Merge tag 'drm-intel-fixes-2015-07-15' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
6a2c4232
CW
216 return 0;
217}
218
219static void
220i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
221{
222 int ret;
223
224 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 225
6a2c4232
CW
226 ret = i915_gem_object_set_to_cpu_domain(obj, true);
227 if (ret) {
228 /* In the event of a disaster, abandon all caches and
229 * hope for the best.
230 */
231 WARN_ON(ret != -EIO);
232 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
233 }
234
235 if (obj->madv == I915_MADV_DONTNEED)
236 obj->dirty = 0;
237
238 if (obj->dirty) {
00731155 239 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 240 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
241 int i;
242
243 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
244 struct page *page;
245 char *dst;
246
247 page = shmem_read_mapping_page(mapping, i);
248 if (IS_ERR(page))
249 continue;
250
251 dst = kmap_atomic(page);
252 drm_clflush_virt_range(vaddr, PAGE_SIZE);
253 memcpy(dst, vaddr, PAGE_SIZE);
254 kunmap_atomic(dst);
255
256 set_page_dirty(page);
257 if (obj->madv == I915_MADV_WILLNEED)
00731155 258 mark_page_accessed(page);
6a2c4232 259 page_cache_release(page);
00731155
CW
260 vaddr += PAGE_SIZE;
261 }
6a2c4232 262 obj->dirty = 0;
00731155
CW
263 }
264
6a2c4232
CW
265 sg_free_table(obj->pages);
266 kfree(obj->pages);
6a2c4232
CW
267}
268
269static void
270i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
271{
272 drm_pci_free(obj->base.dev, obj->phys_handle);
273}
274
275static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
276 .get_pages = i915_gem_object_get_pages_phys,
277 .put_pages = i915_gem_object_put_pages_phys,
278 .release = i915_gem_object_release_phys,
279};
280
281static int
282drop_pages(struct drm_i915_gem_object *obj)
283{
284 struct i915_vma *vma, *next;
285 int ret;
286
287 drm_gem_object_reference(&obj->base);
288 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
289 if (i915_vma_unbind(vma))
290 break;
291
292 ret = i915_gem_object_put_pages(obj);
293 drm_gem_object_unreference(&obj->base);
294
295 return ret;
00731155
CW
296}
297
298int
299i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
300 int align)
301{
302 drm_dma_handle_t *phys;
6a2c4232 303 int ret;
00731155
CW
304
305 if (obj->phys_handle) {
306 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
307 return -EBUSY;
308
309 return 0;
310 }
311
312 if (obj->madv != I915_MADV_WILLNEED)
313 return -EFAULT;
314
315 if (obj->base.filp == NULL)
316 return -EINVAL;
317
6a2c4232
CW
318 ret = drop_pages(obj);
319 if (ret)
320 return ret;
321
00731155
CW
322 /* create a new object */
323 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
324 if (!phys)
325 return -ENOMEM;
326
00731155 327 obj->phys_handle = phys;
6a2c4232
CW
328 obj->ops = &i915_gem_phys_ops;
329
330 return i915_gem_object_get_pages(obj);
00731155
CW
331}
332
333static int
334i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
335 struct drm_i915_gem_pwrite *args,
336 struct drm_file *file_priv)
337{
338 struct drm_device *dev = obj->base.dev;
339 void *vaddr = obj->phys_handle->vaddr + args->offset;
340 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 341 int ret = 0;
6a2c4232
CW
342
343 /* We manually control the domain here and pretend that it
344 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
345 */
346 ret = i915_gem_object_wait_rendering(obj, false);
347 if (ret)
348 return ret;
00731155 349
063e4e6b 350 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
00731155
CW
351 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
352 unsigned long unwritten;
353
354 /* The physical object once assigned is fixed for the lifetime
355 * of the obj, so we can safely drop the lock and continue
356 * to access vaddr.
357 */
358 mutex_unlock(&dev->struct_mutex);
359 unwritten = copy_from_user(vaddr, user_data, args->size);
360 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
361 if (unwritten) {
362 ret = -EFAULT;
363 goto out;
364 }
00731155
CW
365 }
366
6a2c4232 367 drm_clflush_virt_range(vaddr, args->size);
00731155 368 i915_gem_chipset_flush(dev);
063e4e6b
PZ
369
370out:
371 intel_fb_obj_flush(obj, false);
372 return ret;
00731155
CW
373}
374
42dcedd4
CW
375void *i915_gem_object_alloc(struct drm_device *dev)
376{
377 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 378 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
379}
380
381void i915_gem_object_free(struct drm_i915_gem_object *obj)
382{
383 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 384 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
385}
386
ff72145b
DA
387static int
388i915_gem_create(struct drm_file *file,
389 struct drm_device *dev,
390 uint64_t size,
391 uint32_t *handle_p)
673a394b 392{
05394f39 393 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
394 int ret;
395 u32 handle;
673a394b 396
ff72145b 397 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
398 if (size == 0)
399 return -EINVAL;
673a394b
EA
400
401 /* Allocate the new object */
ff72145b 402 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
403 if (obj == NULL)
404 return -ENOMEM;
405
05394f39 406 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 407 /* drop reference from allocate - handle holds it now */
d861e338
DV
408 drm_gem_object_unreference_unlocked(&obj->base);
409 if (ret)
410 return ret;
202f2fef 411
ff72145b 412 *handle_p = handle;
673a394b
EA
413 return 0;
414}
415
ff72145b
DA
416int
417i915_gem_dumb_create(struct drm_file *file,
418 struct drm_device *dev,
419 struct drm_mode_create_dumb *args)
420{
421 /* have to work out size/pitch and return them */
de45eaf7 422 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
423 args->size = args->pitch * args->height;
424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
ff72145b
DA
428/**
429 * Creates a new mm object and returns a handle to it.
430 */
431int
432i915_gem_create_ioctl(struct drm_device *dev, void *data,
433 struct drm_file *file)
434{
435 struct drm_i915_gem_create *args = data;
63ed2cb2 436
ff72145b 437 return i915_gem_create(file, dev,
da6b51d0 438 args->size, &args->handle);
ff72145b
DA
439}
440
8461d226
DV
441static inline int
442__copy_to_user_swizzled(char __user *cpu_vaddr,
443 const char *gpu_vaddr, int gpu_offset,
444 int length)
445{
446 int ret, cpu_offset = 0;
447
448 while (length > 0) {
449 int cacheline_end = ALIGN(gpu_offset + 1, 64);
450 int this_length = min(cacheline_end - gpu_offset, length);
451 int swizzled_gpu_offset = gpu_offset ^ 64;
452
453 ret = __copy_to_user(cpu_vaddr + cpu_offset,
454 gpu_vaddr + swizzled_gpu_offset,
455 this_length);
456 if (ret)
457 return ret + length;
458
459 cpu_offset += this_length;
460 gpu_offset += this_length;
461 length -= this_length;
462 }
463
464 return 0;
465}
466
8c59967c 467static inline int
4f0c7cfb
BW
468__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
469 const char __user *cpu_vaddr,
8c59967c
DV
470 int length)
471{
472 int ret, cpu_offset = 0;
473
474 while (length > 0) {
475 int cacheline_end = ALIGN(gpu_offset + 1, 64);
476 int this_length = min(cacheline_end - gpu_offset, length);
477 int swizzled_gpu_offset = gpu_offset ^ 64;
478
479 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
480 cpu_vaddr + cpu_offset,
481 this_length);
482 if (ret)
483 return ret + length;
484
485 cpu_offset += this_length;
486 gpu_offset += this_length;
487 length -= this_length;
488 }
489
490 return 0;
491}
492
4c914c0c
BV
493/*
494 * Pins the specified object's pages and synchronizes the object with
495 * GPU accesses. Sets needs_clflush to non-zero if the caller should
496 * flush the object from the CPU cache.
497 */
498int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
499 int *needs_clflush)
500{
501 int ret;
502
503 *needs_clflush = 0;
504
505 if (!obj->base.filp)
506 return -EINVAL;
507
508 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
509 /* If we're not in the cpu read domain, set ourself into the gtt
510 * read domain and manually flush cachelines (if required). This
511 * optimizes for the case when the gpu will dirty the data
512 * anyway again before the next pread happens. */
513 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
514 obj->cache_level);
515 ret = i915_gem_object_wait_rendering(obj, true);
516 if (ret)
517 return ret;
518 }
519
520 ret = i915_gem_object_get_pages(obj);
521 if (ret)
522 return ret;
523
524 i915_gem_object_pin_pages(obj);
525
526 return ret;
527}
528
d174bd64
DV
529/* Per-page copy function for the shmem pread fastpath.
530 * Flushes invalid cachelines before reading the target if
531 * needs_clflush is set. */
eb01459f 532static int
d174bd64
DV
533shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
534 char __user *user_data,
535 bool page_do_bit17_swizzling, bool needs_clflush)
536{
537 char *vaddr;
538 int ret;
539
e7e58eb5 540 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
541 return -EINVAL;
542
543 vaddr = kmap_atomic(page);
544 if (needs_clflush)
545 drm_clflush_virt_range(vaddr + shmem_page_offset,
546 page_length);
547 ret = __copy_to_user_inatomic(user_data,
548 vaddr + shmem_page_offset,
549 page_length);
550 kunmap_atomic(vaddr);
551
f60d7f0c 552 return ret ? -EFAULT : 0;
d174bd64
DV
553}
554
23c18c71
DV
555static void
556shmem_clflush_swizzled_range(char *addr, unsigned long length,
557 bool swizzled)
558{
e7e58eb5 559 if (unlikely(swizzled)) {
23c18c71
DV
560 unsigned long start = (unsigned long) addr;
561 unsigned long end = (unsigned long) addr + length;
562
563 /* For swizzling simply ensure that we always flush both
564 * channels. Lame, but simple and it works. Swizzled
565 * pwrite/pread is far from a hotpath - current userspace
566 * doesn't use it at all. */
567 start = round_down(start, 128);
568 end = round_up(end, 128);
569
570 drm_clflush_virt_range((void *)start, end - start);
571 } else {
572 drm_clflush_virt_range(addr, length);
573 }
574
575}
576
d174bd64
DV
577/* Only difference to the fast-path function is that this can handle bit17
578 * and uses non-atomic copy and kmap functions. */
579static int
580shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
581 char __user *user_data,
582 bool page_do_bit17_swizzling, bool needs_clflush)
583{
584 char *vaddr;
585 int ret;
586
587 vaddr = kmap(page);
588 if (needs_clflush)
23c18c71
DV
589 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
590 page_length,
591 page_do_bit17_swizzling);
d174bd64
DV
592
593 if (page_do_bit17_swizzling)
594 ret = __copy_to_user_swizzled(user_data,
595 vaddr, shmem_page_offset,
596 page_length);
597 else
598 ret = __copy_to_user(user_data,
599 vaddr + shmem_page_offset,
600 page_length);
601 kunmap(page);
602
f60d7f0c 603 return ret ? - EFAULT : 0;
d174bd64
DV
604}
605
eb01459f 606static int
dbf7bff0
DV
607i915_gem_shmem_pread(struct drm_device *dev,
608 struct drm_i915_gem_object *obj,
609 struct drm_i915_gem_pread *args,
610 struct drm_file *file)
eb01459f 611{
8461d226 612 char __user *user_data;
eb01459f 613 ssize_t remain;
8461d226 614 loff_t offset;
eb2c0c81 615 int shmem_page_offset, page_length, ret = 0;
8461d226 616 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 617 int prefaulted = 0;
8489731c 618 int needs_clflush = 0;
67d5a50c 619 struct sg_page_iter sg_iter;
eb01459f 620
2bb4629a 621 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
622 remain = args->size;
623
8461d226 624 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 625
4c914c0c 626 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
627 if (ret)
628 return ret;
629
8461d226 630 offset = args->offset;
eb01459f 631
67d5a50c
ID
632 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
633 offset >> PAGE_SHIFT) {
2db76d7c 634 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
635
636 if (remain <= 0)
637 break;
638
eb01459f
EA
639 /* Operation in this page
640 *
eb01459f 641 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
642 * page_length = bytes to copy for this page
643 */
c8cbbb8b 644 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
645 page_length = remain;
646 if ((shmem_page_offset + page_length) > PAGE_SIZE)
647 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 648
8461d226
DV
649 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
650 (page_to_phys(page) & (1 << 17)) != 0;
651
d174bd64
DV
652 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
655 if (ret == 0)
656 goto next_page;
dbf7bff0 657
dbf7bff0
DV
658 mutex_unlock(&dev->struct_mutex);
659
d330a953 660 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 661 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
662 /* Userspace is tricking us, but we've already clobbered
663 * its pages with the prefault and promised to write the
664 * data up to the first fault. Hence ignore any errors
665 * and just continue. */
666 (void)ret;
667 prefaulted = 1;
668 }
eb01459f 669
d174bd64
DV
670 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
671 user_data, page_do_bit17_swizzling,
672 needs_clflush);
eb01459f 673
dbf7bff0 674 mutex_lock(&dev->struct_mutex);
f60d7f0c 675
f60d7f0c 676 if (ret)
8461d226 677 goto out;
8461d226 678
17793c9a 679next_page:
eb01459f 680 remain -= page_length;
8461d226 681 user_data += page_length;
eb01459f
EA
682 offset += page_length;
683 }
684
4f27b75d 685out:
f60d7f0c
CW
686 i915_gem_object_unpin_pages(obj);
687
eb01459f
EA
688 return ret;
689}
690
673a394b
EA
691/**
692 * Reads data from the object referenced by handle.
693 *
694 * On error, the contents of *data are undefined.
695 */
696int
697i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 698 struct drm_file *file)
673a394b
EA
699{
700 struct drm_i915_gem_pread *args = data;
05394f39 701 struct drm_i915_gem_object *obj;
35b62a89 702 int ret = 0;
673a394b 703
51311d0a
CW
704 if (args->size == 0)
705 return 0;
706
707 if (!access_ok(VERIFY_WRITE,
2bb4629a 708 to_user_ptr(args->data_ptr),
51311d0a
CW
709 args->size))
710 return -EFAULT;
711
4f27b75d 712 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 713 if (ret)
4f27b75d 714 return ret;
673a394b 715
05394f39 716 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 717 if (&obj->base == NULL) {
1d7cfea1
CW
718 ret = -ENOENT;
719 goto unlock;
4f27b75d 720 }
673a394b 721
7dcd2499 722 /* Bounds check source. */
05394f39
CW
723 if (args->offset > obj->base.size ||
724 args->size > obj->base.size - args->offset) {
ce9d419d 725 ret = -EINVAL;
35b62a89 726 goto out;
ce9d419d
CW
727 }
728
1286ff73
DV
729 /* prime objects have no backing filp to GEM pread/pwrite
730 * pages from.
731 */
732 if (!obj->base.filp) {
733 ret = -EINVAL;
734 goto out;
735 }
736
db53a302
CW
737 trace_i915_gem_object_pread(obj, args->offset, args->size);
738
dbf7bff0 739 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 740
35b62a89 741out:
05394f39 742 drm_gem_object_unreference(&obj->base);
1d7cfea1 743unlock:
4f27b75d 744 mutex_unlock(&dev->struct_mutex);
eb01459f 745 return ret;
673a394b
EA
746}
747
0839ccb8
KP
748/* This is the fast write path which cannot handle
749 * page faults in the source data
9b7530cc 750 */
0839ccb8
KP
751
752static inline int
753fast_user_write(struct io_mapping *mapping,
754 loff_t page_base, int page_offset,
755 char __user *user_data,
756 int length)
9b7530cc 757{
4f0c7cfb
BW
758 void __iomem *vaddr_atomic;
759 void *vaddr;
0839ccb8 760 unsigned long unwritten;
9b7530cc 761
3e4d3af5 762 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
763 /* We can use the cpu mem copy function because this is X86. */
764 vaddr = (void __force*)vaddr_atomic + page_offset;
765 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 766 user_data, length);
3e4d3af5 767 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 768 return unwritten;
0839ccb8
KP
769}
770
3de09aa3
EA
771/**
772 * This is the fast pwrite path, where we copy the data directly from the
773 * user into the GTT, uncached.
774 */
673a394b 775static int
05394f39
CW
776i915_gem_gtt_pwrite_fast(struct drm_device *dev,
777 struct drm_i915_gem_object *obj,
3de09aa3 778 struct drm_i915_gem_pwrite *args,
05394f39 779 struct drm_file *file)
673a394b 780{
3e31c6c0 781 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 782 ssize_t remain;
0839ccb8 783 loff_t offset, page_base;
673a394b 784 char __user *user_data;
935aaa69
DV
785 int page_offset, page_length, ret;
786
1ec9e26d 787 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
788 if (ret)
789 goto out;
790
791 ret = i915_gem_object_set_to_gtt_domain(obj, true);
792 if (ret)
793 goto out_unpin;
794
795 ret = i915_gem_object_put_fence(obj);
796 if (ret)
797 goto out_unpin;
673a394b 798
2bb4629a 799 user_data = to_user_ptr(args->data_ptr);
673a394b 800 remain = args->size;
673a394b 801
f343c5f6 802 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 803
063e4e6b
PZ
804 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
805
673a394b
EA
806 while (remain > 0) {
807 /* Operation in this page
808 *
0839ccb8
KP
809 * page_base = page offset within aperture
810 * page_offset = offset within page
811 * page_length = bytes to copy for this page
673a394b 812 */
c8cbbb8b
CW
813 page_base = offset & PAGE_MASK;
814 page_offset = offset_in_page(offset);
0839ccb8
KP
815 page_length = remain;
816 if ((page_offset + remain) > PAGE_SIZE)
817 page_length = PAGE_SIZE - page_offset;
818
0839ccb8 819 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
820 * source page isn't available. Return the error and we'll
821 * retry in the slow path.
0839ccb8 822 */
5d4545ae 823 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
824 page_offset, user_data, page_length)) {
825 ret = -EFAULT;
063e4e6b 826 goto out_flush;
935aaa69 827 }
673a394b 828
0839ccb8
KP
829 remain -= page_length;
830 user_data += page_length;
831 offset += page_length;
673a394b 832 }
673a394b 833
063e4e6b
PZ
834out_flush:
835 intel_fb_obj_flush(obj, false);
935aaa69 836out_unpin:
d7f46fc4 837 i915_gem_object_ggtt_unpin(obj);
935aaa69 838out:
3de09aa3 839 return ret;
673a394b
EA
840}
841
d174bd64
DV
842/* Per-page copy function for the shmem pwrite fastpath.
843 * Flushes invalid cachelines before writing to the target if
844 * needs_clflush_before is set and flushes out any written cachelines after
845 * writing if needs_clflush is set. */
3043c60c 846static int
d174bd64
DV
847shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
848 char __user *user_data,
849 bool page_do_bit17_swizzling,
850 bool needs_clflush_before,
851 bool needs_clflush_after)
673a394b 852{
d174bd64 853 char *vaddr;
673a394b 854 int ret;
3de09aa3 855
e7e58eb5 856 if (unlikely(page_do_bit17_swizzling))
d174bd64 857 return -EINVAL;
3de09aa3 858
d174bd64
DV
859 vaddr = kmap_atomic(page);
860 if (needs_clflush_before)
861 drm_clflush_virt_range(vaddr + shmem_page_offset,
862 page_length);
c2831a94
CW
863 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
864 user_data, page_length);
d174bd64
DV
865 if (needs_clflush_after)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 kunmap_atomic(vaddr);
3de09aa3 869
755d2218 870 return ret ? -EFAULT : 0;
3de09aa3
EA
871}
872
d174bd64
DV
873/* Only difference to the fast-path function is that this can handle bit17
874 * and uses non-atomic copy and kmap functions. */
3043c60c 875static int
d174bd64
DV
876shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
877 char __user *user_data,
878 bool page_do_bit17_swizzling,
879 bool needs_clflush_before,
880 bool needs_clflush_after)
673a394b 881{
d174bd64
DV
882 char *vaddr;
883 int ret;
e5281ccd 884
d174bd64 885 vaddr = kmap(page);
e7e58eb5 886 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
887 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
888 page_length,
889 page_do_bit17_swizzling);
d174bd64
DV
890 if (page_do_bit17_swizzling)
891 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
892 user_data,
893 page_length);
d174bd64
DV
894 else
895 ret = __copy_from_user(vaddr + shmem_page_offset,
896 user_data,
897 page_length);
898 if (needs_clflush_after)
23c18c71
DV
899 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
900 page_length,
901 page_do_bit17_swizzling);
d174bd64 902 kunmap(page);
40123c1f 903
755d2218 904 return ret ? -EFAULT : 0;
40123c1f
EA
905}
906
40123c1f 907static int
e244a443
DV
908i915_gem_shmem_pwrite(struct drm_device *dev,
909 struct drm_i915_gem_object *obj,
910 struct drm_i915_gem_pwrite *args,
911 struct drm_file *file)
40123c1f 912{
40123c1f 913 ssize_t remain;
8c59967c
DV
914 loff_t offset;
915 char __user *user_data;
eb2c0c81 916 int shmem_page_offset, page_length, ret = 0;
8c59967c 917 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 918 int hit_slowpath = 0;
58642885
DV
919 int needs_clflush_after = 0;
920 int needs_clflush_before = 0;
67d5a50c 921 struct sg_page_iter sg_iter;
40123c1f 922
2bb4629a 923 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
924 remain = args->size;
925
8c59967c 926 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 927
58642885
DV
928 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
929 /* If we're not in the cpu write domain, set ourself into the gtt
930 * write domain and manually flush cachelines (if required). This
931 * optimizes for the case when the gpu will use the data
932 * right away and we therefore have to clflush anyway. */
2c22569b 933 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
934 ret = i915_gem_object_wait_rendering(obj, false);
935 if (ret)
936 return ret;
58642885 937 }
c76ce038
CW
938 /* Same trick applies to invalidate partially written cachelines read
939 * before writing. */
940 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
941 needs_clflush_before =
942 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 943
755d2218
CW
944 ret = i915_gem_object_get_pages(obj);
945 if (ret)
946 return ret;
947
063e4e6b
PZ
948 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
949
755d2218
CW
950 i915_gem_object_pin_pages(obj);
951
673a394b 952 offset = args->offset;
05394f39 953 obj->dirty = 1;
673a394b 954
67d5a50c
ID
955 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
956 offset >> PAGE_SHIFT) {
2db76d7c 957 struct page *page = sg_page_iter_page(&sg_iter);
58642885 958 int partial_cacheline_write;
e5281ccd 959
9da3da66
CW
960 if (remain <= 0)
961 break;
962
40123c1f
EA
963 /* Operation in this page
964 *
40123c1f 965 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
966 * page_length = bytes to copy for this page
967 */
c8cbbb8b 968 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
969
970 page_length = remain;
971 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 973
58642885
DV
974 /* If we don't overwrite a cacheline completely we need to be
975 * careful to have up-to-date data by first clflushing. Don't
976 * overcomplicate things and flush the entire patch. */
977 partial_cacheline_write = needs_clflush_before &&
978 ((shmem_page_offset | page_length)
979 & (boot_cpu_data.x86_clflush_size - 1));
980
8c59967c
DV
981 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
982 (page_to_phys(page) & (1 << 17)) != 0;
983
d174bd64
DV
984 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
985 user_data, page_do_bit17_swizzling,
986 partial_cacheline_write,
987 needs_clflush_after);
988 if (ret == 0)
989 goto next_page;
e244a443
DV
990
991 hit_slowpath = 1;
e244a443 992 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
993 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
994 user_data, page_do_bit17_swizzling,
995 partial_cacheline_write,
996 needs_clflush_after);
40123c1f 997
e244a443 998 mutex_lock(&dev->struct_mutex);
755d2218 999
755d2218 1000 if (ret)
8c59967c 1001 goto out;
8c59967c 1002
17793c9a 1003next_page:
40123c1f 1004 remain -= page_length;
8c59967c 1005 user_data += page_length;
40123c1f 1006 offset += page_length;
673a394b
EA
1007 }
1008
fbd5a26d 1009out:
755d2218
CW
1010 i915_gem_object_unpin_pages(obj);
1011
e244a443 1012 if (hit_slowpath) {
8dcf015e
DV
1013 /*
1014 * Fixup: Flush cpu caches in case we didn't flush the dirty
1015 * cachelines in-line while writing and the object moved
1016 * out of the cpu write domain while we've dropped the lock.
1017 */
1018 if (!needs_clflush_after &&
1019 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1020 if (i915_gem_clflush_object(obj, obj->pin_display))
1021 i915_gem_chipset_flush(dev);
e244a443 1022 }
8c59967c 1023 }
673a394b 1024
58642885 1025 if (needs_clflush_after)
e76e9aeb 1026 i915_gem_chipset_flush(dev);
58642885 1027
063e4e6b 1028 intel_fb_obj_flush(obj, false);
40123c1f 1029 return ret;
673a394b
EA
1030}
1031
1032/**
1033 * Writes data to the object referenced by handle.
1034 *
1035 * On error, the contents of the buffer that were to be modified are undefined.
1036 */
1037int
1038i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1039 struct drm_file *file)
673a394b 1040{
5d77d9c5 1041 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1042 struct drm_i915_gem_pwrite *args = data;
05394f39 1043 struct drm_i915_gem_object *obj;
51311d0a
CW
1044 int ret;
1045
1046 if (args->size == 0)
1047 return 0;
1048
1049 if (!access_ok(VERIFY_READ,
2bb4629a 1050 to_user_ptr(args->data_ptr),
51311d0a
CW
1051 args->size))
1052 return -EFAULT;
1053
d330a953 1054 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1055 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1056 args->size);
1057 if (ret)
1058 return -EFAULT;
1059 }
673a394b 1060
5d77d9c5
ID
1061 intel_runtime_pm_get(dev_priv);
1062
fbd5a26d 1063 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1064 if (ret)
5d77d9c5 1065 goto put_rpm;
1d7cfea1 1066
05394f39 1067 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1068 if (&obj->base == NULL) {
1d7cfea1
CW
1069 ret = -ENOENT;
1070 goto unlock;
fbd5a26d 1071 }
673a394b 1072
7dcd2499 1073 /* Bounds check destination. */
05394f39
CW
1074 if (args->offset > obj->base.size ||
1075 args->size > obj->base.size - args->offset) {
ce9d419d 1076 ret = -EINVAL;
35b62a89 1077 goto out;
ce9d419d
CW
1078 }
1079
1286ff73
DV
1080 /* prime objects have no backing filp to GEM pread/pwrite
1081 * pages from.
1082 */
1083 if (!obj->base.filp) {
1084 ret = -EINVAL;
1085 goto out;
1086 }
1087
db53a302
CW
1088 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1089
935aaa69 1090 ret = -EFAULT;
673a394b
EA
1091 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1092 * it would end up going through the fenced access, and we'll get
1093 * different detiling behavior between reading and writing.
1094 * pread/pwrite currently are reading and writing from the CPU
1095 * perspective, requiring manual detiling by the client.
1096 */
2c22569b
CW
1097 if (obj->tiling_mode == I915_TILING_NONE &&
1098 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1099 cpu_write_needs_clflush(obj)) {
fbd5a26d 1100 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1101 /* Note that the gtt paths might fail with non-page-backed user
1102 * pointers (e.g. gtt mappings when moving data between
1103 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1104 }
673a394b 1105
6a2c4232
CW
1106 if (ret == -EFAULT || ret == -ENOSPC) {
1107 if (obj->phys_handle)
1108 ret = i915_gem_phys_pwrite(obj, args, file);
1109 else
1110 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1111 }
5c0480f2 1112
35b62a89 1113out:
05394f39 1114 drm_gem_object_unreference(&obj->base);
1d7cfea1 1115unlock:
fbd5a26d 1116 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1117put_rpm:
1118 intel_runtime_pm_put(dev_priv);
1119
673a394b
EA
1120 return ret;
1121}
1122
b361237b 1123int
33196ded 1124i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1125 bool interruptible)
1126{
1f83fee0 1127 if (i915_reset_in_progress(error)) {
b361237b
CW
1128 /* Non-interruptible callers can't handle -EAGAIN, hence return
1129 * -EIO unconditionally for these. */
1130 if (!interruptible)
1131 return -EIO;
1132
1f83fee0
DV
1133 /* Recovery complete, but the reset failed ... */
1134 if (i915_terminally_wedged(error))
b361237b
CW
1135 return -EIO;
1136
6689c167
MA
1137 /*
1138 * Check if GPU Reset is in progress - we need intel_ring_begin
1139 * to work properly to reinit the hw state while the gpu is
1140 * still marked as reset-in-progress. Handle this with a flag.
1141 */
1142 if (!error->reload_in_reset)
1143 return -EAGAIN;
b361237b
CW
1144 }
1145
1146 return 0;
1147}
1148
1149/*
b6660d59 1150 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1151 */
84c33a64 1152int
b6660d59 1153i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1154{
1155 int ret;
1156
b6660d59 1157 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1158
1159 ret = 0;
b6660d59 1160 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1161 ret = i915_add_request(req->ring);
b361237b
CW
1162
1163 return ret;
1164}
1165
094f9a54
CW
1166static void fake_irq(unsigned long data)
1167{
1168 wake_up_process((struct task_struct *)data);
1169}
1170
1171static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1172 struct intel_engine_cs *ring)
094f9a54
CW
1173{
1174 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175}
1176
eed29a5b 1177static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1178{
2def4ad9 1179 unsigned long timeout;
b29c19b6 1180
eed29a5b 1181 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1182 return -EBUSY;
1183
1184 timeout = jiffies + 1;
1185 while (!need_resched()) {
eed29a5b 1186 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1187 return 0;
1188
1189 if (time_after_eq(jiffies, timeout))
1190 break;
b29c19b6 1191
2def4ad9
CW
1192 cpu_relax_lowlatency();
1193 }
eed29a5b 1194 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1195 return 0;
1196
1197 return -EAGAIN;
b29c19b6
CW
1198}
1199
b361237b 1200/**
9c654818
JH
1201 * __i915_wait_request - wait until execution of request has finished
1202 * @req: duh!
1203 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1204 * @interruptible: do an interruptible wait (normally yes)
1205 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1206 *
f69061be
DV
1207 * Note: It is of utmost importance that the passed in seqno and reset_counter
1208 * values have been read by the caller in an smp safe manner. Where read-side
1209 * locks are involved, it is sufficient to read the reset_counter before
1210 * unlocking the lock that protects the seqno. For lockless tricks, the
1211 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1212 * inserted.
1213 *
9c654818 1214 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1215 * errno with remaining time filled in timeout argument.
1216 */
9c654818 1217int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1218 unsigned reset_counter,
b29c19b6 1219 bool interruptible,
5ed0bdf2 1220 s64 *timeout,
2e1b8730 1221 struct intel_rps_client *rps)
b361237b 1222{
9c654818 1223 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1224 struct drm_device *dev = ring->dev;
3e31c6c0 1225 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1226 const bool irq_test_in_progress =
1227 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1228 DEFINE_WAIT(wait);
47e9766d 1229 unsigned long timeout_expire;
5ed0bdf2 1230 s64 before, now;
b361237b
CW
1231 int ret;
1232
9df7575f 1233 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1234
b4716185
CW
1235 if (list_empty(&req->list))
1236 return 0;
1237
1b5a433a 1238 if (i915_gem_request_completed(req, true))
b361237b
CW
1239 return 0;
1240
7bd0e226
DV
1241 timeout_expire = timeout ?
1242 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1243
2e1b8730 1244 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1245 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1246
094f9a54 1247 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1248 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1249 before = ktime_get_raw_ns();
2def4ad9
CW
1250
1251 /* Optimistic spin for the next jiffie before touching IRQs */
1252 ret = __i915_spin_request(req);
1253 if (ret == 0)
1254 goto out;
1255
1256 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1257 ret = -ENODEV;
1258 goto out;
1259 }
1260
094f9a54
CW
1261 for (;;) {
1262 struct timer_list timer;
b361237b 1263
094f9a54
CW
1264 prepare_to_wait(&ring->irq_queue, &wait,
1265 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1266
f69061be
DV
1267 /* We need to check whether any gpu reset happened in between
1268 * the caller grabbing the seqno and now ... */
094f9a54
CW
1269 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1270 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1271 * is truely gone. */
1272 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1273 if (ret == 0)
1274 ret = -EAGAIN;
1275 break;
1276 }
f69061be 1277
1b5a433a 1278 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1279 ret = 0;
1280 break;
1281 }
b361237b 1282
094f9a54
CW
1283 if (interruptible && signal_pending(current)) {
1284 ret = -ERESTARTSYS;
1285 break;
1286 }
1287
47e9766d 1288 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1289 ret = -ETIME;
1290 break;
1291 }
1292
1293 timer.function = NULL;
1294 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1295 unsigned long expire;
1296
094f9a54 1297 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1298 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1299 mod_timer(&timer, expire);
1300 }
1301
5035c275 1302 io_schedule();
094f9a54 1303
094f9a54
CW
1304 if (timer.function) {
1305 del_singleshot_timer_sync(&timer);
1306 destroy_timer_on_stack(&timer);
1307 }
1308 }
168c3f21
MK
1309 if (!irq_test_in_progress)
1310 ring->irq_put(ring);
094f9a54
CW
1311
1312 finish_wait(&ring->irq_queue, &wait);
b361237b 1313
2def4ad9
CW
1314out:
1315 now = ktime_get_raw_ns();
1316 trace_i915_gem_request_wait_end(req);
1317
b361237b 1318 if (timeout) {
5ed0bdf2
TG
1319 s64 tres = *timeout - (now - before);
1320
1321 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1322
1323 /*
1324 * Apparently ktime isn't accurate enough and occasionally has a
1325 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326 * things up to make the test happy. We allow up to 1 jiffy.
1327 *
1328 * This is a regrssion from the timespec->ktime conversion.
1329 */
1330 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331 *timeout = 0;
b361237b
CW
1332 }
1333
094f9a54 1334 return ret;
b361237b
CW
1335}
1336
b4716185
CW
1337static inline void
1338i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1339{
1340 struct drm_i915_file_private *file_priv = request->file_priv;
1341
1342 if (!file_priv)
1343 return;
1344
1345 spin_lock(&file_priv->mm.lock);
1346 list_del(&request->client_list);
1347 request->file_priv = NULL;
1348 spin_unlock(&file_priv->mm.lock);
1349}
1350
1351static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352{
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
1368 put_pid(request->pid);
1369
1370 i915_gem_request_unreference(request);
1371}
1372
1373static void
1374__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375{
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392}
1393
b361237b 1394/**
a4b3a571 1395 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1396 * request and object lists appropriately for that event.
1397 */
1398int
a4b3a571 1399i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1400{
a4b3a571
DV
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
b361237b
CW
1404 int ret;
1405
a4b3a571
DV
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
b361237b 1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1413
33196ded 1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1415 if (ret)
1416 return ret;
1417
a4b3a571 1418 ret = i915_gem_check_olr(req);
b361237b
CW
1419 if (ret)
1420 return ret;
1421
b4716185
CW
1422 ret = __i915_wait_request(req,
1423 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1424 interruptible, NULL, NULL);
b4716185
CW
1425 if (ret)
1426 return ret;
d26e3af8 1427
b4716185 1428 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1429 return 0;
1430}
1431
b361237b
CW
1432/**
1433 * Ensures that all rendering to the object has completed and the object is
1434 * safe to unbind from the GTT or access from the CPU.
1435 */
2e2f351d 1436int
b361237b
CW
1437i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1438 bool readonly)
1439{
b4716185 1440 int ret, i;
b361237b 1441
b4716185 1442 if (!obj->active)
b361237b
CW
1443 return 0;
1444
b4716185
CW
1445 if (readonly) {
1446 if (obj->last_write_req != NULL) {
1447 ret = i915_wait_request(obj->last_write_req);
1448 if (ret)
1449 return ret;
b361237b 1450
b4716185
CW
1451 i = obj->last_write_req->ring->id;
1452 if (obj->last_read_req[i] == obj->last_write_req)
1453 i915_gem_object_retire__read(obj, i);
1454 else
1455 i915_gem_object_retire__write(obj);
1456 }
1457 } else {
1458 for (i = 0; i < I915_NUM_RINGS; i++) {
1459 if (obj->last_read_req[i] == NULL)
1460 continue;
1461
1462 ret = i915_wait_request(obj->last_read_req[i]);
1463 if (ret)
1464 return ret;
1465
1466 i915_gem_object_retire__read(obj, i);
1467 }
1468 RQ_BUG_ON(obj->active);
1469 }
1470
1471 return 0;
1472}
1473
1474static void
1475i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1476 struct drm_i915_gem_request *req)
1477{
1478 int ring = req->ring->id;
1479
1480 if (obj->last_read_req[ring] == req)
1481 i915_gem_object_retire__read(obj, ring);
1482 else if (obj->last_write_req == req)
1483 i915_gem_object_retire__write(obj);
b361237b 1484
b4716185 1485 __i915_gem_request_retire__upto(req);
b361237b
CW
1486}
1487
3236f57a
CW
1488/* A nonblocking variant of the above wait. This is a highly dangerous routine
1489 * as the object state may change during this call.
1490 */
1491static __must_check int
1492i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1493 struct intel_rps_client *rps,
3236f57a
CW
1494 bool readonly)
1495{
1496 struct drm_device *dev = obj->base.dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1498 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1499 unsigned reset_counter;
b4716185 1500 int ret, i, n = 0;
3236f57a
CW
1501
1502 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1503 BUG_ON(!dev_priv->mm.interruptible);
1504
b4716185 1505 if (!obj->active)
3236f57a
CW
1506 return 0;
1507
33196ded 1508 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1509 if (ret)
1510 return ret;
1511
f69061be 1512 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1513
1514 if (readonly) {
1515 struct drm_i915_gem_request *req;
1516
1517 req = obj->last_write_req;
1518 if (req == NULL)
1519 return 0;
1520
1521 ret = i915_gem_check_olr(req);
1522 if (ret)
1523 goto err;
1524
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
1534 ret = i915_gem_check_olr(req);
1535 if (ret)
1536 goto err;
1537
1538 requests[n++] = i915_gem_request_reference(req);
1539 }
1540 }
1541
3236f57a 1542 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1543 for (i = 0; ret == 0 && i < n; i++)
1544 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1545 NULL, rps);
3236f57a
CW
1546 mutex_lock(&dev->struct_mutex);
1547
b4716185
CW
1548err:
1549 for (i = 0; i < n; i++) {
1550 if (ret == 0)
1551 i915_gem_object_retire_request(obj, requests[i]);
1552 i915_gem_request_unreference(requests[i]);
1553 }
1554
1555 return ret;
3236f57a
CW
1556}
1557
2e1b8730
CW
1558static struct intel_rps_client *to_rps_client(struct drm_file *file)
1559{
1560 struct drm_i915_file_private *fpriv = file->driver_priv;
1561 return &fpriv->rps;
3236f57a
CW
1562}
1563
673a394b 1564/**
2ef7eeaa
EA
1565 * Called when user space prepares to use an object with the CPU, either
1566 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1567 */
1568int
1569i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1570 struct drm_file *file)
673a394b
EA
1571{
1572 struct drm_i915_gem_set_domain *args = data;
05394f39 1573 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1574 uint32_t read_domains = args->read_domains;
1575 uint32_t write_domain = args->write_domain;
673a394b
EA
1576 int ret;
1577
2ef7eeaa 1578 /* Only handle setting domains to types used by the CPU. */
21d509e3 1579 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1580 return -EINVAL;
1581
21d509e3 1582 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1583 return -EINVAL;
1584
1585 /* Having something in the write domain implies it's in the read
1586 * domain, and only that read domain. Enforce that in the request.
1587 */
1588 if (write_domain != 0 && read_domains != write_domain)
1589 return -EINVAL;
1590
76c1dec1 1591 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1592 if (ret)
76c1dec1 1593 return ret;
1d7cfea1 1594
05394f39 1595 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1596 if (&obj->base == NULL) {
1d7cfea1
CW
1597 ret = -ENOENT;
1598 goto unlock;
76c1dec1 1599 }
673a394b 1600
3236f57a
CW
1601 /* Try to flush the object off the GPU without holding the lock.
1602 * We will repeat the flush holding the lock in the normal manner
1603 * to catch cases where we are gazumped.
1604 */
6e4930f6 1605 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1606 to_rps_client(file),
6e4930f6 1607 !write_domain);
3236f57a
CW
1608 if (ret)
1609 goto unref;
1610
43566ded 1611 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1612 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1613 else
e47c68e9 1614 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1615
3236f57a 1616unref:
05394f39 1617 drm_gem_object_unreference(&obj->base);
1d7cfea1 1618unlock:
673a394b
EA
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621}
1622
1623/**
1624 * Called when user space has done writes to this buffer
1625 */
1626int
1627i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1628 struct drm_file *file)
673a394b
EA
1629{
1630 struct drm_i915_gem_sw_finish *args = data;
05394f39 1631 struct drm_i915_gem_object *obj;
673a394b
EA
1632 int ret = 0;
1633
76c1dec1 1634 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1635 if (ret)
76c1dec1 1636 return ret;
1d7cfea1 1637
05394f39 1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1639 if (&obj->base == NULL) {
1d7cfea1
CW
1640 ret = -ENOENT;
1641 goto unlock;
673a394b
EA
1642 }
1643
673a394b 1644 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1645 if (obj->pin_display)
e62b59e4 1646 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1647
05394f39 1648 drm_gem_object_unreference(&obj->base);
1d7cfea1 1649unlock:
673a394b
EA
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652}
1653
1654/**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
34367381
DV
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1670 */
1671int
1672i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1673 struct drm_file *file)
673a394b
EA
1674{
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
673a394b
EA
1677 unsigned long addr;
1678
1816f923
AG
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
05394f39 1685 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1686 if (obj == NULL)
bf79cb91 1687 return -ENOENT;
673a394b 1688
1286ff73
DV
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
6be5ceb0 1697 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1816f923
AG
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
bc9025bd 1713 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720}
1721
de151cf6
JB
1722/**
1723 * i915_gem_fault - fault a page into the GTT
1724 * vma: VMA in question
1725 * vmf: fault info
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739{
05394f39
CW
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
3e31c6c0 1742 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
0f973f27 1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1748
f65c9168
PZ
1749 intel_runtime_pm_get(dev_priv);
1750
de151cf6
JB
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
d9bc7e9f
CW
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
a00b10c3 1758
db53a302
CW
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
6e4930f6
CW
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
eb119bd6
CW
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1772 ret = -EFAULT;
eb119bd6
CW
1773 goto unlock;
1774 }
1775
c5ad54cf 1776 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1779 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1780
c5ad54cf
JL
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1793 if (ret)
1794 goto unlock;
4a684a41 1795
c9839303
CW
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
74898d7e 1799
06d98131 1800 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1801 if (ret)
c9839303 1802 goto unpin;
7d1c4804 1803
b90b91d8 1804 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1807 pfn >>= PAGE_SHIFT;
de151cf6 1808
c5ad54cf
JL
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
b90b91d8 1818
c5ad54cf
JL
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
c5ad54cf
JL
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
c9839303 1847unpin:
c5ad54cf 1848 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1849unlock:
de151cf6 1850 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1851out:
de151cf6 1852 switch (ret) {
d9bc7e9f 1853 case -EIO:
2232f031
DV
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
045e769a 1864 case -EAGAIN:
571c608d
DV
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
d9bc7e9f 1869 */
c715089f
CW
1870 case 0:
1871 case -ERESTARTSYS:
bed636ab 1872 case -EINTR:
e79e0fe3
DR
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
f65c9168
PZ
1878 ret = VM_FAULT_NOPAGE;
1879 break;
de151cf6 1880 case -ENOMEM:
f65c9168
PZ
1881 ret = VM_FAULT_OOM;
1882 break;
a7c2e1aa 1883 case -ENOSPC:
45d67817 1884 case -EFAULT:
f65c9168
PZ
1885 ret = VM_FAULT_SIGBUS;
1886 break;
de151cf6 1887 default:
a7c2e1aa 1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1889 ret = VM_FAULT_SIGBUS;
1890 break;
de151cf6 1891 }
f65c9168
PZ
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
de151cf6
JB
1895}
1896
901782b2
CW
1897/**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
af901ca1 1901 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
d05ca301 1911void
05394f39 1912i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1913{
6299f992
CW
1914 if (!obj->fault_mappable)
1915 return;
901782b2 1916
6796cb16
DH
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
6299f992 1919 obj->fault_mappable = false;
901782b2
CW
1920}
1921
eedd10f4
CW
1922void
1923i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924{
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929}
1930
0fa87796 1931uint32_t
e28f8711 1932i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1933{
e28f8711 1934 uint32_t gtt_size;
92b88aeb
CW
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
92b88aeb
CW
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1942 gtt_size = 1024*1024;
92b88aeb 1943 else
e28f8711 1944 gtt_size = 512*1024;
92b88aeb 1945
e28f8711
CW
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
92b88aeb 1948
e28f8711 1949 return gtt_size;
92b88aeb
CW
1950}
1951
de151cf6
JB
1952/**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
5e783301 1957 * potential fence register mapping.
de151cf6 1958 */
d865110c
ID
1959uint32_t
1960i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
de151cf6 1962{
de151cf6
JB
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
d865110c 1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1968 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1969 return 4096;
1970
a00b10c3
CW
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
e28f8711 1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1976}
1977
d8cb5086
CW
1978static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979{
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
0de23977 1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1984 return 0;
1985
da494d7c
DV
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
d8cb5086
CW
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
da494d7c 1990 goto out;
d8cb5086
CW
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
21ab4e74
CW
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
da494d7c 2006 goto out;
d8cb5086
CW
2007
2008 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
d8cb5086
CW
2014}
2015
2016static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017{
d8cb5086
CW
2018 drm_gem_free_mmap_offset(&obj->base);
2019}
2020
da6b51d0 2021int
ff72145b
DA
2022i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
da6b51d0 2024 uint32_t handle,
ff72145b 2025 uint64_t *offset)
de151cf6 2026{
05394f39 2027 struct drm_i915_gem_object *obj;
de151cf6
JB
2028 int ret;
2029
76c1dec1 2030 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2031 if (ret)
76c1dec1 2032 return ret;
de151cf6 2033
ff72145b 2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2035 if (&obj->base == NULL) {
1d7cfea1
CW
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
de151cf6 2039
05394f39 2040 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2042 ret = -EFAULT;
1d7cfea1 2043 goto out;
ab18282d
CW
2044 }
2045
d8cb5086
CW
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
de151cf6 2049
0de23977 2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2051
1d7cfea1 2052out:
05394f39 2053 drm_gem_object_unreference(&obj->base);
1d7cfea1 2054unlock:
de151cf6 2055 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2056 return ret;
de151cf6
JB
2057}
2058
ff72145b
DA
2059/**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074int
2075i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077{
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
da6b51d0 2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2081}
2082
225067ee
DV
2083/* Immediately discard the backing storage */
2084static void
2085i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2086{
4d6294bf 2087 i915_gem_object_free_mmap_offset(obj);
1286ff73 2088
4d6294bf
CW
2089 if (obj->base.filp == NULL)
2090 return;
e5281ccd 2091
225067ee
DV
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
5537252b 2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2098 obj->madv = __I915_MADV_PURGED;
2099}
e5281ccd 2100
5537252b
CW
2101/* Try to discard unwanted pages */
2102static void
2103i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2104{
5537252b
CW
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2119}
2120
5cdf5881 2121static void
05394f39 2122i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2123{
90797e6d
ID
2124 struct sg_page_iter sg_iter;
2125 int ret;
1286ff73 2126
05394f39 2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2128
6c085a72
CW
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2c22569b 2135 i915_gem_clflush_object(obj, true);
6c085a72
CW
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
e2273302
ID
2139 i915_gem_gtt_finish_object(obj);
2140
6dacfd2f 2141 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2142 i915_gem_object_save_bit_17_swizzle(obj);
2143
05394f39
CW
2144 if (obj->madv == I915_MADV_DONTNEED)
2145 obj->dirty = 0;
3ef94daa 2146
90797e6d 2147 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2148 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2149
05394f39 2150 if (obj->dirty)
9da3da66 2151 set_page_dirty(page);
3ef94daa 2152
05394f39 2153 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2154 mark_page_accessed(page);
3ef94daa 2155
9da3da66 2156 page_cache_release(page);
3ef94daa 2157 }
05394f39 2158 obj->dirty = 0;
673a394b 2159
9da3da66
CW
2160 sg_free_table(obj->pages);
2161 kfree(obj->pages);
37e680a1 2162}
6c085a72 2163
dd624afd 2164int
37e680a1
CW
2165i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2166{
2167 const struct drm_i915_gem_object_ops *ops = obj->ops;
2168
2f745ad3 2169 if (obj->pages == NULL)
37e680a1
CW
2170 return 0;
2171
a5570178
CW
2172 if (obj->pages_pin_count)
2173 return -EBUSY;
2174
9843877d 2175 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2176
a2165e31
CW
2177 /* ->put_pages might need to allocate memory for the bit17 swizzle
2178 * array, hence protect them from being reaped by removing them from gtt
2179 * lists early. */
35c20a60 2180 list_del(&obj->global_list);
a2165e31 2181
37e680a1 2182 ops->put_pages(obj);
05394f39 2183 obj->pages = NULL;
37e680a1 2184
5537252b 2185 i915_gem_object_invalidate(obj);
6c085a72
CW
2186
2187 return 0;
2188}
2189
37e680a1 2190static int
6c085a72 2191i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2192{
6c085a72 2193 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2194 int page_count, i;
2195 struct address_space *mapping;
9da3da66
CW
2196 struct sg_table *st;
2197 struct scatterlist *sg;
90797e6d 2198 struct sg_page_iter sg_iter;
e5281ccd 2199 struct page *page;
90797e6d 2200 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2201 int ret;
6c085a72 2202 gfp_t gfp;
e5281ccd 2203
6c085a72
CW
2204 /* Assert that the object is not currently in any GPU domain. As it
2205 * wasn't in the GTT, there shouldn't be any way it could have been in
2206 * a GPU cache
2207 */
2208 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
9da3da66
CW
2211 st = kmalloc(sizeof(*st), GFP_KERNEL);
2212 if (st == NULL)
2213 return -ENOMEM;
2214
05394f39 2215 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2216 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2217 kfree(st);
e5281ccd 2218 return -ENOMEM;
9da3da66 2219 }
e5281ccd 2220
9da3da66
CW
2221 /* Get the list of pages out of our struct file. They'll be pinned
2222 * at this point until we release them.
2223 *
2224 * Fail silently without starting the shrinker
2225 */
496ad9aa 2226 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2227 gfp = mapping_gfp_mask(mapping);
caf49191 2228 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2229 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2230 sg = st->sgl;
2231 st->nents = 0;
2232 for (i = 0; i < page_count; i++) {
6c085a72
CW
2233 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2234 if (IS_ERR(page)) {
21ab4e74
CW
2235 i915_gem_shrink(dev_priv,
2236 page_count,
2237 I915_SHRINK_BOUND |
2238 I915_SHRINK_UNBOUND |
2239 I915_SHRINK_PURGEABLE);
6c085a72
CW
2240 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241 }
2242 if (IS_ERR(page)) {
2243 /* We've tried hard to allocate the memory by reaping
2244 * our own buffer, now let the real VM do its job and
2245 * go down in flames if truly OOM.
2246 */
6c085a72 2247 i915_gem_shrink_all(dev_priv);
f461d1be 2248 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2249 if (IS_ERR(page)) {
2250 ret = PTR_ERR(page);
6c085a72 2251 goto err_pages;
e2273302 2252 }
6c085a72 2253 }
426729dc
KRW
2254#ifdef CONFIG_SWIOTLB
2255 if (swiotlb_nr_tbl()) {
2256 st->nents++;
2257 sg_set_page(sg, page, PAGE_SIZE, 0);
2258 sg = sg_next(sg);
2259 continue;
2260 }
2261#endif
90797e6d
ID
2262 if (!i || page_to_pfn(page) != last_pfn + 1) {
2263 if (i)
2264 sg = sg_next(sg);
2265 st->nents++;
2266 sg_set_page(sg, page, PAGE_SIZE, 0);
2267 } else {
2268 sg->length += PAGE_SIZE;
2269 }
2270 last_pfn = page_to_pfn(page);
3bbbe706
DV
2271
2272 /* Check that the i965g/gm workaround works. */
2273 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2274 }
426729dc
KRW
2275#ifdef CONFIG_SWIOTLB
2276 if (!swiotlb_nr_tbl())
2277#endif
2278 sg_mark_end(sg);
74ce6b6c
CW
2279 obj->pages = st;
2280
e2273302
ID
2281 ret = i915_gem_gtt_prepare_object(obj);
2282 if (ret)
2283 goto err_pages;
2284
6dacfd2f 2285 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2286 i915_gem_object_do_bit_17_swizzle(obj);
2287
656bfa3a
DV
2288 if (obj->tiling_mode != I915_TILING_NONE &&
2289 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2290 i915_gem_object_pin_pages(obj);
2291
e5281ccd
CW
2292 return 0;
2293
2294err_pages:
90797e6d
ID
2295 sg_mark_end(sg);
2296 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2297 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2298 sg_free_table(st);
2299 kfree(st);
0820baf3
CW
2300
2301 /* shmemfs first checks if there is enough memory to allocate the page
2302 * and reports ENOSPC should there be insufficient, along with the usual
2303 * ENOMEM for a genuine allocation failure.
2304 *
2305 * We use ENOSPC in our driver to mean that we have run out of aperture
2306 * space and so want to translate the error from shmemfs back to our
2307 * usual understanding of ENOMEM.
2308 */
e2273302
ID
2309 if (ret == -ENOSPC)
2310 ret = -ENOMEM;
2311
2312 return ret;
673a394b
EA
2313}
2314
37e680a1
CW
2315/* Ensure that the associated pages are gathered from the backing storage
2316 * and pinned into our object. i915_gem_object_get_pages() may be called
2317 * multiple times before they are released by a single call to
2318 * i915_gem_object_put_pages() - once the pages are no longer referenced
2319 * either as a result of memory pressure (reaping pages under the shrinker)
2320 * or as the object is itself released.
2321 */
2322int
2323i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2324{
2325 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2326 const struct drm_i915_gem_object_ops *ops = obj->ops;
2327 int ret;
2328
2f745ad3 2329 if (obj->pages)
37e680a1
CW
2330 return 0;
2331
43e28f09 2332 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2333 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2334 return -EFAULT;
43e28f09
CW
2335 }
2336
a5570178
CW
2337 BUG_ON(obj->pages_pin_count);
2338
37e680a1
CW
2339 ret = ops->get_pages(obj);
2340 if (ret)
2341 return ret;
2342
35c20a60 2343 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2344
2345 obj->get_page.sg = obj->pages->sgl;
2346 obj->get_page.last = 0;
2347
37e680a1 2348 return 0;
673a394b
EA
2349}
2350
b4716185
CW
2351void i915_vma_move_to_active(struct i915_vma *vma,
2352 struct intel_engine_cs *ring)
673a394b 2353{
b4716185 2354 struct drm_i915_gem_object *obj = vma->obj;
673a394b
EA
2355
2356 /* Add a reference if we're newly entering the active list. */
b4716185 2357 if (obj->active == 0)
05394f39 2358 drm_gem_object_reference(&obj->base);
b4716185 2359 obj->active |= intel_ring_flag(ring);
e35a41de 2360
b4716185
CW
2361 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2362 i915_gem_request_assign(&obj->last_read_req[ring->id],
2363 intel_ring_get_request(ring));
caea7476 2364
b4716185 2365 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2366}
2367
b4716185
CW
2368static void
2369i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2370{
b4716185
CW
2371 RQ_BUG_ON(obj->last_write_req == NULL);
2372 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2373
2374 i915_gem_request_assign(&obj->last_write_req, NULL);
2375 intel_fb_obj_flush(obj, true);
e2d05a8b
BW
2376}
2377
caea7476 2378static void
b4716185 2379i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2380{
feb822cf 2381 struct i915_vma *vma;
ce44b0ea 2382
b4716185
CW
2383 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2384 RQ_BUG_ON(!(obj->active & (1 << ring)));
2385
2386 list_del_init(&obj->ring_list[ring]);
2387 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2388
2389 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2390 i915_gem_object_retire__write(obj);
2391
2392 obj->active &= ~(1 << ring);
2393 if (obj->active)
2394 return;
caea7476 2395
fe14d5f4
TU
2396 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2397 if (!list_empty(&vma->mm_list))
2398 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2399 }
caea7476 2400
97b2a6a1 2401 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2402 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2403}
2404
9d773091 2405static int
fca26bb4 2406i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2407{
9d773091 2408 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2409 struct intel_engine_cs *ring;
9d773091 2410 int ret, i, j;
53d227f2 2411
107f27a5 2412 /* Carefully retire all requests without writing to the rings */
9d773091 2413 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2414 ret = intel_ring_idle(ring);
2415 if (ret)
2416 return ret;
9d773091 2417 }
9d773091 2418 i915_gem_retire_requests(dev);
107f27a5
CW
2419
2420 /* Finally reset hw state */
9d773091 2421 for_each_ring(ring, dev_priv, i) {
fca26bb4 2422 intel_ring_init_seqno(ring, seqno);
498d2ac1 2423
ebc348b2
BW
2424 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2425 ring->semaphore.sync_seqno[j] = 0;
9d773091 2426 }
53d227f2 2427
9d773091 2428 return 0;
53d227f2
DV
2429}
2430
fca26bb4
MK
2431int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2432{
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 int ret;
2435
2436 if (seqno == 0)
2437 return -EINVAL;
2438
2439 /* HWS page needs to be set less than what we
2440 * will inject to ring
2441 */
2442 ret = i915_gem_init_seqno(dev, seqno - 1);
2443 if (ret)
2444 return ret;
2445
2446 /* Carefully set the last_seqno value so that wrap
2447 * detection still works
2448 */
2449 dev_priv->next_seqno = seqno;
2450 dev_priv->last_seqno = seqno - 1;
2451 if (dev_priv->last_seqno == 0)
2452 dev_priv->last_seqno--;
2453
2454 return 0;
2455}
2456
9d773091
CW
2457int
2458i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2459{
9d773091
CW
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461
2462 /* reserve 0 for non-seqno */
2463 if (dev_priv->next_seqno == 0) {
fca26bb4 2464 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2465 if (ret)
2466 return ret;
53d227f2 2467
9d773091
CW
2468 dev_priv->next_seqno = 1;
2469 }
53d227f2 2470
f72b3435 2471 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2472 return 0;
53d227f2
DV
2473}
2474
a4872ba6 2475int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2476 struct drm_file *file,
9400ae5c 2477 struct drm_i915_gem_object *obj)
673a394b 2478{
3e31c6c0 2479 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2480 struct drm_i915_gem_request *request;
48e29f55 2481 struct intel_ringbuffer *ringbuf;
6d3d8274 2482 u32 request_start;
3cce469c
CW
2483 int ret;
2484
6259cead 2485 request = ring->outstanding_lazy_request;
48e29f55
OM
2486 if (WARN_ON(request == NULL))
2487 return -ENOMEM;
2488
2489 if (i915.enable_execlists) {
21076372 2490 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2491 } else
2492 ringbuf = ring->buffer;
2493
2494 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2495 /*
2496 * Emit any outstanding flushes - execbuf can fail to emit the flush
2497 * after having emitted the batchbuffer command. Hence we need to fix
2498 * things up similar to emitting the lazy request. The difference here
2499 * is that the flush _must_ happen before the next request, no matter
2500 * what.
2501 */
48e29f55 2502 if (i915.enable_execlists) {
21076372 2503 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2504 if (ret)
2505 return ret;
2506 } else {
2507 ret = intel_ring_flush_all_caches(ring);
2508 if (ret)
2509 return ret;
2510 }
cc889e0f 2511
a71d8d94
CW
2512 /* Record the position of the start of the request so that
2513 * should we detect the updated seqno part-way through the
2514 * GPU processing the request, we never over-estimate the
2515 * position of the head.
2516 */
6d3d8274 2517 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2518
48e29f55 2519 if (i915.enable_execlists) {
72f95afa 2520 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2521 if (ret)
2522 return ret;
2523 } else {
2524 ret = ring->add_request(ring);
2525 if (ret)
2526 return ret;
53292cdb
MT
2527
2528 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2529 }
673a394b 2530
7d736f4f 2531 request->head = request_start;
7d736f4f
MK
2532
2533 /* Whilst this request exists, batch_obj will be on the
2534 * active_list, and so will hold the active reference. Only when this
2535 * request is retired will the the batch_obj be moved onto the
2536 * inactive_list and lose its active reference. Hence we do not need
2537 * to explicitly hold another reference here.
2538 */
9a7e0c2a 2539 request->batch_obj = obj;
0e50e96b 2540
48e29f55
OM
2541 if (!i915.enable_execlists) {
2542 /* Hold a reference to the current context so that we can inspect
2543 * it later in case a hangcheck error event fires.
2544 */
2545 request->ctx = ring->last_context;
2546 if (request->ctx)
2547 i915_gem_context_reference(request->ctx);
2548 }
0e50e96b 2549
673a394b 2550 request->emitted_jiffies = jiffies;
94f7bbe1 2551 ring->last_submitted_seqno = request->seqno;
852835f3 2552 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2553 request->file_priv = NULL;
852835f3 2554
db53a302
CW
2555 if (file) {
2556 struct drm_i915_file_private *file_priv = file->driver_priv;
2557
1c25595f 2558 spin_lock(&file_priv->mm.lock);
f787a5f5 2559 request->file_priv = file_priv;
b962442e 2560 list_add_tail(&request->client_list,
f787a5f5 2561 &file_priv->mm.request_list);
1c25595f 2562 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2563
2564 request->pid = get_pid(task_pid(current));
b962442e 2565 }
673a394b 2566
74328ee5 2567 trace_i915_gem_request_add(request);
6259cead 2568 ring->outstanding_lazy_request = NULL;
db53a302 2569
87255483 2570 i915_queue_hangcheck(ring->dev);
10cd45b6 2571
87255483
DV
2572 queue_delayed_work(dev_priv->wq,
2573 &dev_priv->mm.retire_work,
2574 round_jiffies_up_relative(HZ));
2575 intel_mark_busy(dev_priv->dev);
cc889e0f 2576
3cce469c 2577 return 0;
673a394b
EA
2578}
2579
939fd762 2580static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2581 const struct intel_context *ctx)
be62acb4 2582{
44e2c070 2583 unsigned long elapsed;
be62acb4 2584
44e2c070
MK
2585 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2586
2587 if (ctx->hang_stats.banned)
be62acb4
MK
2588 return true;
2589
676fa572
CW
2590 if (ctx->hang_stats.ban_period_seconds &&
2591 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2592 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2593 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2594 return true;
88b4aa87
MK
2595 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2596 if (i915_stop_ring_allow_warn(dev_priv))
2597 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2598 return true;
3fac8978 2599 }
be62acb4
MK
2600 }
2601
2602 return false;
2603}
2604
939fd762 2605static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2606 struct intel_context *ctx,
b6b0fac0 2607 const bool guilty)
aa60c664 2608{
44e2c070
MK
2609 struct i915_ctx_hang_stats *hs;
2610
2611 if (WARN_ON(!ctx))
2612 return;
aa60c664 2613
44e2c070
MK
2614 hs = &ctx->hang_stats;
2615
2616 if (guilty) {
939fd762 2617 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2618 hs->batch_active++;
2619 hs->guilty_ts = get_seconds();
2620 } else {
2621 hs->batch_pending++;
aa60c664
MK
2622 }
2623}
2624
abfe262a
JH
2625void i915_gem_request_free(struct kref *req_ref)
2626{
2627 struct drm_i915_gem_request *req = container_of(req_ref,
2628 typeof(*req), ref);
2629 struct intel_context *ctx = req->ctx;
2630
0794aed3
TD
2631 if (ctx) {
2632 if (i915.enable_execlists) {
abfe262a 2633 struct intel_engine_cs *ring = req->ring;
0e50e96b 2634
0794aed3
TD
2635 if (ctx != ring->default_context)
2636 intel_lr_context_unpin(ring, ctx);
2637 }
abfe262a 2638
dcb4c12a
OM
2639 i915_gem_context_unreference(ctx);
2640 }
abfe262a 2641
efab6d8d 2642 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2643}
2644
6689cb2b
JH
2645int i915_gem_request_alloc(struct intel_engine_cs *ring,
2646 struct intel_context *ctx)
2647{
efab6d8d 2648 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2649 struct drm_i915_gem_request *req;
6689cb2b 2650 int ret;
6689cb2b
JH
2651
2652 if (ring->outstanding_lazy_request)
2653 return 0;
2654
eed29a5b
DV
2655 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2656 if (req == NULL)
6689cb2b
JH
2657 return -ENOMEM;
2658
eed29a5b
DV
2659 kref_init(&req->ref);
2660 req->i915 = dev_priv;
efab6d8d 2661
eed29a5b 2662 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2663 if (ret)
2664 goto err;
6689cb2b 2665
eed29a5b 2666 req->ring = ring;
6689cb2b
JH
2667
2668 if (i915.enable_execlists)
eed29a5b 2669 ret = intel_logical_ring_alloc_request_extras(req, ctx);
6689cb2b 2670 else
eed29a5b 2671 ret = intel_ring_alloc_request_extras(req);
9a0c1e27
CW
2672 if (ret)
2673 goto err;
6689cb2b 2674
eed29a5b 2675 ring->outstanding_lazy_request = req;
6689cb2b 2676 return 0;
9a0c1e27
CW
2677
2678err:
2679 kmem_cache_free(dev_priv->requests, req);
2680 return ret;
0e50e96b
MK
2681}
2682
8d9fc7fd 2683struct drm_i915_gem_request *
a4872ba6 2684i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2685{
4db080f9
CW
2686 struct drm_i915_gem_request *request;
2687
2688 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2689 if (i915_gem_request_completed(request, false))
4db080f9 2690 continue;
aa60c664 2691
b6b0fac0 2692 return request;
4db080f9 2693 }
b6b0fac0
MK
2694
2695 return NULL;
2696}
2697
2698static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2699 struct intel_engine_cs *ring)
b6b0fac0
MK
2700{
2701 struct drm_i915_gem_request *request;
2702 bool ring_hung;
2703
8d9fc7fd 2704 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2705
2706 if (request == NULL)
2707 return;
2708
2709 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2710
939fd762 2711 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2712
2713 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2714 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2715}
aa60c664 2716
4db080f9 2717static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2718 struct intel_engine_cs *ring)
4db080f9 2719{
dfaae392 2720 while (!list_empty(&ring->active_list)) {
05394f39 2721 struct drm_i915_gem_object *obj;
9375e446 2722
05394f39
CW
2723 obj = list_first_entry(&ring->active_list,
2724 struct drm_i915_gem_object,
b4716185 2725 ring_list[ring->id]);
9375e446 2726
b4716185 2727 i915_gem_object_retire__read(obj, ring->id);
673a394b 2728 }
1d62beea 2729
dcb4c12a
OM
2730 /*
2731 * Clear the execlists queue up before freeing the requests, as those
2732 * are the ones that keep the context and ringbuffer backing objects
2733 * pinned in place.
2734 */
2735 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2736 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2737
2738 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2739 struct drm_i915_gem_request,
dcb4c12a
OM
2740 execlist_link);
2741 list_del(&submit_req->execlist_link);
1197b4f2
MK
2742
2743 if (submit_req->ctx != ring->default_context)
2744 intel_lr_context_unpin(ring, submit_req->ctx);
2745
b3a38998 2746 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2747 }
2748
1d62beea
BW
2749 /*
2750 * We must free the requests after all the corresponding objects have
2751 * been moved off active lists. Which is the same order as the normal
2752 * retire_requests function does. This is important if object hold
2753 * implicit references on things like e.g. ppgtt address spaces through
2754 * the request.
2755 */
2756 while (!list_empty(&ring->request_list)) {
2757 struct drm_i915_gem_request *request;
2758
2759 request = list_first_entry(&ring->request_list,
2760 struct drm_i915_gem_request,
2761 list);
2762
b4716185 2763 i915_gem_request_retire(request);
1d62beea 2764 }
e3efda49 2765
6259cead
JH
2766 /* This may not have been flushed before the reset, so clean it now */
2767 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2768}
2769
19b2dbde 2770void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2771{
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 int i;
2774
4b9de737 2775 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2776 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2777
94a335db
DV
2778 /*
2779 * Commit delayed tiling changes if we have an object still
2780 * attached to the fence, otherwise just clear the fence.
2781 */
2782 if (reg->obj) {
2783 i915_gem_object_update_fence(reg->obj, reg,
2784 reg->obj->tiling_mode);
2785 } else {
2786 i915_gem_write_fence(dev, i, NULL);
2787 }
312817a3
CW
2788 }
2789}
2790
069efc1d 2791void i915_gem_reset(struct drm_device *dev)
673a394b 2792{
77f01230 2793 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2794 struct intel_engine_cs *ring;
1ec14ad3 2795 int i;
673a394b 2796
4db080f9
CW
2797 /*
2798 * Before we free the objects from the requests, we need to inspect
2799 * them for finding the guilty party. As the requests only borrow
2800 * their reference to the objects, the inspection must be done first.
2801 */
2802 for_each_ring(ring, dev_priv, i)
2803 i915_gem_reset_ring_status(dev_priv, ring);
2804
b4519513 2805 for_each_ring(ring, dev_priv, i)
4db080f9 2806 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2807
acce9ffa
BW
2808 i915_gem_context_reset(dev);
2809
19b2dbde 2810 i915_gem_restore_fences(dev);
b4716185
CW
2811
2812 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2813}
2814
2815/**
2816 * This function clears the request list as sequence numbers are passed.
2817 */
1cf0ba14 2818void
a4872ba6 2819i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2820{
db53a302 2821 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2822
832a3aad
CW
2823 /* Retire requests first as we use it above for the early return.
2824 * If we retire requests last, we may use a later seqno and so clear
2825 * the requests lists without clearing the active list, leading to
2826 * confusion.
e9103038 2827 */
852835f3 2828 while (!list_empty(&ring->request_list)) {
673a394b 2829 struct drm_i915_gem_request *request;
673a394b 2830
852835f3 2831 request = list_first_entry(&ring->request_list,
673a394b
EA
2832 struct drm_i915_gem_request,
2833 list);
673a394b 2834
1b5a433a 2835 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2836 break;
2837
b4716185 2838 i915_gem_request_retire(request);
b84d5f0c 2839 }
673a394b 2840
832a3aad
CW
2841 /* Move any buffers on the active list that are no longer referenced
2842 * by the ringbuffer to the flushing/inactive lists as appropriate,
2843 * before we free the context associated with the requests.
2844 */
2845 while (!list_empty(&ring->active_list)) {
2846 struct drm_i915_gem_object *obj;
2847
2848 obj = list_first_entry(&ring->active_list,
2849 struct drm_i915_gem_object,
b4716185 2850 ring_list[ring->id]);
832a3aad 2851
b4716185 2852 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2853 break;
2854
b4716185 2855 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2856 }
2857
581c26e8
JH
2858 if (unlikely(ring->trace_irq_req &&
2859 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2860 ring->irq_put(ring);
581c26e8 2861 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2862 }
23bc5982 2863
db53a302 2864 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2865}
2866
b29c19b6 2867bool
b09a1fec
CW
2868i915_gem_retire_requests(struct drm_device *dev)
2869{
3e31c6c0 2870 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2871 struct intel_engine_cs *ring;
b29c19b6 2872 bool idle = true;
1ec14ad3 2873 int i;
b09a1fec 2874
b29c19b6 2875 for_each_ring(ring, dev_priv, i) {
b4519513 2876 i915_gem_retire_requests_ring(ring);
b29c19b6 2877 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2878 if (i915.enable_execlists) {
2879 unsigned long flags;
2880
2881 spin_lock_irqsave(&ring->execlist_lock, flags);
2882 idle &= list_empty(&ring->execlist_queue);
2883 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2884
2885 intel_execlists_retire_requests(ring);
2886 }
b29c19b6
CW
2887 }
2888
2889 if (idle)
2890 mod_delayed_work(dev_priv->wq,
2891 &dev_priv->mm.idle_work,
2892 msecs_to_jiffies(100));
2893
2894 return idle;
b09a1fec
CW
2895}
2896
75ef9da2 2897static void
673a394b
EA
2898i915_gem_retire_work_handler(struct work_struct *work)
2899{
b29c19b6
CW
2900 struct drm_i915_private *dev_priv =
2901 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2902 struct drm_device *dev = dev_priv->dev;
0a58705b 2903 bool idle;
673a394b 2904
891b48cf 2905 /* Come back later if the device is busy... */
b29c19b6
CW
2906 idle = false;
2907 if (mutex_trylock(&dev->struct_mutex)) {
2908 idle = i915_gem_retire_requests(dev);
2909 mutex_unlock(&dev->struct_mutex);
673a394b 2910 }
b29c19b6 2911 if (!idle)
bcb45086
CW
2912 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2913 round_jiffies_up_relative(HZ));
b29c19b6 2914}
0a58705b 2915
b29c19b6
CW
2916static void
2917i915_gem_idle_work_handler(struct work_struct *work)
2918{
2919 struct drm_i915_private *dev_priv =
2920 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2921 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2922 struct intel_engine_cs *ring;
2923 int i;
b29c19b6 2924
423795cb
CW
2925 for_each_ring(ring, dev_priv, i)
2926 if (!list_empty(&ring->request_list))
2927 return;
35c94185
CW
2928
2929 intel_mark_idle(dev);
2930
2931 if (mutex_trylock(&dev->struct_mutex)) {
2932 struct intel_engine_cs *ring;
2933 int i;
b29c19b6 2934
35c94185
CW
2935 for_each_ring(ring, dev_priv, i)
2936 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2937
35c94185
CW
2938 mutex_unlock(&dev->struct_mutex);
2939 }
673a394b
EA
2940}
2941
30dfebf3
DV
2942/**
2943 * Ensures that an object will eventually get non-busy by flushing any required
2944 * write domains, emitting any outstanding lazy request and retiring and
2945 * completed requests.
2946 */
2947static int
2948i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2949{
b4716185
CW
2950 int ret, i;
2951
2952 if (!obj->active)
2953 return 0;
30dfebf3 2954
b4716185
CW
2955 for (i = 0; i < I915_NUM_RINGS; i++) {
2956 struct drm_i915_gem_request *req;
41c52415 2957
b4716185
CW
2958 req = obj->last_read_req[i];
2959 if (req == NULL)
2960 continue;
30dfebf3 2961
b4716185
CW
2962 if (list_empty(&req->list))
2963 goto retire;
41c52415 2964
b4716185 2965 ret = i915_gem_check_olr(req);
30dfebf3
DV
2966 if (ret)
2967 return ret;
2968
b4716185
CW
2969 if (i915_gem_request_completed(req, true)) {
2970 __i915_gem_request_retire__upto(req);
2971retire:
2972 i915_gem_object_retire__read(obj, i);
2973 }
30dfebf3
DV
2974 }
2975
2976 return 0;
2977}
2978
23ba4fd0
BW
2979/**
2980 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2981 * @DRM_IOCTL_ARGS: standard ioctl arguments
2982 *
2983 * Returns 0 if successful, else an error is returned with the remaining time in
2984 * the timeout parameter.
2985 * -ETIME: object is still busy after timeout
2986 * -ERESTARTSYS: signal interrupted the wait
2987 * -ENONENT: object doesn't exist
2988 * Also possible, but rare:
2989 * -EAGAIN: GPU wedged
2990 * -ENOMEM: damn
2991 * -ENODEV: Internal IRQ fail
2992 * -E?: The add request failed
2993 *
2994 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2995 * non-zero timeout parameter the wait ioctl will wait for the given number of
2996 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2997 * without holding struct_mutex the object may become re-busied before this
2998 * function completes. A similar but shorter * race condition exists in the busy
2999 * ioctl
3000 */
3001int
3002i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3003{
3e31c6c0 3004 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3005 struct drm_i915_gem_wait *args = data;
3006 struct drm_i915_gem_object *obj;
b4716185 3007 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3008 unsigned reset_counter;
b4716185
CW
3009 int i, n = 0;
3010 int ret;
23ba4fd0 3011
11b5d511
DV
3012 if (args->flags != 0)
3013 return -EINVAL;
3014
23ba4fd0
BW
3015 ret = i915_mutex_lock_interruptible(dev);
3016 if (ret)
3017 return ret;
3018
3019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3020 if (&obj->base == NULL) {
3021 mutex_unlock(&dev->struct_mutex);
3022 return -ENOENT;
3023 }
3024
30dfebf3
DV
3025 /* Need to make sure the object gets inactive eventually. */
3026 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3027 if (ret)
3028 goto out;
3029
b4716185 3030 if (!obj->active)
97b2a6a1 3031 goto out;
23ba4fd0 3032
23ba4fd0 3033 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3034 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3035 */
762e4583 3036 if (args->timeout_ns == 0) {
23ba4fd0
BW
3037 ret = -ETIME;
3038 goto out;
3039 }
3040
3041 drm_gem_object_unreference(&obj->base);
f69061be 3042 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0 3043
b4716185
CW
3044 for (i = 0; i < I915_NUM_RINGS; i++) {
3045 if (obj->last_read_req[i] == NULL)
3046 continue;
3047
3048 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3049 }
3050
ff865885 3051 mutex_unlock(&dev->struct_mutex);
23ba4fd0 3052
b4716185
CW
3053 for (i = 0; i < n; i++) {
3054 if (ret == 0)
3055 ret = __i915_wait_request(req[i], reset_counter, true,
3056 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3057 file->driver_priv);
3058 i915_gem_request_unreference__unlocked(req[i]);
3059 }
ff865885 3060 return ret;
23ba4fd0
BW
3061
3062out:
3063 drm_gem_object_unreference(&obj->base);
3064 mutex_unlock(&dev->struct_mutex);
3065 return ret;
3066}
3067
b4716185
CW
3068static int
3069__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3070 struct intel_engine_cs *to,
3071 struct drm_i915_gem_request *req)
3072{
3073 struct intel_engine_cs *from;
3074 int ret;
3075
3076 from = i915_gem_request_get_ring(req);
3077 if (to == from)
3078 return 0;
3079
3080 if (i915_gem_request_completed(req, true))
3081 return 0;
3082
3083 ret = i915_gem_check_olr(req);
3084 if (ret)
3085 return ret;
3086
3087 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3088 struct drm_i915_private *i915 = to_i915(obj->base.dev);
b4716185 3089 ret = __i915_wait_request(req,
a6f766f3
CW
3090 atomic_read(&i915->gpu_error.reset_counter),
3091 i915->mm.interruptible,
3092 NULL,
3093 &i915->rps.semaphores);
b4716185
CW
3094 if (ret)
3095 return ret;
3096
3097 i915_gem_object_retire_request(obj, req);
3098 } else {
3099 int idx = intel_ring_sync_index(from, to);
3100 u32 seqno = i915_gem_request_get_seqno(req);
3101
3102 if (seqno <= from->semaphore.sync_seqno[idx])
3103 return 0;
3104
3105 trace_i915_gem_ring_sync_to(from, to, req);
3106 ret = to->semaphore.sync_to(to, from, seqno);
3107 if (ret)
3108 return ret;
3109
3110 /* We use last_read_req because sync_to()
3111 * might have just caused seqno wrap under
3112 * the radar.
3113 */
3114 from->semaphore.sync_seqno[idx] =
3115 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3116 }
3117
3118 return 0;
3119}
3120
5816d648
BW
3121/**
3122 * i915_gem_object_sync - sync an object to a ring.
3123 *
3124 * @obj: object which may be in use on another ring.
3125 * @to: ring we wish to use the object on. May be NULL.
3126 *
3127 * This code is meant to abstract object synchronization with the GPU.
3128 * Calling with NULL implies synchronizing the object with the CPU
b4716185
CW
3129 * rather than a particular GPU ring. Conceptually we serialise writes
3130 * between engines inside the GPU. We only allow on engine to write
3131 * into a buffer at any time, but multiple readers. To ensure each has
3132 * a coherent view of memory, we must:
3133 *
3134 * - If there is an outstanding write request to the object, the new
3135 * request must wait for it to complete (either CPU or in hw, requests
3136 * on the same ring will be naturally ordered).
3137 *
3138 * - If we are a write request (pending_write_domain is set), the new
3139 * request must wait for outstanding read requests to complete.
5816d648
BW
3140 *
3141 * Returns 0 if successful, else propagates up the lower layer error.
3142 */
2911a35b
BW
3143int
3144i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 3145 struct intel_engine_cs *to)
2911a35b 3146{
b4716185
CW
3147 const bool readonly = obj->base.pending_write_domain == 0;
3148 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3149 int ret, i, n;
2911a35b 3150
b4716185 3151 if (!obj->active)
2911a35b
BW
3152 return 0;
3153
b4716185
CW
3154 if (to == NULL)
3155 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3156
b4716185
CW
3157 n = 0;
3158 if (readonly) {
3159 if (obj->last_write_req)
3160 req[n++] = obj->last_write_req;
3161 } else {
3162 for (i = 0; i < I915_NUM_RINGS; i++)
3163 if (obj->last_read_req[i])
3164 req[n++] = obj->last_read_req[i];
3165 }
3166 for (i = 0; i < n; i++) {
3167 ret = __i915_gem_object_sync(obj, to, req[i]);
3168 if (ret)
3169 return ret;
3170 }
2911a35b 3171
b4716185 3172 return 0;
2911a35b
BW
3173}
3174
b5ffc9bc
CW
3175static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3176{
3177 u32 old_write_domain, old_read_domains;
3178
b5ffc9bc
CW
3179 /* Force a pagefault for domain tracking on next user access */
3180 i915_gem_release_mmap(obj);
3181
b97c3d9c
KP
3182 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3183 return;
3184
97c809fd
CW
3185 /* Wait for any direct GTT access to complete */
3186 mb();
3187
b5ffc9bc
CW
3188 old_read_domains = obj->base.read_domains;
3189 old_write_domain = obj->base.write_domain;
3190
3191 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3192 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3193
3194 trace_i915_gem_object_change_domain(obj,
3195 old_read_domains,
3196 old_write_domain);
3197}
3198
07fe0b12 3199int i915_vma_unbind(struct i915_vma *vma)
673a394b 3200{
07fe0b12 3201 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3202 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3203 int ret;
673a394b 3204
07fe0b12 3205 if (list_empty(&vma->vma_link))
673a394b
EA
3206 return 0;
3207
0ff501cb
DV
3208 if (!drm_mm_node_allocated(&vma->node)) {
3209 i915_gem_vma_destroy(vma);
0ff501cb
DV
3210 return 0;
3211 }
433544bd 3212
d7f46fc4 3213 if (vma->pin_count)
31d8d651 3214 return -EBUSY;
673a394b 3215
c4670ad0
CW
3216 BUG_ON(obj->pages == NULL);
3217
2e2f351d 3218 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3219 if (ret)
a8198eea
CW
3220 return ret;
3221 /* Continue on if we fail due to EIO, the GPU is hung so we
3222 * should be safe and we need to cleanup or else we might
3223 * cause memory corruption through use-after-free.
3224 */
3225
fe14d5f4
TU
3226 if (i915_is_ggtt(vma->vm) &&
3227 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3228 i915_gem_object_finish_gtt(obj);
5323fd04 3229
8b1bc9b4
DV
3230 /* release the fence reg _after_ flushing */
3231 ret = i915_gem_object_put_fence(obj);
3232 if (ret)
3233 return ret;
3234 }
96b47b65 3235
07fe0b12 3236 trace_i915_vma_unbind(vma);
db53a302 3237
777dc5bb 3238 vma->vm->unbind_vma(vma);
5e562f1d 3239 vma->bound = 0;
6f65e29a 3240
64bf9303 3241 list_del_init(&vma->mm_list);
fe14d5f4
TU
3242 if (i915_is_ggtt(vma->vm)) {
3243 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3244 obj->map_and_fenceable = false;
3245 } else if (vma->ggtt_view.pages) {
3246 sg_free_table(vma->ggtt_view.pages);
3247 kfree(vma->ggtt_view.pages);
fe14d5f4 3248 }
016a65a3 3249 vma->ggtt_view.pages = NULL;
fe14d5f4 3250 }
673a394b 3251
2f633156
BW
3252 drm_mm_remove_node(&vma->node);
3253 i915_gem_vma_destroy(vma);
3254
3255 /* Since the unbound list is global, only move to that list if
b93dab6e 3256 * no more VMAs exist. */
e2273302 3257 if (list_empty(&obj->vma_list))
2f633156 3258 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3259
70903c3b
CW
3260 /* And finally now the object is completely decoupled from this vma,
3261 * we can drop its hold on the backing storage and allow it to be
3262 * reaped by the shrinker.
3263 */
3264 i915_gem_object_unpin_pages(obj);
3265
88241785 3266 return 0;
54cf91dc
CW
3267}
3268
b2da9fe5 3269int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3270{
3e31c6c0 3271 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3272 struct intel_engine_cs *ring;
1ec14ad3 3273 int ret, i;
4df2faf4 3274
4df2faf4 3275 /* Flush everything onto the inactive list. */
b4519513 3276 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3277 if (!i915.enable_execlists) {
3278 ret = i915_switch_context(ring, ring->default_context);
3279 if (ret)
3280 return ret;
3281 }
b6c7488d 3282
3e960501 3283 ret = intel_ring_idle(ring);
1ec14ad3
CW
3284 if (ret)
3285 return ret;
3286 }
4df2faf4 3287
b4716185 3288 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3289 return 0;
4df2faf4
DV
3290}
3291
9ce079e4
CW
3292static void i965_write_fence_reg(struct drm_device *dev, int reg,
3293 struct drm_i915_gem_object *obj)
de151cf6 3294{
3e31c6c0 3295 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3296 int fence_reg;
3297 int fence_pitch_shift;
de151cf6 3298
56c844e5
ID
3299 if (INTEL_INFO(dev)->gen >= 6) {
3300 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3301 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3302 } else {
3303 fence_reg = FENCE_REG_965_0;
3304 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3305 }
3306
d18b9619
CW
3307 fence_reg += reg * 8;
3308
3309 /* To w/a incoherency with non-atomic 64-bit register updates,
3310 * we split the 64-bit update into two 32-bit writes. In order
3311 * for a partial fence not to be evaluated between writes, we
3312 * precede the update with write to turn off the fence register,
3313 * and only enable the fence as the last step.
3314 *
3315 * For extra levels of paranoia, we make sure each step lands
3316 * before applying the next step.
3317 */
3318 I915_WRITE(fence_reg, 0);
3319 POSTING_READ(fence_reg);
3320
9ce079e4 3321 if (obj) {
f343c5f6 3322 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3323 uint64_t val;
de151cf6 3324
af1a7301
BP
3325 /* Adjust fence size to match tiled area */
3326 if (obj->tiling_mode != I915_TILING_NONE) {
3327 uint32_t row_size = obj->stride *
3328 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3329 size = (size / row_size) * row_size;
3330 }
3331
f343c5f6 3332 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3333 0xfffff000) << 32;
f343c5f6 3334 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3335 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3336 if (obj->tiling_mode == I915_TILING_Y)
3337 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3338 val |= I965_FENCE_REG_VALID;
c6642782 3339
d18b9619
CW
3340 I915_WRITE(fence_reg + 4, val >> 32);
3341 POSTING_READ(fence_reg + 4);
3342
3343 I915_WRITE(fence_reg + 0, val);
3344 POSTING_READ(fence_reg);
3345 } else {
3346 I915_WRITE(fence_reg + 4, 0);
3347 POSTING_READ(fence_reg + 4);
3348 }
de151cf6
JB
3349}
3350
9ce079e4
CW
3351static void i915_write_fence_reg(struct drm_device *dev, int reg,
3352 struct drm_i915_gem_object *obj)
de151cf6 3353{
3e31c6c0 3354 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3355 u32 val;
de151cf6 3356
9ce079e4 3357 if (obj) {
f343c5f6 3358 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3359 int pitch_val;
3360 int tile_width;
c6642782 3361
f343c5f6 3362 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3363 (size & -size) != size ||
f343c5f6
BW
3364 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3365 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3366 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3367
9ce079e4
CW
3368 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3369 tile_width = 128;
3370 else
3371 tile_width = 512;
3372
3373 /* Note: pitch better be a power of two tile widths */
3374 pitch_val = obj->stride / tile_width;
3375 pitch_val = ffs(pitch_val) - 1;
3376
f343c5f6 3377 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3378 if (obj->tiling_mode == I915_TILING_Y)
3379 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3380 val |= I915_FENCE_SIZE_BITS(size);
3381 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3382 val |= I830_FENCE_REG_VALID;
3383 } else
3384 val = 0;
3385
3386 if (reg < 8)
3387 reg = FENCE_REG_830_0 + reg * 4;
3388 else
3389 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3390
3391 I915_WRITE(reg, val);
3392 POSTING_READ(reg);
de151cf6
JB
3393}
3394
9ce079e4
CW
3395static void i830_write_fence_reg(struct drm_device *dev, int reg,
3396 struct drm_i915_gem_object *obj)
de151cf6 3397{
3e31c6c0 3398 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3399 uint32_t val;
de151cf6 3400
9ce079e4 3401 if (obj) {
f343c5f6 3402 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3403 uint32_t pitch_val;
de151cf6 3404
f343c5f6 3405 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3406 (size & -size) != size ||
f343c5f6
BW
3407 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3408 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3409 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3410
9ce079e4
CW
3411 pitch_val = obj->stride / 128;
3412 pitch_val = ffs(pitch_val) - 1;
de151cf6 3413
f343c5f6 3414 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3415 if (obj->tiling_mode == I915_TILING_Y)
3416 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3417 val |= I830_FENCE_SIZE_BITS(size);
3418 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3419 val |= I830_FENCE_REG_VALID;
3420 } else
3421 val = 0;
c6642782 3422
9ce079e4
CW
3423 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3424 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3425}
3426
d0a57789
CW
3427inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3428{
3429 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3430}
3431
9ce079e4
CW
3432static void i915_gem_write_fence(struct drm_device *dev, int reg,
3433 struct drm_i915_gem_object *obj)
3434{
d0a57789
CW
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436
3437 /* Ensure that all CPU reads are completed before installing a fence
3438 * and all writes before removing the fence.
3439 */
3440 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3441 mb();
3442
94a335db
DV
3443 WARN(obj && (!obj->stride || !obj->tiling_mode),
3444 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3445 obj->stride, obj->tiling_mode);
3446
ce38ab05
RV
3447 if (IS_GEN2(dev))
3448 i830_write_fence_reg(dev, reg, obj);
3449 else if (IS_GEN3(dev))
3450 i915_write_fence_reg(dev, reg, obj);
3451 else if (INTEL_INFO(dev)->gen >= 4)
3452 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3453
3454 /* And similarly be paranoid that no direct access to this region
3455 * is reordered to before the fence is installed.
3456 */
3457 if (i915_gem_object_needs_mb(obj))
3458 mb();
de151cf6
JB
3459}
3460
61050808
CW
3461static inline int fence_number(struct drm_i915_private *dev_priv,
3462 struct drm_i915_fence_reg *fence)
3463{
3464 return fence - dev_priv->fence_regs;
3465}
3466
3467static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3468 struct drm_i915_fence_reg *fence,
3469 bool enable)
3470{
2dc8aae0 3471 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3472 int reg = fence_number(dev_priv, fence);
3473
3474 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3475
3476 if (enable) {
46a0b638 3477 obj->fence_reg = reg;
61050808
CW
3478 fence->obj = obj;
3479 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3480 } else {
3481 obj->fence_reg = I915_FENCE_REG_NONE;
3482 fence->obj = NULL;
3483 list_del_init(&fence->lru_list);
3484 }
94a335db 3485 obj->fence_dirty = false;
61050808
CW
3486}
3487
d9e86c0e 3488static int
d0a57789 3489i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3490{
97b2a6a1 3491 if (obj->last_fenced_req) {
a4b3a571 3492 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3493 if (ret)
3494 return ret;
d9e86c0e 3495
97b2a6a1 3496 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3497 }
3498
3499 return 0;
3500}
3501
3502int
3503i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3504{
61050808 3505 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3506 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3507 int ret;
3508
d0a57789 3509 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3510 if (ret)
3511 return ret;
3512
61050808
CW
3513 if (obj->fence_reg == I915_FENCE_REG_NONE)
3514 return 0;
d9e86c0e 3515
f9c513e9
CW
3516 fence = &dev_priv->fence_regs[obj->fence_reg];
3517
aff10b30
DV
3518 if (WARN_ON(fence->pin_count))
3519 return -EBUSY;
3520
61050808 3521 i915_gem_object_fence_lost(obj);
f9c513e9 3522 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3523
3524 return 0;
3525}
3526
3527static struct drm_i915_fence_reg *
a360bb1a 3528i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3529{
ae3db24a 3530 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3531 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3532 int i;
ae3db24a
DV
3533
3534 /* First try to find a free reg */
d9e86c0e 3535 avail = NULL;
ae3db24a
DV
3536 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3537 reg = &dev_priv->fence_regs[i];
3538 if (!reg->obj)
d9e86c0e 3539 return reg;
ae3db24a 3540
1690e1eb 3541 if (!reg->pin_count)
d9e86c0e 3542 avail = reg;
ae3db24a
DV
3543 }
3544
d9e86c0e 3545 if (avail == NULL)
5dce5b93 3546 goto deadlock;
ae3db24a
DV
3547
3548 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3549 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3550 if (reg->pin_count)
ae3db24a
DV
3551 continue;
3552
8fe301ad 3553 return reg;
ae3db24a
DV
3554 }
3555
5dce5b93
CW
3556deadlock:
3557 /* Wait for completion of pending flips which consume fences */
3558 if (intel_has_pending_fb_unpin(dev))
3559 return ERR_PTR(-EAGAIN);
3560
3561 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3562}
3563
de151cf6 3564/**
9a5a53b3 3565 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3566 * @obj: object to map through a fence reg
3567 *
3568 * When mapping objects through the GTT, userspace wants to be able to write
3569 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3570 * This function walks the fence regs looking for a free one for @obj,
3571 * stealing one if it can't find any.
3572 *
3573 * It then sets up the reg based on the object's properties: address, pitch
3574 * and tiling format.
9a5a53b3
CW
3575 *
3576 * For an untiled surface, this removes any existing fence.
de151cf6 3577 */
8c4b8c3f 3578int
06d98131 3579i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3580{
05394f39 3581 struct drm_device *dev = obj->base.dev;
79e53945 3582 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3583 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3584 struct drm_i915_fence_reg *reg;
ae3db24a 3585 int ret;
de151cf6 3586
14415745
CW
3587 /* Have we updated the tiling parameters upon the object and so
3588 * will need to serialise the write to the associated fence register?
3589 */
5d82e3e6 3590 if (obj->fence_dirty) {
d0a57789 3591 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3592 if (ret)
3593 return ret;
3594 }
9a5a53b3 3595
d9e86c0e 3596 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3597 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3598 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3599 if (!obj->fence_dirty) {
14415745
CW
3600 list_move_tail(&reg->lru_list,
3601 &dev_priv->mm.fence_list);
3602 return 0;
3603 }
3604 } else if (enable) {
e6a84468
CW
3605 if (WARN_ON(!obj->map_and_fenceable))
3606 return -EINVAL;
3607
14415745 3608 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3609 if (IS_ERR(reg))
3610 return PTR_ERR(reg);
d9e86c0e 3611
14415745
CW
3612 if (reg->obj) {
3613 struct drm_i915_gem_object *old = reg->obj;
3614
d0a57789 3615 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3616 if (ret)
3617 return ret;
3618
14415745 3619 i915_gem_object_fence_lost(old);
29c5a587 3620 }
14415745 3621 } else
a09ba7fa 3622 return 0;
a09ba7fa 3623
14415745 3624 i915_gem_object_update_fence(obj, reg, enable);
14415745 3625
9ce079e4 3626 return 0;
de151cf6
JB
3627}
3628
4144f9b5 3629static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3630 unsigned long cache_level)
3631{
4144f9b5 3632 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3633 struct drm_mm_node *other;
3634
4144f9b5
CW
3635 /*
3636 * On some machines we have to be careful when putting differing types
3637 * of snoopable memory together to avoid the prefetcher crossing memory
3638 * domains and dying. During vm initialisation, we decide whether or not
3639 * these constraints apply and set the drm_mm.color_adjust
3640 * appropriately.
42d6ab48 3641 */
4144f9b5 3642 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3643 return true;
3644
c6cfb325 3645 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3646 return true;
3647
3648 if (list_empty(&gtt_space->node_list))
3649 return true;
3650
3651 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3652 if (other->allocated && !other->hole_follows && other->color != cache_level)
3653 return false;
3654
3655 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3656 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3657 return false;
3658
3659 return true;
3660}
3661
673a394b 3662/**
91e6711e
JL
3663 * Finds free space in the GTT aperture and binds the object or a view of it
3664 * there.
673a394b 3665 */
262de145 3666static struct i915_vma *
07fe0b12
BW
3667i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3668 struct i915_address_space *vm,
ec7adb6e 3669 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3670 unsigned alignment,
ec7adb6e 3671 uint64_t flags)
673a394b 3672{
05394f39 3673 struct drm_device *dev = obj->base.dev;
3e31c6c0 3674 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3675 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3676 unsigned long start =
3677 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3678 unsigned long end =
1ec9e26d 3679 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3680 struct i915_vma *vma;
07f73f69 3681 int ret;
673a394b 3682
91e6711e
JL
3683 if (i915_is_ggtt(vm)) {
3684 u32 view_size;
3685
3686 if (WARN_ON(!ggtt_view))
3687 return ERR_PTR(-EINVAL);
ec7adb6e 3688
91e6711e
JL
3689 view_size = i915_ggtt_view_size(obj, ggtt_view);
3690
3691 fence_size = i915_gem_get_gtt_size(dev,
3692 view_size,
3693 obj->tiling_mode);
3694 fence_alignment = i915_gem_get_gtt_alignment(dev,
3695 view_size,
3696 obj->tiling_mode,
3697 true);
3698 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3699 view_size,
3700 obj->tiling_mode,
3701 false);
3702 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3703 } else {
3704 fence_size = i915_gem_get_gtt_size(dev,
3705 obj->base.size,
3706 obj->tiling_mode);
3707 fence_alignment = i915_gem_get_gtt_alignment(dev,
3708 obj->base.size,
3709 obj->tiling_mode,
3710 true);
3711 unfenced_alignment =
3712 i915_gem_get_gtt_alignment(dev,
3713 obj->base.size,
3714 obj->tiling_mode,
3715 false);
3716 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3717 }
a00b10c3 3718
673a394b 3719 if (alignment == 0)
1ec9e26d 3720 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3721 unfenced_alignment;
1ec9e26d 3722 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3723 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3724 ggtt_view ? ggtt_view->type : 0,
3725 alignment);
262de145 3726 return ERR_PTR(-EINVAL);
673a394b
EA
3727 }
3728
91e6711e
JL
3729 /* If binding the object/GGTT view requires more space than the entire
3730 * aperture has, reject it early before evicting everything in a vain
3731 * attempt to find space.
654fc607 3732 */
91e6711e
JL
3733 if (size > end) {
3734 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3735 ggtt_view ? ggtt_view->type : 0,
3736 size,
1ec9e26d 3737 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3738 end);
262de145 3739 return ERR_PTR(-E2BIG);
654fc607
CW
3740 }
3741
37e680a1 3742 ret = i915_gem_object_get_pages(obj);
6c085a72 3743 if (ret)
262de145 3744 return ERR_PTR(ret);
6c085a72 3745
fbdda6fb
CW
3746 i915_gem_object_pin_pages(obj);
3747
ec7adb6e
JL
3748 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3749 i915_gem_obj_lookup_or_create_vma(obj, vm);
3750
262de145 3751 if (IS_ERR(vma))
bc6bc15b 3752 goto err_unpin;
2f633156 3753
0a9ae0d7 3754search_free:
07fe0b12 3755 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3756 size, alignment,
d23db88c
CW
3757 obj->cache_level,
3758 start, end,
62347f9e
LK
3759 DRM_MM_SEARCH_DEFAULT,
3760 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3761 if (ret) {
f6cd1f15 3762 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3763 obj->cache_level,
3764 start, end,
3765 flags);
dc9dd7a2
CW
3766 if (ret == 0)
3767 goto search_free;
9731129c 3768
bc6bc15b 3769 goto err_free_vma;
673a394b 3770 }
4144f9b5 3771 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3772 ret = -EINVAL;
bc6bc15b 3773 goto err_remove_node;
673a394b
EA
3774 }
3775
fe14d5f4 3776 trace_i915_vma_bind(vma, flags);
0875546c 3777 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3778 if (ret)
e2273302 3779 goto err_remove_node;
fe14d5f4 3780
35c20a60 3781 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3782 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3783
262de145 3784 return vma;
2f633156 3785
bc6bc15b 3786err_remove_node:
6286ef9b 3787 drm_mm_remove_node(&vma->node);
bc6bc15b 3788err_free_vma:
2f633156 3789 i915_gem_vma_destroy(vma);
262de145 3790 vma = ERR_PTR(ret);
bc6bc15b 3791err_unpin:
2f633156 3792 i915_gem_object_unpin_pages(obj);
262de145 3793 return vma;
673a394b
EA
3794}
3795
000433b6 3796bool
2c22569b
CW
3797i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3798 bool force)
673a394b 3799{
673a394b
EA
3800 /* If we don't have a page list set up, then we're not pinned
3801 * to GPU, and we can ignore the cache flush because it'll happen
3802 * again at bind time.
3803 */
05394f39 3804 if (obj->pages == NULL)
000433b6 3805 return false;
673a394b 3806
769ce464
ID
3807 /*
3808 * Stolen memory is always coherent with the GPU as it is explicitly
3809 * marked as wc by the system, or the system is cache-coherent.
3810 */
6a2c4232 3811 if (obj->stolen || obj->phys_handle)
000433b6 3812 return false;
769ce464 3813
9c23f7fc
CW
3814 /* If the GPU is snooping the contents of the CPU cache,
3815 * we do not need to manually clear the CPU cache lines. However,
3816 * the caches are only snooped when the render cache is
3817 * flushed/invalidated. As we always have to emit invalidations
3818 * and flushes when moving into and out of the RENDER domain, correct
3819 * snooping behaviour occurs naturally as the result of our domain
3820 * tracking.
3821 */
0f71979a
CW
3822 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3823 obj->cache_dirty = true;
000433b6 3824 return false;
0f71979a 3825 }
9c23f7fc 3826
1c5d22f7 3827 trace_i915_gem_object_clflush(obj);
9da3da66 3828 drm_clflush_sg(obj->pages);
0f71979a 3829 obj->cache_dirty = false;
000433b6
CW
3830
3831 return true;
e47c68e9
EA
3832}
3833
3834/** Flushes the GTT write domain for the object if it's dirty. */
3835static void
05394f39 3836i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3837{
1c5d22f7
CW
3838 uint32_t old_write_domain;
3839
05394f39 3840 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3841 return;
3842
63256ec5 3843 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3844 * to it immediately go to main memory as far as we know, so there's
3845 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3846 *
3847 * However, we do have to enforce the order so that all writes through
3848 * the GTT land before any writes to the device, such as updates to
3849 * the GATT itself.
e47c68e9 3850 */
63256ec5
CW
3851 wmb();
3852
05394f39
CW
3853 old_write_domain = obj->base.write_domain;
3854 obj->base.write_domain = 0;
1c5d22f7 3855
f99d7069
DV
3856 intel_fb_obj_flush(obj, false);
3857
1c5d22f7 3858 trace_i915_gem_object_change_domain(obj,
05394f39 3859 obj->base.read_domains,
1c5d22f7 3860 old_write_domain);
e47c68e9
EA
3861}
3862
3863/** Flushes the CPU write domain for the object if it's dirty. */
3864static void
e62b59e4 3865i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3866{
1c5d22f7 3867 uint32_t old_write_domain;
e47c68e9 3868
05394f39 3869 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3870 return;
3871
e62b59e4 3872 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3873 i915_gem_chipset_flush(obj->base.dev);
3874
05394f39
CW
3875 old_write_domain = obj->base.write_domain;
3876 obj->base.write_domain = 0;
1c5d22f7 3877
f99d7069
DV
3878 intel_fb_obj_flush(obj, false);
3879
1c5d22f7 3880 trace_i915_gem_object_change_domain(obj,
05394f39 3881 obj->base.read_domains,
1c5d22f7 3882 old_write_domain);
e47c68e9
EA
3883}
3884
2ef7eeaa
EA
3885/**
3886 * Moves a single object to the GTT read, and possibly write domain.
3887 *
3888 * This function returns when the move is complete, including waiting on
3889 * flushes to occur.
3890 */
79e53945 3891int
2021746e 3892i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3893{
1c5d22f7 3894 uint32_t old_write_domain, old_read_domains;
43566ded 3895 struct i915_vma *vma;
e47c68e9 3896 int ret;
2ef7eeaa 3897
8d7e3de1
CW
3898 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3899 return 0;
3900
0201f1ec 3901 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3902 if (ret)
3903 return ret;
3904
43566ded
CW
3905 /* Flush and acquire obj->pages so that we are coherent through
3906 * direct access in memory with previous cached writes through
3907 * shmemfs and that our cache domain tracking remains valid.
3908 * For example, if the obj->filp was moved to swap without us
3909 * being notified and releasing the pages, we would mistakenly
3910 * continue to assume that the obj remained out of the CPU cached
3911 * domain.
3912 */
3913 ret = i915_gem_object_get_pages(obj);
3914 if (ret)
3915 return ret;
3916
e62b59e4 3917 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3918
d0a57789
CW
3919 /* Serialise direct access to this object with the barriers for
3920 * coherent writes from the GPU, by effectively invalidating the
3921 * GTT domain upon first access.
3922 */
3923 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3924 mb();
3925
05394f39
CW
3926 old_write_domain = obj->base.write_domain;
3927 old_read_domains = obj->base.read_domains;
1c5d22f7 3928
e47c68e9
EA
3929 /* It should now be out of any other write domains, and we can update
3930 * the domain values for our changes.
3931 */
05394f39
CW
3932 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3933 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3934 if (write) {
05394f39
CW
3935 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3936 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3937 obj->dirty = 1;
2ef7eeaa
EA
3938 }
3939
f99d7069 3940 if (write)
a4001f1b 3941 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
f99d7069 3942
1c5d22f7
CW
3943 trace_i915_gem_object_change_domain(obj,
3944 old_read_domains,
3945 old_write_domain);
3946
8325a09d 3947 /* And bump the LRU for this access */
43566ded
CW
3948 vma = i915_gem_obj_to_ggtt(obj);
3949 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3950 list_move_tail(&vma->mm_list,
43566ded 3951 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3952
e47c68e9
EA
3953 return 0;
3954}
3955
e4ffd173
CW
3956int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3957 enum i915_cache_level cache_level)
3958{
7bddb01f 3959 struct drm_device *dev = obj->base.dev;
df6f783a 3960 struct i915_vma *vma, *next;
e4ffd173
CW
3961 int ret;
3962
3963 if (obj->cache_level == cache_level)
3964 return 0;
3965
d7f46fc4 3966 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3967 DRM_DEBUG("can not change the cache level of pinned objects\n");
3968 return -EBUSY;
3969 }
3970
df6f783a 3971 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3972 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3973 ret = i915_vma_unbind(vma);
3089c6f2
BW
3974 if (ret)
3975 return ret;
3089c6f2 3976 }
42d6ab48
CW
3977 }
3978
3089c6f2 3979 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 3980 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3981 if (ret)
3982 return ret;
3983
3984 i915_gem_object_finish_gtt(obj);
3985
3986 /* Before SandyBridge, you could not use tiling or fence
3987 * registers with snooped memory, so relinquish any fences
3988 * currently pointing to our region in the aperture.
3989 */
42d6ab48 3990 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3991 ret = i915_gem_object_put_fence(obj);
3992 if (ret)
3993 return ret;
3994 }
3995
6f65e29a 3996 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3997 if (drm_mm_node_allocated(&vma->node)) {
3998 ret = i915_vma_bind(vma, cache_level,
0875546c 3999 PIN_UPDATE);
fe14d5f4
TU
4000 if (ret)
4001 return ret;
4002 }
e4ffd173
CW
4003 }
4004
2c22569b
CW
4005 list_for_each_entry(vma, &obj->vma_list, vma_link)
4006 vma->node.color = cache_level;
4007 obj->cache_level = cache_level;
4008
0f71979a
CW
4009 if (obj->cache_dirty &&
4010 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4011 cpu_write_needs_clflush(obj)) {
4012 if (i915_gem_clflush_object(obj, true))
4013 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
4014 }
4015
e4ffd173
CW
4016 return 0;
4017}
4018
199adf40
BW
4019int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4020 struct drm_file *file)
e6994aee 4021{
199adf40 4022 struct drm_i915_gem_caching *args = data;
e6994aee 4023 struct drm_i915_gem_object *obj;
e6994aee
CW
4024
4025 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
4026 if (&obj->base == NULL)
4027 return -ENOENT;
e6994aee 4028
651d794f
CW
4029 switch (obj->cache_level) {
4030 case I915_CACHE_LLC:
4031 case I915_CACHE_L3_LLC:
4032 args->caching = I915_CACHING_CACHED;
4033 break;
4034
4257d3ba
CW
4035 case I915_CACHE_WT:
4036 args->caching = I915_CACHING_DISPLAY;
4037 break;
4038
651d794f
CW
4039 default:
4040 args->caching = I915_CACHING_NONE;
4041 break;
4042 }
e6994aee 4043
432be69d
CW
4044 drm_gem_object_unreference_unlocked(&obj->base);
4045 return 0;
e6994aee
CW
4046}
4047
199adf40
BW
4048int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4049 struct drm_file *file)
e6994aee 4050{
199adf40 4051 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4052 struct drm_i915_gem_object *obj;
4053 enum i915_cache_level level;
4054 int ret;
4055
199adf40
BW
4056 switch (args->caching) {
4057 case I915_CACHING_NONE:
e6994aee
CW
4058 level = I915_CACHE_NONE;
4059 break;
199adf40 4060 case I915_CACHING_CACHED:
e6994aee
CW
4061 level = I915_CACHE_LLC;
4062 break;
4257d3ba
CW
4063 case I915_CACHING_DISPLAY:
4064 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4065 break;
e6994aee
CW
4066 default:
4067 return -EINVAL;
4068 }
4069
3bc2913e
BW
4070 ret = i915_mutex_lock_interruptible(dev);
4071 if (ret)
4072 return ret;
4073
e6994aee
CW
4074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4075 if (&obj->base == NULL) {
4076 ret = -ENOENT;
4077 goto unlock;
4078 }
4079
4080 ret = i915_gem_object_set_cache_level(obj, level);
4081
4082 drm_gem_object_unreference(&obj->base);
4083unlock:
4084 mutex_unlock(&dev->struct_mutex);
4085 return ret;
4086}
4087
b9241ea3 4088/*
2da3b9b9
CW
4089 * Prepare buffer for display plane (scanout, cursors, etc).
4090 * Can be called from an uninterruptible phase (modesetting) and allows
4091 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4092 */
4093int
2da3b9b9
CW
4094i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4095 u32 alignment,
e6617330
TU
4096 struct intel_engine_cs *pipelined,
4097 const struct i915_ggtt_view *view)
b9241ea3 4098{
2da3b9b9 4099 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4100 int ret;
4101
b4716185
CW
4102 ret = i915_gem_object_sync(obj, pipelined);
4103 if (ret)
4104 return ret;
b9241ea3 4105
cc98b413
CW
4106 /* Mark the pin_display early so that we account for the
4107 * display coherency whilst setting up the cache domains.
4108 */
8a0c39b1 4109 obj->pin_display++;
cc98b413 4110
a7ef0640
EA
4111 /* The display engine is not coherent with the LLC cache on gen6. As
4112 * a result, we make sure that the pinning that is about to occur is
4113 * done with uncached PTEs. This is lowest common denominator for all
4114 * chipsets.
4115 *
4116 * However for gen6+, we could do better by using the GFDT bit instead
4117 * of uncaching, which would allow us to flush all the LLC-cached data
4118 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4119 */
651d794f
CW
4120 ret = i915_gem_object_set_cache_level(obj,
4121 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4122 if (ret)
cc98b413 4123 goto err_unpin_display;
a7ef0640 4124
2da3b9b9
CW
4125 /* As the user may map the buffer once pinned in the display plane
4126 * (e.g. libkms for the bootup splash), we have to ensure that we
4127 * always use map_and_fenceable for all scanout buffers.
4128 */
50470bb0
TU
4129 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4130 view->type == I915_GGTT_VIEW_NORMAL ?
4131 PIN_MAPPABLE : 0);
2da3b9b9 4132 if (ret)
cc98b413 4133 goto err_unpin_display;
2da3b9b9 4134
e62b59e4 4135 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4136
2da3b9b9 4137 old_write_domain = obj->base.write_domain;
05394f39 4138 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4139
4140 /* It should now be out of any other write domains, and we can update
4141 * the domain values for our changes.
4142 */
e5f1d962 4143 obj->base.write_domain = 0;
05394f39 4144 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4145
4146 trace_i915_gem_object_change_domain(obj,
4147 old_read_domains,
2da3b9b9 4148 old_write_domain);
b9241ea3
ZW
4149
4150 return 0;
cc98b413
CW
4151
4152err_unpin_display:
8a0c39b1 4153 obj->pin_display--;
cc98b413
CW
4154 return ret;
4155}
4156
4157void
e6617330
TU
4158i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4159 const struct i915_ggtt_view *view)
cc98b413 4160{
8a0c39b1
TU
4161 if (WARN_ON(obj->pin_display == 0))
4162 return;
85345517 4163
e6617330 4164 i915_gem_object_ggtt_unpin_view(obj, view);
c501ae7f 4165
8a0c39b1 4166 obj->pin_display--;
85345517
CW
4167}
4168
e47c68e9
EA
4169/**
4170 * Moves a single object to the CPU read, and possibly write domain.
4171 *
4172 * This function returns when the move is complete, including waiting on
4173 * flushes to occur.
4174 */
dabdfe02 4175int
919926ae 4176i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4177{
1c5d22f7 4178 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4179 int ret;
4180
8d7e3de1
CW
4181 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4182 return 0;
4183
0201f1ec 4184 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4185 if (ret)
4186 return ret;
4187
e47c68e9 4188 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4189
05394f39
CW
4190 old_write_domain = obj->base.write_domain;
4191 old_read_domains = obj->base.read_domains;
1c5d22f7 4192
e47c68e9 4193 /* Flush the CPU cache if it's still invalid. */
05394f39 4194 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4195 i915_gem_clflush_object(obj, false);
2ef7eeaa 4196
05394f39 4197 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4198 }
4199
4200 /* It should now be out of any other write domains, and we can update
4201 * the domain values for our changes.
4202 */
05394f39 4203 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4204
4205 /* If we're writing through the CPU, then the GPU read domains will
4206 * need to be invalidated at next use.
4207 */
4208 if (write) {
05394f39
CW
4209 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4210 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4211 }
2ef7eeaa 4212
f99d7069 4213 if (write)
a4001f1b 4214 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
f99d7069 4215
1c5d22f7
CW
4216 trace_i915_gem_object_change_domain(obj,
4217 old_read_domains,
4218 old_write_domain);
4219
2ef7eeaa
EA
4220 return 0;
4221}
4222
673a394b
EA
4223/* Throttle our rendering by waiting until the ring has completed our requests
4224 * emitted over 20 msec ago.
4225 *
b962442e
EA
4226 * Note that if we were to use the current jiffies each time around the loop,
4227 * we wouldn't escape the function with any frames outstanding if the time to
4228 * render a frame was over 20ms.
4229 *
673a394b
EA
4230 * This should get us reasonable parallelism between CPU and GPU but also
4231 * relatively low latency when blocking on a particular request to finish.
4232 */
40a5f0de 4233static int
f787a5f5 4234i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4235{
f787a5f5
CW
4236 struct drm_i915_private *dev_priv = dev->dev_private;
4237 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4238 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4239 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4240 unsigned reset_counter;
f787a5f5 4241 int ret;
93533c29 4242
308887aa
DV
4243 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4244 if (ret)
4245 return ret;
4246
4247 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4248 if (ret)
4249 return ret;
e110e8d6 4250
1c25595f 4251 spin_lock(&file_priv->mm.lock);
f787a5f5 4252 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4253 if (time_after_eq(request->emitted_jiffies, recent_enough))
4254 break;
40a5f0de 4255
54fb2411 4256 target = request;
b962442e 4257 }
f69061be 4258 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4259 if (target)
4260 i915_gem_request_reference(target);
1c25595f 4261 spin_unlock(&file_priv->mm.lock);
40a5f0de 4262
54fb2411 4263 if (target == NULL)
f787a5f5 4264 return 0;
2bc43b5c 4265
9c654818 4266 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4267 if (ret == 0)
4268 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4269
41037f9f 4270 i915_gem_request_unreference__unlocked(target);
ff865885 4271
40a5f0de
EA
4272 return ret;
4273}
4274
d23db88c
CW
4275static bool
4276i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4277{
4278 struct drm_i915_gem_object *obj = vma->obj;
4279
4280 if (alignment &&
4281 vma->node.start & (alignment - 1))
4282 return true;
4283
4284 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4285 return true;
4286
4287 if (flags & PIN_OFFSET_BIAS &&
4288 vma->node.start < (flags & PIN_OFFSET_MASK))
4289 return true;
4290
4291 return false;
4292}
4293
ec7adb6e
JL
4294static int
4295i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4296 struct i915_address_space *vm,
4297 const struct i915_ggtt_view *ggtt_view,
4298 uint32_t alignment,
4299 uint64_t flags)
673a394b 4300{
6e7186af 4301 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4302 struct i915_vma *vma;
ef79e17c 4303 unsigned bound;
673a394b
EA
4304 int ret;
4305
6e7186af
BW
4306 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4307 return -ENODEV;
4308
bf3d149b 4309 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4310 return -EINVAL;
07fe0b12 4311
c826c449
CW
4312 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4313 return -EINVAL;
4314
ec7adb6e
JL
4315 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4316 return -EINVAL;
4317
4318 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4319 i915_gem_obj_to_vma(obj, vm);
4320
4321 if (IS_ERR(vma))
4322 return PTR_ERR(vma);
4323
07fe0b12 4324 if (vma) {
d7f46fc4
BW
4325 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4326 return -EBUSY;
4327
d23db88c 4328 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4329 unsigned long offset;
9abc4648 4330 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4331 i915_gem_obj_offset(obj, vm);
d7f46fc4 4332 WARN(vma->pin_count,
ec7adb6e 4333 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4334 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4335 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4336 ggtt_view ? "ggtt" : "ppgtt",
4337 offset,
fe14d5f4 4338 alignment,
d23db88c 4339 !!(flags & PIN_MAPPABLE),
05394f39 4340 obj->map_and_fenceable);
07fe0b12 4341 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4342 if (ret)
4343 return ret;
8ea99c92
DV
4344
4345 vma = NULL;
ac0c6b5a
CW
4346 }
4347 }
4348
ef79e17c 4349 bound = vma ? vma->bound : 0;
8ea99c92 4350 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4351 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4352 flags);
262de145
DV
4353 if (IS_ERR(vma))
4354 return PTR_ERR(vma);
0875546c
DV
4355 } else {
4356 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4357 if (ret)
4358 return ret;
4359 }
74898d7e 4360
91e6711e
JL
4361 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4362 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4363 bool mappable, fenceable;
4364 u32 fence_size, fence_alignment;
4365
4366 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4367 obj->base.size,
4368 obj->tiling_mode);
4369 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4370 obj->base.size,
4371 obj->tiling_mode,
4372 true);
4373
4374 fenceable = (vma->node.size == fence_size &&
4375 (vma->node.start & (fence_alignment - 1)) == 0);
4376
e8dec1dd 4377 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4378 dev_priv->gtt.mappable_end);
4379
4380 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4381
91e6711e
JL
4382 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4383 }
ef79e17c 4384
8ea99c92 4385 vma->pin_count++;
673a394b
EA
4386 return 0;
4387}
4388
ec7adb6e
JL
4389int
4390i915_gem_object_pin(struct drm_i915_gem_object *obj,
4391 struct i915_address_space *vm,
4392 uint32_t alignment,
4393 uint64_t flags)
4394{
4395 return i915_gem_object_do_pin(obj, vm,
4396 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4397 alignment, flags);
4398}
4399
4400int
4401i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4402 const struct i915_ggtt_view *view,
4403 uint32_t alignment,
4404 uint64_t flags)
4405{
4406 if (WARN_ONCE(!view, "no view specified"))
4407 return -EINVAL;
4408
4409 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4410 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4411}
4412
673a394b 4413void
e6617330
TU
4414i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4415 const struct i915_ggtt_view *view)
673a394b 4416{
e6617330 4417 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4418
d7f46fc4 4419 BUG_ON(!vma);
e6617330 4420 WARN_ON(vma->pin_count == 0);
9abc4648 4421 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4422
30154650 4423 --vma->pin_count;
673a394b
EA
4424}
4425
d8ffa60b
DV
4426bool
4427i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4428{
4429 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4430 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4431 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4432
4433 WARN_ON(!ggtt_vma ||
4434 dev_priv->fence_regs[obj->fence_reg].pin_count >
4435 ggtt_vma->pin_count);
4436 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4437 return true;
4438 } else
4439 return false;
4440}
4441
4442void
4443i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4444{
4445 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4446 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4447 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4448 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4449 }
4450}
4451
673a394b
EA
4452int
4453i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4454 struct drm_file *file)
673a394b
EA
4455{
4456 struct drm_i915_gem_busy *args = data;
05394f39 4457 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4458 int ret;
4459
76c1dec1 4460 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4461 if (ret)
76c1dec1 4462 return ret;
673a394b 4463
05394f39 4464 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4465 if (&obj->base == NULL) {
1d7cfea1
CW
4466 ret = -ENOENT;
4467 goto unlock;
673a394b 4468 }
d1b851fc 4469
0be555b6
CW
4470 /* Count all active objects as busy, even if they are currently not used
4471 * by the gpu. Users of this interface expect objects to eventually
4472 * become non-busy without any further actions, therefore emit any
4473 * necessary flushes here.
c4de0a5d 4474 */
30dfebf3 4475 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4476 if (ret)
4477 goto unref;
0be555b6 4478
b4716185
CW
4479 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4480 args->busy = obj->active << 16;
4481 if (obj->last_write_req)
4482 args->busy |= obj->last_write_req->ring->id;
673a394b 4483
b4716185 4484unref:
05394f39 4485 drm_gem_object_unreference(&obj->base);
1d7cfea1 4486unlock:
673a394b 4487 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4488 return ret;
673a394b
EA
4489}
4490
4491int
4492i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4493 struct drm_file *file_priv)
4494{
0206e353 4495 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4496}
4497
3ef94daa
CW
4498int
4499i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4500 struct drm_file *file_priv)
4501{
656bfa3a 4502 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4503 struct drm_i915_gem_madvise *args = data;
05394f39 4504 struct drm_i915_gem_object *obj;
76c1dec1 4505 int ret;
3ef94daa
CW
4506
4507 switch (args->madv) {
4508 case I915_MADV_DONTNEED:
4509 case I915_MADV_WILLNEED:
4510 break;
4511 default:
4512 return -EINVAL;
4513 }
4514
1d7cfea1
CW
4515 ret = i915_mutex_lock_interruptible(dev);
4516 if (ret)
4517 return ret;
4518
05394f39 4519 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4520 if (&obj->base == NULL) {
1d7cfea1
CW
4521 ret = -ENOENT;
4522 goto unlock;
3ef94daa 4523 }
3ef94daa 4524
d7f46fc4 4525 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4526 ret = -EINVAL;
4527 goto out;
3ef94daa
CW
4528 }
4529
656bfa3a
DV
4530 if (obj->pages &&
4531 obj->tiling_mode != I915_TILING_NONE &&
4532 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4533 if (obj->madv == I915_MADV_WILLNEED)
4534 i915_gem_object_unpin_pages(obj);
4535 if (args->madv == I915_MADV_WILLNEED)
4536 i915_gem_object_pin_pages(obj);
4537 }
4538
05394f39
CW
4539 if (obj->madv != __I915_MADV_PURGED)
4540 obj->madv = args->madv;
3ef94daa 4541
6c085a72 4542 /* if the object is no longer attached, discard its backing storage */
be6a0376 4543 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4544 i915_gem_object_truncate(obj);
4545
05394f39 4546 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4547
1d7cfea1 4548out:
05394f39 4549 drm_gem_object_unreference(&obj->base);
1d7cfea1 4550unlock:
3ef94daa 4551 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4552 return ret;
3ef94daa
CW
4553}
4554
37e680a1
CW
4555void i915_gem_object_init(struct drm_i915_gem_object *obj,
4556 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4557{
b4716185
CW
4558 int i;
4559
35c20a60 4560 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4561 for (i = 0; i < I915_NUM_RINGS; i++)
4562 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4563 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4564 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4565 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4566
37e680a1
CW
4567 obj->ops = ops;
4568
0327d6ba
CW
4569 obj->fence_reg = I915_FENCE_REG_NONE;
4570 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4571
4572 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4573}
4574
37e680a1
CW
4575static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4576 .get_pages = i915_gem_object_get_pages_gtt,
4577 .put_pages = i915_gem_object_put_pages_gtt,
4578};
4579
05394f39
CW
4580struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4581 size_t size)
ac52bc56 4582{
c397b908 4583 struct drm_i915_gem_object *obj;
5949eac4 4584 struct address_space *mapping;
1a240d4d 4585 gfp_t mask;
ac52bc56 4586
42dcedd4 4587 obj = i915_gem_object_alloc(dev);
c397b908
DV
4588 if (obj == NULL)
4589 return NULL;
673a394b 4590
c397b908 4591 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4592 i915_gem_object_free(obj);
c397b908
DV
4593 return NULL;
4594 }
673a394b 4595
bed1ea95
CW
4596 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4597 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4598 /* 965gm cannot relocate objects above 4GiB. */
4599 mask &= ~__GFP_HIGHMEM;
4600 mask |= __GFP_DMA32;
4601 }
4602
496ad9aa 4603 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4604 mapping_set_gfp_mask(mapping, mask);
5949eac4 4605
37e680a1 4606 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4607
c397b908
DV
4608 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4609 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4610
3d29b842
ED
4611 if (HAS_LLC(dev)) {
4612 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4613 * cache) for about a 10% performance improvement
4614 * compared to uncached. Graphics requests other than
4615 * display scanout are coherent with the CPU in
4616 * accessing this cache. This means in this mode we
4617 * don't need to clflush on the CPU side, and on the
4618 * GPU side we only need to flush internal caches to
4619 * get data visible to the CPU.
4620 *
4621 * However, we maintain the display planes as UC, and so
4622 * need to rebind when first used as such.
4623 */
4624 obj->cache_level = I915_CACHE_LLC;
4625 } else
4626 obj->cache_level = I915_CACHE_NONE;
4627
d861e338
DV
4628 trace_i915_gem_object_create(obj);
4629
05394f39 4630 return obj;
c397b908
DV
4631}
4632
340fbd8c
CW
4633static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4634{
4635 /* If we are the last user of the backing storage (be it shmemfs
4636 * pages or stolen etc), we know that the pages are going to be
4637 * immediately released. In this case, we can then skip copying
4638 * back the contents from the GPU.
4639 */
4640
4641 if (obj->madv != I915_MADV_WILLNEED)
4642 return false;
4643
4644 if (obj->base.filp == NULL)
4645 return true;
4646
4647 /* At first glance, this looks racy, but then again so would be
4648 * userspace racing mmap against close. However, the first external
4649 * reference to the filp can only be obtained through the
4650 * i915_gem_mmap_ioctl() which safeguards us against the user
4651 * acquiring such a reference whilst we are in the middle of
4652 * freeing the object.
4653 */
4654 return atomic_long_read(&obj->base.filp->f_count) == 1;
4655}
4656
1488fc08 4657void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4658{
1488fc08 4659 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4660 struct drm_device *dev = obj->base.dev;
3e31c6c0 4661 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4662 struct i915_vma *vma, *next;
673a394b 4663
f65c9168
PZ
4664 intel_runtime_pm_get(dev_priv);
4665
26e12f89
CW
4666 trace_i915_gem_object_destroy(obj);
4667
07fe0b12 4668 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4669 int ret;
4670
4671 vma->pin_count = 0;
4672 ret = i915_vma_unbind(vma);
07fe0b12
BW
4673 if (WARN_ON(ret == -ERESTARTSYS)) {
4674 bool was_interruptible;
1488fc08 4675
07fe0b12
BW
4676 was_interruptible = dev_priv->mm.interruptible;
4677 dev_priv->mm.interruptible = false;
1488fc08 4678
07fe0b12 4679 WARN_ON(i915_vma_unbind(vma));
1488fc08 4680
07fe0b12
BW
4681 dev_priv->mm.interruptible = was_interruptible;
4682 }
1488fc08
CW
4683 }
4684
1d64ae71
BW
4685 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4686 * before progressing. */
4687 if (obj->stolen)
4688 i915_gem_object_unpin_pages(obj);
4689
a071fa00
DV
4690 WARN_ON(obj->frontbuffer_bits);
4691
656bfa3a
DV
4692 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4693 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4694 obj->tiling_mode != I915_TILING_NONE)
4695 i915_gem_object_unpin_pages(obj);
4696
401c29f6
BW
4697 if (WARN_ON(obj->pages_pin_count))
4698 obj->pages_pin_count = 0;
340fbd8c 4699 if (discard_backing_storage(obj))
5537252b 4700 obj->madv = I915_MADV_DONTNEED;
37e680a1 4701 i915_gem_object_put_pages(obj);
d8cb5086 4702 i915_gem_object_free_mmap_offset(obj);
de151cf6 4703
9da3da66
CW
4704 BUG_ON(obj->pages);
4705
2f745ad3
CW
4706 if (obj->base.import_attach)
4707 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4708
5cc9ed4b
CW
4709 if (obj->ops->release)
4710 obj->ops->release(obj);
4711
05394f39
CW
4712 drm_gem_object_release(&obj->base);
4713 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4714
05394f39 4715 kfree(obj->bit_17);
42dcedd4 4716 i915_gem_object_free(obj);
f65c9168
PZ
4717
4718 intel_runtime_pm_put(dev_priv);
673a394b
EA
4719}
4720
ec7adb6e
JL
4721struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4722 struct i915_address_space *vm)
e656a6cb
DV
4723{
4724 struct i915_vma *vma;
ec7adb6e
JL
4725 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4726 if (i915_is_ggtt(vma->vm) &&
4727 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4728 continue;
4729 if (vma->vm == vm)
e656a6cb 4730 return vma;
ec7adb6e
JL
4731 }
4732 return NULL;
4733}
4734
4735struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4736 const struct i915_ggtt_view *view)
4737{
4738 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4739 struct i915_vma *vma;
e656a6cb 4740
ec7adb6e
JL
4741 if (WARN_ONCE(!view, "no view specified"))
4742 return ERR_PTR(-EINVAL);
4743
4744 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4745 if (vma->vm == ggtt &&
4746 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4747 return vma;
e656a6cb
DV
4748 return NULL;
4749}
4750
2f633156
BW
4751void i915_gem_vma_destroy(struct i915_vma *vma)
4752{
b9d06dd9 4753 struct i915_address_space *vm = NULL;
2f633156 4754 WARN_ON(vma->node.allocated);
aaa05667
CW
4755
4756 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4757 if (!list_empty(&vma->exec_list))
4758 return;
4759
b9d06dd9 4760 vm = vma->vm;
b9d06dd9 4761
841cd773
DV
4762 if (!i915_is_ggtt(vm))
4763 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4764
8b9c2b94 4765 list_del(&vma->vma_link);
b93dab6e 4766
e20d2ab7 4767 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4768}
4769
e3efda49
CW
4770static void
4771i915_gem_stop_ringbuffers(struct drm_device *dev)
4772{
4773 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4774 struct intel_engine_cs *ring;
e3efda49
CW
4775 int i;
4776
4777 for_each_ring(ring, dev_priv, i)
a83014d3 4778 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4779}
4780
29105ccc 4781int
45c5f202 4782i915_gem_suspend(struct drm_device *dev)
29105ccc 4783{
3e31c6c0 4784 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4785 int ret = 0;
28dfe52a 4786
45c5f202 4787 mutex_lock(&dev->struct_mutex);
b2da9fe5 4788 ret = i915_gpu_idle(dev);
f7403347 4789 if (ret)
45c5f202 4790 goto err;
f7403347 4791
b2da9fe5 4792 i915_gem_retire_requests(dev);
673a394b 4793
e3efda49 4794 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4795 mutex_unlock(&dev->struct_mutex);
4796
737b1506 4797 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4798 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4799 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4800
bdcf120b
CW
4801 /* Assert that we sucessfully flushed all the work and
4802 * reset the GPU back to its idle, low power state.
4803 */
4804 WARN_ON(dev_priv->mm.busy);
4805
673a394b 4806 return 0;
45c5f202
CW
4807
4808err:
4809 mutex_unlock(&dev->struct_mutex);
4810 return ret;
673a394b
EA
4811}
4812
a4872ba6 4813int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4814{
c3787e2e 4815 struct drm_device *dev = ring->dev;
3e31c6c0 4816 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4817 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4818 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4819 int i, ret;
b9524a1e 4820
040d2baa 4821 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4822 return 0;
b9524a1e 4823
c3787e2e
BW
4824 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4825 if (ret)
4826 return ret;
b9524a1e 4827
c3787e2e
BW
4828 /*
4829 * Note: We do not worry about the concurrent register cacheline hang
4830 * here because no other code should access these registers other than
4831 * at initialization time.
4832 */
b9524a1e 4833 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4834 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4835 intel_ring_emit(ring, reg_base + i);
4836 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4837 }
4838
c3787e2e 4839 intel_ring_advance(ring);
b9524a1e 4840
c3787e2e 4841 return ret;
b9524a1e
BW
4842}
4843
f691e2f4
DV
4844void i915_gem_init_swizzling(struct drm_device *dev)
4845{
3e31c6c0 4846 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4847
11782b02 4848 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4849 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4850 return;
4851
4852 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4853 DISP_TILE_SURFACE_SWIZZLING);
4854
11782b02
DV
4855 if (IS_GEN5(dev))
4856 return;
4857
f691e2f4
DV
4858 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4859 if (IS_GEN6(dev))
6b26c86d 4860 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4861 else if (IS_GEN7(dev))
6b26c86d 4862 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4863 else if (IS_GEN8(dev))
4864 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4865 else
4866 BUG();
f691e2f4 4867}
e21af88d 4868
67b1b571
CW
4869static bool
4870intel_enable_blt(struct drm_device *dev)
4871{
4872 if (!HAS_BLT(dev))
4873 return false;
4874
4875 /* The blitter was dysfunctional on early prototypes */
4876 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4877 DRM_INFO("BLT not supported on this pre-production hardware;"
4878 " graphics performance will be degraded.\n");
4879 return false;
4880 }
4881
4882 return true;
4883}
4884
81e7f200
VS
4885static void init_unused_ring(struct drm_device *dev, u32 base)
4886{
4887 struct drm_i915_private *dev_priv = dev->dev_private;
4888
4889 I915_WRITE(RING_CTL(base), 0);
4890 I915_WRITE(RING_HEAD(base), 0);
4891 I915_WRITE(RING_TAIL(base), 0);
4892 I915_WRITE(RING_START(base), 0);
4893}
4894
4895static void init_unused_rings(struct drm_device *dev)
4896{
4897 if (IS_I830(dev)) {
4898 init_unused_ring(dev, PRB1_BASE);
4899 init_unused_ring(dev, SRB0_BASE);
4900 init_unused_ring(dev, SRB1_BASE);
4901 init_unused_ring(dev, SRB2_BASE);
4902 init_unused_ring(dev, SRB3_BASE);
4903 } else if (IS_GEN2(dev)) {
4904 init_unused_ring(dev, SRB0_BASE);
4905 init_unused_ring(dev, SRB1_BASE);
4906 } else if (IS_GEN3(dev)) {
4907 init_unused_ring(dev, PRB1_BASE);
4908 init_unused_ring(dev, PRB2_BASE);
4909 }
4910}
4911
a83014d3 4912int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4913{
4fc7c971 4914 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4915 int ret;
68f95ba9 4916
5c1143bb 4917 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4918 if (ret)
b6913e4b 4919 return ret;
68f95ba9
CW
4920
4921 if (HAS_BSD(dev)) {
5c1143bb 4922 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4923 if (ret)
4924 goto cleanup_render_ring;
d1b851fc 4925 }
68f95ba9 4926
67b1b571 4927 if (intel_enable_blt(dev)) {
549f7365
CW
4928 ret = intel_init_blt_ring_buffer(dev);
4929 if (ret)
4930 goto cleanup_bsd_ring;
4931 }
4932
9a8a2213
BW
4933 if (HAS_VEBOX(dev)) {
4934 ret = intel_init_vebox_ring_buffer(dev);
4935 if (ret)
4936 goto cleanup_blt_ring;
4937 }
4938
845f74a7
ZY
4939 if (HAS_BSD2(dev)) {
4940 ret = intel_init_bsd2_ring_buffer(dev);
4941 if (ret)
4942 goto cleanup_vebox_ring;
4943 }
9a8a2213 4944
99433931 4945 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4946 if (ret)
845f74a7 4947 goto cleanup_bsd2_ring;
4fc7c971
BW
4948
4949 return 0;
4950
845f74a7
ZY
4951cleanup_bsd2_ring:
4952 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4953cleanup_vebox_ring:
4954 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4955cleanup_blt_ring:
4956 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4957cleanup_bsd_ring:
4958 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4959cleanup_render_ring:
4960 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4961
4962 return ret;
4963}
4964
4965int
4966i915_gem_init_hw(struct drm_device *dev)
4967{
3e31c6c0 4968 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4969 struct intel_engine_cs *ring;
35a85ac6 4970 int ret, i;
4fc7c971
BW
4971
4972 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4973 return -EIO;
4974
5e4f5189
CW
4975 /* Double layer security blanket, see i915_gem_init() */
4976 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4977
59124506 4978 if (dev_priv->ellc_size)
05e21cc4 4979 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4980
0bf21347
VS
4981 if (IS_HASWELL(dev))
4982 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4983 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4984
88a2b2a3 4985 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4986 if (IS_IVYBRIDGE(dev)) {
4987 u32 temp = I915_READ(GEN7_MSG_CTL);
4988 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4989 I915_WRITE(GEN7_MSG_CTL, temp);
4990 } else if (INTEL_INFO(dev)->gen >= 7) {
4991 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4992 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4993 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4994 }
88a2b2a3
BW
4995 }
4996
4fc7c971
BW
4997 i915_gem_init_swizzling(dev);
4998
d5abdfda
DV
4999 /*
5000 * At least 830 can leave some of the unused rings
5001 * "active" (ie. head != tail) after resume which
5002 * will prevent c3 entry. Makes sure all unused rings
5003 * are totally idle.
5004 */
5005 init_unused_rings(dev);
5006
35a57ffb
DV
5007 for_each_ring(ring, dev_priv, i) {
5008 ret = ring->init_hw(ring);
5009 if (ret)
5e4f5189 5010 goto out;
35a57ffb 5011 }
99433931 5012
c3787e2e
BW
5013 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5014 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5015
f48a0165 5016 ret = i915_ppgtt_init_hw(dev);
60990320 5017 if (ret && ret != -EIO) {
f48a0165 5018 DRM_ERROR("PPGTT enable failed %d\n", ret);
60990320 5019 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
5020 }
5021
f48a0165 5022 ret = i915_gem_context_enable(dev_priv);
82460d97 5023 if (ret && ret != -EIO) {
f48a0165 5024 DRM_ERROR("Context enable failed %d\n", ret);
82460d97 5025 i915_gem_cleanup_ringbuffer(dev);
f48a0165 5026
5e4f5189 5027 goto out;
b7c36d25 5028 }
e21af88d 5029
5e4f5189
CW
5030out:
5031 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5032 return ret;
8187a2b7
ZN
5033}
5034
1070a42b
CW
5035int i915_gem_init(struct drm_device *dev)
5036{
5037 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5038 int ret;
5039
127f1003
OM
5040 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5041 i915.enable_execlists);
5042
1070a42b 5043 mutex_lock(&dev->struct_mutex);
d62b4892
JB
5044
5045 if (IS_VALLEYVIEW(dev)) {
5046 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
5047 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5048 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5049 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
5050 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5051 }
5052
a83014d3 5053 if (!i915.enable_execlists) {
f3dc74c0 5054 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
5055 dev_priv->gt.init_rings = i915_gem_init_rings;
5056 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5057 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 5058 } else {
f3dc74c0 5059 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
5060 dev_priv->gt.init_rings = intel_logical_rings_init;
5061 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5062 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
5063 }
5064
5e4f5189
CW
5065 /* This is just a security blanket to placate dragons.
5066 * On some systems, we very sporadically observe that the first TLBs
5067 * used by the CS may be stale, despite us poking the TLB reset. If
5068 * we hold the forcewake during initialisation these problems
5069 * just magically go away.
5070 */
5071 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5072
6c5566a8 5073 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5074 if (ret)
5075 goto out_unlock;
6c5566a8 5076
d7e5008f 5077 i915_gem_init_global_gtt(dev);
d62b4892 5078
2fa48d8d 5079 ret = i915_gem_context_init(dev);
7bcc3777
JN
5080 if (ret)
5081 goto out_unlock;
2fa48d8d 5082
35a57ffb
DV
5083 ret = dev_priv->gt.init_rings(dev);
5084 if (ret)
7bcc3777 5085 goto out_unlock;
2fa48d8d 5086
1070a42b 5087 ret = i915_gem_init_hw(dev);
60990320
CW
5088 if (ret == -EIO) {
5089 /* Allow ring initialisation to fail by marking the GPU as
5090 * wedged. But we only want to do this where the GPU is angry,
5091 * for all other failure, such as an allocation failure, bail.
5092 */
5093 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5094 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5095 ret = 0;
1070a42b 5096 }
7bcc3777
JN
5097
5098out_unlock:
5e4f5189 5099 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5100 mutex_unlock(&dev->struct_mutex);
1070a42b 5101
60990320 5102 return ret;
1070a42b
CW
5103}
5104
8187a2b7
ZN
5105void
5106i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5107{
3e31c6c0 5108 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5109 struct intel_engine_cs *ring;
1ec14ad3 5110 int i;
8187a2b7 5111
b4519513 5112 for_each_ring(ring, dev_priv, i)
a83014d3 5113 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
5114}
5115
64193406 5116static void
a4872ba6 5117init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5118{
5119 INIT_LIST_HEAD(&ring->active_list);
5120 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5121}
5122
7e0d96bc
BW
5123void i915_init_vm(struct drm_i915_private *dev_priv,
5124 struct i915_address_space *vm)
fc8c067e 5125{
7e0d96bc
BW
5126 if (!i915_is_ggtt(vm))
5127 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5128 vm->dev = dev_priv->dev;
5129 INIT_LIST_HEAD(&vm->active_list);
5130 INIT_LIST_HEAD(&vm->inactive_list);
5131 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5132 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5133}
5134
673a394b
EA
5135void
5136i915_gem_load(struct drm_device *dev)
5137{
3e31c6c0 5138 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5139 int i;
5140
efab6d8d 5141 dev_priv->objects =
42dcedd4
CW
5142 kmem_cache_create("i915_gem_object",
5143 sizeof(struct drm_i915_gem_object), 0,
5144 SLAB_HWCACHE_ALIGN,
5145 NULL);
e20d2ab7
CW
5146 dev_priv->vmas =
5147 kmem_cache_create("i915_gem_vma",
5148 sizeof(struct i915_vma), 0,
5149 SLAB_HWCACHE_ALIGN,
5150 NULL);
efab6d8d
CW
5151 dev_priv->requests =
5152 kmem_cache_create("i915_gem_request",
5153 sizeof(struct drm_i915_gem_request), 0,
5154 SLAB_HWCACHE_ALIGN,
5155 NULL);
673a394b 5156
fc8c067e
BW
5157 INIT_LIST_HEAD(&dev_priv->vm_list);
5158 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5159
a33afea5 5160 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5161 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5162 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5163 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5164 for (i = 0; i < I915_NUM_RINGS; i++)
5165 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5166 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5167 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5168 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5169 i915_gem_retire_work_handler);
b29c19b6
CW
5170 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5171 i915_gem_idle_work_handler);
1f83fee0 5172 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5173
72bfa19c
CW
5174 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5175
42b5aeab
VS
5176 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5177 dev_priv->num_fence_regs = 32;
5178 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5179 dev_priv->num_fence_regs = 16;
5180 else
5181 dev_priv->num_fence_regs = 8;
5182
eb82289a
YZ
5183 if (intel_vgpu_active(dev))
5184 dev_priv->num_fence_regs =
5185 I915_READ(vgtif_reg(avail_rs.fence_num));
5186
b5aa8a0f 5187 /* Initialize fence registers to zero */
19b2dbde
CW
5188 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5189 i915_gem_restore_fences(dev);
10ed13e4 5190
673a394b 5191 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5192 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5193
ce453d81
CW
5194 dev_priv->mm.interruptible = true;
5195
be6a0376 5196 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5197
5198 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5199}
71acb5eb 5200
f787a5f5 5201void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5202{
f787a5f5 5203 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5204
5205 /* Clean up our request list when the client is going away, so that
5206 * later retire_requests won't dereference our soon-to-be-gone
5207 * file_priv.
5208 */
1c25595f 5209 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5210 while (!list_empty(&file_priv->mm.request_list)) {
5211 struct drm_i915_gem_request *request;
5212
5213 request = list_first_entry(&file_priv->mm.request_list,
5214 struct drm_i915_gem_request,
5215 client_list);
5216 list_del(&request->client_list);
5217 request->file_priv = NULL;
5218 }
1c25595f 5219 spin_unlock(&file_priv->mm.lock);
31169714 5220
2e1b8730 5221 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5222 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5223 list_del(&file_priv->rps.link);
8d3afd7d 5224 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5225 }
b29c19b6
CW
5226}
5227
5228int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5229{
5230 struct drm_i915_file_private *file_priv;
e422b888 5231 int ret;
b29c19b6
CW
5232
5233 DRM_DEBUG_DRIVER("\n");
5234
5235 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5236 if (!file_priv)
5237 return -ENOMEM;
5238
5239 file->driver_priv = file_priv;
5240 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5241 file_priv->file = file;
2e1b8730 5242 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5243
5244 spin_lock_init(&file_priv->mm.lock);
5245 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5246
e422b888
BW
5247 ret = i915_gem_context_open(dev, file);
5248 if (ret)
5249 kfree(file_priv);
b29c19b6 5250
e422b888 5251 return ret;
b29c19b6
CW
5252}
5253
b680c37a
DV
5254/**
5255 * i915_gem_track_fb - update frontbuffer tracking
5256 * old: current GEM buffer for the frontbuffer slots
5257 * new: new GEM buffer for the frontbuffer slots
5258 * frontbuffer_bits: bitmask of frontbuffer slots
5259 *
5260 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5261 * from @old and setting them in @new. Both @old and @new can be NULL.
5262 */
a071fa00
DV
5263void i915_gem_track_fb(struct drm_i915_gem_object *old,
5264 struct drm_i915_gem_object *new,
5265 unsigned frontbuffer_bits)
5266{
5267 if (old) {
5268 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5269 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5270 old->frontbuffer_bits &= ~frontbuffer_bits;
5271 }
5272
5273 if (new) {
5274 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5275 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5276 new->frontbuffer_bits |= frontbuffer_bits;
5277 }
5278}
5279
a70a3148 5280/* All the new VM stuff */
ec7adb6e
JL
5281unsigned long
5282i915_gem_obj_offset(struct drm_i915_gem_object *o,
5283 struct i915_address_space *vm)
a70a3148
BW
5284{
5285 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5286 struct i915_vma *vma;
5287
896ab1a5 5288 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5289
a70a3148 5290 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5291 if (i915_is_ggtt(vma->vm) &&
5292 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5293 continue;
5294 if (vma->vm == vm)
a70a3148 5295 return vma->node.start;
a70a3148 5296 }
ec7adb6e 5297
f25748ea
DV
5298 WARN(1, "%s vma for this object not found.\n",
5299 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5300 return -1;
5301}
5302
ec7adb6e
JL
5303unsigned long
5304i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5305 const struct i915_ggtt_view *view)
a70a3148 5306{
ec7adb6e 5307 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5308 struct i915_vma *vma;
5309
5310 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5311 if (vma->vm == ggtt &&
5312 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5313 return vma->node.start;
5314
5678ad73 5315 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5316 return -1;
5317}
5318
5319bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5320 struct i915_address_space *vm)
5321{
5322 struct i915_vma *vma;
5323
5324 list_for_each_entry(vma, &o->vma_list, vma_link) {
5325 if (i915_is_ggtt(vma->vm) &&
5326 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5327 continue;
5328 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5329 return true;
5330 }
5331
5332 return false;
5333}
5334
5335bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5336 const struct i915_ggtt_view *view)
ec7adb6e
JL
5337{
5338 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5339 struct i915_vma *vma;
5340
5341 list_for_each_entry(vma, &o->vma_list, vma_link)
5342 if (vma->vm == ggtt &&
9abc4648 5343 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5344 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5345 return true;
5346
5347 return false;
5348}
5349
5350bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5351{
5a1d5eb0 5352 struct i915_vma *vma;
a70a3148 5353
5a1d5eb0
CW
5354 list_for_each_entry(vma, &o->vma_list, vma_link)
5355 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5356 return true;
5357
5358 return false;
5359}
5360
5361unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5362 struct i915_address_space *vm)
5363{
5364 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5365 struct i915_vma *vma;
5366
896ab1a5 5367 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5368
5369 BUG_ON(list_empty(&o->vma_list));
5370
ec7adb6e
JL
5371 list_for_each_entry(vma, &o->vma_list, vma_link) {
5372 if (i915_is_ggtt(vma->vm) &&
5373 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5374 continue;
a70a3148
BW
5375 if (vma->vm == vm)
5376 return vma->node.size;
ec7adb6e 5377 }
a70a3148
BW
5378 return 0;
5379}
5380
ec7adb6e 5381bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5382{
5383 struct i915_vma *vma;
a6631ae1 5384 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5385 if (vma->pin_count > 0)
5386 return true;
a6631ae1 5387
ec7adb6e 5388 return false;
5c2abbea 5389}
ec7adb6e 5390
This page took 1.838664 seconds and 5 git commands to generate.