drm/ttm: use shmem_read_mapping_page
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71 58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 59 struct shrink_control *sc);
31169714 60
73aa808f
CW
61/* some bookkeeping */
62static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
63 size_t size)
64{
65 dev_priv->mm.object_count++;
66 dev_priv->mm.object_memory += size;
67}
68
69static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
70 size_t size)
71{
72 dev_priv->mm.object_count--;
73 dev_priv->mm.object_memory -= size;
74}
75
21dd3734
CW
76static int
77i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
78{
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct completion *x = &dev_priv->error_completion;
81 unsigned long flags;
82 int ret;
83
84 if (!atomic_read(&dev_priv->mm.wedged))
85 return 0;
86
87 ret = wait_for_completion_interruptible(x);
88 if (ret)
89 return ret;
90
21dd3734
CW
91 if (atomic_read(&dev_priv->mm.wedged)) {
92 /* GPU is hung, bump the completion count to account for
93 * the token we just consumed so that we never hit zero and
94 * end up waiting upon a subsequent completion event that
95 * will never happen.
96 */
97 spin_lock_irqsave(&x->wait.lock, flags);
98 x->done++;
99 spin_unlock_irqrestore(&x->wait.lock, flags);
100 }
101 return 0;
30dbf0c0
CW
102}
103
54cf91dc 104int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 105{
76c1dec1
CW
106 int ret;
107
21dd3734 108 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
109 if (ret)
110 return ret;
111
112 ret = mutex_lock_interruptible(&dev->struct_mutex);
113 if (ret)
114 return ret;
115
23bc5982 116 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
117 return 0;
118}
30dbf0c0 119
7d1c4804 120static inline bool
05394f39 121i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 122{
05394f39 123 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
124}
125
2021746e
CW
126void i915_gem_do_init(struct drm_device *dev,
127 unsigned long start,
128 unsigned long mappable_end,
129 unsigned long end)
673a394b
EA
130{
131 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 132
bee4a186 133 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 134
bee4a186
CW
135 dev_priv->mm.gtt_start = start;
136 dev_priv->mm.gtt_mappable_end = mappable_end;
137 dev_priv->mm.gtt_end = end;
73aa808f 138 dev_priv->mm.gtt_total = end - start;
fb7d516a 139 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
140
141 /* Take over this portion of the GTT */
142 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 143}
673a394b 144
79e53945
JB
145int
146i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 147 struct drm_file *file)
79e53945
JB
148{
149 struct drm_i915_gem_init *args = data;
2021746e
CW
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
79e53945
JB
154
155 mutex_lock(&dev->struct_mutex);
2021746e 156 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
157 mutex_unlock(&dev->struct_mutex);
158
2021746e 159 return 0;
673a394b
EA
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c
EA
170
171 if (!(dev->driver->driver_features & DRIVER_GEM))
172 return -ENODEV;
173
6299f992 174 pinned = 0;
73aa808f 175 mutex_lock(&dev->struct_mutex);
6299f992
CW
176 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
177 pinned += obj->gtt_space->size;
73aa808f 178 mutex_unlock(&dev->struct_mutex);
5a125c3c 179
6299f992
CW
180 args->aper_size = dev_priv->mm.gtt_total;
181 args->aper_available_size = args->aper_size -pinned;
182
5a125c3c
EA
183 return 0;
184}
185
ff72145b
DA
186static int
187i915_gem_create(struct drm_file *file,
188 struct drm_device *dev,
189 uint64_t size,
190 uint32_t *handle_p)
673a394b 191{
05394f39 192 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
193 int ret;
194 u32 handle;
673a394b 195
ff72145b 196 size = roundup(size, PAGE_SIZE);
673a394b
EA
197
198 /* Allocate the new object */
ff72145b 199 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
200 if (obj == NULL)
201 return -ENOMEM;
202
05394f39 203 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 204 if (ret) {
05394f39
CW
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 207 kfree(obj);
673a394b 208 return ret;
1dfd9754 209 }
673a394b 210
202f2fef 211 /* drop reference from allocate - handle holds it now */
05394f39 212 drm_gem_object_unreference(&obj->base);
202f2fef
CW
213 trace_i915_gem_object_create(obj);
214
ff72145b 215 *handle_p = handle;
673a394b
EA
216 return 0;
217}
218
ff72145b
DA
219int
220i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223{
224 /* have to work out size/pitch and return them */
ed0291fd 225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229}
230
231int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234{
235 return drm_gem_handle_delete(file, handle);
236}
237
238/**
239 * Creates a new mm object and returns a handle to it.
240 */
241int
242i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244{
245 struct drm_i915_gem_create *args = data;
246 return i915_gem_create(file, dev,
247 args->size, &args->handle);
248}
249
05394f39 250static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 251{
05394f39 252 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
253
254 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 255 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
256}
257
99a03df5 258static inline void
40123c1f
EA
259slow_shmem_copy(struct page *dst_page,
260 int dst_offset,
261 struct page *src_page,
262 int src_offset,
263 int length)
264{
265 char *dst_vaddr, *src_vaddr;
266
99a03df5
CW
267 dst_vaddr = kmap(dst_page);
268 src_vaddr = kmap(src_page);
40123c1f
EA
269
270 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
271
99a03df5
CW
272 kunmap(src_page);
273 kunmap(dst_page);
40123c1f
EA
274}
275
99a03df5 276static inline void
280b713b
EA
277slow_shmem_bit17_copy(struct page *gpu_page,
278 int gpu_offset,
279 struct page *cpu_page,
280 int cpu_offset,
281 int length,
282 int is_read)
283{
284 char *gpu_vaddr, *cpu_vaddr;
285
286 /* Use the unswizzled path if this page isn't affected. */
287 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
288 if (is_read)
289 return slow_shmem_copy(cpu_page, cpu_offset,
290 gpu_page, gpu_offset, length);
291 else
292 return slow_shmem_copy(gpu_page, gpu_offset,
293 cpu_page, cpu_offset, length);
294 }
295
99a03df5
CW
296 gpu_vaddr = kmap(gpu_page);
297 cpu_vaddr = kmap(cpu_page);
280b713b
EA
298
299 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
300 * XORing with the other bits (A9 for Y, A9 and A10 for X)
301 */
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 if (is_read) {
308 memcpy(cpu_vaddr + cpu_offset,
309 gpu_vaddr + swizzled_gpu_offset,
310 this_length);
311 } else {
312 memcpy(gpu_vaddr + swizzled_gpu_offset,
313 cpu_vaddr + cpu_offset,
314 this_length);
315 }
316 cpu_offset += this_length;
317 gpu_offset += this_length;
318 length -= this_length;
319 }
320
99a03df5
CW
321 kunmap(cpu_page);
322 kunmap(gpu_page);
280b713b
EA
323}
324
eb01459f
EA
325/**
326 * This is the fast shmem pread path, which attempts to copy_from_user directly
327 * from the backing pages of the object to the user's address space. On a
328 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
329 */
330static int
05394f39
CW
331i915_gem_shmem_pread_fast(struct drm_device *dev,
332 struct drm_i915_gem_object *obj,
eb01459f 333 struct drm_i915_gem_pread *args,
05394f39 334 struct drm_file *file)
eb01459f 335{
05394f39 336 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 337 ssize_t remain;
e5281ccd 338 loff_t offset;
eb01459f
EA
339 char __user *user_data;
340 int page_offset, page_length;
eb01459f
EA
341
342 user_data = (char __user *) (uintptr_t) args->data_ptr;
343 remain = args->size;
344
eb01459f
EA
345 offset = args->offset;
346
347 while (remain > 0) {
e5281ccd
CW
348 struct page *page;
349 char *vaddr;
350 int ret;
351
eb01459f
EA
352 /* Operation in this page
353 *
eb01459f
EA
354 * page_offset = offset within page
355 * page_length = bytes to copy for this page
356 */
c8cbbb8b 357 page_offset = offset_in_page(offset);
eb01459f
EA
358 page_length = remain;
359 if ((page_offset + remain) > PAGE_SIZE)
360 page_length = PAGE_SIZE - page_offset;
361
e5281ccd
CW
362 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
363 GFP_HIGHUSER | __GFP_RECLAIMABLE);
364 if (IS_ERR(page))
365 return PTR_ERR(page);
366
367 vaddr = kmap_atomic(page);
368 ret = __copy_to_user_inatomic(user_data,
369 vaddr + page_offset,
370 page_length);
371 kunmap_atomic(vaddr);
372
373 mark_page_accessed(page);
374 page_cache_release(page);
375 if (ret)
4f27b75d 376 return -EFAULT;
eb01459f
EA
377
378 remain -= page_length;
379 user_data += page_length;
380 offset += page_length;
381 }
382
4f27b75d 383 return 0;
eb01459f
EA
384}
385
386/**
387 * This is the fallback shmem pread path, which allocates temporary storage
388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
389 * can copy out of the object's backing pages while holding the struct mutex
390 * and not take page faults.
391 */
392static int
05394f39
CW
393i915_gem_shmem_pread_slow(struct drm_device *dev,
394 struct drm_i915_gem_object *obj,
eb01459f 395 struct drm_i915_gem_pread *args,
05394f39 396 struct drm_file *file)
eb01459f 397{
05394f39 398 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
399 struct mm_struct *mm = current->mm;
400 struct page **user_pages;
401 ssize_t remain;
402 loff_t offset, pinned_pages, i;
403 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
404 int shmem_page_offset;
405 int data_page_index, data_page_offset;
eb01459f
EA
406 int page_length;
407 int ret;
408 uint64_t data_ptr = args->data_ptr;
280b713b 409 int do_bit17_swizzling;
eb01459f
EA
410
411 remain = args->size;
412
413 /* Pin the user pages containing the data. We can't fault while
414 * holding the struct mutex, yet we want to hold it while
415 * dereferencing the user data.
416 */
417 first_data_page = data_ptr / PAGE_SIZE;
418 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
419 num_pages = last_data_page - first_data_page + 1;
420
4f27b75d 421 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
422 if (user_pages == NULL)
423 return -ENOMEM;
424
4f27b75d 425 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
426 down_read(&mm->mmap_sem);
427 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 428 num_pages, 1, 0, user_pages, NULL);
eb01459f 429 up_read(&mm->mmap_sem);
4f27b75d 430 mutex_lock(&dev->struct_mutex);
eb01459f
EA
431 if (pinned_pages < num_pages) {
432 ret = -EFAULT;
4f27b75d 433 goto out;
eb01459f
EA
434 }
435
4f27b75d
CW
436 ret = i915_gem_object_set_cpu_read_domain_range(obj,
437 args->offset,
438 args->size);
07f73f69 439 if (ret)
4f27b75d 440 goto out;
eb01459f 441
4f27b75d 442 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 443
eb01459f
EA
444 offset = args->offset;
445
446 while (remain > 0) {
e5281ccd
CW
447 struct page *page;
448
eb01459f
EA
449 /* Operation in this page
450 *
eb01459f
EA
451 * shmem_page_offset = offset within page in shmem file
452 * data_page_index = page number in get_user_pages return
453 * data_page_offset = offset with data_page_index page.
454 * page_length = bytes to copy for this page
455 */
c8cbbb8b 456 shmem_page_offset = offset_in_page(offset);
eb01459f 457 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 458 data_page_offset = offset_in_page(data_ptr);
eb01459f
EA
459
460 page_length = remain;
461 if ((shmem_page_offset + page_length) > PAGE_SIZE)
462 page_length = PAGE_SIZE - shmem_page_offset;
463 if ((data_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - data_page_offset;
465
e5281ccd
CW
466 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
467 GFP_HIGHUSER | __GFP_RECLAIMABLE);
b65552f0
JJ
468 if (IS_ERR(page)) {
469 ret = PTR_ERR(page);
470 goto out;
471 }
e5281ccd 472
280b713b 473 if (do_bit17_swizzling) {
e5281ccd 474 slow_shmem_bit17_copy(page,
280b713b 475 shmem_page_offset,
99a03df5
CW
476 user_pages[data_page_index],
477 data_page_offset,
478 page_length,
479 1);
480 } else {
481 slow_shmem_copy(user_pages[data_page_index],
482 data_page_offset,
e5281ccd 483 page,
99a03df5
CW
484 shmem_page_offset,
485 page_length);
280b713b 486 }
eb01459f 487
e5281ccd
CW
488 mark_page_accessed(page);
489 page_cache_release(page);
490
eb01459f
EA
491 remain -= page_length;
492 data_ptr += page_length;
493 offset += page_length;
494 }
495
4f27b75d 496out:
eb01459f
EA
497 for (i = 0; i < pinned_pages; i++) {
498 SetPageDirty(user_pages[i]);
e5281ccd 499 mark_page_accessed(user_pages[i]);
eb01459f
EA
500 page_cache_release(user_pages[i]);
501 }
8e7d2b2c 502 drm_free_large(user_pages);
eb01459f
EA
503
504 return ret;
505}
506
673a394b
EA
507/**
508 * Reads data from the object referenced by handle.
509 *
510 * On error, the contents of *data are undefined.
511 */
512int
513i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 514 struct drm_file *file)
673a394b
EA
515{
516 struct drm_i915_gem_pread *args = data;
05394f39 517 struct drm_i915_gem_object *obj;
35b62a89 518 int ret = 0;
673a394b 519
51311d0a
CW
520 if (args->size == 0)
521 return 0;
522
523 if (!access_ok(VERIFY_WRITE,
524 (char __user *)(uintptr_t)args->data_ptr,
525 args->size))
526 return -EFAULT;
527
528 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529 args->size);
530 if (ret)
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
db53a302
CW
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
4f27b75d
CW
552 ret = i915_gem_object_set_cpu_read_domain_range(obj,
553 args->offset,
554 args->size);
555 if (ret)
e5281ccd 556 goto out;
4f27b75d
CW
557
558 ret = -EFAULT;
559 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 560 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 561 if (ret == -EFAULT)
05394f39 562 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
9b7530cc 581 char *vaddr_atomic;
0839ccb8 582 unsigned long unwritten;
9b7530cc 583
3e4d3af5 584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
585 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586 user_data, length);
3e4d3af5 587 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 588 return unwritten;
0839ccb8
KP
589}
590
591/* Here's the write path which can sleep for
592 * page faults
593 */
594
ab34c226 595static inline void
3de09aa3
EA
596slow_kernel_write(struct io_mapping *mapping,
597 loff_t gtt_base, int gtt_offset,
598 struct page *user_page, int user_offset,
599 int length)
0839ccb8 600{
ab34c226
CW
601 char __iomem *dst_vaddr;
602 char *src_vaddr;
0839ccb8 603
ab34c226
CW
604 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605 src_vaddr = kmap(user_page);
606
607 memcpy_toio(dst_vaddr + gtt_offset,
608 src_vaddr + user_offset,
609 length);
610
611 kunmap(user_page);
612 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
613}
614
3de09aa3
EA
615/**
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
618 */
673a394b 619static int
05394f39
CW
620i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
3de09aa3 622 struct drm_i915_gem_pwrite *args,
05394f39 623 struct drm_file *file)
673a394b 624{
0839ccb8 625 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 626 ssize_t remain;
0839ccb8 627 loff_t offset, page_base;
673a394b 628 char __user *user_data;
0839ccb8 629 int page_offset, page_length;
673a394b
EA
630
631 user_data = (char __user *) (uintptr_t) args->data_ptr;
632 remain = args->size;
673a394b 633
05394f39 634 offset = obj->gtt_offset + args->offset;
673a394b
EA
635
636 while (remain > 0) {
637 /* Operation in this page
638 *
0839ccb8
KP
639 * page_base = page offset within aperture
640 * page_offset = offset within page
641 * page_length = bytes to copy for this page
673a394b 642 */
c8cbbb8b
CW
643 page_base = offset & PAGE_MASK;
644 page_offset = offset_in_page(offset);
0839ccb8
KP
645 page_length = remain;
646 if ((page_offset + remain) > PAGE_SIZE)
647 page_length = PAGE_SIZE - page_offset;
648
0839ccb8 649 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
650 * source page isn't available. Return the error and we'll
651 * retry in the slow path.
0839ccb8 652 */
fbd5a26d
CW
653 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654 page_offset, user_data, page_length))
fbd5a26d 655 return -EFAULT;
673a394b 656
0839ccb8
KP
657 remain -= page_length;
658 user_data += page_length;
659 offset += page_length;
673a394b 660 }
673a394b 661
fbd5a26d 662 return 0;
673a394b
EA
663}
664
3de09aa3
EA
665/**
666 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
667 * the memory and maps it using kmap_atomic for copying.
668 *
669 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
670 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
671 */
3043c60c 672static int
05394f39
CW
673i915_gem_gtt_pwrite_slow(struct drm_device *dev,
674 struct drm_i915_gem_object *obj,
3de09aa3 675 struct drm_i915_gem_pwrite *args,
05394f39 676 struct drm_file *file)
673a394b 677{
3de09aa3
EA
678 drm_i915_private_t *dev_priv = dev->dev_private;
679 ssize_t remain;
680 loff_t gtt_page_base, offset;
681 loff_t first_data_page, last_data_page, num_pages;
682 loff_t pinned_pages, i;
683 struct page **user_pages;
684 struct mm_struct *mm = current->mm;
685 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 686 int ret;
3de09aa3
EA
687 uint64_t data_ptr = args->data_ptr;
688
689 remain = args->size;
690
691 /* Pin the user pages containing the data. We can't fault while
692 * holding the struct mutex, and all of the pwrite implementations
693 * want to hold it while dereferencing the user data.
694 */
695 first_data_page = data_ptr / PAGE_SIZE;
696 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
697 num_pages = last_data_page - first_data_page + 1;
698
fbd5a26d 699 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
700 if (user_pages == NULL)
701 return -ENOMEM;
702
fbd5a26d 703 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
704 down_read(&mm->mmap_sem);
705 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
706 num_pages, 0, 0, user_pages, NULL);
707 up_read(&mm->mmap_sem);
fbd5a26d 708 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
709 if (pinned_pages < num_pages) {
710 ret = -EFAULT;
711 goto out_unpin_pages;
712 }
673a394b 713
d9e86c0e
CW
714 ret = i915_gem_object_set_to_gtt_domain(obj, true);
715 if (ret)
716 goto out_unpin_pages;
717
718 ret = i915_gem_object_put_fence(obj);
3de09aa3 719 if (ret)
fbd5a26d 720 goto out_unpin_pages;
3de09aa3 721
05394f39 722 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
723
724 while (remain > 0) {
725 /* Operation in this page
726 *
727 * gtt_page_base = page offset within aperture
728 * gtt_page_offset = offset within page in aperture
729 * data_page_index = page number in get_user_pages return
730 * data_page_offset = offset with data_page_index page.
731 * page_length = bytes to copy for this page
732 */
733 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 734 gtt_page_offset = offset_in_page(offset);
3de09aa3 735 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 736 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
737
738 page_length = remain;
739 if ((gtt_page_offset + page_length) > PAGE_SIZE)
740 page_length = PAGE_SIZE - gtt_page_offset;
741 if ((data_page_offset + page_length) > PAGE_SIZE)
742 page_length = PAGE_SIZE - data_page_offset;
743
ab34c226
CW
744 slow_kernel_write(dev_priv->mm.gtt_mapping,
745 gtt_page_base, gtt_page_offset,
746 user_pages[data_page_index],
747 data_page_offset,
748 page_length);
3de09aa3
EA
749
750 remain -= page_length;
751 offset += page_length;
752 data_ptr += page_length;
753 }
754
3de09aa3
EA
755out_unpin_pages:
756 for (i = 0; i < pinned_pages; i++)
757 page_cache_release(user_pages[i]);
8e7d2b2c 758 drm_free_large(user_pages);
3de09aa3
EA
759
760 return ret;
761}
762
40123c1f
EA
763/**
764 * This is the fast shmem pwrite path, which attempts to directly
765 * copy_from_user into the kmapped pages backing the object.
766 */
3043c60c 767static int
05394f39
CW
768i915_gem_shmem_pwrite_fast(struct drm_device *dev,
769 struct drm_i915_gem_object *obj,
40123c1f 770 struct drm_i915_gem_pwrite *args,
05394f39 771 struct drm_file *file)
673a394b 772{
05394f39 773 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 774 ssize_t remain;
e5281ccd 775 loff_t offset;
40123c1f
EA
776 char __user *user_data;
777 int page_offset, page_length;
40123c1f
EA
778
779 user_data = (char __user *) (uintptr_t) args->data_ptr;
780 remain = args->size;
673a394b 781
40123c1f 782 offset = args->offset;
05394f39 783 obj->dirty = 1;
40123c1f
EA
784
785 while (remain > 0) {
e5281ccd
CW
786 struct page *page;
787 char *vaddr;
788 int ret;
789
40123c1f
EA
790 /* Operation in this page
791 *
40123c1f
EA
792 * page_offset = offset within page
793 * page_length = bytes to copy for this page
794 */
c8cbbb8b 795 page_offset = offset_in_page(offset);
40123c1f
EA
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
e5281ccd
CW
800 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
801 GFP_HIGHUSER | __GFP_RECLAIMABLE);
802 if (IS_ERR(page))
803 return PTR_ERR(page);
804
805 vaddr = kmap_atomic(page, KM_USER0);
806 ret = __copy_from_user_inatomic(vaddr + page_offset,
807 user_data,
808 page_length);
809 kunmap_atomic(vaddr, KM_USER0);
810
811 set_page_dirty(page);
812 mark_page_accessed(page);
813 page_cache_release(page);
814
815 /* If we get a fault while copying data, then (presumably) our
816 * source page isn't available. Return the error and we'll
817 * retry in the slow path.
818 */
819 if (ret)
fbd5a26d 820 return -EFAULT;
40123c1f
EA
821
822 remain -= page_length;
823 user_data += page_length;
824 offset += page_length;
825 }
826
fbd5a26d 827 return 0;
40123c1f
EA
828}
829
830/**
831 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
832 * the memory and maps it using kmap_atomic for copying.
833 *
834 * This avoids taking mmap_sem for faulting on the user's address while the
835 * struct_mutex is held.
836 */
837static int
05394f39
CW
838i915_gem_shmem_pwrite_slow(struct drm_device *dev,
839 struct drm_i915_gem_object *obj,
40123c1f 840 struct drm_i915_gem_pwrite *args,
05394f39 841 struct drm_file *file)
40123c1f 842{
05394f39 843 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
844 struct mm_struct *mm = current->mm;
845 struct page **user_pages;
846 ssize_t remain;
847 loff_t offset, pinned_pages, i;
848 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 849 int shmem_page_offset;
40123c1f
EA
850 int data_page_index, data_page_offset;
851 int page_length;
852 int ret;
853 uint64_t data_ptr = args->data_ptr;
280b713b 854 int do_bit17_swizzling;
40123c1f
EA
855
856 remain = args->size;
857
858 /* Pin the user pages containing the data. We can't fault while
859 * holding the struct mutex, and all of the pwrite implementations
860 * want to hold it while dereferencing the user data.
861 */
862 first_data_page = data_ptr / PAGE_SIZE;
863 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
864 num_pages = last_data_page - first_data_page + 1;
865
4f27b75d 866 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
867 if (user_pages == NULL)
868 return -ENOMEM;
869
fbd5a26d 870 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
871 down_read(&mm->mmap_sem);
872 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
873 num_pages, 0, 0, user_pages, NULL);
874 up_read(&mm->mmap_sem);
fbd5a26d 875 mutex_lock(&dev->struct_mutex);
40123c1f
EA
876 if (pinned_pages < num_pages) {
877 ret = -EFAULT;
fbd5a26d 878 goto out;
673a394b
EA
879 }
880
fbd5a26d 881 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 882 if (ret)
fbd5a26d 883 goto out;
40123c1f 884
fbd5a26d 885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 886
673a394b 887 offset = args->offset;
05394f39 888 obj->dirty = 1;
673a394b 889
40123c1f 890 while (remain > 0) {
e5281ccd
CW
891 struct page *page;
892
40123c1f
EA
893 /* Operation in this page
894 *
40123c1f
EA
895 * shmem_page_offset = offset within page in shmem file
896 * data_page_index = page number in get_user_pages return
897 * data_page_offset = offset with data_page_index page.
898 * page_length = bytes to copy for this page
899 */
c8cbbb8b 900 shmem_page_offset = offset_in_page(offset);
40123c1f 901 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 902 data_page_offset = offset_in_page(data_ptr);
40123c1f
EA
903
904 page_length = remain;
905 if ((shmem_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - shmem_page_offset;
907 if ((data_page_offset + page_length) > PAGE_SIZE)
908 page_length = PAGE_SIZE - data_page_offset;
909
e5281ccd
CW
910 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
911 GFP_HIGHUSER | __GFP_RECLAIMABLE);
912 if (IS_ERR(page)) {
913 ret = PTR_ERR(page);
914 goto out;
915 }
916
280b713b 917 if (do_bit17_swizzling) {
e5281ccd 918 slow_shmem_bit17_copy(page,
280b713b
EA
919 shmem_page_offset,
920 user_pages[data_page_index],
921 data_page_offset,
99a03df5
CW
922 page_length,
923 0);
924 } else {
e5281ccd 925 slow_shmem_copy(page,
99a03df5
CW
926 shmem_page_offset,
927 user_pages[data_page_index],
928 data_page_offset,
929 page_length);
280b713b 930 }
40123c1f 931
e5281ccd
CW
932 set_page_dirty(page);
933 mark_page_accessed(page);
934 page_cache_release(page);
935
40123c1f
EA
936 remain -= page_length;
937 data_ptr += page_length;
938 offset += page_length;
673a394b
EA
939 }
940
fbd5a26d 941out:
40123c1f
EA
942 for (i = 0; i < pinned_pages; i++)
943 page_cache_release(user_pages[i]);
8e7d2b2c 944 drm_free_large(user_pages);
673a394b 945
40123c1f 946 return ret;
673a394b
EA
947}
948
949/**
950 * Writes data to the object referenced by handle.
951 *
952 * On error, the contents of the buffer that were to be modified are undefined.
953 */
954int
955i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 956 struct drm_file *file)
673a394b
EA
957{
958 struct drm_i915_gem_pwrite *args = data;
05394f39 959 struct drm_i915_gem_object *obj;
51311d0a
CW
960 int ret;
961
962 if (args->size == 0)
963 return 0;
964
965 if (!access_ok(VERIFY_READ,
966 (char __user *)(uintptr_t)args->data_ptr,
967 args->size))
968 return -EFAULT;
969
970 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
971 args->size);
972 if (ret)
973 return -EFAULT;
673a394b 974
fbd5a26d 975 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 976 if (ret)
fbd5a26d 977 return ret;
1d7cfea1 978
05394f39 979 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 980 if (&obj->base == NULL) {
1d7cfea1
CW
981 ret = -ENOENT;
982 goto unlock;
fbd5a26d 983 }
673a394b 984
7dcd2499 985 /* Bounds check destination. */
05394f39
CW
986 if (args->offset > obj->base.size ||
987 args->size > obj->base.size - args->offset) {
ce9d419d 988 ret = -EINVAL;
35b62a89 989 goto out;
ce9d419d
CW
990 }
991
db53a302
CW
992 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
993
673a394b
EA
994 /* We can only do the GTT pwrite on untiled buffers, as otherwise
995 * it would end up going through the fenced access, and we'll get
996 * different detiling behavior between reading and writing.
997 * pread/pwrite currently are reading and writing from the CPU
998 * perspective, requiring manual detiling by the client.
999 */
05394f39 1000 if (obj->phys_obj)
fbd5a26d 1001 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 1002 else if (obj->gtt_space &&
05394f39 1003 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1004 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1005 if (ret)
1006 goto out;
1007
d9e86c0e
CW
1008 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1009 if (ret)
1010 goto out_unpin;
1011
1012 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
1013 if (ret)
1014 goto out_unpin;
1015
1016 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1017 if (ret == -EFAULT)
1018 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1019
1020out_unpin:
1021 i915_gem_object_unpin(obj);
40123c1f 1022 } else {
fbd5a26d
CW
1023 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1024 if (ret)
e5281ccd 1025 goto out;
673a394b 1026
fbd5a26d
CW
1027 ret = -EFAULT;
1028 if (!i915_gem_object_needs_bit17_swizzle(obj))
1029 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1030 if (ret == -EFAULT)
1031 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1032 }
673a394b 1033
35b62a89 1034out:
05394f39 1035 drm_gem_object_unreference(&obj->base);
1d7cfea1 1036unlock:
fbd5a26d 1037 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1038 return ret;
1039}
1040
1041/**
2ef7eeaa
EA
1042 * Called when user space prepares to use an object with the CPU, either
1043 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1044 */
1045int
1046i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1047 struct drm_file *file)
673a394b
EA
1048{
1049 struct drm_i915_gem_set_domain *args = data;
05394f39 1050 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1051 uint32_t read_domains = args->read_domains;
1052 uint32_t write_domain = args->write_domain;
673a394b
EA
1053 int ret;
1054
1055 if (!(dev->driver->driver_features & DRIVER_GEM))
1056 return -ENODEV;
1057
2ef7eeaa 1058 /* Only handle setting domains to types used by the CPU. */
21d509e3 1059 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1060 return -EINVAL;
1061
21d509e3 1062 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1063 return -EINVAL;
1064
1065 /* Having something in the write domain implies it's in the read
1066 * domain, and only that read domain. Enforce that in the request.
1067 */
1068 if (write_domain != 0 && read_domains != write_domain)
1069 return -EINVAL;
1070
76c1dec1 1071 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1072 if (ret)
76c1dec1 1073 return ret;
1d7cfea1 1074
05394f39 1075 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1076 if (&obj->base == NULL) {
1d7cfea1
CW
1077 ret = -ENOENT;
1078 goto unlock;
76c1dec1 1079 }
673a394b 1080
2ef7eeaa
EA
1081 if (read_domains & I915_GEM_DOMAIN_GTT) {
1082 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1083
1084 /* Silently promote "you're not bound, there was nothing to do"
1085 * to success, since the client was just asking us to
1086 * make sure everything was done.
1087 */
1088 if (ret == -EINVAL)
1089 ret = 0;
2ef7eeaa 1090 } else {
e47c68e9 1091 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1092 }
1093
05394f39 1094 drm_gem_object_unreference(&obj->base);
1d7cfea1 1095unlock:
673a394b
EA
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1098}
1099
1100/**
1101 * Called when user space has done writes to this buffer
1102 */
1103int
1104i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1105 struct drm_file *file)
673a394b
EA
1106{
1107 struct drm_i915_gem_sw_finish *args = data;
05394f39 1108 struct drm_i915_gem_object *obj;
673a394b
EA
1109 int ret = 0;
1110
1111 if (!(dev->driver->driver_features & DRIVER_GEM))
1112 return -ENODEV;
1113
76c1dec1 1114 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1115 if (ret)
76c1dec1 1116 return ret;
1d7cfea1 1117
05394f39 1118 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1119 if (&obj->base == NULL) {
1d7cfea1
CW
1120 ret = -ENOENT;
1121 goto unlock;
673a394b
EA
1122 }
1123
673a394b 1124 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1125 if (obj->pin_count)
e47c68e9
EA
1126 i915_gem_object_flush_cpu_write_domain(obj);
1127
05394f39 1128 drm_gem_object_unreference(&obj->base);
1d7cfea1 1129unlock:
673a394b
EA
1130 mutex_unlock(&dev->struct_mutex);
1131 return ret;
1132}
1133
1134/**
1135 * Maps the contents of an object, returning the address it is mapped
1136 * into.
1137 *
1138 * While the mapping holds a reference on the contents of the object, it doesn't
1139 * imply a ref on the object itself.
1140 */
1141int
1142i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1143 struct drm_file *file)
673a394b 1144{
da761a6e 1145 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1146 struct drm_i915_gem_mmap *args = data;
1147 struct drm_gem_object *obj;
673a394b
EA
1148 unsigned long addr;
1149
1150 if (!(dev->driver->driver_features & DRIVER_GEM))
1151 return -ENODEV;
1152
05394f39 1153 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1154 if (obj == NULL)
bf79cb91 1155 return -ENOENT;
673a394b 1156
da761a6e
CW
1157 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1158 drm_gem_object_unreference_unlocked(obj);
1159 return -E2BIG;
1160 }
1161
673a394b
EA
1162 down_write(&current->mm->mmap_sem);
1163 addr = do_mmap(obj->filp, 0, args->size,
1164 PROT_READ | PROT_WRITE, MAP_SHARED,
1165 args->offset);
1166 up_write(&current->mm->mmap_sem);
bc9025bd 1167 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1168 if (IS_ERR((void *)addr))
1169 return addr;
1170
1171 args->addr_ptr = (uint64_t) addr;
1172
1173 return 0;
1174}
1175
de151cf6
JB
1176/**
1177 * i915_gem_fault - fault a page into the GTT
1178 * vma: VMA in question
1179 * vmf: fault info
1180 *
1181 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1182 * from userspace. The fault handler takes care of binding the object to
1183 * the GTT (if needed), allocating and programming a fence register (again,
1184 * only if needed based on whether the old reg is still valid or the object
1185 * is tiled) and inserting a new PTE into the faulting process.
1186 *
1187 * Note that the faulting process may involve evicting existing objects
1188 * from the GTT and/or fence registers to make room. So performance may
1189 * suffer if the GTT working set is large or there are few fence registers
1190 * left.
1191 */
1192int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1193{
05394f39
CW
1194 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1195 struct drm_device *dev = obj->base.dev;
7d1c4804 1196 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1197 pgoff_t page_offset;
1198 unsigned long pfn;
1199 int ret = 0;
0f973f27 1200 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1201
1202 /* We don't use vmf->pgoff since that has the fake offset */
1203 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1204 PAGE_SHIFT;
1205
d9bc7e9f
CW
1206 ret = i915_mutex_lock_interruptible(dev);
1207 if (ret)
1208 goto out;
a00b10c3 1209
db53a302
CW
1210 trace_i915_gem_object_fault(obj, page_offset, true, write);
1211
d9bc7e9f 1212 /* Now bind it into the GTT if needed */
919926ae
CW
1213 if (!obj->map_and_fenceable) {
1214 ret = i915_gem_object_unbind(obj);
1215 if (ret)
1216 goto unlock;
a00b10c3 1217 }
05394f39 1218 if (!obj->gtt_space) {
75e9e915 1219 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1220 if (ret)
1221 goto unlock;
de151cf6 1222
e92d03bf
EA
1223 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1224 if (ret)
1225 goto unlock;
1226 }
4a684a41 1227
d9e86c0e
CW
1228 if (obj->tiling_mode == I915_TILING_NONE)
1229 ret = i915_gem_object_put_fence(obj);
1230 else
ce453d81 1231 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1232 if (ret)
1233 goto unlock;
de151cf6 1234
05394f39
CW
1235 if (i915_gem_object_is_inactive(obj))
1236 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1237
6299f992
CW
1238 obj->fault_mappable = true;
1239
05394f39 1240 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1241 page_offset;
1242
1243 /* Finally, remap it using the new GTT offset */
1244 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1245unlock:
de151cf6 1246 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1247out:
de151cf6 1248 switch (ret) {
d9bc7e9f 1249 case -EIO:
045e769a 1250 case -EAGAIN:
d9bc7e9f
CW
1251 /* Give the error handler a chance to run and move the
1252 * objects off the GPU active list. Next time we service the
1253 * fault, we should be able to transition the page into the
1254 * GTT without touching the GPU (and so avoid further
1255 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1256 * with coherency, just lost writes.
1257 */
045e769a 1258 set_need_resched();
c715089f
CW
1259 case 0:
1260 case -ERESTARTSYS:
bed636ab 1261 case -EINTR:
c715089f 1262 return VM_FAULT_NOPAGE;
de151cf6 1263 case -ENOMEM:
de151cf6 1264 return VM_FAULT_OOM;
de151cf6 1265 default:
c715089f 1266 return VM_FAULT_SIGBUS;
de151cf6
JB
1267 }
1268}
1269
1270/**
1271 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1272 * @obj: obj in question
1273 *
1274 * GEM memory mapping works by handing back to userspace a fake mmap offset
1275 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1276 * up the object based on the offset and sets up the various memory mapping
1277 * structures.
1278 *
1279 * This routine allocates and attaches a fake offset for @obj.
1280 */
1281static int
05394f39 1282i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1283{
05394f39 1284 struct drm_device *dev = obj->base.dev;
de151cf6 1285 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1286 struct drm_map_list *list;
f77d390c 1287 struct drm_local_map *map;
de151cf6
JB
1288 int ret = 0;
1289
1290 /* Set the object up for mmap'ing */
05394f39 1291 list = &obj->base.map_list;
9a298b2a 1292 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1293 if (!list->map)
1294 return -ENOMEM;
1295
1296 map = list->map;
1297 map->type = _DRM_GEM;
05394f39 1298 map->size = obj->base.size;
de151cf6
JB
1299 map->handle = obj;
1300
1301 /* Get a DRM GEM mmap offset allocated... */
1302 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1303 obj->base.size / PAGE_SIZE,
1304 0, 0);
de151cf6 1305 if (!list->file_offset_node) {
05394f39
CW
1306 DRM_ERROR("failed to allocate offset for bo %d\n",
1307 obj->base.name);
9e0ae534 1308 ret = -ENOSPC;
de151cf6
JB
1309 goto out_free_list;
1310 }
1311
1312 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1313 obj->base.size / PAGE_SIZE,
1314 0);
de151cf6
JB
1315 if (!list->file_offset_node) {
1316 ret = -ENOMEM;
1317 goto out_free_list;
1318 }
1319
1320 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1321 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1322 if (ret) {
de151cf6
JB
1323 DRM_ERROR("failed to add to map hash\n");
1324 goto out_free_mm;
1325 }
1326
de151cf6
JB
1327 return 0;
1328
1329out_free_mm:
1330 drm_mm_put_block(list->file_offset_node);
1331out_free_list:
9a298b2a 1332 kfree(list->map);
39a01d1f 1333 list->map = NULL;
de151cf6
JB
1334
1335 return ret;
1336}
1337
901782b2
CW
1338/**
1339 * i915_gem_release_mmap - remove physical page mappings
1340 * @obj: obj in question
1341 *
af901ca1 1342 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1343 * relinquish ownership of the pages back to the system.
1344 *
1345 * It is vital that we remove the page mapping if we have mapped a tiled
1346 * object through the GTT and then lose the fence register due to
1347 * resource pressure. Similarly if the object has been moved out of the
1348 * aperture, than pages mapped into userspace must be revoked. Removing the
1349 * mapping will then trigger a page fault on the next user access, allowing
1350 * fixup by i915_gem_fault().
1351 */
d05ca301 1352void
05394f39 1353i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1354{
6299f992
CW
1355 if (!obj->fault_mappable)
1356 return;
901782b2 1357
f6e47884
CW
1358 if (obj->base.dev->dev_mapping)
1359 unmap_mapping_range(obj->base.dev->dev_mapping,
1360 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1361 obj->base.size, 1);
fb7d516a 1362
6299f992 1363 obj->fault_mappable = false;
901782b2
CW
1364}
1365
ab00b3e5 1366static void
05394f39 1367i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1368{
05394f39 1369 struct drm_device *dev = obj->base.dev;
ab00b3e5 1370 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1371 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1372
ab00b3e5 1373 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1374 drm_mm_put_block(list->file_offset_node);
1375 kfree(list->map);
1376 list->map = NULL;
ab00b3e5
JB
1377}
1378
92b88aeb
CW
1379static uint32_t
1380i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1381{
1382 struct drm_device *dev = obj->base.dev;
1383 uint32_t size;
1384
1385 if (INTEL_INFO(dev)->gen >= 4 ||
1386 obj->tiling_mode == I915_TILING_NONE)
1387 return obj->base.size;
1388
1389 /* Previous chips need a power-of-two fence region when tiling */
1390 if (INTEL_INFO(dev)->gen == 3)
1391 size = 1024*1024;
1392 else
1393 size = 512*1024;
1394
1395 while (size < obj->base.size)
1396 size <<= 1;
1397
1398 return size;
1399}
1400
de151cf6
JB
1401/**
1402 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1403 * @obj: object to check
1404 *
1405 * Return the required GTT alignment for an object, taking into account
5e783301 1406 * potential fence register mapping.
de151cf6
JB
1407 */
1408static uint32_t
05394f39 1409i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1410{
05394f39 1411 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1412
1413 /*
1414 * Minimum alignment is 4k (GTT page size), but might be greater
1415 * if a fence register is needed for the object.
1416 */
a00b10c3 1417 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1418 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1419 return 4096;
1420
a00b10c3
CW
1421 /*
1422 * Previous chips need to be aligned to the size of the smallest
1423 * fence register that can contain the object.
1424 */
05394f39 1425 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1426}
1427
5e783301
DV
1428/**
1429 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1430 * unfenced object
1431 * @obj: object to check
1432 *
1433 * Return the required GTT alignment for an object, only taking into account
1434 * unfenced tiled surface requirements.
1435 */
467cffba 1436uint32_t
05394f39 1437i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1438{
05394f39 1439 struct drm_device *dev = obj->base.dev;
5e783301
DV
1440 int tile_height;
1441
1442 /*
1443 * Minimum alignment is 4k (GTT page size) for sane hw.
1444 */
1445 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1446 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1447 return 4096;
1448
1449 /*
1450 * Older chips need unfenced tiled buffers to be aligned to the left
1451 * edge of an even tile row (where tile rows are counted as if the bo is
1452 * placed in a fenced gtt region).
1453 */
c8ebc2b0
DV
1454 if (IS_GEN2(dev))
1455 tile_height = 16;
1456 else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
5e783301
DV
1457 tile_height = 32;
1458 else
1459 tile_height = 8;
1460
05394f39 1461 return tile_height * obj->stride * 2;
5e783301
DV
1462}
1463
de151cf6 1464int
ff72145b
DA
1465i915_gem_mmap_gtt(struct drm_file *file,
1466 struct drm_device *dev,
1467 uint32_t handle,
1468 uint64_t *offset)
de151cf6 1469{
da761a6e 1470 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1471 struct drm_i915_gem_object *obj;
de151cf6
JB
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
76c1dec1 1477 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1478 if (ret)
76c1dec1 1479 return ret;
de151cf6 1480
ff72145b 1481 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1482 if (&obj->base == NULL) {
1d7cfea1
CW
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
de151cf6 1486
05394f39 1487 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1488 ret = -E2BIG;
1489 goto unlock;
1490 }
1491
05394f39 1492 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1493 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1494 ret = -EINVAL;
1495 goto out;
ab18282d
CW
1496 }
1497
05394f39 1498 if (!obj->base.map_list.map) {
de151cf6 1499 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1500 if (ret)
1501 goto out;
de151cf6
JB
1502 }
1503
ff72145b 1504 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1505
1d7cfea1 1506out:
05394f39 1507 drm_gem_object_unreference(&obj->base);
1d7cfea1 1508unlock:
de151cf6 1509 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1510 return ret;
de151cf6
JB
1511}
1512
ff72145b
DA
1513/**
1514 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1515 * @dev: DRM device
1516 * @data: GTT mapping ioctl data
1517 * @file: GEM object info
1518 *
1519 * Simply returns the fake offset to userspace so it can mmap it.
1520 * The mmap call will end up in drm_gem_mmap(), which will set things
1521 * up so we can get faults in the handler above.
1522 *
1523 * The fault handler will take care of binding the object into the GTT
1524 * (since it may have been evicted to make room for something), allocating
1525 * a fence register, and mapping the appropriate aperture address into
1526 * userspace.
1527 */
1528int
1529i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1530 struct drm_file *file)
1531{
1532 struct drm_i915_gem_mmap_gtt *args = data;
1533
1534 if (!(dev->driver->driver_features & DRIVER_GEM))
1535 return -ENODEV;
1536
1537 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1538}
1539
1540
e5281ccd 1541static int
05394f39 1542i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1543 gfp_t gfpmask)
1544{
e5281ccd
CW
1545 int page_count, i;
1546 struct address_space *mapping;
1547 struct inode *inode;
1548 struct page *page;
1549
1550 /* Get the list of pages out of our struct file. They'll be pinned
1551 * at this point until we release them.
1552 */
05394f39
CW
1553 page_count = obj->base.size / PAGE_SIZE;
1554 BUG_ON(obj->pages != NULL);
1555 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1556 if (obj->pages == NULL)
e5281ccd
CW
1557 return -ENOMEM;
1558
05394f39 1559 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1560 mapping = inode->i_mapping;
1561 for (i = 0; i < page_count; i++) {
1562 page = read_cache_page_gfp(mapping, i,
1563 GFP_HIGHUSER |
1564 __GFP_COLD |
1565 __GFP_RECLAIMABLE |
1566 gfpmask);
1567 if (IS_ERR(page))
1568 goto err_pages;
1569
05394f39 1570 obj->pages[i] = page;
e5281ccd
CW
1571 }
1572
05394f39 1573 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1574 i915_gem_object_do_bit_17_swizzle(obj);
1575
1576 return 0;
1577
1578err_pages:
1579 while (i--)
05394f39 1580 page_cache_release(obj->pages[i]);
e5281ccd 1581
05394f39
CW
1582 drm_free_large(obj->pages);
1583 obj->pages = NULL;
e5281ccd
CW
1584 return PTR_ERR(page);
1585}
1586
5cdf5881 1587static void
05394f39 1588i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1589{
05394f39 1590 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1591 int i;
1592
05394f39 1593 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1594
05394f39 1595 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1596 i915_gem_object_save_bit_17_swizzle(obj);
1597
05394f39
CW
1598 if (obj->madv == I915_MADV_DONTNEED)
1599 obj->dirty = 0;
3ef94daa
CW
1600
1601 for (i = 0; i < page_count; i++) {
05394f39
CW
1602 if (obj->dirty)
1603 set_page_dirty(obj->pages[i]);
3ef94daa 1604
05394f39
CW
1605 if (obj->madv == I915_MADV_WILLNEED)
1606 mark_page_accessed(obj->pages[i]);
3ef94daa 1607
05394f39 1608 page_cache_release(obj->pages[i]);
3ef94daa 1609 }
05394f39 1610 obj->dirty = 0;
673a394b 1611
05394f39
CW
1612 drm_free_large(obj->pages);
1613 obj->pages = NULL;
673a394b
EA
1614}
1615
54cf91dc 1616void
05394f39 1617i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1618 struct intel_ring_buffer *ring,
1619 u32 seqno)
673a394b 1620{
05394f39 1621 struct drm_device *dev = obj->base.dev;
69dc4987 1622 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1623
852835f3 1624 BUG_ON(ring == NULL);
05394f39 1625 obj->ring = ring;
673a394b
EA
1626
1627 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1628 if (!obj->active) {
1629 drm_gem_object_reference(&obj->base);
1630 obj->active = 1;
673a394b 1631 }
e35a41de 1632
673a394b 1633 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1634 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1635 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1636
05394f39 1637 obj->last_rendering_seqno = seqno;
caea7476
CW
1638 if (obj->fenced_gpu_access) {
1639 struct drm_i915_fence_reg *reg;
1640
1641 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1642
1643 obj->last_fenced_seqno = seqno;
1644 obj->last_fenced_ring = ring;
1645
1646 reg = &dev_priv->fence_regs[obj->fence_reg];
1647 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1648 }
1649}
1650
1651static void
1652i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1653{
1654 list_del_init(&obj->ring_list);
1655 obj->last_rendering_seqno = 0;
673a394b
EA
1656}
1657
ce44b0ea 1658static void
05394f39 1659i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1660{
05394f39 1661 struct drm_device *dev = obj->base.dev;
ce44b0ea 1662 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1663
05394f39
CW
1664 BUG_ON(!obj->active);
1665 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1666
1667 i915_gem_object_move_off_active(obj);
1668}
1669
1670static void
1671i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1672{
1673 struct drm_device *dev = obj->base.dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675
1676 if (obj->pin_count != 0)
1677 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1678 else
1679 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1680
1681 BUG_ON(!list_empty(&obj->gpu_write_list));
1682 BUG_ON(!obj->active);
1683 obj->ring = NULL;
1684
1685 i915_gem_object_move_off_active(obj);
1686 obj->fenced_gpu_access = false;
caea7476
CW
1687
1688 obj->active = 0;
87ca9c8a 1689 obj->pending_gpu_write = false;
caea7476
CW
1690 drm_gem_object_unreference(&obj->base);
1691
1692 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1693}
673a394b 1694
963b4836
CW
1695/* Immediately discard the backing storage */
1696static void
05394f39 1697i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1698{
bb6baf76 1699 struct inode *inode;
963b4836 1700
ae9fed6b
CW
1701 /* Our goal here is to return as much of the memory as
1702 * is possible back to the system as we are called from OOM.
1703 * To do this we must instruct the shmfs to drop all of its
1704 * backing pages, *now*. Here we mirror the actions taken
1705 * when by shmem_delete_inode() to release the backing store.
1706 */
05394f39 1707 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1708 truncate_inode_pages(inode->i_mapping, 0);
1709 if (inode->i_op->truncate_range)
1710 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1711
05394f39 1712 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1713}
1714
1715static inline int
05394f39 1716i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1717{
05394f39 1718 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1719}
1720
63560396 1721static void
db53a302
CW
1722i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1723 uint32_t flush_domains)
63560396 1724{
05394f39 1725 struct drm_i915_gem_object *obj, *next;
63560396 1726
05394f39 1727 list_for_each_entry_safe(obj, next,
64193406 1728 &ring->gpu_write_list,
63560396 1729 gpu_write_list) {
05394f39
CW
1730 if (obj->base.write_domain & flush_domains) {
1731 uint32_t old_write_domain = obj->base.write_domain;
63560396 1732
05394f39
CW
1733 obj->base.write_domain = 0;
1734 list_del_init(&obj->gpu_write_list);
1ec14ad3 1735 i915_gem_object_move_to_active(obj, ring,
db53a302 1736 i915_gem_next_request_seqno(ring));
63560396 1737
63560396 1738 trace_i915_gem_object_change_domain(obj,
05394f39 1739 obj->base.read_domains,
63560396
DV
1740 old_write_domain);
1741 }
1742 }
1743}
8187a2b7 1744
3cce469c 1745int
db53a302 1746i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1747 struct drm_file *file,
db53a302 1748 struct drm_i915_gem_request *request)
673a394b 1749{
db53a302 1750 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1751 uint32_t seqno;
1752 int was_empty;
3cce469c
CW
1753 int ret;
1754
1755 BUG_ON(request == NULL);
673a394b 1756
3cce469c
CW
1757 ret = ring->add_request(ring, &seqno);
1758 if (ret)
1759 return ret;
673a394b 1760
db53a302 1761 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1762
1763 request->seqno = seqno;
852835f3 1764 request->ring = ring;
673a394b 1765 request->emitted_jiffies = jiffies;
852835f3
ZN
1766 was_empty = list_empty(&ring->request_list);
1767 list_add_tail(&request->list, &ring->request_list);
1768
db53a302
CW
1769 if (file) {
1770 struct drm_i915_file_private *file_priv = file->driver_priv;
1771
1c25595f 1772 spin_lock(&file_priv->mm.lock);
f787a5f5 1773 request->file_priv = file_priv;
b962442e 1774 list_add_tail(&request->client_list,
f787a5f5 1775 &file_priv->mm.request_list);
1c25595f 1776 spin_unlock(&file_priv->mm.lock);
b962442e 1777 }
673a394b 1778
db53a302
CW
1779 ring->outstanding_lazy_request = false;
1780
f65d9421 1781 if (!dev_priv->mm.suspended) {
b3b079db
CW
1782 mod_timer(&dev_priv->hangcheck_timer,
1783 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1784 if (was_empty)
b3b079db
CW
1785 queue_delayed_work(dev_priv->wq,
1786 &dev_priv->mm.retire_work, HZ);
f65d9421 1787 }
3cce469c 1788 return 0;
673a394b
EA
1789}
1790
f787a5f5
CW
1791static inline void
1792i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1793{
1c25595f 1794 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1795
1c25595f
CW
1796 if (!file_priv)
1797 return;
1c5d22f7 1798
1c25595f 1799 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1800 if (request->file_priv) {
1801 list_del(&request->client_list);
1802 request->file_priv = NULL;
1803 }
1c25595f 1804 spin_unlock(&file_priv->mm.lock);
673a394b 1805}
673a394b 1806
dfaae392
CW
1807static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1808 struct intel_ring_buffer *ring)
9375e446 1809{
dfaae392
CW
1810 while (!list_empty(&ring->request_list)) {
1811 struct drm_i915_gem_request *request;
673a394b 1812
dfaae392
CW
1813 request = list_first_entry(&ring->request_list,
1814 struct drm_i915_gem_request,
1815 list);
de151cf6 1816
dfaae392 1817 list_del(&request->list);
f787a5f5 1818 i915_gem_request_remove_from_client(request);
dfaae392
CW
1819 kfree(request);
1820 }
673a394b 1821
dfaae392 1822 while (!list_empty(&ring->active_list)) {
05394f39 1823 struct drm_i915_gem_object *obj;
9375e446 1824
05394f39
CW
1825 obj = list_first_entry(&ring->active_list,
1826 struct drm_i915_gem_object,
1827 ring_list);
9375e446 1828
05394f39
CW
1829 obj->base.write_domain = 0;
1830 list_del_init(&obj->gpu_write_list);
1831 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1832 }
1833}
1834
312817a3
CW
1835static void i915_gem_reset_fences(struct drm_device *dev)
1836{
1837 struct drm_i915_private *dev_priv = dev->dev_private;
1838 int i;
1839
1840 for (i = 0; i < 16; i++) {
1841 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1842 struct drm_i915_gem_object *obj = reg->obj;
1843
1844 if (!obj)
1845 continue;
1846
1847 if (obj->tiling_mode)
1848 i915_gem_release_mmap(obj);
1849
d9e86c0e
CW
1850 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1851 reg->obj->fenced_gpu_access = false;
1852 reg->obj->last_fenced_seqno = 0;
1853 reg->obj->last_fenced_ring = NULL;
1854 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1855 }
1856}
1857
069efc1d 1858void i915_gem_reset(struct drm_device *dev)
673a394b 1859{
77f01230 1860 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1861 struct drm_i915_gem_object *obj;
1ec14ad3 1862 int i;
673a394b 1863
1ec14ad3
CW
1864 for (i = 0; i < I915_NUM_RINGS; i++)
1865 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1866
1867 /* Remove anything from the flushing lists. The GPU cache is likely
1868 * to be lost on reset along with the data, so simply move the
1869 * lost bo to the inactive list.
1870 */
1871 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1872 obj= list_first_entry(&dev_priv->mm.flushing_list,
1873 struct drm_i915_gem_object,
1874 mm_list);
dfaae392 1875
05394f39
CW
1876 obj->base.write_domain = 0;
1877 list_del_init(&obj->gpu_write_list);
1878 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1879 }
1880
1881 /* Move everything out of the GPU domains to ensure we do any
1882 * necessary invalidation upon reuse.
1883 */
05394f39 1884 list_for_each_entry(obj,
77f01230 1885 &dev_priv->mm.inactive_list,
69dc4987 1886 mm_list)
77f01230 1887 {
05394f39 1888 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1889 }
069efc1d
CW
1890
1891 /* The fence registers are invalidated so clear them out */
312817a3 1892 i915_gem_reset_fences(dev);
673a394b
EA
1893}
1894
1895/**
1896 * This function clears the request list as sequence numbers are passed.
1897 */
b09a1fec 1898static void
db53a302 1899i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1900{
673a394b 1901 uint32_t seqno;
1ec14ad3 1902 int i;
673a394b 1903
db53a302 1904 if (list_empty(&ring->request_list))
6c0594a3
KW
1905 return;
1906
db53a302 1907 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1908
78501eac 1909 seqno = ring->get_seqno(ring);
1ec14ad3 1910
076e2c0e 1911 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1912 if (seqno >= ring->sync_seqno[i])
1913 ring->sync_seqno[i] = 0;
1914
852835f3 1915 while (!list_empty(&ring->request_list)) {
673a394b 1916 struct drm_i915_gem_request *request;
673a394b 1917
852835f3 1918 request = list_first_entry(&ring->request_list,
673a394b
EA
1919 struct drm_i915_gem_request,
1920 list);
673a394b 1921
dfaae392 1922 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1923 break;
1924
db53a302 1925 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1926
1927 list_del(&request->list);
f787a5f5 1928 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1929 kfree(request);
1930 }
673a394b 1931
b84d5f0c
CW
1932 /* Move any buffers on the active list that are no longer referenced
1933 * by the ringbuffer to the flushing/inactive lists as appropriate.
1934 */
1935 while (!list_empty(&ring->active_list)) {
05394f39 1936 struct drm_i915_gem_object *obj;
b84d5f0c 1937
05394f39
CW
1938 obj= list_first_entry(&ring->active_list,
1939 struct drm_i915_gem_object,
1940 ring_list);
673a394b 1941
05394f39 1942 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1943 break;
b84d5f0c 1944
05394f39 1945 if (obj->base.write_domain != 0)
b84d5f0c
CW
1946 i915_gem_object_move_to_flushing(obj);
1947 else
1948 i915_gem_object_move_to_inactive(obj);
673a394b 1949 }
9d34e5db 1950
db53a302
CW
1951 if (unlikely(ring->trace_irq_seqno &&
1952 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1953 ring->irq_put(ring);
db53a302 1954 ring->trace_irq_seqno = 0;
9d34e5db 1955 }
23bc5982 1956
db53a302 1957 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1958}
1959
b09a1fec
CW
1960void
1961i915_gem_retire_requests(struct drm_device *dev)
1962{
1963 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1964 int i;
b09a1fec 1965
be72615b 1966 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1967 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1968
1969 /* We must be careful that during unbind() we do not
1970 * accidentally infinitely recurse into retire requests.
1971 * Currently:
1972 * retire -> free -> unbind -> wait -> retire_ring
1973 */
05394f39 1974 list_for_each_entry_safe(obj, next,
be72615b 1975 &dev_priv->mm.deferred_free_list,
69dc4987 1976 mm_list)
05394f39 1977 i915_gem_free_object_tail(obj);
be72615b
CW
1978 }
1979
1ec14ad3 1980 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1981 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1982}
1983
75ef9da2 1984static void
673a394b
EA
1985i915_gem_retire_work_handler(struct work_struct *work)
1986{
1987 drm_i915_private_t *dev_priv;
1988 struct drm_device *dev;
0a58705b
CW
1989 bool idle;
1990 int i;
673a394b
EA
1991
1992 dev_priv = container_of(work, drm_i915_private_t,
1993 mm.retire_work.work);
1994 dev = dev_priv->dev;
1995
891b48cf
CW
1996 /* Come back later if the device is busy... */
1997 if (!mutex_trylock(&dev->struct_mutex)) {
1998 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1999 return;
2000 }
2001
b09a1fec 2002 i915_gem_retire_requests(dev);
d1b851fc 2003
0a58705b
CW
2004 /* Send a periodic flush down the ring so we don't hold onto GEM
2005 * objects indefinitely.
2006 */
2007 idle = true;
2008 for (i = 0; i < I915_NUM_RINGS; i++) {
2009 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2010
2011 if (!list_empty(&ring->gpu_write_list)) {
2012 struct drm_i915_gem_request *request;
2013 int ret;
2014
db53a302
CW
2015 ret = i915_gem_flush_ring(ring,
2016 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
2017 request = kzalloc(sizeof(*request), GFP_KERNEL);
2018 if (ret || request == NULL ||
db53a302 2019 i915_add_request(ring, NULL, request))
0a58705b
CW
2020 kfree(request);
2021 }
2022
2023 idle &= list_empty(&ring->request_list);
2024 }
2025
2026 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2027 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 2028
673a394b
EA
2029 mutex_unlock(&dev->struct_mutex);
2030}
2031
db53a302
CW
2032/**
2033 * Waits for a sequence number to be signaled, and cleans up the
2034 * request and object lists appropriately for that event.
2035 */
5a5a0c64 2036int
db53a302 2037i915_wait_request(struct intel_ring_buffer *ring,
ce453d81 2038 uint32_t seqno)
673a394b 2039{
db53a302 2040 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 2041 u32 ier;
673a394b
EA
2042 int ret = 0;
2043
2044 BUG_ON(seqno == 0);
2045
d9bc7e9f
CW
2046 if (atomic_read(&dev_priv->mm.wedged)) {
2047 struct completion *x = &dev_priv->error_completion;
2048 bool recovery_complete;
2049 unsigned long flags;
2050
2051 /* Give the error handler a chance to run. */
2052 spin_lock_irqsave(&x->wait.lock, flags);
2053 recovery_complete = x->done > 0;
2054 spin_unlock_irqrestore(&x->wait.lock, flags);
2055
2056 return recovery_complete ? -EIO : -EAGAIN;
2057 }
30dbf0c0 2058
5d97eb69 2059 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2060 struct drm_i915_gem_request *request;
2061
2062 request = kzalloc(sizeof(*request), GFP_KERNEL);
2063 if (request == NULL)
e35a41de 2064 return -ENOMEM;
3cce469c 2065
db53a302 2066 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
2067 if (ret) {
2068 kfree(request);
2069 return ret;
2070 }
2071
2072 seqno = request->seqno;
e35a41de 2073 }
ffed1d09 2074
78501eac 2075 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 2076 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
2077 ier = I915_READ(DEIER) | I915_READ(GTIER);
2078 else
2079 ier = I915_READ(IER);
802c7eb6
JB
2080 if (!ier) {
2081 DRM_ERROR("something (likely vbetool) disabled "
2082 "interrupts, re-enabling\n");
db53a302
CW
2083 i915_driver_irq_preinstall(ring->dev);
2084 i915_driver_irq_postinstall(ring->dev);
802c7eb6
JB
2085 }
2086
db53a302 2087 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 2088
b2223497 2089 ring->waiting_seqno = seqno;
b13c2b96 2090 if (ring->irq_get(ring)) {
ce453d81 2091 if (dev_priv->mm.interruptible)
b13c2b96
CW
2092 ret = wait_event_interruptible(ring->irq_queue,
2093 i915_seqno_passed(ring->get_seqno(ring), seqno)
2094 || atomic_read(&dev_priv->mm.wedged));
2095 else
2096 wait_event(ring->irq_queue,
2097 i915_seqno_passed(ring->get_seqno(ring), seqno)
2098 || atomic_read(&dev_priv->mm.wedged));
2099
2100 ring->irq_put(ring);
b5ba177d
CW
2101 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2102 seqno) ||
2103 atomic_read(&dev_priv->mm.wedged), 3000))
2104 ret = -EBUSY;
b2223497 2105 ring->waiting_seqno = 0;
1c5d22f7 2106
db53a302 2107 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2108 }
ba1234d1 2109 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2110 ret = -EAGAIN;
673a394b
EA
2111
2112 if (ret && ret != -ERESTARTSYS)
8bff917c 2113 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2114 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2115 dev_priv->next_seqno);
673a394b
EA
2116
2117 /* Directly dispatch request retiring. While we have the work queue
2118 * to handle this, the waiter on a request often wants an associated
2119 * buffer to have made it to the inactive list, and we would need
2120 * a separate wait queue to handle that.
2121 */
2122 if (ret == 0)
db53a302 2123 i915_gem_retire_requests_ring(ring);
673a394b
EA
2124
2125 return ret;
2126}
2127
673a394b
EA
2128/**
2129 * Ensures that all rendering to the object has completed and the object is
2130 * safe to unbind from the GTT or access from the CPU.
2131 */
54cf91dc 2132int
ce453d81 2133i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2134{
673a394b
EA
2135 int ret;
2136
e47c68e9
EA
2137 /* This function only exists to support waiting for existing rendering,
2138 * not for emitting required flushes.
673a394b 2139 */
05394f39 2140 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2141
2142 /* If there is rendering queued on the buffer being evicted, wait for
2143 * it.
2144 */
05394f39 2145 if (obj->active) {
ce453d81 2146 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2147 if (ret)
673a394b
EA
2148 return ret;
2149 }
2150
2151 return 0;
2152}
2153
2154/**
2155 * Unbinds an object from the GTT aperture.
2156 */
0f973f27 2157int
05394f39 2158i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2159{
673a394b
EA
2160 int ret = 0;
2161
05394f39 2162 if (obj->gtt_space == NULL)
673a394b
EA
2163 return 0;
2164
05394f39 2165 if (obj->pin_count != 0) {
673a394b
EA
2166 DRM_ERROR("Attempting to unbind pinned buffer\n");
2167 return -EINVAL;
2168 }
2169
5323fd04
EA
2170 /* blow away mappings if mapped through GTT */
2171 i915_gem_release_mmap(obj);
2172
673a394b
EA
2173 /* Move the object to the CPU domain to ensure that
2174 * any possible CPU writes while it's not in the GTT
2175 * are flushed when we go to remap it. This will
2176 * also ensure that all pending GPU writes are finished
2177 * before we unbind.
2178 */
e47c68e9 2179 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2180 if (ret == -ERESTARTSYS)
673a394b 2181 return ret;
8dc1775d
CW
2182 /* Continue on if we fail due to EIO, the GPU is hung so we
2183 * should be safe and we need to cleanup or else we might
2184 * cause memory corruption through use-after-free.
2185 */
812ed492
CW
2186 if (ret) {
2187 i915_gem_clflush_object(obj);
05394f39 2188 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2189 }
673a394b 2190
96b47b65 2191 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2192 ret = i915_gem_object_put_fence(obj);
2193 if (ret == -ERESTARTSYS)
2194 return ret;
96b47b65 2195
db53a302
CW
2196 trace_i915_gem_object_unbind(obj);
2197
7c2e6fdf 2198 i915_gem_gtt_unbind_object(obj);
e5281ccd 2199 i915_gem_object_put_pages_gtt(obj);
673a394b 2200
6299f992 2201 list_del_init(&obj->gtt_list);
05394f39 2202 list_del_init(&obj->mm_list);
75e9e915 2203 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2204 obj->map_and_fenceable = true;
673a394b 2205
05394f39
CW
2206 drm_mm_put_block(obj->gtt_space);
2207 obj->gtt_space = NULL;
2208 obj->gtt_offset = 0;
673a394b 2209
05394f39 2210 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2211 i915_gem_object_truncate(obj);
2212
8dc1775d 2213 return ret;
673a394b
EA
2214}
2215
88241785 2216int
db53a302 2217i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2218 uint32_t invalidate_domains,
2219 uint32_t flush_domains)
2220{
88241785
CW
2221 int ret;
2222
36d527de
CW
2223 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2224 return 0;
2225
db53a302
CW
2226 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2227
88241785
CW
2228 ret = ring->flush(ring, invalidate_domains, flush_domains);
2229 if (ret)
2230 return ret;
2231
36d527de
CW
2232 if (flush_domains & I915_GEM_GPU_DOMAINS)
2233 i915_gem_process_flushing_list(ring, flush_domains);
2234
88241785 2235 return 0;
54cf91dc
CW
2236}
2237
db53a302 2238static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2239{
88241785
CW
2240 int ret;
2241
395b70be 2242 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2243 return 0;
2244
88241785 2245 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2246 ret = i915_gem_flush_ring(ring,
0ac74c6b 2247 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2248 if (ret)
2249 return ret;
2250 }
2251
ce453d81 2252 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2253}
2254
b47eb4a2 2255int
4df2faf4
DV
2256i915_gpu_idle(struct drm_device *dev)
2257{
2258 drm_i915_private_t *dev_priv = dev->dev_private;
2259 bool lists_empty;
1ec14ad3 2260 int ret, i;
4df2faf4 2261
d1b851fc 2262 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2263 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2264 if (lists_empty)
2265 return 0;
2266
2267 /* Flush everything onto the inactive list. */
1ec14ad3 2268 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2269 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2270 if (ret)
2271 return ret;
2272 }
4df2faf4 2273
8a1a49f9 2274 return 0;
4df2faf4
DV
2275}
2276
c6642782
DV
2277static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2278 struct intel_ring_buffer *pipelined)
4e901fdc 2279{
05394f39 2280 struct drm_device *dev = obj->base.dev;
4e901fdc 2281 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2282 u32 size = obj->gtt_space->size;
2283 int regnum = obj->fence_reg;
4e901fdc
EA
2284 uint64_t val;
2285
05394f39 2286 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2287 0xfffff000) << 32;
05394f39
CW
2288 val |= obj->gtt_offset & 0xfffff000;
2289 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2290 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2291
05394f39 2292 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2293 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2294 val |= I965_FENCE_REG_VALID;
2295
c6642782
DV
2296 if (pipelined) {
2297 int ret = intel_ring_begin(pipelined, 6);
2298 if (ret)
2299 return ret;
2300
2301 intel_ring_emit(pipelined, MI_NOOP);
2302 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2303 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2304 intel_ring_emit(pipelined, (u32)val);
2305 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2306 intel_ring_emit(pipelined, (u32)(val >> 32));
2307 intel_ring_advance(pipelined);
2308 } else
2309 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2310
2311 return 0;
4e901fdc
EA
2312}
2313
c6642782
DV
2314static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2315 struct intel_ring_buffer *pipelined)
de151cf6 2316{
05394f39 2317 struct drm_device *dev = obj->base.dev;
de151cf6 2318 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2319 u32 size = obj->gtt_space->size;
2320 int regnum = obj->fence_reg;
de151cf6
JB
2321 uint64_t val;
2322
05394f39 2323 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2324 0xfffff000) << 32;
05394f39
CW
2325 val |= obj->gtt_offset & 0xfffff000;
2326 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2327 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2328 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2329 val |= I965_FENCE_REG_VALID;
2330
c6642782
DV
2331 if (pipelined) {
2332 int ret = intel_ring_begin(pipelined, 6);
2333 if (ret)
2334 return ret;
2335
2336 intel_ring_emit(pipelined, MI_NOOP);
2337 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2338 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2339 intel_ring_emit(pipelined, (u32)val);
2340 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2341 intel_ring_emit(pipelined, (u32)(val >> 32));
2342 intel_ring_advance(pipelined);
2343 } else
2344 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2345
2346 return 0;
de151cf6
JB
2347}
2348
c6642782
DV
2349static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2350 struct intel_ring_buffer *pipelined)
de151cf6 2351{
05394f39 2352 struct drm_device *dev = obj->base.dev;
de151cf6 2353 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2354 u32 size = obj->gtt_space->size;
c6642782 2355 u32 fence_reg, val, pitch_val;
0f973f27 2356 int tile_width;
de151cf6 2357
c6642782
DV
2358 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2359 (size & -size) != size ||
2360 (obj->gtt_offset & (size - 1)),
2361 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2362 obj->gtt_offset, obj->map_and_fenceable, size))
2363 return -EINVAL;
de151cf6 2364
c6642782 2365 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2366 tile_width = 128;
de151cf6 2367 else
0f973f27
JB
2368 tile_width = 512;
2369
2370 /* Note: pitch better be a power of two tile widths */
05394f39 2371 pitch_val = obj->stride / tile_width;
0f973f27 2372 pitch_val = ffs(pitch_val) - 1;
de151cf6 2373
05394f39
CW
2374 val = obj->gtt_offset;
2375 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2376 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2377 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2378 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2379 val |= I830_FENCE_REG_VALID;
2380
05394f39 2381 fence_reg = obj->fence_reg;
a00b10c3
CW
2382 if (fence_reg < 8)
2383 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2384 else
a00b10c3 2385 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2386
2387 if (pipelined) {
2388 int ret = intel_ring_begin(pipelined, 4);
2389 if (ret)
2390 return ret;
2391
2392 intel_ring_emit(pipelined, MI_NOOP);
2393 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2394 intel_ring_emit(pipelined, fence_reg);
2395 intel_ring_emit(pipelined, val);
2396 intel_ring_advance(pipelined);
2397 } else
2398 I915_WRITE(fence_reg, val);
2399
2400 return 0;
de151cf6
JB
2401}
2402
c6642782
DV
2403static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2404 struct intel_ring_buffer *pipelined)
de151cf6 2405{
05394f39 2406 struct drm_device *dev = obj->base.dev;
de151cf6 2407 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2408 u32 size = obj->gtt_space->size;
2409 int regnum = obj->fence_reg;
de151cf6
JB
2410 uint32_t val;
2411 uint32_t pitch_val;
2412
c6642782
DV
2413 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2414 (size & -size) != size ||
2415 (obj->gtt_offset & (size - 1)),
2416 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2417 obj->gtt_offset, size))
2418 return -EINVAL;
de151cf6 2419
05394f39 2420 pitch_val = obj->stride / 128;
e76a16de 2421 pitch_val = ffs(pitch_val) - 1;
e76a16de 2422
05394f39
CW
2423 val = obj->gtt_offset;
2424 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2425 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2426 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2427 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2428 val |= I830_FENCE_REG_VALID;
2429
c6642782
DV
2430 if (pipelined) {
2431 int ret = intel_ring_begin(pipelined, 4);
2432 if (ret)
2433 return ret;
2434
2435 intel_ring_emit(pipelined, MI_NOOP);
2436 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2437 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2438 intel_ring_emit(pipelined, val);
2439 intel_ring_advance(pipelined);
2440 } else
2441 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2442
2443 return 0;
de151cf6
JB
2444}
2445
d9e86c0e
CW
2446static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2447{
2448 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2449}
2450
2451static int
2452i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2453 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2454{
2455 int ret;
2456
2457 if (obj->fenced_gpu_access) {
88241785 2458 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2459 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2460 0, obj->base.write_domain);
2461 if (ret)
2462 return ret;
2463 }
d9e86c0e
CW
2464
2465 obj->fenced_gpu_access = false;
2466 }
2467
2468 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2469 if (!ring_passed_seqno(obj->last_fenced_ring,
2470 obj->last_fenced_seqno)) {
db53a302 2471 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2472 obj->last_fenced_seqno);
d9e86c0e
CW
2473 if (ret)
2474 return ret;
2475 }
2476
2477 obj->last_fenced_seqno = 0;
2478 obj->last_fenced_ring = NULL;
2479 }
2480
63256ec5
CW
2481 /* Ensure that all CPU reads are completed before installing a fence
2482 * and all writes before removing the fence.
2483 */
2484 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2485 mb();
2486
d9e86c0e
CW
2487 return 0;
2488}
2489
2490int
2491i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2492{
2493 int ret;
2494
2495 if (obj->tiling_mode)
2496 i915_gem_release_mmap(obj);
2497
ce453d81 2498 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2499 if (ret)
2500 return ret;
2501
2502 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2504 i915_gem_clear_fence_reg(obj->base.dev,
2505 &dev_priv->fence_regs[obj->fence_reg]);
2506
2507 obj->fence_reg = I915_FENCE_REG_NONE;
2508 }
2509
2510 return 0;
2511}
2512
2513static struct drm_i915_fence_reg *
2514i915_find_fence_reg(struct drm_device *dev,
2515 struct intel_ring_buffer *pipelined)
ae3db24a 2516{
ae3db24a 2517 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2518 struct drm_i915_fence_reg *reg, *first, *avail;
2519 int i;
ae3db24a
DV
2520
2521 /* First try to find a free reg */
d9e86c0e 2522 avail = NULL;
ae3db24a
DV
2523 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2524 reg = &dev_priv->fence_regs[i];
2525 if (!reg->obj)
d9e86c0e 2526 return reg;
ae3db24a 2527
05394f39 2528 if (!reg->obj->pin_count)
d9e86c0e 2529 avail = reg;
ae3db24a
DV
2530 }
2531
d9e86c0e
CW
2532 if (avail == NULL)
2533 return NULL;
ae3db24a
DV
2534
2535 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2536 avail = first = NULL;
2537 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2538 if (reg->obj->pin_count)
ae3db24a
DV
2539 continue;
2540
d9e86c0e
CW
2541 if (first == NULL)
2542 first = reg;
2543
2544 if (!pipelined ||
2545 !reg->obj->last_fenced_ring ||
2546 reg->obj->last_fenced_ring == pipelined) {
2547 avail = reg;
2548 break;
2549 }
ae3db24a
DV
2550 }
2551
d9e86c0e
CW
2552 if (avail == NULL)
2553 avail = first;
ae3db24a 2554
a00b10c3 2555 return avail;
ae3db24a
DV
2556}
2557
de151cf6 2558/**
d9e86c0e 2559 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2560 * @obj: object to map through a fence reg
d9e86c0e
CW
2561 * @pipelined: ring on which to queue the change, or NULL for CPU access
2562 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2563 *
2564 * When mapping objects through the GTT, userspace wants to be able to write
2565 * to them without having to worry about swizzling if the object is tiled.
2566 *
2567 * This function walks the fence regs looking for a free one for @obj,
2568 * stealing one if it can't find any.
2569 *
2570 * It then sets up the reg based on the object's properties: address, pitch
2571 * and tiling format.
2572 */
8c4b8c3f 2573int
d9e86c0e 2574i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2575 struct intel_ring_buffer *pipelined)
de151cf6 2576{
05394f39 2577 struct drm_device *dev = obj->base.dev;
79e53945 2578 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2579 struct drm_i915_fence_reg *reg;
ae3db24a 2580 int ret;
de151cf6 2581
6bda10d1
CW
2582 /* XXX disable pipelining. There are bugs. Shocking. */
2583 pipelined = NULL;
2584
d9e86c0e 2585 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2586 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2587 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2588 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2589
29c5a587
CW
2590 if (obj->tiling_changed) {
2591 ret = i915_gem_object_flush_fence(obj, pipelined);
2592 if (ret)
2593 return ret;
2594
2595 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2596 pipelined = NULL;
2597
2598 if (pipelined) {
2599 reg->setup_seqno =
2600 i915_gem_next_request_seqno(pipelined);
2601 obj->last_fenced_seqno = reg->setup_seqno;
2602 obj->last_fenced_ring = pipelined;
2603 }
2604
2605 goto update;
2606 }
d9e86c0e
CW
2607
2608 if (!pipelined) {
2609 if (reg->setup_seqno) {
2610 if (!ring_passed_seqno(obj->last_fenced_ring,
2611 reg->setup_seqno)) {
db53a302 2612 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2613 reg->setup_seqno);
d9e86c0e
CW
2614 if (ret)
2615 return ret;
2616 }
2617
2618 reg->setup_seqno = 0;
2619 }
2620 } else if (obj->last_fenced_ring &&
2621 obj->last_fenced_ring != pipelined) {
ce453d81 2622 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2623 if (ret)
2624 return ret;
d9e86c0e
CW
2625 }
2626
a09ba7fa
EA
2627 return 0;
2628 }
2629
d9e86c0e
CW
2630 reg = i915_find_fence_reg(dev, pipelined);
2631 if (reg == NULL)
2632 return -ENOSPC;
de151cf6 2633
ce453d81 2634 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2635 if (ret)
ae3db24a 2636 return ret;
de151cf6 2637
d9e86c0e
CW
2638 if (reg->obj) {
2639 struct drm_i915_gem_object *old = reg->obj;
2640
2641 drm_gem_object_reference(&old->base);
2642
2643 if (old->tiling_mode)
2644 i915_gem_release_mmap(old);
2645
ce453d81 2646 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2647 if (ret) {
2648 drm_gem_object_unreference(&old->base);
2649 return ret;
2650 }
2651
2652 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2653 pipelined = NULL;
2654
2655 old->fence_reg = I915_FENCE_REG_NONE;
2656 old->last_fenced_ring = pipelined;
2657 old->last_fenced_seqno =
db53a302 2658 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2659
2660 drm_gem_object_unreference(&old->base);
2661 } else if (obj->last_fenced_seqno == 0)
2662 pipelined = NULL;
a09ba7fa 2663
de151cf6 2664 reg->obj = obj;
d9e86c0e
CW
2665 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2666 obj->fence_reg = reg - dev_priv->fence_regs;
2667 obj->last_fenced_ring = pipelined;
de151cf6 2668
d9e86c0e 2669 reg->setup_seqno =
db53a302 2670 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2671 obj->last_fenced_seqno = reg->setup_seqno;
2672
2673update:
2674 obj->tiling_changed = false;
e259befd 2675 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2676 case 7:
e259befd 2677 case 6:
c6642782 2678 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2679 break;
2680 case 5:
2681 case 4:
c6642782 2682 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2683 break;
2684 case 3:
c6642782 2685 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2686 break;
2687 case 2:
c6642782 2688 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2689 break;
2690 }
d9ddcb96 2691
c6642782 2692 return ret;
de151cf6
JB
2693}
2694
2695/**
2696 * i915_gem_clear_fence_reg - clear out fence register info
2697 * @obj: object to clear
2698 *
2699 * Zeroes out the fence register itself and clears out the associated
05394f39 2700 * data structures in dev_priv and obj.
de151cf6
JB
2701 */
2702static void
d9e86c0e
CW
2703i915_gem_clear_fence_reg(struct drm_device *dev,
2704 struct drm_i915_fence_reg *reg)
de151cf6 2705{
79e53945 2706 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2707 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2708
e259befd 2709 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2710 case 7:
e259befd 2711 case 6:
d9e86c0e 2712 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2713 break;
2714 case 5:
2715 case 4:
d9e86c0e 2716 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2717 break;
2718 case 3:
d9e86c0e
CW
2719 if (fence_reg >= 8)
2720 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2721 else
e259befd 2722 case 2:
d9e86c0e 2723 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2724
2725 I915_WRITE(fence_reg, 0);
e259befd 2726 break;
dc529a4f 2727 }
de151cf6 2728
007cc8ac 2729 list_del_init(&reg->lru_list);
d9e86c0e
CW
2730 reg->obj = NULL;
2731 reg->setup_seqno = 0;
52dc7d32
CW
2732}
2733
673a394b
EA
2734/**
2735 * Finds free space in the GTT aperture and binds the object there.
2736 */
2737static int
05394f39 2738i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2739 unsigned alignment,
75e9e915 2740 bool map_and_fenceable)
673a394b 2741{
05394f39 2742 struct drm_device *dev = obj->base.dev;
673a394b 2743 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2744 struct drm_mm_node *free_space;
a00b10c3 2745 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2746 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2747 bool mappable, fenceable;
07f73f69 2748 int ret;
673a394b 2749
05394f39 2750 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2751 DRM_ERROR("Attempting to bind a purgeable object\n");
2752 return -EINVAL;
2753 }
2754
05394f39
CW
2755 fence_size = i915_gem_get_gtt_size(obj);
2756 fence_alignment = i915_gem_get_gtt_alignment(obj);
2757 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2758
673a394b 2759 if (alignment == 0)
5e783301
DV
2760 alignment = map_and_fenceable ? fence_alignment :
2761 unfenced_alignment;
75e9e915 2762 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2763 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2764 return -EINVAL;
2765 }
2766
05394f39 2767 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2768
654fc607
CW
2769 /* If the object is bigger than the entire aperture, reject it early
2770 * before evicting everything in a vain attempt to find space.
2771 */
05394f39 2772 if (obj->base.size >
75e9e915 2773 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2774 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2775 return -E2BIG;
2776 }
2777
673a394b 2778 search_free:
75e9e915 2779 if (map_and_fenceable)
920afa77
DV
2780 free_space =
2781 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2782 size, alignment, 0,
920afa77
DV
2783 dev_priv->mm.gtt_mappable_end,
2784 0);
2785 else
2786 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2787 size, alignment, 0);
920afa77
DV
2788
2789 if (free_space != NULL) {
75e9e915 2790 if (map_and_fenceable)
05394f39 2791 obj->gtt_space =
920afa77 2792 drm_mm_get_block_range_generic(free_space,
a00b10c3 2793 size, alignment, 0,
920afa77
DV
2794 dev_priv->mm.gtt_mappable_end,
2795 0);
2796 else
05394f39 2797 obj->gtt_space =
a00b10c3 2798 drm_mm_get_block(free_space, size, alignment);
920afa77 2799 }
05394f39 2800 if (obj->gtt_space == NULL) {
673a394b
EA
2801 /* If the gtt is empty and we're still having trouble
2802 * fitting our object in, we're out of memory.
2803 */
75e9e915
DV
2804 ret = i915_gem_evict_something(dev, size, alignment,
2805 map_and_fenceable);
9731129c 2806 if (ret)
673a394b 2807 return ret;
9731129c 2808
673a394b
EA
2809 goto search_free;
2810 }
2811
e5281ccd 2812 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2813 if (ret) {
05394f39
CW
2814 drm_mm_put_block(obj->gtt_space);
2815 obj->gtt_space = NULL;
07f73f69
CW
2816
2817 if (ret == -ENOMEM) {
809b6334
CW
2818 /* first try to reclaim some memory by clearing the GTT */
2819 ret = i915_gem_evict_everything(dev, false);
07f73f69 2820 if (ret) {
07f73f69 2821 /* now try to shrink everyone else */
4bdadb97
CW
2822 if (gfpmask) {
2823 gfpmask = 0;
2824 goto search_free;
07f73f69
CW
2825 }
2826
809b6334 2827 return -ENOMEM;
07f73f69
CW
2828 }
2829
2830 goto search_free;
2831 }
2832
673a394b
EA
2833 return ret;
2834 }
2835
7c2e6fdf
DV
2836 ret = i915_gem_gtt_bind_object(obj);
2837 if (ret) {
e5281ccd 2838 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2839 drm_mm_put_block(obj->gtt_space);
2840 obj->gtt_space = NULL;
07f73f69 2841
809b6334 2842 if (i915_gem_evict_everything(dev, false))
07f73f69 2843 return ret;
07f73f69
CW
2844
2845 goto search_free;
673a394b 2846 }
673a394b 2847
6299f992 2848 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2849 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2850
673a394b
EA
2851 /* Assert that the object is not currently in any GPU domain. As it
2852 * wasn't in the GTT, there shouldn't be any way it could have been in
2853 * a GPU cache
2854 */
05394f39
CW
2855 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2856 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2857
6299f992 2858 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2859
75e9e915 2860 fenceable =
05394f39
CW
2861 obj->gtt_space->size == fence_size &&
2862 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2863
75e9e915 2864 mappable =
05394f39 2865 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2866
05394f39 2867 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2868
db53a302 2869 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2870 return 0;
2871}
2872
2873void
05394f39 2874i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2875{
673a394b
EA
2876 /* If we don't have a page list set up, then we're not pinned
2877 * to GPU, and we can ignore the cache flush because it'll happen
2878 * again at bind time.
2879 */
05394f39 2880 if (obj->pages == NULL)
673a394b
EA
2881 return;
2882
9c23f7fc
CW
2883 /* If the GPU is snooping the contents of the CPU cache,
2884 * we do not need to manually clear the CPU cache lines. However,
2885 * the caches are only snooped when the render cache is
2886 * flushed/invalidated. As we always have to emit invalidations
2887 * and flushes when moving into and out of the RENDER domain, correct
2888 * snooping behaviour occurs naturally as the result of our domain
2889 * tracking.
2890 */
2891 if (obj->cache_level != I915_CACHE_NONE)
2892 return;
2893
1c5d22f7 2894 trace_i915_gem_object_clflush(obj);
cfa16a0d 2895
05394f39 2896 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2897}
2898
e47c68e9 2899/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2900static int
3619df03 2901i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2902{
05394f39 2903 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2904 return 0;
e47c68e9
EA
2905
2906 /* Queue the GPU write cache flushing we need. */
db53a302 2907 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2908}
2909
2910/** Flushes the GTT write domain for the object if it's dirty. */
2911static void
05394f39 2912i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2913{
1c5d22f7
CW
2914 uint32_t old_write_domain;
2915
05394f39 2916 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2917 return;
2918
63256ec5 2919 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2920 * to it immediately go to main memory as far as we know, so there's
2921 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2922 *
2923 * However, we do have to enforce the order so that all writes through
2924 * the GTT land before any writes to the device, such as updates to
2925 * the GATT itself.
e47c68e9 2926 */
63256ec5
CW
2927 wmb();
2928
05394f39
CW
2929 old_write_domain = obj->base.write_domain;
2930 obj->base.write_domain = 0;
1c5d22f7
CW
2931
2932 trace_i915_gem_object_change_domain(obj,
05394f39 2933 obj->base.read_domains,
1c5d22f7 2934 old_write_domain);
e47c68e9
EA
2935}
2936
2937/** Flushes the CPU write domain for the object if it's dirty. */
2938static void
05394f39 2939i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2940{
1c5d22f7 2941 uint32_t old_write_domain;
e47c68e9 2942
05394f39 2943 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2944 return;
2945
2946 i915_gem_clflush_object(obj);
40ce6575 2947 intel_gtt_chipset_flush();
05394f39
CW
2948 old_write_domain = obj->base.write_domain;
2949 obj->base.write_domain = 0;
1c5d22f7
CW
2950
2951 trace_i915_gem_object_change_domain(obj,
05394f39 2952 obj->base.read_domains,
1c5d22f7 2953 old_write_domain);
e47c68e9
EA
2954}
2955
2ef7eeaa
EA
2956/**
2957 * Moves a single object to the GTT read, and possibly write domain.
2958 *
2959 * This function returns when the move is complete, including waiting on
2960 * flushes to occur.
2961 */
79e53945 2962int
2021746e 2963i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2964{
1c5d22f7 2965 uint32_t old_write_domain, old_read_domains;
e47c68e9 2966 int ret;
2ef7eeaa 2967
02354392 2968 /* Not valid to be called on unbound objects. */
05394f39 2969 if (obj->gtt_space == NULL)
02354392
EA
2970 return -EINVAL;
2971
8d7e3de1
CW
2972 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2973 return 0;
2974
88241785
CW
2975 ret = i915_gem_object_flush_gpu_write_domain(obj);
2976 if (ret)
2977 return ret;
2978
87ca9c8a 2979 if (obj->pending_gpu_write || write) {
ce453d81 2980 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2981 if (ret)
2982 return ret;
2983 }
2dafb1e0 2984
7213342d 2985 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2986
05394f39
CW
2987 old_write_domain = obj->base.write_domain;
2988 old_read_domains = obj->base.read_domains;
1c5d22f7 2989
e47c68e9
EA
2990 /* It should now be out of any other write domains, and we can update
2991 * the domain values for our changes.
2992 */
05394f39
CW
2993 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2994 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2995 if (write) {
05394f39
CW
2996 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2997 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2998 obj->dirty = 1;
2ef7eeaa
EA
2999 }
3000
1c5d22f7
CW
3001 trace_i915_gem_object_change_domain(obj,
3002 old_read_domains,
3003 old_write_domain);
3004
e47c68e9
EA
3005 return 0;
3006}
3007
b9241ea3
ZW
3008/*
3009 * Prepare buffer for display plane. Use uninterruptible for possible flush
3010 * wait, as in modesetting process we're not supposed to be interrupted.
3011 */
3012int
05394f39 3013i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 3014 struct intel_ring_buffer *pipelined)
b9241ea3 3015{
ba3d8d74 3016 uint32_t old_read_domains;
b9241ea3
ZW
3017 int ret;
3018
3019 /* Not valid to be called on unbound objects. */
05394f39 3020 if (obj->gtt_space == NULL)
b9241ea3
ZW
3021 return -EINVAL;
3022
88241785
CW
3023 ret = i915_gem_object_flush_gpu_write_domain(obj);
3024 if (ret)
3025 return ret;
3026
b9241ea3 3027
ced270fa 3028 /* Currently, we are always called from an non-interruptible context. */
0be73284 3029 if (pipelined != obj->ring) {
ce453d81 3030 ret = i915_gem_object_wait_rendering(obj);
ced270fa 3031 if (ret)
b9241ea3
ZW
3032 return ret;
3033 }
3034
b118c1e3
CW
3035 i915_gem_object_flush_cpu_write_domain(obj);
3036
05394f39
CW
3037 old_read_domains = obj->base.read_domains;
3038 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3039
3040 trace_i915_gem_object_change_domain(obj,
3041 old_read_domains,
05394f39 3042 obj->base.write_domain);
b9241ea3
ZW
3043
3044 return 0;
3045}
3046
85345517 3047int
ce453d81 3048i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
85345517 3049{
88241785
CW
3050 int ret;
3051
85345517
CW
3052 if (!obj->active)
3053 return 0;
3054
88241785 3055 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3056 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3057 if (ret)
3058 return ret;
3059 }
85345517 3060
ce453d81 3061 return i915_gem_object_wait_rendering(obj);
85345517
CW
3062}
3063
e47c68e9
EA
3064/**
3065 * Moves a single object to the CPU read, and possibly write domain.
3066 *
3067 * This function returns when the move is complete, including waiting on
3068 * flushes to occur.
3069 */
3070static int
919926ae 3071i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3072{
1c5d22f7 3073 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3074 int ret;
3075
8d7e3de1
CW
3076 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3077 return 0;
3078
88241785
CW
3079 ret = i915_gem_object_flush_gpu_write_domain(obj);
3080 if (ret)
3081 return ret;
3082
ce453d81 3083 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3084 if (ret)
e47c68e9 3085 return ret;
2ef7eeaa 3086
e47c68e9 3087 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3088
e47c68e9
EA
3089 /* If we have a partially-valid cache of the object in the CPU,
3090 * finish invalidating it and free the per-page flags.
2ef7eeaa 3091 */
e47c68e9 3092 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3093
05394f39
CW
3094 old_write_domain = obj->base.write_domain;
3095 old_read_domains = obj->base.read_domains;
1c5d22f7 3096
e47c68e9 3097 /* Flush the CPU cache if it's still invalid. */
05394f39 3098 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3099 i915_gem_clflush_object(obj);
2ef7eeaa 3100
05394f39 3101 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3102 }
3103
3104 /* It should now be out of any other write domains, and we can update
3105 * the domain values for our changes.
3106 */
05394f39 3107 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3108
3109 /* If we're writing through the CPU, then the GPU read domains will
3110 * need to be invalidated at next use.
3111 */
3112 if (write) {
05394f39
CW
3113 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3114 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3115 }
2ef7eeaa 3116
1c5d22f7
CW
3117 trace_i915_gem_object_change_domain(obj,
3118 old_read_domains,
3119 old_write_domain);
3120
2ef7eeaa
EA
3121 return 0;
3122}
3123
673a394b 3124/**
e47c68e9 3125 * Moves the object from a partially CPU read to a full one.
673a394b 3126 *
e47c68e9
EA
3127 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3128 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3129 */
e47c68e9 3130static void
05394f39 3131i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3132{
05394f39 3133 if (!obj->page_cpu_valid)
e47c68e9
EA
3134 return;
3135
3136 /* If we're partially in the CPU read domain, finish moving it in.
3137 */
05394f39 3138 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3139 int i;
3140
05394f39
CW
3141 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3142 if (obj->page_cpu_valid[i])
e47c68e9 3143 continue;
05394f39 3144 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3145 }
e47c68e9
EA
3146 }
3147
3148 /* Free the page_cpu_valid mappings which are now stale, whether
3149 * or not we've got I915_GEM_DOMAIN_CPU.
3150 */
05394f39
CW
3151 kfree(obj->page_cpu_valid);
3152 obj->page_cpu_valid = NULL;
e47c68e9
EA
3153}
3154
3155/**
3156 * Set the CPU read domain on a range of the object.
3157 *
3158 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3159 * not entirely valid. The page_cpu_valid member of the object flags which
3160 * pages have been flushed, and will be respected by
3161 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3162 * of the whole object.
3163 *
3164 * This function returns when the move is complete, including waiting on
3165 * flushes to occur.
3166 */
3167static int
05394f39 3168i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3169 uint64_t offset, uint64_t size)
3170{
1c5d22f7 3171 uint32_t old_read_domains;
e47c68e9 3172 int i, ret;
673a394b 3173
05394f39 3174 if (offset == 0 && size == obj->base.size)
e47c68e9 3175 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3176
88241785
CW
3177 ret = i915_gem_object_flush_gpu_write_domain(obj);
3178 if (ret)
3179 return ret;
3180
ce453d81 3181 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3182 if (ret)
6a47baa6 3183 return ret;
de18a29e 3184
e47c68e9
EA
3185 i915_gem_object_flush_gtt_write_domain(obj);
3186
3187 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3188 if (obj->page_cpu_valid == NULL &&
3189 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3190 return 0;
673a394b 3191
e47c68e9
EA
3192 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3193 * newly adding I915_GEM_DOMAIN_CPU
3194 */
05394f39
CW
3195 if (obj->page_cpu_valid == NULL) {
3196 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3197 GFP_KERNEL);
3198 if (obj->page_cpu_valid == NULL)
e47c68e9 3199 return -ENOMEM;
05394f39
CW
3200 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3201 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3202
3203 /* Flush the cache on any pages that are still invalid from the CPU's
3204 * perspective.
3205 */
e47c68e9
EA
3206 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3207 i++) {
05394f39 3208 if (obj->page_cpu_valid[i])
673a394b
EA
3209 continue;
3210
05394f39 3211 drm_clflush_pages(obj->pages + i, 1);
673a394b 3212
05394f39 3213 obj->page_cpu_valid[i] = 1;
673a394b
EA
3214 }
3215
e47c68e9
EA
3216 /* It should now be out of any other write domains, and we can update
3217 * the domain values for our changes.
3218 */
05394f39 3219 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3220
05394f39
CW
3221 old_read_domains = obj->base.read_domains;
3222 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3223
1c5d22f7
CW
3224 trace_i915_gem_object_change_domain(obj,
3225 old_read_domains,
05394f39 3226 obj->base.write_domain);
1c5d22f7 3227
673a394b
EA
3228 return 0;
3229}
3230
673a394b
EA
3231/* Throttle our rendering by waiting until the ring has completed our requests
3232 * emitted over 20 msec ago.
3233 *
b962442e
EA
3234 * Note that if we were to use the current jiffies each time around the loop,
3235 * we wouldn't escape the function with any frames outstanding if the time to
3236 * render a frame was over 20ms.
3237 *
673a394b
EA
3238 * This should get us reasonable parallelism between CPU and GPU but also
3239 * relatively low latency when blocking on a particular request to finish.
3240 */
40a5f0de 3241static int
f787a5f5 3242i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3243{
f787a5f5
CW
3244 struct drm_i915_private *dev_priv = dev->dev_private;
3245 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3246 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3247 struct drm_i915_gem_request *request;
3248 struct intel_ring_buffer *ring = NULL;
3249 u32 seqno = 0;
3250 int ret;
93533c29 3251
e110e8d6
CW
3252 if (atomic_read(&dev_priv->mm.wedged))
3253 return -EIO;
3254
1c25595f 3255 spin_lock(&file_priv->mm.lock);
f787a5f5 3256 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3257 if (time_after_eq(request->emitted_jiffies, recent_enough))
3258 break;
40a5f0de 3259
f787a5f5
CW
3260 ring = request->ring;
3261 seqno = request->seqno;
b962442e 3262 }
1c25595f 3263 spin_unlock(&file_priv->mm.lock);
40a5f0de 3264
f787a5f5
CW
3265 if (seqno == 0)
3266 return 0;
2bc43b5c 3267
f787a5f5 3268 ret = 0;
78501eac 3269 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3270 /* And wait for the seqno passing without holding any locks and
3271 * causing extra latency for others. This is safe as the irq
3272 * generation is designed to be run atomically and so is
3273 * lockless.
3274 */
b13c2b96
CW
3275 if (ring->irq_get(ring)) {
3276 ret = wait_event_interruptible(ring->irq_queue,
3277 i915_seqno_passed(ring->get_seqno(ring), seqno)
3278 || atomic_read(&dev_priv->mm.wedged));
3279 ring->irq_put(ring);
40a5f0de 3280
b13c2b96
CW
3281 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3282 ret = -EIO;
3283 }
40a5f0de
EA
3284 }
3285
f787a5f5
CW
3286 if (ret == 0)
3287 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3288
3289 return ret;
3290}
3291
673a394b 3292int
05394f39
CW
3293i915_gem_object_pin(struct drm_i915_gem_object *obj,
3294 uint32_t alignment,
75e9e915 3295 bool map_and_fenceable)
673a394b 3296{
05394f39 3297 struct drm_device *dev = obj->base.dev;
f13d3f73 3298 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3299 int ret;
3300
05394f39 3301 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3302 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3303
05394f39
CW
3304 if (obj->gtt_space != NULL) {
3305 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3306 (map_and_fenceable && !obj->map_and_fenceable)) {
3307 WARN(obj->pin_count,
ae7d49d8 3308 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3309 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3310 " obj->map_and_fenceable=%d\n",
05394f39 3311 obj->gtt_offset, alignment,
75e9e915 3312 map_and_fenceable,
05394f39 3313 obj->map_and_fenceable);
ac0c6b5a
CW
3314 ret = i915_gem_object_unbind(obj);
3315 if (ret)
3316 return ret;
3317 }
3318 }
3319
05394f39 3320 if (obj->gtt_space == NULL) {
a00b10c3 3321 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3322 map_and_fenceable);
9731129c 3323 if (ret)
673a394b 3324 return ret;
22c344e9 3325 }
76446cac 3326
05394f39 3327 if (obj->pin_count++ == 0) {
05394f39
CW
3328 if (!obj->active)
3329 list_move_tail(&obj->mm_list,
f13d3f73 3330 &dev_priv->mm.pinned_list);
673a394b 3331 }
6299f992 3332 obj->pin_mappable |= map_and_fenceable;
673a394b 3333
23bc5982 3334 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3335 return 0;
3336}
3337
3338void
05394f39 3339i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3340{
05394f39 3341 struct drm_device *dev = obj->base.dev;
673a394b 3342 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3343
23bc5982 3344 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3345 BUG_ON(obj->pin_count == 0);
3346 BUG_ON(obj->gtt_space == NULL);
673a394b 3347
05394f39
CW
3348 if (--obj->pin_count == 0) {
3349 if (!obj->active)
3350 list_move_tail(&obj->mm_list,
673a394b 3351 &dev_priv->mm.inactive_list);
6299f992 3352 obj->pin_mappable = false;
673a394b 3353 }
23bc5982 3354 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3355}
3356
3357int
3358i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3359 struct drm_file *file)
673a394b
EA
3360{
3361 struct drm_i915_gem_pin *args = data;
05394f39 3362 struct drm_i915_gem_object *obj;
673a394b
EA
3363 int ret;
3364
1d7cfea1
CW
3365 ret = i915_mutex_lock_interruptible(dev);
3366 if (ret)
3367 return ret;
673a394b 3368
05394f39 3369 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3370 if (&obj->base == NULL) {
1d7cfea1
CW
3371 ret = -ENOENT;
3372 goto unlock;
673a394b 3373 }
673a394b 3374
05394f39 3375 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3376 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3377 ret = -EINVAL;
3378 goto out;
3ef94daa
CW
3379 }
3380
05394f39 3381 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3382 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3383 args->handle);
1d7cfea1
CW
3384 ret = -EINVAL;
3385 goto out;
79e53945
JB
3386 }
3387
05394f39
CW
3388 obj->user_pin_count++;
3389 obj->pin_filp = file;
3390 if (obj->user_pin_count == 1) {
75e9e915 3391 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3392 if (ret)
3393 goto out;
673a394b
EA
3394 }
3395
3396 /* XXX - flush the CPU caches for pinned objects
3397 * as the X server doesn't manage domains yet
3398 */
e47c68e9 3399 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3400 args->offset = obj->gtt_offset;
1d7cfea1 3401out:
05394f39 3402 drm_gem_object_unreference(&obj->base);
1d7cfea1 3403unlock:
673a394b 3404 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3405 return ret;
673a394b
EA
3406}
3407
3408int
3409i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3410 struct drm_file *file)
673a394b
EA
3411{
3412 struct drm_i915_gem_pin *args = data;
05394f39 3413 struct drm_i915_gem_object *obj;
76c1dec1 3414 int ret;
673a394b 3415
1d7cfea1
CW
3416 ret = i915_mutex_lock_interruptible(dev);
3417 if (ret)
3418 return ret;
673a394b 3419
05394f39 3420 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3421 if (&obj->base == NULL) {
1d7cfea1
CW
3422 ret = -ENOENT;
3423 goto unlock;
673a394b 3424 }
76c1dec1 3425
05394f39 3426 if (obj->pin_filp != file) {
79e53945
JB
3427 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3428 args->handle);
1d7cfea1
CW
3429 ret = -EINVAL;
3430 goto out;
79e53945 3431 }
05394f39
CW
3432 obj->user_pin_count--;
3433 if (obj->user_pin_count == 0) {
3434 obj->pin_filp = NULL;
79e53945
JB
3435 i915_gem_object_unpin(obj);
3436 }
673a394b 3437
1d7cfea1 3438out:
05394f39 3439 drm_gem_object_unreference(&obj->base);
1d7cfea1 3440unlock:
673a394b 3441 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3442 return ret;
673a394b
EA
3443}
3444
3445int
3446i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3447 struct drm_file *file)
673a394b
EA
3448{
3449 struct drm_i915_gem_busy *args = data;
05394f39 3450 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3451 int ret;
3452
76c1dec1 3453 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3454 if (ret)
76c1dec1 3455 return ret;
673a394b 3456
05394f39 3457 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3458 if (&obj->base == NULL) {
1d7cfea1
CW
3459 ret = -ENOENT;
3460 goto unlock;
673a394b 3461 }
d1b851fc 3462
0be555b6
CW
3463 /* Count all active objects as busy, even if they are currently not used
3464 * by the gpu. Users of this interface expect objects to eventually
3465 * become non-busy without any further actions, therefore emit any
3466 * necessary flushes here.
c4de0a5d 3467 */
05394f39 3468 args->busy = obj->active;
0be555b6
CW
3469 if (args->busy) {
3470 /* Unconditionally flush objects, even when the gpu still uses this
3471 * object. Userspace calling this function indicates that it wants to
3472 * use this buffer rather sooner than later, so issuing the required
3473 * flush earlier is beneficial.
3474 */
1a1c6976 3475 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3476 ret = i915_gem_flush_ring(obj->ring,
88241785 3477 0, obj->base.write_domain);
1a1c6976
CW
3478 } else if (obj->ring->outstanding_lazy_request ==
3479 obj->last_rendering_seqno) {
3480 struct drm_i915_gem_request *request;
3481
7a194876
CW
3482 /* This ring is not being cleared by active usage,
3483 * so emit a request to do so.
3484 */
1a1c6976
CW
3485 request = kzalloc(sizeof(*request), GFP_KERNEL);
3486 if (request)
db53a302 3487 ret = i915_add_request(obj->ring, NULL,request);
1a1c6976 3488 else
7a194876
CW
3489 ret = -ENOMEM;
3490 }
0be555b6
CW
3491
3492 /* Update the active list for the hardware's current position.
3493 * Otherwise this only updates on a delayed timer or when irqs
3494 * are actually unmasked, and our working set ends up being
3495 * larger than required.
3496 */
db53a302 3497 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3498
05394f39 3499 args->busy = obj->active;
0be555b6 3500 }
673a394b 3501
05394f39 3502 drm_gem_object_unreference(&obj->base);
1d7cfea1 3503unlock:
673a394b 3504 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3505 return ret;
673a394b
EA
3506}
3507
3508int
3509i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3510 struct drm_file *file_priv)
3511{
3512 return i915_gem_ring_throttle(dev, file_priv);
3513}
3514
3ef94daa
CW
3515int
3516i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3517 struct drm_file *file_priv)
3518{
3519 struct drm_i915_gem_madvise *args = data;
05394f39 3520 struct drm_i915_gem_object *obj;
76c1dec1 3521 int ret;
3ef94daa
CW
3522
3523 switch (args->madv) {
3524 case I915_MADV_DONTNEED:
3525 case I915_MADV_WILLNEED:
3526 break;
3527 default:
3528 return -EINVAL;
3529 }
3530
1d7cfea1
CW
3531 ret = i915_mutex_lock_interruptible(dev);
3532 if (ret)
3533 return ret;
3534
05394f39 3535 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3536 if (&obj->base == NULL) {
1d7cfea1
CW
3537 ret = -ENOENT;
3538 goto unlock;
3ef94daa 3539 }
3ef94daa 3540
05394f39 3541 if (obj->pin_count) {
1d7cfea1
CW
3542 ret = -EINVAL;
3543 goto out;
3ef94daa
CW
3544 }
3545
05394f39
CW
3546 if (obj->madv != __I915_MADV_PURGED)
3547 obj->madv = args->madv;
3ef94daa 3548
2d7ef395 3549 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3550 if (i915_gem_object_is_purgeable(obj) &&
3551 obj->gtt_space == NULL)
2d7ef395
CW
3552 i915_gem_object_truncate(obj);
3553
05394f39 3554 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3555
1d7cfea1 3556out:
05394f39 3557 drm_gem_object_unreference(&obj->base);
1d7cfea1 3558unlock:
3ef94daa 3559 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3560 return ret;
3ef94daa
CW
3561}
3562
05394f39
CW
3563struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3564 size_t size)
ac52bc56 3565{
73aa808f 3566 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3567 struct drm_i915_gem_object *obj;
ac52bc56 3568
c397b908
DV
3569 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3570 if (obj == NULL)
3571 return NULL;
673a394b 3572
c397b908
DV
3573 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3574 kfree(obj);
3575 return NULL;
3576 }
673a394b 3577
73aa808f
CW
3578 i915_gem_info_add_obj(dev_priv, size);
3579
c397b908
DV
3580 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3581 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3582
93dfb40c 3583 obj->cache_level = I915_CACHE_NONE;
62b8b215 3584 obj->base.driver_private = NULL;
c397b908 3585 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3586 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3587 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3588 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3589 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3590 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3591 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3592 /* Avoid an unnecessary call to unbind on the first bind. */
3593 obj->map_and_fenceable = true;
de151cf6 3594
05394f39 3595 return obj;
c397b908
DV
3596}
3597
3598int i915_gem_init_object(struct drm_gem_object *obj)
3599{
3600 BUG();
de151cf6 3601
673a394b
EA
3602 return 0;
3603}
3604
05394f39 3605static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3606{
05394f39 3607 struct drm_device *dev = obj->base.dev;
be72615b 3608 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3609 int ret;
673a394b 3610
be72615b
CW
3611 ret = i915_gem_object_unbind(obj);
3612 if (ret == -ERESTARTSYS) {
05394f39 3613 list_move(&obj->mm_list,
be72615b
CW
3614 &dev_priv->mm.deferred_free_list);
3615 return;
3616 }
673a394b 3617
26e12f89
CW
3618 trace_i915_gem_object_destroy(obj);
3619
05394f39 3620 if (obj->base.map_list.map)
7e616158 3621 i915_gem_free_mmap_offset(obj);
de151cf6 3622
05394f39
CW
3623 drm_gem_object_release(&obj->base);
3624 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3625
05394f39
CW
3626 kfree(obj->page_cpu_valid);
3627 kfree(obj->bit_17);
3628 kfree(obj);
673a394b
EA
3629}
3630
05394f39 3631void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3632{
05394f39
CW
3633 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3634 struct drm_device *dev = obj->base.dev;
be72615b 3635
05394f39 3636 while (obj->pin_count > 0)
be72615b
CW
3637 i915_gem_object_unpin(obj);
3638
05394f39 3639 if (obj->phys_obj)
be72615b
CW
3640 i915_gem_detach_phys_object(dev, obj);
3641
3642 i915_gem_free_object_tail(obj);
3643}
3644
29105ccc
CW
3645int
3646i915_gem_idle(struct drm_device *dev)
3647{
3648 drm_i915_private_t *dev_priv = dev->dev_private;
3649 int ret;
28dfe52a 3650
29105ccc 3651 mutex_lock(&dev->struct_mutex);
1c5d22f7 3652
87acb0a5 3653 if (dev_priv->mm.suspended) {
29105ccc
CW
3654 mutex_unlock(&dev->struct_mutex);
3655 return 0;
28dfe52a
EA
3656 }
3657
29105ccc 3658 ret = i915_gpu_idle(dev);
6dbe2772
KP
3659 if (ret) {
3660 mutex_unlock(&dev->struct_mutex);
673a394b 3661 return ret;
6dbe2772 3662 }
673a394b 3663
29105ccc
CW
3664 /* Under UMS, be paranoid and evict. */
3665 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3666 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3667 if (ret) {
3668 mutex_unlock(&dev->struct_mutex);
3669 return ret;
3670 }
3671 }
3672
312817a3
CW
3673 i915_gem_reset_fences(dev);
3674
29105ccc
CW
3675 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3676 * We need to replace this with a semaphore, or something.
3677 * And not confound mm.suspended!
3678 */
3679 dev_priv->mm.suspended = 1;
bc0c7f14 3680 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3681
3682 i915_kernel_lost_context(dev);
6dbe2772 3683 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3684
6dbe2772
KP
3685 mutex_unlock(&dev->struct_mutex);
3686
29105ccc
CW
3687 /* Cancel the retire work handler, which should be idle now. */
3688 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3689
673a394b
EA
3690 return 0;
3691}
3692
8187a2b7
ZN
3693int
3694i915_gem_init_ringbuffer(struct drm_device *dev)
3695{
3696 drm_i915_private_t *dev_priv = dev->dev_private;
3697 int ret;
68f95ba9 3698
5c1143bb 3699 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3700 if (ret)
b6913e4b 3701 return ret;
68f95ba9
CW
3702
3703 if (HAS_BSD(dev)) {
5c1143bb 3704 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3705 if (ret)
3706 goto cleanup_render_ring;
d1b851fc 3707 }
68f95ba9 3708
549f7365
CW
3709 if (HAS_BLT(dev)) {
3710 ret = intel_init_blt_ring_buffer(dev);
3711 if (ret)
3712 goto cleanup_bsd_ring;
3713 }
3714
6f392d54
CW
3715 dev_priv->next_seqno = 1;
3716
68f95ba9
CW
3717 return 0;
3718
549f7365 3719cleanup_bsd_ring:
1ec14ad3 3720 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3721cleanup_render_ring:
1ec14ad3 3722 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3723 return ret;
3724}
3725
3726void
3727i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3728{
3729 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3730 int i;
8187a2b7 3731
1ec14ad3
CW
3732 for (i = 0; i < I915_NUM_RINGS; i++)
3733 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3734}
3735
673a394b
EA
3736int
3737i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3738 struct drm_file *file_priv)
3739{
3740 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3741 int ret, i;
673a394b 3742
79e53945
JB
3743 if (drm_core_check_feature(dev, DRIVER_MODESET))
3744 return 0;
3745
ba1234d1 3746 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3747 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3748 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3749 }
3750
673a394b 3751 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3752 dev_priv->mm.suspended = 0;
3753
3754 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3755 if (ret != 0) {
3756 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3757 return ret;
d816f6ac 3758 }
9bb2d6f9 3759
69dc4987 3760 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3761 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3762 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3763 for (i = 0; i < I915_NUM_RINGS; i++) {
3764 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3765 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3766 }
673a394b 3767 mutex_unlock(&dev->struct_mutex);
dbb19d30 3768
5f35308b
CW
3769 ret = drm_irq_install(dev);
3770 if (ret)
3771 goto cleanup_ringbuffer;
dbb19d30 3772
673a394b 3773 return 0;
5f35308b
CW
3774
3775cleanup_ringbuffer:
3776 mutex_lock(&dev->struct_mutex);
3777 i915_gem_cleanup_ringbuffer(dev);
3778 dev_priv->mm.suspended = 1;
3779 mutex_unlock(&dev->struct_mutex);
3780
3781 return ret;
673a394b
EA
3782}
3783
3784int
3785i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3786 struct drm_file *file_priv)
3787{
79e53945
JB
3788 if (drm_core_check_feature(dev, DRIVER_MODESET))
3789 return 0;
3790
dbb19d30 3791 drm_irq_uninstall(dev);
e6890f6f 3792 return i915_gem_idle(dev);
673a394b
EA
3793}
3794
3795void
3796i915_gem_lastclose(struct drm_device *dev)
3797{
3798 int ret;
673a394b 3799
e806b495
EA
3800 if (drm_core_check_feature(dev, DRIVER_MODESET))
3801 return;
3802
6dbe2772
KP
3803 ret = i915_gem_idle(dev);
3804 if (ret)
3805 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3806}
3807
64193406
CW
3808static void
3809init_ring_lists(struct intel_ring_buffer *ring)
3810{
3811 INIT_LIST_HEAD(&ring->active_list);
3812 INIT_LIST_HEAD(&ring->request_list);
3813 INIT_LIST_HEAD(&ring->gpu_write_list);
3814}
3815
673a394b
EA
3816void
3817i915_gem_load(struct drm_device *dev)
3818{
b5aa8a0f 3819 int i;
673a394b
EA
3820 drm_i915_private_t *dev_priv = dev->dev_private;
3821
69dc4987 3822 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3823 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3824 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3825 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3826 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3827 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3828 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3829 for (i = 0; i < I915_NUM_RINGS; i++)
3830 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3831 for (i = 0; i < 16; i++)
3832 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3833 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3834 i915_gem_retire_work_handler);
30dbf0c0 3835 init_completion(&dev_priv->error_completion);
31169714 3836
94400120
DA
3837 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3838 if (IS_GEN3(dev)) {
3839 u32 tmp = I915_READ(MI_ARB_STATE);
3840 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3841 /* arb state is a masked write, so set bit + bit in mask */
3842 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3843 I915_WRITE(MI_ARB_STATE, tmp);
3844 }
3845 }
3846
72bfa19c
CW
3847 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3848
de151cf6 3849 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3850 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3851 dev_priv->fence_reg_start = 3;
de151cf6 3852
a6c45cf0 3853 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3854 dev_priv->num_fence_regs = 16;
3855 else
3856 dev_priv->num_fence_regs = 8;
3857
b5aa8a0f 3858 /* Initialize fence registers to zero */
10ed13e4
EA
3859 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3860 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3861 }
10ed13e4 3862
673a394b 3863 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3864 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3865
ce453d81
CW
3866 dev_priv->mm.interruptible = true;
3867
17250b71
CW
3868 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3869 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3870 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3871}
71acb5eb
DA
3872
3873/*
3874 * Create a physically contiguous memory object for this object
3875 * e.g. for cursor + overlay regs
3876 */
995b6762
CW
3877static int i915_gem_init_phys_object(struct drm_device *dev,
3878 int id, int size, int align)
71acb5eb
DA
3879{
3880 drm_i915_private_t *dev_priv = dev->dev_private;
3881 struct drm_i915_gem_phys_object *phys_obj;
3882 int ret;
3883
3884 if (dev_priv->mm.phys_objs[id - 1] || !size)
3885 return 0;
3886
9a298b2a 3887 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3888 if (!phys_obj)
3889 return -ENOMEM;
3890
3891 phys_obj->id = id;
3892
6eeefaf3 3893 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3894 if (!phys_obj->handle) {
3895 ret = -ENOMEM;
3896 goto kfree_obj;
3897 }
3898#ifdef CONFIG_X86
3899 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3900#endif
3901
3902 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3903
3904 return 0;
3905kfree_obj:
9a298b2a 3906 kfree(phys_obj);
71acb5eb
DA
3907 return ret;
3908}
3909
995b6762 3910static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3911{
3912 drm_i915_private_t *dev_priv = dev->dev_private;
3913 struct drm_i915_gem_phys_object *phys_obj;
3914
3915 if (!dev_priv->mm.phys_objs[id - 1])
3916 return;
3917
3918 phys_obj = dev_priv->mm.phys_objs[id - 1];
3919 if (phys_obj->cur_obj) {
3920 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3921 }
3922
3923#ifdef CONFIG_X86
3924 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3925#endif
3926 drm_pci_free(dev, phys_obj->handle);
3927 kfree(phys_obj);
3928 dev_priv->mm.phys_objs[id - 1] = NULL;
3929}
3930
3931void i915_gem_free_all_phys_object(struct drm_device *dev)
3932{
3933 int i;
3934
260883c8 3935 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3936 i915_gem_free_phys_object(dev, i);
3937}
3938
3939void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3940 struct drm_i915_gem_object *obj)
71acb5eb 3941{
05394f39 3942 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3943 char *vaddr;
71acb5eb 3944 int i;
71acb5eb
DA
3945 int page_count;
3946
05394f39 3947 if (!obj->phys_obj)
71acb5eb 3948 return;
05394f39 3949 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3950
05394f39 3951 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3952 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3953 struct page *page = read_cache_page_gfp(mapping, i,
3954 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3955 if (!IS_ERR(page)) {
3956 char *dst = kmap_atomic(page);
3957 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3958 kunmap_atomic(dst);
3959
3960 drm_clflush_pages(&page, 1);
3961
3962 set_page_dirty(page);
3963 mark_page_accessed(page);
3964 page_cache_release(page);
3965 }
71acb5eb 3966 }
40ce6575 3967 intel_gtt_chipset_flush();
d78b47b9 3968
05394f39
CW
3969 obj->phys_obj->cur_obj = NULL;
3970 obj->phys_obj = NULL;
71acb5eb
DA
3971}
3972
3973int
3974i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3975 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3976 int id,
3977 int align)
71acb5eb 3978{
05394f39 3979 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3980 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3981 int ret = 0;
3982 int page_count;
3983 int i;
3984
3985 if (id > I915_MAX_PHYS_OBJECT)
3986 return -EINVAL;
3987
05394f39
CW
3988 if (obj->phys_obj) {
3989 if (obj->phys_obj->id == id)
71acb5eb
DA
3990 return 0;
3991 i915_gem_detach_phys_object(dev, obj);
3992 }
3993
71acb5eb
DA
3994 /* create a new object */
3995 if (!dev_priv->mm.phys_objs[id - 1]) {
3996 ret = i915_gem_init_phys_object(dev, id,
05394f39 3997 obj->base.size, align);
71acb5eb 3998 if (ret) {
05394f39
CW
3999 DRM_ERROR("failed to init phys object %d size: %zu\n",
4000 id, obj->base.size);
e5281ccd 4001 return ret;
71acb5eb
DA
4002 }
4003 }
4004
4005 /* bind to the object */
05394f39
CW
4006 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4007 obj->phys_obj->cur_obj = obj;
71acb5eb 4008
05394f39 4009 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4010
4011 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4012 struct page *page;
4013 char *dst, *src;
4014
4015 page = read_cache_page_gfp(mapping, i,
4016 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4017 if (IS_ERR(page))
4018 return PTR_ERR(page);
71acb5eb 4019
ff75b9bc 4020 src = kmap_atomic(page);
05394f39 4021 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4022 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4023 kunmap_atomic(src);
71acb5eb 4024
e5281ccd
CW
4025 mark_page_accessed(page);
4026 page_cache_release(page);
4027 }
d78b47b9 4028
71acb5eb 4029 return 0;
71acb5eb
DA
4030}
4031
4032static int
05394f39
CW
4033i915_gem_phys_pwrite(struct drm_device *dev,
4034 struct drm_i915_gem_object *obj,
71acb5eb
DA
4035 struct drm_i915_gem_pwrite *args,
4036 struct drm_file *file_priv)
4037{
05394f39 4038 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4039 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4040
b47b30cc
CW
4041 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4042 unsigned long unwritten;
4043
4044 /* The physical object once assigned is fixed for the lifetime
4045 * of the obj, so we can safely drop the lock and continue
4046 * to access vaddr.
4047 */
4048 mutex_unlock(&dev->struct_mutex);
4049 unwritten = copy_from_user(vaddr, user_data, args->size);
4050 mutex_lock(&dev->struct_mutex);
4051 if (unwritten)
4052 return -EFAULT;
4053 }
71acb5eb 4054
40ce6575 4055 intel_gtt_chipset_flush();
71acb5eb
DA
4056 return 0;
4057}
b962442e 4058
f787a5f5 4059void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4060{
f787a5f5 4061 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4062
4063 /* Clean up our request list when the client is going away, so that
4064 * later retire_requests won't dereference our soon-to-be-gone
4065 * file_priv.
4066 */
1c25595f 4067 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4068 while (!list_empty(&file_priv->mm.request_list)) {
4069 struct drm_i915_gem_request *request;
4070
4071 request = list_first_entry(&file_priv->mm.request_list,
4072 struct drm_i915_gem_request,
4073 client_list);
4074 list_del(&request->client_list);
4075 request->file_priv = NULL;
4076 }
1c25595f 4077 spin_unlock(&file_priv->mm.lock);
b962442e 4078}
31169714 4079
1637ef41
CW
4080static int
4081i915_gpu_is_active(struct drm_device *dev)
4082{
4083 drm_i915_private_t *dev_priv = dev->dev_private;
4084 int lists_empty;
4085
1637ef41 4086 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4087 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4088
4089 return !lists_empty;
4090}
4091
31169714 4092static int
1495f230 4093i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4094{
17250b71
CW
4095 struct drm_i915_private *dev_priv =
4096 container_of(shrinker,
4097 struct drm_i915_private,
4098 mm.inactive_shrinker);
4099 struct drm_device *dev = dev_priv->dev;
4100 struct drm_i915_gem_object *obj, *next;
1495f230 4101 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4102 int cnt;
4103
4104 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4105 return 0;
31169714
CW
4106
4107 /* "fast-path" to count number of available objects */
4108 if (nr_to_scan == 0) {
17250b71
CW
4109 cnt = 0;
4110 list_for_each_entry(obj,
4111 &dev_priv->mm.inactive_list,
4112 mm_list)
4113 cnt++;
4114 mutex_unlock(&dev->struct_mutex);
4115 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4116 }
4117
1637ef41 4118rescan:
31169714 4119 /* first scan for clean buffers */
17250b71 4120 i915_gem_retire_requests(dev);
31169714 4121
17250b71
CW
4122 list_for_each_entry_safe(obj, next,
4123 &dev_priv->mm.inactive_list,
4124 mm_list) {
4125 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4126 if (i915_gem_object_unbind(obj) == 0 &&
4127 --nr_to_scan == 0)
17250b71 4128 break;
31169714 4129 }
31169714
CW
4130 }
4131
4132 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4133 cnt = 0;
4134 list_for_each_entry_safe(obj, next,
4135 &dev_priv->mm.inactive_list,
4136 mm_list) {
2021746e
CW
4137 if (nr_to_scan &&
4138 i915_gem_object_unbind(obj) == 0)
17250b71 4139 nr_to_scan--;
2021746e 4140 else
17250b71
CW
4141 cnt++;
4142 }
4143
4144 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4145 /*
4146 * We are desperate for pages, so as a last resort, wait
4147 * for the GPU to finish and discard whatever we can.
4148 * This has a dramatic impact to reduce the number of
4149 * OOM-killer events whilst running the GPU aggressively.
4150 */
17250b71 4151 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4152 goto rescan;
4153 }
17250b71
CW
4154 mutex_unlock(&dev->struct_mutex);
4155 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4156}
This page took 0.660771 seconds and 5 git commands to generate.