void
05394f39 1319i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1320{
6299f992
CW
1321 if (!obj->fault_mappable)
1322 return;
901782b2 1323
6299f992
CW
1324 unmap_mapping_range(obj->base.dev->dev_mapping,
1325 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1326 obj->base.size, 1);
fb7d516a 1327
6299f992 1328 obj->fault_mappable = false;
901782b2
CW
1329}
1330
ab00b3e5 1331static void
05394f39 1332i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1333{
05394f39 1334 struct drm_device *dev = obj->base.dev;
ab00b3e5 1335 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1336 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1337
ab00b3e5 1338 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1339 drm_mm_put_block(list->file_offset_node);
1340 kfree(list->map);
1341 list->map = NULL;
ab00b3e5
JB
1342}
1343
92b88aeb
CW
1344static uint32_t
1345i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1346{
1347 struct drm_device *dev = obj->base.dev;
1348 uint32_t size;
1349
1350 if (INTEL_INFO(dev)->gen >= 4 ||
1351 obj->tiling_mode == I915_TILING_NONE)
1352 return obj->base.size;
1353
1354 /* Previous chips need a power-of-two fence region when tiling */
1355 if (INTEL_INFO(dev)->gen == 3)
1356 size = 1024*1024;
1357 else
1358 size = 512*1024;
1359
1360 while (size < obj->base.size)
1361 size <<= 1;
1362
1363 return size;
1364}
1365
de151cf6
JB
1366/**
1367 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1368 * @obj: object to check
1369 *
1370 * Return the required GTT alignment for an object, taking into account
5e783301 1371 * potential fence register mapping.
de151cf6
JB
1372 */
1373static uint32_t
05394f39 1374i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1375{
05394f39 1376 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1377
1378 /*
1379 * Minimum alignment is 4k (GTT page size), but might be greater
1380 * if a fence register is needed for the object.
1381 */
a00b10c3 1382 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1383 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1384 return 4096;
1385
a00b10c3
CW
1386 /*
1387 * Previous chips need to be aligned to the size of the smallest
1388 * fence register that can contain the object.
1389 */
05394f39 1390 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1391}
1392
5e783301
DV
1393/**
1394 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1395 * unfenced object
1396 * @obj: object to check
1397 *
1398 * Return the required GTT alignment for an object, only taking into account
1399 * unfenced tiled surface requirements.
1400 */
1401static uint32_t
05394f39 1402i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1403{
05394f39 1404 struct drm_device *dev = obj->base.dev;
5e783301
DV
1405 int tile_height;
1406
1407 /*
1408 * Minimum alignment is 4k (GTT page size) for sane hw.
1409 */
1410 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1411 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1412 return 4096;
1413
1414 /*
1415 * Older chips need unfenced tiled buffers to be aligned to the left
1416 * edge of an even tile row (where tile rows are counted as if the bo is
1417 * placed in a fenced gtt region).
1418 */
1419 if (IS_GEN2(dev) ||
05394f39 1420 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1421 tile_height = 32;
1422 else
1423 tile_height = 8;
1424
05394f39 1425 return tile_height * obj->stride * 2;
5e783301
DV
1426}
1427
de151cf6
JB
1428/**
1429 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1430 * @dev: DRM device
1431 * @data: GTT mapping ioctl data
05394f39 1432 * @file: GEM object info
de151cf6
JB
1433 *
1434 * Simply returns the fake offset to userspace so it can mmap it.
1435 * The mmap call will end up in drm_gem_mmap(), which will set things
1436 * up so we can get faults in the handler above.
1437 *
1438 * The fault handler will take care of binding the object into the GTT
1439 * (since it may have been evicted to make room for something), allocating
1440 * a fence register, and mapping the appropriate aperture address into
1441 * userspace.
1442 */
1443int
1444i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
05394f39 1445 struct drm_file *file)
de151cf6 1446{
da761a6e 1447 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1448 struct drm_i915_gem_mmap_gtt *args = data;
05394f39 1449 struct drm_i915_gem_object *obj;
de151cf6
JB
1450 int ret;
1451
1452 if (!(dev->driver->driver_features & DRIVER_GEM))
1453 return -ENODEV;
1454
76c1dec1 1455 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1456 if (ret)
76c1dec1 1457 return ret;
de151cf6 1458
05394f39 1459 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1460 if (obj == NULL) {
1461 ret = -ENOENT;
1462 goto unlock;
1463 }
de151cf6 1464
05394f39 1465 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1466 ret = -E2BIG;
1467 goto unlock;
1468 }
1469
05394f39 1470 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1471 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1472 ret = -EINVAL;
1473 goto out;
ab18282d
CW
1474 }
1475
05394f39 1476 if (!obj->base.map_list.map) {
de151cf6 1477 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1478 if (ret)
1479 goto out;
de151cf6
JB
1480 }
1481
05394f39 1482 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1483
1d7cfea1 1484out:
05394f39 1485 drm_gem_object_unreference(&obj->base);
1d7cfea1 1486unlock:
de151cf6 1487 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1488 return ret;
de151cf6
JB
1489}
1490
e5281ccd 1491static int
05394f39 1492i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1493 gfp_t gfpmask)
1494{
e5281ccd
CW
1495 int page_count, i;
1496 struct address_space *mapping;
1497 struct inode *inode;
1498 struct page *page;
1499
1500 /* Get the list of pages out of our struct file. They'll be pinned
1501 * at this point until we release them.
1502 */
05394f39
CW
1503 page_count = obj->base.size / PAGE_SIZE;
1504 BUG_ON(obj->pages != NULL);
1505 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1506 if (obj->pages == NULL)
e5281ccd
CW
1507 return -ENOMEM;
1508
05394f39 1509 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1510 mapping = inode->i_mapping;
1511 for (i = 0; i < page_count; i++) {
1512 page = read_cache_page_gfp(mapping, i,
1513 GFP_HIGHUSER |
1514 __GFP_COLD |
1515 __GFP_RECLAIMABLE |
1516 gfpmask);
1517 if (IS_ERR(page))
1518 goto err_pages;
1519
05394f39 1520 obj->pages[i] = page;
e5281ccd
CW
1521 }
1522
05394f39 1523 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1524 i915_gem_object_do_bit_17_swizzle(obj);
1525
1526 return 0;
1527
1528err_pages:
1529 while (i--)
05394f39 1530 page_cache_release(obj->pages[i]);
e5281ccd 1531
05394f39
CW
1532 drm_free_large(obj->pages);
1533 obj->pages = NULL;
e5281ccd
CW
1534 return PTR_ERR(page);
1535}
1536
5cdf5881 1537static void
05394f39 1538i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1539{
05394f39 1540 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1541 int i;
1542
05394f39 1543 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1544
05394f39 1545 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1546 i915_gem_object_save_bit_17_swizzle(obj);
1547
05394f39
CW
1548 if (obj->madv == I915_MADV_DONTNEED)
1549 obj->dirty = 0;
3ef94daa
CW
1550
1551 for (i = 0; i < page_count; i++) {
05394f39
CW
1552 if (obj->dirty)
1553 set_page_dirty(obj->pages[i]);
3ef94daa 1554
05394f39
CW
1555 if (obj->madv == I915_MADV_WILLNEED)
1556 mark_page_accessed(obj->pages[i]);
3ef94daa 1557
05394f39 1558 page_cache_release(obj->pages[i]);
3ef94daa 1559 }
05394f39 1560 obj->dirty = 0;
673a394b 1561
05394f39
CW
1562 drm_free_large(obj->pages);
1563 obj->pages = NULL;
673a394b
EA
1564}
1565
54cf91dc 1566void
05394f39 1567i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1568 struct intel_ring_buffer *ring,
1569 u32 seqno)
673a394b 1570{
05394f39 1571 struct drm_device *dev = obj->base.dev;
69dc4987 1572 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1573
852835f3 1574 BUG_ON(ring == NULL);
05394f39 1575 obj->ring = ring;
673a394b
EA
1576
1577 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1578 if (!obj->active) {
1579 drm_gem_object_reference(&obj->base);
1580 obj->active = 1;
673a394b 1581 }
e35a41de 1582
673a394b 1583 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1584 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1585 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1586
05394f39 1587 obj->last_rendering_seqno = seqno;
caea7476
CW
1588 if (obj->fenced_gpu_access) {
1589 struct drm_i915_fence_reg *reg;
1590
1591 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1592
1593 obj->last_fenced_seqno = seqno;
1594 obj->last_fenced_ring = ring;
1595
1596 reg = &dev_priv->fence_regs[obj->fence_reg];
1597 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1598 }
1599}
1600
1601static void
1602i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1603{
1604 list_del_init(&obj->ring_list);
1605 obj->last_rendering_seqno = 0;
673a394b
EA
1606}
1607
ce44b0ea 1608static void
05394f39 1609i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1610{
05394f39 1611 struct drm_device *dev = obj->base.dev;
ce44b0ea 1612 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1613
05394f39
CW
1614 BUG_ON(!obj->active);
1615 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1616
1617 i915_gem_object_move_off_active(obj);
1618}
1619
1620static void
1621i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1622{
1623 struct drm_device *dev = obj->base.dev;
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1625
1626 if (obj->pin_count != 0)
1627 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1628 else
1629 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1630
1631 BUG_ON(!list_empty(&obj->gpu_write_list));
1632 BUG_ON(!obj->active);
1633 obj->ring = NULL;
1634
1635 i915_gem_object_move_off_active(obj);
1636 obj->fenced_gpu_access = false;
caea7476
CW
1637
1638 obj->active = 0;
87ca9c8a 1639 obj->pending_gpu_write = false;
caea7476
CW
1640 drm_gem_object_unreference(&obj->base);
1641
1642 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1643}
673a394b 1644
963b4836
CW
1645/* Immediately discard the backing storage */
1646static void
05394f39 1647i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1648{
bb6baf76 1649 struct inode *inode;
963b4836 1650
ae9fed6b
CW
1651 /* Our goal here is to return as much of the memory as
1652 * is possible back to the system as we are called from OOM.
1653 * To do this we must instruct the shmfs to drop all of its
1654 * backing pages, *now*. Here we mirror the actions taken
1655 * when by shmem_delete_inode() to release the backing store.
1656 */
05394f39 1657 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1658 truncate_inode_pages(inode->i_mapping, 0);
1659 if (inode->i_op->truncate_range)
1660 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1661
05394f39 1662 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1663}
1664
1665static inline int
05394f39 1666i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1667{
05394f39 1668 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1669}
1670
63560396
DV
1671static void
1672i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1673 uint32_t flush_domains,
852835f3 1674 struct intel_ring_buffer *ring)
63560396 1675{
05394f39 1676 struct drm_i915_gem_object *obj, *next;
63560396 1677
05394f39 1678 list_for_each_entry_safe(obj, next,
64193406 1679 &ring->gpu_write_list,
63560396 1680 gpu_write_list) {
05394f39
CW
1681 if (obj->base.write_domain & flush_domains) {
1682 uint32_t old_write_domain = obj->base.write_domain;
63560396 1683
05394f39
CW
1684 obj->base.write_domain = 0;
1685 list_del_init(&obj->gpu_write_list);
1ec14ad3
CW
1686 i915_gem_object_move_to_active(obj, ring,
1687 i915_gem_next_request_seqno(dev, ring));
63560396 1688
63560396 1689 trace_i915_gem_object_change_domain(obj,
05394f39 1690 obj->base.read_domains,
63560396
DV
1691 old_write_domain);
1692 }
1693 }
1694}
8187a2b7 1695
3cce469c 1696int
8a1a49f9 1697i915_add_request(struct drm_device *dev,
f787a5f5 1698 struct drm_file *file,
8dc5d147 1699 struct drm_i915_gem_request *request,
8a1a49f9 1700 struct intel_ring_buffer *ring)
673a394b
EA
1701{
1702 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1703 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1704 uint32_t seqno;
1705 int was_empty;
3cce469c
CW
1706 int ret;
1707
1708 BUG_ON(request == NULL);
673a394b 1709
f787a5f5
CW
1710 if (file != NULL)
1711 file_priv = file->driver_priv;
b962442e 1712
3cce469c
CW
1713 ret = ring->add_request(ring, &seqno);
1714 if (ret)
1715 return ret;
673a394b 1716
a56ba56c 1717 ring->outstanding_lazy_request = false;
673a394b
EA
1718
1719 request->seqno = seqno;
852835f3 1720 request->ring = ring;
673a394b 1721 request->emitted_jiffies = jiffies;
852835f3
ZN
1722 was_empty = list_empty(&ring->request_list);
1723 list_add_tail(&request->list, &ring->request_list);
1724
f787a5f5 1725 if (file_priv) {
1c25595f 1726 spin_lock(&file_priv->mm.lock);
f787a5f5 1727 request->file_priv = file_priv;
b962442e 1728 list_add_tail(&request->client_list,
f787a5f5 1729 &file_priv->mm.request_list);
1c25595f 1730 spin_unlock(&file_priv->mm.lock);
b962442e 1731 }
673a394b 1732
f65d9421 1733 if (!dev_priv->mm.suspended) {
b3b079db
CW
1734 mod_timer(&dev_priv->hangcheck_timer,
1735 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1736 if (was_empty)
b3b079db
CW
1737 queue_delayed_work(dev_priv->wq,
1738 &dev_priv->mm.retire_work, HZ);
f65d9421 1739 }
3cce469c 1740 return 0;
673a394b
EA
1741}
1742
f787a5f5
CW
1743static inline void
1744i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1745{
1c25595f 1746 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1747
1c25595f
CW
1748 if (!file_priv)
1749 return;
1c5d22f7 1750
1c25595f
CW
1751 spin_lock(&file_priv->mm.lock);
1752 list_del(&request->client_list);
1753 request->file_priv = NULL;
1754 spin_unlock(&file_priv->mm.lock);
673a394b 1755}
673a394b 1756
dfaae392
CW
1757static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1758 struct intel_ring_buffer *ring)
9375e446 1759{
dfaae392
CW
1760 while (!list_empty(&ring->request_list)) {
1761 struct drm_i915_gem_request *request;
673a394b 1762
dfaae392
CW
1763 request = list_first_entry(&ring->request_list,
1764 struct drm_i915_gem_request,
1765 list);
de151cf6 1766
dfaae392 1767 list_del(&request->list);
f787a5f5 1768 i915_gem_request_remove_from_client(request);
dfaae392
CW
1769 kfree(request);
1770 }
673a394b 1771
dfaae392 1772 while (!list_empty(&ring->active_list)) {
05394f39 1773 struct drm_i915_gem_object *obj;
9375e446 1774
05394f39
CW
1775 obj = list_first_entry(&ring->active_list,
1776 struct drm_i915_gem_object,
1777 ring_list);
9375e446 1778
05394f39
CW
1779 obj->base.write_domain = 0;
1780 list_del_init(&obj->gpu_write_list);
1781 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1782 }
1783}
1784
312817a3
CW
1785static void i915_gem_reset_fences(struct drm_device *dev)
1786{
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 int i;
1789
1790 for (i = 0; i < 16; i++) {
1791 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1792 struct drm_i915_gem_object *obj = reg->obj;
1793
1794 if (!obj)
1795 continue;
1796
1797 if (obj->tiling_mode)
1798 i915_gem_release_mmap(obj);
1799
d9e86c0e
CW
1800 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1801 reg->obj->fenced_gpu_access = false;
1802 reg->obj->last_fenced_seqno = 0;
1803 reg->obj->last_fenced_ring = NULL;
1804 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1805 }
1806}
1807
069efc1d 1808void i915_gem_reset(struct drm_device *dev)
673a394b 1809{
77f01230 1810 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1811 struct drm_i915_gem_object *obj;
1ec14ad3 1812 int i;
673a394b 1813
1ec14ad3
CW
1814 for (i = 0; i < I915_NUM_RINGS; i++)
1815 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1816
1817 /* Remove anything from the flushing lists. The GPU cache is likely
1818 * to be lost on reset along with the data, so simply move the
1819 * lost bo to the inactive list.
1820 */
1821 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1822 obj= list_first_entry(&dev_priv->mm.flushing_list,
1823 struct drm_i915_gem_object,
1824 mm_list);
dfaae392 1825
05394f39
CW
1826 obj->base.write_domain = 0;
1827 list_del_init(&obj->gpu_write_list);
1828 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1829 }
1830
1831 /* Move everything out of the GPU domains to ensure we do any
1832 * necessary invalidation upon reuse.
1833 */
05394f39 1834 list_for_each_entry(obj,
77f01230 1835 &dev_priv->mm.inactive_list,
69dc4987 1836 mm_list)
77f01230 1837 {
05394f39 1838 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1839 }
069efc1d
CW
1840
1841 /* The fence registers are invalidated so clear them out */
312817a3 1842 i915_gem_reset_fences(dev);
673a394b
EA
1843}
1844
1845/**
1846 * This function clears the request list as sequence numbers are passed.
1847 */
b09a1fec
CW
1848static void
1849i915_gem_retire_requests_ring(struct drm_device *dev,
1850 struct intel_ring_buffer *ring)
673a394b
EA
1851{
1852 drm_i915_private_t *dev_priv = dev->dev_private;
1853 uint32_t seqno;
1ec14ad3 1854 int i;
673a394b 1855
b84d5f0c
CW
1856 if (!ring->status_page.page_addr ||
1857 list_empty(&ring->request_list))
6c0594a3
KW
1858 return;
1859
23bc5982 1860 WARN_ON(i915_verify_lists(dev));
673a394b 1861
78501eac 1862 seqno = ring->get_seqno(ring);
1ec14ad3 1863
076e2c0e 1864 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1865 if (seqno >= ring->sync_seqno[i])
1866 ring->sync_seqno[i] = 0;
1867
852835f3 1868 while (!list_empty(&ring->request_list)) {
673a394b 1869 struct drm_i915_gem_request *request;
673a394b 1870
852835f3 1871 request = list_first_entry(&ring->request_list,
673a394b
EA
1872 struct drm_i915_gem_request,
1873 list);
673a394b 1874
dfaae392 1875 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1876 break;
1877
1878 trace_i915_gem_request_retire(dev, request->seqno);
1879
1880 list_del(&request->list);
f787a5f5 1881 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1882 kfree(request);
1883 }
673a394b 1884
b84d5f0c
CW
1885 /* Move any buffers on the active list that are no longer referenced
1886 * by the ringbuffer to the flushing/inactive lists as appropriate.
1887 */
1888 while (!list_empty(&ring->active_list)) {
05394f39 1889 struct drm_i915_gem_object *obj;
b84d5f0c 1890
05394f39
CW
1891 obj= list_first_entry(&ring->active_list,
1892 struct drm_i915_gem_object,
1893 ring_list);
673a394b 1894
05394f39 1895 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1896 break;
b84d5f0c 1897
05394f39 1898 if (obj->base.write_domain != 0)
b84d5f0c
CW
1899 i915_gem_object_move_to_flushing(obj);
1900 else
1901 i915_gem_object_move_to_inactive(obj);
673a394b 1902 }
9d34e5db
CW
1903
1904 if (unlikely (dev_priv->trace_irq_seqno &&
1905 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1ec14ad3 1906 ring->irq_put(ring);
9d34e5db
CW
1907 dev_priv->trace_irq_seqno = 0;
1908 }
23bc5982
CW
1909
1910 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1911}
1912
b09a1fec
CW
1913void
1914i915_gem_retire_requests(struct drm_device *dev)
1915{
1916 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1917 int i;
b09a1fec 1918
be72615b 1919 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1920 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1921
1922 /* We must be careful that during unbind() we do not
1923 * accidentally infinitely recurse into retire requests.
1924 * Currently:
1925 * retire -> free -> unbind -> wait -> retire_ring
1926 */
05394f39 1927 list_for_each_entry_safe(obj, next,
be72615b 1928 &dev_priv->mm.deferred_free_list,
69dc4987 1929 mm_list)
05394f39 1930 i915_gem_free_object_tail(obj);
be72615b
CW
1931 }
1932
1ec14ad3
CW
1933 for (i = 0; i < I915_NUM_RINGS; i++)
1934 i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
b09a1fec
CW
1935}
1936
75ef9da2 1937static void
673a394b
EA
1938i915_gem_retire_work_handler(struct work_struct *work)
1939{
1940 drm_i915_private_t *dev_priv;
1941 struct drm_device *dev;
0a58705b
CW
1942 bool idle;
1943 int i;
673a394b
EA
1944
1945 dev_priv = container_of(work, drm_i915_private_t,
1946 mm.retire_work.work);
1947 dev = dev_priv->dev;
1948
891b48cf
CW
1949 /* Come back later if the device is busy... */
1950 if (!mutex_trylock(&dev->struct_mutex)) {
1951 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1952 return;
1953 }
1954
b09a1fec 1955 i915_gem_retire_requests(dev);
d1b851fc 1956
0a58705b
CW
1957 /* Send a periodic flush down the ring so we don't hold onto GEM
1958 * objects indefinitely.
1959 */
1960 idle = true;
1961 for (i = 0; i < I915_NUM_RINGS; i++) {
1962 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1963
1964 if (!list_empty(&ring->gpu_write_list)) {
1965 struct drm_i915_gem_request *request;
1966 int ret;
1967
1968 ret = i915_gem_flush_ring(dev, ring, 0,
1969 I915_GEM_GPU_DOMAINS);
1970 request = kzalloc(sizeof(*request), GFP_KERNEL);
1971 if (ret || request == NULL ||
1972 i915_add_request(dev, NULL, request, ring))
1973 kfree(request);
1974 }
1975
1976 idle &= list_empty(&ring->request_list);
1977 }
1978
1979 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1980 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1981
673a394b
EA
1982 mutex_unlock(&dev->struct_mutex);
1983}
1984
5a5a0c64 1985int
852835f3 1986i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1987 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1988{
1989 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1990 u32 ier;
673a394b
EA
1991 int ret = 0;
1992
1993 BUG_ON(seqno == 0);
1994
ba1234d1 1995 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
1996 return -EAGAIN;
1997
5d97eb69 1998 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1999 struct drm_i915_gem_request *request;
2000
2001 request = kzalloc(sizeof(*request), GFP_KERNEL);
2002 if (request == NULL)
e35a41de 2003 return -ENOMEM;
3cce469c
CW
2004
2005 ret = i915_add_request(dev, NULL, request, ring);
2006 if (ret) {
2007 kfree(request);
2008 return ret;
2009 }
2010
2011 seqno = request->seqno;
e35a41de 2012 }
ffed1d09 2013
78501eac 2014 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2015 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2016 ier = I915_READ(DEIER) | I915_READ(GTIER);
2017 else
2018 ier = I915_READ(IER);
802c7eb6
JB
2019 if (!ier) {
2020 DRM_ERROR("something (likely vbetool) disabled "
2021 "interrupts, re-enabling\n");
2022 i915_driver_irq_preinstall(dev);
2023 i915_driver_irq_postinstall(dev);
2024 }
2025
1c5d22f7
CW
2026 trace_i915_gem_request_wait_begin(dev, seqno);
2027
b2223497 2028 ring->waiting_seqno = seqno;
b13c2b96
CW
2029 if (ring->irq_get(ring)) {
2030 if (interruptible)
2031 ret = wait_event_interruptible(ring->irq_queue,
2032 i915_seqno_passed(ring->get_seqno(ring), seqno)
2033 || atomic_read(&dev_priv->mm.wedged));
2034 else
2035 wait_event(ring->irq_queue,
2036 i915_seqno_passed(ring->get_seqno(ring), seqno)
2037 || atomic_read(&dev_priv->mm.wedged));
2038
2039 ring->irq_put(ring);
b5ba177d
CW
2040 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2041 seqno) ||
2042 atomic_read(&dev_priv->mm.wedged), 3000))
2043 ret = -EBUSY;
b2223497 2044 ring->waiting_seqno = 0;
1c5d22f7
CW
2045
2046 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2047 }
ba1234d1 2048 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2049 ret = -EAGAIN;
673a394b
EA
2050
2051 if (ret && ret != -ERESTARTSYS)
8bff917c 2052 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2053 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2054 dev_priv->next_seqno);
673a394b
EA
2055
2056 /* Directly dispatch request retiring. While we have the work queue
2057 * to handle this, the waiter on a request often wants an associated
2058 * buffer to have made it to the inactive list, and we would need
2059 * a separate wait queue to handle that.
2060 */
2061 if (ret == 0)
b09a1fec 2062 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2063
2064 return ret;
2065}
2066
48764bf4
DV
2067/**
2068 * Waits for a sequence number to be signaled, and cleans up the
2069 * request and object lists appropriately for that event.
2070 */
2071static int
852835f3 2072i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2073 struct intel_ring_buffer *ring)
48764bf4 2074{
852835f3 2075 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2076}
2077
673a394b
EA
2078/**
2079 * Ensures that all rendering to the object has completed and the object is
2080 * safe to unbind from the GTT or access from the CPU.
2081 */
54cf91dc 2082int
05394f39 2083i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 2084 bool interruptible)
673a394b 2085{
05394f39 2086 struct drm_device *dev = obj->base.dev;
673a394b
EA
2087 int ret;
2088
e47c68e9
EA
2089 /* This function only exists to support waiting for existing rendering,
2090 * not for emitting required flushes.
673a394b 2091 */
05394f39 2092 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2093
2094 /* If there is rendering queued on the buffer being evicted, wait for
2095 * it.
2096 */
05394f39 2097 if (obj->active) {
2cf34d7b 2098 ret = i915_do_wait_request(dev,
05394f39 2099 obj->last_rendering_seqno,
2cf34d7b 2100 interruptible,
05394f39 2101 obj->ring);
2cf34d7b 2102 if (ret)
673a394b
EA
2103 return ret;
2104 }
2105
2106 return 0;
2107}
2108
2109/**
2110 * Unbinds an object from the GTT aperture.
2111 */
0f973f27 2112int
05394f39 2113i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2114{
673a394b
EA
2115 int ret = 0;
2116
05394f39 2117 if (obj->gtt_space == NULL)
673a394b
EA
2118 return 0;
2119
05394f39 2120 if (obj->pin_count != 0) {
673a394b
EA
2121 DRM_ERROR("Attempting to unbind pinned buffer\n");
2122 return -EINVAL;
2123 }
2124
5323fd04
EA
2125 /* blow away mappings if mapped through GTT */
2126 i915_gem_release_mmap(obj);
2127
673a394b
EA
2128 /* Move the object to the CPU domain to ensure that
2129 * any possible CPU writes while it's not in the GTT
2130 * are flushed when we go to remap it. This will
2131 * also ensure that all pending GPU writes are finished
2132 * before we unbind.
2133 */
e47c68e9 2134 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2135 if (ret == -ERESTARTSYS)
673a394b 2136 return ret;
8dc1775d
CW
2137 /* Continue on if we fail due to EIO, the GPU is hung so we
2138 * should be safe and we need to cleanup or else we might
2139 * cause memory corruption through use-after-free.
2140 */
812ed492
CW
2141 if (ret) {
2142 i915_gem_clflush_object(obj);
05394f39 2143 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2144 }
673a394b 2145
96b47b65 2146 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2147 ret = i915_gem_object_put_fence(obj);
2148 if (ret == -ERESTARTSYS)
2149 return ret;
96b47b65 2150
7c2e6fdf 2151 i915_gem_gtt_unbind_object(obj);
e5281ccd 2152 i915_gem_object_put_pages_gtt(obj);
673a394b 2153
6299f992 2154 list_del_init(&obj->gtt_list);
05394f39 2155 list_del_init(&obj->mm_list);
75e9e915 2156 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2157 obj->map_and_fenceable = true;
673a394b 2158
05394f39
CW
2159 drm_mm_put_block(obj->gtt_space);
2160 obj->gtt_space = NULL;
2161 obj->gtt_offset = 0;
673a394b 2162
05394f39 2163 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2164 i915_gem_object_truncate(obj);
2165
1c5d22f7
CW
2166 trace_i915_gem_object_unbind(obj);
2167
8dc1775d 2168 return ret;
673a394b
EA
2169}
2170
88241785 2171int
54cf91dc
CW
2172i915_gem_flush_ring(struct drm_device *dev,
2173 struct intel_ring_buffer *ring,
2174 uint32_t invalidate_domains,
2175 uint32_t flush_domains)
2176{
88241785
CW
2177 int ret;
2178
2179 ret = ring->flush(ring, invalidate_domains, flush_domains);
2180 if (ret)
2181 return ret;
2182
2183 i915_gem_process_flushing_list(dev, flush_domains, ring);
2184 return 0;
54cf91dc
CW
2185}
2186
a56ba56c
CW
2187static int i915_ring_idle(struct drm_device *dev,
2188 struct intel_ring_buffer *ring)
2189{
88241785
CW
2190 int ret;
2191
395b70be 2192 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2193 return 0;
2194
88241785
CW
2195 if (!list_empty(&ring->gpu_write_list)) {
2196 ret = i915_gem_flush_ring(dev, ring,
0ac74c6b 2197 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2198 if (ret)
2199 return ret;
2200 }
2201
a56ba56c
CW
2202 return i915_wait_request(dev,
2203 i915_gem_next_request_seqno(dev, ring),
2204 ring);
2205}
2206
b47eb4a2 2207int
4df2faf4
DV
2208i915_gpu_idle(struct drm_device *dev)
2209{
2210 drm_i915_private_t *dev_priv = dev->dev_private;
2211 bool lists_empty;
1ec14ad3 2212 int ret, i;
4df2faf4 2213
d1b851fc 2214 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2215 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2216 if (lists_empty)
2217 return 0;
2218
2219 /* Flush everything onto the inactive list. */
1ec14ad3
CW
2220 for (i = 0; i < I915_NUM_RINGS; i++) {
2221 ret = i915_ring_idle(dev, &dev_priv->ring[i]);
2222 if (ret)
2223 return ret;
2224 }
4df2faf4 2225
8a1a49f9 2226 return 0;
4df2faf4
DV
2227}
2228
c6642782
DV
2229static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2230 struct intel_ring_buffer *pipelined)
4e901fdc 2231{
05394f39 2232 struct drm_device *dev = obj->base.dev;
4e901fdc 2233 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2234 u32 size = obj->gtt_space->size;
2235 int regnum = obj->fence_reg;
4e901fdc
EA
2236 uint64_t val;
2237
05394f39 2238 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2239 0xfffff000) << 32;
05394f39
CW
2240 val |= obj->gtt_offset & 0xfffff000;
2241 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2242 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2243
05394f39 2244 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2245 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2246 val |= I965_FENCE_REG_VALID;
2247
c6642782
DV
2248 if (pipelined) {
2249 int ret = intel_ring_begin(pipelined, 6);
2250 if (ret)
2251 return ret;
2252
2253 intel_ring_emit(pipelined, MI_NOOP);
2254 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2255 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2256 intel_ring_emit(pipelined, (u32)val);
2257 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2258 intel_ring_emit(pipelined, (u32)(val >> 32));
2259 intel_ring_advance(pipelined);
2260 } else
2261 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2262
2263 return 0;
4e901fdc
EA
2264}
2265
c6642782
DV
2266static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2267 struct intel_ring_buffer *pipelined)
de151cf6 2268{
05394f39 2269 struct drm_device *dev = obj->base.dev;
de151cf6 2270 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2271 u32 size = obj->gtt_space->size;
2272 int regnum = obj->fence_reg;
de151cf6
JB
2273 uint64_t val;
2274
05394f39 2275 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2276 0xfffff000) << 32;
05394f39
CW
2277 val |= obj->gtt_offset & 0xfffff000;
2278 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2279 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2280 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2281 val |= I965_FENCE_REG_VALID;
2282
c6642782
DV
2283 if (pipelined) {
2284 int ret = intel_ring_begin(pipelined, 6);
2285 if (ret)
2286 return ret;
2287
2288 intel_ring_emit(pipelined, MI_NOOP);
2289 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2290 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2291 intel_ring_emit(pipelined, (u32)val);
2292 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2293 intel_ring_emit(pipelined, (u32)(val >> 32));
2294 intel_ring_advance(pipelined);
2295 } else
2296 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2297
2298 return 0;
de151cf6
JB
2299}
2300
c6642782
DV
2301static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2302 struct intel_ring_buffer *pipelined)
de151cf6 2303{
05394f39 2304 struct drm_device *dev = obj->base.dev;
de151cf6 2305 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2306 u32 size = obj->gtt_space->size;
c6642782 2307 u32 fence_reg, val, pitch_val;
0f973f27 2308 int tile_width;
de151cf6 2309
c6642782
DV
2310 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2311 (size & -size) != size ||
2312 (obj->gtt_offset & (size - 1)),
2313 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2314 obj->gtt_offset, obj->map_and_fenceable, size))
2315 return -EINVAL;
de151cf6 2316
c6642782 2317 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2318 tile_width = 128;
de151cf6 2319 else
0f973f27
JB
2320 tile_width = 512;
2321
2322 /* Note: pitch better be a power of two tile widths */
05394f39 2323 pitch_val = obj->stride / tile_width;
0f973f27 2324 pitch_val = ffs(pitch_val) - 1;
de151cf6 2325
05394f39
CW
2326 val = obj->gtt_offset;
2327 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2328 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2329 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2330 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2331 val |= I830_FENCE_REG_VALID;
2332
05394f39 2333 fence_reg = obj->fence_reg;
a00b10c3
CW
2334 if (fence_reg < 8)
2335 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2336 else
a00b10c3 2337 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2338
2339 if (pipelined) {
2340 int ret = intel_ring_begin(pipelined, 4);
2341 if (ret)
2342 return ret;
2343
2344 intel_ring_emit(pipelined, MI_NOOP);
2345 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2346 intel_ring_emit(pipelined, fence_reg);
2347 intel_ring_emit(pipelined, val);
2348 intel_ring_advance(pipelined);
2349 } else
2350 I915_WRITE(fence_reg, val);
2351
2352 return 0;
de151cf6
JB
2353}
2354
c6642782
DV
2355static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2356 struct intel_ring_buffer *pipelined)
de151cf6 2357{
05394f39 2358 struct drm_device *dev = obj->base.dev;
de151cf6 2359 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2360 u32 size = obj->gtt_space->size;
2361 int regnum = obj->fence_reg;
de151cf6
JB
2362 uint32_t val;
2363 uint32_t pitch_val;
2364
c6642782
DV
2365 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2366 (size & -size) != size ||
2367 (obj->gtt_offset & (size - 1)),
2368 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2369 obj->gtt_offset, size))
2370 return -EINVAL;
de151cf6 2371
05394f39 2372 pitch_val = obj->stride / 128;
e76a16de 2373 pitch_val = ffs(pitch_val) - 1;
e76a16de 2374
05394f39
CW
2375 val = obj->gtt_offset;
2376 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2377 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2378 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2379 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2380 val |= I830_FENCE_REG_VALID;
2381
c6642782
DV
2382 if (pipelined) {
2383 int ret = intel_ring_begin(pipelined, 4);
2384 if (ret)
2385 return ret;
2386
2387 intel_ring_emit(pipelined, MI_NOOP);
2388 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2389 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2390 intel_ring_emit(pipelined, val);
2391 intel_ring_advance(pipelined);
2392 } else
2393 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2394
2395 return 0;
de151cf6
JB
2396}
2397
d9e86c0e
CW
2398static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2399{
2400 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2401}
2402
2403static int
2404i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2405 struct intel_ring_buffer *pipelined,
2406 bool interruptible)
2407{
2408 int ret;
2409
2410 if (obj->fenced_gpu_access) {
88241785
CW
2411 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2412 ret = i915_gem_flush_ring(obj->base.dev,
2413 obj->last_fenced_ring,
2414 0, obj->base.write_domain);
2415 if (ret)
2416 return ret;
2417 }
d9e86c0e
CW
2418
2419 obj->fenced_gpu_access = false;
2420 }
2421
2422 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2423 if (!ring_passed_seqno(obj->last_fenced_ring,
2424 obj->last_fenced_seqno)) {
2425 ret = i915_do_wait_request(obj->base.dev,
2426 obj->last_fenced_seqno,
2427 interruptible,
2428 obj->last_fenced_ring);
2429 if (ret)
2430 return ret;
2431 }
2432
2433 obj->last_fenced_seqno = 0;
2434 obj->last_fenced_ring = NULL;
2435 }
2436
63256ec5
CW
2437 /* Ensure that all CPU reads are completed before installing a fence
2438 * and all writes before removing the fence.
2439 */
2440 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2441 mb();
2442
d9e86c0e
CW
2443 return 0;
2444}
2445
2446int
2447i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2448{
2449 int ret;
2450
2451 if (obj->tiling_mode)
2452 i915_gem_release_mmap(obj);
2453
2454 ret = i915_gem_object_flush_fence(obj, NULL, true);
2455 if (ret)
2456 return ret;
2457
2458 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2459 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2460 i915_gem_clear_fence_reg(obj->base.dev,
2461 &dev_priv->fence_regs[obj->fence_reg]);
2462
2463 obj->fence_reg = I915_FENCE_REG_NONE;
2464 }
2465
2466 return 0;
2467}
2468
2469static struct drm_i915_fence_reg *
2470i915_find_fence_reg(struct drm_device *dev,
2471 struct intel_ring_buffer *pipelined)
ae3db24a 2472{
ae3db24a 2473 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2474 struct drm_i915_fence_reg *reg, *first, *avail;
2475 int i;
ae3db24a
DV
2476
2477 /* First try to find a free reg */
d9e86c0e 2478 avail = NULL;
ae3db24a
DV
2479 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2480 reg = &dev_priv->fence_regs[i];
2481 if (!reg->obj)
d9e86c0e 2482 return reg;
ae3db24a 2483
05394f39 2484 if (!reg->obj->pin_count)
d9e86c0e 2485 avail = reg;
ae3db24a
DV
2486 }
2487
d9e86c0e
CW
2488 if (avail == NULL)
2489 return NULL;
ae3db24a
DV
2490
2491 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2492 avail = first = NULL;
2493 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2494 if (reg->obj->pin_count)
ae3db24a
DV
2495 continue;
2496
d9e86c0e
CW
2497 if (first == NULL)
2498 first = reg;
2499
2500 if (!pipelined ||
2501 !reg->obj->last_fenced_ring ||
2502 reg->obj->last_fenced_ring == pipelined) {
2503 avail = reg;
2504 break;
2505 }
ae3db24a
DV
2506 }
2507
d9e86c0e
CW
2508 if (avail == NULL)
2509 avail = first;
ae3db24a 2510
a00b10c3 2511 return avail;
ae3db24a
DV
2512}
2513
de151cf6 2514/**
d9e86c0e 2515 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2516 * @obj: object to map through a fence reg
d9e86c0e
CW
2517 * @pipelined: ring on which to queue the change, or NULL for CPU access
2518 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2519 *
2520 * When mapping objects through the GTT, userspace wants to be able to write
2521 * to them without having to worry about swizzling if the object is tiled.
2522 *
2523 * This function walks the fence regs looking for a free one for @obj,
2524 * stealing one if it can't find any.
2525 *
2526 * It then sets up the reg based on the object's properties: address, pitch
2527 * and tiling format.
2528 */
8c4b8c3f 2529int
d9e86c0e
CW
2530i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2531 struct intel_ring_buffer *pipelined,
2532 bool interruptible)
de151cf6 2533{
05394f39 2534 struct drm_device *dev = obj->base.dev;
79e53945 2535 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2536 struct drm_i915_fence_reg *reg;
ae3db24a 2537 int ret;
de151cf6 2538
6bda10d1
CW
2539 /* XXX disable pipelining. There are bugs. Shocking. */
2540 pipelined = NULL;
2541
d9e86c0e 2542 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2543 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2544 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2545 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e
CW
2546
2547 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2548 pipelined = NULL;
2549
2550 if (!pipelined) {
2551 if (reg->setup_seqno) {
2552 if (!ring_passed_seqno(obj->last_fenced_ring,
2553 reg->setup_seqno)) {
2554 ret = i915_do_wait_request(obj->base.dev,
2555 reg->setup_seqno,
2556 interruptible,
2557 obj->last_fenced_ring);
2558 if (ret)
2559 return ret;
2560 }
2561
2562 reg->setup_seqno = 0;
2563 }
2564 } else if (obj->last_fenced_ring &&
2565 obj->last_fenced_ring != pipelined) {
2566 ret = i915_gem_object_flush_fence(obj,
2567 pipelined,
2568 interruptible);
2569 if (ret)
2570 return ret;
2571 } else if (obj->tiling_changed) {
2572 if (obj->fenced_gpu_access) {
88241785
CW
2573 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2574 ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
2575 0, obj->base.write_domain);
2576 if (ret)
2577 return ret;
2578 }
d9e86c0e
CW
2579
2580 obj->fenced_gpu_access = false;
2581 }
2582 }
2583
2584 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2585 pipelined = NULL;
2586 BUG_ON(!pipelined && reg->setup_seqno);
2587
2588 if (obj->tiling_changed) {
2589 if (pipelined) {
2590 reg->setup_seqno =
2591 i915_gem_next_request_seqno(dev, pipelined);
2592 obj->last_fenced_seqno = reg->setup_seqno;
2593 obj->last_fenced_ring = pipelined;
2594 }
2595 goto update;
2596 }
2597
a09ba7fa
EA
2598 return 0;
2599 }
2600
d9e86c0e
CW
2601 reg = i915_find_fence_reg(dev, pipelined);
2602 if (reg == NULL)
2603 return -ENOSPC;
de151cf6 2604
d9e86c0e
CW
2605 ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
2606 if (ret)
ae3db24a 2607 return ret;
de151cf6 2608
d9e86c0e
CW
2609 if (reg->obj) {
2610 struct drm_i915_gem_object *old = reg->obj;
2611
2612 drm_gem_object_reference(&old->base);
2613
2614 if (old->tiling_mode)
2615 i915_gem_release_mmap(old);
2616
d9e86c0e 2617 ret = i915_gem_object_flush_fence(old,
6bda10d1 2618 pipelined,
d9e86c0e
CW
2619 interruptible);
2620 if (ret) {
2621 drm_gem_object_unreference(&old->base);
2622 return ret;
2623 }
2624
2625 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2626 pipelined = NULL;
2627
2628 old->fence_reg = I915_FENCE_REG_NONE;
2629 old->last_fenced_ring = pipelined;
2630 old->last_fenced_seqno =
2631 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2632
2633 drm_gem_object_unreference(&old->base);
2634 } else if (obj->last_fenced_seqno == 0)
2635 pipelined = NULL;
a09ba7fa 2636
de151cf6 2637 reg->obj = obj;
d9e86c0e
CW
2638 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2639 obj->fence_reg = reg - dev_priv->fence_regs;
2640 obj->last_fenced_ring = pipelined;
de151cf6 2641
d9e86c0e
CW
2642 reg->setup_seqno =
2643 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2644 obj->last_fenced_seqno = reg->setup_seqno;
2645
2646update:
2647 obj->tiling_changed = false;
e259befd
CW
2648 switch (INTEL_INFO(dev)->gen) {
2649 case 6:
c6642782 2650 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2651 break;
2652 case 5:
2653 case 4:
c6642782 2654 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2655 break;
2656 case 3:
c6642782 2657 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2658 break;
2659 case 2:
c6642782 2660 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2661 break;
2662 }
d9ddcb96 2663
c6642782 2664 return ret;
de151cf6
JB
2665}
2666
2667/**
2668 * i915_gem_clear_fence_reg - clear out fence register info
2669 * @obj: object to clear
2670 *
2671 * Zeroes out the fence register itself and clears out the associated
05394f39 2672 * data structures in dev_priv and obj.
de151cf6
JB
2673 */
2674static void
d9e86c0e
CW
2675i915_gem_clear_fence_reg(struct drm_device *dev,
2676 struct drm_i915_fence_reg *reg)
de151cf6 2677{
79e53945 2678 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2679 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2680
e259befd
CW
2681 switch (INTEL_INFO(dev)->gen) {
2682 case 6:
d9e86c0e 2683 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2684 break;
2685 case 5:
2686 case 4:
d9e86c0e 2687 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2688 break;
2689 case 3:
d9e86c0e
CW
2690 if (fence_reg >= 8)
2691 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2692 else
e259befd 2693 case 2:
d9e86c0e 2694 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2695
2696 I915_WRITE(fence_reg, 0);
e259befd 2697 break;
dc529a4f 2698 }
de151cf6 2699
007cc8ac 2700 list_del_init(&reg->lru_list);
d9e86c0e
CW
2701 reg->obj = NULL;
2702 reg->setup_seqno = 0;
52dc7d32
CW
2703}
2704
673a394b
EA
2705/**
2706 * Finds free space in the GTT aperture and binds the object there.
2707 */
2708static int
05394f39 2709i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2710 unsigned alignment,
75e9e915 2711 bool map_and_fenceable)
673a394b 2712{
05394f39 2713 struct drm_device *dev = obj->base.dev;
673a394b 2714 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2715 struct drm_mm_node *free_space;
a00b10c3 2716 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2717 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2718 bool mappable, fenceable;
07f73f69 2719 int ret;
673a394b 2720
05394f39 2721 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2722 DRM_ERROR("Attempting to bind a purgeable object\n");
2723 return -EINVAL;
2724 }
2725
05394f39
CW
2726 fence_size = i915_gem_get_gtt_size(obj);
2727 fence_alignment = i915_gem_get_gtt_alignment(obj);
2728 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2729
673a394b 2730 if (alignment == 0)
5e783301
DV
2731 alignment = map_and_fenceable ? fence_alignment :
2732 unfenced_alignment;
75e9e915 2733 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2734 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2735 return -EINVAL;
2736 }
2737
05394f39 2738 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2739
654fc607
CW
2740 /* If the object is bigger than the entire aperture, reject it early
2741 * before evicting everything in a vain attempt to find space.
2742 */
05394f39 2743 if (obj->base.size >
75e9e915 2744 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2745 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2746 return -E2BIG;
2747 }
2748
673a394b 2749 search_free:
75e9e915 2750 if (map_and_fenceable)
920afa77
DV
2751 free_space =
2752 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2753 size, alignment, 0,
920afa77
DV
2754 dev_priv->mm.gtt_mappable_end,
2755 0);
2756 else
2757 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2758 size, alignment, 0);
920afa77
DV
2759
2760 if (free_space != NULL) {
75e9e915 2761 if (map_and_fenceable)
05394f39 2762 obj->gtt_space =
920afa77 2763 drm_mm_get_block_range_generic(free_space,
a00b10c3 2764 size, alignment, 0,
920afa77
DV
2765 dev_priv->mm.gtt_mappable_end,
2766 0);
2767 else
05394f39 2768 obj->gtt_space =
a00b10c3 2769 drm_mm_get_block(free_space, size, alignment);
920afa77 2770 }
05394f39 2771 if (obj->gtt_space == NULL) {
673a394b
EA
2772 /* If the gtt is empty and we're still having trouble
2773 * fitting our object in, we're out of memory.
2774 */
75e9e915
DV
2775 ret = i915_gem_evict_something(dev, size, alignment,
2776 map_and_fenceable);
9731129c 2777 if (ret)
673a394b 2778 return ret;
9731129c 2779
673a394b
EA
2780 goto search_free;
2781 }
2782
e5281ccd 2783 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2784 if (ret) {
05394f39
CW
2785 drm_mm_put_block(obj->gtt_space);
2786 obj->gtt_space = NULL;
07f73f69
CW
2787
2788 if (ret == -ENOMEM) {
809b6334
CW
2789 /* first try to reclaim some memory by clearing the GTT */
2790 ret = i915_gem_evict_everything(dev, false);
07f73f69 2791 if (ret) {
07f73f69 2792 /* now try to shrink everyone else */
4bdadb97
CW
2793 if (gfpmask) {
2794 gfpmask = 0;
2795 goto search_free;
07f73f69
CW
2796 }
2797
809b6334 2798 return -ENOMEM;
07f73f69
CW
2799 }
2800
2801 goto search_free;
2802 }
2803
673a394b
EA
2804 return ret;
2805 }
2806
7c2e6fdf
DV
2807 ret = i915_gem_gtt_bind_object(obj);
2808 if (ret) {
e5281ccd 2809 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2810 drm_mm_put_block(obj->gtt_space);
2811 obj->gtt_space = NULL;
07f73f69 2812
809b6334 2813 if (i915_gem_evict_everything(dev, false))
07f73f69 2814 return ret;
07f73f69
CW
2815
2816 goto search_free;
673a394b 2817 }
673a394b 2818
6299f992 2819 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2820 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2821
673a394b
EA
2822 /* Assert that the object is not currently in any GPU domain. As it
2823 * wasn't in the GTT, there shouldn't be any way it could have been in
2824 * a GPU cache
2825 */
05394f39
CW
2826 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2827 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2828
6299f992 2829 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2830
75e9e915 2831 fenceable =
05394f39
CW
2832 obj->gtt_space->size == fence_size &&
2833 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2834
75e9e915 2835 mappable =
05394f39 2836 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2837
05394f39 2838 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2839
6299f992 2840 trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
673a394b
EA
2841 return 0;
2842}
2843
2844void
05394f39 2845i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2846{
673a394b
EA
2847 /* If we don't have a page list set up, then we're not pinned
2848 * to GPU, and we can ignore the cache flush because it'll happen
2849 * again at bind time.
2850 */
05394f39 2851 if (obj->pages == NULL)
673a394b
EA
2852 return;
2853
1c5d22f7 2854 trace_i915_gem_object_clflush(obj);
cfa16a0d 2855
05394f39 2856 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2857}
2858
e47c68e9 2859/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2860static int
3619df03 2861i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2862{
05394f39 2863 struct drm_device *dev = obj->base.dev;
e47c68e9 2864
05394f39 2865 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2866 return 0;
e47c68e9
EA
2867
2868 /* Queue the GPU write cache flushing we need. */
88241785 2869 return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2870}
2871
2872/** Flushes the GTT write domain for the object if it's dirty. */
2873static void
05394f39 2874i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2875{
1c5d22f7
CW
2876 uint32_t old_write_domain;
2877
05394f39 2878 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2879 return;
2880
63256ec5 2881 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2882 * to it immediately go to main memory as far as we know, so there's
2883 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2884 *
2885 * However, we do have to enforce the order so that all writes through
2886 * the GTT land before any writes to the device, such as updates to
2887 * the GATT itself.
e47c68e9 2888 */
63256ec5
CW
2889 wmb();
2890
4a684a41
CW
2891 i915_gem_release_mmap(obj);
2892
05394f39
CW
2893 old_write_domain = obj->base.write_domain;
2894 obj->base.write_domain = 0;
1c5d22f7
CW
2895
2896 trace_i915_gem_object_change_domain(obj,
05394f39 2897 obj->base.read_domains,
1c5d22f7 2898 old_write_domain);
e47c68e9
EA
2899}
2900
2901/** Flushes the CPU write domain for the object if it's dirty. */
2902static void
05394f39 2903i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2904{
1c5d22f7 2905 uint32_t old_write_domain;
e47c68e9 2906
05394f39 2907 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2908 return;
2909
2910 i915_gem_clflush_object(obj);
40ce6575 2911 intel_gtt_chipset_flush();
05394f39
CW
2912 old_write_domain = obj->base.write_domain;
2913 obj->base.write_domain = 0;
1c5d22f7
CW
2914
2915 trace_i915_gem_object_change_domain(obj,
05394f39 2916 obj->base.read_domains,
1c5d22f7 2917 old_write_domain);
e47c68e9
EA
2918}
2919
2ef7eeaa
EA
2920/**
2921 * Moves a single object to the GTT read, and possibly write domain.
2922 *
2923 * This function returns when the move is complete, including waiting on
2924 * flushes to occur.
2925 */
79e53945 2926int
2021746e 2927i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2928{
1c5d22f7 2929 uint32_t old_write_domain, old_read_domains;
e47c68e9 2930 int ret;
2ef7eeaa 2931
02354392 2932 /* Not valid to be called on unbound objects. */
05394f39 2933 if (obj->gtt_space == NULL)
02354392
EA
2934 return -EINVAL;
2935
88241785
CW
2936 ret = i915_gem_object_flush_gpu_write_domain(obj);
2937 if (ret)
2938 return ret;
2939
87ca9c8a
CW
2940 if (obj->pending_gpu_write || write) {
2941 ret = i915_gem_object_wait_rendering(obj, true);
2942 if (ret)
2943 return ret;
2944 }
2dafb1e0 2945
7213342d 2946 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2947
05394f39
CW
2948 old_write_domain = obj->base.write_domain;
2949 old_read_domains = obj->base.read_domains;
1c5d22f7 2950
e47c68e9
EA
2951 /* It should now be out of any other write domains, and we can update
2952 * the domain values for our changes.
2953 */
05394f39
CW
2954 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2955 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2956 if (write) {
05394f39
CW
2957 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2958 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2959 obj->dirty = 1;
2ef7eeaa
EA
2960 }
2961
1c5d22f7
CW
2962 trace_i915_gem_object_change_domain(obj,
2963 old_read_domains,
2964 old_write_domain);
2965
e47c68e9
EA
2966 return 0;
2967}
2968
b9241ea3
ZW
2969/*
2970 * Prepare buffer for display plane. Use uninterruptible for possible flush
2971 * wait, as in modesetting process we're not supposed to be interrupted.
2972 */
2973int
05394f39 2974i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 2975 struct intel_ring_buffer *pipelined)
b9241ea3 2976{
ba3d8d74 2977 uint32_t old_read_domains;
b9241ea3
ZW
2978 int ret;
2979
2980 /* Not valid to be called on unbound objects. */
05394f39 2981 if (obj->gtt_space == NULL)
b9241ea3
ZW
2982 return -EINVAL;
2983
88241785
CW
2984 ret = i915_gem_object_flush_gpu_write_domain(obj);
2985 if (ret)
2986 return ret;
2987
b9241ea3 2988
ced270fa 2989 /* Currently, we are always called from an non-interruptible context. */
0be73284 2990 if (pipelined != obj->ring) {
ced270fa
CW
2991 ret = i915_gem_object_wait_rendering(obj, false);
2992 if (ret)
b9241ea3
ZW
2993 return ret;
2994 }
2995
b118c1e3
CW
2996 i915_gem_object_flush_cpu_write_domain(obj);
2997
05394f39
CW
2998 old_read_domains = obj->base.read_domains;
2999 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3000
3001 trace_i915_gem_object_change_domain(obj,
3002 old_read_domains,
05394f39 3003 obj->base.write_domain);
b9241ea3
ZW
3004
3005 return 0;
3006}
3007
85345517
CW
3008int
3009i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3010 bool interruptible)
3011{
88241785
CW
3012 int ret;
3013
85345517
CW
3014 if (!obj->active)
3015 return 0;
3016
88241785
CW
3017 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3018 ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
3019 0, obj->base.write_domain);
3020 if (ret)
3021 return ret;
3022 }
85345517 3023
05394f39 3024 return i915_gem_object_wait_rendering(obj, interruptible);
85345517
CW
3025}
3026
e47c68e9
EA
3027/**
3028 * Moves a single object to the CPU read, and possibly write domain.
3029 *
3030 * This function returns when the move is complete, including waiting on
3031 * flushes to occur.
3032 */
3033static int
919926ae 3034i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3035{
1c5d22f7 3036 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3037 int ret;
3038
88241785
CW
3039 ret = i915_gem_object_flush_gpu_write_domain(obj);
3040 if (ret)
3041 return ret;
3042
de18a29e
DV
3043 ret = i915_gem_object_wait_rendering(obj, true);
3044 if (ret)
e47c68e9 3045 return ret;
2ef7eeaa 3046
e47c68e9 3047 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3048
e47c68e9
EA
3049 /* If we have a partially-valid cache of the object in the CPU,
3050 * finish invalidating it and free the per-page flags.
2ef7eeaa 3051 */
e47c68e9 3052 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3053
05394f39
CW
3054 old_write_domain = obj->base.write_domain;
3055 old_read_domains = obj->base.read_domains;
1c5d22f7 3056
e47c68e9 3057 /* Flush the CPU cache if it's still invalid. */
05394f39 3058 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3059 i915_gem_clflush_object(obj);
2ef7eeaa 3060
05394f39 3061 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3062 }
3063
3064 /* It should now be out of any other write domains, and we can update
3065 * the domain values for our changes.
3066 */
05394f39 3067 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3068
3069 /* If we're writing through the CPU, then the GPU read domains will
3070 * need to be invalidated at next use.
3071 */
3072 if (write) {
05394f39
CW
3073 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3074 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3075 }
2ef7eeaa 3076
1c5d22f7
CW
3077 trace_i915_gem_object_change_domain(obj,
3078 old_read_domains,
3079 old_write_domain);
3080
2ef7eeaa
EA
3081 return 0;
3082}
3083
673a394b 3084/**
e47c68e9 3085 * Moves the object from a partially CPU read to a full one.
673a394b 3086 *
e47c68e9
EA
3087 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3088 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3089 */
e47c68e9 3090static void
05394f39 3091i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3092{
05394f39 3093 if (!obj->page_cpu_valid)
e47c68e9
EA
3094 return;
3095
3096 /* If we're partially in the CPU read domain, finish moving it in.
3097 */
05394f39 3098 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3099 int i;
3100
05394f39
CW
3101 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3102 if (obj->page_cpu_valid[i])
e47c68e9 3103 continue;
05394f39 3104 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3105 }
e47c68e9
EA
3106 }
3107
3108 /* Free the page_cpu_valid mappings which are now stale, whether
3109 * or not we've got I915_GEM_DOMAIN_CPU.
3110 */
05394f39
CW
3111 kfree(obj->page_cpu_valid);
3112 obj->page_cpu_valid = NULL;
e47c68e9
EA
3113}
3114
3115/**
3116 * Set the CPU read domain on a range of the object.
3117 *
3118 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3119 * not entirely valid. The page_cpu_valid member of the object flags which
3120 * pages have been flushed, and will be respected by
3121 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3122 * of the whole object.
3123 *
3124 * This function returns when the move is complete, including waiting on
3125 * flushes to occur.
3126 */
3127static int
05394f39 3128i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3129 uint64_t offset, uint64_t size)
3130{
1c5d22f7 3131 uint32_t old_read_domains;
e47c68e9 3132 int i, ret;
673a394b 3133
05394f39 3134 if (offset == 0 && size == obj->base.size)
e47c68e9 3135 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3136
88241785
CW
3137 ret = i915_gem_object_flush_gpu_write_domain(obj);
3138 if (ret)
3139 return ret;
3140
de18a29e
DV
3141 ret = i915_gem_object_wait_rendering(obj, true);
3142 if (ret)
6a47baa6 3143 return ret;
de18a29e 3144
e47c68e9
EA
3145 i915_gem_object_flush_gtt_write_domain(obj);
3146
3147 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3148 if (obj->page_cpu_valid == NULL &&
3149 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3150 return 0;
673a394b 3151
e47c68e9
EA
3152 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3153 * newly adding I915_GEM_DOMAIN_CPU
3154 */
05394f39
CW
3155 if (obj->page_cpu_valid == NULL) {
3156 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3157 GFP_KERNEL);
3158 if (obj->page_cpu_valid == NULL)
e47c68e9 3159 return -ENOMEM;
05394f39
CW
3160 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3161 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3162
3163 /* Flush the cache on any pages that are still invalid from the CPU's
3164 * perspective.
3165 */
e47c68e9
EA
3166 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3167 i++) {
05394f39 3168 if (obj->page_cpu_valid[i])
673a394b
EA
3169 continue;
3170
05394f39 3171 drm_clflush_pages(obj->pages + i, 1);
673a394b 3172
05394f39 3173 obj->page_cpu_valid[i] = 1;
673a394b
EA
3174 }
3175
e47c68e9
EA
3176 /* It should now be out of any other write domains, and we can update
3177 * the domain values for our changes.
3178 */
05394f39 3179 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3180
05394f39
CW
3181 old_read_domains = obj->base.read_domains;
3182 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3183
1c5d22f7
CW
3184 trace_i915_gem_object_change_domain(obj,
3185 old_read_domains,
05394f39 3186 obj->base.write_domain);
1c5d22f7 3187
673a394b
EA
3188 return 0;
3189}
3190
673a394b
EA
3191/* Throttle our rendering by waiting until the ring has completed our requests
3192 * emitted over 20 msec ago.
3193 *
b962442e
EA
3194 * Note that if we were to use the current jiffies each time around the loop,
3195 * we wouldn't escape the function with any frames outstanding if the time to
3196 * render a frame was over 20ms.
3197 *
673a394b
EA
3198 * This should get us reasonable parallelism between CPU and GPU but also
3199 * relatively low latency when blocking on a particular request to finish.
3200 */
40a5f0de 3201static int
f787a5f5 3202i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3203{
f787a5f5
CW
3204 struct drm_i915_private *dev_priv = dev->dev_private;
3205 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3206 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3207 struct drm_i915_gem_request *request;
3208 struct intel_ring_buffer *ring = NULL;
3209 u32 seqno = 0;
3210 int ret;
93533c29 3211
1c25595f 3212 spin_lock(&file_priv->mm.lock);
f787a5f5 3213 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3214 if (time_after_eq(request->emitted_jiffies, recent_enough))
3215 break;
40a5f0de 3216
f787a5f5
CW
3217 ring = request->ring;
3218 seqno = request->seqno;
b962442e 3219 }
1c25595f 3220 spin_unlock(&file_priv->mm.lock);
40a5f0de 3221
f787a5f5
CW
3222 if (seqno == 0)
3223 return 0;
2bc43b5c 3224
f787a5f5 3225 ret = 0;
78501eac 3226 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3227 /* And wait for the seqno passing without holding any locks and
3228 * causing extra latency for others. This is safe as the irq
3229 * generation is designed to be run atomically and so is
3230 * lockless.
3231 */
b13c2b96
CW
3232 if (ring->irq_get(ring)) {
3233 ret = wait_event_interruptible(ring->irq_queue,
3234 i915_seqno_passed(ring->get_seqno(ring), seqno)
3235 || atomic_read(&dev_priv->mm.wedged));
3236 ring->irq_put(ring);
40a5f0de 3237
b13c2b96
CW
3238 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3239 ret = -EIO;
3240 }
40a5f0de
EA
3241 }
3242
f787a5f5
CW
3243 if (ret == 0)
3244 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3245
3246 return ret;
3247}
3248
673a394b 3249int
05394f39
CW
3250i915_gem_object_pin(struct drm_i915_gem_object *obj,
3251 uint32_t alignment,
75e9e915 3252 bool map_and_fenceable)
673a394b 3253{
05394f39 3254 struct drm_device *dev = obj->base.dev;
f13d3f73 3255 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3256 int ret;
3257
05394f39 3258 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3259 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3260
05394f39
CW
3261 if (obj->gtt_space != NULL) {
3262 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3263 (map_and_fenceable && !obj->map_and_fenceable)) {
3264 WARN(obj->pin_count,
ae7d49d8 3265 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3266 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3267 " obj->map_and_fenceable=%d\n",
05394f39 3268 obj->gtt_offset, alignment,
75e9e915 3269 map_and_fenceable,
05394f39 3270 obj->map_and_fenceable);
ac0c6b5a
CW
3271 ret = i915_gem_object_unbind(obj);
3272 if (ret)
3273 return ret;
3274 }
3275 }
3276
05394f39 3277 if (obj->gtt_space == NULL) {
a00b10c3 3278 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3279 map_and_fenceable);
9731129c 3280 if (ret)
673a394b 3281 return ret;
22c344e9 3282 }
76446cac 3283
05394f39 3284 if (obj->pin_count++ == 0) {
05394f39
CW
3285 if (!obj->active)
3286 list_move_tail(&obj->mm_list,
f13d3f73 3287 &dev_priv->mm.pinned_list);
673a394b 3288 }
6299f992 3289 obj->pin_mappable |= map_and_fenceable;
673a394b 3290
23bc5982 3291 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3292 return 0;
3293}
3294
3295void
05394f39 3296i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3297{
05394f39 3298 struct drm_device *dev = obj->base.dev;
673a394b 3299 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3300
23bc5982 3301 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3302 BUG_ON(obj->pin_count == 0);
3303 BUG_ON(obj->gtt_space == NULL);
673a394b 3304
05394f39
CW
3305 if (--obj->pin_count == 0) {
3306 if (!obj->active)
3307 list_move_tail(&obj->mm_list,
673a394b 3308 &dev_priv->mm.inactive_list);
6299f992 3309 obj->pin_mappable = false;
673a394b 3310 }
23bc5982 3311 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3312}
3313
3314int
3315i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3316 struct drm_file *file)
673a394b
EA
3317{
3318 struct drm_i915_gem_pin *args = data;
05394f39 3319 struct drm_i915_gem_object *obj;
673a394b
EA
3320 int ret;
3321
1d7cfea1
CW
3322 ret = i915_mutex_lock_interruptible(dev);
3323 if (ret)
3324 return ret;
673a394b 3325
05394f39 3326 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3327 if (obj == NULL) {
1d7cfea1
CW
3328 ret = -ENOENT;
3329 goto unlock;
673a394b 3330 }
673a394b 3331
05394f39 3332 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3333 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3334 ret = -EINVAL;
3335 goto out;
3ef94daa
CW
3336 }
3337
05394f39 3338 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3339 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3340 args->handle);
1d7cfea1
CW
3341 ret = -EINVAL;
3342 goto out;
79e53945
JB
3343 }
3344
05394f39
CW
3345 obj->user_pin_count++;
3346 obj->pin_filp = file;
3347 if (obj->user_pin_count == 1) {
75e9e915 3348 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3349 if (ret)
3350 goto out;
673a394b
EA
3351 }
3352
3353 /* XXX - flush the CPU caches for pinned objects
3354 * as the X server doesn't manage domains yet
3355 */
e47c68e9 3356 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3357 args->offset = obj->gtt_offset;
1d7cfea1 3358out:
05394f39 3359 drm_gem_object_unreference(&obj->base);
1d7cfea1 3360unlock:
673a394b 3361 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3362 return ret;
673a394b
EA
3363}
3364
3365int
3366i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3367 struct drm_file *file)
673a394b
EA
3368{
3369 struct drm_i915_gem_pin *args = data;
05394f39 3370 struct drm_i915_gem_object *obj;
76c1dec1 3371 int ret;
673a394b 3372
1d7cfea1
CW
3373 ret = i915_mutex_lock_interruptible(dev);
3374 if (ret)
3375 return ret;
673a394b 3376
05394f39 3377 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3378 if (obj == NULL) {
1d7cfea1
CW
3379 ret = -ENOENT;
3380 goto unlock;
673a394b 3381 }
76c1dec1 3382
05394f39 3383 if (obj->pin_filp != file) {
79e53945
JB
3384 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3385 args->handle);
1d7cfea1
CW
3386 ret = -EINVAL;
3387 goto out;
79e53945 3388 }
05394f39
CW
3389 obj->user_pin_count--;
3390 if (obj->user_pin_count == 0) {
3391 obj->pin_filp = NULL;
79e53945
JB
3392 i915_gem_object_unpin(obj);
3393 }
673a394b 3394
1d7cfea1 3395out:
05394f39 3396 drm_gem_object_unreference(&obj->base);
1d7cfea1 3397unlock:
673a394b 3398 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3399 return ret;
673a394b
EA
3400}
3401
3402int
3403i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3404 struct drm_file *file)
673a394b
EA
3405{
3406 struct drm_i915_gem_busy *args = data;
05394f39 3407 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3408 int ret;
3409
76c1dec1 3410 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3411 if (ret)
76c1dec1 3412 return ret;
673a394b 3413
05394f39 3414 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3415 if (obj == NULL) {
1d7cfea1
CW
3416 ret = -ENOENT;
3417 goto unlock;
673a394b 3418 }
d1b851fc 3419
0be555b6
CW
3420 /* Count all active objects as busy, even if they are currently not used
3421 * by the gpu. Users of this interface expect objects to eventually
3422 * become non-busy without any further actions, therefore emit any
3423 * necessary flushes here.
c4de0a5d 3424 */
05394f39 3425 args->busy = obj->active;
0be555b6
CW
3426 if (args->busy) {
3427 /* Unconditionally flush objects, even when the gpu still uses this
3428 * object. Userspace calling this function indicates that it wants to
3429 * use this buffer rather sooner than later, so issuing the required
3430 * flush earlier is beneficial.
3431 */
1a1c6976 3432 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
88241785
CW
3433 ret = i915_gem_flush_ring(dev, obj->ring,
3434 0, obj->base.write_domain);
1a1c6976
CW
3435 } else if (obj->ring->outstanding_lazy_request ==
3436 obj->last_rendering_seqno) {
3437 struct drm_i915_gem_request *request;
3438
7a194876
CW
3439 /* This ring is not being cleared by active usage,
3440 * so emit a request to do so.
3441 */
1a1c6976
CW
3442 request = kzalloc(sizeof(*request), GFP_KERNEL);
3443 if (request)
3444 ret = i915_add_request(dev,
3445 NULL, request,
3446 obj->ring);
3447 else
7a194876
CW
3448 ret = -ENOMEM;
3449 }
0be555b6
CW
3450
3451 /* Update the active list for the hardware's current position.
3452 * Otherwise this only updates on a delayed timer or when irqs
3453 * are actually unmasked, and our working set ends up being
3454 * larger than required.
3455 */
05394f39 3456 i915_gem_retire_requests_ring(dev, obj->ring);
0be555b6 3457
05394f39 3458 args->busy = obj->active;
0be555b6 3459 }
673a394b 3460
05394f39 3461 drm_gem_object_unreference(&obj->base);
1d7cfea1 3462unlock:
673a394b 3463 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3464 return ret;
673a394b
EA
3465}
3466
3467int
3468i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3469 struct drm_file *file_priv)
3470{
3471 return i915_gem_ring_throttle(dev, file_priv);
3472}
3473
3ef94daa
CW
3474int
3475i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3476 struct drm_file *file_priv)
3477{
3478 struct drm_i915_gem_madvise *args = data;
05394f39 3479 struct drm_i915_gem_object *obj;
76c1dec1 3480 int ret;
3ef94daa
CW
3481
3482 switch (args->madv) {
3483 case I915_MADV_DONTNEED:
3484 case I915_MADV_WILLNEED:
3485 break;
3486 default:
3487 return -EINVAL;
3488 }
3489
1d7cfea1
CW
3490 ret = i915_mutex_lock_interruptible(dev);
3491 if (ret)
3492 return ret;
3493
05394f39 3494 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3ef94daa 3495 if (obj == NULL) {
1d7cfea1
CW
3496 ret = -ENOENT;
3497 goto unlock;
3ef94daa 3498 }
3ef94daa 3499
05394f39 3500 if (obj->pin_count) {
1d7cfea1
CW
3501 ret = -EINVAL;
3502 goto out;
3ef94daa
CW
3503 }
3504
05394f39
CW
3505 if (obj->madv != __I915_MADV_PURGED)
3506 obj->madv = args->madv;
3ef94daa 3507
2d7ef395 3508 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3509 if (i915_gem_object_is_purgeable(obj) &&
3510 obj->gtt_space == NULL)
2d7ef395
CW
3511 i915_gem_object_truncate(obj);
3512
05394f39 3513 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3514
1d7cfea1 3515out:
05394f39 3516 drm_gem_object_unreference(&obj->base);
1d7cfea1 3517unlock:
3ef94daa 3518 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3519 return ret;
3ef94daa
CW
3520}
3521
05394f39
CW
3522struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3523 size_t size)
ac52bc56 3524{
73aa808f 3525 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3526 struct drm_i915_gem_object *obj;
ac52bc56 3527
c397b908
DV
3528 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3529 if (obj == NULL)
3530 return NULL;
673a394b 3531
c397b908
DV
3532 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3533 kfree(obj);
3534 return NULL;
3535 }
673a394b 3536
73aa808f
CW
3537 i915_gem_info_add_obj(dev_priv, size);
3538
c397b908
DV
3539 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3540 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3541
c397b908 3542 obj->agp_type = AGP_USER_MEMORY;
62b8b215 3543 obj->base.driver_private = NULL;
c397b908 3544 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3545 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3546 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3547 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3548 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3549 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3550 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3551 /* Avoid an unnecessary call to unbind on the first bind. */
3552 obj->map_and_fenceable = true;
de151cf6 3553
05394f39 3554 return obj;
c397b908
DV
3555}
3556
3557int i915_gem_init_object(struct drm_gem_object *obj)
3558{
3559 BUG();
de151cf6 3560
673a394b
EA
3561 return 0;
3562}
3563
05394f39 3564static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3565{
05394f39 3566 struct drm_device *dev = obj->base.dev;
be72615b 3567 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3568 int ret;
673a394b 3569
be72615b
CW
3570 ret = i915_gem_object_unbind(obj);
3571 if (ret == -ERESTARTSYS) {
05394f39 3572 list_move(&obj->mm_list,
be72615b
CW
3573 &dev_priv->mm.deferred_free_list);
3574 return;
3575 }
673a394b 3576
05394f39 3577 if (obj->base.map_list.map)
7e616158 3578 i915_gem_free_mmap_offset(obj);
de151cf6 3579
05394f39
CW
3580 drm_gem_object_release(&obj->base);
3581 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3582
05394f39
CW
3583 kfree(obj->page_cpu_valid);
3584 kfree(obj->bit_17);
3585 kfree(obj);
673a394b
EA
3586}
3587
05394f39 3588void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3589{
05394f39
CW
3590 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3591 struct drm_device *dev = obj->base.dev;
be72615b
CW
3592
3593 trace_i915_gem_object_destroy(obj);
3594
05394f39 3595 while (obj->pin_count > 0)
be72615b
CW
3596 i915_gem_object_unpin(obj);
3597
05394f39 3598 if (obj->phys_obj)
be72615b
CW
3599 i915_gem_detach_phys_object(dev, obj);
3600
3601 i915_gem_free_object_tail(obj);
3602}
3603
29105ccc
CW
3604int
3605i915_gem_idle(struct drm_device *dev)
3606{
3607 drm_i915_private_t *dev_priv = dev->dev_private;
3608 int ret;
28dfe52a 3609
29105ccc 3610 mutex_lock(&dev->struct_mutex);
1c5d22f7 3611
87acb0a5 3612 if (dev_priv->mm.suspended) {
29105ccc
CW
3613 mutex_unlock(&dev->struct_mutex);
3614 return 0;
28dfe52a
EA
3615 }
3616
29105ccc 3617 ret = i915_gpu_idle(dev);
6dbe2772
KP
3618 if (ret) {
3619 mutex_unlock(&dev->struct_mutex);
673a394b 3620 return ret;
6dbe2772 3621 }
673a394b 3622
29105ccc
CW
3623 /* Under UMS, be paranoid and evict. */
3624 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3625 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3626 if (ret) {
3627 mutex_unlock(&dev->struct_mutex);
3628 return ret;
3629 }
3630 }
3631
312817a3
CW
3632 i915_gem_reset_fences(dev);
3633
29105ccc
CW
3634 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3635 * We need to replace this with a semaphore, or something.
3636 * And not confound mm.suspended!
3637 */
3638 dev_priv->mm.suspended = 1;
bc0c7f14 3639 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3640
3641 i915_kernel_lost_context(dev);
6dbe2772 3642 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3643
6dbe2772
KP
3644 mutex_unlock(&dev->struct_mutex);
3645
29105ccc
CW
3646 /* Cancel the retire work handler, which should be idle now. */
3647 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3648
673a394b
EA
3649 return 0;
3650}
3651
8187a2b7
ZN
3652int
3653i915_gem_init_ringbuffer(struct drm_device *dev)
3654{
3655 drm_i915_private_t *dev_priv = dev->dev_private;
3656 int ret;
68f95ba9 3657
5c1143bb 3658 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3659 if (ret)
b6913e4b 3660 return ret;
68f95ba9
CW
3661
3662 if (HAS_BSD(dev)) {
5c1143bb 3663 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3664 if (ret)
3665 goto cleanup_render_ring;
d1b851fc 3666 }
68f95ba9 3667
549f7365
CW
3668 if (HAS_BLT(dev)) {
3669 ret = intel_init_blt_ring_buffer(dev);
3670 if (ret)
3671 goto cleanup_bsd_ring;
3672 }
3673
6f392d54
CW
3674 dev_priv->next_seqno = 1;
3675
68f95ba9
CW
3676 return 0;
3677
549f7365 3678cleanup_bsd_ring:
1ec14ad3 3679 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3680cleanup_render_ring:
1ec14ad3 3681 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3682 return ret;
3683}
3684
3685void
3686i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3687{
3688 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3689 int i;
8187a2b7 3690
1ec14ad3
CW
3691 for (i = 0; i < I915_NUM_RINGS; i++)
3692 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3693}
3694
673a394b
EA
3695int
3696i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3697 struct drm_file *file_priv)
3698{
3699 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3700 int ret, i;
673a394b 3701
79e53945
JB
3702 if (drm_core_check_feature(dev, DRIVER_MODESET))
3703 return 0;
3704
ba1234d1 3705 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3706 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3707 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3708 }
3709
673a394b 3710 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3711 dev_priv->mm.suspended = 0;
3712
3713 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3714 if (ret != 0) {
3715 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3716 return ret;
d816f6ac 3717 }
9bb2d6f9 3718
69dc4987 3719 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3720 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3721 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3722 for (i = 0; i < I915_NUM_RINGS; i++) {
3723 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3724 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3725 }
673a394b 3726 mutex_unlock(&dev->struct_mutex);
dbb19d30 3727
5f35308b
CW
3728 ret = drm_irq_install(dev);
3729 if (ret)
3730 goto cleanup_ringbuffer;
dbb19d30 3731
673a394b 3732 return 0;
5f35308b
CW
3733
3734cleanup_ringbuffer:
3735 mutex_lock(&dev->struct_mutex);
3736 i915_gem_cleanup_ringbuffer(dev);
3737 dev_priv->mm.suspended = 1;
3738 mutex_unlock(&dev->struct_mutex);
3739
3740 return ret;
673a394b
EA
3741}
3742
3743int
3744i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3745 struct drm_file *file_priv)
3746{
79e53945
JB
3747 if (drm_core_check_feature(dev, DRIVER_MODESET))
3748 return 0;
3749
dbb19d30 3750 drm_irq_uninstall(dev);
e6890f6f 3751 return i915_gem_idle(dev);
673a394b
EA
3752}
3753
3754void
3755i915_gem_lastclose(struct drm_device *dev)
3756{
3757 int ret;
673a394b 3758
e806b495
EA
3759 if (drm_core_check_feature(dev, DRIVER_MODESET))
3760 return;
3761
6dbe2772
KP
3762 ret = i915_gem_idle(dev);
3763 if (ret)
3764 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3765}
3766
64193406
CW
3767static void
3768init_ring_lists(struct intel_ring_buffer *ring)
3769{
3770 INIT_LIST_HEAD(&ring->active_list);
3771 INIT_LIST_HEAD(&ring->request_list);
3772 INIT_LIST_HEAD(&ring->gpu_write_list);
3773}
3774
673a394b
EA
3775void
3776i915_gem_load(struct drm_device *dev)
3777{
b5aa8a0f 3778 int i;
673a394b
EA
3779 drm_i915_private_t *dev_priv = dev->dev_private;
3780
69dc4987 3781 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3782 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3783 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3784 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3785 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3786 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3787 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3788 for (i = 0; i < I915_NUM_RINGS; i++)
3789 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3790 for (i = 0; i < 16; i++)
3791 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3792 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3793 i915_gem_retire_work_handler);
30dbf0c0 3794 init_completion(&dev_priv->error_completion);
31169714 3795
94400120
DA
3796 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3797 if (IS_GEN3(dev)) {
3798 u32 tmp = I915_READ(MI_ARB_STATE);
3799 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3800 /* arb state is a masked write, so set bit + bit in mask */
3801 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3802 I915_WRITE(MI_ARB_STATE, tmp);
3803 }
3804 }
3805
72bfa19c
CW
3806 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3807
de151cf6 3808 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3809 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3810 dev_priv->fence_reg_start = 3;
de151cf6 3811
a6c45cf0 3812 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3813 dev_priv->num_fence_regs = 16;
3814 else
3815 dev_priv->num_fence_regs = 8;
3816
b5aa8a0f 3817 /* Initialize fence registers to zero */
a6c45cf0
CW
3818 switch (INTEL_INFO(dev)->gen) {
3819 case 6:
3820 for (i = 0; i < 16; i++)
3821 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3822 break;
3823 case 5:
3824 case 4:
b5aa8a0f
GH
3825 for (i = 0; i < 16; i++)
3826 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
3827 break;
3828 case 3:
b5aa8a0f
GH
3829 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3830 for (i = 0; i < 8; i++)
3831 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
3832 case 2:
3833 for (i = 0; i < 8; i++)
3834 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3835 break;
b5aa8a0f 3836 }
673a394b 3837 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3838 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
3839
3840 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3841 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3842 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3843}
71acb5eb
DA
3844
3845/*
3846 * Create a physically contiguous memory object for this object
3847 * e.g. for cursor + overlay regs
3848 */
995b6762
CW
3849static int i915_gem_init_phys_object(struct drm_device *dev,
3850 int id, int size, int align)
71acb5eb
DA
3851{
3852 drm_i915_private_t *dev_priv = dev->dev_private;
3853 struct drm_i915_gem_phys_object *phys_obj;
3854 int ret;
3855
3856 if (dev_priv->mm.phys_objs[id - 1] || !size)
3857 return 0;
3858
9a298b2a 3859 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3860 if (!phys_obj)
3861 return -ENOMEM;
3862
3863 phys_obj->id = id;
3864
6eeefaf3 3865 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3866 if (!phys_obj->handle) {
3867 ret = -ENOMEM;
3868 goto kfree_obj;
3869 }
3870#ifdef CONFIG_X86
3871 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3872#endif
3873
3874 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3875
3876 return 0;
3877kfree_obj:
9a298b2a 3878 kfree(phys_obj);
71acb5eb
DA
3879 return ret;
3880}
3881
995b6762 3882static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3883{
3884 drm_i915_private_t *dev_priv = dev->dev_private;
3885 struct drm_i915_gem_phys_object *phys_obj;
3886
3887 if (!dev_priv->mm.phys_objs[id - 1])
3888 return;
3889
3890 phys_obj = dev_priv->mm.phys_objs[id - 1];
3891 if (phys_obj->cur_obj) {
3892 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3893 }
3894
3895#ifdef CONFIG_X86
3896 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3897#endif
3898 drm_pci_free(dev, phys_obj->handle);
3899 kfree(phys_obj);
3900 dev_priv->mm.phys_objs[id - 1] = NULL;
3901}
3902
3903void i915_gem_free_all_phys_object(struct drm_device *dev)
3904{
3905 int i;
3906
260883c8 3907 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3908 i915_gem_free_phys_object(dev, i);
3909}
3910
3911void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3912 struct drm_i915_gem_object *obj)
71acb5eb 3913{
05394f39 3914 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3915 char *vaddr;
71acb5eb 3916 int i;
71acb5eb
DA
3917 int page_count;
3918
05394f39 3919 if (!obj->phys_obj)
71acb5eb 3920 return;
05394f39 3921 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3922
05394f39 3923 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3924 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3925 struct page *page = read_cache_page_gfp(mapping, i,
3926 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3927 if (!IS_ERR(page)) {
3928 char *dst = kmap_atomic(page);
3929 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3930 kunmap_atomic(dst);
3931
3932 drm_clflush_pages(&page, 1);
3933
3934 set_page_dirty(page);
3935 mark_page_accessed(page);
3936 page_cache_release(page);
3937 }
71acb5eb 3938 }
40ce6575 3939 intel_gtt_chipset_flush();
d78b47b9 3940
05394f39
CW
3941 obj->phys_obj->cur_obj = NULL;
3942 obj->phys_obj = NULL;
71acb5eb
DA
3943}
3944
3945int
3946i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3947 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3948 int id,
3949 int align)
71acb5eb 3950{
05394f39 3951 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3952 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3953 int ret = 0;
3954 int page_count;
3955 int i;
3956
3957 if (id > I915_MAX_PHYS_OBJECT)
3958 return -EINVAL;
3959
05394f39
CW
3960 if (obj->phys_obj) {
3961 if (obj->phys_obj->id == id)
71acb5eb
DA
3962 return 0;
3963 i915_gem_detach_phys_object(dev, obj);
3964 }
3965
71acb5eb
DA
3966 /* create a new object */
3967 if (!dev_priv->mm.phys_objs[id - 1]) {
3968 ret = i915_gem_init_phys_object(dev, id,
05394f39 3969 obj->base.size, align);
71acb5eb 3970 if (ret) {
05394f39
CW
3971 DRM_ERROR("failed to init phys object %d size: %zu\n",
3972 id, obj->base.size);
e5281ccd 3973 return ret;
71acb5eb
DA
3974 }
3975 }
3976
3977 /* bind to the object */
05394f39
CW
3978 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3979 obj->phys_obj->cur_obj = obj;
71acb5eb 3980
05394f39 3981 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3982
3983 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3984 struct page *page;
3985 char *dst, *src;
3986
3987 page = read_cache_page_gfp(mapping, i,
3988 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3989 if (IS_ERR(page))
3990 return PTR_ERR(page);
71acb5eb 3991
ff75b9bc 3992 src = kmap_atomic(page);
05394f39 3993 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3994 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3995 kunmap_atomic(src);
71acb5eb 3996
e5281ccd
CW
3997 mark_page_accessed(page);
3998 page_cache_release(page);
3999 }
d78b47b9 4000
71acb5eb 4001 return 0;
71acb5eb
DA
4002}
4003
4004static int
05394f39
CW
4005i915_gem_phys_pwrite(struct drm_device *dev,
4006 struct drm_i915_gem_object *obj,
71acb5eb
DA
4007 struct drm_i915_gem_pwrite *args,
4008 struct drm_file *file_priv)
4009{
05394f39 4010 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4011 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4012
b47b30cc
CW
4013 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4014 unsigned long unwritten;
4015
4016 /* The physical object once assigned is fixed for the lifetime
4017 * of the obj, so we can safely drop the lock and continue
4018 * to access vaddr.
4019 */
4020 mutex_unlock(&dev->struct_mutex);
4021 unwritten = copy_from_user(vaddr, user_data, args->size);
4022 mutex_lock(&dev->struct_mutex);
4023 if (unwritten)
4024 return -EFAULT;
4025 }
71acb5eb 4026
40ce6575 4027 intel_gtt_chipset_flush();
71acb5eb
DA
4028 return 0;
4029}
b962442e 4030
f787a5f5 4031void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4032{
f787a5f5 4033 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4034
4035 /* Clean up our request list when the client is going away, so that
4036 * later retire_requests won't dereference our soon-to-be-gone
4037 * file_priv.
4038 */
1c25595f 4039 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4040 while (!list_empty(&file_priv->mm.request_list)) {
4041 struct drm_i915_gem_request *request;
4042
4043 request = list_first_entry(&file_priv->mm.request_list,
4044 struct drm_i915_gem_request,
4045 client_list);
4046 list_del(&request->client_list);
4047 request->file_priv = NULL;
4048 }
1c25595f 4049 spin_unlock(&file_priv->mm.lock);
b962442e 4050}
31169714 4051
1637ef41
CW
4052static int
4053i915_gpu_is_active(struct drm_device *dev)
4054{
4055 drm_i915_private_t *dev_priv = dev->dev_private;
4056 int lists_empty;
4057
1637ef41 4058 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4059 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4060
4061 return !lists_empty;
4062}
4063
31169714 4064static int
17250b71
CW
4065i915_gem_inactive_shrink(struct shrinker *shrinker,
4066 int nr_to_scan,
4067 gfp_t gfp_mask)
31169714 4068{
17250b71
CW
4069 struct drm_i915_private *dev_priv =
4070 container_of(shrinker,
4071 struct drm_i915_private,
4072 mm.inactive_shrinker);
4073 struct drm_device *dev = dev_priv->dev;
4074 struct drm_i915_gem_object *obj, *next;
4075 int cnt;
4076
4077 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4078 return 0;
31169714
CW
4079
4080 /* "fast-path" to count number of available objects */
4081 if (nr_to_scan == 0) {
17250b71
CW
4082 cnt = 0;
4083 list_for_each_entry(obj,
4084 &dev_priv->mm.inactive_list,
4085 mm_list)
4086 cnt++;
4087 mutex_unlock(&dev->struct_mutex);
4088 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4089 }
4090
1637ef41 4091rescan:
31169714 4092 /* first scan for clean buffers */
17250b71 4093 i915_gem_retire_requests(dev);
31169714 4094
17250b71
CW
4095 list_for_each_entry_safe(obj, next,
4096 &dev_priv->mm.inactive_list,
4097 mm_list) {
4098 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4099 if (i915_gem_object_unbind(obj) == 0 &&
4100 --nr_to_scan == 0)
17250b71 4101 break;
31169714 4102 }
31169714
CW
4103 }
4104
4105 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4106 cnt = 0;
4107 list_for_each_entry_safe(obj, next,
4108 &dev_priv->mm.inactive_list,
4109 mm_list) {
2021746e
CW
4110 if (nr_to_scan &&
4111 i915_gem_object_unbind(obj) == 0)
17250b71 4112 nr_to_scan--;
2021746e 4113 else
17250b71
CW
4114 cnt++;
4115 }
4116
4117 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4118 /*
4119 * We are desperate for pages, so as a last resort, wait
4120 * for the GPU to finish and discard whatever we can.
4121 * This has a dramatic impact to reduce the number of
4122 * OOM-killer events whilst running the GPU aggressively.
4123 */
17250b71 4124 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4125 goto rescan;
4126 }
17250b71
CW
4127 mutex_unlock(&dev->struct_mutex);
4128 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4129}
This page took 0.575326 seconds and 5 git commands to generate.