drm/i915: Drop schedule_back from psr_exit
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43
CW
63static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
00731155
CW
212static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213{
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241#ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243#endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246}
247
248int
249i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251{
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276#ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278#endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286#ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288#endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305}
306
307static int
308i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311{
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332}
333
42dcedd4
CW
334void *i915_gem_object_alloc(struct drm_device *dev)
335{
336 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
338}
339
340void i915_gem_object_free(struct drm_i915_gem_object *obj)
341{
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344}
345
ff72145b
DA
346static int
347i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
673a394b 351{
05394f39 352 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
353 int ret;
354 u32 handle;
673a394b 355
ff72145b 356 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
357 if (size == 0)
358 return -EINVAL;
673a394b
EA
359
360 /* Allocate the new object */
ff72145b 361 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
362 if (obj == NULL)
363 return -ENOMEM;
364
05394f39 365 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 366 /* drop reference from allocate - handle holds it now */
d861e338
DV
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
202f2fef 370
ff72145b 371 *handle_p = handle;
673a394b
EA
372 return 0;
373}
374
ff72145b
DA
375int
376i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379{
380 /* have to work out size/pitch and return them */
de45eaf7 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385}
386
ff72145b
DA
387/**
388 * Creates a new mm object and returns a handle to it.
389 */
390int
391i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393{
394 struct drm_i915_gem_create *args = data;
63ed2cb2 395
ff72145b
DA
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398}
399
8461d226
DV
400static inline int
401__copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404{
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424}
425
8c59967c 426static inline int
4f0c7cfb
BW
427__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
8c59967c
DV
429 int length)
430{
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450}
451
4c914c0c
BV
452/*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459{
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
c8725f3d
CW
477
478 i915_gem_object_retire(obj);
4c914c0c
BV
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488}
489
d174bd64
DV
490/* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
eb01459f 493static int
d174bd64
DV
494shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497{
498 char *vaddr;
499 int ret;
500
e7e58eb5 501 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
f60d7f0c 513 return ret ? -EFAULT : 0;
d174bd64
DV
514}
515
23c18c71
DV
516static void
517shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519{
e7e58eb5 520 if (unlikely(swizzled)) {
23c18c71
DV
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536}
537
d174bd64
DV
538/* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540static int
541shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544{
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
23c18c71
DV
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
d174bd64
DV
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
f60d7f0c 564 return ret ? - EFAULT : 0;
d174bd64
DV
565}
566
eb01459f 567static int
dbf7bff0
DV
568i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
eb01459f 572{
8461d226 573 char __user *user_data;
eb01459f 574 ssize_t remain;
8461d226 575 loff_t offset;
eb2c0c81 576 int shmem_page_offset, page_length, ret = 0;
8461d226 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 578 int prefaulted = 0;
8489731c 579 int needs_clflush = 0;
67d5a50c 580 struct sg_page_iter sg_iter;
eb01459f 581
2bb4629a 582 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
583 remain = args->size;
584
8461d226 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 586
4c914c0c 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
588 if (ret)
589 return ret;
590
8461d226 591 offset = args->offset;
eb01459f 592
67d5a50c
ID
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
2db76d7c 595 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
596
597 if (remain <= 0)
598 break;
599
eb01459f
EA
600 /* Operation in this page
601 *
eb01459f 602 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
603 * page_length = bytes to copy for this page
604 */
c8cbbb8b 605 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 609
8461d226
DV
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
d174bd64
DV
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
dbf7bff0 618
dbf7bff0
DV
619 mutex_unlock(&dev->struct_mutex);
620
d330a953 621 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 622 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
eb01459f 630
d174bd64
DV
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
eb01459f 634
dbf7bff0 635 mutex_lock(&dev->struct_mutex);
f60d7f0c 636
f60d7f0c 637 if (ret)
8461d226 638 goto out;
8461d226 639
17793c9a 640next_page:
eb01459f 641 remain -= page_length;
8461d226 642 user_data += page_length;
eb01459f
EA
643 offset += page_length;
644 }
645
4f27b75d 646out:
f60d7f0c
CW
647 i915_gem_object_unpin_pages(obj);
648
eb01459f
EA
649 return ret;
650}
651
673a394b
EA
652/**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657int
658i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 659 struct drm_file *file)
673a394b
EA
660{
661 struct drm_i915_gem_pread *args = data;
05394f39 662 struct drm_i915_gem_object *obj;
35b62a89 663 int ret = 0;
673a394b 664
51311d0a
CW
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
2bb4629a 669 to_user_ptr(args->data_ptr),
51311d0a
CW
670 args->size))
671 return -EFAULT;
672
4f27b75d 673 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 674 if (ret)
4f27b75d 675 return ret;
673a394b 676
05394f39 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 678 if (&obj->base == NULL) {
1d7cfea1
CW
679 ret = -ENOENT;
680 goto unlock;
4f27b75d 681 }
673a394b 682
7dcd2499 683 /* Bounds check source. */
05394f39
CW
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
ce9d419d 686 ret = -EINVAL;
35b62a89 687 goto out;
ce9d419d
CW
688 }
689
1286ff73
DV
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
db53a302
CW
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
dbf7bff0 700 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 701
35b62a89 702out:
05394f39 703 drm_gem_object_unreference(&obj->base);
1d7cfea1 704unlock:
4f27b75d 705 mutex_unlock(&dev->struct_mutex);
eb01459f 706 return ret;
673a394b
EA
707}
708
0839ccb8
KP
709/* This is the fast write path which cannot handle
710 * page faults in the source data
9b7530cc 711 */
0839ccb8
KP
712
713static inline int
714fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
9b7530cc 718{
4f0c7cfb
BW
719 void __iomem *vaddr_atomic;
720 void *vaddr;
0839ccb8 721 unsigned long unwritten;
9b7530cc 722
3e4d3af5 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 727 user_data, length);
3e4d3af5 728 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 729 return unwritten;
0839ccb8
KP
730}
731
3de09aa3
EA
732/**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
673a394b 736static int
05394f39
CW
737i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
3de09aa3 739 struct drm_i915_gem_pwrite *args,
05394f39 740 struct drm_file *file)
673a394b 741{
3e31c6c0 742 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 743 ssize_t remain;
0839ccb8 744 loff_t offset, page_base;
673a394b 745 char __user *user_data;
935aaa69
DV
746 int page_offset, page_length, ret;
747
1ec9e26d 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
673a394b 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
673a394b 761 remain = args->size;
673a394b 762
f343c5f6 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
0839ccb8
KP
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
673a394b 771 */
c8cbbb8b
CW
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
0839ccb8
KP
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
0839ccb8 778 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
0839ccb8 781 */
5d4545ae 782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
673a394b 787
0839ccb8
KP
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
673a394b 791 }
673a394b 792
935aaa69 793out_unpin:
d7f46fc4 794 i915_gem_object_ggtt_unpin(obj);
935aaa69 795out:
3de09aa3 796 return ret;
673a394b
EA
797}
798
d174bd64
DV
799/* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
3043c60c 803static int
d174bd64
DV
804shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
673a394b 809{
d174bd64 810 char *vaddr;
673a394b 811 int ret;
3de09aa3 812
e7e58eb5 813 if (unlikely(page_do_bit17_swizzling))
d174bd64 814 return -EINVAL;
3de09aa3 815
d174bd64
DV
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
c2831a94
CW
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
d174bd64
DV
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
3de09aa3 826
755d2218 827 return ret ? -EFAULT : 0;
3de09aa3
EA
828}
829
d174bd64
DV
830/* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
3043c60c 832static int
d174bd64
DV
833shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
673a394b 838{
d174bd64
DV
839 char *vaddr;
840 int ret;
e5281ccd 841
d174bd64 842 vaddr = kmap(page);
e7e58eb5 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
d174bd64
DV
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
849 user_data,
850 page_length);
d174bd64
DV
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
23c18c71
DV
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
d174bd64 859 kunmap(page);
40123c1f 860
755d2218 861 return ret ? -EFAULT : 0;
40123c1f
EA
862}
863
40123c1f 864static int
e244a443
DV
865i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
40123c1f 869{
40123c1f 870 ssize_t remain;
8c59967c
DV
871 loff_t offset;
872 char __user *user_data;
eb2c0c81 873 int shmem_page_offset, page_length, ret = 0;
8c59967c 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 875 int hit_slowpath = 0;
58642885
DV
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
67d5a50c 878 struct sg_page_iter sg_iter;
40123c1f 879
2bb4629a 880 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
881 remain = args->size;
882
8c59967c 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
58642885
DV
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
2c22569b 890 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
c8725f3d
CW
894
895 i915_gem_object_retire(obj);
58642885 896 }
c76ce038
CW
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 902
755d2218
CW
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
673a394b 909 offset = args->offset;
05394f39 910 obj->dirty = 1;
673a394b 911
67d5a50c
ID
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
2db76d7c 914 struct page *page = sg_page_iter_page(&sg_iter);
58642885 915 int partial_cacheline_write;
e5281ccd 916
9da3da66
CW
917 if (remain <= 0)
918 break;
919
40123c1f
EA
920 /* Operation in this page
921 *
40123c1f 922 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
923 * page_length = bytes to copy for this page
924 */
c8cbbb8b 925 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 930
58642885
DV
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
8c59967c
DV
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
d174bd64
DV
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
e244a443
DV
947
948 hit_slowpath = 1;
e244a443 949 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
40123c1f 954
e244a443 955 mutex_lock(&dev->struct_mutex);
755d2218 956
755d2218 957 if (ret)
8c59967c 958 goto out;
8c59967c 959
17793c9a 960next_page:
40123c1f 961 remain -= page_length;
8c59967c 962 user_data += page_length;
40123c1f 963 offset += page_length;
673a394b
EA
964 }
965
fbd5a26d 966out:
755d2218
CW
967 i915_gem_object_unpin_pages(obj);
968
e244a443 969 if (hit_slowpath) {
8dcf015e
DV
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
e244a443 979 }
8c59967c 980 }
673a394b 981
58642885 982 if (needs_clflush_after)
e76e9aeb 983 i915_gem_chipset_flush(dev);
58642885 984
40123c1f 985 return ret;
673a394b
EA
986}
987
988/**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993int
994i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_pwrite *args = data;
05394f39 998 struct drm_i915_gem_object *obj;
51311d0a
CW
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
2bb4629a 1005 to_user_ptr(args->data_ptr),
51311d0a
CW
1006 args->size))
1007 return -EFAULT;
1008
d330a953 1009 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
673a394b 1015
fbd5a26d 1016 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1017 if (ret)
fbd5a26d 1018 return ret;
1d7cfea1 1019
05394f39 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1021 if (&obj->base == NULL) {
1d7cfea1
CW
1022 ret = -ENOENT;
1023 goto unlock;
fbd5a26d 1024 }
673a394b 1025
7dcd2499 1026 /* Bounds check destination. */
05394f39
CW
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
ce9d419d 1029 ret = -EINVAL;
35b62a89 1030 goto out;
ce9d419d
CW
1031 }
1032
1286ff73
DV
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
db53a302
CW
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
935aaa69 1043 ret = -EFAULT;
673a394b
EA
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
00731155
CW
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1052 goto out;
1053 }
1054
2c22569b
CW
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
fbd5a26d 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1062 }
673a394b 1063
86a1ee26 1064 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1066
35b62a89 1067out:
05394f39 1068 drm_gem_object_unreference(&obj->base);
1d7cfea1 1069unlock:
fbd5a26d 1070 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1071 return ret;
1072}
1073
b361237b 1074int
33196ded 1075i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1076 bool interruptible)
1077{
1f83fee0 1078 if (i915_reset_in_progress(error)) {
b361237b
CW
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1f83fee0
DV
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
b361237b
CW
1086 return -EIO;
1087
1088 return -EAGAIN;
1089 }
1090
1091 return 0;
1092}
1093
1094/*
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1097 */
84c33a64 1098int
a4872ba6 1099i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1100{
1101 int ret;
1102
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105 ret = 0;
1823521d 1106 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1107 ret = i915_add_request(ring, NULL);
b361237b
CW
1108
1109 return ret;
1110}
1111
094f9a54
CW
1112static void fake_irq(unsigned long data)
1113{
1114 wake_up_process((struct task_struct *)data);
1115}
1116
1117static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1118 struct intel_engine_cs *ring)
094f9a54
CW
1119{
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121}
1122
b29c19b6
CW
1123static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124{
1125 if (file_priv == NULL)
1126 return true;
1127
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129}
1130
b361237b
CW
1131/**
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
f69061be 1135 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138 *
f69061be
DV
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1145 *
b361237b
CW
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1148 */
a4872ba6 1149static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1150 unsigned reset_counter,
b29c19b6
CW
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
b361237b 1154{
3d13ef2e 1155 struct drm_device *dev = ring->dev;
3e31c6c0 1156 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
47e9766d 1161 unsigned long timeout_expire;
b361237b
CW
1162 int ret;
1163
5d584b2e 1164 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1165
b361237b
CW
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1168
47e9766d 1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1170
3d13ef2e 1171 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1177 }
1178
168c3f21 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1180 return -ENODEV;
1181
094f9a54
CW
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1184 getrawmonotonic(&before);
094f9a54
CW
1185 for (;;) {
1186 struct timer_list timer;
b361237b 1187
094f9a54
CW
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1190
f69061be
DV
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
094f9a54
CW
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1200 }
f69061be 1201
094f9a54
CW
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1205 }
b361237b 1206
094f9a54
CW
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1210 }
1211
47e9766d 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1213 ret = -ETIME;
1214 break;
1215 }
1216
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1219 unsigned long expire;
1220
094f9a54 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1223 mod_timer(&timer, expire);
1224 }
1225
5035c275 1226 io_schedule();
094f9a54 1227
094f9a54
CW
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1231 }
1232 }
b361237b 1233 getrawmonotonic(&now);
094f9a54 1234 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1235
168c3f21
MK
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
094f9a54
CW
1238
1239 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1240
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1246 }
1247
094f9a54 1248 return ret;
b361237b
CW
1249}
1250
1251/**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255int
a4872ba6 1256i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1257{
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
33196ded 1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
f69061be
DV
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1276 interruptible, NULL, NULL);
b361237b
CW
1277}
1278
d26e3af8
CW
1279static int
1280i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1281 struct intel_engine_cs *ring)
d26e3af8 1282{
c8725f3d
CW
1283 if (!obj->active)
1284 return 0;
d26e3af8
CW
1285
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1288 *
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1292 */
1293 obj->last_write_seqno = 0;
d26e3af8
CW
1294
1295 return 0;
1296}
1297
b361237b
CW
1298/**
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1301 */
1302static __must_check int
1303i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1305{
a4872ba6 1306 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1307 u32 seqno;
1308 int ret;
1309
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1313
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1317
d26e3af8 1318 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1319}
1320
3236f57a
CW
1321/* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1323 */
1324static __must_check int
1325i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1326 struct drm_i915_file_private *file_priv,
3236f57a
CW
1327 bool readonly)
1328{
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1331 struct intel_engine_cs *ring = obj->ring;
f69061be 1332 unsigned reset_counter;
3236f57a
CW
1333 u32 seqno;
1334 int ret;
1335
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1338
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1342
33196ded 1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1350
f69061be 1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1352 mutex_unlock(&dev->struct_mutex);
6e4930f6 1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1354 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1355 if (ret)
1356 return ret;
3236f57a 1357
d26e3af8 1358 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1359}
1360
673a394b 1361/**
2ef7eeaa
EA
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1364 */
1365int
1366i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1367 struct drm_file *file)
673a394b
EA
1368{
1369 struct drm_i915_gem_set_domain *args = data;
05394f39 1370 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
673a394b
EA
1373 int ret;
1374
2ef7eeaa 1375 /* Only handle setting domains to types used by the CPU. */
21d509e3 1376 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1377 return -EINVAL;
1378
21d509e3 1379 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1380 return -EINVAL;
1381
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1384 */
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1387
76c1dec1 1388 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1389 if (ret)
76c1dec1 1390 return ret;
1d7cfea1 1391
05394f39 1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1393 if (&obj->base == NULL) {
1d7cfea1
CW
1394 ret = -ENOENT;
1395 goto unlock;
76c1dec1 1396 }
673a394b 1397
3108e99e 1398 intel_edp_psr_exit(dev);
7c8f8a70 1399
3236f57a
CW
1400 /* Try to flush the object off the GPU without holding the lock.
1401 * We will repeat the flush holding the lock in the normal manner
1402 * to catch cases where we are gazumped.
1403 */
6e4930f6
CW
1404 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1405 file->driver_priv,
1406 !write_domain);
3236f57a
CW
1407 if (ret)
1408 goto unref;
1409
2ef7eeaa
EA
1410 if (read_domains & I915_GEM_DOMAIN_GTT) {
1411 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1412
1413 /* Silently promote "you're not bound, there was nothing to do"
1414 * to success, since the client was just asking us to
1415 * make sure everything was done.
1416 */
1417 if (ret == -EINVAL)
1418 ret = 0;
2ef7eeaa 1419 } else {
e47c68e9 1420 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1421 }
1422
3236f57a 1423unref:
05394f39 1424 drm_gem_object_unreference(&obj->base);
1d7cfea1 1425unlock:
673a394b
EA
1426 mutex_unlock(&dev->struct_mutex);
1427 return ret;
1428}
1429
1430/**
1431 * Called when user space has done writes to this buffer
1432 */
1433int
1434i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1435 struct drm_file *file)
673a394b
EA
1436{
1437 struct drm_i915_gem_sw_finish *args = data;
05394f39 1438 struct drm_i915_gem_object *obj;
673a394b
EA
1439 int ret = 0;
1440
76c1dec1 1441 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1442 if (ret)
76c1dec1 1443 return ret;
1d7cfea1 1444
3108e99e 1445 intel_edp_psr_exit(dev);
7c8f8a70 1446
05394f39 1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1448 if (&obj->base == NULL) {
1d7cfea1
CW
1449 ret = -ENOENT;
1450 goto unlock;
673a394b
EA
1451 }
1452
673a394b 1453 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1456
05394f39 1457 drm_gem_object_unreference(&obj->base);
1d7cfea1 1458unlock:
673a394b
EA
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1461}
1462
1463/**
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1466 *
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1469 */
1470int
1471i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1472 struct drm_file *file)
673a394b
EA
1473{
1474 struct drm_i915_gem_mmap *args = data;
1475 struct drm_gem_object *obj;
673a394b
EA
1476 unsigned long addr;
1477
05394f39 1478 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1479 if (obj == NULL)
bf79cb91 1480 return -ENOENT;
673a394b 1481
1286ff73
DV
1482 /* prime objects have no backing filp to GEM mmap
1483 * pages from.
1484 */
1485 if (!obj->filp) {
1486 drm_gem_object_unreference_unlocked(obj);
1487 return -EINVAL;
1488 }
1489
6be5ceb0 1490 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1491 PROT_READ | PROT_WRITE, MAP_SHARED,
1492 args->offset);
bc9025bd 1493 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1494 if (IS_ERR((void *)addr))
1495 return addr;
1496
1497 args->addr_ptr = (uint64_t) addr;
1498
1499 return 0;
1500}
1501
de151cf6
JB
1502/**
1503 * i915_gem_fault - fault a page into the GTT
1504 * vma: VMA in question
1505 * vmf: fault info
1506 *
1507 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508 * from userspace. The fault handler takes care of binding the object to
1509 * the GTT (if needed), allocating and programming a fence register (again,
1510 * only if needed based on whether the old reg is still valid or the object
1511 * is tiled) and inserting a new PTE into the faulting process.
1512 *
1513 * Note that the faulting process may involve evicting existing objects
1514 * from the GTT and/or fence registers to make room. So performance may
1515 * suffer if the GTT working set is large or there are few fence registers
1516 * left.
1517 */
1518int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519{
05394f39
CW
1520 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 struct drm_device *dev = obj->base.dev;
3e31c6c0 1522 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1523 pgoff_t page_offset;
1524 unsigned long pfn;
1525 int ret = 0;
0f973f27 1526 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1527
f65c9168
PZ
1528 intel_runtime_pm_get(dev_priv);
1529
de151cf6
JB
1530 /* We don't use vmf->pgoff since that has the fake offset */
1531 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 PAGE_SHIFT;
1533
d9bc7e9f
CW
1534 ret = i915_mutex_lock_interruptible(dev);
1535 if (ret)
1536 goto out;
a00b10c3 1537
db53a302
CW
1538 trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
6e4930f6
CW
1540 /* Try to flush the object off the GPU first without holding the lock.
1541 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 * repeat the flush holding the lock in the normal manner to catch cases
1543 * where we are gazumped.
1544 */
1545 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 if (ret)
1547 goto unlock;
1548
eb119bd6
CW
1549 /* Access to snoopable pages through the GTT is incoherent. */
1550 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1551 ret = -EFAULT;
eb119bd6
CW
1552 goto unlock;
1553 }
1554
d9bc7e9f 1555 /* Now bind it into the GTT if needed */
1ec9e26d 1556 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1557 if (ret)
1558 goto unlock;
4a684a41 1559
c9839303
CW
1560 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 if (ret)
1562 goto unpin;
74898d7e 1563
06d98131 1564 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1565 if (ret)
c9839303 1566 goto unpin;
7d1c4804 1567
b90b91d8 1568 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1569 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 pfn >>= PAGE_SHIFT;
de151cf6 1571
b90b91d8 1572 if (!obj->fault_mappable) {
beff0d0f
VS
1573 unsigned long size = min_t(unsigned long,
1574 vma->vm_end - vma->vm_start,
1575 obj->base.size);
b90b91d8
CW
1576 int i;
1577
beff0d0f 1578 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1579 ret = vm_insert_pfn(vma,
1580 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581 pfn + i);
1582 if (ret)
1583 break;
1584 }
1585
1586 obj->fault_mappable = true;
1587 } else
1588 ret = vm_insert_pfn(vma,
1589 (unsigned long)vmf->virtual_address,
1590 pfn + page_offset);
c9839303 1591unpin:
d7f46fc4 1592 i915_gem_object_ggtt_unpin(obj);
c715089f 1593unlock:
de151cf6 1594 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1595out:
de151cf6 1596 switch (ret) {
d9bc7e9f 1597 case -EIO:
a9340cca
DV
1598 /* If this -EIO is due to a gpu hang, give the reset code a
1599 * chance to clean up the mess. Otherwise return the proper
1600 * SIGBUS. */
f65c9168
PZ
1601 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1602 ret = VM_FAULT_SIGBUS;
1603 break;
1604 }
045e769a 1605 case -EAGAIN:
571c608d
DV
1606 /*
1607 * EAGAIN means the gpu is hung and we'll wait for the error
1608 * handler to reset everything when re-faulting in
1609 * i915_mutex_lock_interruptible.
d9bc7e9f 1610 */
c715089f
CW
1611 case 0:
1612 case -ERESTARTSYS:
bed636ab 1613 case -EINTR:
e79e0fe3
DR
1614 case -EBUSY:
1615 /*
1616 * EBUSY is ok: this just means that another thread
1617 * already did the job.
1618 */
f65c9168
PZ
1619 ret = VM_FAULT_NOPAGE;
1620 break;
de151cf6 1621 case -ENOMEM:
f65c9168
PZ
1622 ret = VM_FAULT_OOM;
1623 break;
a7c2e1aa 1624 case -ENOSPC:
45d67817 1625 case -EFAULT:
f65c9168
PZ
1626 ret = VM_FAULT_SIGBUS;
1627 break;
de151cf6 1628 default:
a7c2e1aa 1629 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1630 ret = VM_FAULT_SIGBUS;
1631 break;
de151cf6 1632 }
f65c9168
PZ
1633
1634 intel_runtime_pm_put(dev_priv);
1635 return ret;
de151cf6
JB
1636}
1637
901782b2
CW
1638/**
1639 * i915_gem_release_mmap - remove physical page mappings
1640 * @obj: obj in question
1641 *
af901ca1 1642 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1643 * relinquish ownership of the pages back to the system.
1644 *
1645 * It is vital that we remove the page mapping if we have mapped a tiled
1646 * object through the GTT and then lose the fence register due to
1647 * resource pressure. Similarly if the object has been moved out of the
1648 * aperture, than pages mapped into userspace must be revoked. Removing the
1649 * mapping will then trigger a page fault on the next user access, allowing
1650 * fixup by i915_gem_fault().
1651 */
d05ca301 1652void
05394f39 1653i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1654{
6299f992
CW
1655 if (!obj->fault_mappable)
1656 return;
901782b2 1657
6796cb16
DH
1658 drm_vma_node_unmap(&obj->base.vma_node,
1659 obj->base.dev->anon_inode->i_mapping);
6299f992 1660 obj->fault_mappable = false;
901782b2
CW
1661}
1662
6254b204
CW
1663void
1664i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1665{
1666 struct drm_i915_gem_object *obj;
1667
1668 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1669 i915_gem_release_mmap(obj);
1670}
1671
0fa87796 1672uint32_t
e28f8711 1673i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1674{
e28f8711 1675 uint32_t gtt_size;
92b88aeb
CW
1676
1677 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1678 tiling_mode == I915_TILING_NONE)
1679 return size;
92b88aeb
CW
1680
1681 /* Previous chips need a power-of-two fence region when tiling */
1682 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1683 gtt_size = 1024*1024;
92b88aeb 1684 else
e28f8711 1685 gtt_size = 512*1024;
92b88aeb 1686
e28f8711
CW
1687 while (gtt_size < size)
1688 gtt_size <<= 1;
92b88aeb 1689
e28f8711 1690 return gtt_size;
92b88aeb
CW
1691}
1692
de151cf6
JB
1693/**
1694 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1695 * @obj: object to check
1696 *
1697 * Return the required GTT alignment for an object, taking into account
5e783301 1698 * potential fence register mapping.
de151cf6 1699 */
d865110c
ID
1700uint32_t
1701i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1702 int tiling_mode, bool fenced)
de151cf6 1703{
de151cf6
JB
1704 /*
1705 * Minimum alignment is 4k (GTT page size), but might be greater
1706 * if a fence register is needed for the object.
1707 */
d865110c 1708 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1709 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1710 return 4096;
1711
a00b10c3
CW
1712 /*
1713 * Previous chips need to be aligned to the size of the smallest
1714 * fence register that can contain the object.
1715 */
e28f8711 1716 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1717}
1718
d8cb5086
CW
1719static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1720{
1721 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1722 int ret;
1723
0de23977 1724 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1725 return 0;
1726
da494d7c
DV
1727 dev_priv->mm.shrinker_no_lock_stealing = true;
1728
d8cb5086
CW
1729 ret = drm_gem_create_mmap_offset(&obj->base);
1730 if (ret != -ENOSPC)
da494d7c 1731 goto out;
d8cb5086
CW
1732
1733 /* Badly fragmented mmap space? The only way we can recover
1734 * space is by destroying unwanted objects. We can't randomly release
1735 * mmap_offsets as userspace expects them to be persistent for the
1736 * lifetime of the objects. The closest we can is to release the
1737 * offsets on purgeable objects by truncating it and marking it purged,
1738 * which prevents userspace from ever using that object again.
1739 */
1740 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1741 ret = drm_gem_create_mmap_offset(&obj->base);
1742 if (ret != -ENOSPC)
da494d7c 1743 goto out;
d8cb5086
CW
1744
1745 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1746 ret = drm_gem_create_mmap_offset(&obj->base);
1747out:
1748 dev_priv->mm.shrinker_no_lock_stealing = false;
1749
1750 return ret;
d8cb5086
CW
1751}
1752
1753static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1754{
d8cb5086
CW
1755 drm_gem_free_mmap_offset(&obj->base);
1756}
1757
de151cf6 1758int
ff72145b
DA
1759i915_gem_mmap_gtt(struct drm_file *file,
1760 struct drm_device *dev,
1761 uint32_t handle,
1762 uint64_t *offset)
de151cf6 1763{
da761a6e 1764 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1765 struct drm_i915_gem_object *obj;
de151cf6
JB
1766 int ret;
1767
76c1dec1 1768 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1769 if (ret)
76c1dec1 1770 return ret;
de151cf6 1771
ff72145b 1772 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1773 if (&obj->base == NULL) {
1d7cfea1
CW
1774 ret = -ENOENT;
1775 goto unlock;
1776 }
de151cf6 1777
5d4545ae 1778 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1779 ret = -E2BIG;
ff56b0bc 1780 goto out;
da761a6e
CW
1781 }
1782
05394f39 1783 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1784 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1785 ret = -EFAULT;
1d7cfea1 1786 goto out;
ab18282d
CW
1787 }
1788
d8cb5086
CW
1789 ret = i915_gem_object_create_mmap_offset(obj);
1790 if (ret)
1791 goto out;
de151cf6 1792
0de23977 1793 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1794
1d7cfea1 1795out:
05394f39 1796 drm_gem_object_unreference(&obj->base);
1d7cfea1 1797unlock:
de151cf6 1798 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1799 return ret;
de151cf6
JB
1800}
1801
ff72145b
DA
1802/**
1803 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1804 * @dev: DRM device
1805 * @data: GTT mapping ioctl data
1806 * @file: GEM object info
1807 *
1808 * Simply returns the fake offset to userspace so it can mmap it.
1809 * The mmap call will end up in drm_gem_mmap(), which will set things
1810 * up so we can get faults in the handler above.
1811 *
1812 * The fault handler will take care of binding the object into the GTT
1813 * (since it may have been evicted to make room for something), allocating
1814 * a fence register, and mapping the appropriate aperture address into
1815 * userspace.
1816 */
1817int
1818i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1819 struct drm_file *file)
1820{
1821 struct drm_i915_gem_mmap_gtt *args = data;
1822
ff72145b
DA
1823 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1824}
1825
5537252b
CW
1826static inline int
1827i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1828{
1829 return obj->madv == I915_MADV_DONTNEED;
1830}
1831
225067ee
DV
1832/* Immediately discard the backing storage */
1833static void
1834i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1835{
4d6294bf 1836 i915_gem_object_free_mmap_offset(obj);
1286ff73 1837
4d6294bf
CW
1838 if (obj->base.filp == NULL)
1839 return;
e5281ccd 1840
225067ee
DV
1841 /* Our goal here is to return as much of the memory as
1842 * is possible back to the system as we are called from OOM.
1843 * To do this we must instruct the shmfs to drop all of its
1844 * backing pages, *now*.
1845 */
5537252b 1846 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1847 obj->madv = __I915_MADV_PURGED;
1848}
e5281ccd 1849
5537252b
CW
1850/* Try to discard unwanted pages */
1851static void
1852i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1853{
5537252b
CW
1854 struct address_space *mapping;
1855
1856 switch (obj->madv) {
1857 case I915_MADV_DONTNEED:
1858 i915_gem_object_truncate(obj);
1859 case __I915_MADV_PURGED:
1860 return;
1861 }
1862
1863 if (obj->base.filp == NULL)
1864 return;
1865
1866 mapping = file_inode(obj->base.filp)->i_mapping,
1867 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1868}
1869
5cdf5881 1870static void
05394f39 1871i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1872{
90797e6d
ID
1873 struct sg_page_iter sg_iter;
1874 int ret;
1286ff73 1875
05394f39 1876 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1877
6c085a72
CW
1878 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1879 if (ret) {
1880 /* In the event of a disaster, abandon all caches and
1881 * hope for the best.
1882 */
1883 WARN_ON(ret != -EIO);
2c22569b 1884 i915_gem_clflush_object(obj, true);
6c085a72
CW
1885 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1886 }
1887
6dacfd2f 1888 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1889 i915_gem_object_save_bit_17_swizzle(obj);
1890
05394f39
CW
1891 if (obj->madv == I915_MADV_DONTNEED)
1892 obj->dirty = 0;
3ef94daa 1893
90797e6d 1894 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1895 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1896
05394f39 1897 if (obj->dirty)
9da3da66 1898 set_page_dirty(page);
3ef94daa 1899
05394f39 1900 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1901 mark_page_accessed(page);
3ef94daa 1902
9da3da66 1903 page_cache_release(page);
3ef94daa 1904 }
05394f39 1905 obj->dirty = 0;
673a394b 1906
9da3da66
CW
1907 sg_free_table(obj->pages);
1908 kfree(obj->pages);
37e680a1 1909}
6c085a72 1910
dd624afd 1911int
37e680a1
CW
1912i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1913{
1914 const struct drm_i915_gem_object_ops *ops = obj->ops;
1915
2f745ad3 1916 if (obj->pages == NULL)
37e680a1
CW
1917 return 0;
1918
a5570178
CW
1919 if (obj->pages_pin_count)
1920 return -EBUSY;
1921
9843877d 1922 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1923
a2165e31
CW
1924 /* ->put_pages might need to allocate memory for the bit17 swizzle
1925 * array, hence protect them from being reaped by removing them from gtt
1926 * lists early. */
35c20a60 1927 list_del(&obj->global_list);
a2165e31 1928
37e680a1 1929 ops->put_pages(obj);
05394f39 1930 obj->pages = NULL;
37e680a1 1931
5537252b 1932 i915_gem_object_invalidate(obj);
6c085a72
CW
1933
1934 return 0;
1935}
1936
d9973b43 1937static unsigned long
93927ca5
DV
1938__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1939 bool purgeable_only)
6c085a72 1940{
c8725f3d
CW
1941 struct list_head still_in_list;
1942 struct drm_i915_gem_object *obj;
d9973b43 1943 unsigned long count = 0;
6c085a72 1944
57094f82 1945 /*
c8725f3d 1946 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1947 * (due to retiring requests) we have to strictly process only
1948 * one element of the list at the time, and recheck the list
1949 * on every iteration.
c8725f3d
CW
1950 *
1951 * In particular, we must hold a reference whilst removing the
1952 * object as we may end up waiting for and/or retiring the objects.
1953 * This might release the final reference (held by the active list)
1954 * and result in the object being freed from under us. This is
1955 * similar to the precautions the eviction code must take whilst
1956 * removing objects.
1957 *
1958 * Also note that although these lists do not hold a reference to
1959 * the object we can safely grab one here: The final object
1960 * unreferencing and the bound_list are both protected by the
1961 * dev->struct_mutex and so we won't ever be able to observe an
1962 * object on the bound_list with a reference count equals 0.
57094f82 1963 */
c8725f3d
CW
1964 INIT_LIST_HEAD(&still_in_list);
1965 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1966 obj = list_first_entry(&dev_priv->mm.unbound_list,
1967 typeof(*obj), global_list);
1968 list_move_tail(&obj->global_list, &still_in_list);
1969
1970 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1971 continue;
1972
1973 drm_gem_object_reference(&obj->base);
1974
1975 if (i915_gem_object_put_pages(obj) == 0)
1976 count += obj->base.size >> PAGE_SHIFT;
1977
1978 drm_gem_object_unreference(&obj->base);
1979 }
1980 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1981
1982 INIT_LIST_HEAD(&still_in_list);
57094f82 1983 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1984 struct i915_vma *vma, *v;
80dcfdbd 1985
57094f82
CW
1986 obj = list_first_entry(&dev_priv->mm.bound_list,
1987 typeof(*obj), global_list);
c8725f3d 1988 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1989
80dcfdbd
BW
1990 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1991 continue;
1992
57094f82
CW
1993 drm_gem_object_reference(&obj->base);
1994
07fe0b12
BW
1995 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1996 if (i915_vma_unbind(vma))
1997 break;
80dcfdbd 1998
57094f82 1999 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 2000 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
2001
2002 drm_gem_object_unreference(&obj->base);
6c085a72 2003 }
c8725f3d 2004 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
2005
2006 return count;
2007}
2008
d9973b43 2009static unsigned long
93927ca5
DV
2010i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2011{
2012 return __i915_gem_shrink(dev_priv, target, true);
2013}
2014
d9973b43 2015static unsigned long
6c085a72
CW
2016i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2017{
6c085a72 2018 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 2019 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
2020}
2021
37e680a1 2022static int
6c085a72 2023i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2024{
6c085a72 2025 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2026 int page_count, i;
2027 struct address_space *mapping;
9da3da66
CW
2028 struct sg_table *st;
2029 struct scatterlist *sg;
90797e6d 2030 struct sg_page_iter sg_iter;
e5281ccd 2031 struct page *page;
90797e6d 2032 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2033 gfp_t gfp;
e5281ccd 2034
6c085a72
CW
2035 /* Assert that the object is not currently in any GPU domain. As it
2036 * wasn't in the GTT, there shouldn't be any way it could have been in
2037 * a GPU cache
2038 */
2039 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2040 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2041
9da3da66
CW
2042 st = kmalloc(sizeof(*st), GFP_KERNEL);
2043 if (st == NULL)
2044 return -ENOMEM;
2045
05394f39 2046 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2047 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2048 kfree(st);
e5281ccd 2049 return -ENOMEM;
9da3da66 2050 }
e5281ccd 2051
9da3da66
CW
2052 /* Get the list of pages out of our struct file. They'll be pinned
2053 * at this point until we release them.
2054 *
2055 * Fail silently without starting the shrinker
2056 */
496ad9aa 2057 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2058 gfp = mapping_gfp_mask(mapping);
caf49191 2059 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2060 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2061 sg = st->sgl;
2062 st->nents = 0;
2063 for (i = 0; i < page_count; i++) {
6c085a72
CW
2064 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2065 if (IS_ERR(page)) {
2066 i915_gem_purge(dev_priv, page_count);
2067 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2068 }
2069 if (IS_ERR(page)) {
2070 /* We've tried hard to allocate the memory by reaping
2071 * our own buffer, now let the real VM do its job and
2072 * go down in flames if truly OOM.
2073 */
6c085a72 2074 i915_gem_shrink_all(dev_priv);
f461d1be 2075 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2076 if (IS_ERR(page))
2077 goto err_pages;
6c085a72 2078 }
426729dc
KRW
2079#ifdef CONFIG_SWIOTLB
2080 if (swiotlb_nr_tbl()) {
2081 st->nents++;
2082 sg_set_page(sg, page, PAGE_SIZE, 0);
2083 sg = sg_next(sg);
2084 continue;
2085 }
2086#endif
90797e6d
ID
2087 if (!i || page_to_pfn(page) != last_pfn + 1) {
2088 if (i)
2089 sg = sg_next(sg);
2090 st->nents++;
2091 sg_set_page(sg, page, PAGE_SIZE, 0);
2092 } else {
2093 sg->length += PAGE_SIZE;
2094 }
2095 last_pfn = page_to_pfn(page);
3bbbe706
DV
2096
2097 /* Check that the i965g/gm workaround works. */
2098 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2099 }
426729dc
KRW
2100#ifdef CONFIG_SWIOTLB
2101 if (!swiotlb_nr_tbl())
2102#endif
2103 sg_mark_end(sg);
74ce6b6c
CW
2104 obj->pages = st;
2105
6dacfd2f 2106 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2107 i915_gem_object_do_bit_17_swizzle(obj);
2108
2109 return 0;
2110
2111err_pages:
90797e6d
ID
2112 sg_mark_end(sg);
2113 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2114 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2115 sg_free_table(st);
2116 kfree(st);
0820baf3
CW
2117
2118 /* shmemfs first checks if there is enough memory to allocate the page
2119 * and reports ENOSPC should there be insufficient, along with the usual
2120 * ENOMEM for a genuine allocation failure.
2121 *
2122 * We use ENOSPC in our driver to mean that we have run out of aperture
2123 * space and so want to translate the error from shmemfs back to our
2124 * usual understanding of ENOMEM.
2125 */
2126 if (PTR_ERR(page) == -ENOSPC)
2127 return -ENOMEM;
2128 else
2129 return PTR_ERR(page);
673a394b
EA
2130}
2131
37e680a1
CW
2132/* Ensure that the associated pages are gathered from the backing storage
2133 * and pinned into our object. i915_gem_object_get_pages() may be called
2134 * multiple times before they are released by a single call to
2135 * i915_gem_object_put_pages() - once the pages are no longer referenced
2136 * either as a result of memory pressure (reaping pages under the shrinker)
2137 * or as the object is itself released.
2138 */
2139int
2140i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2141{
2142 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2143 const struct drm_i915_gem_object_ops *ops = obj->ops;
2144 int ret;
2145
2f745ad3 2146 if (obj->pages)
37e680a1
CW
2147 return 0;
2148
43e28f09 2149 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2150 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2151 return -EFAULT;
43e28f09
CW
2152 }
2153
a5570178
CW
2154 BUG_ON(obj->pages_pin_count);
2155
37e680a1
CW
2156 ret = ops->get_pages(obj);
2157 if (ret)
2158 return ret;
2159
35c20a60 2160 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2161 return 0;
673a394b
EA
2162}
2163
e2d05a8b 2164static void
05394f39 2165i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2166 struct intel_engine_cs *ring)
673a394b 2167{
05394f39 2168 struct drm_device *dev = obj->base.dev;
69dc4987 2169 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2170 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2171
852835f3 2172 BUG_ON(ring == NULL);
02978ff5
CW
2173 if (obj->ring != ring && obj->last_write_seqno) {
2174 /* Keep the seqno relative to the current ring */
2175 obj->last_write_seqno = seqno;
2176 }
05394f39 2177 obj->ring = ring;
673a394b
EA
2178
2179 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2180 if (!obj->active) {
2181 drm_gem_object_reference(&obj->base);
2182 obj->active = 1;
673a394b 2183 }
e35a41de 2184
05394f39 2185 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2186
0201f1ec 2187 obj->last_read_seqno = seqno;
caea7476 2188
7dd49065 2189 if (obj->fenced_gpu_access) {
caea7476 2190 obj->last_fenced_seqno = seqno;
caea7476 2191
7dd49065
CW
2192 /* Bump MRU to take account of the delayed flush */
2193 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2194 struct drm_i915_fence_reg *reg;
2195
2196 reg = &dev_priv->fence_regs[obj->fence_reg];
2197 list_move_tail(&reg->lru_list,
2198 &dev_priv->mm.fence_list);
2199 }
caea7476
CW
2200 }
2201}
2202
e2d05a8b 2203void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2204 struct intel_engine_cs *ring)
e2d05a8b
BW
2205{
2206 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207 return i915_gem_object_move_to_active(vma->obj, ring);
2208}
2209
caea7476 2210static void
caea7476 2211i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2212{
ca191b13 2213 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2214 struct i915_address_space *vm;
2215 struct i915_vma *vma;
ce44b0ea 2216
65ce3027 2217 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2218 BUG_ON(!obj->active);
caea7476 2219
feb822cf
BW
2220 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2221 vma = i915_gem_obj_to_vma(obj, vm);
2222 if (vma && !list_empty(&vma->mm_list))
2223 list_move_tail(&vma->mm_list, &vm->inactive_list);
2224 }
caea7476 2225
65ce3027 2226 list_del_init(&obj->ring_list);
caea7476
CW
2227 obj->ring = NULL;
2228
65ce3027
CW
2229 obj->last_read_seqno = 0;
2230 obj->last_write_seqno = 0;
2231 obj->base.write_domain = 0;
2232
2233 obj->last_fenced_seqno = 0;
caea7476 2234 obj->fenced_gpu_access = false;
caea7476
CW
2235
2236 obj->active = 0;
2237 drm_gem_object_unreference(&obj->base);
2238
2239 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2240}
673a394b 2241
c8725f3d
CW
2242static void
2243i915_gem_object_retire(struct drm_i915_gem_object *obj)
2244{
a4872ba6 2245 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2246
2247 if (ring == NULL)
2248 return;
2249
2250 if (i915_seqno_passed(ring->get_seqno(ring, true),
2251 obj->last_read_seqno))
2252 i915_gem_object_move_to_inactive(obj);
2253}
2254
9d773091 2255static int
fca26bb4 2256i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2257{
9d773091 2258 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2259 struct intel_engine_cs *ring;
9d773091 2260 int ret, i, j;
53d227f2 2261
107f27a5 2262 /* Carefully retire all requests without writing to the rings */
9d773091 2263 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2264 ret = intel_ring_idle(ring);
2265 if (ret)
2266 return ret;
9d773091 2267 }
9d773091 2268 i915_gem_retire_requests(dev);
107f27a5
CW
2269
2270 /* Finally reset hw state */
9d773091 2271 for_each_ring(ring, dev_priv, i) {
fca26bb4 2272 intel_ring_init_seqno(ring, seqno);
498d2ac1 2273
ebc348b2
BW
2274 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2275 ring->semaphore.sync_seqno[j] = 0;
9d773091 2276 }
53d227f2 2277
9d773091 2278 return 0;
53d227f2
DV
2279}
2280
fca26bb4
MK
2281int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2282{
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 int ret;
2285
2286 if (seqno == 0)
2287 return -EINVAL;
2288
2289 /* HWS page needs to be set less than what we
2290 * will inject to ring
2291 */
2292 ret = i915_gem_init_seqno(dev, seqno - 1);
2293 if (ret)
2294 return ret;
2295
2296 /* Carefully set the last_seqno value so that wrap
2297 * detection still works
2298 */
2299 dev_priv->next_seqno = seqno;
2300 dev_priv->last_seqno = seqno - 1;
2301 if (dev_priv->last_seqno == 0)
2302 dev_priv->last_seqno--;
2303
2304 return 0;
2305}
2306
9d773091
CW
2307int
2308i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2309{
9d773091
CW
2310 struct drm_i915_private *dev_priv = dev->dev_private;
2311
2312 /* reserve 0 for non-seqno */
2313 if (dev_priv->next_seqno == 0) {
fca26bb4 2314 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2315 if (ret)
2316 return ret;
53d227f2 2317
9d773091
CW
2318 dev_priv->next_seqno = 1;
2319 }
53d227f2 2320
f72b3435 2321 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2322 return 0;
53d227f2
DV
2323}
2324
a4872ba6 2325int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2326 struct drm_file *file,
7d736f4f 2327 struct drm_i915_gem_object *obj,
0025c077 2328 u32 *out_seqno)
673a394b 2329{
3e31c6c0 2330 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2331 struct drm_i915_gem_request *request;
7d736f4f 2332 u32 request_ring_position, request_start;
3cce469c
CW
2333 int ret;
2334
7d736f4f 2335 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2336 /*
2337 * Emit any outstanding flushes - execbuf can fail to emit the flush
2338 * after having emitted the batchbuffer command. Hence we need to fix
2339 * things up similar to emitting the lazy request. The difference here
2340 * is that the flush _must_ happen before the next request, no matter
2341 * what.
2342 */
a7b9761d
CW
2343 ret = intel_ring_flush_all_caches(ring);
2344 if (ret)
2345 return ret;
cc889e0f 2346
3c0e234c
CW
2347 request = ring->preallocated_lazy_request;
2348 if (WARN_ON(request == NULL))
acb868d3 2349 return -ENOMEM;
cc889e0f 2350
a71d8d94
CW
2351 /* Record the position of the start of the request so that
2352 * should we detect the updated seqno part-way through the
2353 * GPU processing the request, we never over-estimate the
2354 * position of the head.
2355 */
2356 request_ring_position = intel_ring_get_tail(ring);
2357
9d773091 2358 ret = ring->add_request(ring);
3c0e234c 2359 if (ret)
3bb73aba 2360 return ret;
673a394b 2361
9d773091 2362 request->seqno = intel_ring_get_seqno(ring);
852835f3 2363 request->ring = ring;
7d736f4f 2364 request->head = request_start;
a71d8d94 2365 request->tail = request_ring_position;
7d736f4f
MK
2366
2367 /* Whilst this request exists, batch_obj will be on the
2368 * active_list, and so will hold the active reference. Only when this
2369 * request is retired will the the batch_obj be moved onto the
2370 * inactive_list and lose its active reference. Hence we do not need
2371 * to explicitly hold another reference here.
2372 */
9a7e0c2a 2373 request->batch_obj = obj;
0e50e96b 2374
9a7e0c2a
CW
2375 /* Hold a reference to the current context so that we can inspect
2376 * it later in case a hangcheck error event fires.
2377 */
2378 request->ctx = ring->last_context;
0e50e96b
MK
2379 if (request->ctx)
2380 i915_gem_context_reference(request->ctx);
2381
673a394b 2382 request->emitted_jiffies = jiffies;
852835f3 2383 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2384 request->file_priv = NULL;
852835f3 2385
db53a302
CW
2386 if (file) {
2387 struct drm_i915_file_private *file_priv = file->driver_priv;
2388
1c25595f 2389 spin_lock(&file_priv->mm.lock);
f787a5f5 2390 request->file_priv = file_priv;
b962442e 2391 list_add_tail(&request->client_list,
f787a5f5 2392 &file_priv->mm.request_list);
1c25595f 2393 spin_unlock(&file_priv->mm.lock);
b962442e 2394 }
673a394b 2395
9d773091 2396 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2397 ring->outstanding_lazy_seqno = 0;
3c0e234c 2398 ring->preallocated_lazy_request = NULL;
db53a302 2399
db1b76ca 2400 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2401 i915_queue_hangcheck(ring->dev);
2402
f62a0076
CW
2403 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2404 queue_delayed_work(dev_priv->wq,
2405 &dev_priv->mm.retire_work,
2406 round_jiffies_up_relative(HZ));
2407 intel_mark_busy(dev_priv->dev);
f65d9421 2408 }
cc889e0f 2409
acb868d3 2410 if (out_seqno)
9d773091 2411 *out_seqno = request->seqno;
3cce469c 2412 return 0;
673a394b
EA
2413}
2414
f787a5f5
CW
2415static inline void
2416i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2417{
1c25595f 2418 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2419
1c25595f
CW
2420 if (!file_priv)
2421 return;
1c5d22f7 2422
1c25595f 2423 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2424 list_del(&request->client_list);
2425 request->file_priv = NULL;
1c25595f 2426 spin_unlock(&file_priv->mm.lock);
673a394b 2427}
673a394b 2428
939fd762 2429static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2430 const struct intel_context *ctx)
be62acb4 2431{
44e2c070 2432 unsigned long elapsed;
be62acb4 2433
44e2c070
MK
2434 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2435
2436 if (ctx->hang_stats.banned)
be62acb4
MK
2437 return true;
2438
2439 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2440 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2441 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2442 return true;
88b4aa87
MK
2443 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2444 if (i915_stop_ring_allow_warn(dev_priv))
2445 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2446 return true;
3fac8978 2447 }
be62acb4
MK
2448 }
2449
2450 return false;
2451}
2452
939fd762 2453static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2454 struct intel_context *ctx,
b6b0fac0 2455 const bool guilty)
aa60c664 2456{
44e2c070
MK
2457 struct i915_ctx_hang_stats *hs;
2458
2459 if (WARN_ON(!ctx))
2460 return;
aa60c664 2461
44e2c070
MK
2462 hs = &ctx->hang_stats;
2463
2464 if (guilty) {
939fd762 2465 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2466 hs->batch_active++;
2467 hs->guilty_ts = get_seconds();
2468 } else {
2469 hs->batch_pending++;
aa60c664
MK
2470 }
2471}
2472
0e50e96b
MK
2473static void i915_gem_free_request(struct drm_i915_gem_request *request)
2474{
2475 list_del(&request->list);
2476 i915_gem_request_remove_from_client(request);
2477
2478 if (request->ctx)
2479 i915_gem_context_unreference(request->ctx);
2480
2481 kfree(request);
2482}
2483
8d9fc7fd 2484struct drm_i915_gem_request *
a4872ba6 2485i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2486{
4db080f9 2487 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2488 u32 completed_seqno;
2489
2490 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2491
2492 list_for_each_entry(request, &ring->request_list, list) {
2493 if (i915_seqno_passed(completed_seqno, request->seqno))
2494 continue;
aa60c664 2495
b6b0fac0 2496 return request;
4db080f9 2497 }
b6b0fac0
MK
2498
2499 return NULL;
2500}
2501
2502static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2503 struct intel_engine_cs *ring)
b6b0fac0
MK
2504{
2505 struct drm_i915_gem_request *request;
2506 bool ring_hung;
2507
8d9fc7fd 2508 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2509
2510 if (request == NULL)
2511 return;
2512
2513 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2514
939fd762 2515 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2516
2517 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2518 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2519}
aa60c664 2520
4db080f9 2521static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2522 struct intel_engine_cs *ring)
4db080f9 2523{
dfaae392 2524 while (!list_empty(&ring->active_list)) {
05394f39 2525 struct drm_i915_gem_object *obj;
9375e446 2526
05394f39
CW
2527 obj = list_first_entry(&ring->active_list,
2528 struct drm_i915_gem_object,
2529 ring_list);
9375e446 2530
05394f39 2531 i915_gem_object_move_to_inactive(obj);
673a394b 2532 }
1d62beea
BW
2533
2534 /*
2535 * We must free the requests after all the corresponding objects have
2536 * been moved off active lists. Which is the same order as the normal
2537 * retire_requests function does. This is important if object hold
2538 * implicit references on things like e.g. ppgtt address spaces through
2539 * the request.
2540 */
2541 while (!list_empty(&ring->request_list)) {
2542 struct drm_i915_gem_request *request;
2543
2544 request = list_first_entry(&ring->request_list,
2545 struct drm_i915_gem_request,
2546 list);
2547
2548 i915_gem_free_request(request);
2549 }
e3efda49
CW
2550
2551 /* These may not have been flush before the reset, do so now */
2552 kfree(ring->preallocated_lazy_request);
2553 ring->preallocated_lazy_request = NULL;
2554 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2555}
2556
19b2dbde 2557void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2558{
2559 struct drm_i915_private *dev_priv = dev->dev_private;
2560 int i;
2561
4b9de737 2562 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2563 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2564
94a335db
DV
2565 /*
2566 * Commit delayed tiling changes if we have an object still
2567 * attached to the fence, otherwise just clear the fence.
2568 */
2569 if (reg->obj) {
2570 i915_gem_object_update_fence(reg->obj, reg,
2571 reg->obj->tiling_mode);
2572 } else {
2573 i915_gem_write_fence(dev, i, NULL);
2574 }
312817a3
CW
2575 }
2576}
2577
069efc1d 2578void i915_gem_reset(struct drm_device *dev)
673a394b 2579{
77f01230 2580 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2581 struct intel_engine_cs *ring;
1ec14ad3 2582 int i;
673a394b 2583
4db080f9
CW
2584 /*
2585 * Before we free the objects from the requests, we need to inspect
2586 * them for finding the guilty party. As the requests only borrow
2587 * their reference to the objects, the inspection must be done first.
2588 */
2589 for_each_ring(ring, dev_priv, i)
2590 i915_gem_reset_ring_status(dev_priv, ring);
2591
b4519513 2592 for_each_ring(ring, dev_priv, i)
4db080f9 2593 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2594
acce9ffa
BW
2595 i915_gem_context_reset(dev);
2596
19b2dbde 2597 i915_gem_restore_fences(dev);
673a394b
EA
2598}
2599
2600/**
2601 * This function clears the request list as sequence numbers are passed.
2602 */
1cf0ba14 2603void
a4872ba6 2604i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2605{
673a394b
EA
2606 uint32_t seqno;
2607
db53a302 2608 if (list_empty(&ring->request_list))
6c0594a3
KW
2609 return;
2610
db53a302 2611 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2612
b2eadbc8 2613 seqno = ring->get_seqno(ring, true);
1ec14ad3 2614
e9103038
CW
2615 /* Move any buffers on the active list that are no longer referenced
2616 * by the ringbuffer to the flushing/inactive lists as appropriate,
2617 * before we free the context associated with the requests.
2618 */
2619 while (!list_empty(&ring->active_list)) {
2620 struct drm_i915_gem_object *obj;
2621
2622 obj = list_first_entry(&ring->active_list,
2623 struct drm_i915_gem_object,
2624 ring_list);
2625
2626 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2627 break;
2628
2629 i915_gem_object_move_to_inactive(obj);
2630 }
2631
2632
852835f3 2633 while (!list_empty(&ring->request_list)) {
673a394b 2634 struct drm_i915_gem_request *request;
673a394b 2635
852835f3 2636 request = list_first_entry(&ring->request_list,
673a394b
EA
2637 struct drm_i915_gem_request,
2638 list);
673a394b 2639
dfaae392 2640 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2641 break;
2642
db53a302 2643 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2644 /* We know the GPU must have read the request to have
2645 * sent us the seqno + interrupt, so use the position
2646 * of tail of the request to update the last known position
2647 * of the GPU head.
2648 */
ee1b1e5e 2649 ring->buffer->last_retired_head = request->tail;
b84d5f0c 2650
0e50e96b 2651 i915_gem_free_request(request);
b84d5f0c 2652 }
673a394b 2653
db53a302
CW
2654 if (unlikely(ring->trace_irq_seqno &&
2655 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2656 ring->irq_put(ring);
db53a302 2657 ring->trace_irq_seqno = 0;
9d34e5db 2658 }
23bc5982 2659
db53a302 2660 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2661}
2662
b29c19b6 2663bool
b09a1fec
CW
2664i915_gem_retire_requests(struct drm_device *dev)
2665{
3e31c6c0 2666 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2667 struct intel_engine_cs *ring;
b29c19b6 2668 bool idle = true;
1ec14ad3 2669 int i;
b09a1fec 2670
b29c19b6 2671 for_each_ring(ring, dev_priv, i) {
b4519513 2672 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2673 idle &= list_empty(&ring->request_list);
2674 }
2675
2676 if (idle)
2677 mod_delayed_work(dev_priv->wq,
2678 &dev_priv->mm.idle_work,
2679 msecs_to_jiffies(100));
2680
2681 return idle;
b09a1fec
CW
2682}
2683
75ef9da2 2684static void
673a394b
EA
2685i915_gem_retire_work_handler(struct work_struct *work)
2686{
b29c19b6
CW
2687 struct drm_i915_private *dev_priv =
2688 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2689 struct drm_device *dev = dev_priv->dev;
0a58705b 2690 bool idle;
673a394b 2691
891b48cf 2692 /* Come back later if the device is busy... */
b29c19b6
CW
2693 idle = false;
2694 if (mutex_trylock(&dev->struct_mutex)) {
2695 idle = i915_gem_retire_requests(dev);
2696 mutex_unlock(&dev->struct_mutex);
673a394b 2697 }
b29c19b6 2698 if (!idle)
bcb45086
CW
2699 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2700 round_jiffies_up_relative(HZ));
b29c19b6 2701}
0a58705b 2702
b29c19b6
CW
2703static void
2704i915_gem_idle_work_handler(struct work_struct *work)
2705{
2706 struct drm_i915_private *dev_priv =
2707 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2708
2709 intel_mark_idle(dev_priv->dev);
673a394b
EA
2710}
2711
30dfebf3
DV
2712/**
2713 * Ensures that an object will eventually get non-busy by flushing any required
2714 * write domains, emitting any outstanding lazy request and retiring and
2715 * completed requests.
2716 */
2717static int
2718i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2719{
2720 int ret;
2721
2722 if (obj->active) {
0201f1ec 2723 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2724 if (ret)
2725 return ret;
2726
30dfebf3
DV
2727 i915_gem_retire_requests_ring(obj->ring);
2728 }
2729
2730 return 0;
2731}
2732
23ba4fd0
BW
2733/**
2734 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2735 * @DRM_IOCTL_ARGS: standard ioctl arguments
2736 *
2737 * Returns 0 if successful, else an error is returned with the remaining time in
2738 * the timeout parameter.
2739 * -ETIME: object is still busy after timeout
2740 * -ERESTARTSYS: signal interrupted the wait
2741 * -ENONENT: object doesn't exist
2742 * Also possible, but rare:
2743 * -EAGAIN: GPU wedged
2744 * -ENOMEM: damn
2745 * -ENODEV: Internal IRQ fail
2746 * -E?: The add request failed
2747 *
2748 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2749 * non-zero timeout parameter the wait ioctl will wait for the given number of
2750 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2751 * without holding struct_mutex the object may become re-busied before this
2752 * function completes. A similar but shorter * race condition exists in the busy
2753 * ioctl
2754 */
2755int
2756i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2757{
3e31c6c0 2758 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2759 struct drm_i915_gem_wait *args = data;
2760 struct drm_i915_gem_object *obj;
a4872ba6 2761 struct intel_engine_cs *ring = NULL;
eac1f14f 2762 struct timespec timeout_stack, *timeout = NULL;
f69061be 2763 unsigned reset_counter;
23ba4fd0
BW
2764 u32 seqno = 0;
2765 int ret = 0;
2766
eac1f14f
BW
2767 if (args->timeout_ns >= 0) {
2768 timeout_stack = ns_to_timespec(args->timeout_ns);
2769 timeout = &timeout_stack;
2770 }
23ba4fd0
BW
2771
2772 ret = i915_mutex_lock_interruptible(dev);
2773 if (ret)
2774 return ret;
2775
2776 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2777 if (&obj->base == NULL) {
2778 mutex_unlock(&dev->struct_mutex);
2779 return -ENOENT;
2780 }
2781
30dfebf3
DV
2782 /* Need to make sure the object gets inactive eventually. */
2783 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2784 if (ret)
2785 goto out;
2786
2787 if (obj->active) {
0201f1ec 2788 seqno = obj->last_read_seqno;
23ba4fd0
BW
2789 ring = obj->ring;
2790 }
2791
2792 if (seqno == 0)
2793 goto out;
2794
23ba4fd0
BW
2795 /* Do this after OLR check to make sure we make forward progress polling
2796 * on this IOCTL with a 0 timeout (like busy ioctl)
2797 */
2798 if (!args->timeout_ns) {
2799 ret = -ETIME;
2800 goto out;
2801 }
2802
2803 drm_gem_object_unreference(&obj->base);
f69061be 2804 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2805 mutex_unlock(&dev->struct_mutex);
2806
b29c19b6 2807 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2808 if (timeout)
eac1f14f 2809 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2810 return ret;
2811
2812out:
2813 drm_gem_object_unreference(&obj->base);
2814 mutex_unlock(&dev->struct_mutex);
2815 return ret;
2816}
2817
5816d648
BW
2818/**
2819 * i915_gem_object_sync - sync an object to a ring.
2820 *
2821 * @obj: object which may be in use on another ring.
2822 * @to: ring we wish to use the object on. May be NULL.
2823 *
2824 * This code is meant to abstract object synchronization with the GPU.
2825 * Calling with NULL implies synchronizing the object with the CPU
2826 * rather than a particular GPU ring.
2827 *
2828 * Returns 0 if successful, else propagates up the lower layer error.
2829 */
2911a35b
BW
2830int
2831i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2832 struct intel_engine_cs *to)
2911a35b 2833{
a4872ba6 2834 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2835 u32 seqno;
2836 int ret, idx;
2837
2838 if (from == NULL || to == from)
2839 return 0;
2840
5816d648 2841 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2842 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2843
2844 idx = intel_ring_sync_index(from, to);
2845
0201f1ec 2846 seqno = obj->last_read_seqno;
ebc348b2 2847 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2848 return 0;
2849
b4aca010
BW
2850 ret = i915_gem_check_olr(obj->ring, seqno);
2851 if (ret)
2852 return ret;
2911a35b 2853
b52b89da 2854 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2855 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2856 if (!ret)
7b01e260
MK
2857 /* We use last_read_seqno because sync_to()
2858 * might have just caused seqno wrap under
2859 * the radar.
2860 */
ebc348b2 2861 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2862
e3a5a225 2863 return ret;
2911a35b
BW
2864}
2865
b5ffc9bc
CW
2866static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2867{
2868 u32 old_write_domain, old_read_domains;
2869
b5ffc9bc
CW
2870 /* Force a pagefault for domain tracking on next user access */
2871 i915_gem_release_mmap(obj);
2872
b97c3d9c
KP
2873 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2874 return;
2875
97c809fd
CW
2876 /* Wait for any direct GTT access to complete */
2877 mb();
2878
b5ffc9bc
CW
2879 old_read_domains = obj->base.read_domains;
2880 old_write_domain = obj->base.write_domain;
2881
2882 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2883 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2884
2885 trace_i915_gem_object_change_domain(obj,
2886 old_read_domains,
2887 old_write_domain);
2888}
2889
07fe0b12 2890int i915_vma_unbind(struct i915_vma *vma)
673a394b 2891{
07fe0b12 2892 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2893 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2894 int ret;
673a394b 2895
07fe0b12 2896 if (list_empty(&vma->vma_link))
673a394b
EA
2897 return 0;
2898
0ff501cb
DV
2899 if (!drm_mm_node_allocated(&vma->node)) {
2900 i915_gem_vma_destroy(vma);
0ff501cb
DV
2901 return 0;
2902 }
433544bd 2903
d7f46fc4 2904 if (vma->pin_count)
31d8d651 2905 return -EBUSY;
673a394b 2906
c4670ad0
CW
2907 BUG_ON(obj->pages == NULL);
2908
a8198eea 2909 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2910 if (ret)
a8198eea
CW
2911 return ret;
2912 /* Continue on if we fail due to EIO, the GPU is hung so we
2913 * should be safe and we need to cleanup or else we might
2914 * cause memory corruption through use-after-free.
2915 */
2916
8b1bc9b4
DV
2917 if (i915_is_ggtt(vma->vm)) {
2918 i915_gem_object_finish_gtt(obj);
5323fd04 2919
8b1bc9b4
DV
2920 /* release the fence reg _after_ flushing */
2921 ret = i915_gem_object_put_fence(obj);
2922 if (ret)
2923 return ret;
2924 }
96b47b65 2925
07fe0b12 2926 trace_i915_vma_unbind(vma);
db53a302 2927
6f65e29a
BW
2928 vma->unbind_vma(vma);
2929
74163907 2930 i915_gem_gtt_finish_object(obj);
7bddb01f 2931
64bf9303 2932 list_del_init(&vma->mm_list);
75e9e915 2933 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2934 if (i915_is_ggtt(vma->vm))
2935 obj->map_and_fenceable = true;
673a394b 2936
2f633156
BW
2937 drm_mm_remove_node(&vma->node);
2938 i915_gem_vma_destroy(vma);
2939
2940 /* Since the unbound list is global, only move to that list if
b93dab6e 2941 * no more VMAs exist. */
2f633156
BW
2942 if (list_empty(&obj->vma_list))
2943 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2944
70903c3b
CW
2945 /* And finally now the object is completely decoupled from this vma,
2946 * we can drop its hold on the backing storage and allow it to be
2947 * reaped by the shrinker.
2948 */
2949 i915_gem_object_unpin_pages(obj);
2950
88241785 2951 return 0;
54cf91dc
CW
2952}
2953
b2da9fe5 2954int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2955{
3e31c6c0 2956 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2957 struct intel_engine_cs *ring;
1ec14ad3 2958 int ret, i;
4df2faf4 2959
4df2faf4 2960 /* Flush everything onto the inactive list. */
b4519513 2961 for_each_ring(ring, dev_priv, i) {
691e6415 2962 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2963 if (ret)
2964 return ret;
2965
3e960501 2966 ret = intel_ring_idle(ring);
1ec14ad3
CW
2967 if (ret)
2968 return ret;
2969 }
4df2faf4 2970
8a1a49f9 2971 return 0;
4df2faf4
DV
2972}
2973
9ce079e4
CW
2974static void i965_write_fence_reg(struct drm_device *dev, int reg,
2975 struct drm_i915_gem_object *obj)
de151cf6 2976{
3e31c6c0 2977 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2978 int fence_reg;
2979 int fence_pitch_shift;
de151cf6 2980
56c844e5
ID
2981 if (INTEL_INFO(dev)->gen >= 6) {
2982 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2983 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2984 } else {
2985 fence_reg = FENCE_REG_965_0;
2986 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2987 }
2988
d18b9619
CW
2989 fence_reg += reg * 8;
2990
2991 /* To w/a incoherency with non-atomic 64-bit register updates,
2992 * we split the 64-bit update into two 32-bit writes. In order
2993 * for a partial fence not to be evaluated between writes, we
2994 * precede the update with write to turn off the fence register,
2995 * and only enable the fence as the last step.
2996 *
2997 * For extra levels of paranoia, we make sure each step lands
2998 * before applying the next step.
2999 */
3000 I915_WRITE(fence_reg, 0);
3001 POSTING_READ(fence_reg);
3002
9ce079e4 3003 if (obj) {
f343c5f6 3004 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3005 uint64_t val;
de151cf6 3006
f343c5f6 3007 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3008 0xfffff000) << 32;
f343c5f6 3009 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3010 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3011 if (obj->tiling_mode == I915_TILING_Y)
3012 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3013 val |= I965_FENCE_REG_VALID;
c6642782 3014
d18b9619
CW
3015 I915_WRITE(fence_reg + 4, val >> 32);
3016 POSTING_READ(fence_reg + 4);
3017
3018 I915_WRITE(fence_reg + 0, val);
3019 POSTING_READ(fence_reg);
3020 } else {
3021 I915_WRITE(fence_reg + 4, 0);
3022 POSTING_READ(fence_reg + 4);
3023 }
de151cf6
JB
3024}
3025
9ce079e4
CW
3026static void i915_write_fence_reg(struct drm_device *dev, int reg,
3027 struct drm_i915_gem_object *obj)
de151cf6 3028{
3e31c6c0 3029 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3030 u32 val;
de151cf6 3031
9ce079e4 3032 if (obj) {
f343c5f6 3033 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3034 int pitch_val;
3035 int tile_width;
c6642782 3036
f343c5f6 3037 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3038 (size & -size) != size ||
f343c5f6
BW
3039 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3040 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3041 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3042
9ce079e4
CW
3043 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3044 tile_width = 128;
3045 else
3046 tile_width = 512;
3047
3048 /* Note: pitch better be a power of two tile widths */
3049 pitch_val = obj->stride / tile_width;
3050 pitch_val = ffs(pitch_val) - 1;
3051
f343c5f6 3052 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3053 if (obj->tiling_mode == I915_TILING_Y)
3054 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3055 val |= I915_FENCE_SIZE_BITS(size);
3056 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3057 val |= I830_FENCE_REG_VALID;
3058 } else
3059 val = 0;
3060
3061 if (reg < 8)
3062 reg = FENCE_REG_830_0 + reg * 4;
3063 else
3064 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3065
3066 I915_WRITE(reg, val);
3067 POSTING_READ(reg);
de151cf6
JB
3068}
3069
9ce079e4
CW
3070static void i830_write_fence_reg(struct drm_device *dev, int reg,
3071 struct drm_i915_gem_object *obj)
de151cf6 3072{
3e31c6c0 3073 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3074 uint32_t val;
de151cf6 3075
9ce079e4 3076 if (obj) {
f343c5f6 3077 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3078 uint32_t pitch_val;
de151cf6 3079
f343c5f6 3080 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3081 (size & -size) != size ||
f343c5f6
BW
3082 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3083 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3084 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3085
9ce079e4
CW
3086 pitch_val = obj->stride / 128;
3087 pitch_val = ffs(pitch_val) - 1;
de151cf6 3088
f343c5f6 3089 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3090 if (obj->tiling_mode == I915_TILING_Y)
3091 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3092 val |= I830_FENCE_SIZE_BITS(size);
3093 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3094 val |= I830_FENCE_REG_VALID;
3095 } else
3096 val = 0;
c6642782 3097
9ce079e4
CW
3098 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3099 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3100}
3101
d0a57789
CW
3102inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3103{
3104 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3105}
3106
9ce079e4
CW
3107static void i915_gem_write_fence(struct drm_device *dev, int reg,
3108 struct drm_i915_gem_object *obj)
3109{
d0a57789
CW
3110 struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112 /* Ensure that all CPU reads are completed before installing a fence
3113 * and all writes before removing the fence.
3114 */
3115 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3116 mb();
3117
94a335db
DV
3118 WARN(obj && (!obj->stride || !obj->tiling_mode),
3119 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3120 obj->stride, obj->tiling_mode);
3121
9ce079e4 3122 switch (INTEL_INFO(dev)->gen) {
5ab31333 3123 case 8:
9ce079e4 3124 case 7:
56c844e5 3125 case 6:
9ce079e4
CW
3126 case 5:
3127 case 4: i965_write_fence_reg(dev, reg, obj); break;
3128 case 3: i915_write_fence_reg(dev, reg, obj); break;
3129 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3130 default: BUG();
9ce079e4 3131 }
d0a57789
CW
3132
3133 /* And similarly be paranoid that no direct access to this region
3134 * is reordered to before the fence is installed.
3135 */
3136 if (i915_gem_object_needs_mb(obj))
3137 mb();
de151cf6
JB
3138}
3139
61050808
CW
3140static inline int fence_number(struct drm_i915_private *dev_priv,
3141 struct drm_i915_fence_reg *fence)
3142{
3143 return fence - dev_priv->fence_regs;
3144}
3145
3146static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3147 struct drm_i915_fence_reg *fence,
3148 bool enable)
3149{
2dc8aae0 3150 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3151 int reg = fence_number(dev_priv, fence);
3152
3153 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3154
3155 if (enable) {
46a0b638 3156 obj->fence_reg = reg;
61050808
CW
3157 fence->obj = obj;
3158 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3159 } else {
3160 obj->fence_reg = I915_FENCE_REG_NONE;
3161 fence->obj = NULL;
3162 list_del_init(&fence->lru_list);
3163 }
94a335db 3164 obj->fence_dirty = false;
61050808
CW
3165}
3166
d9e86c0e 3167static int
d0a57789 3168i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3169{
1c293ea3 3170 if (obj->last_fenced_seqno) {
86d5bc37 3171 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3172 if (ret)
3173 return ret;
d9e86c0e
CW
3174
3175 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3176 }
3177
86d5bc37 3178 obj->fenced_gpu_access = false;
d9e86c0e
CW
3179 return 0;
3180}
3181
3182int
3183i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3184{
61050808 3185 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3186 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3187 int ret;
3188
d0a57789 3189 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3190 if (ret)
3191 return ret;
3192
61050808
CW
3193 if (obj->fence_reg == I915_FENCE_REG_NONE)
3194 return 0;
d9e86c0e 3195
f9c513e9
CW
3196 fence = &dev_priv->fence_regs[obj->fence_reg];
3197
aff10b30
DV
3198 if (WARN_ON(fence->pin_count))
3199 return -EBUSY;
3200
61050808 3201 i915_gem_object_fence_lost(obj);
f9c513e9 3202 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3203
3204 return 0;
3205}
3206
3207static struct drm_i915_fence_reg *
a360bb1a 3208i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3209{
ae3db24a 3210 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3211 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3212 int i;
ae3db24a
DV
3213
3214 /* First try to find a free reg */
d9e86c0e 3215 avail = NULL;
ae3db24a
DV
3216 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3217 reg = &dev_priv->fence_regs[i];
3218 if (!reg->obj)
d9e86c0e 3219 return reg;
ae3db24a 3220
1690e1eb 3221 if (!reg->pin_count)
d9e86c0e 3222 avail = reg;
ae3db24a
DV
3223 }
3224
d9e86c0e 3225 if (avail == NULL)
5dce5b93 3226 goto deadlock;
ae3db24a
DV
3227
3228 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3229 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3230 if (reg->pin_count)
ae3db24a
DV
3231 continue;
3232
8fe301ad 3233 return reg;
ae3db24a
DV
3234 }
3235
5dce5b93
CW
3236deadlock:
3237 /* Wait for completion of pending flips which consume fences */
3238 if (intel_has_pending_fb_unpin(dev))
3239 return ERR_PTR(-EAGAIN);
3240
3241 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3242}
3243
de151cf6 3244/**
9a5a53b3 3245 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3246 * @obj: object to map through a fence reg
3247 *
3248 * When mapping objects through the GTT, userspace wants to be able to write
3249 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3250 * This function walks the fence regs looking for a free one for @obj,
3251 * stealing one if it can't find any.
3252 *
3253 * It then sets up the reg based on the object's properties: address, pitch
3254 * and tiling format.
9a5a53b3
CW
3255 *
3256 * For an untiled surface, this removes any existing fence.
de151cf6 3257 */
8c4b8c3f 3258int
06d98131 3259i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3260{
05394f39 3261 struct drm_device *dev = obj->base.dev;
79e53945 3262 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3263 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3264 struct drm_i915_fence_reg *reg;
ae3db24a 3265 int ret;
de151cf6 3266
14415745
CW
3267 /* Have we updated the tiling parameters upon the object and so
3268 * will need to serialise the write to the associated fence register?
3269 */
5d82e3e6 3270 if (obj->fence_dirty) {
d0a57789 3271 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3272 if (ret)
3273 return ret;
3274 }
9a5a53b3 3275
d9e86c0e 3276 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3277 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3278 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3279 if (!obj->fence_dirty) {
14415745
CW
3280 list_move_tail(&reg->lru_list,
3281 &dev_priv->mm.fence_list);
3282 return 0;
3283 }
3284 } else if (enable) {
3285 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3286 if (IS_ERR(reg))
3287 return PTR_ERR(reg);
d9e86c0e 3288
14415745
CW
3289 if (reg->obj) {
3290 struct drm_i915_gem_object *old = reg->obj;
3291
d0a57789 3292 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3293 if (ret)
3294 return ret;
3295
14415745 3296 i915_gem_object_fence_lost(old);
29c5a587 3297 }
14415745 3298 } else
a09ba7fa 3299 return 0;
a09ba7fa 3300
14415745 3301 i915_gem_object_update_fence(obj, reg, enable);
14415745 3302
9ce079e4 3303 return 0;
de151cf6
JB
3304}
3305
42d6ab48
CW
3306static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3307 struct drm_mm_node *gtt_space,
3308 unsigned long cache_level)
3309{
3310 struct drm_mm_node *other;
3311
3312 /* On non-LLC machines we have to be careful when putting differing
3313 * types of snoopable memory together to avoid the prefetcher
4239ca77 3314 * crossing memory domains and dying.
42d6ab48
CW
3315 */
3316 if (HAS_LLC(dev))
3317 return true;
3318
c6cfb325 3319 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3320 return true;
3321
3322 if (list_empty(&gtt_space->node_list))
3323 return true;
3324
3325 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3326 if (other->allocated && !other->hole_follows && other->color != cache_level)
3327 return false;
3328
3329 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3330 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3331 return false;
3332
3333 return true;
3334}
3335
3336static void i915_gem_verify_gtt(struct drm_device *dev)
3337{
3338#if WATCH_GTT
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340 struct drm_i915_gem_object *obj;
3341 int err = 0;
3342
35c20a60 3343 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3344 if (obj->gtt_space == NULL) {
3345 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3346 err++;
3347 continue;
3348 }
3349
3350 if (obj->cache_level != obj->gtt_space->color) {
3351 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3352 i915_gem_obj_ggtt_offset(obj),
3353 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3354 obj->cache_level,
3355 obj->gtt_space->color);
3356 err++;
3357 continue;
3358 }
3359
3360 if (!i915_gem_valid_gtt_space(dev,
3361 obj->gtt_space,
3362 obj->cache_level)) {
3363 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3364 i915_gem_obj_ggtt_offset(obj),
3365 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3366 obj->cache_level);
3367 err++;
3368 continue;
3369 }
3370 }
3371
3372 WARN_ON(err);
3373#endif
3374}
3375
673a394b
EA
3376/**
3377 * Finds free space in the GTT aperture and binds the object there.
3378 */
262de145 3379static struct i915_vma *
07fe0b12
BW
3380i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3381 struct i915_address_space *vm,
3382 unsigned alignment,
d23db88c 3383 uint64_t flags)
673a394b 3384{
05394f39 3385 struct drm_device *dev = obj->base.dev;
3e31c6c0 3386 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3387 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3388 unsigned long start =
3389 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3390 unsigned long end =
1ec9e26d 3391 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3392 struct i915_vma *vma;
07f73f69 3393 int ret;
673a394b 3394
e28f8711
CW
3395 fence_size = i915_gem_get_gtt_size(dev,
3396 obj->base.size,
3397 obj->tiling_mode);
3398 fence_alignment = i915_gem_get_gtt_alignment(dev,
3399 obj->base.size,
d865110c 3400 obj->tiling_mode, true);
e28f8711 3401 unfenced_alignment =
d865110c 3402 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3403 obj->base.size,
3404 obj->tiling_mode, false);
a00b10c3 3405
673a394b 3406 if (alignment == 0)
1ec9e26d 3407 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3408 unfenced_alignment;
1ec9e26d 3409 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3410 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3411 return ERR_PTR(-EINVAL);
673a394b
EA
3412 }
3413
1ec9e26d 3414 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3415
654fc607
CW
3416 /* If the object is bigger than the entire aperture, reject it early
3417 * before evicting everything in a vain attempt to find space.
3418 */
d23db88c
CW
3419 if (obj->base.size > end) {
3420 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3421 obj->base.size,
1ec9e26d 3422 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3423 end);
262de145 3424 return ERR_PTR(-E2BIG);
654fc607
CW
3425 }
3426
37e680a1 3427 ret = i915_gem_object_get_pages(obj);
6c085a72 3428 if (ret)
262de145 3429 return ERR_PTR(ret);
6c085a72 3430
fbdda6fb
CW
3431 i915_gem_object_pin_pages(obj);
3432
accfef2e 3433 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3434 if (IS_ERR(vma))
bc6bc15b 3435 goto err_unpin;
2f633156 3436
0a9ae0d7 3437search_free:
07fe0b12 3438 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3439 size, alignment,
d23db88c
CW
3440 obj->cache_level,
3441 start, end,
62347f9e
LK
3442 DRM_MM_SEARCH_DEFAULT,
3443 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3444 if (ret) {
f6cd1f15 3445 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3446 obj->cache_level,
3447 start, end,
3448 flags);
dc9dd7a2
CW
3449 if (ret == 0)
3450 goto search_free;
9731129c 3451
bc6bc15b 3452 goto err_free_vma;
673a394b 3453 }
2f633156 3454 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3455 obj->cache_level))) {
2f633156 3456 ret = -EINVAL;
bc6bc15b 3457 goto err_remove_node;
673a394b
EA
3458 }
3459
74163907 3460 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3461 if (ret)
bc6bc15b 3462 goto err_remove_node;
673a394b 3463
35c20a60 3464 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3465 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3466
4bd561b3
BW
3467 if (i915_is_ggtt(vm)) {
3468 bool mappable, fenceable;
a00b10c3 3469
49987099
DV
3470 fenceable = (vma->node.size == fence_size &&
3471 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3472
49987099
DV
3473 mappable = (vma->node.start + obj->base.size <=
3474 dev_priv->gtt.mappable_end);
a00b10c3 3475
5cacaac7 3476 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3477 }
75e9e915 3478
1ec9e26d 3479 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3480
1ec9e26d 3481 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3482 vma->bind_vma(vma, obj->cache_level,
3483 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3484
42d6ab48 3485 i915_gem_verify_gtt(dev);
262de145 3486 return vma;
2f633156 3487
bc6bc15b 3488err_remove_node:
6286ef9b 3489 drm_mm_remove_node(&vma->node);
bc6bc15b 3490err_free_vma:
2f633156 3491 i915_gem_vma_destroy(vma);
262de145 3492 vma = ERR_PTR(ret);
bc6bc15b 3493err_unpin:
2f633156 3494 i915_gem_object_unpin_pages(obj);
262de145 3495 return vma;
673a394b
EA
3496}
3497
000433b6 3498bool
2c22569b
CW
3499i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3500 bool force)
673a394b 3501{
673a394b
EA
3502 /* If we don't have a page list set up, then we're not pinned
3503 * to GPU, and we can ignore the cache flush because it'll happen
3504 * again at bind time.
3505 */
05394f39 3506 if (obj->pages == NULL)
000433b6 3507 return false;
673a394b 3508
769ce464
ID
3509 /*
3510 * Stolen memory is always coherent with the GPU as it is explicitly
3511 * marked as wc by the system, or the system is cache-coherent.
3512 */
3513 if (obj->stolen)
000433b6 3514 return false;
769ce464 3515
9c23f7fc
CW
3516 /* If the GPU is snooping the contents of the CPU cache,
3517 * we do not need to manually clear the CPU cache lines. However,
3518 * the caches are only snooped when the render cache is
3519 * flushed/invalidated. As we always have to emit invalidations
3520 * and flushes when moving into and out of the RENDER domain, correct
3521 * snooping behaviour occurs naturally as the result of our domain
3522 * tracking.
3523 */
2c22569b 3524 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3525 return false;
9c23f7fc 3526
1c5d22f7 3527 trace_i915_gem_object_clflush(obj);
9da3da66 3528 drm_clflush_sg(obj->pages);
000433b6
CW
3529
3530 return true;
e47c68e9
EA
3531}
3532
3533/** Flushes the GTT write domain for the object if it's dirty. */
3534static void
05394f39 3535i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3536{
1c5d22f7
CW
3537 uint32_t old_write_domain;
3538
05394f39 3539 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3540 return;
3541
63256ec5 3542 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3543 * to it immediately go to main memory as far as we know, so there's
3544 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3545 *
3546 * However, we do have to enforce the order so that all writes through
3547 * the GTT land before any writes to the device, such as updates to
3548 * the GATT itself.
e47c68e9 3549 */
63256ec5
CW
3550 wmb();
3551
05394f39
CW
3552 old_write_domain = obj->base.write_domain;
3553 obj->base.write_domain = 0;
1c5d22f7
CW
3554
3555 trace_i915_gem_object_change_domain(obj,
05394f39 3556 obj->base.read_domains,
1c5d22f7 3557 old_write_domain);
e47c68e9
EA
3558}
3559
3560/** Flushes the CPU write domain for the object if it's dirty. */
3561static void
2c22569b
CW
3562i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3563 bool force)
e47c68e9 3564{
1c5d22f7 3565 uint32_t old_write_domain;
e47c68e9 3566
05394f39 3567 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3568 return;
3569
000433b6
CW
3570 if (i915_gem_clflush_object(obj, force))
3571 i915_gem_chipset_flush(obj->base.dev);
3572
05394f39
CW
3573 old_write_domain = obj->base.write_domain;
3574 obj->base.write_domain = 0;
1c5d22f7
CW
3575
3576 trace_i915_gem_object_change_domain(obj,
05394f39 3577 obj->base.read_domains,
1c5d22f7 3578 old_write_domain);
e47c68e9
EA
3579}
3580
2ef7eeaa
EA
3581/**
3582 * Moves a single object to the GTT read, and possibly write domain.
3583 *
3584 * This function returns when the move is complete, including waiting on
3585 * flushes to occur.
3586 */
79e53945 3587int
2021746e 3588i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3589{
3e31c6c0 3590 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3591 uint32_t old_write_domain, old_read_domains;
e47c68e9 3592 int ret;
2ef7eeaa 3593
02354392 3594 /* Not valid to be called on unbound objects. */
9843877d 3595 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3596 return -EINVAL;
3597
8d7e3de1
CW
3598 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3599 return 0;
3600
0201f1ec 3601 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3602 if (ret)
3603 return ret;
3604
c8725f3d 3605 i915_gem_object_retire(obj);
2c22569b 3606 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3607
d0a57789
CW
3608 /* Serialise direct access to this object with the barriers for
3609 * coherent writes from the GPU, by effectively invalidating the
3610 * GTT domain upon first access.
3611 */
3612 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3613 mb();
3614
05394f39
CW
3615 old_write_domain = obj->base.write_domain;
3616 old_read_domains = obj->base.read_domains;
1c5d22f7 3617
e47c68e9
EA
3618 /* It should now be out of any other write domains, and we can update
3619 * the domain values for our changes.
3620 */
05394f39
CW
3621 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3622 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3623 if (write) {
05394f39
CW
3624 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3625 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3626 obj->dirty = 1;
2ef7eeaa
EA
3627 }
3628
1c5d22f7
CW
3629 trace_i915_gem_object_change_domain(obj,
3630 old_read_domains,
3631 old_write_domain);
3632
8325a09d 3633 /* And bump the LRU for this access */
ca191b13 3634 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3635 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3636 if (vma)
3637 list_move_tail(&vma->mm_list,
3638 &dev_priv->gtt.base.inactive_list);
3639
3640 }
8325a09d 3641
e47c68e9
EA
3642 return 0;
3643}
3644
e4ffd173
CW
3645int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3646 enum i915_cache_level cache_level)
3647{
7bddb01f 3648 struct drm_device *dev = obj->base.dev;
df6f783a 3649 struct i915_vma *vma, *next;
e4ffd173
CW
3650 int ret;
3651
3652 if (obj->cache_level == cache_level)
3653 return 0;
3654
d7f46fc4 3655 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3656 DRM_DEBUG("can not change the cache level of pinned objects\n");
3657 return -EBUSY;
3658 }
3659
df6f783a 3660 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3661 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3662 ret = i915_vma_unbind(vma);
3089c6f2
BW
3663 if (ret)
3664 return ret;
3089c6f2 3665 }
42d6ab48
CW
3666 }
3667
3089c6f2 3668 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3669 ret = i915_gem_object_finish_gpu(obj);
3670 if (ret)
3671 return ret;
3672
3673 i915_gem_object_finish_gtt(obj);
3674
3675 /* Before SandyBridge, you could not use tiling or fence
3676 * registers with snooped memory, so relinquish any fences
3677 * currently pointing to our region in the aperture.
3678 */
42d6ab48 3679 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3680 ret = i915_gem_object_put_fence(obj);
3681 if (ret)
3682 return ret;
3683 }
3684
6f65e29a 3685 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3686 if (drm_mm_node_allocated(&vma->node))
3687 vma->bind_vma(vma, cache_level,
3688 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3689 }
3690
2c22569b
CW
3691 list_for_each_entry(vma, &obj->vma_list, vma_link)
3692 vma->node.color = cache_level;
3693 obj->cache_level = cache_level;
3694
3695 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3696 u32 old_read_domains, old_write_domain;
3697
3698 /* If we're coming from LLC cached, then we haven't
3699 * actually been tracking whether the data is in the
3700 * CPU cache or not, since we only allow one bit set
3701 * in obj->write_domain and have been skipping the clflushes.
3702 * Just set it to the CPU cache for now.
3703 */
c8725f3d 3704 i915_gem_object_retire(obj);
e4ffd173 3705 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3706
3707 old_read_domains = obj->base.read_domains;
3708 old_write_domain = obj->base.write_domain;
3709
3710 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3711 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3712
3713 trace_i915_gem_object_change_domain(obj,
3714 old_read_domains,
3715 old_write_domain);
3716 }
3717
42d6ab48 3718 i915_gem_verify_gtt(dev);
e4ffd173
CW
3719 return 0;
3720}
3721
199adf40
BW
3722int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3723 struct drm_file *file)
e6994aee 3724{
199adf40 3725 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3726 struct drm_i915_gem_object *obj;
3727 int ret;
3728
3729 ret = i915_mutex_lock_interruptible(dev);
3730 if (ret)
3731 return ret;
3732
3733 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3734 if (&obj->base == NULL) {
3735 ret = -ENOENT;
3736 goto unlock;
3737 }
3738
651d794f
CW
3739 switch (obj->cache_level) {
3740 case I915_CACHE_LLC:
3741 case I915_CACHE_L3_LLC:
3742 args->caching = I915_CACHING_CACHED;
3743 break;
3744
4257d3ba
CW
3745 case I915_CACHE_WT:
3746 args->caching = I915_CACHING_DISPLAY;
3747 break;
3748
651d794f
CW
3749 default:
3750 args->caching = I915_CACHING_NONE;
3751 break;
3752 }
e6994aee
CW
3753
3754 drm_gem_object_unreference(&obj->base);
3755unlock:
3756 mutex_unlock(&dev->struct_mutex);
3757 return ret;
3758}
3759
199adf40
BW
3760int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3761 struct drm_file *file)
e6994aee 3762{
199adf40 3763 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3764 struct drm_i915_gem_object *obj;
3765 enum i915_cache_level level;
3766 int ret;
3767
199adf40
BW
3768 switch (args->caching) {
3769 case I915_CACHING_NONE:
e6994aee
CW
3770 level = I915_CACHE_NONE;
3771 break;
199adf40 3772 case I915_CACHING_CACHED:
e6994aee
CW
3773 level = I915_CACHE_LLC;
3774 break;
4257d3ba
CW
3775 case I915_CACHING_DISPLAY:
3776 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3777 break;
e6994aee
CW
3778 default:
3779 return -EINVAL;
3780 }
3781
3bc2913e
BW
3782 ret = i915_mutex_lock_interruptible(dev);
3783 if (ret)
3784 return ret;
3785
e6994aee
CW
3786 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3787 if (&obj->base == NULL) {
3788 ret = -ENOENT;
3789 goto unlock;
3790 }
3791
3792 ret = i915_gem_object_set_cache_level(obj, level);
3793
3794 drm_gem_object_unreference(&obj->base);
3795unlock:
3796 mutex_unlock(&dev->struct_mutex);
3797 return ret;
3798}
3799
cc98b413
CW
3800static bool is_pin_display(struct drm_i915_gem_object *obj)
3801{
19656430
OM
3802 struct i915_vma *vma;
3803
3804 if (list_empty(&obj->vma_list))
3805 return false;
3806
3807 vma = i915_gem_obj_to_ggtt(obj);
3808 if (!vma)
3809 return false;
3810
cc98b413
CW
3811 /* There are 3 sources that pin objects:
3812 * 1. The display engine (scanouts, sprites, cursors);
3813 * 2. Reservations for execbuffer;
3814 * 3. The user.
3815 *
3816 * We can ignore reservations as we hold the struct_mutex and
3817 * are only called outside of the reservation path. The user
3818 * can only increment pin_count once, and so if after
3819 * subtracting the potential reference by the user, any pin_count
3820 * remains, it must be due to another use by the display engine.
3821 */
19656430 3822 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3823}
3824
b9241ea3 3825/*
2da3b9b9
CW
3826 * Prepare buffer for display plane (scanout, cursors, etc).
3827 * Can be called from an uninterruptible phase (modesetting) and allows
3828 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3829 */
3830int
2da3b9b9
CW
3831i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3832 u32 alignment,
a4872ba6 3833 struct intel_engine_cs *pipelined)
b9241ea3 3834{
2da3b9b9 3835 u32 old_read_domains, old_write_domain;
19656430 3836 bool was_pin_display;
b9241ea3
ZW
3837 int ret;
3838
0be73284 3839 if (pipelined != obj->ring) {
2911a35b
BW
3840 ret = i915_gem_object_sync(obj, pipelined);
3841 if (ret)
b9241ea3
ZW
3842 return ret;
3843 }
3844
cc98b413
CW
3845 /* Mark the pin_display early so that we account for the
3846 * display coherency whilst setting up the cache domains.
3847 */
19656430 3848 was_pin_display = obj->pin_display;
cc98b413
CW
3849 obj->pin_display = true;
3850
a7ef0640
EA
3851 /* The display engine is not coherent with the LLC cache on gen6. As
3852 * a result, we make sure that the pinning that is about to occur is
3853 * done with uncached PTEs. This is lowest common denominator for all
3854 * chipsets.
3855 *
3856 * However for gen6+, we could do better by using the GFDT bit instead
3857 * of uncaching, which would allow us to flush all the LLC-cached data
3858 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3859 */
651d794f
CW
3860 ret = i915_gem_object_set_cache_level(obj,
3861 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3862 if (ret)
cc98b413 3863 goto err_unpin_display;
a7ef0640 3864
2da3b9b9
CW
3865 /* As the user may map the buffer once pinned in the display plane
3866 * (e.g. libkms for the bootup splash), we have to ensure that we
3867 * always use map_and_fenceable for all scanout buffers.
3868 */
1ec9e26d 3869 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3870 if (ret)
cc98b413 3871 goto err_unpin_display;
2da3b9b9 3872
2c22569b 3873 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3874
2da3b9b9 3875 old_write_domain = obj->base.write_domain;
05394f39 3876 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3877
3878 /* It should now be out of any other write domains, and we can update
3879 * the domain values for our changes.
3880 */
e5f1d962 3881 obj->base.write_domain = 0;
05394f39 3882 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3883
3884 trace_i915_gem_object_change_domain(obj,
3885 old_read_domains,
2da3b9b9 3886 old_write_domain);
b9241ea3
ZW
3887
3888 return 0;
cc98b413
CW
3889
3890err_unpin_display:
19656430
OM
3891 WARN_ON(was_pin_display != is_pin_display(obj));
3892 obj->pin_display = was_pin_display;
cc98b413
CW
3893 return ret;
3894}
3895
3896void
3897i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3898{
d7f46fc4 3899 i915_gem_object_ggtt_unpin(obj);
cc98b413 3900 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3901}
3902
85345517 3903int
a8198eea 3904i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3905{
88241785
CW
3906 int ret;
3907
a8198eea 3908 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3909 return 0;
3910
0201f1ec 3911 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3912 if (ret)
3913 return ret;
3914
a8198eea
CW
3915 /* Ensure that we invalidate the GPU's caches and TLBs. */
3916 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3917 return 0;
85345517
CW
3918}
3919
e47c68e9
EA
3920/**
3921 * Moves a single object to the CPU read, and possibly write domain.
3922 *
3923 * This function returns when the move is complete, including waiting on
3924 * flushes to occur.
3925 */
dabdfe02 3926int
919926ae 3927i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3928{
1c5d22f7 3929 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3930 int ret;
3931
8d7e3de1
CW
3932 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3933 return 0;
3934
0201f1ec 3935 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3936 if (ret)
3937 return ret;
3938
c8725f3d 3939 i915_gem_object_retire(obj);
e47c68e9 3940 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3941
05394f39
CW
3942 old_write_domain = obj->base.write_domain;
3943 old_read_domains = obj->base.read_domains;
1c5d22f7 3944
e47c68e9 3945 /* Flush the CPU cache if it's still invalid. */
05394f39 3946 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3947 i915_gem_clflush_object(obj, false);
2ef7eeaa 3948
05394f39 3949 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3950 }
3951
3952 /* It should now be out of any other write domains, and we can update
3953 * the domain values for our changes.
3954 */
05394f39 3955 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3956
3957 /* If we're writing through the CPU, then the GPU read domains will
3958 * need to be invalidated at next use.
3959 */
3960 if (write) {
05394f39
CW
3961 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3962 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3963 }
2ef7eeaa 3964
1c5d22f7
CW
3965 trace_i915_gem_object_change_domain(obj,
3966 old_read_domains,
3967 old_write_domain);
3968
2ef7eeaa
EA
3969 return 0;
3970}
3971
673a394b
EA
3972/* Throttle our rendering by waiting until the ring has completed our requests
3973 * emitted over 20 msec ago.
3974 *
b962442e
EA
3975 * Note that if we were to use the current jiffies each time around the loop,
3976 * we wouldn't escape the function with any frames outstanding if the time to
3977 * render a frame was over 20ms.
3978 *
673a394b
EA
3979 * This should get us reasonable parallelism between CPU and GPU but also
3980 * relatively low latency when blocking on a particular request to finish.
3981 */
40a5f0de 3982static int
f787a5f5 3983i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3984{
f787a5f5
CW
3985 struct drm_i915_private *dev_priv = dev->dev_private;
3986 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3987 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 3988 struct drm_i915_gem_request *request;
a4872ba6 3989 struct intel_engine_cs *ring = NULL;
f69061be 3990 unsigned reset_counter;
f787a5f5
CW
3991 u32 seqno = 0;
3992 int ret;
93533c29 3993
308887aa
DV
3994 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3995 if (ret)
3996 return ret;
3997
3998 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3999 if (ret)
4000 return ret;
e110e8d6 4001
1c25595f 4002 spin_lock(&file_priv->mm.lock);
f787a5f5 4003 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4004 if (time_after_eq(request->emitted_jiffies, recent_enough))
4005 break;
40a5f0de 4006
f787a5f5
CW
4007 ring = request->ring;
4008 seqno = request->seqno;
b962442e 4009 }
f69061be 4010 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4011 spin_unlock(&file_priv->mm.lock);
40a5f0de 4012
f787a5f5
CW
4013 if (seqno == 0)
4014 return 0;
2bc43b5c 4015
b29c19b6 4016 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4017 if (ret == 0)
4018 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4019
4020 return ret;
4021}
4022
d23db88c
CW
4023static bool
4024i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4025{
4026 struct drm_i915_gem_object *obj = vma->obj;
4027
4028 if (alignment &&
4029 vma->node.start & (alignment - 1))
4030 return true;
4031
4032 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4033 return true;
4034
4035 if (flags & PIN_OFFSET_BIAS &&
4036 vma->node.start < (flags & PIN_OFFSET_MASK))
4037 return true;
4038
4039 return false;
4040}
4041
673a394b 4042int
05394f39 4043i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4044 struct i915_address_space *vm,
05394f39 4045 uint32_t alignment,
d23db88c 4046 uint64_t flags)
673a394b 4047{
6e7186af 4048 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4049 struct i915_vma *vma;
673a394b
EA
4050 int ret;
4051
6e7186af
BW
4052 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4053 return -ENODEV;
4054
bf3d149b 4055 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4056 return -EINVAL;
07fe0b12
BW
4057
4058 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4059 if (vma) {
d7f46fc4
BW
4060 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4061 return -EBUSY;
4062
d23db88c 4063 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4064 WARN(vma->pin_count,
ae7d49d8 4065 "bo is already pinned with incorrect alignment:"
f343c5f6 4066 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4067 " obj->map_and_fenceable=%d\n",
07fe0b12 4068 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4069 !!(flags & PIN_MAPPABLE),
05394f39 4070 obj->map_and_fenceable);
07fe0b12 4071 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4072 if (ret)
4073 return ret;
8ea99c92
DV
4074
4075 vma = NULL;
ac0c6b5a
CW
4076 }
4077 }
4078
8ea99c92 4079 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4080 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4081 if (IS_ERR(vma))
4082 return PTR_ERR(vma);
22c344e9 4083 }
76446cac 4084
8ea99c92
DV
4085 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4086 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4087
8ea99c92 4088 vma->pin_count++;
1ec9e26d
DV
4089 if (flags & PIN_MAPPABLE)
4090 obj->pin_mappable |= true;
673a394b
EA
4091
4092 return 0;
4093}
4094
4095void
d7f46fc4 4096i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4097{
d7f46fc4 4098 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4099
d7f46fc4
BW
4100 BUG_ON(!vma);
4101 BUG_ON(vma->pin_count == 0);
4102 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4103
4104 if (--vma->pin_count == 0)
6299f992 4105 obj->pin_mappable = false;
673a394b
EA
4106}
4107
d8ffa60b
DV
4108bool
4109i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4110{
4111 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4112 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4113 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4114
4115 WARN_ON(!ggtt_vma ||
4116 dev_priv->fence_regs[obj->fence_reg].pin_count >
4117 ggtt_vma->pin_count);
4118 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4119 return true;
4120 } else
4121 return false;
4122}
4123
4124void
4125i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4126{
4127 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4128 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4129 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4130 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4131 }
4132}
4133
673a394b
EA
4134int
4135i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4136 struct drm_file *file)
673a394b
EA
4137{
4138 struct drm_i915_gem_pin *args = data;
05394f39 4139 struct drm_i915_gem_object *obj;
673a394b
EA
4140 int ret;
4141
02f6bccc
DV
4142 if (INTEL_INFO(dev)->gen >= 6)
4143 return -ENODEV;
4144
1d7cfea1
CW
4145 ret = i915_mutex_lock_interruptible(dev);
4146 if (ret)
4147 return ret;
673a394b 4148
05394f39 4149 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4150 if (&obj->base == NULL) {
1d7cfea1
CW
4151 ret = -ENOENT;
4152 goto unlock;
673a394b 4153 }
673a394b 4154
05394f39 4155 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4156 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4157 ret = -EFAULT;
1d7cfea1 4158 goto out;
3ef94daa
CW
4159 }
4160
05394f39 4161 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4162 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4163 args->handle);
1d7cfea1
CW
4164 ret = -EINVAL;
4165 goto out;
79e53945
JB
4166 }
4167
aa5f8021
DV
4168 if (obj->user_pin_count == ULONG_MAX) {
4169 ret = -EBUSY;
4170 goto out;
4171 }
4172
93be8788 4173 if (obj->user_pin_count == 0) {
1ec9e26d 4174 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4175 if (ret)
4176 goto out;
673a394b
EA
4177 }
4178
93be8788
CW
4179 obj->user_pin_count++;
4180 obj->pin_filp = file;
4181
f343c5f6 4182 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4183out:
05394f39 4184 drm_gem_object_unreference(&obj->base);
1d7cfea1 4185unlock:
673a394b 4186 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4187 return ret;
673a394b
EA
4188}
4189
4190int
4191i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4192 struct drm_file *file)
673a394b
EA
4193{
4194 struct drm_i915_gem_pin *args = data;
05394f39 4195 struct drm_i915_gem_object *obj;
76c1dec1 4196 int ret;
673a394b 4197
1d7cfea1
CW
4198 ret = i915_mutex_lock_interruptible(dev);
4199 if (ret)
4200 return ret;
673a394b 4201
05394f39 4202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4203 if (&obj->base == NULL) {
1d7cfea1
CW
4204 ret = -ENOENT;
4205 goto unlock;
673a394b 4206 }
76c1dec1 4207
05394f39 4208 if (obj->pin_filp != file) {
bd9b6a4e 4209 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4210 args->handle);
1d7cfea1
CW
4211 ret = -EINVAL;
4212 goto out;
79e53945 4213 }
05394f39
CW
4214 obj->user_pin_count--;
4215 if (obj->user_pin_count == 0) {
4216 obj->pin_filp = NULL;
d7f46fc4 4217 i915_gem_object_ggtt_unpin(obj);
79e53945 4218 }
673a394b 4219
1d7cfea1 4220out:
05394f39 4221 drm_gem_object_unreference(&obj->base);
1d7cfea1 4222unlock:
673a394b 4223 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4224 return ret;
673a394b
EA
4225}
4226
4227int
4228i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4229 struct drm_file *file)
673a394b
EA
4230{
4231 struct drm_i915_gem_busy *args = data;
05394f39 4232 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4233 int ret;
4234
76c1dec1 4235 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4236 if (ret)
76c1dec1 4237 return ret;
673a394b 4238
3108e99e 4239 intel_edp_psr_exit(dev);
7c8f8a70 4240
05394f39 4241 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4242 if (&obj->base == NULL) {
1d7cfea1
CW
4243 ret = -ENOENT;
4244 goto unlock;
673a394b 4245 }
d1b851fc 4246
0be555b6
CW
4247 /* Count all active objects as busy, even if they are currently not used
4248 * by the gpu. Users of this interface expect objects to eventually
4249 * become non-busy without any further actions, therefore emit any
4250 * necessary flushes here.
c4de0a5d 4251 */
30dfebf3 4252 ret = i915_gem_object_flush_active(obj);
0be555b6 4253
30dfebf3 4254 args->busy = obj->active;
e9808edd
CW
4255 if (obj->ring) {
4256 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4257 args->busy |= intel_ring_flag(obj->ring) << 16;
4258 }
673a394b 4259
05394f39 4260 drm_gem_object_unreference(&obj->base);
1d7cfea1 4261unlock:
673a394b 4262 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4263 return ret;
673a394b
EA
4264}
4265
4266int
4267i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269{
0206e353 4270 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4271}
4272
3ef94daa
CW
4273int
4274i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4275 struct drm_file *file_priv)
4276{
4277 struct drm_i915_gem_madvise *args = data;
05394f39 4278 struct drm_i915_gem_object *obj;
76c1dec1 4279 int ret;
3ef94daa
CW
4280
4281 switch (args->madv) {
4282 case I915_MADV_DONTNEED:
4283 case I915_MADV_WILLNEED:
4284 break;
4285 default:
4286 return -EINVAL;
4287 }
4288
1d7cfea1
CW
4289 ret = i915_mutex_lock_interruptible(dev);
4290 if (ret)
4291 return ret;
4292
05394f39 4293 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4294 if (&obj->base == NULL) {
1d7cfea1
CW
4295 ret = -ENOENT;
4296 goto unlock;
3ef94daa 4297 }
3ef94daa 4298
d7f46fc4 4299 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4300 ret = -EINVAL;
4301 goto out;
3ef94daa
CW
4302 }
4303
05394f39
CW
4304 if (obj->madv != __I915_MADV_PURGED)
4305 obj->madv = args->madv;
3ef94daa 4306
6c085a72
CW
4307 /* if the object is no longer attached, discard its backing storage */
4308 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4309 i915_gem_object_truncate(obj);
4310
05394f39 4311 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4312
1d7cfea1 4313out:
05394f39 4314 drm_gem_object_unreference(&obj->base);
1d7cfea1 4315unlock:
3ef94daa 4316 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4317 return ret;
3ef94daa
CW
4318}
4319
37e680a1
CW
4320void i915_gem_object_init(struct drm_i915_gem_object *obj,
4321 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4322{
35c20a60 4323 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4324 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4325 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4326 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4327
37e680a1
CW
4328 obj->ops = ops;
4329
0327d6ba
CW
4330 obj->fence_reg = I915_FENCE_REG_NONE;
4331 obj->madv = I915_MADV_WILLNEED;
4332 /* Avoid an unnecessary call to unbind on the first bind. */
4333 obj->map_and_fenceable = true;
4334
4335 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4336}
4337
37e680a1
CW
4338static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4339 .get_pages = i915_gem_object_get_pages_gtt,
4340 .put_pages = i915_gem_object_put_pages_gtt,
4341};
4342
05394f39
CW
4343struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4344 size_t size)
ac52bc56 4345{
c397b908 4346 struct drm_i915_gem_object *obj;
5949eac4 4347 struct address_space *mapping;
1a240d4d 4348 gfp_t mask;
ac52bc56 4349
42dcedd4 4350 obj = i915_gem_object_alloc(dev);
c397b908
DV
4351 if (obj == NULL)
4352 return NULL;
673a394b 4353
c397b908 4354 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4355 i915_gem_object_free(obj);
c397b908
DV
4356 return NULL;
4357 }
673a394b 4358
bed1ea95
CW
4359 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4360 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4361 /* 965gm cannot relocate objects above 4GiB. */
4362 mask &= ~__GFP_HIGHMEM;
4363 mask |= __GFP_DMA32;
4364 }
4365
496ad9aa 4366 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4367 mapping_set_gfp_mask(mapping, mask);
5949eac4 4368
37e680a1 4369 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4370
c397b908
DV
4371 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4372 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4373
3d29b842
ED
4374 if (HAS_LLC(dev)) {
4375 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4376 * cache) for about a 10% performance improvement
4377 * compared to uncached. Graphics requests other than
4378 * display scanout are coherent with the CPU in
4379 * accessing this cache. This means in this mode we
4380 * don't need to clflush on the CPU side, and on the
4381 * GPU side we only need to flush internal caches to
4382 * get data visible to the CPU.
4383 *
4384 * However, we maintain the display planes as UC, and so
4385 * need to rebind when first used as such.
4386 */
4387 obj->cache_level = I915_CACHE_LLC;
4388 } else
4389 obj->cache_level = I915_CACHE_NONE;
4390
d861e338
DV
4391 trace_i915_gem_object_create(obj);
4392
05394f39 4393 return obj;
c397b908
DV
4394}
4395
340fbd8c
CW
4396static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4397{
4398 /* If we are the last user of the backing storage (be it shmemfs
4399 * pages or stolen etc), we know that the pages are going to be
4400 * immediately released. In this case, we can then skip copying
4401 * back the contents from the GPU.
4402 */
4403
4404 if (obj->madv != I915_MADV_WILLNEED)
4405 return false;
4406
4407 if (obj->base.filp == NULL)
4408 return true;
4409
4410 /* At first glance, this looks racy, but then again so would be
4411 * userspace racing mmap against close. However, the first external
4412 * reference to the filp can only be obtained through the
4413 * i915_gem_mmap_ioctl() which safeguards us against the user
4414 * acquiring such a reference whilst we are in the middle of
4415 * freeing the object.
4416 */
4417 return atomic_long_read(&obj->base.filp->f_count) == 1;
4418}
4419
1488fc08 4420void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4421{
1488fc08 4422 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4423 struct drm_device *dev = obj->base.dev;
3e31c6c0 4424 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4425 struct i915_vma *vma, *next;
673a394b 4426
f65c9168
PZ
4427 intel_runtime_pm_get(dev_priv);
4428
26e12f89
CW
4429 trace_i915_gem_object_destroy(obj);
4430
07fe0b12 4431 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4432 int ret;
4433
4434 vma->pin_count = 0;
4435 ret = i915_vma_unbind(vma);
07fe0b12
BW
4436 if (WARN_ON(ret == -ERESTARTSYS)) {
4437 bool was_interruptible;
1488fc08 4438
07fe0b12
BW
4439 was_interruptible = dev_priv->mm.interruptible;
4440 dev_priv->mm.interruptible = false;
1488fc08 4441
07fe0b12 4442 WARN_ON(i915_vma_unbind(vma));
1488fc08 4443
07fe0b12
BW
4444 dev_priv->mm.interruptible = was_interruptible;
4445 }
1488fc08
CW
4446 }
4447
00731155
CW
4448 i915_gem_object_detach_phys(obj);
4449
1d64ae71
BW
4450 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4451 * before progressing. */
4452 if (obj->stolen)
4453 i915_gem_object_unpin_pages(obj);
4454
401c29f6
BW
4455 if (WARN_ON(obj->pages_pin_count))
4456 obj->pages_pin_count = 0;
340fbd8c 4457 if (discard_backing_storage(obj))
5537252b 4458 obj->madv = I915_MADV_DONTNEED;
37e680a1 4459 i915_gem_object_put_pages(obj);
d8cb5086 4460 i915_gem_object_free_mmap_offset(obj);
de151cf6 4461
9da3da66
CW
4462 BUG_ON(obj->pages);
4463
2f745ad3
CW
4464 if (obj->base.import_attach)
4465 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4466
5cc9ed4b
CW
4467 if (obj->ops->release)
4468 obj->ops->release(obj);
4469
05394f39
CW
4470 drm_gem_object_release(&obj->base);
4471 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4472
05394f39 4473 kfree(obj->bit_17);
42dcedd4 4474 i915_gem_object_free(obj);
f65c9168
PZ
4475
4476 intel_runtime_pm_put(dev_priv);
673a394b
EA
4477}
4478
e656a6cb 4479struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4480 struct i915_address_space *vm)
e656a6cb
DV
4481{
4482 struct i915_vma *vma;
4483 list_for_each_entry(vma, &obj->vma_list, vma_link)
4484 if (vma->vm == vm)
4485 return vma;
4486
4487 return NULL;
4488}
4489
2f633156
BW
4490void i915_gem_vma_destroy(struct i915_vma *vma)
4491{
4492 WARN_ON(vma->node.allocated);
aaa05667
CW
4493
4494 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4495 if (!list_empty(&vma->exec_list))
4496 return;
4497
8b9c2b94 4498 list_del(&vma->vma_link);
b93dab6e 4499
2f633156
BW
4500 kfree(vma);
4501}
4502
e3efda49
CW
4503static void
4504i915_gem_stop_ringbuffers(struct drm_device *dev)
4505{
4506 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4507 struct intel_engine_cs *ring;
e3efda49
CW
4508 int i;
4509
4510 for_each_ring(ring, dev_priv, i)
4511 intel_stop_ring_buffer(ring);
4512}
4513
29105ccc 4514int
45c5f202 4515i915_gem_suspend(struct drm_device *dev)
29105ccc 4516{
3e31c6c0 4517 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4518 int ret = 0;
28dfe52a 4519
45c5f202 4520 mutex_lock(&dev->struct_mutex);
f7403347 4521 if (dev_priv->ums.mm_suspended)
45c5f202 4522 goto err;
28dfe52a 4523
b2da9fe5 4524 ret = i915_gpu_idle(dev);
f7403347 4525 if (ret)
45c5f202 4526 goto err;
f7403347 4527
b2da9fe5 4528 i915_gem_retire_requests(dev);
673a394b 4529
29105ccc 4530 /* Under UMS, be paranoid and evict. */
a39d7efc 4531 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4532 i915_gem_evict_everything(dev);
29105ccc 4533
29105ccc 4534 i915_kernel_lost_context(dev);
e3efda49 4535 i915_gem_stop_ringbuffers(dev);
29105ccc 4536
45c5f202
CW
4537 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4538 * We need to replace this with a semaphore, or something.
4539 * And not confound ums.mm_suspended!
4540 */
4541 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4542 DRIVER_MODESET);
4543 mutex_unlock(&dev->struct_mutex);
4544
4545 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4546 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4547 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4548
673a394b 4549 return 0;
45c5f202
CW
4550
4551err:
4552 mutex_unlock(&dev->struct_mutex);
4553 return ret;
673a394b
EA
4554}
4555
a4872ba6 4556int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4557{
c3787e2e 4558 struct drm_device *dev = ring->dev;
3e31c6c0 4559 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4560 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4561 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4562 int i, ret;
b9524a1e 4563
040d2baa 4564 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4565 return 0;
b9524a1e 4566
c3787e2e
BW
4567 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4568 if (ret)
4569 return ret;
b9524a1e 4570
c3787e2e
BW
4571 /*
4572 * Note: We do not worry about the concurrent register cacheline hang
4573 * here because no other code should access these registers other than
4574 * at initialization time.
4575 */
b9524a1e 4576 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4577 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4578 intel_ring_emit(ring, reg_base + i);
4579 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4580 }
4581
c3787e2e 4582 intel_ring_advance(ring);
b9524a1e 4583
c3787e2e 4584 return ret;
b9524a1e
BW
4585}
4586
f691e2f4
DV
4587void i915_gem_init_swizzling(struct drm_device *dev)
4588{
3e31c6c0 4589 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4590
11782b02 4591 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4592 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4593 return;
4594
4595 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4596 DISP_TILE_SURFACE_SWIZZLING);
4597
11782b02
DV
4598 if (IS_GEN5(dev))
4599 return;
4600
f691e2f4
DV
4601 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4602 if (IS_GEN6(dev))
6b26c86d 4603 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4604 else if (IS_GEN7(dev))
6b26c86d 4605 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4606 else if (IS_GEN8(dev))
4607 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4608 else
4609 BUG();
f691e2f4 4610}
e21af88d 4611
67b1b571
CW
4612static bool
4613intel_enable_blt(struct drm_device *dev)
4614{
4615 if (!HAS_BLT(dev))
4616 return false;
4617
4618 /* The blitter was dysfunctional on early prototypes */
4619 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4620 DRM_INFO("BLT not supported on this pre-production hardware;"
4621 " graphics performance will be degraded.\n");
4622 return false;
4623 }
4624
4625 return true;
4626}
4627
4fc7c971 4628static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4629{
4fc7c971 4630 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4631 int ret;
68f95ba9 4632
5c1143bb 4633 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4634 if (ret)
b6913e4b 4635 return ret;
68f95ba9
CW
4636
4637 if (HAS_BSD(dev)) {
5c1143bb 4638 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4639 if (ret)
4640 goto cleanup_render_ring;
d1b851fc 4641 }
68f95ba9 4642
67b1b571 4643 if (intel_enable_blt(dev)) {
549f7365
CW
4644 ret = intel_init_blt_ring_buffer(dev);
4645 if (ret)
4646 goto cleanup_bsd_ring;
4647 }
4648
9a8a2213
BW
4649 if (HAS_VEBOX(dev)) {
4650 ret = intel_init_vebox_ring_buffer(dev);
4651 if (ret)
4652 goto cleanup_blt_ring;
4653 }
4654
845f74a7
ZY
4655 if (HAS_BSD2(dev)) {
4656 ret = intel_init_bsd2_ring_buffer(dev);
4657 if (ret)
4658 goto cleanup_vebox_ring;
4659 }
9a8a2213 4660
99433931 4661 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4662 if (ret)
845f74a7 4663 goto cleanup_bsd2_ring;
4fc7c971
BW
4664
4665 return 0;
4666
845f74a7
ZY
4667cleanup_bsd2_ring:
4668 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4669cleanup_vebox_ring:
4670 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4671cleanup_blt_ring:
4672 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4673cleanup_bsd_ring:
4674 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4675cleanup_render_ring:
4676 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4677
4678 return ret;
4679}
4680
4681int
4682i915_gem_init_hw(struct drm_device *dev)
4683{
3e31c6c0 4684 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4685 int ret, i;
4fc7c971
BW
4686
4687 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4688 return -EIO;
4689
59124506 4690 if (dev_priv->ellc_size)
05e21cc4 4691 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4692
0bf21347
VS
4693 if (IS_HASWELL(dev))
4694 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4695 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4696
88a2b2a3 4697 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4698 if (IS_IVYBRIDGE(dev)) {
4699 u32 temp = I915_READ(GEN7_MSG_CTL);
4700 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4701 I915_WRITE(GEN7_MSG_CTL, temp);
4702 } else if (INTEL_INFO(dev)->gen >= 7) {
4703 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4704 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4705 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4706 }
88a2b2a3
BW
4707 }
4708
4fc7c971
BW
4709 i915_gem_init_swizzling(dev);
4710
4711 ret = i915_gem_init_rings(dev);
99433931
MK
4712 if (ret)
4713 return ret;
4714
c3787e2e
BW
4715 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4716 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4717
254f965c 4718 /*
2fa48d8d
BW
4719 * XXX: Contexts should only be initialized once. Doing a switch to the
4720 * default context switch however is something we'd like to do after
4721 * reset or thaw (the latter may not actually be necessary for HW, but
4722 * goes with our code better). Context switching requires rings (for
4723 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4724 */
2fa48d8d 4725 ret = i915_gem_context_enable(dev_priv);
60990320 4726 if (ret && ret != -EIO) {
2fa48d8d 4727 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4728 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4729 }
e21af88d 4730
2fa48d8d 4731 return ret;
8187a2b7
ZN
4732}
4733
1070a42b
CW
4734int i915_gem_init(struct drm_device *dev)
4735{
4736 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4737 int ret;
4738
1070a42b 4739 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4740
4741 if (IS_VALLEYVIEW(dev)) {
4742 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4743 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4744 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4745 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4746 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4747 }
4748
5cc9ed4b 4749 i915_gem_init_userptr(dev);
d7e5008f 4750 i915_gem_init_global_gtt(dev);
d62b4892 4751
2fa48d8d 4752 ret = i915_gem_context_init(dev);
e3848694
MK
4753 if (ret) {
4754 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4755 return ret;
e3848694 4756 }
2fa48d8d 4757
1070a42b 4758 ret = i915_gem_init_hw(dev);
60990320
CW
4759 if (ret == -EIO) {
4760 /* Allow ring initialisation to fail by marking the GPU as
4761 * wedged. But we only want to do this where the GPU is angry,
4762 * for all other failure, such as an allocation failure, bail.
4763 */
4764 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4765 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4766 ret = 0;
1070a42b 4767 }
60990320 4768 mutex_unlock(&dev->struct_mutex);
1070a42b 4769
53ca26ca
DV
4770 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4771 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4772 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4773 return ret;
1070a42b
CW
4774}
4775
8187a2b7
ZN
4776void
4777i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4778{
3e31c6c0 4779 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4780 struct intel_engine_cs *ring;
1ec14ad3 4781 int i;
8187a2b7 4782
b4519513
CW
4783 for_each_ring(ring, dev_priv, i)
4784 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4785}
4786
673a394b
EA
4787int
4788i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4789 struct drm_file *file_priv)
4790{
db1b76ca 4791 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4792 int ret;
673a394b 4793
79e53945
JB
4794 if (drm_core_check_feature(dev, DRIVER_MODESET))
4795 return 0;
4796
1f83fee0 4797 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4798 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4799 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4800 }
4801
673a394b 4802 mutex_lock(&dev->struct_mutex);
db1b76ca 4803 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4804
f691e2f4 4805 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4806 if (ret != 0) {
4807 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4808 return ret;
d816f6ac 4809 }
9bb2d6f9 4810
5cef07e1 4811 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4812
bb0f1b5c 4813 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4814 if (ret)
4815 goto cleanup_ringbuffer;
e090c53b 4816 mutex_unlock(&dev->struct_mutex);
dbb19d30 4817
673a394b 4818 return 0;
5f35308b
CW
4819
4820cleanup_ringbuffer:
5f35308b 4821 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4822 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4823 mutex_unlock(&dev->struct_mutex);
4824
4825 return ret;
673a394b
EA
4826}
4827
4828int
4829i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4830 struct drm_file *file_priv)
4831{
79e53945
JB
4832 if (drm_core_check_feature(dev, DRIVER_MODESET))
4833 return 0;
4834
e090c53b 4835 mutex_lock(&dev->struct_mutex);
dbb19d30 4836 drm_irq_uninstall(dev);
e090c53b 4837 mutex_unlock(&dev->struct_mutex);
db1b76ca 4838
45c5f202 4839 return i915_gem_suspend(dev);
673a394b
EA
4840}
4841
4842void
4843i915_gem_lastclose(struct drm_device *dev)
4844{
4845 int ret;
673a394b 4846
e806b495
EA
4847 if (drm_core_check_feature(dev, DRIVER_MODESET))
4848 return;
4849
45c5f202 4850 ret = i915_gem_suspend(dev);
6dbe2772
KP
4851 if (ret)
4852 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4853}
4854
64193406 4855static void
a4872ba6 4856init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4857{
4858 INIT_LIST_HEAD(&ring->active_list);
4859 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4860}
4861
7e0d96bc
BW
4862void i915_init_vm(struct drm_i915_private *dev_priv,
4863 struct i915_address_space *vm)
fc8c067e 4864{
7e0d96bc
BW
4865 if (!i915_is_ggtt(vm))
4866 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4867 vm->dev = dev_priv->dev;
4868 INIT_LIST_HEAD(&vm->active_list);
4869 INIT_LIST_HEAD(&vm->inactive_list);
4870 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4871 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4872}
4873
673a394b
EA
4874void
4875i915_gem_load(struct drm_device *dev)
4876{
3e31c6c0 4877 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4878 int i;
4879
4880 dev_priv->slab =
4881 kmem_cache_create("i915_gem_object",
4882 sizeof(struct drm_i915_gem_object), 0,
4883 SLAB_HWCACHE_ALIGN,
4884 NULL);
673a394b 4885
fc8c067e
BW
4886 INIT_LIST_HEAD(&dev_priv->vm_list);
4887 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4888
a33afea5 4889 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4890 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4891 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4892 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4893 for (i = 0; i < I915_NUM_RINGS; i++)
4894 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4895 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4896 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4897 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4898 i915_gem_retire_work_handler);
b29c19b6
CW
4899 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4900 i915_gem_idle_work_handler);
1f83fee0 4901 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4902
94400120 4903 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4904 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4905 I915_WRITE(MI_ARB_STATE,
4906 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4907 }
4908
72bfa19c
CW
4909 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4910
de151cf6 4911 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4912 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4913 dev_priv->fence_reg_start = 3;
de151cf6 4914
42b5aeab
VS
4915 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4916 dev_priv->num_fence_regs = 32;
4917 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4918 dev_priv->num_fence_regs = 16;
4919 else
4920 dev_priv->num_fence_regs = 8;
4921
b5aa8a0f 4922 /* Initialize fence registers to zero */
19b2dbde
CW
4923 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4924 i915_gem_restore_fences(dev);
10ed13e4 4925
673a394b 4926 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4927 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4928
ce453d81
CW
4929 dev_priv->mm.interruptible = true;
4930
ceabbba5
CW
4931 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4932 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4933 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4934 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4935
4936 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4937 register_oom_notifier(&dev_priv->mm.oom_notifier);
673a394b 4938}
71acb5eb 4939
f787a5f5 4940void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4941{
f787a5f5 4942 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4943
b29c19b6
CW
4944 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4945
b962442e
EA
4946 /* Clean up our request list when the client is going away, so that
4947 * later retire_requests won't dereference our soon-to-be-gone
4948 * file_priv.
4949 */
1c25595f 4950 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4951 while (!list_empty(&file_priv->mm.request_list)) {
4952 struct drm_i915_gem_request *request;
4953
4954 request = list_first_entry(&file_priv->mm.request_list,
4955 struct drm_i915_gem_request,
4956 client_list);
4957 list_del(&request->client_list);
4958 request->file_priv = NULL;
4959 }
1c25595f 4960 spin_unlock(&file_priv->mm.lock);
b962442e 4961}
31169714 4962
b29c19b6
CW
4963static void
4964i915_gem_file_idle_work_handler(struct work_struct *work)
4965{
4966 struct drm_i915_file_private *file_priv =
4967 container_of(work, typeof(*file_priv), mm.idle_work.work);
4968
4969 atomic_set(&file_priv->rps_wait_boost, false);
4970}
4971
4972int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4973{
4974 struct drm_i915_file_private *file_priv;
e422b888 4975 int ret;
b29c19b6
CW
4976
4977 DRM_DEBUG_DRIVER("\n");
4978
4979 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4980 if (!file_priv)
4981 return -ENOMEM;
4982
4983 file->driver_priv = file_priv;
4984 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4985 file_priv->file = file;
b29c19b6
CW
4986
4987 spin_lock_init(&file_priv->mm.lock);
4988 INIT_LIST_HEAD(&file_priv->mm.request_list);
4989 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4990 i915_gem_file_idle_work_handler);
4991
e422b888
BW
4992 ret = i915_gem_context_open(dev, file);
4993 if (ret)
4994 kfree(file_priv);
b29c19b6 4995
e422b888 4996 return ret;
b29c19b6
CW
4997}
4998
5774506f
CW
4999static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5000{
5001 if (!mutex_is_locked(mutex))
5002 return false;
5003
5004#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5005 return mutex->owner == task;
5006#else
5007 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5008 return false;
5009#endif
5010}
5011
b453c4db
CW
5012static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5013{
5014 if (!mutex_trylock(&dev->struct_mutex)) {
5015 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5016 return false;
5017
5018 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5019 return false;
5020
5021 *unlock = false;
5022 } else
5023 *unlock = true;
5024
5025 return true;
5026}
5027
ceabbba5
CW
5028static int num_vma_bound(struct drm_i915_gem_object *obj)
5029{
5030 struct i915_vma *vma;
5031 int count = 0;
5032
5033 list_for_each_entry(vma, &obj->vma_list, vma_link)
5034 if (drm_mm_node_allocated(&vma->node))
5035 count++;
5036
5037 return count;
5038}
5039
7dc19d5a 5040static unsigned long
ceabbba5 5041i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5042{
17250b71 5043 struct drm_i915_private *dev_priv =
ceabbba5 5044 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5045 struct drm_device *dev = dev_priv->dev;
6c085a72 5046 struct drm_i915_gem_object *obj;
7dc19d5a 5047 unsigned long count;
b453c4db 5048 bool unlock;
17250b71 5049
b453c4db
CW
5050 if (!i915_gem_shrinker_lock(dev, &unlock))
5051 return 0;
31169714 5052
7dc19d5a 5053 count = 0;
35c20a60 5054 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5055 if (obj->pages_pin_count == 0)
7dc19d5a 5056 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5057
5058 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5059 if (!i915_gem_obj_is_pinned(obj) &&
5060 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5061 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5062 }
17250b71 5063
5774506f
CW
5064 if (unlock)
5065 mutex_unlock(&dev->struct_mutex);
d9973b43 5066
7dc19d5a 5067 return count;
31169714 5068}
a70a3148
BW
5069
5070/* All the new VM stuff */
5071unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5072 struct i915_address_space *vm)
5073{
5074 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5075 struct i915_vma *vma;
5076
6f425321
BW
5077 if (!dev_priv->mm.aliasing_ppgtt ||
5078 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5079 vm = &dev_priv->gtt.base;
5080
a70a3148
BW
5081 list_for_each_entry(vma, &o->vma_list, vma_link) {
5082 if (vma->vm == vm)
5083 return vma->node.start;
5084
5085 }
f25748ea
DV
5086 WARN(1, "%s vma for this object not found.\n",
5087 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5088 return -1;
5089}
5090
5091bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5092 struct i915_address_space *vm)
5093{
5094 struct i915_vma *vma;
5095
5096 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5097 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5098 return true;
5099
5100 return false;
5101}
5102
5103bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5104{
5a1d5eb0 5105 struct i915_vma *vma;
a70a3148 5106
5a1d5eb0
CW
5107 list_for_each_entry(vma, &o->vma_list, vma_link)
5108 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5109 return true;
5110
5111 return false;
5112}
5113
5114unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5115 struct i915_address_space *vm)
5116{
5117 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5118 struct i915_vma *vma;
5119
6f425321
BW
5120 if (!dev_priv->mm.aliasing_ppgtt ||
5121 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5122 vm = &dev_priv->gtt.base;
5123
5124 BUG_ON(list_empty(&o->vma_list));
5125
5126 list_for_each_entry(vma, &o->vma_list, vma_link)
5127 if (vma->vm == vm)
5128 return vma->node.size;
5129
5130 return 0;
5131}
5132
7dc19d5a 5133static unsigned long
ceabbba5 5134i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5135{
5136 struct drm_i915_private *dev_priv =
ceabbba5 5137 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5138 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5139 unsigned long freed;
b453c4db 5140 bool unlock;
7dc19d5a 5141
b453c4db
CW
5142 if (!i915_gem_shrinker_lock(dev, &unlock))
5143 return SHRINK_STOP;
7dc19d5a 5144
d9973b43
CW
5145 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5146 if (freed < sc->nr_to_scan)
5147 freed += __i915_gem_shrink(dev_priv,
5148 sc->nr_to_scan - freed,
5149 false);
7dc19d5a
DC
5150 if (unlock)
5151 mutex_unlock(&dev->struct_mutex);
d9973b43 5152
7dc19d5a
DC
5153 return freed;
5154}
5c2abbea 5155
2cfcd32a
CW
5156static int
5157i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5158{
5159 struct drm_i915_private *dev_priv =
5160 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5161 struct drm_device *dev = dev_priv->dev;
5162 struct drm_i915_gem_object *obj;
5163 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5164 unsigned long pinned, bound, unbound, freed;
5165 bool was_interruptible;
5166 bool unlock;
5167
5168 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5169 schedule_timeout_killable(1);
5170 if (timeout == 0) {
5171 pr_err("Unable to purge GPU memory due lock contention.\n");
5172 return NOTIFY_DONE;
5173 }
5174
5175 was_interruptible = dev_priv->mm.interruptible;
5176 dev_priv->mm.interruptible = false;
5177
5178 freed = i915_gem_shrink_all(dev_priv);
5179
5180 dev_priv->mm.interruptible = was_interruptible;
5181
5182 /* Because we may be allocating inside our own driver, we cannot
5183 * assert that there are no objects with pinned pages that are not
5184 * being pointed to by hardware.
5185 */
5186 unbound = bound = pinned = 0;
5187 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5188 if (!obj->base.filp) /* not backed by a freeable object */
5189 continue;
5190
5191 if (obj->pages_pin_count)
5192 pinned += obj->base.size;
5193 else
5194 unbound += obj->base.size;
5195 }
5196 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5197 if (!obj->base.filp)
5198 continue;
5199
5200 if (obj->pages_pin_count)
5201 pinned += obj->base.size;
5202 else
5203 bound += obj->base.size;
5204 }
5205
5206 if (unlock)
5207 mutex_unlock(&dev->struct_mutex);
5208
5209 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5210 freed, pinned);
5211 if (unbound || bound)
5212 pr_err("%lu and %lu bytes still available in the "
5213 "bound and unbound GPU page lists.\n",
5214 bound, unbound);
5215
5216 *(unsigned long *)ptr += freed;
5217 return NOTIFY_DONE;
5218}
5219
5c2abbea
BW
5220struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5221{
5222 struct i915_vma *vma;
5223
19656430
OM
5224 /* This WARN has probably outlived its usefulness (callers already
5225 * WARN if they don't find the GGTT vma they expect). When removing,
5226 * remember to remove the pre-check in is_pin_display() as well */
5c2abbea
BW
5227 if (WARN_ON(list_empty(&obj->vma_list)))
5228 return NULL;
5229
5230 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5231 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5232 return NULL;
5233
5234 return vma;
5235}
This page took 1.096086 seconds and 5 git commands to generate.