drm/gem: create drm_gem_dumb_destroy
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
86a1ee26
CW
44 bool map_and_fenceable,
45 bool nonblocking);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
6c085a72
CW
59static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
61050808
CW
63static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64{
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
5d82e3e6 71 obj->fence_dirty = false;
61050808
CW
72 obj->fence_reg = I915_FENCE_REG_NONE;
73}
74
73aa808f
CW
75/* some bookkeeping */
76static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78{
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81}
82
83static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88}
89
21dd3734 90static int
33196ded 91i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 92{
30dbf0c0
CW
93 int ret;
94
7abb690a
DV
95#define EXIT_COND (!i915_reset_in_progress(error) || \
96 i915_terminally_wedged(error))
1f83fee0 97 if (EXIT_COND)
30dbf0c0
CW
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
1f83fee0
DV
105 ret = wait_event_interruptible_timeout(error->reset_queue,
106 EXIT_COND,
107 10*HZ);
0a6759c6
DV
108 if (ret == 0) {
109 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
110 return -EIO;
111 } else if (ret < 0) {
30dbf0c0 112 return ret;
0a6759c6 113 }
1f83fee0 114#undef EXIT_COND
30dbf0c0 115
21dd3734 116 return 0;
30dbf0c0
CW
117}
118
54cf91dc 119int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 120{
33196ded 121 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
122 int ret;
123
33196ded 124 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
125 if (ret)
126 return ret;
127
128 ret = mutex_lock_interruptible(&dev->struct_mutex);
129 if (ret)
130 return ret;
131
23bc5982 132 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
133 return 0;
134}
30dbf0c0 135
7d1c4804 136static inline bool
05394f39 137i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 138{
f343c5f6 139 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
7d1c4804
CW
140}
141
79e53945
JB
142int
143i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 144 struct drm_file *file)
79e53945 145{
93d18799 146 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 147 struct drm_i915_gem_init *args = data;
2021746e 148
7bb6fb8d
DV
149 if (drm_core_check_feature(dev, DRIVER_MODESET))
150 return -ENODEV;
151
2021746e
CW
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154 return -EINVAL;
79e53945 155
f534bc0b
DV
156 /* GEM with user mode setting was never supported on ilk and later. */
157 if (INTEL_INFO(dev)->gen >= 5)
158 return -ENODEV;
159
79e53945 160 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
161 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
162 args->gtt_end);
93d18799 163 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
164 mutex_unlock(&dev->struct_mutex);
165
2021746e 166 return 0;
673a394b
EA
167}
168
5a125c3c
EA
169int
170i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 171 struct drm_file *file)
5a125c3c 172{
73aa808f 173 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 174 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
175 struct drm_i915_gem_object *obj;
176 size_t pinned;
5a125c3c 177
6299f992 178 pinned = 0;
73aa808f 179 mutex_lock(&dev->struct_mutex);
35c20a60 180 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 181 if (obj->pin_count)
f343c5f6 182 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 183 mutex_unlock(&dev->struct_mutex);
5a125c3c 184
5d4545ae 185 args->aper_size = dev_priv->gtt.total;
0206e353 186 args->aper_available_size = args->aper_size - pinned;
6299f992 187
5a125c3c
EA
188 return 0;
189}
190
42dcedd4
CW
191void *i915_gem_object_alloc(struct drm_device *dev)
192{
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
195}
196
197void i915_gem_object_free(struct drm_i915_gem_object *obj)
198{
199 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
200 kmem_cache_free(dev_priv->slab, obj);
201}
202
ff72145b
DA
203static int
204i915_gem_create(struct drm_file *file,
205 struct drm_device *dev,
206 uint64_t size,
207 uint32_t *handle_p)
673a394b 208{
05394f39 209 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
210 int ret;
211 u32 handle;
673a394b 212
ff72145b 213 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
214 if (size == 0)
215 return -EINVAL;
673a394b
EA
216
217 /* Allocate the new object */
ff72145b 218 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
219 if (obj == NULL)
220 return -ENOMEM;
221
05394f39 222 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 223 if (ret) {
05394f39
CW
224 drm_gem_object_release(&obj->base);
225 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 226 i915_gem_object_free(obj);
673a394b 227 return ret;
1dfd9754 228 }
673a394b 229
202f2fef 230 /* drop reference from allocate - handle holds it now */
05394f39 231 drm_gem_object_unreference(&obj->base);
202f2fef
CW
232 trace_i915_gem_object_create(obj);
233
ff72145b 234 *handle_p = handle;
673a394b
EA
235 return 0;
236}
237
ff72145b
DA
238int
239i915_gem_dumb_create(struct drm_file *file,
240 struct drm_device *dev,
241 struct drm_mode_create_dumb *args)
242{
243 /* have to work out size/pitch and return them */
ed0291fd 244 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
245 args->size = args->pitch * args->height;
246 return i915_gem_create(file, dev,
247 args->size, &args->handle);
248}
249
ff72145b
DA
250/**
251 * Creates a new mm object and returns a handle to it.
252 */
253int
254i915_gem_create_ioctl(struct drm_device *dev, void *data,
255 struct drm_file *file)
256{
257 struct drm_i915_gem_create *args = data;
63ed2cb2 258
ff72145b
DA
259 return i915_gem_create(file, dev,
260 args->size, &args->handle);
261}
262
8461d226
DV
263static inline int
264__copy_to_user_swizzled(char __user *cpu_vaddr,
265 const char *gpu_vaddr, int gpu_offset,
266 int length)
267{
268 int ret, cpu_offset = 0;
269
270 while (length > 0) {
271 int cacheline_end = ALIGN(gpu_offset + 1, 64);
272 int this_length = min(cacheline_end - gpu_offset, length);
273 int swizzled_gpu_offset = gpu_offset ^ 64;
274
275 ret = __copy_to_user(cpu_vaddr + cpu_offset,
276 gpu_vaddr + swizzled_gpu_offset,
277 this_length);
278 if (ret)
279 return ret + length;
280
281 cpu_offset += this_length;
282 gpu_offset += this_length;
283 length -= this_length;
284 }
285
286 return 0;
287}
288
8c59967c 289static inline int
4f0c7cfb
BW
290__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
291 const char __user *cpu_vaddr,
8c59967c
DV
292 int length)
293{
294 int ret, cpu_offset = 0;
295
296 while (length > 0) {
297 int cacheline_end = ALIGN(gpu_offset + 1, 64);
298 int this_length = min(cacheline_end - gpu_offset, length);
299 int swizzled_gpu_offset = gpu_offset ^ 64;
300
301 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
302 cpu_vaddr + cpu_offset,
303 this_length);
304 if (ret)
305 return ret + length;
306
307 cpu_offset += this_length;
308 gpu_offset += this_length;
309 length -= this_length;
310 }
311
312 return 0;
313}
314
d174bd64
DV
315/* Per-page copy function for the shmem pread fastpath.
316 * Flushes invalid cachelines before reading the target if
317 * needs_clflush is set. */
eb01459f 318static int
d174bd64
DV
319shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
320 char __user *user_data,
321 bool page_do_bit17_swizzling, bool needs_clflush)
322{
323 char *vaddr;
324 int ret;
325
e7e58eb5 326 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
327 return -EINVAL;
328
329 vaddr = kmap_atomic(page);
330 if (needs_clflush)
331 drm_clflush_virt_range(vaddr + shmem_page_offset,
332 page_length);
333 ret = __copy_to_user_inatomic(user_data,
334 vaddr + shmem_page_offset,
335 page_length);
336 kunmap_atomic(vaddr);
337
f60d7f0c 338 return ret ? -EFAULT : 0;
d174bd64
DV
339}
340
23c18c71
DV
341static void
342shmem_clflush_swizzled_range(char *addr, unsigned long length,
343 bool swizzled)
344{
e7e58eb5 345 if (unlikely(swizzled)) {
23c18c71
DV
346 unsigned long start = (unsigned long) addr;
347 unsigned long end = (unsigned long) addr + length;
348
349 /* For swizzling simply ensure that we always flush both
350 * channels. Lame, but simple and it works. Swizzled
351 * pwrite/pread is far from a hotpath - current userspace
352 * doesn't use it at all. */
353 start = round_down(start, 128);
354 end = round_up(end, 128);
355
356 drm_clflush_virt_range((void *)start, end - start);
357 } else {
358 drm_clflush_virt_range(addr, length);
359 }
360
361}
362
d174bd64
DV
363/* Only difference to the fast-path function is that this can handle bit17
364 * and uses non-atomic copy and kmap functions. */
365static int
366shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
367 char __user *user_data,
368 bool page_do_bit17_swizzling, bool needs_clflush)
369{
370 char *vaddr;
371 int ret;
372
373 vaddr = kmap(page);
374 if (needs_clflush)
23c18c71
DV
375 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
376 page_length,
377 page_do_bit17_swizzling);
d174bd64
DV
378
379 if (page_do_bit17_swizzling)
380 ret = __copy_to_user_swizzled(user_data,
381 vaddr, shmem_page_offset,
382 page_length);
383 else
384 ret = __copy_to_user(user_data,
385 vaddr + shmem_page_offset,
386 page_length);
387 kunmap(page);
388
f60d7f0c 389 return ret ? - EFAULT : 0;
d174bd64
DV
390}
391
eb01459f 392static int
dbf7bff0
DV
393i915_gem_shmem_pread(struct drm_device *dev,
394 struct drm_i915_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file)
eb01459f 397{
8461d226 398 char __user *user_data;
eb01459f 399 ssize_t remain;
8461d226 400 loff_t offset;
eb2c0c81 401 int shmem_page_offset, page_length, ret = 0;
8461d226 402 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 403 int prefaulted = 0;
8489731c 404 int needs_clflush = 0;
67d5a50c 405 struct sg_page_iter sg_iter;
eb01459f 406
2bb4629a 407 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
408 remain = args->size;
409
8461d226 410 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 411
8489731c
DV
412 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
413 /* If we're not in the cpu read domain, set ourself into the gtt
414 * read domain and manually flush cachelines (if required). This
415 * optimizes for the case when the gpu will dirty the data
416 * anyway again before the next pread happens. */
417 if (obj->cache_level == I915_CACHE_NONE)
418 needs_clflush = 1;
f343c5f6 419 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
420 ret = i915_gem_object_set_to_gtt_domain(obj, false);
421 if (ret)
422 return ret;
423 }
8489731c 424 }
eb01459f 425
f60d7f0c
CW
426 ret = i915_gem_object_get_pages(obj);
427 if (ret)
428 return ret;
429
430 i915_gem_object_pin_pages(obj);
431
8461d226 432 offset = args->offset;
eb01459f 433
67d5a50c
ID
434 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
435 offset >> PAGE_SHIFT) {
2db76d7c 436 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
437
438 if (remain <= 0)
439 break;
440
eb01459f
EA
441 /* Operation in this page
442 *
eb01459f 443 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
444 * page_length = bytes to copy for this page
445 */
c8cbbb8b 446 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
447 page_length = remain;
448 if ((shmem_page_offset + page_length) > PAGE_SIZE)
449 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 450
8461d226
DV
451 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
452 (page_to_phys(page) & (1 << 17)) != 0;
453
d174bd64
DV
454 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
455 user_data, page_do_bit17_swizzling,
456 needs_clflush);
457 if (ret == 0)
458 goto next_page;
dbf7bff0 459
dbf7bff0
DV
460 mutex_unlock(&dev->struct_mutex);
461
96d79b52 462 if (!prefaulted) {
f56f821f 463 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
464 /* Userspace is tricking us, but we've already clobbered
465 * its pages with the prefault and promised to write the
466 * data up to the first fault. Hence ignore any errors
467 * and just continue. */
468 (void)ret;
469 prefaulted = 1;
470 }
eb01459f 471
d174bd64
DV
472 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
473 user_data, page_do_bit17_swizzling,
474 needs_clflush);
eb01459f 475
dbf7bff0 476 mutex_lock(&dev->struct_mutex);
f60d7f0c 477
dbf7bff0 478next_page:
e5281ccd 479 mark_page_accessed(page);
e5281ccd 480
f60d7f0c 481 if (ret)
8461d226 482 goto out;
8461d226 483
eb01459f 484 remain -= page_length;
8461d226 485 user_data += page_length;
eb01459f
EA
486 offset += page_length;
487 }
488
4f27b75d 489out:
f60d7f0c
CW
490 i915_gem_object_unpin_pages(obj);
491
eb01459f
EA
492 return ret;
493}
494
673a394b
EA
495/**
496 * Reads data from the object referenced by handle.
497 *
498 * On error, the contents of *data are undefined.
499 */
500int
501i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 502 struct drm_file *file)
673a394b
EA
503{
504 struct drm_i915_gem_pread *args = data;
05394f39 505 struct drm_i915_gem_object *obj;
35b62a89 506 int ret = 0;
673a394b 507
51311d0a
CW
508 if (args->size == 0)
509 return 0;
510
511 if (!access_ok(VERIFY_WRITE,
2bb4629a 512 to_user_ptr(args->data_ptr),
51311d0a
CW
513 args->size))
514 return -EFAULT;
515
4f27b75d 516 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 517 if (ret)
4f27b75d 518 return ret;
673a394b 519
05394f39 520 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 521 if (&obj->base == NULL) {
1d7cfea1
CW
522 ret = -ENOENT;
523 goto unlock;
4f27b75d 524 }
673a394b 525
7dcd2499 526 /* Bounds check source. */
05394f39
CW
527 if (args->offset > obj->base.size ||
528 args->size > obj->base.size - args->offset) {
ce9d419d 529 ret = -EINVAL;
35b62a89 530 goto out;
ce9d419d
CW
531 }
532
1286ff73
DV
533 /* prime objects have no backing filp to GEM pread/pwrite
534 * pages from.
535 */
536 if (!obj->base.filp) {
537 ret = -EINVAL;
538 goto out;
539 }
540
db53a302
CW
541 trace_i915_gem_object_pread(obj, args->offset, args->size);
542
dbf7bff0 543 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 544
35b62a89 545out:
05394f39 546 drm_gem_object_unreference(&obj->base);
1d7cfea1 547unlock:
4f27b75d 548 mutex_unlock(&dev->struct_mutex);
eb01459f 549 return ret;
673a394b
EA
550}
551
0839ccb8
KP
552/* This is the fast write path which cannot handle
553 * page faults in the source data
9b7530cc 554 */
0839ccb8
KP
555
556static inline int
557fast_user_write(struct io_mapping *mapping,
558 loff_t page_base, int page_offset,
559 char __user *user_data,
560 int length)
9b7530cc 561{
4f0c7cfb
BW
562 void __iomem *vaddr_atomic;
563 void *vaddr;
0839ccb8 564 unsigned long unwritten;
9b7530cc 565
3e4d3af5 566 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
567 /* We can use the cpu mem copy function because this is X86. */
568 vaddr = (void __force*)vaddr_atomic + page_offset;
569 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 570 user_data, length);
3e4d3af5 571 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 572 return unwritten;
0839ccb8
KP
573}
574
3de09aa3
EA
575/**
576 * This is the fast pwrite path, where we copy the data directly from the
577 * user into the GTT, uncached.
578 */
673a394b 579static int
05394f39
CW
580i915_gem_gtt_pwrite_fast(struct drm_device *dev,
581 struct drm_i915_gem_object *obj,
3de09aa3 582 struct drm_i915_gem_pwrite *args,
05394f39 583 struct drm_file *file)
673a394b 584{
0839ccb8 585 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 586 ssize_t remain;
0839ccb8 587 loff_t offset, page_base;
673a394b 588 char __user *user_data;
935aaa69
DV
589 int page_offset, page_length, ret;
590
86a1ee26 591 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
592 if (ret)
593 goto out;
594
595 ret = i915_gem_object_set_to_gtt_domain(obj, true);
596 if (ret)
597 goto out_unpin;
598
599 ret = i915_gem_object_put_fence(obj);
600 if (ret)
601 goto out_unpin;
673a394b 602
2bb4629a 603 user_data = to_user_ptr(args->data_ptr);
673a394b 604 remain = args->size;
673a394b 605
f343c5f6 606 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
607
608 while (remain > 0) {
609 /* Operation in this page
610 *
0839ccb8
KP
611 * page_base = page offset within aperture
612 * page_offset = offset within page
613 * page_length = bytes to copy for this page
673a394b 614 */
c8cbbb8b
CW
615 page_base = offset & PAGE_MASK;
616 page_offset = offset_in_page(offset);
0839ccb8
KP
617 page_length = remain;
618 if ((page_offset + remain) > PAGE_SIZE)
619 page_length = PAGE_SIZE - page_offset;
620
0839ccb8 621 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
622 * source page isn't available. Return the error and we'll
623 * retry in the slow path.
0839ccb8 624 */
5d4545ae 625 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
626 page_offset, user_data, page_length)) {
627 ret = -EFAULT;
628 goto out_unpin;
629 }
673a394b 630
0839ccb8
KP
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
673a394b 634 }
673a394b 635
935aaa69
DV
636out_unpin:
637 i915_gem_object_unpin(obj);
638out:
3de09aa3 639 return ret;
673a394b
EA
640}
641
d174bd64
DV
642/* Per-page copy function for the shmem pwrite fastpath.
643 * Flushes invalid cachelines before writing to the target if
644 * needs_clflush_before is set and flushes out any written cachelines after
645 * writing if needs_clflush is set. */
3043c60c 646static int
d174bd64
DV
647shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
648 char __user *user_data,
649 bool page_do_bit17_swizzling,
650 bool needs_clflush_before,
651 bool needs_clflush_after)
673a394b 652{
d174bd64 653 char *vaddr;
673a394b 654 int ret;
3de09aa3 655
e7e58eb5 656 if (unlikely(page_do_bit17_swizzling))
d174bd64 657 return -EINVAL;
3de09aa3 658
d174bd64
DV
659 vaddr = kmap_atomic(page);
660 if (needs_clflush_before)
661 drm_clflush_virt_range(vaddr + shmem_page_offset,
662 page_length);
663 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
664 user_data,
665 page_length);
666 if (needs_clflush_after)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 kunmap_atomic(vaddr);
3de09aa3 670
755d2218 671 return ret ? -EFAULT : 0;
3de09aa3
EA
672}
673
d174bd64
DV
674/* Only difference to the fast-path function is that this can handle bit17
675 * and uses non-atomic copy and kmap functions. */
3043c60c 676static int
d174bd64
DV
677shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
678 char __user *user_data,
679 bool page_do_bit17_swizzling,
680 bool needs_clflush_before,
681 bool needs_clflush_after)
673a394b 682{
d174bd64
DV
683 char *vaddr;
684 int ret;
e5281ccd 685
d174bd64 686 vaddr = kmap(page);
e7e58eb5 687 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
688 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
689 page_length,
690 page_do_bit17_swizzling);
d174bd64
DV
691 if (page_do_bit17_swizzling)
692 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
693 user_data,
694 page_length);
d174bd64
DV
695 else
696 ret = __copy_from_user(vaddr + shmem_page_offset,
697 user_data,
698 page_length);
699 if (needs_clflush_after)
23c18c71
DV
700 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
701 page_length,
702 page_do_bit17_swizzling);
d174bd64 703 kunmap(page);
40123c1f 704
755d2218 705 return ret ? -EFAULT : 0;
40123c1f
EA
706}
707
40123c1f 708static int
e244a443
DV
709i915_gem_shmem_pwrite(struct drm_device *dev,
710 struct drm_i915_gem_object *obj,
711 struct drm_i915_gem_pwrite *args,
712 struct drm_file *file)
40123c1f 713{
40123c1f 714 ssize_t remain;
8c59967c
DV
715 loff_t offset;
716 char __user *user_data;
eb2c0c81 717 int shmem_page_offset, page_length, ret = 0;
8c59967c 718 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 719 int hit_slowpath = 0;
58642885
DV
720 int needs_clflush_after = 0;
721 int needs_clflush_before = 0;
67d5a50c 722 struct sg_page_iter sg_iter;
40123c1f 723
2bb4629a 724 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
725 remain = args->size;
726
8c59967c 727 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 728
58642885
DV
729 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
730 /* If we're not in the cpu write domain, set ourself into the gtt
731 * write domain and manually flush cachelines (if required). This
732 * optimizes for the case when the gpu will use the data
733 * right away and we therefore have to clflush anyway. */
734 if (obj->cache_level == I915_CACHE_NONE)
735 needs_clflush_after = 1;
f343c5f6 736 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
737 ret = i915_gem_object_set_to_gtt_domain(obj, true);
738 if (ret)
739 return ret;
740 }
58642885
DV
741 }
742 /* Same trick applies for invalidate partially written cachelines before
743 * writing. */
744 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
745 && obj->cache_level == I915_CACHE_NONE)
746 needs_clflush_before = 1;
747
755d2218
CW
748 ret = i915_gem_object_get_pages(obj);
749 if (ret)
750 return ret;
751
752 i915_gem_object_pin_pages(obj);
753
673a394b 754 offset = args->offset;
05394f39 755 obj->dirty = 1;
673a394b 756
67d5a50c
ID
757 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
758 offset >> PAGE_SHIFT) {
2db76d7c 759 struct page *page = sg_page_iter_page(&sg_iter);
58642885 760 int partial_cacheline_write;
e5281ccd 761
9da3da66
CW
762 if (remain <= 0)
763 break;
764
40123c1f
EA
765 /* Operation in this page
766 *
40123c1f 767 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
768 * page_length = bytes to copy for this page
769 */
c8cbbb8b 770 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
771
772 page_length = remain;
773 if ((shmem_page_offset + page_length) > PAGE_SIZE)
774 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 775
58642885
DV
776 /* If we don't overwrite a cacheline completely we need to be
777 * careful to have up-to-date data by first clflushing. Don't
778 * overcomplicate things and flush the entire patch. */
779 partial_cacheline_write = needs_clflush_before &&
780 ((shmem_page_offset | page_length)
781 & (boot_cpu_data.x86_clflush_size - 1));
782
8c59967c
DV
783 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
784 (page_to_phys(page) & (1 << 17)) != 0;
785
d174bd64
DV
786 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
787 user_data, page_do_bit17_swizzling,
788 partial_cacheline_write,
789 needs_clflush_after);
790 if (ret == 0)
791 goto next_page;
e244a443
DV
792
793 hit_slowpath = 1;
e244a443 794 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
795 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
796 user_data, page_do_bit17_swizzling,
797 partial_cacheline_write,
798 needs_clflush_after);
40123c1f 799
e244a443 800 mutex_lock(&dev->struct_mutex);
755d2218 801
e244a443 802next_page:
e5281ccd
CW
803 set_page_dirty(page);
804 mark_page_accessed(page);
e5281ccd 805
755d2218 806 if (ret)
8c59967c 807 goto out;
8c59967c 808
40123c1f 809 remain -= page_length;
8c59967c 810 user_data += page_length;
40123c1f 811 offset += page_length;
673a394b
EA
812 }
813
fbd5a26d 814out:
755d2218
CW
815 i915_gem_object_unpin_pages(obj);
816
e244a443 817 if (hit_slowpath) {
8dcf015e
DV
818 /*
819 * Fixup: Flush cpu caches in case we didn't flush the dirty
820 * cachelines in-line while writing and the object moved
821 * out of the cpu write domain while we've dropped the lock.
822 */
823 if (!needs_clflush_after &&
824 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 825 i915_gem_clflush_object(obj);
e76e9aeb 826 i915_gem_chipset_flush(dev);
e244a443 827 }
8c59967c 828 }
673a394b 829
58642885 830 if (needs_clflush_after)
e76e9aeb 831 i915_gem_chipset_flush(dev);
58642885 832
40123c1f 833 return ret;
673a394b
EA
834}
835
836/**
837 * Writes data to the object referenced by handle.
838 *
839 * On error, the contents of the buffer that were to be modified are undefined.
840 */
841int
842i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 843 struct drm_file *file)
673a394b
EA
844{
845 struct drm_i915_gem_pwrite *args = data;
05394f39 846 struct drm_i915_gem_object *obj;
51311d0a
CW
847 int ret;
848
849 if (args->size == 0)
850 return 0;
851
852 if (!access_ok(VERIFY_READ,
2bb4629a 853 to_user_ptr(args->data_ptr),
51311d0a
CW
854 args->size))
855 return -EFAULT;
856
2bb4629a 857 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
f56f821f 858 args->size);
51311d0a
CW
859 if (ret)
860 return -EFAULT;
673a394b 861
fbd5a26d 862 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 863 if (ret)
fbd5a26d 864 return ret;
1d7cfea1 865
05394f39 866 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 867 if (&obj->base == NULL) {
1d7cfea1
CW
868 ret = -ENOENT;
869 goto unlock;
fbd5a26d 870 }
673a394b 871
7dcd2499 872 /* Bounds check destination. */
05394f39
CW
873 if (args->offset > obj->base.size ||
874 args->size > obj->base.size - args->offset) {
ce9d419d 875 ret = -EINVAL;
35b62a89 876 goto out;
ce9d419d
CW
877 }
878
1286ff73
DV
879 /* prime objects have no backing filp to GEM pread/pwrite
880 * pages from.
881 */
882 if (!obj->base.filp) {
883 ret = -EINVAL;
884 goto out;
885 }
886
db53a302
CW
887 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
888
935aaa69 889 ret = -EFAULT;
673a394b
EA
890 /* We can only do the GTT pwrite on untiled buffers, as otherwise
891 * it would end up going through the fenced access, and we'll get
892 * different detiling behavior between reading and writing.
893 * pread/pwrite currently are reading and writing from the CPU
894 * perspective, requiring manual detiling by the client.
895 */
5c0480f2 896 if (obj->phys_obj) {
fbd5a26d 897 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
898 goto out;
899 }
900
86a1ee26 901 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 902 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 903 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 904 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
905 /* Note that the gtt paths might fail with non-page-backed user
906 * pointers (e.g. gtt mappings when moving data between
907 * textures). Fallback to the shmem path in that case. */
fbd5a26d 908 }
673a394b 909
86a1ee26 910 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 911 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 912
35b62a89 913out:
05394f39 914 drm_gem_object_unreference(&obj->base);
1d7cfea1 915unlock:
fbd5a26d 916 mutex_unlock(&dev->struct_mutex);
673a394b
EA
917 return ret;
918}
919
b361237b 920int
33196ded 921i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
922 bool interruptible)
923{
1f83fee0 924 if (i915_reset_in_progress(error)) {
b361237b
CW
925 /* Non-interruptible callers can't handle -EAGAIN, hence return
926 * -EIO unconditionally for these. */
927 if (!interruptible)
928 return -EIO;
929
1f83fee0
DV
930 /* Recovery complete, but the reset failed ... */
931 if (i915_terminally_wedged(error))
b361237b
CW
932 return -EIO;
933
934 return -EAGAIN;
935 }
936
937 return 0;
938}
939
940/*
941 * Compare seqno against outstanding lazy request. Emit a request if they are
942 * equal.
943 */
944static int
945i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
946{
947 int ret;
948
949 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
950
951 ret = 0;
952 if (seqno == ring->outstanding_lazy_request)
0025c077 953 ret = i915_add_request(ring, NULL);
b361237b
CW
954
955 return ret;
956}
957
958/**
959 * __wait_seqno - wait until execution of seqno has finished
960 * @ring: the ring expected to report seqno
961 * @seqno: duh!
f69061be 962 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
963 * @interruptible: do an interruptible wait (normally yes)
964 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
965 *
f69061be
DV
966 * Note: It is of utmost importance that the passed in seqno and reset_counter
967 * values have been read by the caller in an smp safe manner. Where read-side
968 * locks are involved, it is sufficient to read the reset_counter before
969 * unlocking the lock that protects the seqno. For lockless tricks, the
970 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
971 * inserted.
972 *
b361237b
CW
973 * Returns 0 if the seqno was found within the alloted time. Else returns the
974 * errno with remaining time filled in timeout argument.
975 */
976static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 977 unsigned reset_counter,
b361237b
CW
978 bool interruptible, struct timespec *timeout)
979{
980 drm_i915_private_t *dev_priv = ring->dev->dev_private;
981 struct timespec before, now, wait_time={1,0};
982 unsigned long timeout_jiffies;
983 long end;
984 bool wait_forever = true;
985 int ret;
986
987 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
988 return 0;
989
990 trace_i915_gem_request_wait_begin(ring, seqno);
991
992 if (timeout != NULL) {
993 wait_time = *timeout;
994 wait_forever = false;
995 }
996
e054cc39 997 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
998
999 if (WARN_ON(!ring->irq_get(ring)))
1000 return -ENODEV;
1001
1002 /* Record current time in case interrupted by signal, or wedged * */
1003 getrawmonotonic(&before);
1004
1005#define EXIT_COND \
1006 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1007 i915_reset_in_progress(&dev_priv->gpu_error) || \
1008 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1009 do {
1010 if (interruptible)
1011 end = wait_event_interruptible_timeout(ring->irq_queue,
1012 EXIT_COND,
1013 timeout_jiffies);
1014 else
1015 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1016 timeout_jiffies);
1017
f69061be
DV
1018 /* We need to check whether any gpu reset happened in between
1019 * the caller grabbing the seqno and now ... */
1020 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1021 end = -EAGAIN;
1022
1023 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1024 * gone. */
33196ded 1025 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1026 if (ret)
1027 end = ret;
1028 } while (end == 0 && wait_forever);
1029
1030 getrawmonotonic(&now);
1031
1032 ring->irq_put(ring);
1033 trace_i915_gem_request_wait_end(ring, seqno);
1034#undef EXIT_COND
1035
1036 if (timeout) {
1037 struct timespec sleep_time = timespec_sub(now, before);
1038 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1039 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1040 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1041 }
1042
1043 switch (end) {
1044 case -EIO:
1045 case -EAGAIN: /* Wedged */
1046 case -ERESTARTSYS: /* Signal */
1047 return (int)end;
1048 case 0: /* Timeout */
b361237b
CW
1049 return -ETIME;
1050 default: /* Completed */
1051 WARN_ON(end < 0); /* We're not aware of other errors */
1052 return 0;
1053 }
1054}
1055
1056/**
1057 * Waits for a sequence number to be signaled, and cleans up the
1058 * request and object lists appropriately for that event.
1059 */
1060int
1061i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1062{
1063 struct drm_device *dev = ring->dev;
1064 struct drm_i915_private *dev_priv = dev->dev_private;
1065 bool interruptible = dev_priv->mm.interruptible;
1066 int ret;
1067
1068 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1069 BUG_ON(seqno == 0);
1070
33196ded 1071 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1072 if (ret)
1073 return ret;
1074
1075 ret = i915_gem_check_olr(ring, seqno);
1076 if (ret)
1077 return ret;
1078
f69061be
DV
1079 return __wait_seqno(ring, seqno,
1080 atomic_read(&dev_priv->gpu_error.reset_counter),
1081 interruptible, NULL);
b361237b
CW
1082}
1083
d26e3af8
CW
1084static int
1085i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1086 struct intel_ring_buffer *ring)
1087{
1088 i915_gem_retire_requests_ring(ring);
1089
1090 /* Manually manage the write flush as we may have not yet
1091 * retired the buffer.
1092 *
1093 * Note that the last_write_seqno is always the earlier of
1094 * the two (read/write) seqno, so if we haved successfully waited,
1095 * we know we have passed the last write.
1096 */
1097 obj->last_write_seqno = 0;
1098 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1099
1100 return 0;
1101}
1102
b361237b
CW
1103/**
1104 * Ensures that all rendering to the object has completed and the object is
1105 * safe to unbind from the GTT or access from the CPU.
1106 */
1107static __must_check int
1108i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1109 bool readonly)
1110{
1111 struct intel_ring_buffer *ring = obj->ring;
1112 u32 seqno;
1113 int ret;
1114
1115 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1116 if (seqno == 0)
1117 return 0;
1118
1119 ret = i915_wait_seqno(ring, seqno);
1120 if (ret)
1121 return ret;
1122
d26e3af8 1123 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1124}
1125
3236f57a
CW
1126/* A nonblocking variant of the above wait. This is a highly dangerous routine
1127 * as the object state may change during this call.
1128 */
1129static __must_check int
1130i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1131 bool readonly)
1132{
1133 struct drm_device *dev = obj->base.dev;
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135 struct intel_ring_buffer *ring = obj->ring;
f69061be 1136 unsigned reset_counter;
3236f57a
CW
1137 u32 seqno;
1138 int ret;
1139
1140 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141 BUG_ON(!dev_priv->mm.interruptible);
1142
1143 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144 if (seqno == 0)
1145 return 0;
1146
33196ded 1147 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1148 if (ret)
1149 return ret;
1150
1151 ret = i915_gem_check_olr(ring, seqno);
1152 if (ret)
1153 return ret;
1154
f69061be 1155 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1156 mutex_unlock(&dev->struct_mutex);
f69061be 1157 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1158 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1159 if (ret)
1160 return ret;
3236f57a 1161
d26e3af8 1162 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1163}
1164
673a394b 1165/**
2ef7eeaa
EA
1166 * Called when user space prepares to use an object with the CPU, either
1167 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1168 */
1169int
1170i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1171 struct drm_file *file)
673a394b
EA
1172{
1173 struct drm_i915_gem_set_domain *args = data;
05394f39 1174 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1175 uint32_t read_domains = args->read_domains;
1176 uint32_t write_domain = args->write_domain;
673a394b
EA
1177 int ret;
1178
2ef7eeaa 1179 /* Only handle setting domains to types used by the CPU. */
21d509e3 1180 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1181 return -EINVAL;
1182
21d509e3 1183 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1184 return -EINVAL;
1185
1186 /* Having something in the write domain implies it's in the read
1187 * domain, and only that read domain. Enforce that in the request.
1188 */
1189 if (write_domain != 0 && read_domains != write_domain)
1190 return -EINVAL;
1191
76c1dec1 1192 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1193 if (ret)
76c1dec1 1194 return ret;
1d7cfea1 1195
05394f39 1196 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1197 if (&obj->base == NULL) {
1d7cfea1
CW
1198 ret = -ENOENT;
1199 goto unlock;
76c1dec1 1200 }
673a394b 1201
3236f57a
CW
1202 /* Try to flush the object off the GPU without holding the lock.
1203 * We will repeat the flush holding the lock in the normal manner
1204 * to catch cases where we are gazumped.
1205 */
1206 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1207 if (ret)
1208 goto unref;
1209
2ef7eeaa
EA
1210 if (read_domains & I915_GEM_DOMAIN_GTT) {
1211 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1212
1213 /* Silently promote "you're not bound, there was nothing to do"
1214 * to success, since the client was just asking us to
1215 * make sure everything was done.
1216 */
1217 if (ret == -EINVAL)
1218 ret = 0;
2ef7eeaa 1219 } else {
e47c68e9 1220 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1221 }
1222
3236f57a 1223unref:
05394f39 1224 drm_gem_object_unreference(&obj->base);
1d7cfea1 1225unlock:
673a394b
EA
1226 mutex_unlock(&dev->struct_mutex);
1227 return ret;
1228}
1229
1230/**
1231 * Called when user space has done writes to this buffer
1232 */
1233int
1234i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1235 struct drm_file *file)
673a394b
EA
1236{
1237 struct drm_i915_gem_sw_finish *args = data;
05394f39 1238 struct drm_i915_gem_object *obj;
673a394b
EA
1239 int ret = 0;
1240
76c1dec1 1241 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1242 if (ret)
76c1dec1 1243 return ret;
1d7cfea1 1244
05394f39 1245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1246 if (&obj->base == NULL) {
1d7cfea1
CW
1247 ret = -ENOENT;
1248 goto unlock;
673a394b
EA
1249 }
1250
673a394b 1251 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1252 if (obj->pin_count)
e47c68e9
EA
1253 i915_gem_object_flush_cpu_write_domain(obj);
1254
05394f39 1255 drm_gem_object_unreference(&obj->base);
1d7cfea1 1256unlock:
673a394b
EA
1257 mutex_unlock(&dev->struct_mutex);
1258 return ret;
1259}
1260
1261/**
1262 * Maps the contents of an object, returning the address it is mapped
1263 * into.
1264 *
1265 * While the mapping holds a reference on the contents of the object, it doesn't
1266 * imply a ref on the object itself.
1267 */
1268int
1269i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1270 struct drm_file *file)
673a394b
EA
1271{
1272 struct drm_i915_gem_mmap *args = data;
1273 struct drm_gem_object *obj;
673a394b
EA
1274 unsigned long addr;
1275
05394f39 1276 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1277 if (obj == NULL)
bf79cb91 1278 return -ENOENT;
673a394b 1279
1286ff73
DV
1280 /* prime objects have no backing filp to GEM mmap
1281 * pages from.
1282 */
1283 if (!obj->filp) {
1284 drm_gem_object_unreference_unlocked(obj);
1285 return -EINVAL;
1286 }
1287
6be5ceb0 1288 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1289 PROT_READ | PROT_WRITE, MAP_SHARED,
1290 args->offset);
bc9025bd 1291 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1292 if (IS_ERR((void *)addr))
1293 return addr;
1294
1295 args->addr_ptr = (uint64_t) addr;
1296
1297 return 0;
1298}
1299
de151cf6
JB
1300/**
1301 * i915_gem_fault - fault a page into the GTT
1302 * vma: VMA in question
1303 * vmf: fault info
1304 *
1305 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1306 * from userspace. The fault handler takes care of binding the object to
1307 * the GTT (if needed), allocating and programming a fence register (again,
1308 * only if needed based on whether the old reg is still valid or the object
1309 * is tiled) and inserting a new PTE into the faulting process.
1310 *
1311 * Note that the faulting process may involve evicting existing objects
1312 * from the GTT and/or fence registers to make room. So performance may
1313 * suffer if the GTT working set is large or there are few fence registers
1314 * left.
1315 */
1316int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1317{
05394f39
CW
1318 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1319 struct drm_device *dev = obj->base.dev;
7d1c4804 1320 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1321 pgoff_t page_offset;
1322 unsigned long pfn;
1323 int ret = 0;
0f973f27 1324 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1325
1326 /* We don't use vmf->pgoff since that has the fake offset */
1327 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1328 PAGE_SHIFT;
1329
d9bc7e9f
CW
1330 ret = i915_mutex_lock_interruptible(dev);
1331 if (ret)
1332 goto out;
a00b10c3 1333
db53a302
CW
1334 trace_i915_gem_object_fault(obj, page_offset, true, write);
1335
eb119bd6
CW
1336 /* Access to snoopable pages through the GTT is incoherent. */
1337 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1338 ret = -EINVAL;
1339 goto unlock;
1340 }
1341
d9bc7e9f 1342 /* Now bind it into the GTT if needed */
c9839303
CW
1343 ret = i915_gem_object_pin(obj, 0, true, false);
1344 if (ret)
1345 goto unlock;
4a684a41 1346
c9839303
CW
1347 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1348 if (ret)
1349 goto unpin;
74898d7e 1350
06d98131 1351 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1352 if (ret)
c9839303 1353 goto unpin;
7d1c4804 1354
6299f992
CW
1355 obj->fault_mappable = true;
1356
f343c5f6
BW
1357 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1358 pfn >>= PAGE_SHIFT;
1359 pfn += page_offset;
de151cf6
JB
1360
1361 /* Finally, remap it using the new GTT offset */
1362 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1363unpin:
1364 i915_gem_object_unpin(obj);
c715089f 1365unlock:
de151cf6 1366 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1367out:
de151cf6 1368 switch (ret) {
d9bc7e9f 1369 case -EIO:
a9340cca
DV
1370 /* If this -EIO is due to a gpu hang, give the reset code a
1371 * chance to clean up the mess. Otherwise return the proper
1372 * SIGBUS. */
1f83fee0 1373 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1374 return VM_FAULT_SIGBUS;
045e769a 1375 case -EAGAIN:
d9bc7e9f
CW
1376 /* Give the error handler a chance to run and move the
1377 * objects off the GPU active list. Next time we service the
1378 * fault, we should be able to transition the page into the
1379 * GTT without touching the GPU (and so avoid further
1380 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1381 * with coherency, just lost writes.
1382 */
045e769a 1383 set_need_resched();
c715089f
CW
1384 case 0:
1385 case -ERESTARTSYS:
bed636ab 1386 case -EINTR:
e79e0fe3
DR
1387 case -EBUSY:
1388 /*
1389 * EBUSY is ok: this just means that another thread
1390 * already did the job.
1391 */
c715089f 1392 return VM_FAULT_NOPAGE;
de151cf6 1393 case -ENOMEM:
de151cf6 1394 return VM_FAULT_OOM;
a7c2e1aa
DV
1395 case -ENOSPC:
1396 return VM_FAULT_SIGBUS;
de151cf6 1397 default:
a7c2e1aa 1398 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1399 return VM_FAULT_SIGBUS;
de151cf6
JB
1400 }
1401}
1402
901782b2
CW
1403/**
1404 * i915_gem_release_mmap - remove physical page mappings
1405 * @obj: obj in question
1406 *
af901ca1 1407 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1408 * relinquish ownership of the pages back to the system.
1409 *
1410 * It is vital that we remove the page mapping if we have mapped a tiled
1411 * object through the GTT and then lose the fence register due to
1412 * resource pressure. Similarly if the object has been moved out of the
1413 * aperture, than pages mapped into userspace must be revoked. Removing the
1414 * mapping will then trigger a page fault on the next user access, allowing
1415 * fixup by i915_gem_fault().
1416 */
d05ca301 1417void
05394f39 1418i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1419{
6299f992
CW
1420 if (!obj->fault_mappable)
1421 return;
901782b2 1422
51335df9 1423 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1424 obj->fault_mappable = false;
901782b2
CW
1425}
1426
0fa87796 1427uint32_t
e28f8711 1428i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1429{
e28f8711 1430 uint32_t gtt_size;
92b88aeb
CW
1431
1432 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1433 tiling_mode == I915_TILING_NONE)
1434 return size;
92b88aeb
CW
1435
1436 /* Previous chips need a power-of-two fence region when tiling */
1437 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1438 gtt_size = 1024*1024;
92b88aeb 1439 else
e28f8711 1440 gtt_size = 512*1024;
92b88aeb 1441
e28f8711
CW
1442 while (gtt_size < size)
1443 gtt_size <<= 1;
92b88aeb 1444
e28f8711 1445 return gtt_size;
92b88aeb
CW
1446}
1447
de151cf6
JB
1448/**
1449 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1450 * @obj: object to check
1451 *
1452 * Return the required GTT alignment for an object, taking into account
5e783301 1453 * potential fence register mapping.
de151cf6 1454 */
d865110c
ID
1455uint32_t
1456i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1457 int tiling_mode, bool fenced)
de151cf6 1458{
de151cf6
JB
1459 /*
1460 * Minimum alignment is 4k (GTT page size), but might be greater
1461 * if a fence register is needed for the object.
1462 */
d865110c 1463 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1464 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1465 return 4096;
1466
a00b10c3
CW
1467 /*
1468 * Previous chips need to be aligned to the size of the smallest
1469 * fence register that can contain the object.
1470 */
e28f8711 1471 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1472}
1473
d8cb5086
CW
1474static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1475{
1476 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1477 int ret;
1478
0de23977 1479 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1480 return 0;
1481
da494d7c
DV
1482 dev_priv->mm.shrinker_no_lock_stealing = true;
1483
d8cb5086
CW
1484 ret = drm_gem_create_mmap_offset(&obj->base);
1485 if (ret != -ENOSPC)
da494d7c 1486 goto out;
d8cb5086
CW
1487
1488 /* Badly fragmented mmap space? The only way we can recover
1489 * space is by destroying unwanted objects. We can't randomly release
1490 * mmap_offsets as userspace expects them to be persistent for the
1491 * lifetime of the objects. The closest we can is to release the
1492 * offsets on purgeable objects by truncating it and marking it purged,
1493 * which prevents userspace from ever using that object again.
1494 */
1495 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1496 ret = drm_gem_create_mmap_offset(&obj->base);
1497 if (ret != -ENOSPC)
da494d7c 1498 goto out;
d8cb5086
CW
1499
1500 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1501 ret = drm_gem_create_mmap_offset(&obj->base);
1502out:
1503 dev_priv->mm.shrinker_no_lock_stealing = false;
1504
1505 return ret;
d8cb5086
CW
1506}
1507
1508static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1509{
d8cb5086
CW
1510 drm_gem_free_mmap_offset(&obj->base);
1511}
1512
de151cf6 1513int
ff72145b
DA
1514i915_gem_mmap_gtt(struct drm_file *file,
1515 struct drm_device *dev,
1516 uint32_t handle,
1517 uint64_t *offset)
de151cf6 1518{
da761a6e 1519 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1520 struct drm_i915_gem_object *obj;
de151cf6
JB
1521 int ret;
1522
76c1dec1 1523 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1524 if (ret)
76c1dec1 1525 return ret;
de151cf6 1526
ff72145b 1527 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1528 if (&obj->base == NULL) {
1d7cfea1
CW
1529 ret = -ENOENT;
1530 goto unlock;
1531 }
de151cf6 1532
5d4545ae 1533 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1534 ret = -E2BIG;
ff56b0bc 1535 goto out;
da761a6e
CW
1536 }
1537
05394f39 1538 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1539 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1540 ret = -EINVAL;
1541 goto out;
ab18282d
CW
1542 }
1543
d8cb5086
CW
1544 ret = i915_gem_object_create_mmap_offset(obj);
1545 if (ret)
1546 goto out;
de151cf6 1547
0de23977 1548 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1549
1d7cfea1 1550out:
05394f39 1551 drm_gem_object_unreference(&obj->base);
1d7cfea1 1552unlock:
de151cf6 1553 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1554 return ret;
de151cf6
JB
1555}
1556
ff72145b
DA
1557/**
1558 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1559 * @dev: DRM device
1560 * @data: GTT mapping ioctl data
1561 * @file: GEM object info
1562 *
1563 * Simply returns the fake offset to userspace so it can mmap it.
1564 * The mmap call will end up in drm_gem_mmap(), which will set things
1565 * up so we can get faults in the handler above.
1566 *
1567 * The fault handler will take care of binding the object into the GTT
1568 * (since it may have been evicted to make room for something), allocating
1569 * a fence register, and mapping the appropriate aperture address into
1570 * userspace.
1571 */
1572int
1573i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1574 struct drm_file *file)
1575{
1576 struct drm_i915_gem_mmap_gtt *args = data;
1577
ff72145b
DA
1578 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1579}
1580
225067ee
DV
1581/* Immediately discard the backing storage */
1582static void
1583i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1584{
e5281ccd 1585 struct inode *inode;
e5281ccd 1586
4d6294bf 1587 i915_gem_object_free_mmap_offset(obj);
1286ff73 1588
4d6294bf
CW
1589 if (obj->base.filp == NULL)
1590 return;
e5281ccd 1591
225067ee
DV
1592 /* Our goal here is to return as much of the memory as
1593 * is possible back to the system as we are called from OOM.
1594 * To do this we must instruct the shmfs to drop all of its
1595 * backing pages, *now*.
1596 */
496ad9aa 1597 inode = file_inode(obj->base.filp);
225067ee 1598 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1599
225067ee
DV
1600 obj->madv = __I915_MADV_PURGED;
1601}
e5281ccd 1602
225067ee
DV
1603static inline int
1604i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1605{
1606 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1607}
1608
5cdf5881 1609static void
05394f39 1610i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1611{
90797e6d
ID
1612 struct sg_page_iter sg_iter;
1613 int ret;
1286ff73 1614
05394f39 1615 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1616
6c085a72
CW
1617 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1618 if (ret) {
1619 /* In the event of a disaster, abandon all caches and
1620 * hope for the best.
1621 */
1622 WARN_ON(ret != -EIO);
1623 i915_gem_clflush_object(obj);
1624 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1625 }
1626
6dacfd2f 1627 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1628 i915_gem_object_save_bit_17_swizzle(obj);
1629
05394f39
CW
1630 if (obj->madv == I915_MADV_DONTNEED)
1631 obj->dirty = 0;
3ef94daa 1632
90797e6d 1633 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1634 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1635
05394f39 1636 if (obj->dirty)
9da3da66 1637 set_page_dirty(page);
3ef94daa 1638
05394f39 1639 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1640 mark_page_accessed(page);
3ef94daa 1641
9da3da66 1642 page_cache_release(page);
3ef94daa 1643 }
05394f39 1644 obj->dirty = 0;
673a394b 1645
9da3da66
CW
1646 sg_free_table(obj->pages);
1647 kfree(obj->pages);
37e680a1 1648}
6c085a72 1649
dd624afd 1650int
37e680a1
CW
1651i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1652{
1653 const struct drm_i915_gem_object_ops *ops = obj->ops;
1654
2f745ad3 1655 if (obj->pages == NULL)
37e680a1
CW
1656 return 0;
1657
f343c5f6 1658 BUG_ON(i915_gem_obj_ggtt_bound(obj));
6c085a72 1659
a5570178
CW
1660 if (obj->pages_pin_count)
1661 return -EBUSY;
1662
a2165e31
CW
1663 /* ->put_pages might need to allocate memory for the bit17 swizzle
1664 * array, hence protect them from being reaped by removing them from gtt
1665 * lists early. */
35c20a60 1666 list_del(&obj->global_list);
a2165e31 1667
37e680a1 1668 ops->put_pages(obj);
05394f39 1669 obj->pages = NULL;
37e680a1 1670
6c085a72
CW
1671 if (i915_gem_object_is_purgeable(obj))
1672 i915_gem_object_truncate(obj);
1673
1674 return 0;
1675}
1676
1677static long
93927ca5
DV
1678__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1679 bool purgeable_only)
6c085a72
CW
1680{
1681 struct drm_i915_gem_object *obj, *next;
1682 long count = 0;
1683
1684 list_for_each_entry_safe(obj, next,
1685 &dev_priv->mm.unbound_list,
35c20a60 1686 global_list) {
93927ca5 1687 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1688 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1689 count += obj->base.size >> PAGE_SHIFT;
1690 if (count >= target)
1691 return count;
1692 }
1693 }
1694
1695 list_for_each_entry_safe(obj, next,
1696 &dev_priv->mm.inactive_list,
1697 mm_list) {
93927ca5 1698 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
6c085a72 1699 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1700 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1701 count += obj->base.size >> PAGE_SHIFT;
1702 if (count >= target)
1703 return count;
1704 }
1705 }
1706
1707 return count;
1708}
1709
93927ca5
DV
1710static long
1711i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1712{
1713 return __i915_gem_shrink(dev_priv, target, true);
1714}
1715
6c085a72
CW
1716static void
1717i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1718{
1719 struct drm_i915_gem_object *obj, *next;
1720
1721 i915_gem_evict_everything(dev_priv->dev);
1722
35c20a60
BW
1723 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1724 global_list)
37e680a1 1725 i915_gem_object_put_pages(obj);
225067ee
DV
1726}
1727
37e680a1 1728static int
6c085a72 1729i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1730{
6c085a72 1731 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1732 int page_count, i;
1733 struct address_space *mapping;
9da3da66
CW
1734 struct sg_table *st;
1735 struct scatterlist *sg;
90797e6d 1736 struct sg_page_iter sg_iter;
e5281ccd 1737 struct page *page;
90797e6d 1738 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1739 gfp_t gfp;
e5281ccd 1740
6c085a72
CW
1741 /* Assert that the object is not currently in any GPU domain. As it
1742 * wasn't in the GTT, there shouldn't be any way it could have been in
1743 * a GPU cache
1744 */
1745 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1746 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1747
9da3da66
CW
1748 st = kmalloc(sizeof(*st), GFP_KERNEL);
1749 if (st == NULL)
1750 return -ENOMEM;
1751
05394f39 1752 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1753 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1754 sg_free_table(st);
1755 kfree(st);
e5281ccd 1756 return -ENOMEM;
9da3da66 1757 }
e5281ccd 1758
9da3da66
CW
1759 /* Get the list of pages out of our struct file. They'll be pinned
1760 * at this point until we release them.
1761 *
1762 * Fail silently without starting the shrinker
1763 */
496ad9aa 1764 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1765 gfp = mapping_gfp_mask(mapping);
caf49191 1766 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1767 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1768 sg = st->sgl;
1769 st->nents = 0;
1770 for (i = 0; i < page_count; i++) {
6c085a72
CW
1771 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1772 if (IS_ERR(page)) {
1773 i915_gem_purge(dev_priv, page_count);
1774 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1775 }
1776 if (IS_ERR(page)) {
1777 /* We've tried hard to allocate the memory by reaping
1778 * our own buffer, now let the real VM do its job and
1779 * go down in flames if truly OOM.
1780 */
caf49191 1781 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1782 gfp |= __GFP_IO | __GFP_WAIT;
1783
1784 i915_gem_shrink_all(dev_priv);
1785 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1786 if (IS_ERR(page))
1787 goto err_pages;
1788
caf49191 1789 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1790 gfp &= ~(__GFP_IO | __GFP_WAIT);
1791 }
426729dc
KRW
1792#ifdef CONFIG_SWIOTLB
1793 if (swiotlb_nr_tbl()) {
1794 st->nents++;
1795 sg_set_page(sg, page, PAGE_SIZE, 0);
1796 sg = sg_next(sg);
1797 continue;
1798 }
1799#endif
90797e6d
ID
1800 if (!i || page_to_pfn(page) != last_pfn + 1) {
1801 if (i)
1802 sg = sg_next(sg);
1803 st->nents++;
1804 sg_set_page(sg, page, PAGE_SIZE, 0);
1805 } else {
1806 sg->length += PAGE_SIZE;
1807 }
1808 last_pfn = page_to_pfn(page);
e5281ccd 1809 }
426729dc
KRW
1810#ifdef CONFIG_SWIOTLB
1811 if (!swiotlb_nr_tbl())
1812#endif
1813 sg_mark_end(sg);
74ce6b6c
CW
1814 obj->pages = st;
1815
6dacfd2f 1816 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1817 i915_gem_object_do_bit_17_swizzle(obj);
1818
1819 return 0;
1820
1821err_pages:
90797e6d
ID
1822 sg_mark_end(sg);
1823 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1824 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1825 sg_free_table(st);
1826 kfree(st);
e5281ccd 1827 return PTR_ERR(page);
673a394b
EA
1828}
1829
37e680a1
CW
1830/* Ensure that the associated pages are gathered from the backing storage
1831 * and pinned into our object. i915_gem_object_get_pages() may be called
1832 * multiple times before they are released by a single call to
1833 * i915_gem_object_put_pages() - once the pages are no longer referenced
1834 * either as a result of memory pressure (reaping pages under the shrinker)
1835 * or as the object is itself released.
1836 */
1837int
1838i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1839{
1840 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1841 const struct drm_i915_gem_object_ops *ops = obj->ops;
1842 int ret;
1843
2f745ad3 1844 if (obj->pages)
37e680a1
CW
1845 return 0;
1846
43e28f09
CW
1847 if (obj->madv != I915_MADV_WILLNEED) {
1848 DRM_ERROR("Attempting to obtain a purgeable object\n");
1849 return -EINVAL;
1850 }
1851
a5570178
CW
1852 BUG_ON(obj->pages_pin_count);
1853
37e680a1
CW
1854 ret = ops->get_pages(obj);
1855 if (ret)
1856 return ret;
1857
35c20a60 1858 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1859 return 0;
673a394b
EA
1860}
1861
54cf91dc 1862void
05394f39 1863i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1864 struct intel_ring_buffer *ring)
673a394b 1865{
05394f39 1866 struct drm_device *dev = obj->base.dev;
69dc4987 1867 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1868 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1869
852835f3 1870 BUG_ON(ring == NULL);
02978ff5
CW
1871 if (obj->ring != ring && obj->last_write_seqno) {
1872 /* Keep the seqno relative to the current ring */
1873 obj->last_write_seqno = seqno;
1874 }
05394f39 1875 obj->ring = ring;
673a394b
EA
1876
1877 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1878 if (!obj->active) {
1879 drm_gem_object_reference(&obj->base);
1880 obj->active = 1;
673a394b 1881 }
e35a41de 1882
673a394b 1883 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1884 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1885 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1886
0201f1ec 1887 obj->last_read_seqno = seqno;
caea7476 1888
7dd49065 1889 if (obj->fenced_gpu_access) {
caea7476 1890 obj->last_fenced_seqno = seqno;
caea7476 1891
7dd49065
CW
1892 /* Bump MRU to take account of the delayed flush */
1893 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1894 struct drm_i915_fence_reg *reg;
1895
1896 reg = &dev_priv->fence_regs[obj->fence_reg];
1897 list_move_tail(&reg->lru_list,
1898 &dev_priv->mm.fence_list);
1899 }
caea7476
CW
1900 }
1901}
1902
1903static void
caea7476 1904i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1905{
05394f39 1906 struct drm_device *dev = obj->base.dev;
caea7476 1907 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1908
65ce3027 1909 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1910 BUG_ON(!obj->active);
caea7476 1911
1b50247a 1912 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1913
65ce3027 1914 list_del_init(&obj->ring_list);
caea7476
CW
1915 obj->ring = NULL;
1916
65ce3027
CW
1917 obj->last_read_seqno = 0;
1918 obj->last_write_seqno = 0;
1919 obj->base.write_domain = 0;
1920
1921 obj->last_fenced_seqno = 0;
caea7476 1922 obj->fenced_gpu_access = false;
caea7476
CW
1923
1924 obj->active = 0;
1925 drm_gem_object_unreference(&obj->base);
1926
1927 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1928}
673a394b 1929
9d773091 1930static int
fca26bb4 1931i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1932{
9d773091
CW
1933 struct drm_i915_private *dev_priv = dev->dev_private;
1934 struct intel_ring_buffer *ring;
1935 int ret, i, j;
53d227f2 1936
107f27a5 1937 /* Carefully retire all requests without writing to the rings */
9d773091 1938 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1939 ret = intel_ring_idle(ring);
1940 if (ret)
1941 return ret;
9d773091 1942 }
9d773091 1943 i915_gem_retire_requests(dev);
107f27a5
CW
1944
1945 /* Finally reset hw state */
9d773091 1946 for_each_ring(ring, dev_priv, i) {
fca26bb4 1947 intel_ring_init_seqno(ring, seqno);
498d2ac1 1948
9d773091
CW
1949 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1950 ring->sync_seqno[j] = 0;
1951 }
53d227f2 1952
9d773091 1953 return 0;
53d227f2
DV
1954}
1955
fca26bb4
MK
1956int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1957{
1958 struct drm_i915_private *dev_priv = dev->dev_private;
1959 int ret;
1960
1961 if (seqno == 0)
1962 return -EINVAL;
1963
1964 /* HWS page needs to be set less than what we
1965 * will inject to ring
1966 */
1967 ret = i915_gem_init_seqno(dev, seqno - 1);
1968 if (ret)
1969 return ret;
1970
1971 /* Carefully set the last_seqno value so that wrap
1972 * detection still works
1973 */
1974 dev_priv->next_seqno = seqno;
1975 dev_priv->last_seqno = seqno - 1;
1976 if (dev_priv->last_seqno == 0)
1977 dev_priv->last_seqno--;
1978
1979 return 0;
1980}
1981
9d773091
CW
1982int
1983i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1984{
9d773091
CW
1985 struct drm_i915_private *dev_priv = dev->dev_private;
1986
1987 /* reserve 0 for non-seqno */
1988 if (dev_priv->next_seqno == 0) {
fca26bb4 1989 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
1990 if (ret)
1991 return ret;
53d227f2 1992
9d773091
CW
1993 dev_priv->next_seqno = 1;
1994 }
53d227f2 1995
f72b3435 1996 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 1997 return 0;
53d227f2
DV
1998}
1999
0025c077
MK
2000int __i915_add_request(struct intel_ring_buffer *ring,
2001 struct drm_file *file,
7d736f4f 2002 struct drm_i915_gem_object *obj,
0025c077 2003 u32 *out_seqno)
673a394b 2004{
db53a302 2005 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2006 struct drm_i915_gem_request *request;
7d736f4f 2007 u32 request_ring_position, request_start;
673a394b 2008 int was_empty;
3cce469c
CW
2009 int ret;
2010
7d736f4f 2011 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2012 /*
2013 * Emit any outstanding flushes - execbuf can fail to emit the flush
2014 * after having emitted the batchbuffer command. Hence we need to fix
2015 * things up similar to emitting the lazy request. The difference here
2016 * is that the flush _must_ happen before the next request, no matter
2017 * what.
2018 */
a7b9761d
CW
2019 ret = intel_ring_flush_all_caches(ring);
2020 if (ret)
2021 return ret;
cc889e0f 2022
acb868d3
CW
2023 request = kmalloc(sizeof(*request), GFP_KERNEL);
2024 if (request == NULL)
2025 return -ENOMEM;
cc889e0f 2026
673a394b 2027
a71d8d94
CW
2028 /* Record the position of the start of the request so that
2029 * should we detect the updated seqno part-way through the
2030 * GPU processing the request, we never over-estimate the
2031 * position of the head.
2032 */
2033 request_ring_position = intel_ring_get_tail(ring);
2034
9d773091 2035 ret = ring->add_request(ring);
3bb73aba
CW
2036 if (ret) {
2037 kfree(request);
2038 return ret;
2039 }
673a394b 2040
9d773091 2041 request->seqno = intel_ring_get_seqno(ring);
852835f3 2042 request->ring = ring;
7d736f4f 2043 request->head = request_start;
a71d8d94 2044 request->tail = request_ring_position;
0e50e96b 2045 request->ctx = ring->last_context;
7d736f4f
MK
2046 request->batch_obj = obj;
2047
2048 /* Whilst this request exists, batch_obj will be on the
2049 * active_list, and so will hold the active reference. Only when this
2050 * request is retired will the the batch_obj be moved onto the
2051 * inactive_list and lose its active reference. Hence we do not need
2052 * to explicitly hold another reference here.
2053 */
0e50e96b
MK
2054
2055 if (request->ctx)
2056 i915_gem_context_reference(request->ctx);
2057
673a394b 2058 request->emitted_jiffies = jiffies;
852835f3
ZN
2059 was_empty = list_empty(&ring->request_list);
2060 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2061 request->file_priv = NULL;
852835f3 2062
db53a302
CW
2063 if (file) {
2064 struct drm_i915_file_private *file_priv = file->driver_priv;
2065
1c25595f 2066 spin_lock(&file_priv->mm.lock);
f787a5f5 2067 request->file_priv = file_priv;
b962442e 2068 list_add_tail(&request->client_list,
f787a5f5 2069 &file_priv->mm.request_list);
1c25595f 2070 spin_unlock(&file_priv->mm.lock);
b962442e 2071 }
673a394b 2072
9d773091 2073 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2074 ring->outstanding_lazy_request = 0;
db53a302 2075
db1b76ca 2076 if (!dev_priv->ums.mm_suspended) {
3e0dc6b0 2077 if (i915_enable_hangcheck) {
99584db3 2078 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
cecc21fe 2079 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2080 }
f047e395 2081 if (was_empty) {
b3b079db 2082 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2083 &dev_priv->mm.retire_work,
2084 round_jiffies_up_relative(HZ));
f047e395
CW
2085 intel_mark_busy(dev_priv->dev);
2086 }
f65d9421 2087 }
cc889e0f 2088
acb868d3 2089 if (out_seqno)
9d773091 2090 *out_seqno = request->seqno;
3cce469c 2091 return 0;
673a394b
EA
2092}
2093
f787a5f5
CW
2094static inline void
2095i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2096{
1c25595f 2097 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2098
1c25595f
CW
2099 if (!file_priv)
2100 return;
1c5d22f7 2101
1c25595f 2102 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2103 if (request->file_priv) {
2104 list_del(&request->client_list);
2105 request->file_priv = NULL;
2106 }
1c25595f 2107 spin_unlock(&file_priv->mm.lock);
673a394b 2108}
673a394b 2109
aa60c664
MK
2110static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2111{
f343c5f6
BW
2112 if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2113 acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
aa60c664
MK
2114 return true;
2115
2116 return false;
2117}
2118
2119static bool i915_head_inside_request(const u32 acthd_unmasked,
2120 const u32 request_start,
2121 const u32 request_end)
2122{
2123 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2124
2125 if (request_start < request_end) {
2126 if (acthd >= request_start && acthd < request_end)
2127 return true;
2128 } else if (request_start > request_end) {
2129 if (acthd >= request_start || acthd < request_end)
2130 return true;
2131 }
2132
2133 return false;
2134}
2135
2136static bool i915_request_guilty(struct drm_i915_gem_request *request,
2137 const u32 acthd, bool *inside)
2138{
2139 /* There is a possibility that unmasked head address
2140 * pointing inside the ring, matches the batch_obj address range.
2141 * However this is extremely unlikely.
2142 */
2143
2144 if (request->batch_obj) {
2145 if (i915_head_inside_object(acthd, request->batch_obj)) {
2146 *inside = true;
2147 return true;
2148 }
2149 }
2150
2151 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2152 *inside = false;
2153 return true;
2154 }
2155
2156 return false;
2157}
2158
2159static void i915_set_reset_status(struct intel_ring_buffer *ring,
2160 struct drm_i915_gem_request *request,
2161 u32 acthd)
2162{
2163 struct i915_ctx_hang_stats *hs = NULL;
2164 bool inside, guilty;
2165
2166 /* Innocent until proven guilty */
2167 guilty = false;
2168
2169 if (ring->hangcheck.action != wait &&
2170 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2171 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2172 ring->name,
2173 inside ? "inside" : "flushing",
2174 request->batch_obj ?
f343c5f6 2175 i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
aa60c664
MK
2176 request->ctx ? request->ctx->id : 0,
2177 acthd);
2178
2179 guilty = true;
2180 }
2181
2182 /* If contexts are disabled or this is the default context, use
2183 * file_priv->reset_state
2184 */
2185 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2186 hs = &request->ctx->hang_stats;
2187 else if (request->file_priv)
2188 hs = &request->file_priv->hang_stats;
2189
2190 if (hs) {
2191 if (guilty)
2192 hs->batch_active++;
2193 else
2194 hs->batch_pending++;
2195 }
2196}
2197
0e50e96b
MK
2198static void i915_gem_free_request(struct drm_i915_gem_request *request)
2199{
2200 list_del(&request->list);
2201 i915_gem_request_remove_from_client(request);
2202
2203 if (request->ctx)
2204 i915_gem_context_unreference(request->ctx);
2205
2206 kfree(request);
2207}
2208
dfaae392
CW
2209static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2210 struct intel_ring_buffer *ring)
9375e446 2211{
aa60c664
MK
2212 u32 completed_seqno;
2213 u32 acthd;
2214
2215 acthd = intel_ring_get_active_head(ring);
2216 completed_seqno = ring->get_seqno(ring, false);
2217
dfaae392
CW
2218 while (!list_empty(&ring->request_list)) {
2219 struct drm_i915_gem_request *request;
673a394b 2220
dfaae392
CW
2221 request = list_first_entry(&ring->request_list,
2222 struct drm_i915_gem_request,
2223 list);
de151cf6 2224
aa60c664
MK
2225 if (request->seqno > completed_seqno)
2226 i915_set_reset_status(ring, request, acthd);
2227
0e50e96b 2228 i915_gem_free_request(request);
dfaae392 2229 }
673a394b 2230
dfaae392 2231 while (!list_empty(&ring->active_list)) {
05394f39 2232 struct drm_i915_gem_object *obj;
9375e446 2233
05394f39
CW
2234 obj = list_first_entry(&ring->active_list,
2235 struct drm_i915_gem_object,
2236 ring_list);
9375e446 2237
05394f39 2238 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2239 }
2240}
2241
19b2dbde 2242void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2243{
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 int i;
2246
4b9de737 2247 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2248 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
19b2dbde 2249 i915_gem_write_fence(dev, i, reg->obj);
312817a3
CW
2250 }
2251}
2252
069efc1d 2253void i915_gem_reset(struct drm_device *dev)
673a394b 2254{
77f01230 2255 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2256 struct drm_i915_gem_object *obj;
b4519513 2257 struct intel_ring_buffer *ring;
1ec14ad3 2258 int i;
673a394b 2259
b4519513
CW
2260 for_each_ring(ring, dev_priv, i)
2261 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2262
dfaae392
CW
2263 /* Move everything out of the GPU domains to ensure we do any
2264 * necessary invalidation upon reuse.
2265 */
05394f39 2266 list_for_each_entry(obj,
77f01230 2267 &dev_priv->mm.inactive_list,
69dc4987 2268 mm_list)
77f01230 2269 {
05394f39 2270 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2271 }
069efc1d 2272
19b2dbde 2273 i915_gem_restore_fences(dev);
673a394b
EA
2274}
2275
2276/**
2277 * This function clears the request list as sequence numbers are passed.
2278 */
a71d8d94 2279void
db53a302 2280i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2281{
673a394b
EA
2282 uint32_t seqno;
2283
db53a302 2284 if (list_empty(&ring->request_list))
6c0594a3
KW
2285 return;
2286
db53a302 2287 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2288
b2eadbc8 2289 seqno = ring->get_seqno(ring, true);
1ec14ad3 2290
852835f3 2291 while (!list_empty(&ring->request_list)) {
673a394b 2292 struct drm_i915_gem_request *request;
673a394b 2293
852835f3 2294 request = list_first_entry(&ring->request_list,
673a394b
EA
2295 struct drm_i915_gem_request,
2296 list);
673a394b 2297
dfaae392 2298 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2299 break;
2300
db53a302 2301 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2302 /* We know the GPU must have read the request to have
2303 * sent us the seqno + interrupt, so use the position
2304 * of tail of the request to update the last known position
2305 * of the GPU head.
2306 */
2307 ring->last_retired_head = request->tail;
b84d5f0c 2308
0e50e96b 2309 i915_gem_free_request(request);
b84d5f0c 2310 }
673a394b 2311
b84d5f0c
CW
2312 /* Move any buffers on the active list that are no longer referenced
2313 * by the ringbuffer to the flushing/inactive lists as appropriate.
2314 */
2315 while (!list_empty(&ring->active_list)) {
05394f39 2316 struct drm_i915_gem_object *obj;
b84d5f0c 2317
0206e353 2318 obj = list_first_entry(&ring->active_list,
05394f39
CW
2319 struct drm_i915_gem_object,
2320 ring_list);
673a394b 2321
0201f1ec 2322 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2323 break;
b84d5f0c 2324
65ce3027 2325 i915_gem_object_move_to_inactive(obj);
673a394b 2326 }
9d34e5db 2327
db53a302
CW
2328 if (unlikely(ring->trace_irq_seqno &&
2329 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2330 ring->irq_put(ring);
db53a302 2331 ring->trace_irq_seqno = 0;
9d34e5db 2332 }
23bc5982 2333
db53a302 2334 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2335}
2336
b09a1fec
CW
2337void
2338i915_gem_retire_requests(struct drm_device *dev)
2339{
2340 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2341 struct intel_ring_buffer *ring;
1ec14ad3 2342 int i;
b09a1fec 2343
b4519513
CW
2344 for_each_ring(ring, dev_priv, i)
2345 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2346}
2347
75ef9da2 2348static void
673a394b
EA
2349i915_gem_retire_work_handler(struct work_struct *work)
2350{
2351 drm_i915_private_t *dev_priv;
2352 struct drm_device *dev;
b4519513 2353 struct intel_ring_buffer *ring;
0a58705b
CW
2354 bool idle;
2355 int i;
673a394b
EA
2356
2357 dev_priv = container_of(work, drm_i915_private_t,
2358 mm.retire_work.work);
2359 dev = dev_priv->dev;
2360
891b48cf
CW
2361 /* Come back later if the device is busy... */
2362 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2363 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2364 round_jiffies_up_relative(HZ));
891b48cf
CW
2365 return;
2366 }
673a394b 2367
b09a1fec 2368 i915_gem_retire_requests(dev);
673a394b 2369
0a58705b
CW
2370 /* Send a periodic flush down the ring so we don't hold onto GEM
2371 * objects indefinitely.
673a394b 2372 */
0a58705b 2373 idle = true;
b4519513 2374 for_each_ring(ring, dev_priv, i) {
3bb73aba 2375 if (ring->gpu_caches_dirty)
0025c077 2376 i915_add_request(ring, NULL);
0a58705b
CW
2377
2378 idle &= list_empty(&ring->request_list);
673a394b
EA
2379 }
2380
db1b76ca 2381 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2382 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2383 round_jiffies_up_relative(HZ));
f047e395
CW
2384 if (idle)
2385 intel_mark_idle(dev);
0a58705b 2386
673a394b 2387 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2388}
2389
30dfebf3
DV
2390/**
2391 * Ensures that an object will eventually get non-busy by flushing any required
2392 * write domains, emitting any outstanding lazy request and retiring and
2393 * completed requests.
2394 */
2395static int
2396i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2397{
2398 int ret;
2399
2400 if (obj->active) {
0201f1ec 2401 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2402 if (ret)
2403 return ret;
2404
30dfebf3
DV
2405 i915_gem_retire_requests_ring(obj->ring);
2406 }
2407
2408 return 0;
2409}
2410
23ba4fd0
BW
2411/**
2412 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2413 * @DRM_IOCTL_ARGS: standard ioctl arguments
2414 *
2415 * Returns 0 if successful, else an error is returned with the remaining time in
2416 * the timeout parameter.
2417 * -ETIME: object is still busy after timeout
2418 * -ERESTARTSYS: signal interrupted the wait
2419 * -ENONENT: object doesn't exist
2420 * Also possible, but rare:
2421 * -EAGAIN: GPU wedged
2422 * -ENOMEM: damn
2423 * -ENODEV: Internal IRQ fail
2424 * -E?: The add request failed
2425 *
2426 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2427 * non-zero timeout parameter the wait ioctl will wait for the given number of
2428 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2429 * without holding struct_mutex the object may become re-busied before this
2430 * function completes. A similar but shorter * race condition exists in the busy
2431 * ioctl
2432 */
2433int
2434i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2435{
f69061be 2436 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2437 struct drm_i915_gem_wait *args = data;
2438 struct drm_i915_gem_object *obj;
2439 struct intel_ring_buffer *ring = NULL;
eac1f14f 2440 struct timespec timeout_stack, *timeout = NULL;
f69061be 2441 unsigned reset_counter;
23ba4fd0
BW
2442 u32 seqno = 0;
2443 int ret = 0;
2444
eac1f14f
BW
2445 if (args->timeout_ns >= 0) {
2446 timeout_stack = ns_to_timespec(args->timeout_ns);
2447 timeout = &timeout_stack;
2448 }
23ba4fd0
BW
2449
2450 ret = i915_mutex_lock_interruptible(dev);
2451 if (ret)
2452 return ret;
2453
2454 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2455 if (&obj->base == NULL) {
2456 mutex_unlock(&dev->struct_mutex);
2457 return -ENOENT;
2458 }
2459
30dfebf3
DV
2460 /* Need to make sure the object gets inactive eventually. */
2461 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2462 if (ret)
2463 goto out;
2464
2465 if (obj->active) {
0201f1ec 2466 seqno = obj->last_read_seqno;
23ba4fd0
BW
2467 ring = obj->ring;
2468 }
2469
2470 if (seqno == 0)
2471 goto out;
2472
23ba4fd0
BW
2473 /* Do this after OLR check to make sure we make forward progress polling
2474 * on this IOCTL with a 0 timeout (like busy ioctl)
2475 */
2476 if (!args->timeout_ns) {
2477 ret = -ETIME;
2478 goto out;
2479 }
2480
2481 drm_gem_object_unreference(&obj->base);
f69061be 2482 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2483 mutex_unlock(&dev->struct_mutex);
2484
f69061be 2485 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2486 if (timeout)
eac1f14f 2487 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2488 return ret;
2489
2490out:
2491 drm_gem_object_unreference(&obj->base);
2492 mutex_unlock(&dev->struct_mutex);
2493 return ret;
2494}
2495
5816d648
BW
2496/**
2497 * i915_gem_object_sync - sync an object to a ring.
2498 *
2499 * @obj: object which may be in use on another ring.
2500 * @to: ring we wish to use the object on. May be NULL.
2501 *
2502 * This code is meant to abstract object synchronization with the GPU.
2503 * Calling with NULL implies synchronizing the object with the CPU
2504 * rather than a particular GPU ring.
2505 *
2506 * Returns 0 if successful, else propagates up the lower layer error.
2507 */
2911a35b
BW
2508int
2509i915_gem_object_sync(struct drm_i915_gem_object *obj,
2510 struct intel_ring_buffer *to)
2511{
2512 struct intel_ring_buffer *from = obj->ring;
2513 u32 seqno;
2514 int ret, idx;
2515
2516 if (from == NULL || to == from)
2517 return 0;
2518
5816d648 2519 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2520 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2521
2522 idx = intel_ring_sync_index(from, to);
2523
0201f1ec 2524 seqno = obj->last_read_seqno;
2911a35b
BW
2525 if (seqno <= from->sync_seqno[idx])
2526 return 0;
2527
b4aca010
BW
2528 ret = i915_gem_check_olr(obj->ring, seqno);
2529 if (ret)
2530 return ret;
2911a35b 2531
1500f7ea 2532 ret = to->sync_to(to, from, seqno);
e3a5a225 2533 if (!ret)
7b01e260
MK
2534 /* We use last_read_seqno because sync_to()
2535 * might have just caused seqno wrap under
2536 * the radar.
2537 */
2538 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2539
e3a5a225 2540 return ret;
2911a35b
BW
2541}
2542
b5ffc9bc
CW
2543static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2544{
2545 u32 old_write_domain, old_read_domains;
2546
b5ffc9bc
CW
2547 /* Force a pagefault for domain tracking on next user access */
2548 i915_gem_release_mmap(obj);
2549
b97c3d9c
KP
2550 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2551 return;
2552
97c809fd
CW
2553 /* Wait for any direct GTT access to complete */
2554 mb();
2555
b5ffc9bc
CW
2556 old_read_domains = obj->base.read_domains;
2557 old_write_domain = obj->base.write_domain;
2558
2559 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2560 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2561
2562 trace_i915_gem_object_change_domain(obj,
2563 old_read_domains,
2564 old_write_domain);
2565}
2566
673a394b
EA
2567/**
2568 * Unbinds an object from the GTT aperture.
2569 */
0f973f27 2570int
05394f39 2571i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2572{
7bddb01f 2573 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2574 int ret;
673a394b 2575
f343c5f6 2576 if (!i915_gem_obj_ggtt_bound(obj))
673a394b
EA
2577 return 0;
2578
31d8d651
CW
2579 if (obj->pin_count)
2580 return -EBUSY;
673a394b 2581
c4670ad0
CW
2582 BUG_ON(obj->pages == NULL);
2583
a8198eea 2584 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2585 if (ret)
a8198eea
CW
2586 return ret;
2587 /* Continue on if we fail due to EIO, the GPU is hung so we
2588 * should be safe and we need to cleanup or else we might
2589 * cause memory corruption through use-after-free.
2590 */
2591
b5ffc9bc 2592 i915_gem_object_finish_gtt(obj);
5323fd04 2593
96b47b65 2594 /* release the fence reg _after_ flushing */
d9e86c0e 2595 ret = i915_gem_object_put_fence(obj);
1488fc08 2596 if (ret)
d9e86c0e 2597 return ret;
96b47b65 2598
db53a302
CW
2599 trace_i915_gem_object_unbind(obj);
2600
74898d7e
DV
2601 if (obj->has_global_gtt_mapping)
2602 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2603 if (obj->has_aliasing_ppgtt_mapping) {
2604 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2605 obj->has_aliasing_ppgtt_mapping = 0;
2606 }
74163907 2607 i915_gem_gtt_finish_object(obj);
401c29f6 2608 i915_gem_object_unpin_pages(obj);
7bddb01f 2609
6c085a72 2610 list_del(&obj->mm_list);
35c20a60 2611 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
75e9e915 2612 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2613 obj->map_and_fenceable = true;
673a394b 2614
c6cfb325 2615 drm_mm_remove_node(&obj->gtt_space);
673a394b 2616
88241785 2617 return 0;
54cf91dc
CW
2618}
2619
b2da9fe5 2620int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2621{
2622 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2623 struct intel_ring_buffer *ring;
1ec14ad3 2624 int ret, i;
4df2faf4 2625
4df2faf4 2626 /* Flush everything onto the inactive list. */
b4519513 2627 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2628 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2629 if (ret)
2630 return ret;
2631
3e960501 2632 ret = intel_ring_idle(ring);
1ec14ad3
CW
2633 if (ret)
2634 return ret;
2635 }
4df2faf4 2636
8a1a49f9 2637 return 0;
4df2faf4
DV
2638}
2639
9ce079e4
CW
2640static void i965_write_fence_reg(struct drm_device *dev, int reg,
2641 struct drm_i915_gem_object *obj)
de151cf6 2642{
de151cf6 2643 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2644 int fence_reg;
2645 int fence_pitch_shift;
de151cf6 2646
56c844e5
ID
2647 if (INTEL_INFO(dev)->gen >= 6) {
2648 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2649 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2650 } else {
2651 fence_reg = FENCE_REG_965_0;
2652 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2653 }
2654
d18b9619
CW
2655 fence_reg += reg * 8;
2656
2657 /* To w/a incoherency with non-atomic 64-bit register updates,
2658 * we split the 64-bit update into two 32-bit writes. In order
2659 * for a partial fence not to be evaluated between writes, we
2660 * precede the update with write to turn off the fence register,
2661 * and only enable the fence as the last step.
2662 *
2663 * For extra levels of paranoia, we make sure each step lands
2664 * before applying the next step.
2665 */
2666 I915_WRITE(fence_reg, 0);
2667 POSTING_READ(fence_reg);
2668
9ce079e4 2669 if (obj) {
f343c5f6 2670 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2671 uint64_t val;
de151cf6 2672
f343c5f6 2673 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2674 0xfffff000) << 32;
f343c5f6 2675 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2676 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2677 if (obj->tiling_mode == I915_TILING_Y)
2678 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2679 val |= I965_FENCE_REG_VALID;
c6642782 2680
d18b9619
CW
2681 I915_WRITE(fence_reg + 4, val >> 32);
2682 POSTING_READ(fence_reg + 4);
2683
2684 I915_WRITE(fence_reg + 0, val);
2685 POSTING_READ(fence_reg);
2686 } else {
2687 I915_WRITE(fence_reg + 4, 0);
2688 POSTING_READ(fence_reg + 4);
2689 }
de151cf6
JB
2690}
2691
9ce079e4
CW
2692static void i915_write_fence_reg(struct drm_device *dev, int reg,
2693 struct drm_i915_gem_object *obj)
de151cf6 2694{
de151cf6 2695 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2696 u32 val;
de151cf6 2697
9ce079e4 2698 if (obj) {
f343c5f6 2699 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2700 int pitch_val;
2701 int tile_width;
c6642782 2702
f343c5f6 2703 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2704 (size & -size) != size ||
f343c5f6
BW
2705 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2706 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2707 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2708
9ce079e4
CW
2709 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2710 tile_width = 128;
2711 else
2712 tile_width = 512;
2713
2714 /* Note: pitch better be a power of two tile widths */
2715 pitch_val = obj->stride / tile_width;
2716 pitch_val = ffs(pitch_val) - 1;
2717
f343c5f6 2718 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2719 if (obj->tiling_mode == I915_TILING_Y)
2720 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2721 val |= I915_FENCE_SIZE_BITS(size);
2722 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2723 val |= I830_FENCE_REG_VALID;
2724 } else
2725 val = 0;
2726
2727 if (reg < 8)
2728 reg = FENCE_REG_830_0 + reg * 4;
2729 else
2730 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2731
2732 I915_WRITE(reg, val);
2733 POSTING_READ(reg);
de151cf6
JB
2734}
2735
9ce079e4
CW
2736static void i830_write_fence_reg(struct drm_device *dev, int reg,
2737 struct drm_i915_gem_object *obj)
de151cf6 2738{
de151cf6 2739 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2740 uint32_t val;
de151cf6 2741
9ce079e4 2742 if (obj) {
f343c5f6 2743 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2744 uint32_t pitch_val;
de151cf6 2745
f343c5f6 2746 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2747 (size & -size) != size ||
f343c5f6
BW
2748 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2749 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2750 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2751
9ce079e4
CW
2752 pitch_val = obj->stride / 128;
2753 pitch_val = ffs(pitch_val) - 1;
de151cf6 2754
f343c5f6 2755 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2756 if (obj->tiling_mode == I915_TILING_Y)
2757 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2758 val |= I830_FENCE_SIZE_BITS(size);
2759 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2760 val |= I830_FENCE_REG_VALID;
2761 } else
2762 val = 0;
c6642782 2763
9ce079e4
CW
2764 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2765 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2766}
2767
d0a57789
CW
2768inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2769{
2770 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2771}
2772
9ce079e4
CW
2773static void i915_gem_write_fence(struct drm_device *dev, int reg,
2774 struct drm_i915_gem_object *obj)
2775{
d0a57789
CW
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777
2778 /* Ensure that all CPU reads are completed before installing a fence
2779 * and all writes before removing the fence.
2780 */
2781 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2782 mb();
2783
9ce079e4
CW
2784 switch (INTEL_INFO(dev)->gen) {
2785 case 7:
56c844e5 2786 case 6:
9ce079e4
CW
2787 case 5:
2788 case 4: i965_write_fence_reg(dev, reg, obj); break;
2789 case 3: i915_write_fence_reg(dev, reg, obj); break;
2790 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2791 default: BUG();
9ce079e4 2792 }
d0a57789
CW
2793
2794 /* And similarly be paranoid that no direct access to this region
2795 * is reordered to before the fence is installed.
2796 */
2797 if (i915_gem_object_needs_mb(obj))
2798 mb();
de151cf6
JB
2799}
2800
61050808
CW
2801static inline int fence_number(struct drm_i915_private *dev_priv,
2802 struct drm_i915_fence_reg *fence)
2803{
2804 return fence - dev_priv->fence_regs;
2805}
2806
2807static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2808 struct drm_i915_fence_reg *fence,
2809 bool enable)
2810{
2dc8aae0 2811 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2812 int reg = fence_number(dev_priv, fence);
2813
2814 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2815
2816 if (enable) {
46a0b638 2817 obj->fence_reg = reg;
61050808
CW
2818 fence->obj = obj;
2819 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2820 } else {
2821 obj->fence_reg = I915_FENCE_REG_NONE;
2822 fence->obj = NULL;
2823 list_del_init(&fence->lru_list);
2824 }
2825}
2826
d9e86c0e 2827static int
d0a57789 2828i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2829{
1c293ea3 2830 if (obj->last_fenced_seqno) {
86d5bc37 2831 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2832 if (ret)
2833 return ret;
d9e86c0e
CW
2834
2835 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2836 }
2837
86d5bc37 2838 obj->fenced_gpu_access = false;
d9e86c0e
CW
2839 return 0;
2840}
2841
2842int
2843i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2844{
61050808 2845 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2846 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2847 int ret;
2848
d0a57789 2849 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2850 if (ret)
2851 return ret;
2852
61050808
CW
2853 if (obj->fence_reg == I915_FENCE_REG_NONE)
2854 return 0;
d9e86c0e 2855
f9c513e9
CW
2856 fence = &dev_priv->fence_regs[obj->fence_reg];
2857
61050808 2858 i915_gem_object_fence_lost(obj);
f9c513e9 2859 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2860
2861 return 0;
2862}
2863
2864static struct drm_i915_fence_reg *
a360bb1a 2865i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2866{
ae3db24a 2867 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2868 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2869 int i;
ae3db24a
DV
2870
2871 /* First try to find a free reg */
d9e86c0e 2872 avail = NULL;
ae3db24a
DV
2873 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2874 reg = &dev_priv->fence_regs[i];
2875 if (!reg->obj)
d9e86c0e 2876 return reg;
ae3db24a 2877
1690e1eb 2878 if (!reg->pin_count)
d9e86c0e 2879 avail = reg;
ae3db24a
DV
2880 }
2881
d9e86c0e
CW
2882 if (avail == NULL)
2883 return NULL;
ae3db24a
DV
2884
2885 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2886 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2887 if (reg->pin_count)
ae3db24a
DV
2888 continue;
2889
8fe301ad 2890 return reg;
ae3db24a
DV
2891 }
2892
8fe301ad 2893 return NULL;
ae3db24a
DV
2894}
2895
de151cf6 2896/**
9a5a53b3 2897 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2898 * @obj: object to map through a fence reg
2899 *
2900 * When mapping objects through the GTT, userspace wants to be able to write
2901 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2902 * This function walks the fence regs looking for a free one for @obj,
2903 * stealing one if it can't find any.
2904 *
2905 * It then sets up the reg based on the object's properties: address, pitch
2906 * and tiling format.
9a5a53b3
CW
2907 *
2908 * For an untiled surface, this removes any existing fence.
de151cf6 2909 */
8c4b8c3f 2910int
06d98131 2911i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2912{
05394f39 2913 struct drm_device *dev = obj->base.dev;
79e53945 2914 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2915 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2916 struct drm_i915_fence_reg *reg;
ae3db24a 2917 int ret;
de151cf6 2918
14415745
CW
2919 /* Have we updated the tiling parameters upon the object and so
2920 * will need to serialise the write to the associated fence register?
2921 */
5d82e3e6 2922 if (obj->fence_dirty) {
d0a57789 2923 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2924 if (ret)
2925 return ret;
2926 }
9a5a53b3 2927
d9e86c0e 2928 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2929 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2930 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2931 if (!obj->fence_dirty) {
14415745
CW
2932 list_move_tail(&reg->lru_list,
2933 &dev_priv->mm.fence_list);
2934 return 0;
2935 }
2936 } else if (enable) {
2937 reg = i915_find_fence_reg(dev);
2938 if (reg == NULL)
2939 return -EDEADLK;
d9e86c0e 2940
14415745
CW
2941 if (reg->obj) {
2942 struct drm_i915_gem_object *old = reg->obj;
2943
d0a57789 2944 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
2945 if (ret)
2946 return ret;
2947
14415745 2948 i915_gem_object_fence_lost(old);
29c5a587 2949 }
14415745 2950 } else
a09ba7fa 2951 return 0;
a09ba7fa 2952
14415745 2953 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2954 obj->fence_dirty = false;
14415745 2955
9ce079e4 2956 return 0;
de151cf6
JB
2957}
2958
42d6ab48
CW
2959static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2960 struct drm_mm_node *gtt_space,
2961 unsigned long cache_level)
2962{
2963 struct drm_mm_node *other;
2964
2965 /* On non-LLC machines we have to be careful when putting differing
2966 * types of snoopable memory together to avoid the prefetcher
4239ca77 2967 * crossing memory domains and dying.
42d6ab48
CW
2968 */
2969 if (HAS_LLC(dev))
2970 return true;
2971
c6cfb325 2972 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
2973 return true;
2974
2975 if (list_empty(&gtt_space->node_list))
2976 return true;
2977
2978 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2979 if (other->allocated && !other->hole_follows && other->color != cache_level)
2980 return false;
2981
2982 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2983 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2984 return false;
2985
2986 return true;
2987}
2988
2989static void i915_gem_verify_gtt(struct drm_device *dev)
2990{
2991#if WATCH_GTT
2992 struct drm_i915_private *dev_priv = dev->dev_private;
2993 struct drm_i915_gem_object *obj;
2994 int err = 0;
2995
35c20a60 2996 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
2997 if (obj->gtt_space == NULL) {
2998 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2999 err++;
3000 continue;
3001 }
3002
3003 if (obj->cache_level != obj->gtt_space->color) {
3004 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3005 i915_gem_obj_ggtt_offset(obj),
3006 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3007 obj->cache_level,
3008 obj->gtt_space->color);
3009 err++;
3010 continue;
3011 }
3012
3013 if (!i915_gem_valid_gtt_space(dev,
3014 obj->gtt_space,
3015 obj->cache_level)) {
3016 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3017 i915_gem_obj_ggtt_offset(obj),
3018 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3019 obj->cache_level);
3020 err++;
3021 continue;
3022 }
3023 }
3024
3025 WARN_ON(err);
3026#endif
3027}
3028
673a394b
EA
3029/**
3030 * Finds free space in the GTT aperture and binds the object there.
3031 */
3032static int
05394f39 3033i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 3034 unsigned alignment,
86a1ee26
CW
3035 bool map_and_fenceable,
3036 bool nonblocking)
673a394b 3037{
05394f39 3038 struct drm_device *dev = obj->base.dev;
673a394b 3039 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3040 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 3041 bool mappable, fenceable;
0a9ae0d7
BW
3042 size_t gtt_max = map_and_fenceable ?
3043 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
07f73f69 3044 int ret;
673a394b 3045
e28f8711
CW
3046 fence_size = i915_gem_get_gtt_size(dev,
3047 obj->base.size,
3048 obj->tiling_mode);
3049 fence_alignment = i915_gem_get_gtt_alignment(dev,
3050 obj->base.size,
d865110c 3051 obj->tiling_mode, true);
e28f8711 3052 unfenced_alignment =
d865110c 3053 i915_gem_get_gtt_alignment(dev,
e28f8711 3054 obj->base.size,
d865110c 3055 obj->tiling_mode, false);
a00b10c3 3056
673a394b 3057 if (alignment == 0)
5e783301
DV
3058 alignment = map_and_fenceable ? fence_alignment :
3059 unfenced_alignment;
75e9e915 3060 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3061 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3062 return -EINVAL;
3063 }
3064
05394f39 3065 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3066
654fc607
CW
3067 /* If the object is bigger than the entire aperture, reject it early
3068 * before evicting everything in a vain attempt to find space.
3069 */
0a9ae0d7 3070 if (obj->base.size > gtt_max) {
3765f304 3071 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3072 obj->base.size,
3073 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3074 gtt_max);
654fc607
CW
3075 return -E2BIG;
3076 }
3077
37e680a1 3078 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3079 if (ret)
3080 return ret;
3081
fbdda6fb
CW
3082 i915_gem_object_pin_pages(obj);
3083
0a9ae0d7 3084search_free:
c6cfb325
BW
3085 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space,
3086 &obj->gtt_space,
0a9ae0d7
BW
3087 size, alignment,
3088 obj->cache_level, 0, gtt_max);
dc9dd7a2 3089 if (ret) {
75e9e915 3090 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 3091 obj->cache_level,
86a1ee26
CW
3092 map_and_fenceable,
3093 nonblocking);
dc9dd7a2
CW
3094 if (ret == 0)
3095 goto search_free;
9731129c 3096
dc9dd7a2 3097 i915_gem_object_unpin_pages(obj);
dc9dd7a2 3098 return ret;
673a394b 3099 }
c6cfb325
BW
3100 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &obj->gtt_space,
3101 obj->cache_level))) {
fbdda6fb 3102 i915_gem_object_unpin_pages(obj);
c6cfb325 3103 drm_mm_remove_node(&obj->gtt_space);
42d6ab48 3104 return -EINVAL;
673a394b
EA
3105 }
3106
74163907 3107 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 3108 if (ret) {
fbdda6fb 3109 i915_gem_object_unpin_pages(obj);
c6cfb325 3110 drm_mm_remove_node(&obj->gtt_space);
6c085a72 3111 return ret;
673a394b 3112 }
673a394b 3113
35c20a60 3114 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
05394f39 3115 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 3116
75e9e915 3117 fenceable =
c6cfb325
BW
3118 i915_gem_obj_ggtt_size(obj) == fence_size &&
3119 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
a00b10c3 3120
f343c5f6
BW
3121 mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3122 dev_priv->gtt.mappable_end;
a00b10c3 3123
05394f39 3124 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3125
db53a302 3126 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3127 i915_gem_verify_gtt(dev);
673a394b
EA
3128 return 0;
3129}
3130
3131void
05394f39 3132i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3133{
673a394b
EA
3134 /* If we don't have a page list set up, then we're not pinned
3135 * to GPU, and we can ignore the cache flush because it'll happen
3136 * again at bind time.
3137 */
05394f39 3138 if (obj->pages == NULL)
673a394b
EA
3139 return;
3140
769ce464
ID
3141 /*
3142 * Stolen memory is always coherent with the GPU as it is explicitly
3143 * marked as wc by the system, or the system is cache-coherent.
3144 */
3145 if (obj->stolen)
3146 return;
3147
9c23f7fc
CW
3148 /* If the GPU is snooping the contents of the CPU cache,
3149 * we do not need to manually clear the CPU cache lines. However,
3150 * the caches are only snooped when the render cache is
3151 * flushed/invalidated. As we always have to emit invalidations
3152 * and flushes when moving into and out of the RENDER domain, correct
3153 * snooping behaviour occurs naturally as the result of our domain
3154 * tracking.
3155 */
3156 if (obj->cache_level != I915_CACHE_NONE)
3157 return;
3158
1c5d22f7 3159 trace_i915_gem_object_clflush(obj);
cfa16a0d 3160
9da3da66 3161 drm_clflush_sg(obj->pages);
e47c68e9
EA
3162}
3163
3164/** Flushes the GTT write domain for the object if it's dirty. */
3165static void
05394f39 3166i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3167{
1c5d22f7
CW
3168 uint32_t old_write_domain;
3169
05394f39 3170 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3171 return;
3172
63256ec5 3173 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3174 * to it immediately go to main memory as far as we know, so there's
3175 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3176 *
3177 * However, we do have to enforce the order so that all writes through
3178 * the GTT land before any writes to the device, such as updates to
3179 * the GATT itself.
e47c68e9 3180 */
63256ec5
CW
3181 wmb();
3182
05394f39
CW
3183 old_write_domain = obj->base.write_domain;
3184 obj->base.write_domain = 0;
1c5d22f7
CW
3185
3186 trace_i915_gem_object_change_domain(obj,
05394f39 3187 obj->base.read_domains,
1c5d22f7 3188 old_write_domain);
e47c68e9
EA
3189}
3190
3191/** Flushes the CPU write domain for the object if it's dirty. */
3192static void
05394f39 3193i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3194{
1c5d22f7 3195 uint32_t old_write_domain;
e47c68e9 3196
05394f39 3197 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3198 return;
3199
3200 i915_gem_clflush_object(obj);
e76e9aeb 3201 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3202 old_write_domain = obj->base.write_domain;
3203 obj->base.write_domain = 0;
1c5d22f7
CW
3204
3205 trace_i915_gem_object_change_domain(obj,
05394f39 3206 obj->base.read_domains,
1c5d22f7 3207 old_write_domain);
e47c68e9
EA
3208}
3209
2ef7eeaa
EA
3210/**
3211 * Moves a single object to the GTT read, and possibly write domain.
3212 *
3213 * This function returns when the move is complete, including waiting on
3214 * flushes to occur.
3215 */
79e53945 3216int
2021746e 3217i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3218{
8325a09d 3219 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3220 uint32_t old_write_domain, old_read_domains;
e47c68e9 3221 int ret;
2ef7eeaa 3222
02354392 3223 /* Not valid to be called on unbound objects. */
f343c5f6 3224 if (!i915_gem_obj_ggtt_bound(obj))
02354392
EA
3225 return -EINVAL;
3226
8d7e3de1
CW
3227 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3228 return 0;
3229
0201f1ec 3230 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3231 if (ret)
3232 return ret;
3233
7213342d 3234 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3235
d0a57789
CW
3236 /* Serialise direct access to this object with the barriers for
3237 * coherent writes from the GPU, by effectively invalidating the
3238 * GTT domain upon first access.
3239 */
3240 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3241 mb();
3242
05394f39
CW
3243 old_write_domain = obj->base.write_domain;
3244 old_read_domains = obj->base.read_domains;
1c5d22f7 3245
e47c68e9
EA
3246 /* It should now be out of any other write domains, and we can update
3247 * the domain values for our changes.
3248 */
05394f39
CW
3249 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3250 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3251 if (write) {
05394f39
CW
3252 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3253 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3254 obj->dirty = 1;
2ef7eeaa
EA
3255 }
3256
1c5d22f7
CW
3257 trace_i915_gem_object_change_domain(obj,
3258 old_read_domains,
3259 old_write_domain);
3260
8325a09d
CW
3261 /* And bump the LRU for this access */
3262 if (i915_gem_object_is_inactive(obj))
3263 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3264
e47c68e9
EA
3265 return 0;
3266}
3267
e4ffd173
CW
3268int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3269 enum i915_cache_level cache_level)
3270{
7bddb01f
DV
3271 struct drm_device *dev = obj->base.dev;
3272 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3273 int ret;
3274
3275 if (obj->cache_level == cache_level)
3276 return 0;
3277
3278 if (obj->pin_count) {
3279 DRM_DEBUG("can not change the cache level of pinned objects\n");
3280 return -EBUSY;
3281 }
3282
c6cfb325 3283 if (!i915_gem_valid_gtt_space(dev, &obj->gtt_space, cache_level)) {
42d6ab48
CW
3284 ret = i915_gem_object_unbind(obj);
3285 if (ret)
3286 return ret;
3287 }
3288
f343c5f6 3289 if (i915_gem_obj_ggtt_bound(obj)) {
e4ffd173
CW
3290 ret = i915_gem_object_finish_gpu(obj);
3291 if (ret)
3292 return ret;
3293
3294 i915_gem_object_finish_gtt(obj);
3295
3296 /* Before SandyBridge, you could not use tiling or fence
3297 * registers with snooped memory, so relinquish any fences
3298 * currently pointing to our region in the aperture.
3299 */
42d6ab48 3300 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3301 ret = i915_gem_object_put_fence(obj);
3302 if (ret)
3303 return ret;
3304 }
3305
74898d7e
DV
3306 if (obj->has_global_gtt_mapping)
3307 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3308 if (obj->has_aliasing_ppgtt_mapping)
3309 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3310 obj, cache_level);
42d6ab48 3311
f343c5f6 3312 i915_gem_obj_ggtt_set_color(obj, cache_level);
e4ffd173
CW
3313 }
3314
3315 if (cache_level == I915_CACHE_NONE) {
3316 u32 old_read_domains, old_write_domain;
3317
3318 /* If we're coming from LLC cached, then we haven't
3319 * actually been tracking whether the data is in the
3320 * CPU cache or not, since we only allow one bit set
3321 * in obj->write_domain and have been skipping the clflushes.
3322 * Just set it to the CPU cache for now.
3323 */
3324 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3325 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3326
3327 old_read_domains = obj->base.read_domains;
3328 old_write_domain = obj->base.write_domain;
3329
3330 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3331 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3332
3333 trace_i915_gem_object_change_domain(obj,
3334 old_read_domains,
3335 old_write_domain);
3336 }
3337
3338 obj->cache_level = cache_level;
42d6ab48 3339 i915_gem_verify_gtt(dev);
e4ffd173
CW
3340 return 0;
3341}
3342
199adf40
BW
3343int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3344 struct drm_file *file)
e6994aee 3345{
199adf40 3346 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3347 struct drm_i915_gem_object *obj;
3348 int ret;
3349
3350 ret = i915_mutex_lock_interruptible(dev);
3351 if (ret)
3352 return ret;
3353
3354 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3355 if (&obj->base == NULL) {
3356 ret = -ENOENT;
3357 goto unlock;
3358 }
3359
199adf40 3360 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3361
3362 drm_gem_object_unreference(&obj->base);
3363unlock:
3364 mutex_unlock(&dev->struct_mutex);
3365 return ret;
3366}
3367
199adf40
BW
3368int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3369 struct drm_file *file)
e6994aee 3370{
199adf40 3371 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3372 struct drm_i915_gem_object *obj;
3373 enum i915_cache_level level;
3374 int ret;
3375
199adf40
BW
3376 switch (args->caching) {
3377 case I915_CACHING_NONE:
e6994aee
CW
3378 level = I915_CACHE_NONE;
3379 break;
199adf40 3380 case I915_CACHING_CACHED:
e6994aee
CW
3381 level = I915_CACHE_LLC;
3382 break;
3383 default:
3384 return -EINVAL;
3385 }
3386
3bc2913e
BW
3387 ret = i915_mutex_lock_interruptible(dev);
3388 if (ret)
3389 return ret;
3390
e6994aee
CW
3391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3392 if (&obj->base == NULL) {
3393 ret = -ENOENT;
3394 goto unlock;
3395 }
3396
3397 ret = i915_gem_object_set_cache_level(obj, level);
3398
3399 drm_gem_object_unreference(&obj->base);
3400unlock:
3401 mutex_unlock(&dev->struct_mutex);
3402 return ret;
3403}
3404
b9241ea3 3405/*
2da3b9b9
CW
3406 * Prepare buffer for display plane (scanout, cursors, etc).
3407 * Can be called from an uninterruptible phase (modesetting) and allows
3408 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3409 */
3410int
2da3b9b9
CW
3411i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3412 u32 alignment,
919926ae 3413 struct intel_ring_buffer *pipelined)
b9241ea3 3414{
2da3b9b9 3415 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3416 int ret;
3417
0be73284 3418 if (pipelined != obj->ring) {
2911a35b
BW
3419 ret = i915_gem_object_sync(obj, pipelined);
3420 if (ret)
b9241ea3
ZW
3421 return ret;
3422 }
3423
a7ef0640
EA
3424 /* The display engine is not coherent with the LLC cache on gen6. As
3425 * a result, we make sure that the pinning that is about to occur is
3426 * done with uncached PTEs. This is lowest common denominator for all
3427 * chipsets.
3428 *
3429 * However for gen6+, we could do better by using the GFDT bit instead
3430 * of uncaching, which would allow us to flush all the LLC-cached data
3431 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3432 */
3433 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3434 if (ret)
3435 return ret;
3436
2da3b9b9
CW
3437 /* As the user may map the buffer once pinned in the display plane
3438 * (e.g. libkms for the bootup splash), we have to ensure that we
3439 * always use map_and_fenceable for all scanout buffers.
3440 */
86a1ee26 3441 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3442 if (ret)
3443 return ret;
3444
b118c1e3
CW
3445 i915_gem_object_flush_cpu_write_domain(obj);
3446
2da3b9b9 3447 old_write_domain = obj->base.write_domain;
05394f39 3448 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3449
3450 /* It should now be out of any other write domains, and we can update
3451 * the domain values for our changes.
3452 */
e5f1d962 3453 obj->base.write_domain = 0;
05394f39 3454 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3455
3456 trace_i915_gem_object_change_domain(obj,
3457 old_read_domains,
2da3b9b9 3458 old_write_domain);
b9241ea3
ZW
3459
3460 return 0;
3461}
3462
85345517 3463int
a8198eea 3464i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3465{
88241785
CW
3466 int ret;
3467
a8198eea 3468 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3469 return 0;
3470
0201f1ec 3471 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3472 if (ret)
3473 return ret;
3474
a8198eea
CW
3475 /* Ensure that we invalidate the GPU's caches and TLBs. */
3476 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3477 return 0;
85345517
CW
3478}
3479
e47c68e9
EA
3480/**
3481 * Moves a single object to the CPU read, and possibly write domain.
3482 *
3483 * This function returns when the move is complete, including waiting on
3484 * flushes to occur.
3485 */
dabdfe02 3486int
919926ae 3487i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3488{
1c5d22f7 3489 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3490 int ret;
3491
8d7e3de1
CW
3492 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3493 return 0;
3494
0201f1ec 3495 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3496 if (ret)
3497 return ret;
3498
e47c68e9 3499 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3500
05394f39
CW
3501 old_write_domain = obj->base.write_domain;
3502 old_read_domains = obj->base.read_domains;
1c5d22f7 3503
e47c68e9 3504 /* Flush the CPU cache if it's still invalid. */
05394f39 3505 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3506 i915_gem_clflush_object(obj);
2ef7eeaa 3507
05394f39 3508 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3509 }
3510
3511 /* It should now be out of any other write domains, and we can update
3512 * the domain values for our changes.
3513 */
05394f39 3514 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3515
3516 /* If we're writing through the CPU, then the GPU read domains will
3517 * need to be invalidated at next use.
3518 */
3519 if (write) {
05394f39
CW
3520 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3521 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3522 }
2ef7eeaa 3523
1c5d22f7
CW
3524 trace_i915_gem_object_change_domain(obj,
3525 old_read_domains,
3526 old_write_domain);
3527
2ef7eeaa
EA
3528 return 0;
3529}
3530
673a394b
EA
3531/* Throttle our rendering by waiting until the ring has completed our requests
3532 * emitted over 20 msec ago.
3533 *
b962442e
EA
3534 * Note that if we were to use the current jiffies each time around the loop,
3535 * we wouldn't escape the function with any frames outstanding if the time to
3536 * render a frame was over 20ms.
3537 *
673a394b
EA
3538 * This should get us reasonable parallelism between CPU and GPU but also
3539 * relatively low latency when blocking on a particular request to finish.
3540 */
40a5f0de 3541static int
f787a5f5 3542i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3543{
f787a5f5
CW
3544 struct drm_i915_private *dev_priv = dev->dev_private;
3545 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3546 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3547 struct drm_i915_gem_request *request;
3548 struct intel_ring_buffer *ring = NULL;
f69061be 3549 unsigned reset_counter;
f787a5f5
CW
3550 u32 seqno = 0;
3551 int ret;
93533c29 3552
308887aa
DV
3553 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3554 if (ret)
3555 return ret;
3556
3557 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3558 if (ret)
3559 return ret;
e110e8d6 3560
1c25595f 3561 spin_lock(&file_priv->mm.lock);
f787a5f5 3562 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3563 if (time_after_eq(request->emitted_jiffies, recent_enough))
3564 break;
40a5f0de 3565
f787a5f5
CW
3566 ring = request->ring;
3567 seqno = request->seqno;
b962442e 3568 }
f69061be 3569 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3570 spin_unlock(&file_priv->mm.lock);
40a5f0de 3571
f787a5f5
CW
3572 if (seqno == 0)
3573 return 0;
2bc43b5c 3574
f69061be 3575 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3576 if (ret == 0)
3577 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3578
3579 return ret;
3580}
3581
673a394b 3582int
05394f39
CW
3583i915_gem_object_pin(struct drm_i915_gem_object *obj,
3584 uint32_t alignment,
86a1ee26
CW
3585 bool map_and_fenceable,
3586 bool nonblocking)
673a394b 3587{
673a394b
EA
3588 int ret;
3589
7e81a42e
CW
3590 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3591 return -EBUSY;
ac0c6b5a 3592
f343c5f6
BW
3593 if (i915_gem_obj_ggtt_bound(obj)) {
3594 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
05394f39
CW
3595 (map_and_fenceable && !obj->map_and_fenceable)) {
3596 WARN(obj->pin_count,
ae7d49d8 3597 "bo is already pinned with incorrect alignment:"
f343c5f6 3598 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3599 " obj->map_and_fenceable=%d\n",
f343c5f6 3600 i915_gem_obj_ggtt_offset(obj), alignment,
75e9e915 3601 map_and_fenceable,
05394f39 3602 obj->map_and_fenceable);
ac0c6b5a
CW
3603 ret = i915_gem_object_unbind(obj);
3604 if (ret)
3605 return ret;
3606 }
3607 }
3608
f343c5f6 3609 if (!i915_gem_obj_ggtt_bound(obj)) {
8742267a
CW
3610 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3611
a00b10c3 3612 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3613 map_and_fenceable,
3614 nonblocking);
9731129c 3615 if (ret)
673a394b 3616 return ret;
8742267a
CW
3617
3618 if (!dev_priv->mm.aliasing_ppgtt)
3619 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3620 }
76446cac 3621
74898d7e
DV
3622 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3623 i915_gem_gtt_bind_object(obj, obj->cache_level);
3624
1b50247a 3625 obj->pin_count++;
6299f992 3626 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3627
3628 return 0;
3629}
3630
3631void
05394f39 3632i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3633{
05394f39 3634 BUG_ON(obj->pin_count == 0);
f343c5f6 3635 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
673a394b 3636
1b50247a 3637 if (--obj->pin_count == 0)
6299f992 3638 obj->pin_mappable = false;
673a394b
EA
3639}
3640
3641int
3642i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3643 struct drm_file *file)
673a394b
EA
3644{
3645 struct drm_i915_gem_pin *args = data;
05394f39 3646 struct drm_i915_gem_object *obj;
673a394b
EA
3647 int ret;
3648
1d7cfea1
CW
3649 ret = i915_mutex_lock_interruptible(dev);
3650 if (ret)
3651 return ret;
673a394b 3652
05394f39 3653 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3654 if (&obj->base == NULL) {
1d7cfea1
CW
3655 ret = -ENOENT;
3656 goto unlock;
673a394b 3657 }
673a394b 3658
05394f39 3659 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3660 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3661 ret = -EINVAL;
3662 goto out;
3ef94daa
CW
3663 }
3664
05394f39 3665 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3666 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3667 args->handle);
1d7cfea1
CW
3668 ret = -EINVAL;
3669 goto out;
79e53945
JB
3670 }
3671
93be8788 3672 if (obj->user_pin_count == 0) {
86a1ee26 3673 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3674 if (ret)
3675 goto out;
673a394b
EA
3676 }
3677
93be8788
CW
3678 obj->user_pin_count++;
3679 obj->pin_filp = file;
3680
673a394b
EA
3681 /* XXX - flush the CPU caches for pinned objects
3682 * as the X server doesn't manage domains yet
3683 */
e47c68e9 3684 i915_gem_object_flush_cpu_write_domain(obj);
f343c5f6 3685 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3686out:
05394f39 3687 drm_gem_object_unreference(&obj->base);
1d7cfea1 3688unlock:
673a394b 3689 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3690 return ret;
673a394b
EA
3691}
3692
3693int
3694i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3695 struct drm_file *file)
673a394b
EA
3696{
3697 struct drm_i915_gem_pin *args = data;
05394f39 3698 struct drm_i915_gem_object *obj;
76c1dec1 3699 int ret;
673a394b 3700
1d7cfea1
CW
3701 ret = i915_mutex_lock_interruptible(dev);
3702 if (ret)
3703 return ret;
673a394b 3704
05394f39 3705 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3706 if (&obj->base == NULL) {
1d7cfea1
CW
3707 ret = -ENOENT;
3708 goto unlock;
673a394b 3709 }
76c1dec1 3710
05394f39 3711 if (obj->pin_filp != file) {
79e53945
JB
3712 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3713 args->handle);
1d7cfea1
CW
3714 ret = -EINVAL;
3715 goto out;
79e53945 3716 }
05394f39
CW
3717 obj->user_pin_count--;
3718 if (obj->user_pin_count == 0) {
3719 obj->pin_filp = NULL;
79e53945
JB
3720 i915_gem_object_unpin(obj);
3721 }
673a394b 3722
1d7cfea1 3723out:
05394f39 3724 drm_gem_object_unreference(&obj->base);
1d7cfea1 3725unlock:
673a394b 3726 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3727 return ret;
673a394b
EA
3728}
3729
3730int
3731i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3732 struct drm_file *file)
673a394b
EA
3733{
3734 struct drm_i915_gem_busy *args = data;
05394f39 3735 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3736 int ret;
3737
76c1dec1 3738 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3739 if (ret)
76c1dec1 3740 return ret;
673a394b 3741
05394f39 3742 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3743 if (&obj->base == NULL) {
1d7cfea1
CW
3744 ret = -ENOENT;
3745 goto unlock;
673a394b 3746 }
d1b851fc 3747
0be555b6
CW
3748 /* Count all active objects as busy, even if they are currently not used
3749 * by the gpu. Users of this interface expect objects to eventually
3750 * become non-busy without any further actions, therefore emit any
3751 * necessary flushes here.
c4de0a5d 3752 */
30dfebf3 3753 ret = i915_gem_object_flush_active(obj);
0be555b6 3754
30dfebf3 3755 args->busy = obj->active;
e9808edd
CW
3756 if (obj->ring) {
3757 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3758 args->busy |= intel_ring_flag(obj->ring) << 16;
3759 }
673a394b 3760
05394f39 3761 drm_gem_object_unreference(&obj->base);
1d7cfea1 3762unlock:
673a394b 3763 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3764 return ret;
673a394b
EA
3765}
3766
3767int
3768i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3769 struct drm_file *file_priv)
3770{
0206e353 3771 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3772}
3773
3ef94daa
CW
3774int
3775i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3776 struct drm_file *file_priv)
3777{
3778 struct drm_i915_gem_madvise *args = data;
05394f39 3779 struct drm_i915_gem_object *obj;
76c1dec1 3780 int ret;
3ef94daa
CW
3781
3782 switch (args->madv) {
3783 case I915_MADV_DONTNEED:
3784 case I915_MADV_WILLNEED:
3785 break;
3786 default:
3787 return -EINVAL;
3788 }
3789
1d7cfea1
CW
3790 ret = i915_mutex_lock_interruptible(dev);
3791 if (ret)
3792 return ret;
3793
05394f39 3794 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3795 if (&obj->base == NULL) {
1d7cfea1
CW
3796 ret = -ENOENT;
3797 goto unlock;
3ef94daa 3798 }
3ef94daa 3799
05394f39 3800 if (obj->pin_count) {
1d7cfea1
CW
3801 ret = -EINVAL;
3802 goto out;
3ef94daa
CW
3803 }
3804
05394f39
CW
3805 if (obj->madv != __I915_MADV_PURGED)
3806 obj->madv = args->madv;
3ef94daa 3807
6c085a72
CW
3808 /* if the object is no longer attached, discard its backing storage */
3809 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3810 i915_gem_object_truncate(obj);
3811
05394f39 3812 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3813
1d7cfea1 3814out:
05394f39 3815 drm_gem_object_unreference(&obj->base);
1d7cfea1 3816unlock:
3ef94daa 3817 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3818 return ret;
3ef94daa
CW
3819}
3820
37e680a1
CW
3821void i915_gem_object_init(struct drm_i915_gem_object *obj,
3822 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3823{
0327d6ba 3824 INIT_LIST_HEAD(&obj->mm_list);
35c20a60 3825 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
3826 INIT_LIST_HEAD(&obj->ring_list);
3827 INIT_LIST_HEAD(&obj->exec_list);
3828
37e680a1
CW
3829 obj->ops = ops;
3830
0327d6ba
CW
3831 obj->fence_reg = I915_FENCE_REG_NONE;
3832 obj->madv = I915_MADV_WILLNEED;
3833 /* Avoid an unnecessary call to unbind on the first bind. */
3834 obj->map_and_fenceable = true;
3835
3836 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3837}
3838
37e680a1
CW
3839static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3840 .get_pages = i915_gem_object_get_pages_gtt,
3841 .put_pages = i915_gem_object_put_pages_gtt,
3842};
3843
05394f39
CW
3844struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3845 size_t size)
ac52bc56 3846{
c397b908 3847 struct drm_i915_gem_object *obj;
5949eac4 3848 struct address_space *mapping;
1a240d4d 3849 gfp_t mask;
ac52bc56 3850
42dcedd4 3851 obj = i915_gem_object_alloc(dev);
c397b908
DV
3852 if (obj == NULL)
3853 return NULL;
673a394b 3854
c397b908 3855 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3856 i915_gem_object_free(obj);
c397b908
DV
3857 return NULL;
3858 }
673a394b 3859
bed1ea95
CW
3860 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3861 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3862 /* 965gm cannot relocate objects above 4GiB. */
3863 mask &= ~__GFP_HIGHMEM;
3864 mask |= __GFP_DMA32;
3865 }
3866
496ad9aa 3867 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3868 mapping_set_gfp_mask(mapping, mask);
5949eac4 3869
37e680a1 3870 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3871
c397b908
DV
3872 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3873 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3874
3d29b842
ED
3875 if (HAS_LLC(dev)) {
3876 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3877 * cache) for about a 10% performance improvement
3878 * compared to uncached. Graphics requests other than
3879 * display scanout are coherent with the CPU in
3880 * accessing this cache. This means in this mode we
3881 * don't need to clflush on the CPU side, and on the
3882 * GPU side we only need to flush internal caches to
3883 * get data visible to the CPU.
3884 *
3885 * However, we maintain the display planes as UC, and so
3886 * need to rebind when first used as such.
3887 */
3888 obj->cache_level = I915_CACHE_LLC;
3889 } else
3890 obj->cache_level = I915_CACHE_NONE;
3891
05394f39 3892 return obj;
c397b908
DV
3893}
3894
3895int i915_gem_init_object(struct drm_gem_object *obj)
3896{
3897 BUG();
de151cf6 3898
673a394b
EA
3899 return 0;
3900}
3901
1488fc08 3902void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3903{
1488fc08 3904 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3905 struct drm_device *dev = obj->base.dev;
be72615b 3906 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3907
26e12f89
CW
3908 trace_i915_gem_object_destroy(obj);
3909
1488fc08
CW
3910 if (obj->phys_obj)
3911 i915_gem_detach_phys_object(dev, obj);
3912
3913 obj->pin_count = 0;
3914 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3915 bool was_interruptible;
3916
3917 was_interruptible = dev_priv->mm.interruptible;
3918 dev_priv->mm.interruptible = false;
3919
3920 WARN_ON(i915_gem_object_unbind(obj));
3921
3922 dev_priv->mm.interruptible = was_interruptible;
3923 }
3924
1d64ae71
BW
3925 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3926 * before progressing. */
3927 if (obj->stolen)
3928 i915_gem_object_unpin_pages(obj);
3929
401c29f6
BW
3930 if (WARN_ON(obj->pages_pin_count))
3931 obj->pages_pin_count = 0;
37e680a1 3932 i915_gem_object_put_pages(obj);
d8cb5086 3933 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3934 i915_gem_object_release_stolen(obj);
de151cf6 3935
9da3da66
CW
3936 BUG_ON(obj->pages);
3937
2f745ad3
CW
3938 if (obj->base.import_attach)
3939 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3940
05394f39
CW
3941 drm_gem_object_release(&obj->base);
3942 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3943
05394f39 3944 kfree(obj->bit_17);
42dcedd4 3945 i915_gem_object_free(obj);
673a394b
EA
3946}
3947
29105ccc
CW
3948int
3949i915_gem_idle(struct drm_device *dev)
3950{
3951 drm_i915_private_t *dev_priv = dev->dev_private;
3952 int ret;
28dfe52a 3953
db1b76ca 3954 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
3955 mutex_unlock(&dev->struct_mutex);
3956 return 0;
28dfe52a
EA
3957 }
3958
b2da9fe5 3959 ret = i915_gpu_idle(dev);
6dbe2772
KP
3960 if (ret) {
3961 mutex_unlock(&dev->struct_mutex);
673a394b 3962 return ret;
6dbe2772 3963 }
b2da9fe5 3964 i915_gem_retire_requests(dev);
673a394b 3965
29105ccc 3966 /* Under UMS, be paranoid and evict. */
a39d7efc 3967 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3968 i915_gem_evict_everything(dev);
29105ccc 3969
99584db3 3970 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
3971
3972 i915_kernel_lost_context(dev);
6dbe2772 3973 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3974
29105ccc
CW
3975 /* Cancel the retire work handler, which should be idle now. */
3976 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3977
673a394b
EA
3978 return 0;
3979}
3980
b9524a1e
BW
3981void i915_gem_l3_remap(struct drm_device *dev)
3982{
3983 drm_i915_private_t *dev_priv = dev->dev_private;
3984 u32 misccpctl;
3985 int i;
3986
eb32e458 3987 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
3988 return;
3989
a4da4fa4 3990 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3991 return;
3992
3993 misccpctl = I915_READ(GEN7_MISCCPCTL);
3994 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3995 POSTING_READ(GEN7_MISCCPCTL);
3996
3997 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3998 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3999 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4000 DRM_DEBUG("0x%x was already programmed to %x\n",
4001 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4002 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4003 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4004 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4005 }
4006
4007 /* Make sure all the writes land before disabling dop clock gating */
4008 POSTING_READ(GEN7_L3LOG_BASE);
4009
4010 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4011}
4012
f691e2f4
DV
4013void i915_gem_init_swizzling(struct drm_device *dev)
4014{
4015 drm_i915_private_t *dev_priv = dev->dev_private;
4016
11782b02 4017 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4018 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4019 return;
4020
4021 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4022 DISP_TILE_SURFACE_SWIZZLING);
4023
11782b02
DV
4024 if (IS_GEN5(dev))
4025 return;
4026
f691e2f4
DV
4027 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4028 if (IS_GEN6(dev))
6b26c86d 4029 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4030 else if (IS_GEN7(dev))
6b26c86d 4031 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4032 else
4033 BUG();
f691e2f4 4034}
e21af88d 4035
67b1b571
CW
4036static bool
4037intel_enable_blt(struct drm_device *dev)
4038{
4039 if (!HAS_BLT(dev))
4040 return false;
4041
4042 /* The blitter was dysfunctional on early prototypes */
4043 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4044 DRM_INFO("BLT not supported on this pre-production hardware;"
4045 " graphics performance will be degraded.\n");
4046 return false;
4047 }
4048
4049 return true;
4050}
4051
4fc7c971 4052static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4053{
4fc7c971 4054 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4055 int ret;
68f95ba9 4056
5c1143bb 4057 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4058 if (ret)
b6913e4b 4059 return ret;
68f95ba9
CW
4060
4061 if (HAS_BSD(dev)) {
5c1143bb 4062 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4063 if (ret)
4064 goto cleanup_render_ring;
d1b851fc 4065 }
68f95ba9 4066
67b1b571 4067 if (intel_enable_blt(dev)) {
549f7365
CW
4068 ret = intel_init_blt_ring_buffer(dev);
4069 if (ret)
4070 goto cleanup_bsd_ring;
4071 }
4072
9a8a2213
BW
4073 if (HAS_VEBOX(dev)) {
4074 ret = intel_init_vebox_ring_buffer(dev);
4075 if (ret)
4076 goto cleanup_blt_ring;
4077 }
4078
4079
99433931 4080 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4081 if (ret)
9a8a2213 4082 goto cleanup_vebox_ring;
4fc7c971
BW
4083
4084 return 0;
4085
9a8a2213
BW
4086cleanup_vebox_ring:
4087 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4088cleanup_blt_ring:
4089 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4090cleanup_bsd_ring:
4091 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4092cleanup_render_ring:
4093 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4094
4095 return ret;
4096}
4097
4098int
4099i915_gem_init_hw(struct drm_device *dev)
4100{
4101 drm_i915_private_t *dev_priv = dev->dev_private;
4102 int ret;
4103
4104 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4105 return -EIO;
4106
4107 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4108 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4109
88a2b2a3
BW
4110 if (HAS_PCH_NOP(dev)) {
4111 u32 temp = I915_READ(GEN7_MSG_CTL);
4112 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4113 I915_WRITE(GEN7_MSG_CTL, temp);
4114 }
4115
4fc7c971
BW
4116 i915_gem_l3_remap(dev);
4117
4118 i915_gem_init_swizzling(dev);
4119
4120 ret = i915_gem_init_rings(dev);
99433931
MK
4121 if (ret)
4122 return ret;
4123
254f965c
BW
4124 /*
4125 * XXX: There was some w/a described somewhere suggesting loading
4126 * contexts before PPGTT.
4127 */
4128 i915_gem_context_init(dev);
b7c36d25
BW
4129 if (dev_priv->mm.aliasing_ppgtt) {
4130 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4131 if (ret) {
4132 i915_gem_cleanup_aliasing_ppgtt(dev);
4133 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4134 }
4135 }
e21af88d 4136
68f95ba9 4137 return 0;
8187a2b7
ZN
4138}
4139
1070a42b
CW
4140int i915_gem_init(struct drm_device *dev)
4141{
4142 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4143 int ret;
4144
1070a42b 4145 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4146
4147 if (IS_VALLEYVIEW(dev)) {
4148 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4149 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4150 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4151 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4152 }
4153
d7e5008f 4154 i915_gem_init_global_gtt(dev);
d62b4892 4155
1070a42b
CW
4156 ret = i915_gem_init_hw(dev);
4157 mutex_unlock(&dev->struct_mutex);
4158 if (ret) {
4159 i915_gem_cleanup_aliasing_ppgtt(dev);
4160 return ret;
4161 }
4162
53ca26ca
DV
4163 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4164 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4165 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4166 return 0;
4167}
4168
8187a2b7
ZN
4169void
4170i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4171{
4172 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4173 struct intel_ring_buffer *ring;
1ec14ad3 4174 int i;
8187a2b7 4175
b4519513
CW
4176 for_each_ring(ring, dev_priv, i)
4177 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4178}
4179
673a394b
EA
4180int
4181i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4182 struct drm_file *file_priv)
4183{
db1b76ca 4184 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4185 int ret;
673a394b 4186
79e53945
JB
4187 if (drm_core_check_feature(dev, DRIVER_MODESET))
4188 return 0;
4189
1f83fee0 4190 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4191 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4192 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4193 }
4194
673a394b 4195 mutex_lock(&dev->struct_mutex);
db1b76ca 4196 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4197
f691e2f4 4198 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4199 if (ret != 0) {
4200 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4201 return ret;
d816f6ac 4202 }
9bb2d6f9 4203
69dc4987 4204 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4205 mutex_unlock(&dev->struct_mutex);
dbb19d30 4206
5f35308b
CW
4207 ret = drm_irq_install(dev);
4208 if (ret)
4209 goto cleanup_ringbuffer;
dbb19d30 4210
673a394b 4211 return 0;
5f35308b
CW
4212
4213cleanup_ringbuffer:
4214 mutex_lock(&dev->struct_mutex);
4215 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4216 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4217 mutex_unlock(&dev->struct_mutex);
4218
4219 return ret;
673a394b
EA
4220}
4221
4222int
4223i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4224 struct drm_file *file_priv)
4225{
db1b76ca
DV
4226 struct drm_i915_private *dev_priv = dev->dev_private;
4227 int ret;
4228
79e53945
JB
4229 if (drm_core_check_feature(dev, DRIVER_MODESET))
4230 return 0;
4231
dbb19d30 4232 drm_irq_uninstall(dev);
db1b76ca
DV
4233
4234 mutex_lock(&dev->struct_mutex);
4235 ret = i915_gem_idle(dev);
4236
4237 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4238 * We need to replace this with a semaphore, or something.
4239 * And not confound ums.mm_suspended!
4240 */
4241 if (ret != 0)
4242 dev_priv->ums.mm_suspended = 1;
4243 mutex_unlock(&dev->struct_mutex);
4244
4245 return ret;
673a394b
EA
4246}
4247
4248void
4249i915_gem_lastclose(struct drm_device *dev)
4250{
4251 int ret;
673a394b 4252
e806b495
EA
4253 if (drm_core_check_feature(dev, DRIVER_MODESET))
4254 return;
4255
db1b76ca 4256 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4257 ret = i915_gem_idle(dev);
4258 if (ret)
4259 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4260 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4261}
4262
64193406
CW
4263static void
4264init_ring_lists(struct intel_ring_buffer *ring)
4265{
4266 INIT_LIST_HEAD(&ring->active_list);
4267 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4268}
4269
673a394b
EA
4270void
4271i915_gem_load(struct drm_device *dev)
4272{
4273 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4274 int i;
4275
4276 dev_priv->slab =
4277 kmem_cache_create("i915_gem_object",
4278 sizeof(struct drm_i915_gem_object), 0,
4279 SLAB_HWCACHE_ALIGN,
4280 NULL);
673a394b 4281
69dc4987 4282 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4283 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4284 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4285 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4286 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4287 for (i = 0; i < I915_NUM_RINGS; i++)
4288 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4289 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4290 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4291 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4292 i915_gem_retire_work_handler);
1f83fee0 4293 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4294
94400120
DA
4295 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4296 if (IS_GEN3(dev)) {
50743298
DV
4297 I915_WRITE(MI_ARB_STATE,
4298 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4299 }
4300
72bfa19c
CW
4301 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4302
de151cf6 4303 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4304 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4305 dev_priv->fence_reg_start = 3;
de151cf6 4306
42b5aeab
VS
4307 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4308 dev_priv->num_fence_regs = 32;
4309 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4310 dev_priv->num_fence_regs = 16;
4311 else
4312 dev_priv->num_fence_regs = 8;
4313
b5aa8a0f 4314 /* Initialize fence registers to zero */
19b2dbde
CW
4315 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4316 i915_gem_restore_fences(dev);
10ed13e4 4317
673a394b 4318 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4319 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4320
ce453d81
CW
4321 dev_priv->mm.interruptible = true;
4322
17250b71
CW
4323 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4324 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4325 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4326}
71acb5eb
DA
4327
4328/*
4329 * Create a physically contiguous memory object for this object
4330 * e.g. for cursor + overlay regs
4331 */
995b6762
CW
4332static int i915_gem_init_phys_object(struct drm_device *dev,
4333 int id, int size, int align)
71acb5eb
DA
4334{
4335 drm_i915_private_t *dev_priv = dev->dev_private;
4336 struct drm_i915_gem_phys_object *phys_obj;
4337 int ret;
4338
4339 if (dev_priv->mm.phys_objs[id - 1] || !size)
4340 return 0;
4341
9a298b2a 4342 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4343 if (!phys_obj)
4344 return -ENOMEM;
4345
4346 phys_obj->id = id;
4347
6eeefaf3 4348 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4349 if (!phys_obj->handle) {
4350 ret = -ENOMEM;
4351 goto kfree_obj;
4352 }
4353#ifdef CONFIG_X86
4354 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4355#endif
4356
4357 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4358
4359 return 0;
4360kfree_obj:
9a298b2a 4361 kfree(phys_obj);
71acb5eb
DA
4362 return ret;
4363}
4364
995b6762 4365static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4366{
4367 drm_i915_private_t *dev_priv = dev->dev_private;
4368 struct drm_i915_gem_phys_object *phys_obj;
4369
4370 if (!dev_priv->mm.phys_objs[id - 1])
4371 return;
4372
4373 phys_obj = dev_priv->mm.phys_objs[id - 1];
4374 if (phys_obj->cur_obj) {
4375 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4376 }
4377
4378#ifdef CONFIG_X86
4379 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4380#endif
4381 drm_pci_free(dev, phys_obj->handle);
4382 kfree(phys_obj);
4383 dev_priv->mm.phys_objs[id - 1] = NULL;
4384}
4385
4386void i915_gem_free_all_phys_object(struct drm_device *dev)
4387{
4388 int i;
4389
260883c8 4390 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4391 i915_gem_free_phys_object(dev, i);
4392}
4393
4394void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4395 struct drm_i915_gem_object *obj)
71acb5eb 4396{
496ad9aa 4397 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4398 char *vaddr;
71acb5eb 4399 int i;
71acb5eb
DA
4400 int page_count;
4401
05394f39 4402 if (!obj->phys_obj)
71acb5eb 4403 return;
05394f39 4404 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4405
05394f39 4406 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4407 for (i = 0; i < page_count; i++) {
5949eac4 4408 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4409 if (!IS_ERR(page)) {
4410 char *dst = kmap_atomic(page);
4411 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4412 kunmap_atomic(dst);
4413
4414 drm_clflush_pages(&page, 1);
4415
4416 set_page_dirty(page);
4417 mark_page_accessed(page);
4418 page_cache_release(page);
4419 }
71acb5eb 4420 }
e76e9aeb 4421 i915_gem_chipset_flush(dev);
d78b47b9 4422
05394f39
CW
4423 obj->phys_obj->cur_obj = NULL;
4424 obj->phys_obj = NULL;
71acb5eb
DA
4425}
4426
4427int
4428i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4429 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4430 int id,
4431 int align)
71acb5eb 4432{
496ad9aa 4433 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4434 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4435 int ret = 0;
4436 int page_count;
4437 int i;
4438
4439 if (id > I915_MAX_PHYS_OBJECT)
4440 return -EINVAL;
4441
05394f39
CW
4442 if (obj->phys_obj) {
4443 if (obj->phys_obj->id == id)
71acb5eb
DA
4444 return 0;
4445 i915_gem_detach_phys_object(dev, obj);
4446 }
4447
71acb5eb
DA
4448 /* create a new object */
4449 if (!dev_priv->mm.phys_objs[id - 1]) {
4450 ret = i915_gem_init_phys_object(dev, id,
05394f39 4451 obj->base.size, align);
71acb5eb 4452 if (ret) {
05394f39
CW
4453 DRM_ERROR("failed to init phys object %d size: %zu\n",
4454 id, obj->base.size);
e5281ccd 4455 return ret;
71acb5eb
DA
4456 }
4457 }
4458
4459 /* bind to the object */
05394f39
CW
4460 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4461 obj->phys_obj->cur_obj = obj;
71acb5eb 4462
05394f39 4463 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4464
4465 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4466 struct page *page;
4467 char *dst, *src;
4468
5949eac4 4469 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4470 if (IS_ERR(page))
4471 return PTR_ERR(page);
71acb5eb 4472
ff75b9bc 4473 src = kmap_atomic(page);
05394f39 4474 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4475 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4476 kunmap_atomic(src);
71acb5eb 4477
e5281ccd
CW
4478 mark_page_accessed(page);
4479 page_cache_release(page);
4480 }
d78b47b9 4481
71acb5eb 4482 return 0;
71acb5eb
DA
4483}
4484
4485static int
05394f39
CW
4486i915_gem_phys_pwrite(struct drm_device *dev,
4487 struct drm_i915_gem_object *obj,
71acb5eb
DA
4488 struct drm_i915_gem_pwrite *args,
4489 struct drm_file *file_priv)
4490{
05394f39 4491 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4492 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4493
b47b30cc
CW
4494 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4495 unsigned long unwritten;
4496
4497 /* The physical object once assigned is fixed for the lifetime
4498 * of the obj, so we can safely drop the lock and continue
4499 * to access vaddr.
4500 */
4501 mutex_unlock(&dev->struct_mutex);
4502 unwritten = copy_from_user(vaddr, user_data, args->size);
4503 mutex_lock(&dev->struct_mutex);
4504 if (unwritten)
4505 return -EFAULT;
4506 }
71acb5eb 4507
e76e9aeb 4508 i915_gem_chipset_flush(dev);
71acb5eb
DA
4509 return 0;
4510}
b962442e 4511
f787a5f5 4512void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4513{
f787a5f5 4514 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4515
4516 /* Clean up our request list when the client is going away, so that
4517 * later retire_requests won't dereference our soon-to-be-gone
4518 * file_priv.
4519 */
1c25595f 4520 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4521 while (!list_empty(&file_priv->mm.request_list)) {
4522 struct drm_i915_gem_request *request;
4523
4524 request = list_first_entry(&file_priv->mm.request_list,
4525 struct drm_i915_gem_request,
4526 client_list);
4527 list_del(&request->client_list);
4528 request->file_priv = NULL;
4529 }
1c25595f 4530 spin_unlock(&file_priv->mm.lock);
b962442e 4531}
31169714 4532
5774506f
CW
4533static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4534{
4535 if (!mutex_is_locked(mutex))
4536 return false;
4537
4538#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4539 return mutex->owner == task;
4540#else
4541 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4542 return false;
4543#endif
4544}
4545
31169714 4546static int
1495f230 4547i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4548{
17250b71
CW
4549 struct drm_i915_private *dev_priv =
4550 container_of(shrinker,
4551 struct drm_i915_private,
4552 mm.inactive_shrinker);
4553 struct drm_device *dev = dev_priv->dev;
6c085a72 4554 struct drm_i915_gem_object *obj;
1495f230 4555 int nr_to_scan = sc->nr_to_scan;
5774506f 4556 bool unlock = true;
17250b71
CW
4557 int cnt;
4558
5774506f
CW
4559 if (!mutex_trylock(&dev->struct_mutex)) {
4560 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4561 return 0;
4562
677feac2
DV
4563 if (dev_priv->mm.shrinker_no_lock_stealing)
4564 return 0;
4565
5774506f
CW
4566 unlock = false;
4567 }
31169714 4568
6c085a72
CW
4569 if (nr_to_scan) {
4570 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4571 if (nr_to_scan > 0)
4572 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4573 false);
6c085a72
CW
4574 if (nr_to_scan > 0)
4575 i915_gem_shrink_all(dev_priv);
31169714
CW
4576 }
4577
17250b71 4578 cnt = 0;
35c20a60 4579 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4580 if (obj->pages_pin_count == 0)
4581 cnt += obj->base.size >> PAGE_SHIFT;
06755608 4582 list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list)
a5570178 4583 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4584 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4585
5774506f
CW
4586 if (unlock)
4587 mutex_unlock(&dev->struct_mutex);
6c085a72 4588 return cnt;
31169714 4589}
This page took 1.434322 seconds and 5 git commands to generate.