drm/i915: Remove unused intel_ringbuffer->ring_flag
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
31169714
CW
61static LIST_HEAD(shrink_list);
62static DEFINE_SPINLOCK(shrink_list_lock);
63
7d1c4804
CW
64static inline bool
65i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
66{
67 return obj_priv->gtt_space &&
68 !obj_priv->active &&
69 obj_priv->pin_count == 0;
70}
71
79e53945
JB
72int i915_gem_do_init(struct drm_device *dev, unsigned long start,
73 unsigned long end)
673a394b
EA
74{
75 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 76
79e53945
JB
77 if (start >= end ||
78 (start & (PAGE_SIZE - 1)) != 0 ||
79 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
80 return -EINVAL;
81 }
82
79e53945
JB
83 drm_mm_init(&dev_priv->mm.gtt_space, start,
84 end - start);
673a394b 85
79e53945
JB
86 dev->gtt_total = (uint32_t) (end - start);
87
88 return 0;
89}
673a394b 90
79e53945
JB
91int
92i915_gem_init_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
95 struct drm_i915_gem_init *args = data;
96 int ret;
97
98 mutex_lock(&dev->struct_mutex);
99 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
100 mutex_unlock(&dev->struct_mutex);
101
79e53945 102 return ret;
673a394b
EA
103}
104
5a125c3c
EA
105int
106i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
107 struct drm_file *file_priv)
108{
5a125c3c 109 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
110
111 if (!(dev->driver->driver_features & DRIVER_GEM))
112 return -ENODEV;
113
114 args->aper_size = dev->gtt_total;
2678d9d6
KP
115 args->aper_available_size = (args->aper_size -
116 atomic_read(&dev->pin_memory));
5a125c3c
EA
117
118 return 0;
119}
120
673a394b
EA
121
122/**
123 * Creates a new mm object and returns a handle to it.
124 */
125int
126i915_gem_create_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file_priv)
128{
129 struct drm_i915_gem_create *args = data;
130 struct drm_gem_object *obj;
a1a2d1d3
PP
131 int ret;
132 u32 handle;
673a394b
EA
133
134 args->size = roundup(args->size, PAGE_SIZE);
135
136 /* Allocate the new object */
ac52bc56 137 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
138 if (obj == NULL)
139 return -ENOMEM;
140
141 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
142 if (ret) {
143 drm_gem_object_unreference_unlocked(obj);
673a394b 144 return ret;
1dfd9754 145 }
673a394b 146
1dfd9754
CW
147 /* Sink the floating reference from kref_init(handlecount) */
148 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 149
1dfd9754 150 args->handle = handle;
673a394b
EA
151 return 0;
152}
153
eb01459f
EA
154static inline int
155fast_shmem_read(struct page **pages,
156 loff_t page_base, int page_offset,
157 char __user *data,
158 int length)
159{
160 char __iomem *vaddr;
2bc43b5c 161 int unwritten;
eb01459f
EA
162
163 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
164 if (vaddr == NULL)
165 return -ENOMEM;
2bc43b5c 166 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
167 kunmap_atomic(vaddr, KM_USER0);
168
2bc43b5c
FM
169 if (unwritten)
170 return -EFAULT;
171
172 return 0;
eb01459f
EA
173}
174
280b713b
EA
175static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
176{
177 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
179
180 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
181 obj_priv->tiling_mode != I915_TILING_NONE;
182}
183
99a03df5 184static inline void
40123c1f
EA
185slow_shmem_copy(struct page *dst_page,
186 int dst_offset,
187 struct page *src_page,
188 int src_offset,
189 int length)
190{
191 char *dst_vaddr, *src_vaddr;
192
99a03df5
CW
193 dst_vaddr = kmap(dst_page);
194 src_vaddr = kmap(src_page);
40123c1f
EA
195
196 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
197
99a03df5
CW
198 kunmap(src_page);
199 kunmap(dst_page);
40123c1f
EA
200}
201
99a03df5 202static inline void
280b713b
EA
203slow_shmem_bit17_copy(struct page *gpu_page,
204 int gpu_offset,
205 struct page *cpu_page,
206 int cpu_offset,
207 int length,
208 int is_read)
209{
210 char *gpu_vaddr, *cpu_vaddr;
211
212 /* Use the unswizzled path if this page isn't affected. */
213 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
214 if (is_read)
215 return slow_shmem_copy(cpu_page, cpu_offset,
216 gpu_page, gpu_offset, length);
217 else
218 return slow_shmem_copy(gpu_page, gpu_offset,
219 cpu_page, cpu_offset, length);
220 }
221
99a03df5
CW
222 gpu_vaddr = kmap(gpu_page);
223 cpu_vaddr = kmap(cpu_page);
280b713b
EA
224
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 */
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
241 }
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
245 }
246
99a03df5
CW
247 kunmap(cpu_page);
248 kunmap(gpu_page);
280b713b
EA
249}
250
eb01459f
EA
251/**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256static int
257i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
23010e43 261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
4bdadb97 273 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
23010e43 282 obj_priv = to_intel_bo(obj);
eb01459f
EA
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309fail_put_pages:
310 i915_gem_object_put_pages(obj);
311fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315}
316
07f73f69
CW
317static int
318i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
319{
320 int ret;
321
4bdadb97 322 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
323
324 /* If we've insufficient memory to map in the pages, attempt
325 * to make some space by throwing out some old buffers.
326 */
327 if (ret == -ENOMEM) {
328 struct drm_device *dev = obj->dev;
07f73f69 329
0108a3ed
DV
330 ret = i915_gem_evict_something(dev, obj->size,
331 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
332 if (ret)
333 return ret;
334
4bdadb97 335 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
336 }
337
338 return ret;
339}
340
eb01459f
EA
341/**
342 * This is the fallback shmem pread path, which allocates temporary storage
343 * in kernel space to copy_to_user into outside of the struct_mutex, so we
344 * can copy out of the object's backing pages while holding the struct mutex
345 * and not take page faults.
346 */
347static int
348i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
349 struct drm_i915_gem_pread *args,
350 struct drm_file *file_priv)
351{
23010e43 352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
353 struct mm_struct *mm = current->mm;
354 struct page **user_pages;
355 ssize_t remain;
356 loff_t offset, pinned_pages, i;
357 loff_t first_data_page, last_data_page, num_pages;
358 int shmem_page_index, shmem_page_offset;
359 int data_page_index, data_page_offset;
360 int page_length;
361 int ret;
362 uint64_t data_ptr = args->data_ptr;
280b713b 363 int do_bit17_swizzling;
eb01459f
EA
364
365 remain = args->size;
366
367 /* Pin the user pages containing the data. We can't fault while
368 * holding the struct mutex, yet we want to hold it while
369 * dereferencing the user data.
370 */
371 first_data_page = data_ptr / PAGE_SIZE;
372 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
373 num_pages = last_data_page - first_data_page + 1;
374
8e7d2b2c 375 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
376 if (user_pages == NULL)
377 return -ENOMEM;
378
379 down_read(&mm->mmap_sem);
380 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 381 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
382 up_read(&mm->mmap_sem);
383 if (pinned_pages < num_pages) {
384 ret = -EFAULT;
385 goto fail_put_user_pages;
386 }
387
280b713b
EA
388 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
389
eb01459f
EA
390 mutex_lock(&dev->struct_mutex);
391
07f73f69
CW
392 ret = i915_gem_object_get_pages_or_evict(obj);
393 if (ret)
eb01459f
EA
394 goto fail_unlock;
395
396 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
397 args->size);
398 if (ret != 0)
399 goto fail_put_pages;
400
23010e43 401 obj_priv = to_intel_bo(obj);
eb01459f
EA
402 offset = args->offset;
403
404 while (remain > 0) {
405 /* Operation in this page
406 *
407 * shmem_page_index = page number within shmem file
408 * shmem_page_offset = offset within page in shmem file
409 * data_page_index = page number in get_user_pages return
410 * data_page_offset = offset with data_page_index page.
411 * page_length = bytes to copy for this page
412 */
413 shmem_page_index = offset / PAGE_SIZE;
414 shmem_page_offset = offset & ~PAGE_MASK;
415 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
416 data_page_offset = data_ptr & ~PAGE_MASK;
417
418 page_length = remain;
419 if ((shmem_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - shmem_page_offset;
421 if ((data_page_offset + page_length) > PAGE_SIZE)
422 page_length = PAGE_SIZE - data_page_offset;
423
280b713b 424 if (do_bit17_swizzling) {
99a03df5 425 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 426 shmem_page_offset,
99a03df5
CW
427 user_pages[data_page_index],
428 data_page_offset,
429 page_length,
430 1);
431 } else {
432 slow_shmem_copy(user_pages[data_page_index],
433 data_page_offset,
434 obj_priv->pages[shmem_page_index],
435 shmem_page_offset,
436 page_length);
280b713b 437 }
eb01459f
EA
438
439 remain -= page_length;
440 data_ptr += page_length;
441 offset += page_length;
442 }
443
444fail_put_pages:
445 i915_gem_object_put_pages(obj);
446fail_unlock:
447 mutex_unlock(&dev->struct_mutex);
448fail_put_user_pages:
449 for (i = 0; i < pinned_pages; i++) {
450 SetPageDirty(user_pages[i]);
451 page_cache_release(user_pages[i]);
452 }
8e7d2b2c 453 drm_free_large(user_pages);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file_priv)
466{
467 struct drm_i915_gem_pread *args = data;
468 struct drm_gem_object *obj;
469 struct drm_i915_gem_object *obj_priv;
673a394b
EA
470 int ret;
471
472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
473 if (obj == NULL)
bf79cb91 474 return -ENOENT;
23010e43 475 obj_priv = to_intel_bo(obj);
673a394b
EA
476
477 /* Bounds check source.
478 *
479 * XXX: This could use review for overflow issues...
480 */
481 if (args->offset > obj->size || args->size > obj->size ||
482 args->offset + args->size > obj->size) {
bc9025bd 483 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
484 return -EINVAL;
485 }
486
280b713b 487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
494 }
673a394b 495
bc9025bd 496 drm_gem_object_unreference_unlocked(obj);
673a394b 497
eb01459f 498 return ret;
673a394b
EA
499}
500
0839ccb8
KP
501/* This is the fast write path which cannot handle
502 * page faults in the source data
9b7530cc 503 */
0839ccb8
KP
504
505static inline int
506fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
9b7530cc 510{
9b7530cc 511 char *vaddr_atomic;
0839ccb8 512 unsigned long unwritten;
9b7530cc 513
fca3ec01 514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
fca3ec01 517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
518 if (unwritten)
519 return -EFAULT;
520 return 0;
521}
522
523/* Here's the write path which can sleep for
524 * page faults
525 */
526
ab34c226 527static inline void
3de09aa3
EA
528slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
0839ccb8 532{
ab34c226
CW
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
0839ccb8 535
ab34c226
CW
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
538
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
542
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
545}
546
40123c1f
EA
547static inline int
548fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
552{
553 char __iomem *vaddr;
d0088775 554 unsigned long unwritten;
40123c1f
EA
555
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
d0088775 559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
560 kunmap_atomic(vaddr, KM_USER0);
561
d0088775
DA
562 if (unwritten)
563 return -EFAULT;
40123c1f
EA
564 return 0;
565}
566
3de09aa3
EA
567/**
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
570 */
673a394b 571static int
3de09aa3
EA
572i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
673a394b 575{
23010e43 576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 578 ssize_t remain;
0839ccb8 579 loff_t offset, page_base;
673a394b 580 char __user *user_data;
0839ccb8
KP
581 int page_offset, page_length;
582 int ret;
673a394b
EA
583
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
586 if (!access_ok(VERIFY_READ, user_data, remain))
587 return -EFAULT;
588
589
590 mutex_lock(&dev->struct_mutex);
591 ret = i915_gem_object_pin(obj, 0);
592 if (ret) {
593 mutex_unlock(&dev->struct_mutex);
594 return ret;
595 }
2ef7eeaa 596 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
597 if (ret)
598 goto fail;
599
23010e43 600 obj_priv = to_intel_bo(obj);
673a394b 601 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
602
603 while (remain > 0) {
604 /* Operation in this page
605 *
0839ccb8
KP
606 * page_base = page offset within aperture
607 * page_offset = offset within page
608 * page_length = bytes to copy for this page
673a394b 609 */
0839ccb8
KP
610 page_base = (offset & ~(PAGE_SIZE-1));
611 page_offset = offset & (PAGE_SIZE-1);
612 page_length = remain;
613 if ((page_offset + remain) > PAGE_SIZE)
614 page_length = PAGE_SIZE - page_offset;
615
616 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
617 page_offset, user_data, page_length);
618
619 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
0839ccb8 622 */
3de09aa3
EA
623 if (ret)
624 goto fail;
673a394b 625
0839ccb8
KP
626 remain -= page_length;
627 user_data += page_length;
628 offset += page_length;
673a394b 629 }
673a394b
EA
630
631fail:
632 i915_gem_object_unpin(obj);
633 mutex_unlock(&dev->struct_mutex);
634
635 return ret;
636}
637
3de09aa3
EA
638/**
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
641 *
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 */
3043c60c 645static int
3de09aa3
EA
646i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file_priv)
673a394b 649{
23010e43 650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 659 int ret;
3de09aa3
EA
660 uint64_t data_ptr = args->data_ptr;
661
662 remain = args->size;
663
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
667 */
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
671
8e7d2b2c 672 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
673 if (user_pages == NULL)
674 return -ENOMEM;
675
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 if (pinned_pages < num_pages) {
681 ret = -EFAULT;
682 goto out_unpin_pages;
683 }
673a394b
EA
684
685 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
686 ret = i915_gem_object_pin(obj, 0);
687 if (ret)
688 goto out_unlock;
689
690 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
691 if (ret)
692 goto out_unpin_object;
693
23010e43 694 obj_priv = to_intel_bo(obj);
3de09aa3
EA
695 offset = obj_priv->gtt_offset + args->offset;
696
697 while (remain > 0) {
698 /* Operation in this page
699 *
700 * gtt_page_base = page offset within aperture
701 * gtt_page_offset = offset within page in aperture
702 * data_page_index = page number in get_user_pages return
703 * data_page_offset = offset with data_page_index page.
704 * page_length = bytes to copy for this page
705 */
706 gtt_page_base = offset & PAGE_MASK;
707 gtt_page_offset = offset & ~PAGE_MASK;
708 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
709 data_page_offset = data_ptr & ~PAGE_MASK;
710
711 page_length = remain;
712 if ((gtt_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - gtt_page_offset;
714 if ((data_page_offset + page_length) > PAGE_SIZE)
715 page_length = PAGE_SIZE - data_page_offset;
716
ab34c226
CW
717 slow_kernel_write(dev_priv->mm.gtt_mapping,
718 gtt_page_base, gtt_page_offset,
719 user_pages[data_page_index],
720 data_page_offset,
721 page_length);
3de09aa3
EA
722
723 remain -= page_length;
724 offset += page_length;
725 data_ptr += page_length;
726 }
727
728out_unpin_object:
729 i915_gem_object_unpin(obj);
730out_unlock:
731 mutex_unlock(&dev->struct_mutex);
732out_unpin_pages:
733 for (i = 0; i < pinned_pages; i++)
734 page_cache_release(user_pages[i]);
8e7d2b2c 735 drm_free_large(user_pages);
3de09aa3
EA
736
737 return ret;
738}
739
40123c1f
EA
740/**
741 * This is the fast shmem pwrite path, which attempts to directly
742 * copy_from_user into the kmapped pages backing the object.
743 */
3043c60c 744static int
40123c1f
EA
745i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
746 struct drm_i915_gem_pwrite *args,
747 struct drm_file *file_priv)
673a394b 748{
23010e43 749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
750 ssize_t remain;
751 loff_t offset, page_base;
752 char __user *user_data;
753 int page_offset, page_length;
673a394b 754 int ret;
40123c1f
EA
755
756 user_data = (char __user *) (uintptr_t) args->data_ptr;
757 remain = args->size;
673a394b
EA
758
759 mutex_lock(&dev->struct_mutex);
760
4bdadb97 761 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
762 if (ret != 0)
763 goto fail_unlock;
673a394b 764
e47c68e9 765 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
766 if (ret != 0)
767 goto fail_put_pages;
768
23010e43 769 obj_priv = to_intel_bo(obj);
40123c1f
EA
770 offset = args->offset;
771 obj_priv->dirty = 1;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * page_base = page offset within aperture
777 * page_offset = offset within page
778 * page_length = bytes to copy for this page
779 */
780 page_base = (offset & ~(PAGE_SIZE-1));
781 page_offset = offset & (PAGE_SIZE-1);
782 page_length = remain;
783 if ((page_offset + remain) > PAGE_SIZE)
784 page_length = PAGE_SIZE - page_offset;
785
786 ret = fast_shmem_write(obj_priv->pages,
787 page_base, page_offset,
788 user_data, page_length);
789 if (ret)
790 goto fail_put_pages;
791
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
795 }
796
797fail_put_pages:
798 i915_gem_object_put_pages(obj);
799fail_unlock:
800 mutex_unlock(&dev->struct_mutex);
801
802 return ret;
803}
804
805/**
806 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
807 * the memory and maps it using kmap_atomic for copying.
808 *
809 * This avoids taking mmap_sem for faulting on the user's address while the
810 * struct_mutex is held.
811 */
812static int
813i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
816{
23010e43 817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_index, shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
280b713b 828 int do_bit17_swizzling;
40123c1f
EA
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
8e7d2b2c 840 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
841 if (user_pages == NULL)
842 return -ENOMEM;
843
844 down_read(&mm->mmap_sem);
845 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
846 num_pages, 0, 0, user_pages, NULL);
847 up_read(&mm->mmap_sem);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto fail_put_user_pages;
673a394b
EA
851 }
852
280b713b
EA
853 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
854
40123c1f
EA
855 mutex_lock(&dev->struct_mutex);
856
07f73f69
CW
857 ret = i915_gem_object_get_pages_or_evict(obj);
858 if (ret)
40123c1f
EA
859 goto fail_unlock;
860
861 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
862 if (ret != 0)
863 goto fail_put_pages;
864
23010e43 865 obj_priv = to_intel_bo(obj);
673a394b 866 offset = args->offset;
40123c1f 867 obj_priv->dirty = 1;
673a394b 868
40123c1f
EA
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * shmem_page_index = page number within shmem file
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
878 shmem_page_index = offset / PAGE_SIZE;
879 shmem_page_offset = offset & ~PAGE_MASK;
880 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
881 data_page_offset = data_ptr & ~PAGE_MASK;
882
883 page_length = remain;
884 if ((shmem_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - shmem_page_offset;
886 if ((data_page_offset + page_length) > PAGE_SIZE)
887 page_length = PAGE_SIZE - data_page_offset;
888
280b713b 889 if (do_bit17_swizzling) {
99a03df5 890 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
99a03df5
CW
894 page_length,
895 0);
896 } else {
897 slow_shmem_copy(obj_priv->pages[shmem_page_index],
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
280b713b 902 }
40123c1f
EA
903
904 remain -= page_length;
905 data_ptr += page_length;
906 offset += page_length;
673a394b
EA
907 }
908
40123c1f
EA
909fail_put_pages:
910 i915_gem_object_put_pages(obj);
911fail_unlock:
673a394b 912 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
913fail_put_user_pages:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
8e7d2b2c 916 drm_free_large(user_pages);
673a394b 917
40123c1f 918 return ret;
673a394b
EA
919}
920
921/**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926int
927i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file_priv)
929{
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_gem_object *obj;
932 struct drm_i915_gem_object *obj_priv;
933 int ret = 0;
934
935 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
936 if (obj == NULL)
bf79cb91 937 return -ENOENT;
23010e43 938 obj_priv = to_intel_bo(obj);
673a394b
EA
939
940 /* Bounds check destination.
941 *
942 * XXX: This could use review for overflow issues...
943 */
944 if (args->offset > obj->size || args->size > obj->size ||
945 args->offset + args->size > obj->size) {
bc9025bd 946 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
947 return -EINVAL;
948 }
949
950 /* We can only do the GTT pwrite on untiled buffers, as otherwise
951 * it would end up going through the fenced access, and we'll get
952 * different detiling behavior between reading and writing.
953 * pread/pwrite currently are reading and writing from the CPU
954 * perspective, requiring manual detiling by the client.
955 */
71acb5eb
DA
956 if (obj_priv->phys_obj)
957 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
958 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
959 dev->gtt_total != 0 &&
960 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
961 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
962 if (ret == -EFAULT) {
963 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
964 file_priv);
965 }
280b713b
EA
966 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
967 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
968 } else {
969 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
970 if (ret == -EFAULT) {
971 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
972 file_priv);
973 }
974 }
673a394b
EA
975
976#if WATCH_PWRITE
977 if (ret)
978 DRM_INFO("pwrite failed %d\n", ret);
979#endif
980
bc9025bd 981 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
982
983 return ret;
984}
985
986/**
2ef7eeaa
EA
987 * Called when user space prepares to use an object with the CPU, either
988 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
989 */
990int
991i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
993{
a09ba7fa 994 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
995 struct drm_i915_gem_set_domain *args = data;
996 struct drm_gem_object *obj;
652c393a 997 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
998 uint32_t read_domains = args->read_domains;
999 uint32_t write_domain = args->write_domain;
673a394b
EA
1000 int ret;
1001
1002 if (!(dev->driver->driver_features & DRIVER_GEM))
1003 return -ENODEV;
1004
2ef7eeaa 1005 /* Only handle setting domains to types used by the CPU. */
21d509e3 1006 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1007 return -EINVAL;
1008
21d509e3 1009 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1010 return -EINVAL;
1011
1012 /* Having something in the write domain implies it's in the read
1013 * domain, and only that read domain. Enforce that in the request.
1014 */
1015 if (write_domain != 0 && read_domains != write_domain)
1016 return -EINVAL;
1017
673a394b
EA
1018 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1019 if (obj == NULL)
bf79cb91 1020 return -ENOENT;
23010e43 1021 obj_priv = to_intel_bo(obj);
673a394b
EA
1022
1023 mutex_lock(&dev->struct_mutex);
652c393a
JB
1024
1025 intel_mark_busy(dev, obj);
1026
673a394b 1027#if WATCH_BUF
cfd43c02 1028 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1029 obj, obj->size, read_domains, write_domain);
673a394b 1030#endif
2ef7eeaa
EA
1031 if (read_domains & I915_GEM_DOMAIN_GTT) {
1032 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1033
a09ba7fa
EA
1034 /* Update the LRU on the fence for the CPU access that's
1035 * about to occur.
1036 */
1037 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1038 struct drm_i915_fence_reg *reg =
1039 &dev_priv->fence_regs[obj_priv->fence_reg];
1040 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1041 &dev_priv->mm.fence_list);
1042 }
1043
02354392
EA
1044 /* Silently promote "you're not bound, there was nothing to do"
1045 * to success, since the client was just asking us to
1046 * make sure everything was done.
1047 */
1048 if (ret == -EINVAL)
1049 ret = 0;
2ef7eeaa 1050 } else {
e47c68e9 1051 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1052 }
1053
7d1c4804
CW
1054
1055 /* Maintain LRU order of "inactive" objects */
1056 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1057 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1058
673a394b
EA
1059 drm_gem_object_unreference(obj);
1060 mutex_unlock(&dev->struct_mutex);
1061 return ret;
1062}
1063
1064/**
1065 * Called when user space has done writes to this buffer
1066 */
1067int
1068i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1069 struct drm_file *file_priv)
1070{
1071 struct drm_i915_gem_sw_finish *args = data;
1072 struct drm_gem_object *obj;
1073 struct drm_i915_gem_object *obj_priv;
1074 int ret = 0;
1075
1076 if (!(dev->driver->driver_features & DRIVER_GEM))
1077 return -ENODEV;
1078
1079 mutex_lock(&dev->struct_mutex);
1080 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1081 if (obj == NULL) {
1082 mutex_unlock(&dev->struct_mutex);
bf79cb91 1083 return -ENOENT;
673a394b
EA
1084 }
1085
1086#if WATCH_BUF
cfd43c02 1087 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1088 __func__, args->handle, obj, obj->size);
1089#endif
23010e43 1090 obj_priv = to_intel_bo(obj);
673a394b
EA
1091
1092 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1093 if (obj_priv->pin_count)
1094 i915_gem_object_flush_cpu_write_domain(obj);
1095
673a394b
EA
1096 drm_gem_object_unreference(obj);
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099}
1100
1101/**
1102 * Maps the contents of an object, returning the address it is mapped
1103 * into.
1104 *
1105 * While the mapping holds a reference on the contents of the object, it doesn't
1106 * imply a ref on the object itself.
1107 */
1108int
1109i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1110 struct drm_file *file_priv)
1111{
1112 struct drm_i915_gem_mmap *args = data;
1113 struct drm_gem_object *obj;
1114 loff_t offset;
1115 unsigned long addr;
1116
1117 if (!(dev->driver->driver_features & DRIVER_GEM))
1118 return -ENODEV;
1119
1120 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1121 if (obj == NULL)
bf79cb91 1122 return -ENOENT;
673a394b
EA
1123
1124 offset = args->offset;
1125
1126 down_write(&current->mm->mmap_sem);
1127 addr = do_mmap(obj->filp, 0, args->size,
1128 PROT_READ | PROT_WRITE, MAP_SHARED,
1129 args->offset);
1130 up_write(&current->mm->mmap_sem);
bc9025bd 1131 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1132 if (IS_ERR((void *)addr))
1133 return addr;
1134
1135 args->addr_ptr = (uint64_t) addr;
1136
1137 return 0;
1138}
1139
de151cf6
JB
1140/**
1141 * i915_gem_fault - fault a page into the GTT
1142 * vma: VMA in question
1143 * vmf: fault info
1144 *
1145 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1146 * from userspace. The fault handler takes care of binding the object to
1147 * the GTT (if needed), allocating and programming a fence register (again,
1148 * only if needed based on whether the old reg is still valid or the object
1149 * is tiled) and inserting a new PTE into the faulting process.
1150 *
1151 * Note that the faulting process may involve evicting existing objects
1152 * from the GTT and/or fence registers to make room. So performance may
1153 * suffer if the GTT working set is large or there are few fence registers
1154 * left.
1155 */
1156int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1157{
1158 struct drm_gem_object *obj = vma->vm_private_data;
1159 struct drm_device *dev = obj->dev;
7d1c4804 1160 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1162 pgoff_t page_offset;
1163 unsigned long pfn;
1164 int ret = 0;
0f973f27 1165 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1166
1167 /* We don't use vmf->pgoff since that has the fake offset */
1168 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1169 PAGE_SHIFT;
1170
1171 /* Now bind it into the GTT if needed */
1172 mutex_lock(&dev->struct_mutex);
1173 if (!obj_priv->gtt_space) {
e67b8ce1 1174 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1175 if (ret)
1176 goto unlock;
07f4f3e8 1177
07f4f3e8 1178 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1179 if (ret)
1180 goto unlock;
de151cf6
JB
1181 }
1182
1183 /* Need a new fence register? */
a09ba7fa 1184 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1185 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1186 if (ret)
1187 goto unlock;
d9ddcb96 1188 }
de151cf6 1189
7d1c4804
CW
1190 if (i915_gem_object_is_inactive(obj_priv))
1191 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1192
de151cf6
JB
1193 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1194 page_offset;
1195
1196 /* Finally, remap it using the new GTT offset */
1197 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1198unlock:
de151cf6
JB
1199 mutex_unlock(&dev->struct_mutex);
1200
1201 switch (ret) {
c715089f
CW
1202 case 0:
1203 case -ERESTARTSYS:
1204 return VM_FAULT_NOPAGE;
de151cf6
JB
1205 case -ENOMEM:
1206 case -EAGAIN:
1207 return VM_FAULT_OOM;
de151cf6 1208 default:
c715089f 1209 return VM_FAULT_SIGBUS;
de151cf6
JB
1210 }
1211}
1212
1213/**
1214 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1215 * @obj: obj in question
1216 *
1217 * GEM memory mapping works by handing back to userspace a fake mmap offset
1218 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1219 * up the object based on the offset and sets up the various memory mapping
1220 * structures.
1221 *
1222 * This routine allocates and attaches a fake offset for @obj.
1223 */
1224static int
1225i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1226{
1227 struct drm_device *dev = obj->dev;
1228 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1229 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1230 struct drm_map_list *list;
f77d390c 1231 struct drm_local_map *map;
de151cf6
JB
1232 int ret = 0;
1233
1234 /* Set the object up for mmap'ing */
1235 list = &obj->map_list;
9a298b2a 1236 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1237 if (!list->map)
1238 return -ENOMEM;
1239
1240 map = list->map;
1241 map->type = _DRM_GEM;
1242 map->size = obj->size;
1243 map->handle = obj;
1244
1245 /* Get a DRM GEM mmap offset allocated... */
1246 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1247 obj->size / PAGE_SIZE, 0, 0);
1248 if (!list->file_offset_node) {
1249 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1250 ret = -ENOMEM;
1251 goto out_free_list;
1252 }
1253
1254 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1255 obj->size / PAGE_SIZE, 0);
1256 if (!list->file_offset_node) {
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->hash.key = list->file_offset_node->start;
1262 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1263 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1264 ret = -ENOMEM;
de151cf6
JB
1265 goto out_free_mm;
1266 }
1267
1268 /* By now we should be all set, any drm_mmap request on the offset
1269 * below will get to our mmap & fault handler */
1270 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1271
1272 return 0;
1273
1274out_free_mm:
1275 drm_mm_put_block(list->file_offset_node);
1276out_free_list:
9a298b2a 1277 kfree(list->map);
de151cf6
JB
1278
1279 return ret;
1280}
1281
901782b2
CW
1282/**
1283 * i915_gem_release_mmap - remove physical page mappings
1284 * @obj: obj in question
1285 *
af901ca1 1286 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1287 * relinquish ownership of the pages back to the system.
1288 *
1289 * It is vital that we remove the page mapping if we have mapped a tiled
1290 * object through the GTT and then lose the fence register due to
1291 * resource pressure. Similarly if the object has been moved out of the
1292 * aperture, than pages mapped into userspace must be revoked. Removing the
1293 * mapping will then trigger a page fault on the next user access, allowing
1294 * fixup by i915_gem_fault().
1295 */
d05ca301 1296void
901782b2
CW
1297i915_gem_release_mmap(struct drm_gem_object *obj)
1298{
1299 struct drm_device *dev = obj->dev;
23010e43 1300 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1301
1302 if (dev->dev_mapping)
1303 unmap_mapping_range(dev->dev_mapping,
1304 obj_priv->mmap_offset, obj->size, 1);
1305}
1306
ab00b3e5
JB
1307static void
1308i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1309{
1310 struct drm_device *dev = obj->dev;
23010e43 1311 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1312 struct drm_gem_mm *mm = dev->mm_private;
1313 struct drm_map_list *list;
1314
1315 list = &obj->map_list;
1316 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1317
1318 if (list->file_offset_node) {
1319 drm_mm_put_block(list->file_offset_node);
1320 list->file_offset_node = NULL;
1321 }
1322
1323 if (list->map) {
9a298b2a 1324 kfree(list->map);
ab00b3e5
JB
1325 list->map = NULL;
1326 }
1327
1328 obj_priv->mmap_offset = 0;
1329}
1330
de151cf6
JB
1331/**
1332 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1333 * @obj: object to check
1334 *
1335 * Return the required GTT alignment for an object, taking into account
1336 * potential fence register mapping if needed.
1337 */
1338static uint32_t
1339i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1340{
1341 struct drm_device *dev = obj->dev;
23010e43 1342 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1343 int start, i;
1344
1345 /*
1346 * Minimum alignment is 4k (GTT page size), but might be greater
1347 * if a fence register is needed for the object.
1348 */
1349 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1350 return 4096;
1351
1352 /*
1353 * Previous chips need to be aligned to the size of the smallest
1354 * fence register that can contain the object.
1355 */
1356 if (IS_I9XX(dev))
1357 start = 1024*1024;
1358 else
1359 start = 512*1024;
1360
1361 for (i = start; i < obj->size; i <<= 1)
1362 ;
1363
1364 return i;
1365}
1366
1367/**
1368 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1369 * @dev: DRM device
1370 * @data: GTT mapping ioctl data
1371 * @file_priv: GEM object info
1372 *
1373 * Simply returns the fake offset to userspace so it can mmap it.
1374 * The mmap call will end up in drm_gem_mmap(), which will set things
1375 * up so we can get faults in the handler above.
1376 *
1377 * The fault handler will take care of binding the object into the GTT
1378 * (since it may have been evicted to make room for something), allocating
1379 * a fence register, and mapping the appropriate aperture address into
1380 * userspace.
1381 */
1382int
1383i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1384 struct drm_file *file_priv)
1385{
1386 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1387 struct drm_gem_object *obj;
1388 struct drm_i915_gem_object *obj_priv;
1389 int ret;
1390
1391 if (!(dev->driver->driver_features & DRIVER_GEM))
1392 return -ENODEV;
1393
1394 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1395 if (obj == NULL)
bf79cb91 1396 return -ENOENT;
de151cf6
JB
1397
1398 mutex_lock(&dev->struct_mutex);
1399
23010e43 1400 obj_priv = to_intel_bo(obj);
de151cf6 1401
ab18282d
CW
1402 if (obj_priv->madv != I915_MADV_WILLNEED) {
1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 drm_gem_object_unreference(obj);
1405 mutex_unlock(&dev->struct_mutex);
1406 return -EINVAL;
1407 }
1408
1409
de151cf6
JB
1410 if (!obj_priv->mmap_offset) {
1411 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1412 if (ret) {
1413 drm_gem_object_unreference(obj);
1414 mutex_unlock(&dev->struct_mutex);
de151cf6 1415 return ret;
13af1062 1416 }
de151cf6
JB
1417 }
1418
1419 args->offset = obj_priv->mmap_offset;
1420
de151cf6
JB
1421 /*
1422 * Pull it into the GTT so that we have a page list (makes the
1423 * initial fault faster and any subsequent flushing possible).
1424 */
1425 if (!obj_priv->agp_mem) {
e67b8ce1 1426 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1427 if (ret) {
1428 drm_gem_object_unreference(obj);
1429 mutex_unlock(&dev->struct_mutex);
1430 return ret;
1431 }
de151cf6
JB
1432 }
1433
1434 drm_gem_object_unreference(obj);
1435 mutex_unlock(&dev->struct_mutex);
1436
1437 return 0;
1438}
1439
6911a9b8 1440void
856fa198 1441i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1442{
23010e43 1443 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1444 int page_count = obj->size / PAGE_SIZE;
1445 int i;
1446
856fa198 1447 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1448 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1449
856fa198
EA
1450 if (--obj_priv->pages_refcount != 0)
1451 return;
673a394b 1452
280b713b
EA
1453 if (obj_priv->tiling_mode != I915_TILING_NONE)
1454 i915_gem_object_save_bit_17_swizzle(obj);
1455
3ef94daa 1456 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1457 obj_priv->dirty = 0;
3ef94daa
CW
1458
1459 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1460 if (obj_priv->dirty)
1461 set_page_dirty(obj_priv->pages[i]);
1462
1463 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1464 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1465
1466 page_cache_release(obj_priv->pages[i]);
1467 }
673a394b
EA
1468 obj_priv->dirty = 0;
1469
8e7d2b2c 1470 drm_free_large(obj_priv->pages);
856fa198 1471 obj_priv->pages = NULL;
673a394b
EA
1472}
1473
e35a41de 1474static uint32_t
a6910434
DV
1475i915_gem_next_request_seqno(struct drm_device *dev,
1476 struct intel_ring_buffer *ring)
e35a41de
DV
1477{
1478 drm_i915_private_t *dev_priv = dev->dev_private;
1479
a6910434
DV
1480 ring->outstanding_lazy_request = true;
1481
e35a41de
DV
1482 return dev_priv->next_seqno;
1483}
1484
673a394b 1485static void
617dbe27 1486i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1487 struct intel_ring_buffer *ring)
673a394b
EA
1488{
1489 struct drm_device *dev = obj->dev;
23010e43 1490 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27
DV
1491 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1492
852835f3
ZN
1493 BUG_ON(ring == NULL);
1494 obj_priv->ring = ring;
673a394b
EA
1495
1496 /* Add a reference if we're newly entering the active list. */
1497 if (!obj_priv->active) {
1498 drm_gem_object_reference(obj);
1499 obj_priv->active = 1;
1500 }
e35a41de 1501
673a394b 1502 /* Move from whatever list we were on to the tail of execution. */
852835f3 1503 list_move_tail(&obj_priv->list, &ring->active_list);
ce44b0ea 1504 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1505}
1506
ce44b0ea
EA
1507static void
1508i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509{
1510 struct drm_device *dev = obj->dev;
1511 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1513
1514 BUG_ON(!obj_priv->active);
1515 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516 obj_priv->last_rendering_seqno = 0;
1517}
673a394b 1518
963b4836
CW
1519/* Immediately discard the backing storage */
1520static void
1521i915_gem_object_truncate(struct drm_gem_object *obj)
1522{
23010e43 1523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1524 struct inode *inode;
963b4836 1525
ae9fed6b
CW
1526 /* Our goal here is to return as much of the memory as
1527 * is possible back to the system as we are called from OOM.
1528 * To do this we must instruct the shmfs to drop all of its
1529 * backing pages, *now*. Here we mirror the actions taken
1530 * when by shmem_delete_inode() to release the backing store.
1531 */
bb6baf76 1532 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1533 truncate_inode_pages(inode->i_mapping, 0);
1534 if (inode->i_op->truncate_range)
1535 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1536
1537 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1538}
1539
1540static inline int
1541i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1542{
1543 return obj_priv->madv == I915_MADV_DONTNEED;
1544}
1545
673a394b
EA
1546static void
1547i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1548{
1549 struct drm_device *dev = obj->dev;
1550 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1551 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1552
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554 if (obj_priv->pin_count != 0)
1555 list_del_init(&obj_priv->list);
1556 else
1557 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1558
99fcb766
DV
1559 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1560
ce44b0ea 1561 obj_priv->last_rendering_seqno = 0;
852835f3 1562 obj_priv->ring = NULL;
673a394b
EA
1563 if (obj_priv->active) {
1564 obj_priv->active = 0;
1565 drm_gem_object_unreference(obj);
1566 }
1567 i915_verify_inactive(dev, __FILE__, __LINE__);
1568}
1569
8a1a49f9 1570void
63560396 1571i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1572 uint32_t flush_domains,
852835f3 1573 struct intel_ring_buffer *ring)
63560396
DV
1574{
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1576 struct drm_i915_gem_object *obj_priv, *next;
1577
1578 list_for_each_entry_safe(obj_priv, next,
1579 &dev_priv->mm.gpu_write_list,
1580 gpu_write_list) {
a8089e84 1581 struct drm_gem_object *obj = &obj_priv->base;
63560396 1582
2b6efaa4
CW
1583 if (obj->write_domain & flush_domains &&
1584 obj_priv->ring == ring) {
63560396
DV
1585 uint32_t old_write_domain = obj->write_domain;
1586
1587 obj->write_domain = 0;
1588 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1589 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1590
1591 /* update the fence lru list */
007cc8ac
DV
1592 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1593 struct drm_i915_fence_reg *reg =
1594 &dev_priv->fence_regs[obj_priv->fence_reg];
1595 list_move_tail(&reg->lru_list,
63560396 1596 &dev_priv->mm.fence_list);
007cc8ac 1597 }
63560396
DV
1598
1599 trace_i915_gem_object_change_domain(obj,
1600 obj->read_domains,
1601 old_write_domain);
1602 }
1603 }
1604}
8187a2b7 1605
5a5a0c64 1606uint32_t
8a1a49f9
DV
1607i915_add_request(struct drm_device *dev,
1608 struct drm_file *file_priv,
8dc5d147 1609 struct drm_i915_gem_request *request,
8a1a49f9 1610 struct intel_ring_buffer *ring)
673a394b
EA
1611{
1612 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1613 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1614 uint32_t seqno;
1615 int was_empty;
673a394b 1616
b962442e
EA
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1619
8dc5d147
CW
1620 if (request == NULL) {
1621 request = kzalloc(sizeof(*request), GFP_KERNEL);
1622 if (request == NULL)
1623 return 0;
1624 }
673a394b 1625
8a1a49f9 1626 seqno = ring->add_request(dev, ring, file_priv, 0);
673a394b
EA
1627
1628 request->seqno = seqno;
852835f3 1629 request->ring = ring;
673a394b 1630 request->emitted_jiffies = jiffies;
852835f3
ZN
1631 was_empty = list_empty(&ring->request_list);
1632 list_add_tail(&request->list, &ring->request_list);
1633
b962442e
EA
1634 if (i915_file_priv) {
1635 list_add_tail(&request->client_list,
1636 &i915_file_priv->mm.request_list);
1637 } else {
1638 INIT_LIST_HEAD(&request->client_list);
1639 }
673a394b 1640
f65d9421 1641 if (!dev_priv->mm.suspended) {
b3b079db
CW
1642 mod_timer(&dev_priv->hangcheck_timer,
1643 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1644 if (was_empty)
b3b079db
CW
1645 queue_delayed_work(dev_priv->wq,
1646 &dev_priv->mm.retire_work, HZ);
f65d9421 1647 }
673a394b
EA
1648 return seqno;
1649}
1650
1651/**
1652 * Command execution barrier
1653 *
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1656 */
8a1a49f9 1657static void
852835f3 1658i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1659{
673a394b 1660 uint32_t flush_domains = 0;
673a394b
EA
1661
1662 /* The sampler always gets flushed on i965 (sigh) */
1663 if (IS_I965G(dev))
1664 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1665
1666 ring->flush(dev, ring,
1667 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1668}
1669
1670/**
1671 * Moves buffers associated only with the given active seqno from the active
1672 * to inactive list, potentially freeing them.
1673 */
1674static void
1675i915_gem_retire_request(struct drm_device *dev,
1676 struct drm_i915_gem_request *request)
1677{
1c5d22f7
CW
1678 trace_i915_gem_request_retire(dev, request->seqno);
1679
673a394b
EA
1680 /* Move any buffers on the active list that are no longer referenced
1681 * by the ringbuffer to the flushing/inactive lists as appropriate.
1682 */
852835f3 1683 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1684 struct drm_gem_object *obj;
1685 struct drm_i915_gem_object *obj_priv;
1686
852835f3 1687 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1688 struct drm_i915_gem_object,
1689 list);
a8089e84 1690 obj = &obj_priv->base;
673a394b
EA
1691
1692 /* If the seqno being retired doesn't match the oldest in the
1693 * list, then the oldest in the list must still be newer than
1694 * this seqno.
1695 */
1696 if (obj_priv->last_rendering_seqno != request->seqno)
de227ef0 1697 return;
de151cf6 1698
673a394b
EA
1699#if WATCH_LRU
1700 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1701 __func__, request->seqno, obj);
1702#endif
1703
ce44b0ea
EA
1704 if (obj->write_domain != 0)
1705 i915_gem_object_move_to_flushing(obj);
de227ef0 1706 else
673a394b 1707 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1708 }
1709}
1710
1711/**
1712 * Returns true if seq1 is later than seq2.
1713 */
22be1724 1714bool
673a394b
EA
1715i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1716{
1717 return (int32_t)(seq1 - seq2) >= 0;
1718}
1719
1720uint32_t
852835f3 1721i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1722 struct intel_ring_buffer *ring)
673a394b 1723{
852835f3 1724 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1725}
1726
1727/**
1728 * This function clears the request list as sequence numbers are passed.
1729 */
b09a1fec
CW
1730static void
1731i915_gem_retire_requests_ring(struct drm_device *dev,
1732 struct intel_ring_buffer *ring)
673a394b
EA
1733{
1734 drm_i915_private_t *dev_priv = dev->dev_private;
1735 uint32_t seqno;
1736
8187a2b7 1737 if (!ring->status_page.page_addr
852835f3 1738 || list_empty(&ring->request_list))
6c0594a3
KW
1739 return;
1740
852835f3 1741 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1742
852835f3 1743 while (!list_empty(&ring->request_list)) {
673a394b
EA
1744 struct drm_i915_gem_request *request;
1745 uint32_t retiring_seqno;
1746
852835f3 1747 request = list_first_entry(&ring->request_list,
673a394b
EA
1748 struct drm_i915_gem_request,
1749 list);
1750 retiring_seqno = request->seqno;
1751
1752 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1753 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1754 i915_gem_retire_request(dev, request);
1755
1756 list_del(&request->list);
b962442e 1757 list_del(&request->client_list);
9a298b2a 1758 kfree(request);
673a394b
EA
1759 } else
1760 break;
1761 }
9d34e5db
CW
1762
1763 if (unlikely (dev_priv->trace_irq_seqno &&
1764 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1765
1766 ring->user_irq_put(dev, ring);
9d34e5db
CW
1767 dev_priv->trace_irq_seqno = 0;
1768 }
673a394b
EA
1769}
1770
b09a1fec
CW
1771void
1772i915_gem_retire_requests(struct drm_device *dev)
1773{
1774 drm_i915_private_t *dev_priv = dev->dev_private;
1775
be72615b
CW
1776 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1777 struct drm_i915_gem_object *obj_priv, *tmp;
1778
1779 /* We must be careful that during unbind() we do not
1780 * accidentally infinitely recurse into retire requests.
1781 * Currently:
1782 * retire -> free -> unbind -> wait -> retire_ring
1783 */
1784 list_for_each_entry_safe(obj_priv, tmp,
1785 &dev_priv->mm.deferred_free_list,
1786 list)
1787 i915_gem_free_object_tail(&obj_priv->base);
1788 }
1789
b09a1fec
CW
1790 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1791 if (HAS_BSD(dev))
1792 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1793}
1794
75ef9da2 1795static void
673a394b
EA
1796i915_gem_retire_work_handler(struct work_struct *work)
1797{
1798 drm_i915_private_t *dev_priv;
1799 struct drm_device *dev;
1800
1801 dev_priv = container_of(work, drm_i915_private_t,
1802 mm.retire_work.work);
1803 dev = dev_priv->dev;
1804
1805 mutex_lock(&dev->struct_mutex);
b09a1fec 1806 i915_gem_retire_requests(dev);
d1b851fc 1807
6dbe2772 1808 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1809 (!list_empty(&dev_priv->render_ring.request_list) ||
1810 (HAS_BSD(dev) &&
1811 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1812 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1813 mutex_unlock(&dev->struct_mutex);
1814}
1815
5a5a0c64 1816int
852835f3 1817i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1818 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1819{
1820 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1821 u32 ier;
673a394b
EA
1822 int ret = 0;
1823
1824 BUG_ON(seqno == 0);
1825
e35a41de 1826 if (seqno == dev_priv->next_seqno) {
8dc5d147 1827 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1828 if (seqno == 0)
1829 return -ENOMEM;
1830 }
1831
ba1234d1 1832 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1833 return -EIO;
1834
852835f3 1835 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1836 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1837 ier = I915_READ(DEIER) | I915_READ(GTIER);
1838 else
1839 ier = I915_READ(IER);
802c7eb6
JB
1840 if (!ier) {
1841 DRM_ERROR("something (likely vbetool) disabled "
1842 "interrupts, re-enabling\n");
1843 i915_driver_irq_preinstall(dev);
1844 i915_driver_irq_postinstall(dev);
1845 }
1846
1c5d22f7
CW
1847 trace_i915_gem_request_wait_begin(dev, seqno);
1848
852835f3 1849 ring->waiting_gem_seqno = seqno;
8187a2b7 1850 ring->user_irq_get(dev, ring);
48764bf4 1851 if (interruptible)
852835f3
ZN
1852 ret = wait_event_interruptible(ring->irq_queue,
1853 i915_seqno_passed(
1854 ring->get_gem_seqno(dev, ring), seqno)
1855 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1856 else
852835f3
ZN
1857 wait_event(ring->irq_queue,
1858 i915_seqno_passed(
1859 ring->get_gem_seqno(dev, ring), seqno)
1860 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1861
8187a2b7 1862 ring->user_irq_put(dev, ring);
852835f3 1863 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1864
1865 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1866 }
ba1234d1 1867 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1868 ret = -EIO;
1869
1870 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1871 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1872 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1873 dev_priv->next_seqno);
673a394b
EA
1874
1875 /* Directly dispatch request retiring. While we have the work queue
1876 * to handle this, the waiter on a request often wants an associated
1877 * buffer to have made it to the inactive list, and we would need
1878 * a separate wait queue to handle that.
1879 */
1880 if (ret == 0)
b09a1fec 1881 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1882
1883 return ret;
1884}
1885
48764bf4
DV
1886/**
1887 * Waits for a sequence number to be signaled, and cleans up the
1888 * request and object lists appropriately for that event.
1889 */
1890static int
852835f3
ZN
1891i915_wait_request(struct drm_device *dev, uint32_t seqno,
1892 struct intel_ring_buffer *ring)
48764bf4 1893{
852835f3 1894 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1895}
1896
8187a2b7
ZN
1897static void
1898i915_gem_flush(struct drm_device *dev,
1899 uint32_t invalidate_domains,
1900 uint32_t flush_domains)
1901{
1902 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1903
8187a2b7
ZN
1904 if (flush_domains & I915_GEM_DOMAIN_CPU)
1905 drm_agp_chipset_flush(dev);
8bff917c 1906
8187a2b7
ZN
1907 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1908 invalidate_domains,
1909 flush_domains);
d1b851fc
ZN
1910
1911 if (HAS_BSD(dev))
1912 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1913 invalidate_domains,
1914 flush_domains);
8187a2b7
ZN
1915}
1916
673a394b
EA
1917/**
1918 * Ensures that all rendering to the object has completed and the object is
1919 * safe to unbind from the GTT or access from the CPU.
1920 */
1921static int
2cf34d7b
CW
1922i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1923 bool interruptible)
673a394b
EA
1924{
1925 struct drm_device *dev = obj->dev;
23010e43 1926 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1927 int ret;
1928
e47c68e9
EA
1929 /* This function only exists to support waiting for existing rendering,
1930 * not for emitting required flushes.
673a394b 1931 */
e47c68e9 1932 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1933
1934 /* If there is rendering queued on the buffer being evicted, wait for
1935 * it.
1936 */
1937 if (obj_priv->active) {
1938#if WATCH_BUF
1939 DRM_INFO("%s: object %p wait for seqno %08x\n",
1940 __func__, obj, obj_priv->last_rendering_seqno);
1941#endif
2cf34d7b
CW
1942 ret = i915_do_wait_request(dev,
1943 obj_priv->last_rendering_seqno,
1944 interruptible,
1945 obj_priv->ring);
1946 if (ret)
673a394b
EA
1947 return ret;
1948 }
1949
1950 return 0;
1951}
1952
1953/**
1954 * Unbinds an object from the GTT aperture.
1955 */
0f973f27 1956int
673a394b
EA
1957i915_gem_object_unbind(struct drm_gem_object *obj)
1958{
1959 struct drm_device *dev = obj->dev;
23010e43 1960 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1961 int ret = 0;
1962
1963#if WATCH_BUF
1964 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1965 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1966#endif
1967 if (obj_priv->gtt_space == NULL)
1968 return 0;
1969
1970 if (obj_priv->pin_count != 0) {
1971 DRM_ERROR("Attempting to unbind pinned buffer\n");
1972 return -EINVAL;
1973 }
1974
5323fd04
EA
1975 /* blow away mappings if mapped through GTT */
1976 i915_gem_release_mmap(obj);
1977
673a394b
EA
1978 /* Move the object to the CPU domain to ensure that
1979 * any possible CPU writes while it's not in the GTT
1980 * are flushed when we go to remap it. This will
1981 * also ensure that all pending GPU writes are finished
1982 * before we unbind.
1983 */
e47c68e9 1984 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1985 if (ret == -ERESTARTSYS)
673a394b 1986 return ret;
8dc1775d
CW
1987 /* Continue on if we fail due to EIO, the GPU is hung so we
1988 * should be safe and we need to cleanup or else we might
1989 * cause memory corruption through use-after-free.
1990 */
673a394b 1991
96b47b65
DV
1992 /* release the fence reg _after_ flushing */
1993 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1994 i915_gem_clear_fence_reg(obj);
1995
673a394b
EA
1996 if (obj_priv->agp_mem != NULL) {
1997 drm_unbind_agp(obj_priv->agp_mem);
1998 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1999 obj_priv->agp_mem = NULL;
2000 }
2001
856fa198 2002 i915_gem_object_put_pages(obj);
a32808c0 2003 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2004
2005 if (obj_priv->gtt_space) {
2006 atomic_dec(&dev->gtt_count);
2007 atomic_sub(obj->size, &dev->gtt_memory);
2008
2009 drm_mm_put_block(obj_priv->gtt_space);
2010 obj_priv->gtt_space = NULL;
2011 }
2012
2013 /* Remove ourselves from the LRU list if present. */
2014 if (!list_empty(&obj_priv->list))
2015 list_del_init(&obj_priv->list);
2016
963b4836
CW
2017 if (i915_gem_object_is_purgeable(obj_priv))
2018 i915_gem_object_truncate(obj);
2019
1c5d22f7
CW
2020 trace_i915_gem_object_unbind(obj);
2021
8dc1775d 2022 return ret;
673a394b
EA
2023}
2024
b47eb4a2 2025int
4df2faf4
DV
2026i915_gpu_idle(struct drm_device *dev)
2027{
2028 drm_i915_private_t *dev_priv = dev->dev_private;
2029 bool lists_empty;
852835f3 2030 int ret;
4df2faf4 2031
d1b851fc
ZN
2032 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2033 list_empty(&dev_priv->render_ring.active_list) &&
2034 (!HAS_BSD(dev) ||
2035 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2036 if (lists_empty)
2037 return 0;
2038
2039 /* Flush everything onto the inactive list. */
2040 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4fc6ee76
DV
2041
2042 ret = i915_wait_request(dev,
2043 i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
2044 &dev_priv->render_ring);
8a1a49f9
DV
2045 if (ret)
2046 return ret;
d1b851fc
ZN
2047
2048 if (HAS_BSD(dev)) {
4fc6ee76
DV
2049 ret = i915_wait_request(dev,
2050 i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
2051 &dev_priv->bsd_ring);
d1b851fc
ZN
2052 if (ret)
2053 return ret;
2054 }
2055
8a1a49f9 2056 return 0;
4df2faf4
DV
2057}
2058
6911a9b8 2059int
4bdadb97
CW
2060i915_gem_object_get_pages(struct drm_gem_object *obj,
2061 gfp_t gfpmask)
673a394b 2062{
23010e43 2063 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2064 int page_count, i;
2065 struct address_space *mapping;
2066 struct inode *inode;
2067 struct page *page;
673a394b 2068
778c3544
DV
2069 BUG_ON(obj_priv->pages_refcount
2070 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2071
856fa198 2072 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2073 return 0;
2074
2075 /* Get the list of pages out of our struct file. They'll be pinned
2076 * at this point until we release them.
2077 */
2078 page_count = obj->size / PAGE_SIZE;
856fa198 2079 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2080 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2081 if (obj_priv->pages == NULL) {
856fa198 2082 obj_priv->pages_refcount--;
673a394b
EA
2083 return -ENOMEM;
2084 }
2085
2086 inode = obj->filp->f_path.dentry->d_inode;
2087 mapping = inode->i_mapping;
2088 for (i = 0; i < page_count; i++) {
4bdadb97 2089 page = read_cache_page_gfp(mapping, i,
985b823b 2090 GFP_HIGHUSER |
4bdadb97 2091 __GFP_COLD |
cd9f040d 2092 __GFP_RECLAIMABLE |
4bdadb97 2093 gfpmask);
1f2b1013
CW
2094 if (IS_ERR(page))
2095 goto err_pages;
2096
856fa198 2097 obj_priv->pages[i] = page;
673a394b 2098 }
280b713b
EA
2099
2100 if (obj_priv->tiling_mode != I915_TILING_NONE)
2101 i915_gem_object_do_bit_17_swizzle(obj);
2102
673a394b 2103 return 0;
1f2b1013
CW
2104
2105err_pages:
2106 while (i--)
2107 page_cache_release(obj_priv->pages[i]);
2108
2109 drm_free_large(obj_priv->pages);
2110 obj_priv->pages = NULL;
2111 obj_priv->pages_refcount--;
2112 return PTR_ERR(page);
673a394b
EA
2113}
2114
4e901fdc
EA
2115static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2116{
2117 struct drm_gem_object *obj = reg->obj;
2118 struct drm_device *dev = obj->dev;
2119 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2120 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2121 int regnum = obj_priv->fence_reg;
2122 uint64_t val;
2123
2124 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2125 0xfffff000) << 32;
2126 val |= obj_priv->gtt_offset & 0xfffff000;
2127 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2128 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2129
2130 if (obj_priv->tiling_mode == I915_TILING_Y)
2131 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2132 val |= I965_FENCE_REG_VALID;
2133
2134 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2135}
2136
de151cf6
JB
2137static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2138{
2139 struct drm_gem_object *obj = reg->obj;
2140 struct drm_device *dev = obj->dev;
2141 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2142 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2143 int regnum = obj_priv->fence_reg;
2144 uint64_t val;
2145
2146 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2147 0xfffff000) << 32;
2148 val |= obj_priv->gtt_offset & 0xfffff000;
2149 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2150 if (obj_priv->tiling_mode == I915_TILING_Y)
2151 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2152 val |= I965_FENCE_REG_VALID;
2153
2154 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2155}
2156
2157static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2158{
2159 struct drm_gem_object *obj = reg->obj;
2160 struct drm_device *dev = obj->dev;
2161 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2162 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2163 int regnum = obj_priv->fence_reg;
0f973f27 2164 int tile_width;
dc529a4f 2165 uint32_t fence_reg, val;
de151cf6
JB
2166 uint32_t pitch_val;
2167
2168 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2169 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2170 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2171 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2172 return;
2173 }
2174
0f973f27
JB
2175 if (obj_priv->tiling_mode == I915_TILING_Y &&
2176 HAS_128_BYTE_Y_TILING(dev))
2177 tile_width = 128;
de151cf6 2178 else
0f973f27
JB
2179 tile_width = 512;
2180
2181 /* Note: pitch better be a power of two tile widths */
2182 pitch_val = obj_priv->stride / tile_width;
2183 pitch_val = ffs(pitch_val) - 1;
de151cf6 2184
c36a2a6d
DV
2185 if (obj_priv->tiling_mode == I915_TILING_Y &&
2186 HAS_128_BYTE_Y_TILING(dev))
2187 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2188 else
2189 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2190
de151cf6
JB
2191 val = obj_priv->gtt_offset;
2192 if (obj_priv->tiling_mode == I915_TILING_Y)
2193 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2194 val |= I915_FENCE_SIZE_BITS(obj->size);
2195 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2196 val |= I830_FENCE_REG_VALID;
2197
dc529a4f
EA
2198 if (regnum < 8)
2199 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2200 else
2201 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2202 I915_WRITE(fence_reg, val);
de151cf6
JB
2203}
2204
2205static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2206{
2207 struct drm_gem_object *obj = reg->obj;
2208 struct drm_device *dev = obj->dev;
2209 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2210 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2211 int regnum = obj_priv->fence_reg;
2212 uint32_t val;
2213 uint32_t pitch_val;
8d7773a3 2214 uint32_t fence_size_bits;
de151cf6 2215
8d7773a3 2216 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2217 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2218 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2219 __func__, obj_priv->gtt_offset);
de151cf6
JB
2220 return;
2221 }
2222
e76a16de
EA
2223 pitch_val = obj_priv->stride / 128;
2224 pitch_val = ffs(pitch_val) - 1;
2225 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2226
de151cf6
JB
2227 val = obj_priv->gtt_offset;
2228 if (obj_priv->tiling_mode == I915_TILING_Y)
2229 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2230 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2231 WARN_ON(fence_size_bits & ~0x00000f00);
2232 val |= fence_size_bits;
de151cf6
JB
2233 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2234 val |= I830_FENCE_REG_VALID;
2235
2236 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2237}
2238
2cf34d7b
CW
2239static int i915_find_fence_reg(struct drm_device *dev,
2240 bool interruptible)
ae3db24a
DV
2241{
2242 struct drm_i915_fence_reg *reg = NULL;
2243 struct drm_i915_gem_object *obj_priv = NULL;
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 struct drm_gem_object *obj = NULL;
2246 int i, avail, ret;
2247
2248 /* First try to find a free reg */
2249 avail = 0;
2250 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2251 reg = &dev_priv->fence_regs[i];
2252 if (!reg->obj)
2253 return i;
2254
23010e43 2255 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2256 if (!obj_priv->pin_count)
2257 avail++;
2258 }
2259
2260 if (avail == 0)
2261 return -ENOSPC;
2262
2263 /* None available, try to steal one or wait for a user to finish */
2264 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2265 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2266 lru_list) {
2267 obj = reg->obj;
2268 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2269
2270 if (obj_priv->pin_count)
2271 continue;
2272
2273 /* found one! */
2274 i = obj_priv->fence_reg;
2275 break;
2276 }
2277
2278 BUG_ON(i == I915_FENCE_REG_NONE);
2279
2280 /* We only have a reference on obj from the active list. put_fence_reg
2281 * might drop that one, causing a use-after-free in it. So hold a
2282 * private reference to obj like the other callers of put_fence_reg
2283 * (set_tiling ioctl) do. */
2284 drm_gem_object_reference(obj);
2cf34d7b 2285 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2286 drm_gem_object_unreference(obj);
2287 if (ret != 0)
2288 return ret;
2289
2290 return i;
2291}
2292
de151cf6
JB
2293/**
2294 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2295 * @obj: object to map through a fence reg
2296 *
2297 * When mapping objects through the GTT, userspace wants to be able to write
2298 * to them without having to worry about swizzling if the object is tiled.
2299 *
2300 * This function walks the fence regs looking for a free one for @obj,
2301 * stealing one if it can't find any.
2302 *
2303 * It then sets up the reg based on the object's properties: address, pitch
2304 * and tiling format.
2305 */
8c4b8c3f 2306int
2cf34d7b
CW
2307i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2308 bool interruptible)
de151cf6
JB
2309{
2310 struct drm_device *dev = obj->dev;
79e53945 2311 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2313 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2314 int ret;
de151cf6 2315
a09ba7fa
EA
2316 /* Just update our place in the LRU if our fence is getting used. */
2317 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2318 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2319 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2320 return 0;
2321 }
2322
de151cf6
JB
2323 switch (obj_priv->tiling_mode) {
2324 case I915_TILING_NONE:
2325 WARN(1, "allocating a fence for non-tiled object?\n");
2326 break;
2327 case I915_TILING_X:
0f973f27
JB
2328 if (!obj_priv->stride)
2329 return -EINVAL;
2330 WARN((obj_priv->stride & (512 - 1)),
2331 "object 0x%08x is X tiled but has non-512B pitch\n",
2332 obj_priv->gtt_offset);
de151cf6
JB
2333 break;
2334 case I915_TILING_Y:
0f973f27
JB
2335 if (!obj_priv->stride)
2336 return -EINVAL;
2337 WARN((obj_priv->stride & (128 - 1)),
2338 "object 0x%08x is Y tiled but has non-128B pitch\n",
2339 obj_priv->gtt_offset);
de151cf6
JB
2340 break;
2341 }
2342
2cf34d7b 2343 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2344 if (ret < 0)
2345 return ret;
de151cf6 2346
ae3db24a
DV
2347 obj_priv->fence_reg = ret;
2348 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2349 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2350
de151cf6
JB
2351 reg->obj = obj;
2352
4e901fdc
EA
2353 if (IS_GEN6(dev))
2354 sandybridge_write_fence_reg(reg);
2355 else if (IS_I965G(dev))
de151cf6
JB
2356 i965_write_fence_reg(reg);
2357 else if (IS_I9XX(dev))
2358 i915_write_fence_reg(reg);
2359 else
2360 i830_write_fence_reg(reg);
d9ddcb96 2361
ae3db24a
DV
2362 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2363 obj_priv->tiling_mode);
1c5d22f7 2364
d9ddcb96 2365 return 0;
de151cf6
JB
2366}
2367
2368/**
2369 * i915_gem_clear_fence_reg - clear out fence register info
2370 * @obj: object to clear
2371 *
2372 * Zeroes out the fence register itself and clears out the associated
2373 * data structures in dev_priv and obj_priv.
2374 */
2375static void
2376i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2377{
2378 struct drm_device *dev = obj->dev;
79e53945 2379 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2380 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2381 struct drm_i915_fence_reg *reg =
2382 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2383
4e901fdc
EA
2384 if (IS_GEN6(dev)) {
2385 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2386 (obj_priv->fence_reg * 8), 0);
2387 } else if (IS_I965G(dev)) {
de151cf6 2388 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2389 } else {
dc529a4f
EA
2390 uint32_t fence_reg;
2391
2392 if (obj_priv->fence_reg < 8)
2393 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2394 else
2395 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2396 8) * 4;
2397
2398 I915_WRITE(fence_reg, 0);
2399 }
de151cf6 2400
007cc8ac 2401 reg->obj = NULL;
de151cf6 2402 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2403 list_del_init(&reg->lru_list);
de151cf6
JB
2404}
2405
52dc7d32
CW
2406/**
2407 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2408 * to the buffer to finish, and then resets the fence register.
2409 * @obj: tiled object holding a fence register.
2cf34d7b 2410 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2411 *
2412 * Zeroes out the fence register itself and clears out the associated
2413 * data structures in dev_priv and obj_priv.
2414 */
2415int
2cf34d7b
CW
2416i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2417 bool interruptible)
52dc7d32
CW
2418{
2419 struct drm_device *dev = obj->dev;
23010e43 2420 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2421
2422 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2423 return 0;
2424
10ae9bd2
DV
2425 /* If we've changed tiling, GTT-mappings of the object
2426 * need to re-fault to ensure that the correct fence register
2427 * setup is in place.
2428 */
2429 i915_gem_release_mmap(obj);
2430
52dc7d32
CW
2431 /* On the i915, GPU access to tiled buffers is via a fence,
2432 * therefore we must wait for any outstanding access to complete
2433 * before clearing the fence.
2434 */
2435 if (!IS_I965G(dev)) {
2436 int ret;
2437
2cf34d7b 2438 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2439 if (ret)
2440 return ret;
2441
2cf34d7b 2442 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2443 if (ret)
52dc7d32
CW
2444 return ret;
2445 }
2446
4a726612 2447 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2448 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2449
2450 return 0;
2451}
2452
673a394b
EA
2453/**
2454 * Finds free space in the GTT aperture and binds the object there.
2455 */
2456static int
2457i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2458{
2459 struct drm_device *dev = obj->dev;
2460 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2462 struct drm_mm_node *free_space;
4bdadb97 2463 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2464 int ret;
673a394b 2465
bb6baf76 2466 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2467 DRM_ERROR("Attempting to bind a purgeable object\n");
2468 return -EINVAL;
2469 }
2470
673a394b 2471 if (alignment == 0)
0f973f27 2472 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2473 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2474 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2475 return -EINVAL;
2476 }
2477
654fc607
CW
2478 /* If the object is bigger than the entire aperture, reject it early
2479 * before evicting everything in a vain attempt to find space.
2480 */
2481 if (obj->size > dev->gtt_total) {
2482 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2483 return -E2BIG;
2484 }
2485
673a394b
EA
2486 search_free:
2487 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2488 obj->size, alignment, 0);
2489 if (free_space != NULL) {
2490 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2491 alignment);
db3307a9 2492 if (obj_priv->gtt_space != NULL)
673a394b 2493 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2494 }
2495 if (obj_priv->gtt_space == NULL) {
2496 /* If the gtt is empty and we're still having trouble
2497 * fitting our object in, we're out of memory.
2498 */
2499#if WATCH_LRU
2500 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2501#endif
0108a3ed 2502 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2503 if (ret)
673a394b 2504 return ret;
9731129c 2505
673a394b
EA
2506 goto search_free;
2507 }
2508
2509#if WATCH_BUF
cfd43c02 2510 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2511 obj->size, obj_priv->gtt_offset);
2512#endif
4bdadb97 2513 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2514 if (ret) {
2515 drm_mm_put_block(obj_priv->gtt_space);
2516 obj_priv->gtt_space = NULL;
07f73f69
CW
2517
2518 if (ret == -ENOMEM) {
2519 /* first try to clear up some space from the GTT */
0108a3ed
DV
2520 ret = i915_gem_evict_something(dev, obj->size,
2521 alignment);
07f73f69 2522 if (ret) {
07f73f69 2523 /* now try to shrink everyone else */
4bdadb97
CW
2524 if (gfpmask) {
2525 gfpmask = 0;
2526 goto search_free;
07f73f69
CW
2527 }
2528
2529 return ret;
2530 }
2531
2532 goto search_free;
2533 }
2534
673a394b
EA
2535 return ret;
2536 }
2537
673a394b
EA
2538 /* Create an AGP memory structure pointing at our pages, and bind it
2539 * into the GTT.
2540 */
2541 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2542 obj_priv->pages,
07f73f69 2543 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2544 obj_priv->gtt_offset,
2545 obj_priv->agp_type);
673a394b 2546 if (obj_priv->agp_mem == NULL) {
856fa198 2547 i915_gem_object_put_pages(obj);
673a394b
EA
2548 drm_mm_put_block(obj_priv->gtt_space);
2549 obj_priv->gtt_space = NULL;
07f73f69 2550
0108a3ed 2551 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2552 if (ret)
07f73f69 2553 return ret;
07f73f69
CW
2554
2555 goto search_free;
673a394b
EA
2556 }
2557 atomic_inc(&dev->gtt_count);
2558 atomic_add(obj->size, &dev->gtt_memory);
2559
bf1a1092
CW
2560 /* keep track of bounds object by adding it to the inactive list */
2561 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2562
673a394b
EA
2563 /* Assert that the object is not currently in any GPU domain. As it
2564 * wasn't in the GTT, there shouldn't be any way it could have been in
2565 * a GPU cache
2566 */
21d509e3
CW
2567 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2568 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2569
1c5d22f7
CW
2570 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2571
673a394b
EA
2572 return 0;
2573}
2574
2575void
2576i915_gem_clflush_object(struct drm_gem_object *obj)
2577{
23010e43 2578 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2579
2580 /* If we don't have a page list set up, then we're not pinned
2581 * to GPU, and we can ignore the cache flush because it'll happen
2582 * again at bind time.
2583 */
856fa198 2584 if (obj_priv->pages == NULL)
673a394b
EA
2585 return;
2586
1c5d22f7 2587 trace_i915_gem_object_clflush(obj);
cfa16a0d 2588
856fa198 2589 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2590}
2591
e47c68e9 2592/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2593static int
ba3d8d74
DV
2594i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2595 bool pipelined)
e47c68e9
EA
2596{
2597 struct drm_device *dev = obj->dev;
1c5d22f7 2598 uint32_t old_write_domain;
e47c68e9
EA
2599
2600 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2601 return 0;
e47c68e9
EA
2602
2603 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2604 old_write_domain = obj->write_domain;
e47c68e9 2605 i915_gem_flush(dev, 0, obj->write_domain);
48b956c5 2606 BUG_ON(obj->write_domain);
1c5d22f7
CW
2607
2608 trace_i915_gem_object_change_domain(obj,
2609 obj->read_domains,
2610 old_write_domain);
ba3d8d74
DV
2611
2612 if (pipelined)
2613 return 0;
2614
2cf34d7b 2615 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2616}
2617
2618/** Flushes the GTT write domain for the object if it's dirty. */
2619static void
2620i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2621{
1c5d22f7
CW
2622 uint32_t old_write_domain;
2623
e47c68e9
EA
2624 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2625 return;
2626
2627 /* No actual flushing is required for the GTT write domain. Writes
2628 * to it immediately go to main memory as far as we know, so there's
2629 * no chipset flush. It also doesn't land in render cache.
2630 */
1c5d22f7 2631 old_write_domain = obj->write_domain;
e47c68e9 2632 obj->write_domain = 0;
1c5d22f7
CW
2633
2634 trace_i915_gem_object_change_domain(obj,
2635 obj->read_domains,
2636 old_write_domain);
e47c68e9
EA
2637}
2638
2639/** Flushes the CPU write domain for the object if it's dirty. */
2640static void
2641i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2642{
2643 struct drm_device *dev = obj->dev;
1c5d22f7 2644 uint32_t old_write_domain;
e47c68e9
EA
2645
2646 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2647 return;
2648
2649 i915_gem_clflush_object(obj);
2650 drm_agp_chipset_flush(dev);
1c5d22f7 2651 old_write_domain = obj->write_domain;
e47c68e9 2652 obj->write_domain = 0;
1c5d22f7
CW
2653
2654 trace_i915_gem_object_change_domain(obj,
2655 obj->read_domains,
2656 old_write_domain);
e47c68e9
EA
2657}
2658
2ef7eeaa
EA
2659/**
2660 * Moves a single object to the GTT read, and possibly write domain.
2661 *
2662 * This function returns when the move is complete, including waiting on
2663 * flushes to occur.
2664 */
79e53945 2665int
2ef7eeaa
EA
2666i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2667{
23010e43 2668 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2669 uint32_t old_write_domain, old_read_domains;
e47c68e9 2670 int ret;
2ef7eeaa 2671
02354392
EA
2672 /* Not valid to be called on unbound objects. */
2673 if (obj_priv->gtt_space == NULL)
2674 return -EINVAL;
2675
ba3d8d74 2676 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2677 if (ret != 0)
2678 return ret;
2679
7213342d 2680 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2681
ba3d8d74 2682 if (write) {
2cf34d7b 2683 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2684 if (ret)
2685 return ret;
ba3d8d74 2686 }
2ef7eeaa 2687
7213342d
CW
2688 old_write_domain = obj->write_domain;
2689 old_read_domains = obj->read_domains;
2ef7eeaa 2690
e47c68e9
EA
2691 /* It should now be out of any other write domains, and we can update
2692 * the domain values for our changes.
2693 */
2694 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2695 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2696 if (write) {
7213342d 2697 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2698 obj->write_domain = I915_GEM_DOMAIN_GTT;
2699 obj_priv->dirty = 1;
2ef7eeaa
EA
2700 }
2701
1c5d22f7
CW
2702 trace_i915_gem_object_change_domain(obj,
2703 old_read_domains,
2704 old_write_domain);
2705
e47c68e9
EA
2706 return 0;
2707}
2708
b9241ea3
ZW
2709/*
2710 * Prepare buffer for display plane. Use uninterruptible for possible flush
2711 * wait, as in modesetting process we're not supposed to be interrupted.
2712 */
2713int
48b956c5
CW
2714i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2715 bool pipelined)
b9241ea3 2716{
23010e43 2717 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2718 uint32_t old_read_domains;
b9241ea3
ZW
2719 int ret;
2720
2721 /* Not valid to be called on unbound objects. */
2722 if (obj_priv->gtt_space == NULL)
2723 return -EINVAL;
2724
48b956c5
CW
2725 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2726 if (ret)
e35a41de 2727 return ret;
b9241ea3 2728
b118c1e3
CW
2729 i915_gem_object_flush_cpu_write_domain(obj);
2730
b9241ea3 2731 old_read_domains = obj->read_domains;
b118c1e3 2732 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2733
2734 trace_i915_gem_object_change_domain(obj,
2735 old_read_domains,
ba3d8d74 2736 obj->write_domain);
b9241ea3
ZW
2737
2738 return 0;
2739}
2740
e47c68e9
EA
2741/**
2742 * Moves a single object to the CPU read, and possibly write domain.
2743 *
2744 * This function returns when the move is complete, including waiting on
2745 * flushes to occur.
2746 */
2747static int
2748i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2749{
1c5d22f7 2750 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2751 int ret;
2752
ba3d8d74 2753 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2754 if (ret != 0)
2755 return ret;
2ef7eeaa 2756
e47c68e9 2757 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2758
e47c68e9
EA
2759 /* If we have a partially-valid cache of the object in the CPU,
2760 * finish invalidating it and free the per-page flags.
2ef7eeaa 2761 */
e47c68e9 2762 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2763
7213342d 2764 if (write) {
2cf34d7b 2765 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2766 if (ret)
2767 return ret;
2768 }
2769
1c5d22f7
CW
2770 old_write_domain = obj->write_domain;
2771 old_read_domains = obj->read_domains;
2772
e47c68e9
EA
2773 /* Flush the CPU cache if it's still invalid. */
2774 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2775 i915_gem_clflush_object(obj);
2ef7eeaa 2776
e47c68e9 2777 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2778 }
2779
2780 /* It should now be out of any other write domains, and we can update
2781 * the domain values for our changes.
2782 */
e47c68e9
EA
2783 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2784
2785 /* If we're writing through the CPU, then the GPU read domains will
2786 * need to be invalidated at next use.
2787 */
2788 if (write) {
2789 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2790 obj->write_domain = I915_GEM_DOMAIN_CPU;
2791 }
2ef7eeaa 2792
1c5d22f7
CW
2793 trace_i915_gem_object_change_domain(obj,
2794 old_read_domains,
2795 old_write_domain);
2796
2ef7eeaa
EA
2797 return 0;
2798}
2799
673a394b
EA
2800/*
2801 * Set the next domain for the specified object. This
2802 * may not actually perform the necessary flushing/invaliding though,
2803 * as that may want to be batched with other set_domain operations
2804 *
2805 * This is (we hope) the only really tricky part of gem. The goal
2806 * is fairly simple -- track which caches hold bits of the object
2807 * and make sure they remain coherent. A few concrete examples may
2808 * help to explain how it works. For shorthand, we use the notation
2809 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2810 * a pair of read and write domain masks.
2811 *
2812 * Case 1: the batch buffer
2813 *
2814 * 1. Allocated
2815 * 2. Written by CPU
2816 * 3. Mapped to GTT
2817 * 4. Read by GPU
2818 * 5. Unmapped from GTT
2819 * 6. Freed
2820 *
2821 * Let's take these a step at a time
2822 *
2823 * 1. Allocated
2824 * Pages allocated from the kernel may still have
2825 * cache contents, so we set them to (CPU, CPU) always.
2826 * 2. Written by CPU (using pwrite)
2827 * The pwrite function calls set_domain (CPU, CPU) and
2828 * this function does nothing (as nothing changes)
2829 * 3. Mapped by GTT
2830 * This function asserts that the object is not
2831 * currently in any GPU-based read or write domains
2832 * 4. Read by GPU
2833 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2834 * As write_domain is zero, this function adds in the
2835 * current read domains (CPU+COMMAND, 0).
2836 * flush_domains is set to CPU.
2837 * invalidate_domains is set to COMMAND
2838 * clflush is run to get data out of the CPU caches
2839 * then i915_dev_set_domain calls i915_gem_flush to
2840 * emit an MI_FLUSH and drm_agp_chipset_flush
2841 * 5. Unmapped from GTT
2842 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2843 * flush_domains and invalidate_domains end up both zero
2844 * so no flushing/invalidating happens
2845 * 6. Freed
2846 * yay, done
2847 *
2848 * Case 2: The shared render buffer
2849 *
2850 * 1. Allocated
2851 * 2. Mapped to GTT
2852 * 3. Read/written by GPU
2853 * 4. set_domain to (CPU,CPU)
2854 * 5. Read/written by CPU
2855 * 6. Read/written by GPU
2856 *
2857 * 1. Allocated
2858 * Same as last example, (CPU, CPU)
2859 * 2. Mapped to GTT
2860 * Nothing changes (assertions find that it is not in the GPU)
2861 * 3. Read/written by GPU
2862 * execbuffer calls set_domain (RENDER, RENDER)
2863 * flush_domains gets CPU
2864 * invalidate_domains gets GPU
2865 * clflush (obj)
2866 * MI_FLUSH and drm_agp_chipset_flush
2867 * 4. set_domain (CPU, CPU)
2868 * flush_domains gets GPU
2869 * invalidate_domains gets CPU
2870 * wait_rendering (obj) to make sure all drawing is complete.
2871 * This will include an MI_FLUSH to get the data from GPU
2872 * to memory
2873 * clflush (obj) to invalidate the CPU cache
2874 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2875 * 5. Read/written by CPU
2876 * cache lines are loaded and dirtied
2877 * 6. Read written by GPU
2878 * Same as last GPU access
2879 *
2880 * Case 3: The constant buffer
2881 *
2882 * 1. Allocated
2883 * 2. Written by CPU
2884 * 3. Read by GPU
2885 * 4. Updated (written) by CPU again
2886 * 5. Read by GPU
2887 *
2888 * 1. Allocated
2889 * (CPU, CPU)
2890 * 2. Written by CPU
2891 * (CPU, CPU)
2892 * 3. Read by GPU
2893 * (CPU+RENDER, 0)
2894 * flush_domains = CPU
2895 * invalidate_domains = RENDER
2896 * clflush (obj)
2897 * MI_FLUSH
2898 * drm_agp_chipset_flush
2899 * 4. Updated (written) by CPU again
2900 * (CPU, CPU)
2901 * flush_domains = 0 (no previous write domain)
2902 * invalidate_domains = 0 (no new read domains)
2903 * 5. Read by GPU
2904 * (CPU+RENDER, 0)
2905 * flush_domains = CPU
2906 * invalidate_domains = RENDER
2907 * clflush (obj)
2908 * MI_FLUSH
2909 * drm_agp_chipset_flush
2910 */
c0d90829 2911static void
8b0e378a 2912i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2913{
2914 struct drm_device *dev = obj->dev;
23010e43 2915 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2916 uint32_t invalidate_domains = 0;
2917 uint32_t flush_domains = 0;
1c5d22f7 2918 uint32_t old_read_domains;
e47c68e9 2919
8b0e378a
EA
2920 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2921 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2922
652c393a
JB
2923 intel_mark_busy(dev, obj);
2924
673a394b
EA
2925#if WATCH_BUF
2926 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2927 __func__, obj,
8b0e378a
EA
2928 obj->read_domains, obj->pending_read_domains,
2929 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2930#endif
2931 /*
2932 * If the object isn't moving to a new write domain,
2933 * let the object stay in multiple read domains
2934 */
8b0e378a
EA
2935 if (obj->pending_write_domain == 0)
2936 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2937 else
2938 obj_priv->dirty = 1;
2939
2940 /*
2941 * Flush the current write domain if
2942 * the new read domains don't match. Invalidate
2943 * any read domains which differ from the old
2944 * write domain
2945 */
8b0e378a
EA
2946 if (obj->write_domain &&
2947 obj->write_domain != obj->pending_read_domains) {
673a394b 2948 flush_domains |= obj->write_domain;
8b0e378a
EA
2949 invalidate_domains |=
2950 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2951 }
2952 /*
2953 * Invalidate any read caches which may have
2954 * stale data. That is, any new read domains.
2955 */
8b0e378a 2956 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2957 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2958#if WATCH_BUF
2959 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2960 __func__, flush_domains, invalidate_domains);
2961#endif
673a394b
EA
2962 i915_gem_clflush_object(obj);
2963 }
2964
1c5d22f7
CW
2965 old_read_domains = obj->read_domains;
2966
efbeed96
EA
2967 /* The actual obj->write_domain will be updated with
2968 * pending_write_domain after we emit the accumulated flush for all
2969 * of our domain changes in execbuffers (which clears objects'
2970 * write_domains). So if we have a current write domain that we
2971 * aren't changing, set pending_write_domain to that.
2972 */
2973 if (flush_domains == 0 && obj->pending_write_domain == 0)
2974 obj->pending_write_domain = obj->write_domain;
8b0e378a 2975 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2976
2977 dev->invalidate_domains |= invalidate_domains;
2978 dev->flush_domains |= flush_domains;
2979#if WATCH_BUF
2980 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2981 __func__,
2982 obj->read_domains, obj->write_domain,
2983 dev->invalidate_domains, dev->flush_domains);
2984#endif
1c5d22f7
CW
2985
2986 trace_i915_gem_object_change_domain(obj,
2987 old_read_domains,
2988 obj->write_domain);
673a394b
EA
2989}
2990
2991/**
e47c68e9 2992 * Moves the object from a partially CPU read to a full one.
673a394b 2993 *
e47c68e9
EA
2994 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2995 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2996 */
e47c68e9
EA
2997static void
2998i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 2999{
23010e43 3000 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3001
e47c68e9
EA
3002 if (!obj_priv->page_cpu_valid)
3003 return;
3004
3005 /* If we're partially in the CPU read domain, finish moving it in.
3006 */
3007 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3008 int i;
3009
3010 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3011 if (obj_priv->page_cpu_valid[i])
3012 continue;
856fa198 3013 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3014 }
e47c68e9
EA
3015 }
3016
3017 /* Free the page_cpu_valid mappings which are now stale, whether
3018 * or not we've got I915_GEM_DOMAIN_CPU.
3019 */
9a298b2a 3020 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3021 obj_priv->page_cpu_valid = NULL;
3022}
3023
3024/**
3025 * Set the CPU read domain on a range of the object.
3026 *
3027 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3028 * not entirely valid. The page_cpu_valid member of the object flags which
3029 * pages have been flushed, and will be respected by
3030 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3031 * of the whole object.
3032 *
3033 * This function returns when the move is complete, including waiting on
3034 * flushes to occur.
3035 */
3036static int
3037i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3038 uint64_t offset, uint64_t size)
3039{
23010e43 3040 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3041 uint32_t old_read_domains;
e47c68e9 3042 int i, ret;
673a394b 3043
e47c68e9
EA
3044 if (offset == 0 && size == obj->size)
3045 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3046
ba3d8d74 3047 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3048 if (ret != 0)
6a47baa6 3049 return ret;
e47c68e9
EA
3050 i915_gem_object_flush_gtt_write_domain(obj);
3051
3052 /* If we're already fully in the CPU read domain, we're done. */
3053 if (obj_priv->page_cpu_valid == NULL &&
3054 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3055 return 0;
673a394b 3056
e47c68e9
EA
3057 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3058 * newly adding I915_GEM_DOMAIN_CPU
3059 */
673a394b 3060 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3061 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3062 GFP_KERNEL);
e47c68e9
EA
3063 if (obj_priv->page_cpu_valid == NULL)
3064 return -ENOMEM;
3065 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3066 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3067
3068 /* Flush the cache on any pages that are still invalid from the CPU's
3069 * perspective.
3070 */
e47c68e9
EA
3071 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3072 i++) {
673a394b
EA
3073 if (obj_priv->page_cpu_valid[i])
3074 continue;
3075
856fa198 3076 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3077
3078 obj_priv->page_cpu_valid[i] = 1;
3079 }
3080
e47c68e9
EA
3081 /* It should now be out of any other write domains, and we can update
3082 * the domain values for our changes.
3083 */
3084 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3085
1c5d22f7 3086 old_read_domains = obj->read_domains;
e47c68e9
EA
3087 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3088
1c5d22f7
CW
3089 trace_i915_gem_object_change_domain(obj,
3090 old_read_domains,
3091 obj->write_domain);
3092
673a394b
EA
3093 return 0;
3094}
3095
673a394b
EA
3096/**
3097 * Pin an object to the GTT and evaluate the relocations landing in it.
3098 */
3099static int
3100i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3101 struct drm_file *file_priv,
76446cac 3102 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3103 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3104{
3105 struct drm_device *dev = obj->dev;
0839ccb8 3106 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3107 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3108 int i, ret;
0839ccb8 3109 void __iomem *reloc_page;
76446cac
JB
3110 bool need_fence;
3111
3112 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3113 obj_priv->tiling_mode != I915_TILING_NONE;
3114
3115 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3116 if (need_fence &&
3117 !i915_gem_object_fence_offset_ok(obj,
3118 obj_priv->tiling_mode)) {
3119 ret = i915_gem_object_unbind(obj);
3120 if (ret)
3121 return ret;
3122 }
673a394b
EA
3123
3124 /* Choose the GTT offset for our buffer and put it there. */
3125 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3126 if (ret)
3127 return ret;
3128
76446cac
JB
3129 /*
3130 * Pre-965 chips need a fence register set up in order to
3131 * properly handle blits to/from tiled surfaces.
3132 */
3133 if (need_fence) {
2cf34d7b 3134 ret = i915_gem_object_get_fence_reg(obj, false);
76446cac 3135 if (ret != 0) {
76446cac
JB
3136 i915_gem_object_unpin(obj);
3137 return ret;
3138 }
3139 }
3140
673a394b
EA
3141 entry->offset = obj_priv->gtt_offset;
3142
673a394b
EA
3143 /* Apply the relocations, using the GTT aperture to avoid cache
3144 * flushing requirements.
3145 */
3146 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3147 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3148 struct drm_gem_object *target_obj;
3149 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3150 uint32_t reloc_val, reloc_offset;
3151 uint32_t __iomem *reloc_entry;
673a394b 3152
673a394b 3153 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3154 reloc->target_handle);
673a394b
EA
3155 if (target_obj == NULL) {
3156 i915_gem_object_unpin(obj);
bf79cb91 3157 return -ENOENT;
673a394b 3158 }
23010e43 3159 target_obj_priv = to_intel_bo(target_obj);
673a394b 3160
8542a0bb
CW
3161#if WATCH_RELOC
3162 DRM_INFO("%s: obj %p offset %08x target %d "
3163 "read %08x write %08x gtt %08x "
3164 "presumed %08x delta %08x\n",
3165 __func__,
3166 obj,
3167 (int) reloc->offset,
3168 (int) reloc->target_handle,
3169 (int) reloc->read_domains,
3170 (int) reloc->write_domain,
3171 (int) target_obj_priv->gtt_offset,
3172 (int) reloc->presumed_offset,
3173 reloc->delta);
3174#endif
3175
673a394b
EA
3176 /* The target buffer should have appeared before us in the
3177 * exec_object list, so it should have a GTT space bound by now.
3178 */
3179 if (target_obj_priv->gtt_space == NULL) {
3180 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3181 reloc->target_handle);
673a394b
EA
3182 drm_gem_object_unreference(target_obj);
3183 i915_gem_object_unpin(obj);
3184 return -EINVAL;
3185 }
3186
8542a0bb 3187 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3188 if (reloc->write_domain & (reloc->write_domain - 1)) {
3189 DRM_ERROR("reloc with multiple write domains: "
3190 "obj %p target %d offset %d "
3191 "read %08x write %08x",
3192 obj, reloc->target_handle,
3193 (int) reloc->offset,
3194 reloc->read_domains,
3195 reloc->write_domain);
3196 return -EINVAL;
3197 }
40a5f0de
EA
3198 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3199 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3200 DRM_ERROR("reloc with read/write CPU domains: "
3201 "obj %p target %d offset %d "
3202 "read %08x write %08x",
40a5f0de
EA
3203 obj, reloc->target_handle,
3204 (int) reloc->offset,
3205 reloc->read_domains,
3206 reloc->write_domain);
491152b8
CW
3207 drm_gem_object_unreference(target_obj);
3208 i915_gem_object_unpin(obj);
e47c68e9
EA
3209 return -EINVAL;
3210 }
40a5f0de
EA
3211 if (reloc->write_domain && target_obj->pending_write_domain &&
3212 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3213 DRM_ERROR("Write domain conflict: "
3214 "obj %p target %d offset %d "
3215 "new %08x old %08x\n",
40a5f0de
EA
3216 obj, reloc->target_handle,
3217 (int) reloc->offset,
3218 reloc->write_domain,
673a394b
EA
3219 target_obj->pending_write_domain);
3220 drm_gem_object_unreference(target_obj);
3221 i915_gem_object_unpin(obj);
3222 return -EINVAL;
3223 }
3224
40a5f0de
EA
3225 target_obj->pending_read_domains |= reloc->read_domains;
3226 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3227
3228 /* If the relocation already has the right value in it, no
3229 * more work needs to be done.
3230 */
40a5f0de 3231 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3232 drm_gem_object_unreference(target_obj);
3233 continue;
3234 }
3235
8542a0bb
CW
3236 /* Check that the relocation address is valid... */
3237 if (reloc->offset > obj->size - 4) {
3238 DRM_ERROR("Relocation beyond object bounds: "
3239 "obj %p target %d offset %d size %d.\n",
3240 obj, reloc->target_handle,
3241 (int) reloc->offset, (int) obj->size);
3242 drm_gem_object_unreference(target_obj);
3243 i915_gem_object_unpin(obj);
3244 return -EINVAL;
3245 }
3246 if (reloc->offset & 3) {
3247 DRM_ERROR("Relocation not 4-byte aligned: "
3248 "obj %p target %d offset %d.\n",
3249 obj, reloc->target_handle,
3250 (int) reloc->offset);
3251 drm_gem_object_unreference(target_obj);
3252 i915_gem_object_unpin(obj);
3253 return -EINVAL;
3254 }
3255
3256 /* and points to somewhere within the target object. */
3257 if (reloc->delta >= target_obj->size) {
3258 DRM_ERROR("Relocation beyond target object bounds: "
3259 "obj %p target %d delta %d size %d.\n",
3260 obj, reloc->target_handle,
3261 (int) reloc->delta, (int) target_obj->size);
3262 drm_gem_object_unreference(target_obj);
3263 i915_gem_object_unpin(obj);
3264 return -EINVAL;
3265 }
3266
2ef7eeaa
EA
3267 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3268 if (ret != 0) {
3269 drm_gem_object_unreference(target_obj);
3270 i915_gem_object_unpin(obj);
3271 return -EINVAL;
673a394b
EA
3272 }
3273
3274 /* Map the page containing the relocation we're going to
3275 * perform.
3276 */
40a5f0de 3277 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3278 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3279 (reloc_offset &
fca3ec01
CW
3280 ~(PAGE_SIZE - 1)),
3281 KM_USER0);
3043c60c 3282 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3283 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3284 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3285
3286#if WATCH_BUF
3287 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3288 obj, (unsigned int) reloc->offset,
673a394b
EA
3289 readl(reloc_entry), reloc_val);
3290#endif
3291 writel(reloc_val, reloc_entry);
fca3ec01 3292 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3293
40a5f0de
EA
3294 /* The updated presumed offset for this entry will be
3295 * copied back out to the user.
673a394b 3296 */
40a5f0de 3297 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3298
3299 drm_gem_object_unreference(target_obj);
3300 }
3301
673a394b
EA
3302#if WATCH_BUF
3303 if (0)
3304 i915_gem_dump_object(obj, 128, __func__, ~0);
3305#endif
3306 return 0;
3307}
3308
673a394b
EA
3309/* Throttle our rendering by waiting until the ring has completed our requests
3310 * emitted over 20 msec ago.
3311 *
b962442e
EA
3312 * Note that if we were to use the current jiffies each time around the loop,
3313 * we wouldn't escape the function with any frames outstanding if the time to
3314 * render a frame was over 20ms.
3315 *
673a394b
EA
3316 * This should get us reasonable parallelism between CPU and GPU but also
3317 * relatively low latency when blocking on a particular request to finish.
3318 */
3319static int
3320i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3321{
3322 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3323 int ret = 0;
b962442e 3324 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3325
3326 mutex_lock(&dev->struct_mutex);
b962442e
EA
3327 while (!list_empty(&i915_file_priv->mm.request_list)) {
3328 struct drm_i915_gem_request *request;
3329
3330 request = list_first_entry(&i915_file_priv->mm.request_list,
3331 struct drm_i915_gem_request,
3332 client_list);
3333
3334 if (time_after_eq(request->emitted_jiffies, recent_enough))
3335 break;
3336
852835f3 3337 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3338 if (ret != 0)
3339 break;
3340 }
673a394b 3341 mutex_unlock(&dev->struct_mutex);
b962442e 3342
673a394b
EA
3343 return ret;
3344}
3345
40a5f0de 3346static int
76446cac 3347i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3348 uint32_t buffer_count,
3349 struct drm_i915_gem_relocation_entry **relocs)
3350{
3351 uint32_t reloc_count = 0, reloc_index = 0, i;
3352 int ret;
3353
3354 *relocs = NULL;
3355 for (i = 0; i < buffer_count; i++) {
3356 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3357 return -EINVAL;
3358 reloc_count += exec_list[i].relocation_count;
3359 }
3360
8e7d2b2c 3361 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3362 if (*relocs == NULL) {
3363 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3364 return -ENOMEM;
76446cac 3365 }
40a5f0de
EA
3366
3367 for (i = 0; i < buffer_count; i++) {
3368 struct drm_i915_gem_relocation_entry __user *user_relocs;
3369
3370 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3371
3372 ret = copy_from_user(&(*relocs)[reloc_index],
3373 user_relocs,
3374 exec_list[i].relocation_count *
3375 sizeof(**relocs));
3376 if (ret != 0) {
8e7d2b2c 3377 drm_free_large(*relocs);
40a5f0de 3378 *relocs = NULL;
2bc43b5c 3379 return -EFAULT;
40a5f0de
EA
3380 }
3381
3382 reloc_index += exec_list[i].relocation_count;
3383 }
3384
2bc43b5c 3385 return 0;
40a5f0de
EA
3386}
3387
3388static int
76446cac 3389i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3390 uint32_t buffer_count,
3391 struct drm_i915_gem_relocation_entry *relocs)
3392{
3393 uint32_t reloc_count = 0, i;
2bc43b5c 3394 int ret = 0;
40a5f0de 3395
93533c29
CW
3396 if (relocs == NULL)
3397 return 0;
3398
40a5f0de
EA
3399 for (i = 0; i < buffer_count; i++) {
3400 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3401 int unwritten;
40a5f0de
EA
3402
3403 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3404
2bc43b5c
FM
3405 unwritten = copy_to_user(user_relocs,
3406 &relocs[reloc_count],
3407 exec_list[i].relocation_count *
3408 sizeof(*relocs));
3409
3410 if (unwritten) {
3411 ret = -EFAULT;
3412 goto err;
40a5f0de
EA
3413 }
3414
3415 reloc_count += exec_list[i].relocation_count;
3416 }
3417
2bc43b5c 3418err:
8e7d2b2c 3419 drm_free_large(relocs);
40a5f0de
EA
3420
3421 return ret;
3422}
3423
83d60795 3424static int
76446cac 3425i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3426 uint64_t exec_offset)
3427{
3428 uint32_t exec_start, exec_len;
3429
3430 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3431 exec_len = (uint32_t) exec->batch_len;
3432
3433 if ((exec_start | exec_len) & 0x7)
3434 return -EINVAL;
3435
3436 if (!exec_start)
3437 return -EINVAL;
3438
3439 return 0;
3440}
3441
6b95a207
KH
3442static int
3443i915_gem_wait_for_pending_flip(struct drm_device *dev,
3444 struct drm_gem_object **object_list,
3445 int count)
3446{
3447 drm_i915_private_t *dev_priv = dev->dev_private;
3448 struct drm_i915_gem_object *obj_priv;
3449 DEFINE_WAIT(wait);
3450 int i, ret = 0;
3451
3452 for (;;) {
3453 prepare_to_wait(&dev_priv->pending_flip_queue,
3454 &wait, TASK_INTERRUPTIBLE);
3455 for (i = 0; i < count; i++) {
23010e43 3456 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3457 if (atomic_read(&obj_priv->pending_flip) > 0)
3458 break;
3459 }
3460 if (i == count)
3461 break;
3462
3463 if (!signal_pending(current)) {
3464 mutex_unlock(&dev->struct_mutex);
3465 schedule();
3466 mutex_lock(&dev->struct_mutex);
3467 continue;
3468 }
3469 ret = -ERESTARTSYS;
3470 break;
3471 }
3472 finish_wait(&dev_priv->pending_flip_queue, &wait);
3473
3474 return ret;
3475}
3476
8dc5d147 3477static int
76446cac
JB
3478i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3479 struct drm_file *file_priv,
3480 struct drm_i915_gem_execbuffer2 *args,
3481 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3482{
3483 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3484 struct drm_gem_object **object_list = NULL;
3485 struct drm_gem_object *batch_obj;
b70d11da 3486 struct drm_i915_gem_object *obj_priv;
201361a5 3487 struct drm_clip_rect *cliprects = NULL;
93533c29 3488 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3489 struct drm_i915_gem_request *request = NULL;
76446cac 3490 int ret = 0, ret2, i, pinned = 0;
673a394b 3491 uint64_t exec_offset;
8a1a49f9 3492 uint32_t seqno, reloc_index;
6b95a207 3493 int pin_tries, flips;
673a394b 3494
852835f3
ZN
3495 struct intel_ring_buffer *ring = NULL;
3496
673a394b
EA
3497#if WATCH_EXEC
3498 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3499 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3500#endif
d1b851fc
ZN
3501 if (args->flags & I915_EXEC_BSD) {
3502 if (!HAS_BSD(dev)) {
3503 DRM_ERROR("execbuf with wrong flag\n");
3504 return -EINVAL;
3505 }
3506 ring = &dev_priv->bsd_ring;
3507 } else {
3508 ring = &dev_priv->render_ring;
3509 }
3510
4f481ed2
EA
3511 if (args->buffer_count < 1) {
3512 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3513 return -EINVAL;
3514 }
c8e0f93a 3515 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3516 if (object_list == NULL) {
3517 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3518 args->buffer_count);
3519 ret = -ENOMEM;
3520 goto pre_mutex_err;
3521 }
673a394b 3522
201361a5 3523 if (args->num_cliprects != 0) {
9a298b2a
EA
3524 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3525 GFP_KERNEL);
a40e8d31
OA
3526 if (cliprects == NULL) {
3527 ret = -ENOMEM;
201361a5 3528 goto pre_mutex_err;
a40e8d31 3529 }
201361a5
EA
3530
3531 ret = copy_from_user(cliprects,
3532 (struct drm_clip_rect __user *)
3533 (uintptr_t) args->cliprects_ptr,
3534 sizeof(*cliprects) * args->num_cliprects);
3535 if (ret != 0) {
3536 DRM_ERROR("copy %d cliprects failed: %d\n",
3537 args->num_cliprects, ret);
c877cdce 3538 ret = -EFAULT;
201361a5
EA
3539 goto pre_mutex_err;
3540 }
3541 }
3542
8dc5d147
CW
3543 request = kzalloc(sizeof(*request), GFP_KERNEL);
3544 if (request == NULL) {
3545 ret = -ENOMEM;
3546 goto pre_mutex_err;
3547 }
3548
40a5f0de
EA
3549 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3550 &relocs);
3551 if (ret != 0)
3552 goto pre_mutex_err;
3553
673a394b
EA
3554 mutex_lock(&dev->struct_mutex);
3555
3556 i915_verify_inactive(dev, __FILE__, __LINE__);
3557
ba1234d1 3558 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3559 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3560 ret = -EIO;
3561 goto pre_mutex_err;
673a394b
EA
3562 }
3563
3564 if (dev_priv->mm.suspended) {
673a394b 3565 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3566 ret = -EBUSY;
3567 goto pre_mutex_err;
673a394b
EA
3568 }
3569
ac94a962 3570 /* Look up object handles */
6b95a207 3571 flips = 0;
673a394b
EA
3572 for (i = 0; i < args->buffer_count; i++) {
3573 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3574 exec_list[i].handle);
3575 if (object_list[i] == NULL) {
3576 DRM_ERROR("Invalid object handle %d at index %d\n",
3577 exec_list[i].handle, i);
0ce907f8
CW
3578 /* prevent error path from reading uninitialized data */
3579 args->buffer_count = i + 1;
bf79cb91 3580 ret = -ENOENT;
673a394b
EA
3581 goto err;
3582 }
b70d11da 3583
23010e43 3584 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3585 if (obj_priv->in_execbuffer) {
3586 DRM_ERROR("Object %p appears more than once in object list\n",
3587 object_list[i]);
0ce907f8
CW
3588 /* prevent error path from reading uninitialized data */
3589 args->buffer_count = i + 1;
bf79cb91 3590 ret = -EINVAL;
b70d11da
KH
3591 goto err;
3592 }
3593 obj_priv->in_execbuffer = true;
6b95a207
KH
3594 flips += atomic_read(&obj_priv->pending_flip);
3595 }
3596
3597 if (flips > 0) {
3598 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3599 args->buffer_count);
3600 if (ret)
3601 goto err;
ac94a962 3602 }
673a394b 3603
ac94a962
KP
3604 /* Pin and relocate */
3605 for (pin_tries = 0; ; pin_tries++) {
3606 ret = 0;
40a5f0de
EA
3607 reloc_index = 0;
3608
ac94a962
KP
3609 for (i = 0; i < args->buffer_count; i++) {
3610 object_list[i]->pending_read_domains = 0;
3611 object_list[i]->pending_write_domain = 0;
3612 ret = i915_gem_object_pin_and_relocate(object_list[i],
3613 file_priv,
40a5f0de
EA
3614 &exec_list[i],
3615 &relocs[reloc_index]);
ac94a962
KP
3616 if (ret)
3617 break;
3618 pinned = i + 1;
40a5f0de 3619 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3620 }
3621 /* success */
3622 if (ret == 0)
3623 break;
3624
3625 /* error other than GTT full, or we've already tried again */
2939e1f5 3626 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3627 if (ret != -ERESTARTSYS) {
3628 unsigned long long total_size = 0;
3d1cc470
CW
3629 int num_fences = 0;
3630 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3631 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3632
07f73f69 3633 total_size += object_list[i]->size;
3d1cc470
CW
3634 num_fences +=
3635 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3636 obj_priv->tiling_mode != I915_TILING_NONE;
3637 }
3638 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3639 pinned+1, args->buffer_count,
3d1cc470
CW
3640 total_size, num_fences,
3641 ret);
07f73f69
CW
3642 DRM_ERROR("%d objects [%d pinned], "
3643 "%d object bytes [%d pinned], "
3644 "%d/%d gtt bytes\n",
3645 atomic_read(&dev->object_count),
3646 atomic_read(&dev->pin_count),
3647 atomic_read(&dev->object_memory),
3648 atomic_read(&dev->pin_memory),
3649 atomic_read(&dev->gtt_memory),
3650 dev->gtt_total);
3651 }
673a394b
EA
3652 goto err;
3653 }
ac94a962
KP
3654
3655 /* unpin all of our buffers */
3656 for (i = 0; i < pinned; i++)
3657 i915_gem_object_unpin(object_list[i]);
b1177636 3658 pinned = 0;
ac94a962
KP
3659
3660 /* evict everyone we can from the aperture */
3661 ret = i915_gem_evict_everything(dev);
07f73f69 3662 if (ret && ret != -ENOSPC)
ac94a962 3663 goto err;
673a394b
EA
3664 }
3665
3666 /* Set the pending read domains for the batch buffer to COMMAND */
3667 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3668 if (batch_obj->pending_write_domain) {
3669 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3670 ret = -EINVAL;
3671 goto err;
3672 }
3673 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3674
83d60795
CW
3675 /* Sanity check the batch buffer, prior to moving objects */
3676 exec_offset = exec_list[args->buffer_count - 1].offset;
3677 ret = i915_gem_check_execbuffer (args, exec_offset);
3678 if (ret != 0) {
3679 DRM_ERROR("execbuf with invalid offset/length\n");
3680 goto err;
3681 }
3682
673a394b
EA
3683 i915_verify_inactive(dev, __FILE__, __LINE__);
3684
646f0f6e
KP
3685 /* Zero the global flush/invalidate flags. These
3686 * will be modified as new domains are computed
3687 * for each object
3688 */
3689 dev->invalidate_domains = 0;
3690 dev->flush_domains = 0;
3691
673a394b
EA
3692 for (i = 0; i < args->buffer_count; i++) {
3693 struct drm_gem_object *obj = object_list[i];
673a394b 3694
646f0f6e 3695 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3696 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3697 }
3698
3699 i915_verify_inactive(dev, __FILE__, __LINE__);
3700
646f0f6e
KP
3701 if (dev->invalidate_domains | dev->flush_domains) {
3702#if WATCH_EXEC
3703 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3704 __func__,
3705 dev->invalidate_domains,
3706 dev->flush_domains);
3707#endif
3708 i915_gem_flush(dev,
3709 dev->invalidate_domains,
3710 dev->flush_domains);
a6910434
DV
3711 }
3712
3713 if (dev_priv->render_ring.outstanding_lazy_request) {
8dc5d147 3714 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
a6910434
DV
3715 dev_priv->render_ring.outstanding_lazy_request = false;
3716 }
3717 if (dev_priv->bsd_ring.outstanding_lazy_request) {
8dc5d147 3718 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
a6910434 3719 dev_priv->bsd_ring.outstanding_lazy_request = false;
646f0f6e 3720 }
673a394b 3721
efbeed96
EA
3722 for (i = 0; i < args->buffer_count; i++) {
3723 struct drm_gem_object *obj = object_list[i];
23010e43 3724 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3725 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3726
3727 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3728 if (obj->write_domain)
3729 list_move_tail(&obj_priv->gpu_write_list,
3730 &dev_priv->mm.gpu_write_list);
3731 else
3732 list_del_init(&obj_priv->gpu_write_list);
3733
1c5d22f7
CW
3734 trace_i915_gem_object_change_domain(obj,
3735 obj->read_domains,
3736 old_write_domain);
efbeed96
EA
3737 }
3738
673a394b
EA
3739 i915_verify_inactive(dev, __FILE__, __LINE__);
3740
3741#if WATCH_COHERENCY
3742 for (i = 0; i < args->buffer_count; i++) {
3743 i915_gem_object_check_coherency(object_list[i],
3744 exec_list[i].handle);
3745 }
3746#endif
3747
673a394b 3748#if WATCH_EXEC
6911a9b8 3749 i915_gem_dump_object(batch_obj,
673a394b
EA
3750 args->batch_len,
3751 __func__,
3752 ~0);
3753#endif
3754
673a394b 3755 /* Exec the batchbuffer */
852835f3
ZN
3756 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3757 cliprects, exec_offset);
673a394b
EA
3758 if (ret) {
3759 DRM_ERROR("dispatch failed %d\n", ret);
3760 goto err;
3761 }
3762
3763 /*
3764 * Ensure that the commands in the batch buffer are
3765 * finished before the interrupt fires
3766 */
8a1a49f9 3767 i915_retire_commands(dev, ring);
673a394b
EA
3768
3769 i915_verify_inactive(dev, __FILE__, __LINE__);
3770
617dbe27
DV
3771 for (i = 0; i < args->buffer_count; i++) {
3772 struct drm_gem_object *obj = object_list[i];
3773 obj_priv = to_intel_bo(obj);
3774
3775 i915_gem_object_move_to_active(obj, ring);
3776#if WATCH_LRU
3777 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3778#endif
3779 }
3780
673a394b
EA
3781 /*
3782 * Get a seqno representing the execution of the current buffer,
3783 * which we can wait on. We would like to mitigate these interrupts,
3784 * likely by only creating seqnos occasionally (so that we have
3785 * *some* interrupts representing completion of buffers that we can
3786 * wait on when trying to clear up gtt space).
3787 */
8dc5d147
CW
3788 seqno = i915_add_request(dev, file_priv, request, ring);
3789 request = NULL;
673a394b 3790
673a394b
EA
3791#if WATCH_LRU
3792 i915_dump_lru(dev, __func__);
3793#endif
3794
3795 i915_verify_inactive(dev, __FILE__, __LINE__);
3796
673a394b 3797err:
aad87dff
JL
3798 for (i = 0; i < pinned; i++)
3799 i915_gem_object_unpin(object_list[i]);
3800
b70d11da
KH
3801 for (i = 0; i < args->buffer_count; i++) {
3802 if (object_list[i]) {
23010e43 3803 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3804 obj_priv->in_execbuffer = false;
3805 }
aad87dff 3806 drm_gem_object_unreference(object_list[i]);
b70d11da 3807 }
673a394b 3808
673a394b
EA
3809 mutex_unlock(&dev->struct_mutex);
3810
93533c29 3811pre_mutex_err:
40a5f0de
EA
3812 /* Copy the updated relocations out regardless of current error
3813 * state. Failure to update the relocs would mean that the next
3814 * time userland calls execbuf, it would do so with presumed offset
3815 * state that didn't match the actual object state.
3816 */
3817 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3818 relocs);
3819 if (ret2 != 0) {
3820 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3821
3822 if (ret == 0)
3823 ret = ret2;
3824 }
3825
8e7d2b2c 3826 drm_free_large(object_list);
9a298b2a 3827 kfree(cliprects);
8dc5d147 3828 kfree(request);
673a394b
EA
3829
3830 return ret;
3831}
3832
76446cac
JB
3833/*
3834 * Legacy execbuffer just creates an exec2 list from the original exec object
3835 * list array and passes it to the real function.
3836 */
3837int
3838i915_gem_execbuffer(struct drm_device *dev, void *data,
3839 struct drm_file *file_priv)
3840{
3841 struct drm_i915_gem_execbuffer *args = data;
3842 struct drm_i915_gem_execbuffer2 exec2;
3843 struct drm_i915_gem_exec_object *exec_list = NULL;
3844 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3845 int ret, i;
3846
3847#if WATCH_EXEC
3848 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3849 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3850#endif
3851
3852 if (args->buffer_count < 1) {
3853 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3854 return -EINVAL;
3855 }
3856
3857 /* Copy in the exec list from userland */
3858 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3859 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3860 if (exec_list == NULL || exec2_list == NULL) {
3861 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3862 args->buffer_count);
3863 drm_free_large(exec_list);
3864 drm_free_large(exec2_list);
3865 return -ENOMEM;
3866 }
3867 ret = copy_from_user(exec_list,
3868 (struct drm_i915_relocation_entry __user *)
3869 (uintptr_t) args->buffers_ptr,
3870 sizeof(*exec_list) * args->buffer_count);
3871 if (ret != 0) {
3872 DRM_ERROR("copy %d exec entries failed %d\n",
3873 args->buffer_count, ret);
3874 drm_free_large(exec_list);
3875 drm_free_large(exec2_list);
3876 return -EFAULT;
3877 }
3878
3879 for (i = 0; i < args->buffer_count; i++) {
3880 exec2_list[i].handle = exec_list[i].handle;
3881 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3882 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3883 exec2_list[i].alignment = exec_list[i].alignment;
3884 exec2_list[i].offset = exec_list[i].offset;
3885 if (!IS_I965G(dev))
3886 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3887 else
3888 exec2_list[i].flags = 0;
3889 }
3890
3891 exec2.buffers_ptr = args->buffers_ptr;
3892 exec2.buffer_count = args->buffer_count;
3893 exec2.batch_start_offset = args->batch_start_offset;
3894 exec2.batch_len = args->batch_len;
3895 exec2.DR1 = args->DR1;
3896 exec2.DR4 = args->DR4;
3897 exec2.num_cliprects = args->num_cliprects;
3898 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3899 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3900
3901 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3902 if (!ret) {
3903 /* Copy the new buffer offsets back to the user's exec list. */
3904 for (i = 0; i < args->buffer_count; i++)
3905 exec_list[i].offset = exec2_list[i].offset;
3906 /* ... and back out to userspace */
3907 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3908 (uintptr_t) args->buffers_ptr,
3909 exec_list,
3910 sizeof(*exec_list) * args->buffer_count);
3911 if (ret) {
3912 ret = -EFAULT;
3913 DRM_ERROR("failed to copy %d exec entries "
3914 "back to user (%d)\n",
3915 args->buffer_count, ret);
3916 }
76446cac
JB
3917 }
3918
3919 drm_free_large(exec_list);
3920 drm_free_large(exec2_list);
3921 return ret;
3922}
3923
3924int
3925i915_gem_execbuffer2(struct drm_device *dev, void *data,
3926 struct drm_file *file_priv)
3927{
3928 struct drm_i915_gem_execbuffer2 *args = data;
3929 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3930 int ret;
3931
3932#if WATCH_EXEC
3933 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3934 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3935#endif
3936
3937 if (args->buffer_count < 1) {
3938 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3939 return -EINVAL;
3940 }
3941
3942 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3943 if (exec2_list == NULL) {
3944 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3945 args->buffer_count);
3946 return -ENOMEM;
3947 }
3948 ret = copy_from_user(exec2_list,
3949 (struct drm_i915_relocation_entry __user *)
3950 (uintptr_t) args->buffers_ptr,
3951 sizeof(*exec2_list) * args->buffer_count);
3952 if (ret != 0) {
3953 DRM_ERROR("copy %d exec entries failed %d\n",
3954 args->buffer_count, ret);
3955 drm_free_large(exec2_list);
3956 return -EFAULT;
3957 }
3958
3959 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3960 if (!ret) {
3961 /* Copy the new buffer offsets back to the user's exec list. */
3962 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3963 (uintptr_t) args->buffers_ptr,
3964 exec2_list,
3965 sizeof(*exec2_list) * args->buffer_count);
3966 if (ret) {
3967 ret = -EFAULT;
3968 DRM_ERROR("failed to copy %d exec entries "
3969 "back to user (%d)\n",
3970 args->buffer_count, ret);
3971 }
3972 }
3973
3974 drm_free_large(exec2_list);
3975 return ret;
3976}
3977
673a394b
EA
3978int
3979i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3980{
3981 struct drm_device *dev = obj->dev;
23010e43 3982 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3983 int ret;
3984
778c3544
DV
3985 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3986
673a394b 3987 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
3988
3989 if (obj_priv->gtt_space != NULL) {
3990 if (alignment == 0)
3991 alignment = i915_gem_get_gtt_alignment(obj);
3992 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
3993 WARN(obj_priv->pin_count,
3994 "bo is already pinned with incorrect alignment:"
3995 " offset=%x, req.alignment=%x\n",
3996 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
3997 ret = i915_gem_object_unbind(obj);
3998 if (ret)
3999 return ret;
4000 }
4001 }
4002
673a394b
EA
4003 if (obj_priv->gtt_space == NULL) {
4004 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4005 if (ret)
673a394b 4006 return ret;
22c344e9 4007 }
76446cac 4008
673a394b
EA
4009 obj_priv->pin_count++;
4010
4011 /* If the object is not active and not pending a flush,
4012 * remove it from the inactive list
4013 */
4014 if (obj_priv->pin_count == 1) {
4015 atomic_inc(&dev->pin_count);
4016 atomic_add(obj->size, &dev->pin_memory);
4017 if (!obj_priv->active &&
bf1a1092 4018 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4019 list_del_init(&obj_priv->list);
4020 }
4021 i915_verify_inactive(dev, __FILE__, __LINE__);
4022
4023 return 0;
4024}
4025
4026void
4027i915_gem_object_unpin(struct drm_gem_object *obj)
4028{
4029 struct drm_device *dev = obj->dev;
4030 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4031 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4032
4033 i915_verify_inactive(dev, __FILE__, __LINE__);
4034 obj_priv->pin_count--;
4035 BUG_ON(obj_priv->pin_count < 0);
4036 BUG_ON(obj_priv->gtt_space == NULL);
4037
4038 /* If the object is no longer pinned, and is
4039 * neither active nor being flushed, then stick it on
4040 * the inactive list
4041 */
4042 if (obj_priv->pin_count == 0) {
4043 if (!obj_priv->active &&
21d509e3 4044 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4045 list_move_tail(&obj_priv->list,
4046 &dev_priv->mm.inactive_list);
4047 atomic_dec(&dev->pin_count);
4048 atomic_sub(obj->size, &dev->pin_memory);
4049 }
4050 i915_verify_inactive(dev, __FILE__, __LINE__);
4051}
4052
4053int
4054i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4055 struct drm_file *file_priv)
4056{
4057 struct drm_i915_gem_pin *args = data;
4058 struct drm_gem_object *obj;
4059 struct drm_i915_gem_object *obj_priv;
4060 int ret;
4061
4062 mutex_lock(&dev->struct_mutex);
4063
4064 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4065 if (obj == NULL) {
4066 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4067 args->handle);
4068 mutex_unlock(&dev->struct_mutex);
bf79cb91 4069 return -ENOENT;
673a394b 4070 }
23010e43 4071 obj_priv = to_intel_bo(obj);
673a394b 4072
bb6baf76
CW
4073 if (obj_priv->madv != I915_MADV_WILLNEED) {
4074 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4075 drm_gem_object_unreference(obj);
4076 mutex_unlock(&dev->struct_mutex);
4077 return -EINVAL;
4078 }
4079
79e53945
JB
4080 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4081 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4082 args->handle);
96dec61d 4083 drm_gem_object_unreference(obj);
673a394b 4084 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4085 return -EINVAL;
4086 }
4087
4088 obj_priv->user_pin_count++;
4089 obj_priv->pin_filp = file_priv;
4090 if (obj_priv->user_pin_count == 1) {
4091 ret = i915_gem_object_pin(obj, args->alignment);
4092 if (ret != 0) {
4093 drm_gem_object_unreference(obj);
4094 mutex_unlock(&dev->struct_mutex);
4095 return ret;
4096 }
673a394b
EA
4097 }
4098
4099 /* XXX - flush the CPU caches for pinned objects
4100 * as the X server doesn't manage domains yet
4101 */
e47c68e9 4102 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4103 args->offset = obj_priv->gtt_offset;
4104 drm_gem_object_unreference(obj);
4105 mutex_unlock(&dev->struct_mutex);
4106
4107 return 0;
4108}
4109
4110int
4111i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4112 struct drm_file *file_priv)
4113{
4114 struct drm_i915_gem_pin *args = data;
4115 struct drm_gem_object *obj;
79e53945 4116 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4117
4118 mutex_lock(&dev->struct_mutex);
4119
4120 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4121 if (obj == NULL) {
4122 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4123 args->handle);
4124 mutex_unlock(&dev->struct_mutex);
bf79cb91 4125 return -ENOENT;
673a394b
EA
4126 }
4127
23010e43 4128 obj_priv = to_intel_bo(obj);
79e53945
JB
4129 if (obj_priv->pin_filp != file_priv) {
4130 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4131 args->handle);
4132 drm_gem_object_unreference(obj);
4133 mutex_unlock(&dev->struct_mutex);
4134 return -EINVAL;
4135 }
4136 obj_priv->user_pin_count--;
4137 if (obj_priv->user_pin_count == 0) {
4138 obj_priv->pin_filp = NULL;
4139 i915_gem_object_unpin(obj);
4140 }
673a394b
EA
4141
4142 drm_gem_object_unreference(obj);
4143 mutex_unlock(&dev->struct_mutex);
4144 return 0;
4145}
4146
4147int
4148i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4149 struct drm_file *file_priv)
4150{
4151 struct drm_i915_gem_busy *args = data;
4152 struct drm_gem_object *obj;
4153 struct drm_i915_gem_object *obj_priv;
4154
673a394b
EA
4155 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4156 if (obj == NULL) {
4157 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4158 args->handle);
bf79cb91 4159 return -ENOENT;
673a394b
EA
4160 }
4161
b1ce786c 4162 mutex_lock(&dev->struct_mutex);
d1b851fc 4163
0be555b6
CW
4164 /* Count all active objects as busy, even if they are currently not used
4165 * by the gpu. Users of this interface expect objects to eventually
4166 * become non-busy without any further actions, therefore emit any
4167 * necessary flushes here.
c4de0a5d 4168 */
0be555b6
CW
4169 obj_priv = to_intel_bo(obj);
4170 args->busy = obj_priv->active;
4171 if (args->busy) {
4172 /* Unconditionally flush objects, even when the gpu still uses this
4173 * object. Userspace calling this function indicates that it wants to
4174 * use this buffer rather sooner than later, so issuing the required
4175 * flush earlier is beneficial.
4176 */
4177 if (obj->write_domain) {
4178 i915_gem_flush(dev, 0, obj->write_domain);
8dc5d147 4179 (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
0be555b6
CW
4180 }
4181
4182 /* Update the active list for the hardware's current position.
4183 * Otherwise this only updates on a delayed timer or when irqs
4184 * are actually unmasked, and our working set ends up being
4185 * larger than required.
4186 */
4187 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4188
4189 args->busy = obj_priv->active;
4190 }
673a394b
EA
4191
4192 drm_gem_object_unreference(obj);
4193 mutex_unlock(&dev->struct_mutex);
4194 return 0;
4195}
4196
4197int
4198i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4199 struct drm_file *file_priv)
4200{
4201 return i915_gem_ring_throttle(dev, file_priv);
4202}
4203
3ef94daa
CW
4204int
4205i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4206 struct drm_file *file_priv)
4207{
4208 struct drm_i915_gem_madvise *args = data;
4209 struct drm_gem_object *obj;
4210 struct drm_i915_gem_object *obj_priv;
4211
4212 switch (args->madv) {
4213 case I915_MADV_DONTNEED:
4214 case I915_MADV_WILLNEED:
4215 break;
4216 default:
4217 return -EINVAL;
4218 }
4219
4220 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4221 if (obj == NULL) {
4222 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4223 args->handle);
bf79cb91 4224 return -ENOENT;
3ef94daa
CW
4225 }
4226
4227 mutex_lock(&dev->struct_mutex);
23010e43 4228 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4229
4230 if (obj_priv->pin_count) {
4231 drm_gem_object_unreference(obj);
4232 mutex_unlock(&dev->struct_mutex);
4233
4234 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4235 return -EINVAL;
4236 }
4237
bb6baf76
CW
4238 if (obj_priv->madv != __I915_MADV_PURGED)
4239 obj_priv->madv = args->madv;
3ef94daa 4240
2d7ef395
CW
4241 /* if the object is no longer bound, discard its backing storage */
4242 if (i915_gem_object_is_purgeable(obj_priv) &&
4243 obj_priv->gtt_space == NULL)
4244 i915_gem_object_truncate(obj);
4245
bb6baf76
CW
4246 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4247
3ef94daa
CW
4248 drm_gem_object_unreference(obj);
4249 mutex_unlock(&dev->struct_mutex);
4250
4251 return 0;
4252}
4253
ac52bc56
DV
4254struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4255 size_t size)
4256{
c397b908 4257 struct drm_i915_gem_object *obj;
ac52bc56 4258
c397b908
DV
4259 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4260 if (obj == NULL)
4261 return NULL;
673a394b 4262
c397b908
DV
4263 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4264 kfree(obj);
4265 return NULL;
4266 }
673a394b 4267
c397b908
DV
4268 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4269 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4270
c397b908 4271 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4272 obj->base.driver_private = NULL;
c397b908
DV
4273 obj->fence_reg = I915_FENCE_REG_NONE;
4274 INIT_LIST_HEAD(&obj->list);
4275 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4276 obj->madv = I915_MADV_WILLNEED;
de151cf6 4277
c397b908
DV
4278 trace_i915_gem_object_create(&obj->base);
4279
4280 return &obj->base;
4281}
4282
4283int i915_gem_init_object(struct drm_gem_object *obj)
4284{
4285 BUG();
de151cf6 4286
673a394b
EA
4287 return 0;
4288}
4289
be72615b 4290static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4291{
de151cf6 4292 struct drm_device *dev = obj->dev;
be72615b 4293 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4294 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4295 int ret;
673a394b 4296
be72615b
CW
4297 ret = i915_gem_object_unbind(obj);
4298 if (ret == -ERESTARTSYS) {
4299 list_move(&obj_priv->list,
4300 &dev_priv->mm.deferred_free_list);
4301 return;
4302 }
673a394b 4303
7e616158
CW
4304 if (obj_priv->mmap_offset)
4305 i915_gem_free_mmap_offset(obj);
de151cf6 4306
c397b908
DV
4307 drm_gem_object_release(obj);
4308
9a298b2a 4309 kfree(obj_priv->page_cpu_valid);
280b713b 4310 kfree(obj_priv->bit_17);
c397b908 4311 kfree(obj_priv);
673a394b
EA
4312}
4313
be72615b
CW
4314void i915_gem_free_object(struct drm_gem_object *obj)
4315{
4316 struct drm_device *dev = obj->dev;
4317 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4318
4319 trace_i915_gem_object_destroy(obj);
4320
4321 while (obj_priv->pin_count > 0)
4322 i915_gem_object_unpin(obj);
4323
4324 if (obj_priv->phys_obj)
4325 i915_gem_detach_phys_object(dev, obj);
4326
4327 i915_gem_free_object_tail(obj);
4328}
4329
29105ccc
CW
4330int
4331i915_gem_idle(struct drm_device *dev)
4332{
4333 drm_i915_private_t *dev_priv = dev->dev_private;
4334 int ret;
28dfe52a 4335
29105ccc 4336 mutex_lock(&dev->struct_mutex);
1c5d22f7 4337
8187a2b7 4338 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4339 (dev_priv->render_ring.gem_object == NULL) ||
4340 (HAS_BSD(dev) &&
4341 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4342 mutex_unlock(&dev->struct_mutex);
4343 return 0;
28dfe52a
EA
4344 }
4345
29105ccc 4346 ret = i915_gpu_idle(dev);
6dbe2772
KP
4347 if (ret) {
4348 mutex_unlock(&dev->struct_mutex);
673a394b 4349 return ret;
6dbe2772 4350 }
673a394b 4351
29105ccc
CW
4352 /* Under UMS, be paranoid and evict. */
4353 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4354 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4355 if (ret) {
4356 mutex_unlock(&dev->struct_mutex);
4357 return ret;
4358 }
4359 }
4360
4361 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4362 * We need to replace this with a semaphore, or something.
4363 * And not confound mm.suspended!
4364 */
4365 dev_priv->mm.suspended = 1;
bc0c7f14 4366 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4367
4368 i915_kernel_lost_context(dev);
6dbe2772 4369 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4370
6dbe2772
KP
4371 mutex_unlock(&dev->struct_mutex);
4372
29105ccc
CW
4373 /* Cancel the retire work handler, which should be idle now. */
4374 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4375
673a394b
EA
4376 return 0;
4377}
4378
e552eb70
JB
4379/*
4380 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4381 * over cache flushing.
4382 */
8187a2b7 4383static int
e552eb70
JB
4384i915_gem_init_pipe_control(struct drm_device *dev)
4385{
4386 drm_i915_private_t *dev_priv = dev->dev_private;
4387 struct drm_gem_object *obj;
4388 struct drm_i915_gem_object *obj_priv;
4389 int ret;
4390
34dc4d44 4391 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4392 if (obj == NULL) {
4393 DRM_ERROR("Failed to allocate seqno page\n");
4394 ret = -ENOMEM;
4395 goto err;
4396 }
4397 obj_priv = to_intel_bo(obj);
4398 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4399
4400 ret = i915_gem_object_pin(obj, 4096);
4401 if (ret)
4402 goto err_unref;
4403
4404 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4405 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4406 if (dev_priv->seqno_page == NULL)
4407 goto err_unpin;
4408
4409 dev_priv->seqno_obj = obj;
4410 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4411
4412 return 0;
4413
4414err_unpin:
4415 i915_gem_object_unpin(obj);
4416err_unref:
4417 drm_gem_object_unreference(obj);
4418err:
4419 return ret;
4420}
4421
8187a2b7
ZN
4422
4423static void
e552eb70
JB
4424i915_gem_cleanup_pipe_control(struct drm_device *dev)
4425{
4426 drm_i915_private_t *dev_priv = dev->dev_private;
4427 struct drm_gem_object *obj;
4428 struct drm_i915_gem_object *obj_priv;
4429
4430 obj = dev_priv->seqno_obj;
4431 obj_priv = to_intel_bo(obj);
4432 kunmap(obj_priv->pages[0]);
4433 i915_gem_object_unpin(obj);
4434 drm_gem_object_unreference(obj);
4435 dev_priv->seqno_obj = NULL;
4436
4437 dev_priv->seqno_page = NULL;
673a394b
EA
4438}
4439
8187a2b7
ZN
4440int
4441i915_gem_init_ringbuffer(struct drm_device *dev)
4442{
4443 drm_i915_private_t *dev_priv = dev->dev_private;
4444 int ret;
68f95ba9 4445
8187a2b7 4446 dev_priv->render_ring = render_ring;
68f95ba9 4447
8187a2b7
ZN
4448 if (!I915_NEED_GFX_HWS(dev)) {
4449 dev_priv->render_ring.status_page.page_addr
4450 = dev_priv->status_page_dmah->vaddr;
4451 memset(dev_priv->render_ring.status_page.page_addr,
4452 0, PAGE_SIZE);
4453 }
68f95ba9 4454
8187a2b7
ZN
4455 if (HAS_PIPE_CONTROL(dev)) {
4456 ret = i915_gem_init_pipe_control(dev);
4457 if (ret)
4458 return ret;
4459 }
68f95ba9 4460
8187a2b7 4461 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4462 if (ret)
4463 goto cleanup_pipe_control;
4464
4465 if (HAS_BSD(dev)) {
d1b851fc
ZN
4466 dev_priv->bsd_ring = bsd_ring;
4467 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4468 if (ret)
4469 goto cleanup_render_ring;
d1b851fc 4470 }
68f95ba9 4471
6f392d54
CW
4472 dev_priv->next_seqno = 1;
4473
68f95ba9
CW
4474 return 0;
4475
4476cleanup_render_ring:
4477 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4478cleanup_pipe_control:
4479 if (HAS_PIPE_CONTROL(dev))
4480 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4481 return ret;
4482}
4483
4484void
4485i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4486{
4487 drm_i915_private_t *dev_priv = dev->dev_private;
4488
4489 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4490 if (HAS_BSD(dev))
4491 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4492 if (HAS_PIPE_CONTROL(dev))
4493 i915_gem_cleanup_pipe_control(dev);
4494}
4495
673a394b
EA
4496int
4497i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4498 struct drm_file *file_priv)
4499{
4500 drm_i915_private_t *dev_priv = dev->dev_private;
4501 int ret;
4502
79e53945
JB
4503 if (drm_core_check_feature(dev, DRIVER_MODESET))
4504 return 0;
4505
ba1234d1 4506 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4507 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4508 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4509 }
4510
673a394b 4511 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4512 dev_priv->mm.suspended = 0;
4513
4514 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4515 if (ret != 0) {
4516 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4517 return ret;
d816f6ac 4518 }
9bb2d6f9 4519
852835f3 4520 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4521 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4522 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4523 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4524 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4525 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4526 mutex_unlock(&dev->struct_mutex);
dbb19d30 4527
5f35308b
CW
4528 ret = drm_irq_install(dev);
4529 if (ret)
4530 goto cleanup_ringbuffer;
dbb19d30 4531
673a394b 4532 return 0;
5f35308b
CW
4533
4534cleanup_ringbuffer:
4535 mutex_lock(&dev->struct_mutex);
4536 i915_gem_cleanup_ringbuffer(dev);
4537 dev_priv->mm.suspended = 1;
4538 mutex_unlock(&dev->struct_mutex);
4539
4540 return ret;
673a394b
EA
4541}
4542
4543int
4544i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4545 struct drm_file *file_priv)
4546{
79e53945
JB
4547 if (drm_core_check_feature(dev, DRIVER_MODESET))
4548 return 0;
4549
dbb19d30 4550 drm_irq_uninstall(dev);
e6890f6f 4551 return i915_gem_idle(dev);
673a394b
EA
4552}
4553
4554void
4555i915_gem_lastclose(struct drm_device *dev)
4556{
4557 int ret;
673a394b 4558
e806b495
EA
4559 if (drm_core_check_feature(dev, DRIVER_MODESET))
4560 return;
4561
6dbe2772
KP
4562 ret = i915_gem_idle(dev);
4563 if (ret)
4564 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4565}
4566
4567void
4568i915_gem_load(struct drm_device *dev)
4569{
b5aa8a0f 4570 int i;
673a394b
EA
4571 drm_i915_private_t *dev_priv = dev->dev_private;
4572
673a394b 4573 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4574 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4575 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4576 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4577 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4578 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4579 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4580 if (HAS_BSD(dev)) {
4581 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4582 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4583 }
007cc8ac
DV
4584 for (i = 0; i < 16; i++)
4585 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4586 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4587 i915_gem_retire_work_handler);
31169714
CW
4588 spin_lock(&shrink_list_lock);
4589 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4590 spin_unlock(&shrink_list_lock);
4591
94400120
DA
4592 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4593 if (IS_GEN3(dev)) {
4594 u32 tmp = I915_READ(MI_ARB_STATE);
4595 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4596 /* arb state is a masked write, so set bit + bit in mask */
4597 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4598 I915_WRITE(MI_ARB_STATE, tmp);
4599 }
4600 }
4601
de151cf6 4602 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4603 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4604 dev_priv->fence_reg_start = 3;
de151cf6 4605
0f973f27 4606 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4607 dev_priv->num_fence_regs = 16;
4608 else
4609 dev_priv->num_fence_regs = 8;
4610
b5aa8a0f
GH
4611 /* Initialize fence registers to zero */
4612 if (IS_I965G(dev)) {
4613 for (i = 0; i < 16; i++)
4614 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4615 } else {
4616 for (i = 0; i < 8; i++)
4617 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4618 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4619 for (i = 0; i < 8; i++)
4620 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4621 }
673a394b 4622 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4623 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4624}
71acb5eb
DA
4625
4626/*
4627 * Create a physically contiguous memory object for this object
4628 * e.g. for cursor + overlay regs
4629 */
995b6762
CW
4630static int i915_gem_init_phys_object(struct drm_device *dev,
4631 int id, int size, int align)
71acb5eb
DA
4632{
4633 drm_i915_private_t *dev_priv = dev->dev_private;
4634 struct drm_i915_gem_phys_object *phys_obj;
4635 int ret;
4636
4637 if (dev_priv->mm.phys_objs[id - 1] || !size)
4638 return 0;
4639
9a298b2a 4640 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4641 if (!phys_obj)
4642 return -ENOMEM;
4643
4644 phys_obj->id = id;
4645
6eeefaf3 4646 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4647 if (!phys_obj->handle) {
4648 ret = -ENOMEM;
4649 goto kfree_obj;
4650 }
4651#ifdef CONFIG_X86
4652 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4653#endif
4654
4655 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4656
4657 return 0;
4658kfree_obj:
9a298b2a 4659 kfree(phys_obj);
71acb5eb
DA
4660 return ret;
4661}
4662
995b6762 4663static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4664{
4665 drm_i915_private_t *dev_priv = dev->dev_private;
4666 struct drm_i915_gem_phys_object *phys_obj;
4667
4668 if (!dev_priv->mm.phys_objs[id - 1])
4669 return;
4670
4671 phys_obj = dev_priv->mm.phys_objs[id - 1];
4672 if (phys_obj->cur_obj) {
4673 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4674 }
4675
4676#ifdef CONFIG_X86
4677 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4678#endif
4679 drm_pci_free(dev, phys_obj->handle);
4680 kfree(phys_obj);
4681 dev_priv->mm.phys_objs[id - 1] = NULL;
4682}
4683
4684void i915_gem_free_all_phys_object(struct drm_device *dev)
4685{
4686 int i;
4687
260883c8 4688 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4689 i915_gem_free_phys_object(dev, i);
4690}
4691
4692void i915_gem_detach_phys_object(struct drm_device *dev,
4693 struct drm_gem_object *obj)
4694{
4695 struct drm_i915_gem_object *obj_priv;
4696 int i;
4697 int ret;
4698 int page_count;
4699
23010e43 4700 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4701 if (!obj_priv->phys_obj)
4702 return;
4703
4bdadb97 4704 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4705 if (ret)
4706 goto out;
4707
4708 page_count = obj->size / PAGE_SIZE;
4709
4710 for (i = 0; i < page_count; i++) {
856fa198 4711 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4712 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4713
4714 memcpy(dst, src, PAGE_SIZE);
4715 kunmap_atomic(dst, KM_USER0);
4716 }
856fa198 4717 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4718 drm_agp_chipset_flush(dev);
d78b47b9
CW
4719
4720 i915_gem_object_put_pages(obj);
71acb5eb
DA
4721out:
4722 obj_priv->phys_obj->cur_obj = NULL;
4723 obj_priv->phys_obj = NULL;
4724}
4725
4726int
4727i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4728 struct drm_gem_object *obj,
4729 int id,
4730 int align)
71acb5eb
DA
4731{
4732 drm_i915_private_t *dev_priv = dev->dev_private;
4733 struct drm_i915_gem_object *obj_priv;
4734 int ret = 0;
4735 int page_count;
4736 int i;
4737
4738 if (id > I915_MAX_PHYS_OBJECT)
4739 return -EINVAL;
4740
23010e43 4741 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4742
4743 if (obj_priv->phys_obj) {
4744 if (obj_priv->phys_obj->id == id)
4745 return 0;
4746 i915_gem_detach_phys_object(dev, obj);
4747 }
4748
71acb5eb
DA
4749 /* create a new object */
4750 if (!dev_priv->mm.phys_objs[id - 1]) {
4751 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4752 obj->size, align);
71acb5eb 4753 if (ret) {
aeb565df 4754 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4755 goto out;
4756 }
4757 }
4758
4759 /* bind to the object */
4760 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4761 obj_priv->phys_obj->cur_obj = obj;
4762
4bdadb97 4763 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4764 if (ret) {
4765 DRM_ERROR("failed to get page list\n");
4766 goto out;
4767 }
4768
4769 page_count = obj->size / PAGE_SIZE;
4770
4771 for (i = 0; i < page_count; i++) {
856fa198 4772 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4773 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4774
4775 memcpy(dst, src, PAGE_SIZE);
4776 kunmap_atomic(src, KM_USER0);
4777 }
4778
d78b47b9
CW
4779 i915_gem_object_put_pages(obj);
4780
71acb5eb
DA
4781 return 0;
4782out:
4783 return ret;
4784}
4785
4786static int
4787i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4788 struct drm_i915_gem_pwrite *args,
4789 struct drm_file *file_priv)
4790{
23010e43 4791 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4792 void *obj_addr;
4793 int ret;
4794 char __user *user_data;
4795
4796 user_data = (char __user *) (uintptr_t) args->data_ptr;
4797 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4798
44d98a61 4799 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4800 ret = copy_from_user(obj_addr, user_data, args->size);
4801 if (ret)
4802 return -EFAULT;
4803
4804 drm_agp_chipset_flush(dev);
4805 return 0;
4806}
b962442e
EA
4807
4808void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4809{
4810 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4811
4812 /* Clean up our request list when the client is going away, so that
4813 * later retire_requests won't dereference our soon-to-be-gone
4814 * file_priv.
4815 */
4816 mutex_lock(&dev->struct_mutex);
4817 while (!list_empty(&i915_file_priv->mm.request_list))
4818 list_del_init(i915_file_priv->mm.request_list.next);
4819 mutex_unlock(&dev->struct_mutex);
4820}
31169714 4821
1637ef41
CW
4822static int
4823i915_gpu_is_active(struct drm_device *dev)
4824{
4825 drm_i915_private_t *dev_priv = dev->dev_private;
4826 int lists_empty;
4827
1637ef41 4828 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4829 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4830 if (HAS_BSD(dev))
4831 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4832
4833 return !lists_empty;
4834}
4835
31169714 4836static int
7f8275d0 4837i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4838{
4839 drm_i915_private_t *dev_priv, *next_dev;
4840 struct drm_i915_gem_object *obj_priv, *next_obj;
4841 int cnt = 0;
4842 int would_deadlock = 1;
4843
4844 /* "fast-path" to count number of available objects */
4845 if (nr_to_scan == 0) {
4846 spin_lock(&shrink_list_lock);
4847 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4848 struct drm_device *dev = dev_priv->dev;
4849
4850 if (mutex_trylock(&dev->struct_mutex)) {
4851 list_for_each_entry(obj_priv,
4852 &dev_priv->mm.inactive_list,
4853 list)
4854 cnt++;
4855 mutex_unlock(&dev->struct_mutex);
4856 }
4857 }
4858 spin_unlock(&shrink_list_lock);
4859
4860 return (cnt / 100) * sysctl_vfs_cache_pressure;
4861 }
4862
4863 spin_lock(&shrink_list_lock);
4864
1637ef41 4865rescan:
31169714
CW
4866 /* first scan for clean buffers */
4867 list_for_each_entry_safe(dev_priv, next_dev,
4868 &shrink_list, mm.shrink_list) {
4869 struct drm_device *dev = dev_priv->dev;
4870
4871 if (! mutex_trylock(&dev->struct_mutex))
4872 continue;
4873
4874 spin_unlock(&shrink_list_lock);
b09a1fec 4875 i915_gem_retire_requests(dev);
31169714
CW
4876
4877 list_for_each_entry_safe(obj_priv, next_obj,
4878 &dev_priv->mm.inactive_list,
4879 list) {
4880 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4881 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4882 if (--nr_to_scan <= 0)
4883 break;
4884 }
4885 }
4886
4887 spin_lock(&shrink_list_lock);
4888 mutex_unlock(&dev->struct_mutex);
4889
963b4836
CW
4890 would_deadlock = 0;
4891
31169714
CW
4892 if (nr_to_scan <= 0)
4893 break;
4894 }
4895
4896 /* second pass, evict/count anything still on the inactive list */
4897 list_for_each_entry_safe(dev_priv, next_dev,
4898 &shrink_list, mm.shrink_list) {
4899 struct drm_device *dev = dev_priv->dev;
4900
4901 if (! mutex_trylock(&dev->struct_mutex))
4902 continue;
4903
4904 spin_unlock(&shrink_list_lock);
4905
4906 list_for_each_entry_safe(obj_priv, next_obj,
4907 &dev_priv->mm.inactive_list,
4908 list) {
4909 if (nr_to_scan > 0) {
a8089e84 4910 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4911 nr_to_scan--;
4912 } else
4913 cnt++;
4914 }
4915
4916 spin_lock(&shrink_list_lock);
4917 mutex_unlock(&dev->struct_mutex);
4918
4919 would_deadlock = 0;
4920 }
4921
1637ef41
CW
4922 if (nr_to_scan) {
4923 int active = 0;
4924
4925 /*
4926 * We are desperate for pages, so as a last resort, wait
4927 * for the GPU to finish and discard whatever we can.
4928 * This has a dramatic impact to reduce the number of
4929 * OOM-killer events whilst running the GPU aggressively.
4930 */
4931 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4932 struct drm_device *dev = dev_priv->dev;
4933
4934 if (!mutex_trylock(&dev->struct_mutex))
4935 continue;
4936
4937 spin_unlock(&shrink_list_lock);
4938
4939 if (i915_gpu_is_active(dev)) {
4940 i915_gpu_idle(dev);
4941 active++;
4942 }
4943
4944 spin_lock(&shrink_list_lock);
4945 mutex_unlock(&dev->struct_mutex);
4946 }
4947
4948 if (active)
4949 goto rescan;
4950 }
4951
31169714
CW
4952 spin_unlock(&shrink_list_lock);
4953
4954 if (would_deadlock)
4955 return -1;
4956 else if (cnt > 0)
4957 return (cnt / 100) * sysctl_vfs_cache_pressure;
4958 else
4959 return 0;
4960}
4961
4962static struct shrinker shrinker = {
4963 .shrink = i915_gem_shrink,
4964 .seeks = DEFAULT_SEEKS,
4965};
4966
4967__init void
4968i915_gem_shrinker_init(void)
4969{
4970 register_shrinker(&shrinker);
4971}
4972
4973__exit void
4974i915_gem_shrinker_exit(void)
4975{
4976 unregister_shrinker(&shrinker);
4977}
This page took 0.625404 seconds and 5 git commands to generate.